WO2005104116A1 - 光記録媒体 - Google Patents

光記録媒体 Download PDF

Info

Publication number
WO2005104116A1
WO2005104116A1 PCT/JP2005/007648 JP2005007648W WO2005104116A1 WO 2005104116 A1 WO2005104116 A1 WO 2005104116A1 JP 2005007648 W JP2005007648 W JP 2005007648W WO 2005104116 A1 WO2005104116 A1 WO 2005104116A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
recording
recording medium
optical recording
Prior art date
Application number
PCT/JP2005/007648
Other languages
English (en)
French (fr)
Inventor
Masafumi Aga
Yoshihiro Noda
Shigeyuki Furomoto
Original Assignee
Mitsubishi Kagaku Media Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Media Co., Ltd. filed Critical Mitsubishi Kagaku Media Co., Ltd.
Priority to DE602005022574T priority Critical patent/DE602005022574D1/de
Priority to EP05734677A priority patent/EP1739667B1/en
Priority to US11/578,967 priority patent/US20070297315A1/en
Priority to CN200580012579.2A priority patent/CN1950900B/zh
Priority to IN3038KON2006 priority patent/IN266857B/en
Publication of WO2005104116A1 publication Critical patent/WO2005104116A1/ja
Priority to HK07111246.2A priority patent/HK1102865A1/xx

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates

Definitions

  • the present invention relates to an optical recording medium, and more particularly, to an optical recording medium having a plurality of recording layers.
  • One means for further increasing the recording capacity of these optical recording media is to provide a plurality of recording layers on one medium.
  • the applicant of the present application has proposed an optical recording medium having two dye recording layers on a disc-shaped transparent first substrate with an intermediate layer made of UV-curable resin interposed therebetween.
  • An application was filed (see Patent Document 1). According to this, information can be recorded on each recording layer by a laser beam irradiated from one side of the optical recording medium, and a dual-layer type optical recording medium can be used as a dual-layer type optical recording medium during reproduction. It is possible to read.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-331463
  • the present invention has been made to improve the deterioration of the recording characteristics of an optical recording medium having a plurality of recording layers.
  • the present invention has been made to improve the deterioration of the recording characteristics of the recording layer to be formed on the intermediate layer.
  • an object of the present invention is to provide an optical recording medium in which a plurality of recording layers provided on a transparent substrate have good recording characteristics.
  • one of the factors that deteriorates the recording characteristics of the recording layer formed on the intermediate layer is considered to be deformation of the groove formed in the intermediate layer due to heat generation of the recording layer. Therefore, it is considered that the recording characteristics of the recording layer can be improved by suppressing the deformation of the groove formed in the intermediate layer. From this viewpoint, the following can be mentioned as means for improving the recording characteristics of the recording layer formed on the intermediate layer.
  • the first means is to increase the heat resistance of the intermediate layer and suppress the deformation of the groove due to heat.
  • the second is a means for increasing the heat dissipation of the heat generated in the recording layer, thereby reducing the heat diffused into the intermediate layer, and suppressing the deformation of the groove in the intermediate layer due to the heat.
  • the third is a means for combining the said first and the second. In other words, this is a means for suppressing the deformation of the grooves of the intermediate layer by balancing the heat resistance of the intermediate layer and the heat dissipation of the recording layer.
  • the intermediate layer is composed of a plurality of resin layers and (a) It has been found that it is possible to impart various functions, (b) to substantially bring the properties of the intermediate layer and the substrate closer, and (c) to make the intermediate layer higher in performance than the substrate. Further, as a result of further studies by the present inventors, it has been found that (d) the heat dissipation of the second recording layer can be improved by controlling the thickness of the reflection layer and the like. By using these (a) to (d) alone or in combination as needed, the power margin of the recording layer formed on the intermediate layer can be formed on the substrate. It was a component that it could be made wider than the power margin of the recording layer.
  • recording and reproduction of information are provided on a substrate and irradiated with the irradiated light.
  • the second recording layer is a recording layer on the side farther away from the substrate, and a predetermined groove for a recording track is formed on a surface of the intermediate layer opposite to the substrate side.
  • Is composed of a plurality of resin layers, and a resin layer forming a predetermined groove for a recording track is defined as an outermost resin layer, and a power margin in the second recording layer is larger than a power margin in the first recording layer.
  • An optical recording medium characterized by a wider power margin is provided.
  • the power margin refers to a laser recording power range in which predetermined recording characteristics can be achieved. Therefore, a wide power margin indicates that the range of the recording power of the laser that achieves the predetermined recording characteristics is wide. Considering the individual differences of the recording laser power of the drive, it is preferable that the power margin is wide. Therefore, the “recording layer with a wide power margin” has excellent recording characteristics.
  • Various specific methods for measuring the power margin can be considered. As an example, there is a method of obtaining a recording power range of a laser such that the jitter of a recording mark measured under a predetermined condition is equal to or less than a predetermined value (eg, 9% or less). A specific method of measuring the power margin will be described later.
  • a resin having an elastic modulus different from that of the other resin layers forming the intermediate layer is used.
  • the elastic modulus at 150 ° C of the resin used for the outermost resin layer shall be 300MPa or more.
  • the substrate is made of resin, and (elasticity of resin used for outermost resin layer at 150 ° C) ⁇ (elasticity of resin forming substrate at 150 ° C).
  • the elastic modulus at 150 ° C of the resin used for the outermost resin layer is made higher than the elastic modulus at 150 ° C of the resin used for other resin layers forming the intermediate layer.
  • the shrinkage of the resin used for the outermost resin layer should be 6% or more.
  • the thickness of the outermost resin layer is 5% or more of the thickness of the entire intermediate layer.
  • the intermediate layer is composed of three resin layers.
  • the intermediate layer is composed of a first layer and a second layer, and each layer uses a resin having a different elastic modulus.
  • the intermediate layer is composed of a first layer and a second layer, and the resin constituting the second layer has a higher elastic modulus than the resin constituting the first layer.
  • the resin constituting the second layer has a higher elastic modulus than the resin constituting the first layer.
  • the intermediate layer is composed of the first layer and the second layer, and the resin constituting the second layer preferably has an elastic modulus at 150 ° C. of 300 MPa or more.
  • the resin constituting the second layer preferably has an elastic modulus at 150 ° C. of 300 MPa or more.
  • the resin constituting the second layer preferably has a shrinkage ratio of 6% or more.
  • the shrinkage of the resin constituting the second layer is 6% or more, the releasability from the resin stamper is improved.
  • the relationship between the thickness of the first layer (Da) and the thickness of the second layer (Db) constituting the intermediate layer having a laminated structure is within such a range, the warpage of the substrate is effectively suppressed. It is possible.
  • the intermediate layer is laminated on the first layer, the first layer having an elastic modulus at 30 ° C of 1500 MPa or less, and the resin having an elastic modulus at 150 ° C of 300 MPa or more. It is preferable that the second layer composed of
  • the shrinkage ratio of the resin constituting the first layer is preferably 4% or less.
  • the following can be mentioned as an example of a preferable realizing method for widening the power margin in the second recording layer.
  • the resin layer constituting the intermediate layer is made of an ultraviolet curable resin.
  • UV-curable resins have high transparency and short curing time, and are advantageous in production. Further, it is easy to control the layer configuration of the resin layer constituting the intermediate layer. Therefore, it becomes easy spread the power margin of the second recording layer.
  • the recording layer contains an organic dye.
  • the organic dye generates heat by melting or chemical reaction. Then, due to this heat generation, the groove formed in the intermediate layer is easily deformed. Therefore, by using an organic dye for the recording layer, the effect of the present invention is more remarkably exhibited.
  • a first reflection layer is provided between the first recording layer and the intermediate layer, and a second reflection layer is provided on the second recording layer.
  • Thickness) Z is preferably 2 or more and 20 or less.
  • the recording characteristics of an optical recording medium having a plurality of recording layers provided on a transparent substrate are improved.
  • the optical recording medium to which the present embodiment is applied is provided on a substrate and irradiated with light. And at least two recording layers capable of recording and reproducing information, and an intermediate layer provided between the two recording layers.
  • the recording layer on the side closer to the substrate force The first recording layer, the recording layer farther from the substrate strength as the second recording layer, and the substrate side of both surfaces of the intermediate layer
  • a predetermined groove for a recording track is formed on the opposite surface, and an intermediate layer is composed of a plurality of resin layers, and a resin layer forming the predetermined groove for a recording track is an outermost resin.
  • the power margin in the second recording layer is wider than the power margin in the first recording layer.
  • the power margin refers to a laser recording power range in which predetermined recording characteristics can be achieved. Therefore, a wide power margin indicates that the range of the recording power of the laser which achieves the predetermined recording characteristics is wide.
  • There are various methods for measuring the power margin As an example, there is a method of obtaining a laser recording power range such that the jitter of a recording mark measured under a predetermined condition is equal to or less than a predetermined value.
  • the following method can be cited as a method for defining the no margin.
  • recording and jitter measurement are performed under a standard determined by the type of optical disk such as a DVD.
  • the recording powers Pl and P2 at which the jitter is 9% or less are obtained.
  • ( ⁇ 2- ⁇ 1) / ⁇ (P2 + P1) Z2 ⁇ is calculated, and this is defined as a power margin.
  • Means for suppressing the deformation of the groove include the following (a) to (c).
  • (b) means for increasing the heat dissipation of the heat generated in the recording layer, thereby reducing the heat diffused into the intermediate layer, and suppressing the deformation of the groove in the intermediate layer due to the heat.
  • the following means can be mentioned.
  • means for bringing the heat resistance of the intermediate layer (particularly, the intermediate layer near the surface where the groove is formed, which greatly affects the deformation of the groove formed in the intermediate layer) closer to the substrate can be given.
  • there is a means for increasing the heat resistance of the intermediate layer especially, the intermediate layer near the surface where the groove is formed, which has a great effect on the deformation of the groove formed in the intermediate layer), as compared with the substrate. Wear.
  • the intermediate layer is composed of a plurality of resin layers, and the resin layer that forms a predetermined groove for a recording track is the outermost resin layer. Further, to satisfy at least one of the following (1) to (3)
  • the elastic modulus at 150 ° C of the resin used for the outermost resin layer should be 300 MPa or more.
  • FIG. 3 is a schematic diagram illustrating an example of an optical recording medium to which the present embodiment is applied.
  • the optical recording medium 300 shown in FIG. 3 has a disk-shaped light-transmitting first substrate 301 having grooves for recording tracks formed on the surface thereof, and a first substrate 301 on the first substrate 301.
  • the first recording layer 302 on which information is recorded and reproduced by the laser light 310 irradiated via the substrate 301, and the semi-transparent second layer for distributing the power of the laser light 310 incident from the first substrate 301 side.
  • a first reflective layer 303, an intermediate layer 304, is laminated.
  • a second recording layer 305 on which information is recorded / reproduced by the laser light 310 transmitted through the intermediate layer 304 on the intermediate layer 304, and a second recording layer 305 reflecting the laser light 310 transmitted through the second recording layer 305. and second reflective layer 306, are stacked in order. Then, on the second reflective layer 306, an adhesive layer 307 and a second substrate 308, which is a dummy substrate forming the outermost layer, are sequentially laminated.
  • the intermediate layer 304 has a recording track on a surface (surface A) opposite to the first substrate 301 side. Predetermined grooves are formed.
  • the intermediate layer 304 is composed of a plurality of resin layers (first resin layer 304a, second resin layer 304b "and" outermost resin layer 304c).
  • optical information is recorded on the first recording layer 302 by the laser beam 310 to which the force on the first substrate 301 is also applied, and the recorded optical information is reproduced.
  • a part of the laser light 310 passes through the translucent first reflective layer 303, and is irradiated on the second recording layer 305 via the intermediate layer 304. Recording and playback of information is performed.
  • the laser light 310 reflected by the first reflection layer 303 and a part of the laser light 310 reflected by the second reflection layer 306 are respectively used for condensing the laser light 310. Focusing (not shown) is used.
  • the second substrate 308, which is usually a dummy substrate, is laminated on the second reflective layer 306 by the adhesive layer 307. Then, the second substrate 308 forms the outermost layer of the optical recording medium 300 and gives the optical recording medium 300 rigidity. Thereby, the stability of the shape of the optical recording medium 300 is maintained.
  • the concave and convex grooves are formed on the first substrate 301 and the intermediate layer 304, respectively, and constitute the recording tracks.
  • light transmission means that the first recording layer 302 and the second recording layer 305 store optical information. It means the light transmittance with respect to the wavelength of light irradiated for recording and reproduction.
  • light transmissive specifically means that the light has a transmissivity of 50% or more, preferably 60% or more, with respect to the wavelength of light for recording and reproduction.
  • the upper limit of the light transmittance is ideally 100%.
  • the resin layer in which a predetermined groove for a recording track is formed is the outermost resin layer 304c.
  • the outermost resin layer 304c satisfies at least one of the following (1) to (3).
  • the elastic modulus at 150 ° C of the resin used for the outermost resin layer 304c should be 300 MPa or more.
  • the first substrate 301 is formed of a resin, (elastic modulus of the resin used for the outermost resin layer 304c at 150 ° C.) ⁇ (resin of the resin forming the first substrate 301) Elastic modulus at 150 ° C).
  • the outermost resin layer 304c is a layer that functions to improve the recording characteristics of the second recording layer 305 formed on the intermediate layer 304.
  • the heat generated in the recording layer during recording on the second recording layer 305 (this heat is generated when the recording layer contains an organic dye due to the chemical change of the organic color, etc.
  • the groove shape is formed in the outermost resin layer 304c due to the heat caused by the structural change of the inorganic material.
  • the outermost resin layer 304c is formed of a hard resin (a heat-resistant resin) that suppresses the deformation of the groove. It is good! /, Indicating that.
  • the elasticity of the resin at 150 ° C. is determined by the other resin layers (the first resin layer 304a and the second resin layer 304b ′) constituting the intermediate layer 304. -) higher than the elastic modulus at of 150 ° C ⁇ used for. This is because a resin having a high elastic modulus generally has a hard property.
  • the elastic modulus is a dynamic elastic modulus measured by a predetermined dynamic viscoelasticity measuring device.
  • the first reason is to increase the heat resistance of the outermost resin layer 304c and suppress the deformation of the groove due to the heat generation of the second recording layer 305.
  • the second reason is that the balance between the material used for the outermost resin layer 304c and the material used for the first substrate 301 is taken into consideration, so that the outermost layer caused by heat generation of the second recording layer 305 can be obtained. This is for suppressing the deformation of the groove formed in the resin layer 304c.
  • the second recording layer 305 heat is generated in the case of performing the recording. Accordingly, the temperature of the outermost resin layer 304c in which the groove for the recording track is formed also increases due to the heat generated by the recording layer. Even in such a high temperature state, if the outermost resin layer 304c can maintain the properties as an elastic body, it is considered that the deformation of the outermost resin layer 304c is likely to be suppressed. Then, if the deformation of the outermost resin layer 304c is suppressed, the recording characteristics of the second recording layer 305 are favorably reduced. Therefore, it is considered that the outermost resin layer 304c preferably has a predetermined elastic modulus at a high temperature of 150 ° C. In other words, it is considered that the outermost resin layer 304c preferably retains its properties as an elastic body at a high temperature of 150 ° C.
  • the recording characteristics of the second recording layer 305 are improved by forming the outermost resin layer 304c using a resin whose elastic modulus at 150 ° C is 300 MPa or more. Is based on consideration of experimental results obtained with an optical disk using a dye for the recording layer.
  • an ultraviolet curable resin having an elastic modulus at 150 ° C. of about 200 MPa has been used.
  • an intermediate layer is formed between two dye-containing recording layers using a resin having a relatively low elastic modulus at such a high temperature (150 ° C)
  • recording is performed on the second recording layer.
  • the recording characteristics of the second recording layer tended to deteriorate.
  • the outermost resin layer 304c having a groove of a recording track on the surface is formed using a resin having an elastic modulus at 150 ° C of 300 MPa or more, the surface of the second recording layer 305
  • the recording track group formed on the recording medium has sufficient strength. Therefore, when information is recorded on the second recording layer 305, a group of Deformation is suppressed.
  • the second reason is that by considering the balance between the material used for the outermost resin layer 304c and the material used for the first substrate 301, the outermost resin layer 305 generates heat due to heat generation. in order to suppress deformation of the groove formed in the fat layer 30 4c. That is, when the first substrate 301 is formed of a resin, the first substrate 301 is prevented from deforming the groove of the first substrate 301 due to heat generated by the first recording layer 302 during recording. 301 is usually formed of a resin having sufficient hardness. This is because, similarly to the case of the outermost resin layer 304c, the recording characteristics of the first recording layer 302 are improved by suppressing the deformation of the groove of the first substrate 301 during recording. is there.
  • polycarbonate resin In the field of optical discs, when the first substrate 301 is formed of resin, polycarbonate resin is generally used. Polycarbonate resin has a glass transition point around 150 ° C. Here, the modulus of elasticity of the polycarbonate resin at 150 ° C. is about 950 MPa. If the first substrate 301 is made of polycarbonate resin, the recording characteristics of the first recording layer 302 will be excellent.
  • the recording characteristics of the second recording layer 305 Can be expected to improve.
  • the elastic modulus at 150 ° C. of the resin used for the outermost resin layer 304c is 950 MPa or more, it is considered that the hardness of the first substrate 301 or more can be substantially given to the intermediate layer 304. .
  • the advantage that the power margin of the second recording layer 305 can be made wider than the power margin of the first recording layer 302 is likely to be exhibited.
  • the elastic modulus at 150 ° C. of the resin used for the outermost resin layer 304c is High The higher, the better, the better.
  • the elastic modulus of the resin at 150 ° C. is 300 MPa or more, preferably 330 MPa or more, more preferably 350 MPa or more, still more preferably 500 MPa or more, further preferably 750 MPa or more, particularly It is preferably at least 95 OMPa, most preferably at least 100 MPa.
  • the elastic modulus is a dynamic elastic modulus measured by a predetermined dynamic viscoelasticity measuring device as described above.
  • the elastic modulus at 150 ° C of the resin constituting the outermost resin layer 304c is usually 2500 MPa or less.
  • the glass transition temperature of the resin tends to increase.
  • the glass transition temperature of a resin having an elastic modulus at 150 ° C of 300 MPa or more is usually 140 ° C or more.
  • the upper limit of the glass transition temperature is usually the 200 ° C.
  • the resin forming the first substrate 301 is equal to or higher than that of the first substrate 301 and the power margin of the second recording layer .
  • the elastic modulus of the resin forming the first substrate 301 at 150 ° C. ⁇ (the elastic modulus of the resin forming the first substrate 301 at 150 ° C.)
  • the resin forming the first substrate 301 It is preferable that the elastic modulus at 150 ° C. and the elastic modulus at 150 ° C. of the resin used for the outermost resin layer 304c have the following relationship.
  • a resin having an elastic modulus at 150 ° C of 300 MPa or more at 150 ° C is used for the outermost resin layer 304c” or “(150 ° C of the resin used for the outermost resin layer 304c. ) (Elastic modulus at 150 ° C. of the resin forming the first substrate 301) ”, the intermediate layer 304 Is formed of a plurality of resin layers (first resin layer 304a, second resin layer 304b, etc.).
  • resin layers other than the outermost resin layer 304c (the same resin as the outermost resin layer 304c may be used for the first resin layer 304a, the second resin layer 304b, etc.). Alternatively, a different resin may be used.
  • the same resin is used for outermost resin layer 304c and resin layers other than outermost resin layer 304c (first resin layer 304a, second resin layer 304b, ⁇ ).
  • the intermediate layer 304 has a laminated structure of a plurality of resin layers formed from the same resin. This can be considered that the intermediate layer 304 is substantially one layer.
  • the outermost resin layer 304c and the resin layers other than the outermost resin layer 304c are formed of different resins. As described later, it becomes easier to obtain a higher-performance intermediate layer 304.
  • the shrinkage of the resin used for the outermost resin layer 304c is usually 6% or more, preferably 9% or more, more preferably 9.5% or more, and further preferably 10% or more. However, the shrinkage is usually 20% or less.
  • the shrinkage is a shrinkage measured by a specific gravity method. Further, the shrinkage rate can be measured according to JIS K71126.1.
  • the outermost resin layer 304c By forming the outermost resin layer 304c using a resin having a shrinkage of 6% or more, grooves for recording tracks are formed in the outermost resin layer 304c using a resin stamper. In this case, it is preferable because the releasability from the resin stamper is improved (the resin stamper will be described later). It is also considered that the reason why the resin stamper has good releasability is that, for example, the resin in the groove of the resin stamper shrinks when hardening, and a slight distortion or a gap is generated. By improving the releasability of the resin stamper, the groove shape formed in the outermost resin layer 304c is improved. For this reason, the power margin of the second recording layer 305 is easily widened.
  • the resin stamper has insufficient peelability, a part of the outermost resin layer 304c adheres to the resin stamper. This means that the surface of the outermost resin layer 304c is peeled off. This means that the smoothness of the surface of the outermost resin layer 304c is impaired. As a result, signal noise increases and jitter tends to be poor, and as a result, the power margin of the second recording layer 305 tends to be narrow.
  • the resin preferably has a shrinkage ratio equal to or higher than a predetermined value.
  • the outermost resin layer 304c tends to have a large shrinkage during film formation. This means that the optical recording medium 300 is likely to be warped.
  • the intermediate layer 304 may be composed of a plurality of resin layers, and the functions required of the intermediate layer 304 may be separately provided to each of the resin layers. Specifically, by employing a predetermined resin for the outermost resin layer 304c, the power margin of the second recording layer 305 can be improved, but the optical recording medium 300 may be easily warped. .
  • the resin used for the resin layer located below the outermost resin layer 304c has a low elastic modulus at room temperature (a resin having a distinctive property) and a resin having a low shrinkage ratio. A small resin may be used.
  • shrinkage of the entire intermediate layer 304 can be suppressed. Also, by employing such a resin, the stress of the entire intermediate layer 304 can be reduced. As a result, the warpage of the optical recording medium 300 can be reduced.
  • the resin used for the resin layer located below the outermost resin layer 304c has a small elastic modulus and a small shrinkage at room temperature.
  • a fat is used.
  • the elastic modulus at 30 ° C. of the resin used for the resin layers (first resin layer 304a and second resin layer 304b ′ ⁇ ⁇ ) located below outermost resin layer 304c Is usually 1500 MPa or less, preferably 1300 MPa or less, more preferably 700 Mpa or less, still more preferably 680 Mpa or less, and particularly preferably 650 Mpa or less. If the elastic modulus at 30 ° C. of the resin used for the resin layers located below the outermost resin layer 304c (the first resin layer 304a and the second resin layer 304b ′) is within the above range, Warpage of the first substrate 301, which may occur when these resin layers are formed, can be effectively suppressed.
  • the viscosity at 30 ° C. of the resin used for the resin layer located below the outermost resin layer 304c is actually 40 MPa or more.
  • one of the advantages of forming the intermediate layer 304 from a plurality of resin layers is that the elastic modulus of the resin used for each resin layer is precisely controlled, and the warpage of the first substrate 301 is controlled. Is more easily reduced.
  • the resin whose elastic modulus is lower as it goes to the lower resin layer may be used. That is, as a method of controlling the elastic modulus of the resin used for each of the resin layers, the resin layer in contact with the lower surface of the outermost resin layer 304c, the second resin layer 304b, the first resin layer 304a, A method of gradually reducing the elastic modulus of the resin used at 30 ° C. can be mentioned. By doing so, it is expected that the warpage of the first substrate 301 can be reduced more effectively.
  • the elastic modulus at 30 ° C. of each resin used for each resin layer may be changed so as to reduce the warpage of the first substrate 301!
  • a specific example of a method of changing the elastic modulus of each resin used for each resin layer will be described below.
  • the elastic modulus at 30 ° C. of the resin used for the resin layer is set to 1 based on a certain resin layer of the plurality of resin layers
  • the elastic modulus at 30 ° C of the resin used for the resin layer located in contact with the upper layer is 3Z2 or more
  • the elastic modulus at 30 ° C of the resin layer located below and in contact with the resin layer is 2Z3.
  • the following may be mentioned.
  • the elastic modulus at 30 ° C. of the resin used for each of the resin layers (the first resin layer 304a and the second resin layer 304b′-) located below the outermost resin layer 304c is determined.
  • the following method can be used.
  • the elastic modulus at 30 ° C of the resin used for the outermost resin layer 304c is 1, the elastic modulus at 30 ° C of the resin used for the resin layer in contact with the lower surface of the outermost resin layer 304c Shall be 2Z3 or less.
  • the resin layers located further below the resin layer in contact with the lower surface of the outermost resin layer 304c may have substantially the same elastic modulus of the resin used for each resin layer.
  • a method of using the same resin for each resin layer can be mentioned.
  • the shrinkage of the resin used for the resin layers (first resin layer 304a, second resin layer 304b---) located below outermost resin layer 304c is usually 4%. or less, preferably 3.5% or less, more favorable Mashiku 3% or less. If the shrinkage ratio of the resin used for the resin layers (first resin layer 304a, second resin layer 304b ',-) located below outermost resin layer 304c is within the above range, these resins may be used. Warpage of the first substrate 301 generated when a layer is formed can be effectively suppressed. However, shrinkage is ideally 0%.
  • the shrinkage is a shrinkage measured by a specific gravity method. The shrinkage can also be measured according to JIS K71126.1.
  • one of the advantages of forming the intermediate layer 304 with a plurality of resin layers is that the contraction rate of the resin used for each resin layer of the intermediate layer 304 is precisely controlled. Thus, the warp of the first substrate 301 is more easily reduced.
  • the shrinkage rate of the resin used for the resin layers may be used ⁇ about the shrinkage rate is low go to the layer. That is, as a method of controlling the shrinkage rate of the resin used for each of the resin layers, the resin layer in contact with the lower surface of the outermost resin layer 304c, the second resin layer 304b, and the first resin layer 304a As a result, a method of gradually reducing the shrinkage of the resin used can be cited. By doing so, it is expected that the warpage of the first substrate 301 can be reduced more effectively.
  • the shrinkage rate of each resin used for each resin layer may be changed so that the warpage of the first substrate 301 can be reduced.
  • a specific example of a method for changing the shrinkage ratio of each resin used for each resin layer will be described below.
  • the resin layer is located in contact with the resin layer.
  • the shrinkage of the resin used for the resin layer is 1.1 or more, and the shrinkage of the resin layer located below and in contact with the resin layer is 0.9 or less.
  • the shrinkage ratio of the resin used for the outermost resin layer 304c when the shrinkage ratio of the resin used for the outermost resin layer 304c is 1, the shrinkage ratio of the resin used for the resin layer in contact with the lower surface of the outermost resin layer 304c is 0.9 or less. .
  • the shrinkage ratio of the resin used for each resin layer may be substantially the same.
  • the resin used for the first resin layer 304a is formed by a method for controlling the elastic modulus or a method for controlling the shrinkage. You can choose without being bound by law. This is because the first resin layer 304a has a force that may require the use of a resin having a high elastic modulus and a high shrinkage for the purpose of protecting the first reflective layer 303 and the like. For example, if the first resin layer 304a is thinned, the influence on the warp of the entire optical recording medium 300 can be reduced, so that a resin having a high shrinkage ratio can be used.
  • the elastic modulus at 30 ° C. of the resin used is usually 1500 MPa or more, preferably 2000 MPa or more.
  • the elastic modulus at 30 ° C. of the resin used for the first resin layer 304a is usually 4000 MPa or less.
  • the elastic modulus is a dynamic elastic modulus measured by a predetermined dynamic viscoelasticity measuring device.
  • the shrinkage of the resin used for the first resin layer 304a is usually 6% or more, preferably 9% or more, more preferably 9.5% or more, and further preferably 10% or more. However, the shrinkage is usually 20% or less.
  • the shrinkage is a shrinkage measured by a specific gravity method. The shrinkage can also be measured according to JIS K71126.1.
  • the thickness of the first resin layer 304a is usually 0.1% or more, preferably 1% or more of the total thickness of the intermediate layer 304 in order to protect the first reflective layer 303 and the like. .
  • the thickness of the first resin layer 304a is usually 10% or less of the entire thickness of the intermediate layer 304 so as not to affect the warpage of the optical recording medium 300. More specifically, the thickness of the first resin layer 304a is usually 0.05 m or more, preferably 0.5 m or more in order to protect the first reflection layer 303.
  • the thickness of the first resin layer 304a is usually 5 m or less so as not to affect the warpage of the optical recording medium 300.
  • the total thickness of the first resin layer 304a, the second resin layer 304b, ⁇ , and the outermost resin layer 304c (the thickness of the intermediate layer 304) is usually 5 m or more, preferably 10 m or more.
  • the total thickness of the first resin layer 304a, the second resin layer 304b,... And the outermost resin layer 304c (thickness of the intermediate layer 304) is usually 200 ⁇ m or less, preferably 100 ⁇ m or less. ⁇ m or less.
  • the thickness of the outermost resin layer 304c is set as follows. That is, when recording is performed on the second recording layer 305, the outermost resin layer 304c can suppress deformation of the groove for the recording track. What is necessary is just to have sufficient thickness.
  • the deformation of the groove of the outermost resin layer 304c is caused by the resin layer (one or two or more resin layers) located in contact with the lower side of the outermost resin layer 304c that is not only the outermost resin layer 304c. ) the by somewhat harder formation, it can be further suppressed. That is, the deformation of the groove for the recording track may be suppressed by using a plurality of resin layers including the outermost resin layer 304c in contact with each other.
  • the thickness of the outermost resin layer 304c is ensured to such an extent that the deformation of the groove during recording on the second recording layer 305 can be achieved by the outermost resin layer 304c alone. Is preferred.
  • the thickness of the outermost resin layer 304c is usually 5% or more of the total thickness of the intermediate layer 304, but is preferably 10% or more, more preferably 25% or more. More preferably, it is more preferably 30% or more, even more preferably 40% or more, particularly preferably 50% or more, most preferably.
  • the deformation of the groove during recording on the second recording layer 305 can be effectively suppressed.
  • the thickness of the outermost resin layer 304c is set to 25% or more of the total thickness of the intermediate layer 304, the deformation of the groove at the time of recording on the second recording layer 305 is prevented by the outermost resin layer 304c alone. It is easy to suppress.
  • the thickness of the outermost resin layer 304c is generally set to 80% or less of the total thickness of the intermediate layer 304.
  • the thickness of the outermost resin layer 304c is preferably not more than 75% of the total thickness of the intermediate layer 304. More preferably, the thickness of the outermost resin layer 304c is 70% or less of the total thickness of the intermediate layer 304.
  • the number of resin layers constituting intermediate layer 304 is not particularly limited. In order to satisfactorily suppress the warpage of the first substrate 301, the number of resin layers is usually 10 layers or less, preferably 5 layers or less, and more preferably 4 layers or less. On the other hand, the number of resin layers is two or more.
  • the number of resin layers constituting the intermediate layer 304 is preferably two or more and five or less. Viewpoint of Production Efficiency It is particularly preferable that the number of resin layers constituting the intermediate layer 304 be a two-layer or three-layer structure.
  • the elasticity and shrinkage of the resin used for each resin layer of the intermediate layer 304 depends on the resin. It can be changed by appropriately adjusting the composition, the degree of crystallization of the resin, the degree of crosslinking, and the like.
  • each resin layer (first resin layer 304a, second resin layer 304b,..., Outermost resin layer 304c)
  • a material (resin) constituting each resin layer for example, thermoplastic resin, thermosetting resin Resins, electron beam-curable resins, ultraviolet-curable resins (including delayed-curable resins) and the like can be mentioned.
  • the material may be appropriately selected from the above resins.
  • a coating solution is prepared by dissolving a thermoplastic resin, a thermosetting resin or the like in an appropriate solvent. Thereafter, the application liquid is applied and dried (heated), whereby a resin layer can be formed.
  • the UV-curable resin is used as it is or dissolved in an appropriate solvent to prepare a coating solution. Thereafter, this resin is applied and cured by irradiating ultraviolet light to form a resin layer.
  • the above materials may be used alone or as a mixture.
  • a coating method a method such as a spin coating method or a casting method such as a casting method is used. Among them, the spin coating method is preferable.
  • the resin layer using high-viscosity resin can also be applied and formed by screen printing or the like. It is preferable to use a UV-curable resin that is liquid at 20 ° C. to 40 ° C. from the viewpoint of productivity because it can be applied without using a solvent. It is preferable that the viscosity of the coating solution is adjusted to 20 mPa's or less: LOOOmPa's.
  • a predetermined groove for a recording track is formed on the surface of the outermost resin layer 304c.
  • the method for forming the grooves is not particularly limited. Usually, the groove is formed as follows. That is, a coating liquid for the outermost resin layer 304c is applied. Then, a stamper having a groove shape to be transferred to the outermost resin layer 304c (the stamper is preferably a resin stamper as described later) is pressed against the surface of the coating film. In this state, the coating film is cured or dried to form the outermost resin layer 304c. As a result, a predetermined groove shape is formed on the surface of the outermost resin layer 304c. A more specific method for manufacturing the intermediate layer 304 will be described later.
  • the ultraviolet curable resin has transparency. It is preferable because the curing time is short and the production is advantageous.
  • the UV-curable resin include a radical-based UV-curable resin and a cation-based UV-curable resin, both of which can be used. Since the cationic UV curable resin has a property of a small shrinkage, the optical recording medium
  • the cationic ultraviolet curable resin is used for a resin layer other than the outermost resin layer 304c.
  • the radical type ultraviolet curable resin a composition containing an ultraviolet curable compound and a photopolymerization initiator as essential components is used.
  • the ultraviolet curable compound a monofunctional (meth) acrylate and a polyfunctional (meth) atalylate can be used as a polymerizable monomer component. These can each be used individually or in combination of two or more kinds.
  • the atalylate and the meta acrylate are collectively referred to as (meth) acrylate.
  • Examples of the monofunctional (meth) acrylate include, as a substituent, methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, octyl, noel, dodecyl, hexadecyl, octadecyl, cyclohexyl, Benzyl, methoxyethyl, butoxyshetyl, phenoxethyl, nonylphenoxethyl, tetrahydrofurfuryl, glycidyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-chloro-2-hydroxypropyl, dimethylaminoethyl, getylaminoethyl, nonylphenyl (Meth) acrylate having a group such as enoxyshetyl tetrahydrofurfuryl, hydraprolatone modified tetrahydrofurfuryl,
  • polyfunctional (meth) acrylates examples include 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, and 1,6- hexanediol, neopentyl glycol, 1, 8-octanediol, 1, 9
  • Those which can be used together with these polymerizable monomers include, as polymerizable oligomers, polyester (meth) acrylate, polyether (meth) acrylate, epoxy (meth) acrylate, and urethane (meth) acrylate. Rates and the like.
  • a photopolymerization initiator is usually added to the radical type ultraviolet curable resin.
  • the photopolymerization initiator is preferably a molecular cleavage type or a hydrogen abstraction type.
  • examples of the molecular cleavage type include benzoin isobutyl ether, 2,4 dimethylthioxanthone, 2 isopropyl thioxanthone, benzyl, 2,4,6-trimethylbenzoyldiphenylphosphine, and the like.
  • 1-hydroxycyclohexylphenol ketone, benzoinethyl ether, benzyldimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropane 1-one, 1- (4-isopropylphenyl) 2-Hydroxy-1-methylpropan-1-one and 2-methyl-11- (4-methylthiophene) 2 morpholinopropane 1-one may be used in combination.
  • the hydrogen abstraction type photopolymerization initiator include benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl 4,1-methyl-diphenylsulfide, and the like.
  • a sensitizer can be used in combination with these photopolymerization initiators.
  • the sensitizer include trimethylamine, methyldimethanolamine, triethanolamine, p-ethylaminoacetophenone, p-dimethylaminobenzoate, iso-p-dimethylaminobenzoate, N, N-dimethylbenzylamine.
  • Examples of the cationic ultraviolet curable resin include a cationic polymerization type photoinitiator.
  • Epoxy resin examples include bisphenol A-epiclorhydrin type, alicyclic epoxy, long-chain aliphatic type, brominated epoxy resin, glycidyl ester type, glycidyl ether type, and heterocyclic type. Is mentioned.
  • the epoxy resin those having a low content of free chlorine and chloride ions are preferably used.
  • the amount of chlorine is preferably 1% by weight or less, more preferably 0.5% by weight or less.
  • Examples of the cationic polymerization type photoinitiator include sulfodium salt, odonium salt, diazonium salt and the like.
  • Examples of the salt of rhododnium include, for example, diphenol-hexanolide hexanole phosphate, diphenyl-dominohexaphenol antimonate, diphenyl-donium tetrafluoroborate, and diphenyl-donium tetrafluoroborate ( Pentafluorophore) borate, bis (dodecylferol) eodo-dimethylhexafluorophosphate, bis (dodecylferoyl) eodo-dimethylhexafluoroantimonate, bis (dodecylferol) ) Eodonium tetrafluoroborate, bis (dodecylphenol) odo-tetratetrakis (pent
  • the proportion of the cationic polymerization type photoinitiator per 100 parts by weight of the cationic ultraviolet curable resin is usually 0.1 to 20 parts by weight, preferably 0.2 to 5 parts by weight. It is.
  • a known photosensitizer can be used in combination.
  • examples of the photosensitizer include anthracene, phenothiazine, benzylmethyl ketal, benzophenone, and acetophenone.
  • the UV-curable resin may further contain, if necessary, other additives, such as a thermal polymerization inhibitor, an antioxidant such as hindered phenol, hinderdamine, and phosphite;
  • a thermal polymerization inhibitor such as hindered phenol, hinderdamine, and phosphite
  • An agent and a silane coupling agent represented by epoxy silane, mercapto silane, (meth) acryl silane and the like can be added for the purpose of improving various properties. These are selected from those having excellent solubility in ultraviolet-curable compounds and those that do not inhibit ultraviolet transmittance.
  • the resin layers (first resin layer 304a, second resin layer 304b,..., Outermost resin layer 304c) used for intermediate layer 304 have respective layers.
  • ⁇ resin with high elasticity at high temperature for example, 150 ° C
  • ⁇ resin with relatively large shrinkage '' ⁇ It is preferable to use “small, resin” and “resin with relatively small shrinkage” as appropriate!
  • the resin layer (particularly the outermost resin layer 304c) using a resin that increases the elastic modulus at high temperatures.
  • a resin that increases the elastic modulus at high temperatures There are various methods for forming such a resin layer, and there are various methods for forming the resin layer using an ultraviolet curable resin (more specifically, a radical ultraviolet curable resin). The specific method is described below.
  • the Brownian motion of the crosslinked structure obtained by curing the resin may be restricted. That is, the crosslink density may be increased. More specifically, when an ultraviolet curable resin is formed using an acrylic monomer, for example, by performing the following (1) to (3), an ultraviolet curable resin having a high elastic modulus at a high temperature is obtained. Fat can be obtained.
  • acrylic monomer having a high crosslinking density examples include a polyfunctional acrylic monomer (polyfunctional (meth) atalylate) having a small molecular weight per one attaliloyl group!
  • polyfunctional (meth) acrylates include 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonane Di (meth) atalylates such as diol, tricyclodecane dimethanol, ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, etc., and tris (2-hydroxyethyl) isocyanurate ) Atarilate and the like.
  • the following materials are also preferable in terms of a point force capable of increasing the elastic modulus at a high temperature. That is, trimethylolpropane tri (meth) atalylate, triol tri (meth) acrylate and pentaerythritol triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylol propane.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, Dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
  • examples of the acrylic monomer having a rigid structure in the crosslinked structure include an acrylic monomer having a rigid cyclic structure.
  • tricyclodecane dimethanol di (meth) atalylate tricyclodecane diethanol di (meth) atalylate
  • pentacyclopentadecane dimethanol di (meth) are preferable from the viewpoint of increasing the elastic modulus at high temperatures. ) Atarilate.
  • viewpoints capable of increasing the modulus of elasticity at high temperatures such as tricyclodecanediethanol di (meth) atalylate and tricyclodecanediethanol di (meth) atalylate.
  • an acrylic monomer having a high crosslinking density and an acryl monomer having a rigid structure in the crosslinked structure are used in combination. That is, one or more specific compounds of the acrylic monomer that increase the crosslink density described above are selected. Further, one or more specific compounds of an acrylic monomer having a rigid structure in the above-described crosslinked structure are selected. These compounds may be used in combination at an arbitrary ratio according to a desired elastic modulus.
  • the resin layer (particularly the outermost resin layer 304c) using a resin having a relatively large shrinkage.
  • a resin layer there are various methods for forming such a resin layer, and there are various methods for forming the resin layer using an ultraviolet-curable resin (more specifically, a radical-type ultraviolet-curable resin).
  • an ultraviolet-curable resin more specifically, a radical-type ultraviolet-curable resin.
  • the degree of shrinkage means the degree of cure shrinkage.
  • the curing shrinkage is the ratio of the density change during curing to the density before curing. Therefore, in order to increase the degree of shrinkage, the change in density during curing may be increased.
  • an ultraviolet curable resin is formed using an atalyl monomer
  • the density of the atalyloyl group may be increased.
  • an acrylic monomer having a high crosslinking density may be used.
  • acrylic monomer having a high dense crosslink density examples include a polyfunctional acrylic monomer (polyfunctional (meth) acrylate) having a small molecular weight per atalyloyl group!
  • polyfunctional acrylic monomers (polyfunctional (meth) acrylates) include polyfunctional (highly elastic at high temperatures (for example, 150 ° C.) and polyfunctional (meth) Yo, if a similar meta) Atari rate.
  • a resin having a high elastic modulus at a high temperature (for example, 150 ° C) and a relatively high degree of shrinkage for example, the above-mentioned “Elastic modulus at a high temperature (for example, 150 ° C)” is used.
  • an acrylic monomer having a rigid structure in the cross-linked structure may be used together.
  • the content of the acrylic monomer having a rigid structure in the cross-linking structure may be such that the desired elastic modulus and shrinkage ratio can be obtained.
  • a resin layer for example, second resin layer 304b '
  • a resin having a small elastic modulus at 30 ° C There are various methods for forming such a resin layer, and there are various methods for forming the resin layer using an ultraviolet-curable resin (more specifically, a radical-type ultraviolet-curable resin). The basic method is described below.
  • the density change during curing may be reduced.
  • an ultraviolet curable resin is formed using an acrylic monomer
  • a method of combining a monofunctional acrylic monomer with an acrylic oligomer having a flexible structure having a large molecular weight per ataliloyl group is exemplified. be able to.
  • the content ratio of the acrylic oligomer having a flexible structure and the monofunctional acrylic monomer may be appropriately controlled in order to obtain a desired elastic modulus.
  • acrylic oligomer having a flexible structure examples include acrylic oligomers such as urethane (meth) acrylate and polyalkylene glycol diacrylate, which are composed of polyether or polyester diol.
  • the monofunctional acrylic monomer examples include ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nor (meth) acrylate, and tridecyl (meth) acrylate.
  • the resin layer for example, the second resin layer 304b '
  • a resin having a small shrinkage rate a resin having a small shrinkage rate.
  • an ultraviolet-curable resin more specifically, a radical-based ultraviolet-curable resin
  • the degree of shrinkage refers to the degree of cure shrinkage.
  • the degree of cure shrinkage is the ratio of the density change during curing to the density before curing.
  • the atalyloyl group in a molecule having a large molecular weight per atalyloyl group may be used.
  • Acrylic oligomer and a The content ratio of the acrylic oligomer and the acrylic monomer may be appropriately controlled in order to obtain a desired elastic modulus.
  • acrylic oligomer those similar to those described in the above-mentioned “Method for obtaining resin having low elastic modulus at ordinary temperature (for example, 30 ° C)" can be used.
  • acrylic monomer those similar to the monofunctional acrylic monomer described in the above-mentioned “Method for obtaining resin having low elastic modulus at normal temperature (for example, 30 ° C.)” can be used.
  • At least two recording layers are provided.
  • the upper limit of the number of recording layers is not limited, the number is practically 10 or less. From the viewpoint of practical application, it is most preferable to have two or more layers and four or less layers.
  • the material used for the recording layers (the first recording layer 302 and the second recording layer 305 in FIG. 3) of the optical recording medium 300 is not particularly limited, and any of inorganic materials and organic materials can be used. .
  • the inorganic materials mention may be made of a predetermined alloy material. Recording layers made of these alloy materials undergo structural changes when heat is applied from the outside. Usually, a difference occurs in the refractive index due to this structural change. The recording information signal is detected using the change in the reflectance and the change in the phase difference caused by the difference in the refractive index.
  • alloy materials include For example, materials such as SbTe, GeTe, GeSbTe, InSbTe, AgSbTe, AglnSbTe, GeSb, GeSbSn, InGeSbTe, and InGeSbSnTe materials can be used. Among these, it is preferable to use a composition containing Sb as a main component in the recording layer in order to increase the crystallization speed.
  • the protection layer is usually formed of a dielectric material (for example, ZnS-SiO 2).
  • the recording layer and the protective layer, etc. may be formed by using a technique known as a phase change type optical recording medium (for example, a recording layer material, a recording layer thickness, a recording layer forming method, a protective layer Materials, the thickness of the protective layer, the method for forming the protective layer, and the like).
  • a phase change type optical recording medium for example, a recording layer material, a recording layer thickness, a recording layer forming method, a protective layer Materials, the thickness of the protective layer, the method for forming the protective layer, and the like.
  • Examples of the organic material include an organic dye.
  • organic dyes include azo dyes, cyanine dyes, and phthalocyanine dyes.
  • a dye for the recording layer in FIG. 3, the first recording layer 302 and the second recording layer 305.
  • the effect of the present invention is remarkably exhibited.
  • the groove formed in the outermost resin layer 304c is easily deformed by the heat generated by the dye during recording. Therefore, the significance of using a resin having a predetermined elastic modulus for the outermost resin layer 304c becomes significant.
  • a mode in which the viewpoint power for expanding the power margin of the second recording layer 305 is also preferable is as follows. That is, the thickness of the second recording layer 305 is made as small as possible while taking other recording characteristics and optical characteristics into consideration. By reducing the thickness of the second recording layer 305, heat generation during recording of the second recording layer 305 can be reduced. As a result, the heat radiation of the second recording layer 305 can be improved. As a result, the deformation of the groove of the intermediate layer 304 can be suppressed, and the power margin of the second recording layer 305 can be increased.
  • the recording characteristics of the recording layer 305 are easily improved. Also, by controlling the relationship between the elastic modulus of the resin used for the outermost resin layer 304c and the elastic modulus of the first substrate 301, the recording characteristics of the second recording layer 305 can be ensured well. Is also as described above.
  • the thickness of the second reflective layer 306 be larger than the thickness of the first reflective layer 303 to secure the heat radiation of the second recording layer 305. .
  • the influence of heat from the second recording layer 305 to the outermost resin layer 304c can be reduced.
  • the deformation of the groove of the outermost resin layer 304c can be suppressed.
  • the power margin of the second recording layer 305 can be easily widened.
  • the second reflective layer 306 is formed of the first reflective layer 306. It is preferable that the following relationship be established with the reflective layer 303 of FIG. That is, (the thickness of the second reflective layer 306) Z (the thickness of the first reflective layer 303) is preferably 2 or more, more preferably 3 or more, and particularly preferably 5 or more. On the other hand, from the balance with recording characteristics other than the power margin, (the thickness of the second reflective layer 306) Z (the thickness of the first reflective layer 303) is preferably 20 or less, more preferably 15 or less, More preferably, it should be 10 or less. With the above range, the power margin of the second recording layer 305 becomes wider than the power margin of the first recording layer 302.
  • first substrate 301 the first reflective layer 303, the second reflective layer 306, the bonding layer 307, the second substrate 308, and the like in FIG. This is the same as that used in “Preferred Embodiment of Medium”, and will be appropriately described at the relevant portion.
  • the intermediate layer has a two-layer structure and has a laminated structure composed of at least two resins having different elastic moduli. That is, it is preferable that the intermediate layer is composed of the first layer and the second layer, and that each of the layers has a different elastic modulus. Preferred examples of the optical recording medium using such an intermediate layer will be described.
  • FIG. 1 is a diagram for explaining a preferred embodiment of an optical recording medium to which the present embodiment is applied.
  • the optical recording medium 100 shown in FIG. 1 has a disk-shaped first substrate 101 provided with grooves for recording tracks on the surface and formed of a light-transmitting material.
  • a first recording layer 102 containing a dye on which information is recorded and reproduced by a laser beam 110 irradiated through the first substrate 101, and a force on the first substrate 101 side are also provided.
  • a translucent first reflective layer 103 for distributing the power of the incident laser light 110 is laminated. Further, on the first reflective layer 103, information is recorded / reproduced by a first intermediate layer 104a and a second intermediate layer 104b, and a laser beam 110 transmitted through the first intermediate layer 104a and the second intermediate layer 104b.
  • a second recording layer 105 containing a dye to be performed and a second reflective layer 106 for reflecting a laser beam 110 transmitted through the second recording layer 105 are stacked. Then, on the second reflective layer 106, an adhesive layer 107 and a second substrate 108, which is a dummy substrate forming the outermost layer, are sequentially laminated.
  • the first intermediate layer 104a and the second intermediate layer 104b are made of an ultraviolet curable resin that is a light transmitting material. Then, the second intermediate layer 104b has a groove formed on the surface, and becomes the outermost resin layer.
  • the second intermediate layer 104b it is preferable to use a resin having an elastic modulus different from that of the first intermediate layer 104a. More preferably, the elastic modulus of the resin used for the second intermediate layer 104b is higher than the elastic modulus of the resin used for the first intermediate layer 104a. Alternatively, the resin constituting the second intermediate layer 104b preferably has an elastic modulus at 150 ° C. of 300 MPa or more. As described above, it is preferable to form the second intermediate layer 104b with a hard resin that suppresses deformation of the groove due to heat generation in the second recording layer 105.
  • optical information is recorded on the first recording layer 102 containing the dye by the laser beam 110 which is also irradiated with the force on the first substrate 101, and the recorded optical information is Playback is performed. Further, a part of the laser beam 110 transmits through the translucent first reflective layer 103 and passes through the first intermediate layer 104a and the second intermediate layer 104b to the second recording layer 105 containing a dye. Upon irradiation, recording and reproduction of optical information are performed as in the case of the first recording layer 102.
  • a part of the laser light 110 reflected by the first reflective layer 103 and a part of the laser light 110 reflected by the second reflective layer 106 are each for condensing the laser light 110.
  • a second substrate 108 as a dummy substrate is laminated on the second reflective layer 106 by an adhesive layer 107. Then, the second substrate 108 forms the outermost layer of the optical recording medium 100 and imparts rigidity to the optical recording medium 100. Thereby, the stability of the shape of the optical recording medium 100 is maintained.
  • concave and convex grooves are formed on the first substrate 101 and the second intermediate layer 104b, respectively, and constitute recording tracks.
  • light transmissive refers to the first recording layer 102 and the second recording layer 105 containing a dye. It refers to the light transmittance with respect to the wavelength of the light irradiated for recording and reproducing the optical information.
  • light transmissive (or transparent) means that the light has a transmissivity of 50% or more, preferably 60% or more with respect to the wavelength of light for recording and reproduction. The upper limit of the light transmittance is ideally 100%.
  • the optical recording medium 100 to which the present embodiment is applied is characterized in that the intermediate layer 104 sandwiched between the first recording layer 102 and the second recording layer 105 containing a dye has two types of resins having different elastic moduli. It is configured as a laminate consisting of Alternatively, the elastic modulus at 150 ° C of the resin constituting the second intermediate layer 104b is set to 300 MPa or more. When the resin used for the second intermediate layer 104b having the recording track groove formed on the surface has an elastic modulus at 150 ° C of 300 MPa or more, the elastic modulus is preferably 330 MPa or more, more preferably 350 MPa or more.
  • the second intermediate layer 104b having a groove of a recording track on the surface is formed using a resin having an elastic modulus at 150 ° C of 3 OOMPa or more
  • the second recording layer 105 is formed on the second recording layer 105 by the laser beam 110.
  • the elastic modulus at 150 ° C of the resin constituting the second intermediate layer 104b is usually 2500 MPa or less.
  • the second intermediate layer 104b By forming the second intermediate layer 104b using a resin having a shrinkage of 6% or more, the following advantages are exhibited. That is, as described later, when the second intermediate layer 104b is formed using the resin stamper, the releasability from the resin stamper is improved. It is considered that the reason why the resin stamper has good releasability is that, for example, the resin in the groove of the resin stamper contracts when hardening, and a slight distortion or a gap is generated.
  • the total thickness of the first intermediate layer 104a and the second intermediate layer 104b is usually 5 m or more, preferably 10 m or more. .
  • the total thickness of the first intermediate layer 104a and the second intermediate layer 104b is preferably 100 / zm or less.
  • the first intermediate layer 104a may use the same material as the second intermediate layer 104b.
  • the first intermediate layer 104a preferably has a function of reducing the warpage of the first substrate 101.
  • the material used for the first intermediate layer 104a it is preferable to use a resin having a small elastic modulus at 30 ° C., a small force S, and a resin having a small shrinkage. Since the specific materials of the resin having such properties have already been described, the description is omitted here.
  • the first substrate 101 has optical transparency and has excellent optical characteristics such as birefringence and power.
  • the moldability is excellent such as easy injection molding.
  • the hygroscopicity is low.
  • the optical recording medium 100 has shape stability so that the optical recording medium 100 has a certain degree of rigidity.
  • the material forming the first substrate 101 is not particularly limited. Examples of the material include acrylic resin, methacrylic resin, polycarbonate resin, polyolefin resin (particularly, amorphous polyolefin), polyester resin, polystyrene resin, epoxy resin, glass, and the like.
  • a material in which a resin layer made of a radiation-curable resin such as a photo-curable resin is provided on a substrate such as glass can also be used.
  • polycarbonate is preferred from the viewpoints of high productivity such as optical characteristics and moldability, cost, low moisture absorption, shape stability and the like.
  • amorphous polyolefin is preferred.
  • a glass substrate is preferable for point power such as high-speed response.
  • near-infrared lasers with wavelengths of about 770 nm to 830 nm (eg, 780 nm and 830 nm) commonly used for CD-R, and red lasers with wavelengths of about 620 nm to 690 nm (eg, Dyes suitable for recording with a so-called blue laser or the like having a wavelength of 635 nm, 650 nm, or 680 nm) and a wavelength of 410 nm or 515 nm are more preferable.
  • the dye used in the first recording layer 102 is not particularly limited, but usually, an organic dye material is used.
  • Organic dye materials include, for example, macrocyclic azananulene dyes (phthalocyanine dyes, naphthalocyanine dyes, porphyrin dyes, etc.), pyromethene dyes, polymethine dyes (cyanine dyes, merocyanine dyes, squarylium dyes, etc.), anthraquinone dyes, And azurenium dyes, metal-containing azo dyes, metal-containing indoor phosphorus dyes, and the like.
  • metal-containing azo dyes are preferable because they have excellent recording sensitivity and excellent durability and light resistance. These dyes may be used alone or in combination of two or more.
  • the first recording layer 102 includes a transition metal chelate compound (for example, acetyl acetonate chelate, bisphenyldithiol) as a singlet oxygen quencher in order to improve the stability and light resistance of the recording layer. , Salicylaldehyde oxime, bisdithio OC diketone, etc.). Further, the first recording layer 102 may contain a recording sensitivity improver such as a metal compound in order to improve the recording sensitivity.
  • the metal-based compound means a compound in which a metal such as a transition metal is contained in the compound in the form of an atom, an ion, a cluster, or the like.
  • the first recording layer 102 may further include, as necessary, a noinder, a leveling agent, an antifoaming agent, and the like. Can also be used in combination.
  • Preferred binders include polyvinyl alcohol, polyvinylpyrrolidone, nitrocellulose, cellulose acetate, ketone-based resin, acrylic-based resin, polystyrene-based resin, urethane-based resin, polyvinyl butyral, polycarbonate, and polyolefin. No.
  • the film thickness of the first recording layer 102 is not particularly limited because a suitable film thickness differs depending on a recording method or the like.
  • the film thickness of the first recording layer 102 is usually 5 nm or more, preferably lOnm or more, particularly preferably 20 nm or more, in order to obtain a sufficient degree of modulation.
  • the thickness of the first recording layer 102 is usually 3 m or less, preferably 1 ⁇ m or less, more preferably 200 nm or less.
  • the method for forming the first recording layer 102 is not particularly limited. Usually, a thin film forming method generally used such as a vacuum evaporation method, a snuttering method, a doctor blade method, a casting method, a spin coating method, and an immersion method can be used. From the viewpoint of mass productivity and cost, a wet film forming method such as a spin coating method is preferable. In addition, a vacuum evaporation method is preferable because a uniform recording layer can be obtained.
  • the rotation speed is preferably from 10 rpm to 15000 rpm. Further, usually, after the spin coating, a heat treatment is generally performed to remove the solvent.
  • the coating solvent for forming the recording layer by a coating method such as a doctor blade method, a casting method, a spin coating method, and a dipping method is not particularly limited as long as it does not attack the substrate.
  • Heat treatment for removing these solvents is usually performed at a temperature slightly lower than the boiling point of the solvent to be used, from the viewpoint of removing the solvent and performing the treatment with simple equipment.
  • Caro Heat treatment is usually in the range of 60 ° C ⁇ 100 ° C.
  • the method of the heat treatment is not particularly limited. For example, after forming a film by applying a solution containing a colorant to form the first recording layer 102 on the first substrate 101, a film is formed at a predetermined temperature for a predetermined time (usually 5 minutes or more, preferably 10 minutes or more). Min, but usually within 30 minutes, preferably within 20 minutes). Further, a method in which the first substrate 101 is heated by irradiating infrared rays or far infrared rays for a short time (for example, 5 seconds to 5 minutes) is also possible.
  • a recording layer is formed as follows. That is, the organic dye and, if necessary, the components of the recording layer such as various additives are placed in a crucible placed in a vacuum container. Then, the vacuum vessel in a suitable vacuum pump 10 _2 Pa to: evacuating to about L0 _5 Pa. Thereafter, the crucible is heated to evaporate the components of the recording layer, and is deposited on a substrate placed facing the crucible.
  • the thickness of the first reflective layer 103 is usually 50 nm or less, preferably 30 nm or less, and more preferably 25 nm or less, in order to make the light transmittance 40% or more. However, since the first recording layer 102 is not affected by the upper layer of the first reflective layer 103, the thickness of the first reflective layer 103 is usually 3 nm or more, preferably 5 nm or more.
  • Au, Al, and Ag have high reflectivity and are suitable as the material of the first reflective layer 103. Yes.
  • a metal material containing 50% or more of Ag is preferable because it has a low cost and a point force having a high reflectance.
  • the alloy composition contains 0.1 at% to 15 at% of at least one element selected from the group consisting of Ti, Zn, Cu, Pd, and Au as a main component, And, if necessary, at least one kind of rare earth element is contained at 0.1 atomic% to 15 atomic%.
  • rare earth metals neodymium is particularly preferred. Specifically, it is AgPdCu, AgCuAu, AgCuAuNd, AgCuNd, or the like.
  • the first reflective layer 103 a layer having a force of only Au is preferable because of its small crystal grain and excellent corrosion resistance. It is also possible to use a layer that also becomes S as the first reflective layer 103. Further, it is also possible to form a multilayer film by alternately stacking low-refractive-index thin films and high-refractive-index thin films with a material other than a metal, and use it as a reflective layer.
  • Examples of a method for forming the first reflective layer 103 include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method. Further, between the first substrate 101 and the first recording layer 102, and between the first recording layer 102 and the first reflective layer 103, the reflectance is improved, the recording characteristics are improved, and the adhesion is improved. For the purpose of improving the quality, an intermediate layer or an adhesive layer having a known inorganic or organic material can be provided.
  • the material for forming the second recording layer 105, the film formation method, the solvent used for the film formation, and the like are described in the same manner as the first recording layer 102.
  • a film forming method a wet film forming method is preferable.
  • the film thickness of the second recording layer 105 varies depending on the recording method and the like. However, in order to increase the power margin of the second recording layer 105, the thickness of the second recording layer 105 is made as thin as possible without impairing the recording characteristics and productivity of the second recording layer 105. It is preferable.
  • heat generation during recording of the second recording layer 105 can be reduced. As a result, the heat dissipation of the second recording layer 105 becomes high, and the deformation of the groove formed in the second intermediate layer 104b can be suppressed. Then, the power margin of the second recording layer 105 can be increased.
  • the thickness of the second recording layer 105 is usually 3 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 200 nm or less. .
  • the thickness of the second recording layer 105 is usually at least 10 nm, preferably at least 30 nm, particularly preferably at least 50 nm.
  • the second reflective layer 106 has high reflectivity and high durability.
  • the thickness of the second reflective layer 106 is usually 20 nm or more, preferably 30 nm, more preferably 50 nm or more.
  • the second reflective layer 106 is usually 400 nm or less, preferably 300 nm or less, in order to shorten the production tact time and reduce the cost.
  • the second reflective layer 106 has the following relationship with the first reflective layer 103 in order to secure the heat radiation property of the second recording layer 105 and increase the power margin of the second recording layer 105. It is preferable that there is. Specifically, in order to secure the heat radiation property of the second recording layer 105 and widen the power margin of the second recording layer 105, the second reflection layer 106 is It is preferable to have the following relationship. That is, (the thickness of the second reflective layer 106) Z (the thickness of the first reflective layer 103) is preferably 2 or more, more preferably 3 or more, and particularly preferably 5 or more.
  • the second reflective layer 106 As a material forming the second reflective layer 106, a material having sufficiently high reflectance at the wavelength of the reproduction light is preferable.
  • metals of Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta and Pd can be used alone or as an alloy.
  • Au, Al, and Ag are suitable as materials for the second reflective layer 106 having a high reflectance.
  • other components may be included.
  • the alloy composition is 0.1 to 15 atomic%, containing Ag as a main component and at least one element selected from the group consisting of Ti, Zn, Cu, Pd and Au. And optionally contains at least one rare earth element in an amount of 0.1 atomic% to 15 atomic%.
  • rare earth metals neodymium is particularly preferred. Specifically, it is AgPdCu, AgCuAu, AgCuAuNd, AgCuNd, or the like.
  • the second reflective layer 106 a layer having only the force of Au has high durability (high corrosion resistance). It is suitable. It is also possible to form a multilayer film by alternately stacking low-refractive-index thin films and high-refractive-index thin films with a material other than a metal, and use the multilayer film as the second reflective layer 106. Examples of a method for forming the second reflective layer 106 include a sputtering method, an ion plating method, a chemical vapor deposition method, and a vacuum vapor deposition method. In addition, a known inorganic or organic intermediate layer or adhesive layer may be provided above and below the second reflective layer 106 in order to improve reflectance, improve recording characteristics, improve adhesion, and the like.
  • the adhesive layer 107 has a high adhesive strength and a small shrinkage ratio at the time of curing adhesion because the shape stability of the medium is high. It is also desirable that the adhesive layer 107 has a material strength that does not damage the second reflective layer 106. However, a known inorganic or organic protective layer may be provided between both layers to suppress damage.
  • the thickness of the adhesive layer 107 is usually at least, preferably at least 5 m. However, the thickness of the adhesive layer 107 is usually set to 100 / zm or less because there is a problem that the optical recording medium is made as thin as possible, and there is a problem that the curing takes time and the productivity is lowered.
  • the second substrate 108 preferably has high mechanical stability and high rigidity. Further, it is desirable that the adhesiveness with the adhesive layer 107 is high.
  • a material the same material that can be used for the first substrate 101 can be used.
  • a substrate made of such a material or a combination thereof can be used.
  • the second substrate 108 is thick to some extent. Specifically Is preferably 0.3 mm or more in thickness. However, the thickness is usually 3mm or less, preferably 1. 5 mm
  • a protective layer may be provided to protect the recording layer and the reflective layer.
  • the material of the protective layer is not particularly limited as long as it protects the recording layer and the reflective layer from external force.
  • examples of the material of the organic substance include thermoplastic resin, thermosetting resin, electron beam curable resin, and ultraviolet curable resin.
  • inorganic materials silicon oxide, silicon nitride, MgF
  • Dielectrics such as SnO.
  • an intermediate layer is formed by sequentially laminating a plurality of resin layers. Then, a resin that satisfies at least one of the following (1) to (3) is used for the resin layer formed last. Thereafter, predetermined grooves for recording tracks are formed on the surface of the resin layer to be formed last.
  • a resin having a different elastic modulus from the other resin layers forming the intermediate layer is used for the resin layer formed last.
  • the elastic modulus at 150 ° C of the resin used for the resin layer formed last is less than the elastic modulus at 150 ° C of the resin forming the substrate. Is increased.
  • the resin layer is made of an ultraviolet curable resin. Then, a resin layer for forming the intermediate layer is sequentially formed, and the resin layer to be formed last is formed of an ultraviolet curable resin that satisfies at least one of the following (1) to (3). .
  • a transparent stamper (details will be described later) is pressed against the surface of the resin layer formed last. Thereafter, ultraviolet rays are irradiated from the transparent stamper side to cure the ultraviolet curable resin constituting each resin layer. After curing, if the transparent stamper is peeled off, predetermined grooves for recording tracks are formed in the outermost resin layer.
  • an ultraviolet curable resin layer is applied to the entire surface of the first reflective layer 203 by spin coating or the like to form a first intermediate layer 204a.
  • a predetermined ultraviolet-curing resin is dropped in a circular shape on the surface of the light-transmitting resin stamper 210 on which the guide grooves are formed, and the second resin is applied by a spinner method.
  • a second intermediate layer 204b (the second intermediate layer 204b becomes the outermost resin layer) is formed.
  • the first substrate 201 and the resin stamper 210 are bonded so that the first intermediate layer 204a and the second intermediate layer 204b face each other.
  • a coating solution in which an organic dye is dissolved in a solvent is applied to the surface of the second intermediate layer 204b by spin coating or the like. Then, if necessary, heating is performed to remove the solvent used for the coating solution. Thus, the second recording layer 205 is formed.
  • a second reflective layer 206 is formed on the second recording layer 205 by sputtering and depositing an Ag alloy or the like.
  • a mirror-finished substrate as a second substrate 208 which is a dummy substrate obtained by injection-molding polycarbonate, is bonded to the second reflective layer 206 via an adhesive layer 207.
  • the production of the optical recording medium is completed.
  • the second intermediate layer 204b may be formed directly on the first intermediate layer 204a without being formed on the resin stamper 210 as described above.
  • the intermediate layer is composed of three or more layers, for example, the following may be performed. That is In FIG. 2B, one or two or more ultraviolet curable resins (not shown) having desired performance may be formed by sequentially applying a spin coat on the first intermediate layer 204a. . In this case, the order of application of the UV curable resin having desired performance (UV curable resin functions as a resin layer after curing) is determined in consideration of the performance required for the intermediate layer. Just fine. Has already been described on this point, description is omitted.
  • the present embodiment is not limited to the above-described embodiments, and can be variously modified.
  • other layers may be provided as needed between each layer or as the outermost layer.
  • polycarbonate (elastic modulus at 150 ° C is 950MPa, ⁇ 'modulus at 30 ° C is 2300MPa) is injection-molded, pitch 0.74 ⁇ m, width 0.33 ⁇ m, depth A substrate with a diameter of 120 mm and a thickness of 0.57 mm having a groove of 160 nm was obtained.
  • a predetermined purple color for forming a first intermediate layer (first resin layer) is formed.
  • External curable resin 1 was dropped in a circle, and a film having a thickness of about 25 ⁇ m was formed by a spinner method.
  • a predetermined UV-curable resin 2 for forming a second intermediate layer (second resin layer, outermost resin layer) on the surface of the light-transmitting stamper prepared in advance on which the guide groove is formed. was dropped in a circle, and a film having a thickness of about 25 m was formed by a spinner method.
  • the first substrate and the light-transmitting stanno were bonded so that the film of the ultraviolet-curable resin 1 and the film of the ultraviolet-curable resin 2 faced each other.
  • the light-transmitting stamper side was also irradiated with ultraviolet rays to cure and bond the ultraviolet-curable resin 1 and the ultraviolet-curable resin 2.
  • the light-transmitting stamper was peeled off to form an intermediate layer having a thickness of about 1, in which the first intermediate layer and the second intermediate layer were laminated. It was confirmed by AFM that the guide groove formed on the light transmitting stamper was transferred to the surface of the second intermediate layer.
  • a tetrafluoropropanol solution (concentration: 2% by weight) of the metal-containing azo dye was dropped and applied by a spinner method. After coating, the coating was dried at 70 ° C. for 30 minutes to form a second recording layer. Then, Ag-Bi (Bi:. L 0 atoms 0/0) using the Ag alloy comprising, was formed by a second sputtering a reflective layer having a thickness of 120 nm. Further, an ultraviolet curable resin was spin-coated on the second reflective layer to provide an adhesive layer.
  • a polycarbonate substrate having a diameter of 120 mm and a thickness of 0.6 mm was placed on the adhesive layer to serve as a second substrate, and was irradiated with ultraviolet rays to be cured and adhered.
  • a multilayer optical recording medium having two recording layers was prepared.
  • a recording / reproducing evaluator having a numerical aperture of 0.65 irradiates the second recording layer with a laser beam having a wavelength of 657 nm from the first substrate side of an optical recording medium having two recording layers prepared in advance, and performs recording.
  • An EFM + signal of 8-16 modulation was recorded while changing the recording power under the conditions of a linear velocity of 9. lmZs and a reference clock cycle of 16 ns.
  • the recorded signal was reproduced under the conditions of a reproduction linear velocity of 3.8 mZs and a reproduction power of 0.7 mW, and the jitter was measured (unit:%).
  • the jitter is a value determined as follows.
  • the playback signal is After passing through the LPF, it is converted into a binary signal by a slicer. Then, the standard deviation (jitter) of the time lag between the leading edge and the trailing edge of the binary signal with respect to the PLL clock is measured by a time interval analyzer. Further, the value obtained by standardizing the value with the reference clock cycle T becomes jitter. If the jitter is 9% or less, it can be said that the recording characteristics of the optical recording medium are good.
  • the optical recording medium was irradiated with parallel light, and the tilt was measured by the angle between the reflected light and the incident light (unit: deg). The smaller the value, the less the warpage of the substrate of the optical recording medium.
  • the Push-Pull signal obtained from the second recording layer of the optical recording medium having two recording layers prepared in advance was measured. The higher the value, the better the recording characteristics.
  • the Push-Pu 11 signal is defined by the following equation.
  • (I-I) pp is the peak-to-vertex amplitude of the (I-I) signal.
  • (I +1) max is (I +1)
  • a knife edge was inserted in the center of the light-transmitting stamper and in the area where the UV-curable resin was not applied. Then, a force was applied to separate the light-transmitting stamper from the intermediate layer.
  • the surface of the light-transmitting stamper after peeling was visually inspected under a fluorescent lamp or observed with an optical microscope, and the peelability was evaluated according to the following criteria.
  • Easy peeling, no residue of UV-curable resin on the surface of the light-transmitting stamper.
  • Removable relatively easily, and a residue of ultraviolet-curing resin was recognized on the surface of the light-transmitting stamper by an optical microscope.
  • the resin shrinkage was measured by the specific gravity method (unit:%).
  • the jitter measurement of each of the first recording layer and the second recording layer was performed by using the jitter measuring method described in (2) above. Then, the recording powers Pl and P2 at which the jitter was 9% or less were determined. The power margin was obtained as a value obtained by dividing the recording power width (P2-P1) where the jitter was less than 9% by the center value (P2 + P1) Z2.
  • UV-curable resins Six types of UV-curable resins (A to F) shown in Table 1 were used. The UV curing in Table 1 The properties (A to F) are as follows.
  • Resin A Radical UV curable Resin: Dainippon Ink Co., Ltd.
  • Resin B Radical UV curable resin: SD694 manufactured by Dai Nippon Ink Co., Ltd.
  • C Radical UV curable resin: SD394 manufactured by Dainippon Ink Co., Ltd.
  • D Radical UV curable resin: Dainippon Ink Co., Ltd. SD347
  • Resin E Cationic UV curable resin: Dainippon Ink Co., Ltd. SD4016
  • Resin F Radical UV curable resin: Dainippon Ink Co., Ltd. SD6036
  • Table 1 shows the shrinkage, elastic modulus, and glass transition temperature of the resins A to F.
  • the data indicated by (* 1) and (* 2) are the elastic modulus at 100 ° C. It is a measurement result of. It is believed that the modulus at 150 ° C is less than the modulus data at 100 ° C.
  • the elastic modulus and shrinkage were controlled by using a combination of an acrylic monomer that increases the crosslink density and an acrylic monomer that has a rigid structure in the crosslink structure.
  • the elastic modulus and shrinkage ratio of resin F were controlled by using a combination of an acryl oligomer having a large molecular weight per atariloyl group and having a flexible structure and a monofunctional acrylic monomer.
  • Resin E has the lowest shrinkage rate because it uses a cationic resin.
  • resin B resin C and resin D, the desired elastic modulus and shrinkage were obtained by appropriately controlling the monomer structure.
  • An ultraviolet curable resin (Resin D) was dropped on the first reflective layer, and a coating film having a thickness of about 4 m was formed by a spinner method. Thereafter, the first resin layer was formed by irradiating ultraviolet rays to cure the ultraviolet curable resin. This first resin layer is used to protect the reflection layer.
  • ultraviolet curable resin 1 (resin F) for forming the second resin layer was dropped in a circular shape. Then, a coating film having a thickness of about 23 m was formed by a spinner method.
  • a predetermined UV-curable resin 2 (a resin) for forming a third resin layer (outermost resin layer) on the surface of the light-transmitting stamper on which the guide grooves are formed in advance.
  • A) was dropped in a circle. Then, a coating film having a thickness of about 23 ⁇ m was formed by a spinner method.
  • Table 3 shows that good recording characteristics can be obtained at any radial position.
  • FIG. 4 shows the result of measuring the power margin between the first recording layer and the second recording layer of the optical recording medium.
  • “L0” indicates the power margin of the first recording layer
  • “L1” indicates the power margin of the second recording layer.
  • P1 in the first recording layer was about 19.8 mW
  • P2 was about 24.2 mW
  • P1 in the second recording layer was about 19.4 mW
  • P2 was about 27 mW.
  • An optical recording medium was prepared in the same manner as in Example 5, except that the method of forming the intermediate layer in Example 5 was as follows.
  • An ultraviolet curable resin (Resin D) was dropped on the first reflective layer, and a coating film having a thickness of about 4 m was formed by a spinner method. Thereafter, the first resin layer was formed by irradiating ultraviolet rays to cure the ultraviolet curable resin.
  • the first ⁇ layer are those used to protect the reflective layer It is.
  • ultraviolet curable resin 1 (resin F) for forming the second resin layer was dropped in a circular shape. Then, a coating film having a predetermined thickness was formed by a spinner method.
  • the recording characteristics of an optical recording medium having a plurality of dye recording layers provided on a transparent substrate are improved.
  • FIG. 1 is a view for explaining a preferred embodiment of an optical recording medium to which the present embodiment is applied.
  • FIG. 2 is a diagram illustrating a method for manufacturing an optical recording medium to which the present embodiment is applied.
  • FIG. 3 is a schematic diagram showing an example of an optical recording medium to which the present embodiment is applied.
  • FIG. 4 is a view showing a result of measuring a power margin of a first recording layer and a second recording layer of an optical recording medium in Example 5.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

 透明基板上に設けられた複数の記録層を有し、記録特性が改良された光記録媒体300であって、透明な第1の基板301上に設けられ、照射されたレーザ光310により情報の記録再生が可能な2個の記録層(第1の記録層302、第2の記録層305)と、2個の記録層間に設けられた中間層304とを備え、中間層304における第1の基板301側の面とは反対側の面に、記録トラック用の所定の溝が形成されており、中間層304は複数の樹脂層(第1樹脂層304a,第2樹脂層304b,・・・,最外樹脂層304c)から構成され、記録トラック用の所定の溝を形成する樹脂層を最外樹脂層304cとしたときに、最外樹脂層304cは、中間層304を形成する他の樹脂層とは、異なる弾性率を有する樹脂を用いて形成されている。

Description

明 細 書
光記録媒体
技術分野
[0001] 本発明は光記録媒体に関し、より詳しくは、複数の記録層を有する光記録媒体に 関する。
背景技術
[0002] 近年、 CD— R、 CD-RW, MO等の各種光記録媒体は、大容量の情報を記憶し、 ランダムアクセスが容易であるために、コンピュータ等の情報処理装置における外部 記憶装置として広く知られている。例えば、有機色素含有記録層を有する代表的な C D— R等は、透明ディスク基板上に色素記録層と反射層とをこの順に有し、これらの 記録層や反射層を覆う保護層を有する積層構造であり、基板を通してレーザ光にて 記録 '再生が行われる。
[0003] これら光記録媒体の記録容量を更に大容量化するための 1つの手段として、 1枚の 媒体に複数の記録層を設けることが挙げられる。このような要請に応えるベぐ本出 願人は、ディスク状の透明な第 1の基板上に、紫外線硬化性榭脂からなる中間層を 挟んで 2個の色素記録層を有する光記録媒体について出願を行った (特許文献 1参 照)。これによれば、光記録媒体の片面側から照射するレーザ光によりそれぞれの記 録層に情報を記録することが可能になり、再生時にも、デュアルレイヤタイプの光記 録媒体として片面側力 信号を読み取ることが可能となっている。
[0004] 特許文献 1:特開 2003 - 331463号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、さらに検討を進めていくと、特許文献 1に記載されたような、透明な基板上 に中間層を挟んで 2個の色素記録層を有する光記録媒体の情報の記録'再生を行う と、基板力 遠い側の第 2層目の記録層の記録特性が低下する場合があることが分 かった。 2個の色素記録層を有する光記録媒体における第 2層目の記録層の記録特 性が低下する原因は、必ずしも明確ではないが、第 2層目の記録層に情報の記録を 行う場合に、記録層に含まれる色素の化学変化に伴う発熱により、紫外線硬化性榭 脂からなる中間層に形成された溝形状が変形する等の理由が考えられる。
[0006] このように、本発明は、複数の記録層を有する光記録媒体の記録特性の低下を改 良すべくなされたものである。特に、本発明は、中間層の上に形成されることとなる記 録層の記録特性の低下を改良すべくなされたものである。
即ち、本発明の目的は、透明基板上に設けられた複数の記録層の記録特性が良 好な光記録媒体を提供することにある。
課題を解決するための手段
[0007] 力かる課題を解決するため、本発明者等は鋭意検討を行った。
上述の通り、中間層の上に形成された記録層の記録特性を劣化させる要因の 1つ として、記録層の発熱による、中間層に形成された溝の変形が考えられる。従って、 中間層に形成された溝の変形を抑制することにより、上記記録層の記録特性を改良 できると考えられる。この観点から、中間層上に形成される記録層の記録特性の改良 を実現する手段として、以下のものを挙げることができる。
つまり、第 1は、中間層の耐熱性を上げて、熱による溝の変形を抑制する手段であ る。第 2は、記録層で発生する熱の放熱性を上げることにより、中間層に拡散する熱 を低減して、熱による中間層の溝の変形を抑制する手段である。第 3は、上記第 1と 上記第 2とを合わせる手段である。つまり、中間層の耐熱性と記録層の放熱性とのバ ランスをとることによって、中間層の溝の変形を抑制する手段である。
[0008] 以上の 3つの手段を実現するために、本発明者等がさらに検討を行った結果、中 間層を複数の榭脂層から構成して、 (a)それぞれの榭脂層に必要な機能を付与する 、(b)中間層と基板との性質を実質的に近づける、(c)中間層を基板よりもより高性能 にする、ことができることを見出した。また、本発明者等がさらに検討を行った結果、 ( d)反射層等の膜厚制御により第 2の記録層の放熱性を向上させる、ことができること を見出した。そして、これら (a)〜(d)を、必要に応じて、単独で用いるか又は併用す ること〖こより、中間層の上に形成される記録層のパワーマージンを、基板上に形成さ れる記録層のパワーマージンよりも広くすることができることが分力つた。
[0009] 即ち、本発明によれば、基板上に設けられ、照射された光により情報の記録再生が 可能な少なくとも 2個の記録層と、 2個の記録層間に設けられた中間層と、を備え、 2 個の記録層のうち、基板カゝらみて近い側の記録層を第 1の記録層、基板からみて遠 V、側の記録層を第 2の記録層とし、中間層の両面のうち基板側とは反対側の面に、 記録トラック用の所定の溝が形成されており、中間層が複数の榭脂層から構成され、 記録トラック用の所定の溝を形成する榭脂層を最外榭脂層とし、第 1の記録層におけ るパワーマージンよりも、第 2の記録層におけるパワーマージンの方が広 、ことを特 徴とする光記録媒体が提供される。
[0010] ここで、パワーマージンとは、所定の記録特性が達成できるレーザの記録パワー範 囲をいう。従って、パワーマージンが広いとは、所定の記録特性が達成されるレーザ の記録パワーの範囲が広 、ことを示す。ドライブの記録レーザパワーの個体差等を 考慮すると、パワーマージンが広いことが好ましい。このため、「パワーマージンが広 い記録層」は、記録特性に優れることとなる。パワーマージンの具体的な測定方法は 、種々考えられる。一例としては、所定の条件で測定された記録マークのジッタが所 定の値以下 (例えば 9%以下)となるような、レーザの記録パワー範囲を求める手法が 挙げられる。パワーマージンの具体的な測定方法については、後述する。
[0011] 上記第 2の記録層におけるパワーマージンを広くするためには、上記 3つの手段を それぞれ実現するようにすればよい。具体的な方法としては種々考えられる。好まし い実現方法の例としては、以下に列記する方法がある。以下の方法を、必要に応じ て、単独で用いるか又は併用すればよい。
最外榭脂層には、中間層を形成する他の榭脂層とは異なる弾性率を有する榭脂を 用いる。
最外榭脂層に用いる榭脂の 150°Cにおける弾性率を 300MPa以上とする。
基板を榭脂で形成し、(最外榭脂層に用いる榭脂の 150°Cにおける弾性率)≥ (基 板を形成する榭脂の 150°Cにおける弾性率)とする。
最外榭脂層に用いる榭脂の 150°Cにおける弾性率を、中間層を形成する他の榭脂 層に用いる榭脂の 150°Cにおける弾性率よりも高くする。
最外榭脂層に用いる榭脂の収縮率を 6%以上とする。
最外榭脂層の厚さを、中間層全体の厚さの 5%以上とする。 最外榭脂層以外の榭脂層に、 30°Cにおける弾性率が 1500MPa以下の榭脂を用 いる。
最外榭脂層以外の榭脂層に、収縮率が 4%以下の榭脂を用いる。
中間層を、 3層の榭脂層で構成する。
上記第 2の記録層におけるパワーマージンを広げるための、好ましい実現方法とし ては、以下の態様を挙げることができる。
つまり、中間層が、第 1層と第 2層とから構成され、それぞれの層に弾性率が異なる 榭脂を用いる態様である。
上記態様においては、上記中間層は、第 1層と第 2層とから構成され、第 2層を構 成する榭脂が、第 1層を構成する榭脂よりも高い弾性率を有することが好ましい。第 2 層を構成する榭脂を高い弾性率を示す榭脂を用いて構成することにより、第 2層に形 成されたグループの変形が防止される。
上記態様においては、中間層は、第 1層と第 2層とから構成され、第 2層を構成する 榭脂の 150°Cにおける弾性率が 300MPa以上であることが好ましい。このような弾性 率を有する榭脂を用いることによって、第 2層に接する記録層の記録特性を向上させ ることがでさる。
上記態様においては、第 2層を構成する榭脂の収縮率が 6%以上であることが好ま しい。第 2層を構成する榭脂の収縮率が 6%以上であることを特徴とすれば、榭脂ス タンパとの剥離性が改善される。
上記態様においては、第 1層の厚さ(Da)と第 2層の厚さ (Db)との関係が、 (Da/ Db) = (1Z4)〜(4Z1)であることが好ましい。積層構造である中間層を構成する第 1層の厚さ (Da)と第 2層の厚さ (Db)との関係がこのような範囲である場合、基板の反 りを効果的に抑制することが可能である。
上記態様においては、中間層は、 30°Cにおける弾性率が 1500MPa以下の榭脂 力もなる第 1層と、第 1層上に積層され、 150°Cにおける弾性率が 300MPa以上であ る榭脂からなる第 2層と、力も構成されることが好ましい。
上記態様においては、第 1層を構成する榭脂の収縮率が 4%以下であることが好ま しい。 [0013] さらに、上記第 2の記録層におけるパワーマージンを広げるための、好ましい実現 方法の例として、以下を挙げることができる。
本発明においては、中間層を構成する榭脂層が紫外線硬化性榭脂から構成される ことが好ましい。紫外線硬化性榭脂は、透明度が高ぐ硬化時間が短く製造上有利 である。また、中間層を構成する榭脂層の層構成の制御も容易である。このため、第 2の記録層におけるパワーマージンを広げやすくなる。
また、本発明においては、記録層が有機色素を含有することが好ましい。記録の際 に、有機色素は融解又は化学反応して発熱する。そして、この発熱によって、中間層 に形成された溝の変形が起き易くなる。このため、記録層に有機色素を用いること〖こ よって、本発明の効果がより顕著に発揮されることとなる。
また、本発明においては、第 1の記録層と中間層との間に第 1の反射層を、第 2の 記録層の上に第 2の反射層を設け、(第 2の反射層の膜厚) Z (第 1の反射層の膜厚) を、 2以上、 20以下とすることが好ましい。つまり、第 2の反射層の膜厚を第 1の反射 層の膜厚よりも十分厚くすることにより、第 2の記録層での放熱性を確保しやすくなる 。この結果、第 2の記録層のパワーマージン等の記録特性を良好にしゃすくなる。 発明の効果
[0014] 本発明によれば、透明基板上に設けられた複数の記録層を有する光記録媒体の 記録特性が改善される。
発明を実施するための最良の形態
[0015] 以下、必要に応じて図面を用い、本発明を実施するための最良の形態 (以下、実 施の形態という)について説明する。但し、本発明は、以下に説明する実施の形態に 限定されず、その要旨の範囲内で種々の変更をして用いることができる。また、図面 は、実施の形態を説明するために用いるものであり実際の大きさを表すものではな ヽ 本実施の形態が適用される光記録媒体は、基板上に設けられ、照射された光によ り情報の記録再生が可能な少なくとも 2個の記録層と、 2個の記録層間に設けられた 中間層と、を備え、 2個の記録層のうち、基板力もみて近い側の記録層を第 1の記録 層、基板力もみて遠い側の記録層を第 2の記録層とし、中間層の両面のうち基板側と は反対側の面に、記録トラック用の所定の溝が形成されており、中間層が複数の榭 脂層から構成され、記録トラック用の所定の溝を形成する榭脂層を最外榭脂層とし、 第 1の記録層におけるパワーマージンよりも、第 2の記録層におけるパワーマージン の方が広 、ことを特徴とする。
[0016] ここで、パワーマージンとは、所定の記録特性が達成できるレーザの記録パワー範 囲をいう。従って、パワーマージンが広いとは、所定の記録特性が達成されるレーザ の記録パワーの範囲が広いことを示す。パワーマージンの具体的な測定方法は、種 々考えられる。一例としては、所定の条件で測定された記録マークのジッタが所定の 値以下となるような、レーザの記録パワー範囲を求める手法が挙げられる。
ノ ヮ一マージンの規定方法として、より具体的には、以下の方法を挙げることができ る。つまり、 DVD等の光ディスクの種類によって決められる規格の下で、記録とジッタ の測定とを行う。そして、ジッタが 9%以下となる記録パワー Pl、 P2を求める。さらに、 (Ρ2-Ρ1) /{ (P2 + P1) Z2}を算出して、これをパワーマージンと規定する。
[0017] 第 2の記録層におけるパワーマージンを広くするために、上述の通り、中間層に形 成された溝の変形を抑制することが好まし 、。この溝の変形を抑制する手段としては 、以下の(a)〜(c)を挙げることができる。
(a)中間層の耐熱性を上げて、熱による溝の変形を抑制する手段。
(b)記録層で発生する熱の放熱性を上げることにより、中間層に拡散する熱を低減し て、熱による中間層の溝の変形を抑制する手段。
(c)中間層の耐熱性と記録層の放熱性とのバランスをとることによって、中間層の溝 の変形を抑制する手段。
[0018] 中間層の耐熱性を上げる手段として、より具体的には以下の手段を挙げることがで きる。先ず、中間層 (特に、中間層に形成された溝の変形にとって大きな影響を与え る、溝が形成された表面近傍の中間層)を硬い材料で形成する手段がある。次に、中 間層 (特に、中間層に形成された溝の変形にとって大きな影響を与える、溝が形成さ れた表面近傍の中間層)の耐熱性を基板に近づける手段を挙げることができる。さら に、中間層 (特に、中間層に形成された溝の変形にとって大きな影響を与える、溝が 形成された表面近傍の中間層)の耐熱性を基板よりも高くする手段を挙げることがで きる。また、第 2の記録層で発生する熱の放熱性を上げる手段として、第 2の記録層 の放熱性に影響を与える要素 (第 2の記録層の膜厚、反射層の膜厚等)を適宜制御 する、ことが挙げられる。これらの手段は、必要に応じて、単独で用いるか又は併用 すればよい。
[0019] 以下、上記具体的な実現手段について詳細に説明する。
(I)中間層による実現
第 2の記録層のパワーマージンを第 1の記録層におけるパワーマージンよりも広く する具体的な例を以下に示す。
つまり、中間層を複数の榭脂層で構成し、記録トラック用の所定の溝を形成する榭 脂層を最外榭脂層とする。さらに、下記(1)〜(3)の少なくとも 1つを満たすようにする
(1)最外榭脂層には、中間層を形成する他の榭脂層とは異なる弾性率を有する榭脂 を用いる。
(2)最外榭脂層に用いる榭脂の 150°Cにおける弾性率を 300MPa以上とする。
(3)基板を榭脂で形成する場合に、(最外榭脂層に用いる榭脂の 150°Cにおける弾 性率)≥ (基板を形成する榭脂の 150°Cにおける弾性率)とする。
[0020] このような光記録媒体を、模式図を用いながら説明する。
図 3は、本実施の形態が適用される光記録媒体の一例を示す模式図である。図 3 に示された光記録媒体 300は、表面に形成された記録トラック用の溝を有するデイス ク状の光透過性の第 1の基板 301と、この第 1の基板 301上に、第 1の基板 301を介 して照射されたレーザ光 310により情報の記録'再生が行われる第 1の記録層 302と 、第 1の基板 301側から入射したレーザ光 310のパワーを振り分ける半透明の第 1の 反射層 303と、中間層 304と、が積層されている。さらに、中間層 304上に、中間層 3 04を透過したレーザ光 310により情報の記録再生が行われる第 2の記録層 305と、 第 2の記録層 305を透過したレーザ光 310を反射する第 2の反射層 306と、が順番 に積層されている。そして、第 2の反射層 306上に、接着層 307と、最外層を形成す るダミー基板である第 2の基板 308とが、順番に積層された構造を有している。
ここで、中間層 304は、第 1の基板 301の側とは反対側の面(面 A)に、記録トラック 用の所定の溝が形成されている。そして、中間層 304は、複数の榭脂層 (第 1榭脂層 304a,第 2榭脂層 304b ' · '最外榭脂層 304c)から構成されている。
[0021] 図 3に示すように、第 1の基板 301側力も照射されたレーザ光 310により、第 1の記 録層 302に光情報が記録され、また、記録された光情報の再生が行われる。さらに、 レーザ光 310の一部は、半透明の第 1の反射層 303を透過し、中間層 304を介して 第 2の記録層 305に照射され、第 1の記録層 302と同様に、光情報の記録'再生が行 われる。
尚、通常、第 1の反射層 303により反射されたレーザ光 310の一部及び第 2の反射 層 306により反射されたレーザ光 310の一部は、それぞれ、レーザ光 310を集光する ためのフォーカシング(図示せず)〖こ利用される。また、通常、ダミー基板である第 2の 基板 308は、接着層 307により第 2の反射層 306上に積層される。そして、第 2の基 板 308は、光記録媒体 300の最外層を形成すると共に、光記録媒体 300に剛性を付 与する。これにより、光記録媒体 300の形状の安定性が保たれる。上述の通り、第 1 の基板 301及び中間層 304上にはそれぞれ凹凸状の溝が形成され、それぞれ記録 卜ラックを構成して ヽる。
[0022] ここで、本実施の形態が適用される光記録媒体 300において、「光透過性 (又は透 明)」とは、第 1の記録層 302及び第 2の記録層 305に光情報を記録'再生するため に照射される光の波長に対する光透過性を意味するものである。
「光透過性 (又は透明)」とは、具体的には、記録 ·再生のための光の波長について 50%以上、好ましくは 60%以上の透過性があることをいう。尚、光透過性の上限は、 理想的には 100%である。
[0023] 図 3に示すように、記録トラック用の所定の溝が形成されている榭脂層が最外榭脂 層 304cとなっている。最外榭脂層 304cは、下記(1)〜(3)の少なくとも 1つを満たす ようにする。
(1)最外榭脂層 304cには、中間層 304を形成する他の榭脂層(第 1榭脂層 304a、 第 2榭脂層 304b, · とは異なる弾性率を有する榭脂を用いる。
(2)最外榭脂層 304cに用いる榭脂の 150°Cにおける弾性率を 300MPa以上とする (3)第 1の基板 301を榭脂で形成する場合に、(最外榭脂層 304cに用いる榭脂の 1 50°Cにおける弾性率)≥ (第 1の基板 301を形成する榭脂の 150°Cにおける弾性率) とする。
[0024] ここで、最外榭脂層 304cは、中間層 304の上に形成される第 2の記録層 305の記 録特性を良好にするために機能する層である。つまり、第 2の記録層 305への記録の 際に起きる記録層の発熱 (この発熱は、記録層が有機色素を含有する場合は有機色 素の化学変化等に伴う熱や、記録層が無機材料を含有する場合は無機材料の構造 変化に伴う熱に起因すると思われる。)によって、最外榭脂層 304cに形成された溝 形状は変形しやす!、状態となる。
本発明者等の検討によれば、最外榭脂層 304cの溝形状が大きく変形すると、第 2 の記録層 305における記録特性 (例えば、ジッタ特性や Push— Pull特性)が不充分 になりやすいことが分力つた。このため、本発明においては、上記(1)〜(3)の少なく とも 1つの条件を満たすようにする。これら(1)〜(3)は、具体的には、最外榭脂層 30 4cを、溝の変形を抑制するような硬!ヽ榭脂 (耐熱性の高!ヽ榭脂)で形成することが好 まし!/、ことを示すものである。
[0025] 上記(1)〜(3)において、さらに、以下のようにすることが好ましい。つまり、最外榭 脂層 304cに用 、る榭脂の 150°Cにおける弾性率を、中間層 304を構成する他の榭 脂層 (第 1榭脂層 304a、第 2榭脂層 304b ' · - )に用いる榭脂の 150°Cにおける弾性 率よりも高くする。これは、弾性率の高い榭脂は一般に硬い性質を有するためである 尚、弾性率とは、所定の動的粘弾性測定機にて測定された動的弾性率である。
[0026] 本発明において榭脂の 150°Cにおける弾性率に着目する理由は 2点ある。
つまり、第 1の理由は、最外榭脂層 304cの耐熱性を上げて、第 2の記録層 305の 発熱に起因する溝の変形を抑制するためである。また、第 2の理由は、最外榭脂層 3 04cに用いる材料と第 1の基板 301に用いる材料とのバランスを考慮することにより、 第 2の記録層 305の発熱に起因する、最外榭脂層 304cに形成された溝の変形を抑 制するためである。
[0027] 第 1の理由について説明する。 第 2の記録層 305は、記録を行った場合に発熱が生じる。従って、記録トラック用の 溝が形成された最外榭脂層 304cも、記録層の発熱により温度が上昇する。このよう な高温の状態においても、最外榭脂層 304cが弾性体としての性質を保つことができ れば、最外榭脂層 304cの変形が抑制されやすくなると考えられる。そして、最外榭 脂層 304cの変形が抑制されれば、第 2の記録層 305の記録特性を良好にしゃすい 。従って、最外榭脂層 304cは、 150°Cという高温において、所定の弾性率を有する ことが好ましいと考えられる。換言すれば、最外榭脂層 304cは、 150°Cという高温に お 、て弾性体としての性質を保つことが好まし 、と考えられる。
[0028] 具体的には、表面に記録トラック用の溝を有する最外榭脂層 304cに、 150°Cにお ける弾性率が 300MPa以上である榭脂を用いることにより、情報を記録する際の第 2 の記録層 305の発熱に起因すると考えられる溝の変形が抑制されるようになる。そし て、この溝の変形の抑制により、パワーマージンを広げることが可能となると考えられ る。
[0029] 150°Cにおける弾性率が 300MPa以上である榭脂を用いて最外榭脂層 304cを形 成することにより、第 2の記録層 305の記録特性が向上する点について、上記のよう に考える理由は、色素を記録層に用いる光ディスクで得られた実験結果に対する考 察に基づいている。
即ち、従来、色素を記録層に用いる光ディスクの分野においては、 150°Cにおける 弾性率が 200MPa程度の紫外線硬化性榭脂等が使用されていた。このような高温( 150°C)における弾性率が比較的低い榭脂を用いて、色素を含有する 2個の記録層 の間に中間層を形成すると、第 2層目の記録層に記録を行う場合に、記録層に含ま れる色素の化学変化に伴う発熱により、中間層に形成された溝形状が変形しやすい ことが分力つた。そして、その結果、第 2層目の記録層の記録特性が低下しやすくな ることが分かった。
これに対して、表面に記録トラックの溝を有する最外榭脂層 304cを、 150°Cにおけ る弾性率が 300MPa以上である榭脂を用いて形成すると、第 2の記録層 305の表面 に形成された記録トラックのグループが充分な強度を有する。このため、第 2の記録 層 305に情報を記録する際に、色素の発熱反応に起因すると考えられるグループの 変形が抑制されるのである。
[0030] 次に第 2の理由について説明する。
第 2の理由は、最外榭脂層 304cに用 、る材料と第 1の基板 301に用いる材料との バランスを考慮することにより、第 2の記録層 305の発熱に起因する、最外榭脂層 30 4cに形成された溝の変形を抑制するためである。つまり、第 1の基板 301を榭脂で形 成する場合には、記録の際の第 1の記録層 302の発熱による第 1の基板 301の溝の 変形を抑制するために、第 1の基板 301は、十分な硬さを有する榭脂で形成されるの が通常である。これは、上記最外榭脂層 304cの場合と同様に、記録の際に第 1の基 板 301の溝の変形を抑制することにより、第 1の記録層 302の記録特性を向上させる ためである。
[0031] 従って、記録時の高温状態を想定すると、(最外榭脂層 304cに用いる榭脂の 150 °Cにおける弾性率)≥ (第 1の基板 301を形成する榭脂の 150°Cでの弾性率)とすれ ば、第 2の記録層 305での記録特性の向上 (例えば、パワーマージンを広くする)が 確実に達成されると推測される。
[0032] 光ディスクの分野では、第 1の基板 301を榭脂で形成する場合には、通常、ポリ力 ーボネート榭脂が用いられる。ポリカーボネート榭脂は、ガラス転移点が 150°C付近 にある。ここで、ポリカーボネート榭脂の 150°Cでの弾性率は、 950MPa程度となる。 そして、第 1の基板 301にポリカーボネート榭脂を用いれば、第 1の記録層 302の記 録特性を良好にしゃすくなる。
このため、最外榭脂層 304cを形成する榭脂の 150°Cにおける弾性率を、ポリカー ボネート榭脂の 150°Cでの弾性率以上とすれば、第 2の記録層 305での記録特性の 向上が期待できる。例えば、最外榭脂層 304cに用いる榭脂の 150°Cにおける弾性 率を 950MPa以上とすれば、実質的に、第 1の基板 301以上の硬さを、中間層 304 に付与できると考えられる。この結果、例えば、第 2の記録層 305のパワーマージンを 第 1の記録層 302のパワーマージンよりも広くすることができる利点が発揮されやすく なる。
[0033] このように、記録時のグループ変形を抑制して、第 2の記録層 305のパワーマージ ンを広げる観点から、最外榭脂層 304cに用いる榭脂の 150°Cにおける弾性率は高 ければ高 、ほど好ま 、。最外榭脂層 304cに用 、る榭脂の 150°Cにおける弾性率 を 300MPa以上とする場合、好ましくは 330MPa以上、より好ましくは 350MPa以上 、さらに好ましくは 500MPa以上、さらに好ましくは 750MPa以上、特に好ましくは 95 OMPa以上、最も好ましくは lOOOMPa以上とする。ここで、弾性率とは、上述の通り 、所定の動的粘弾性測定機にて測定された動的弾性率である。但し、生産性の観点 から、最外榭脂層 304cを構成する榭脂の 150°Cにおける弾性率は、通常 2500MP a以下とする。
尚、 150°Cにおける弾性率が 300MPa以上の場合は、一般的に、榭脂のガラス転 移温度が高くなる傾向にある。具体的には、 150°Cにおける弾性率が 300MPa以上 の榭脂のガラス転移温度は、通常、 140°C以上となる。一方、ガラス転移温度の上限 は、通常、 200°Cとなる。
[0034] 一方、最外榭脂層 304cの硬さを第 1の基板 301と同様以上として、第 2の記録層 3 05のパワーマージンを広げる観点から、「(最外榭脂層 304cに用 、る榭脂の 150°C における弾性率)≥ (第 1の基板 301を形成する榭脂の 150°Cにおける弾性率)」とす る場合においては、第 1の基板 301を形成する榭脂の 150°Cにおける弾性率と、最 外榭脂層 304cに用いる榭脂の 150°Cにおける弾性率と、を以下の関係とすることが 好ましい。
[0035] 具体的には、(最外榭脂層 304cに用いる榭脂の 150°Cにおける弾性率) > (第 1の 基板 301を形成する榭脂の 150°Cにおける弾性率)とすることが好ましぐ(最外榭脂 層 304cに用いる榭脂の 150°Cにおける弾性率)≥1. 05 X (第 1の基板 301を形成 する樹脂の 150°Cにおける弾性率)とすることがより好ましぐ(最外榭脂層 304cに用 いる樹脂の 150°Cにおける弾性率)≥1. I X (第 1の基板 301を形成する榭脂の 15 0°Cにおける弾性率)とすることがさらに好ましい。
一方で、現実的には、(最外榭脂層 304cに用いる榭脂の 150°Cにおける弾性率) ≤3 X (第 1の基板 301を形成する榭脂の 150°Cにおける弾性率)となる。
[0036] 尚、「最外榭脂層 304cに、 150°Cでの弾性率が 300MPa以上の榭脂を用いる」場 合や、「(最外榭脂層 304cに用いる榭脂の 150°Cにおける弾性率)≥ (第 1の基板 3 01を形成する榭脂の 150°Cにおける弾性率)」とする場合、においても、中間層 304 は、複数の榭脂層 (第 1榭脂層 304a、第 2榭脂層 304b、 · · で形成される。
このとき、最外榭脂層 304c以外の榭脂層 (第 1榭脂層 304a、第 2榭脂層 304b、 · · には、最外榭脂層 304cと同一の榭脂を用いてもよいし、異なる榭脂を用いてもよ い。
[0037] 最外榭脂層 304cと、最外榭脂層 304c以外の榭脂層 (第 1榭脂層 304a、第 2榭脂 層 304b、 · · ·)と、に同一の榭脂を用いる場合、中間層 304は、同一の榭脂から形成 される複数の榭脂層の積層構造となる。これは、中間層 304を実質的に 1層としてい ると考えることもできる。また、最外榭脂層 304cと、最外榭脂層 304c以外の榭脂層( 第 1榭脂層 304a、第 2榭脂層 304b、 · · ·)と、を異なる榭脂で形成する場合は、後述 するように、より高性能な中間層 304を得やすくなる。
最外榭脂層 304cに用いる榭脂の収縮率は、通常 6%以上、好ましくは 9%以上、よ り好ましくは 9. 5%以上、さらに好ましくは 10%以上である。但し、通常、収縮率は、 20%以下である。ここで、収縮率とは、比重法により測定した収縮率である。また、収 縮率は、 JIS K71126. 1等に従い測定することもできる。
[0038] 最外榭脂層 304cを収縮率が 6%以上の榭脂を用いて形成することにより、榭脂ス タンパを用 ヽて最外榭脂層 304cに記録トラック用の溝を形成する際に、榭脂スタン ノ からの剥離性が良好となるので好ましい(尚、榭脂スタンパについては後述する。 ) 。また、榭脂スタンパの剥離性が良好な理由としては、例えば、榭脂スタンパの溝に 入った榭脂が硬化する際に収縮し、わずかな歪又は隙間が生じることによるものと考 えられる。榭脂スタンパの剥離性が良好になることによって、最外榭脂層 304cに形 成される溝形状が良好となる。このため、第 2の記録層 305のパワーマージンが広が りやすくなる。
逆に、榭脂スタンパの剥離性が不十分である場合は、最外榭脂層 304cの一部が 榭脂スタンパに固着する。これは、最外榭脂層 304cの表面が剥ぎ取られることを意 味する。そして、最外榭脂層 304cの表面の平滑性が損なわれることを意味する。こ れにより、信号ノイズが上昇し、ジッタが不良となりやすくなるため、その結果、第 2の 記録層 305のパワーマージンが狭くなる傾向となる。
[0039] 上記の通り、榭脂スタンパの剥離性を確保するために、最外榭脂層 304cに用いる 榭脂は、所定以上の収縮率を有することが好ましい。
一方で、最外榭脂層 304cを比較的収縮率の大きい榭脂で形成する結果、最外榭 脂層 304cの成膜時の収縮が大きくなる傾向にある。これは、光記録媒体 300が反り やすくなることを意味する。
[0040] 上記点も考慮し、本実施の形態においては、以下のような態様を用いることも好まし い。つまり、中間層 304を複数の榭脂層から構成し、それぞれの榭脂層に中間層 30 4に求められる機能を分離して付与してもよい。具体的には、最外榭脂層 304cに所 定の榭脂を採用することによって、第 2の記録層 305のパワーマージンを良好にでき る一方で光記録媒体 300が反りやすくなる場合がある。この場合には、最外榭脂層 3 04cの下方に位置する榭脂層に用いる榭脂に、常温での弾性率が小さい榭脂 (やわ らかい性質を有する榭脂)や、収縮率の小さい榭脂を用いてもよい。このような榭脂の 採用により、中間層 304全体の収縮を抑えることができる。また、このような榭脂の採 用により、中間層 304全体の応力を緩和することができる。その結果、光記録媒体 30 0の反りを低減すること等が可能となる。
尚、中間層 304全体の反りをより良好に抑えるためには、最外榭脂層 304cの下方 に位置する榭脂層に用いる榭脂は、常温での弾性率が小さくかつ収縮率の小さい榭 脂を用いることが好ましい。
[0041] 上記観点から、最外榭脂層 304cの下方に位置する榭脂層(第 1榭脂層 304a、第 2 榭脂層 304b ' · -)に用いる榭脂の 30°Cにおける弾性率は、通常 1500MPa以下、 好ましくは 1300MPa以下、より好ましくは 700Mpa以下、さらに好ましくは 680Mpa 以下、特に好ましくは 650Mpa以下とする。最外榭脂層 304cの下方に位置する榭 脂層 (第 1榭脂層 304a、第 2榭脂層 304b ' · -)に用いる榭脂の 30°Cにおける弾性率 を上記範囲とすれば、これら榭脂層を成膜する際に発生することがある第 1の基板 3 01の反りを効果的に抑制することができる。
[0042] 一方、最外榭脂層 304cの下方に位置する榭脂層に用いる榭脂の 30°Cにおける弹 性率は、現実的には、 40MPa以上となる。
本実施の形態において、中間層 304を複数の榭脂層で形成する利点の一つは、 それぞれの榭脂層に用いる榭脂の弾性率を精密に制御して、第 1の基板 301の反り をより低減しやすくなる点にある。
例えば、最外榭脂層 304cの下方に位置する榭脂層 (第 1榭脂層 304a、第 2榭脂 層 304b ' · -)に用いる榭脂の 30°Cにおける弾性率を制御する場合、下方の榭脂層 に行くほど上記弾性率が低い榭脂を用いてもよい。つまり、榭脂層それぞれに用いる 榭脂の弾性率の制御方法として、最外榭脂層 304cの下面に接する榭脂層、 · · ·、第 2榭脂層 304b、第 1榭脂層 304aとなるにつれ、用いる榭脂の 30°Cにおける弾性率 を徐々に小さくする方法を挙げることができる。このようにすることによって、第 1の基 板 301の反りをより効果的に低減できると予想される。ここで、各榭脂層に用いる榭脂 それぞれの 30°Cにおける弾性率は、第 1の基板 301の反りを低減できるように変化さ せればよ!、。各榭脂層に用いるそれぞれの榭脂の弾性率の変化の方法の具体例を 以下に説明する。
[0043] 具体例としては、複数の榭脂層のうちのある榭脂層を基準とし、この榭脂層に用い る榭脂の 30°Cにおける弾性率を 1としたときに、この榭脂層の上に接して位置する榭 脂層に用いる榭脂の 30°Cにおける弾性率は 3Z2以上、この榭脂層の下に接して位 置する榭脂層の 30°Cにおける弾性率は 2Z3以下とすることが挙げられる。
また、例えば、最外榭脂層 304cの下方に位置するそれぞれの榭脂層 (第 1榭脂層 304a,第 2榭脂層 304b ' · -)に用いる榭脂の 30°Cにおける弾性率の制御方法とし て、以下のような方法を挙げることもできる。つまり、最外榭脂層 304cに用いる榭脂 の 30°Cにおける弾性率を 1としたときに、最外榭脂層 304cの下面に接する榭脂層に 用いる榭脂の 30°Cにおける弾性率は 2Z3以下とする。そして、最外榭脂層 304cの 下面に接する榭脂層のさらに下側に位置する榭脂層については、それぞれの榭脂 層に用いる榭脂の弾性率をほぼ同一としてもよい。ここで、弾性率を同一とするため には、例えば、それぞれの榭脂層に同一の榭脂を用いる方法をあげることができる。
[0044] また、最外榭脂層 304cの下方に位置する榭脂層 (第 1榭脂層 304a、第 2榭脂層 3 04b - · -)に用いる榭脂の収縮率は、通常 4%以下、好ましくは 3. 5%以下、さらに好 ましくは 3%以下とする。最外榭脂層 304cの下方に位置する榭脂層 (第 1榭脂層 30 4a、第 2榭脂層 304b ' · -)に用いる榭脂の収縮率を上記範囲とすれば、これら榭脂 層を成膜する際に発生する第 1の基板 301の反りを効果的に抑制することができる。 但し、収縮率は、理想的には 0%である。ここで、収縮率とは、比重法により測定した 収縮率である。また、収縮率は、 JISの K71126. 1等に従って測定することもできる。
[0045] 本実施の形態において、中間層 304を複数の榭脂層で形成する利点の一つは、 中間層 304のそれぞれの榭脂層に用 ヽる榭脂の収縮率を精密に制御して、第 1の 基板 301の反りをより低減しやすくなる点にある。
例えば、最外榭脂層 304cの下方に位置する榭脂層 (第 1榭脂層 304a、第 2榭脂 層 304b ' · -)に用いる榭脂の収縮率を制御する場合、下方の榭脂層に行くほど上記 収縮率が低い榭脂を用いてもよい。つまり、榭脂層それぞれに用いる榭脂の収縮率 の制御方法として、最外榭脂層 304cの下面に接する榭脂層、 · · ·、第 2榭脂層 304 b、第 1榭脂層 304aとなるにつれ、用いる榭脂の収縮率を徐々に小さくする方法を挙 げることができる。このようにすることによって、第 1の基板 301の反りをより効果的に 低減できると予想される。ここで、各榭脂層に用いる榭脂それぞれの収縮率は、第 1 の基板 301の反りを低減できるように変化させればよい。
[0046] 各榭脂層に用いるそれぞれの榭脂の、収縮率の変化の方法の具体例を以下に説 明する。具体例としては、複数の榭脂層のうちのある榭脂層を基準とし、この榭脂層 に用いる榭脂の収縮率を 1としたときに、この榭脂層の上に接して位置する榭脂層に 用いる榭脂の収縮率は 1. 1以上、この榭脂層の下に接して位置する榭脂層の収縮 率は 0. 9以下とすることが挙げられる。
また、例えば、最外榭脂層 304cの下方に位置するそれぞれの榭脂層 (第 1榭脂層 304a,第 2榭脂層 304b ' · -)に用いる榭脂の収縮率の制御方法として、以下のよう な方法を挙げることもできる。
つまり、最外榭脂層 304cに用いる榭脂の収縮率を 1としたときに、最外榭脂層 304 cの下面に接する榭脂層に用いる榭脂の収縮率は 0. 9以下とする。そして、最外榭 脂層 304cの下面に接する榭脂層のさらに下側に位置する榭脂層については、それ ぞれの榭脂層に用いる榭脂の収縮率をほぼ同一としてもよい。ここで、収縮率を同一 とするためには、例えば、それぞれの榭脂層に同一の榭脂を用いる方法をあげること ができる。
[0047] 尚、第 1榭脂層 304aに用いる榭脂は、上記弾性率の制御方法や収縮率の制御方 法に縛られることなく選択することができる。なぜなら、第 1榭脂層 304aは、第 1の反 射層 303を保護する目的等により、高い弾性率や高い収縮率を有する榭脂を用いる 必要がある場合が考えられる力もである。例えば、第 1榭脂層 304aを薄くすれば、光 記録媒体 300全体のそりに対する影響を少なくすることができるため、収縮率の高 ヽ 榭脂を用いることが可能となる。
上記目的で第 1榭脂層 304aを設ける場合、第 1榭脂層 304aに用いる榭脂として、 最外榭脂層 304cに用いることが可能な榭脂を用いてもよい。このような観点から、用 いる樹脂の 30°Cでの弾性率は、通常 1500MPa以上、好ましくは 2000MPa以上と する。一方、第 1榭脂層 304aに用いる榭脂の 30°Cでの弾性率は、通常 4000MPa 以下とする。尚、弾性率とは、所定の動的粘弾性測定機にて測定された動的弾性率 である。
[0048] また、第 1榭脂層 304aに用いる榭脂の収縮率は、通常 6%以上、好ましくは 9%以 上、より好ましくは 9. 5%以上、さらに好ましくは 10%以上である。但し、通常、収縮 率は、 20%以下である。ここで、収縮率とは、比重法により測定した収縮率である。ま た、収縮率は、 JISの K71126. 1等に従って測定することもできる。
また、第 1榭脂層 304aの膜厚は、第 1の反射層 303を保護する等のために、中間 層 304全体の膜厚の、通常 0. 1%以上、好ましくは 1%以上とする。一方、第 1榭脂 層 304aの膜厚は、光記録媒体 300の反りに影響を与えないために、中間層 304全 体の膜厚の、通常 10%以下とする。より具体的には、第 1榭脂層 304aの膜厚は、第 1の反射層 303を保護するために、通常 0. 05 m以上、好ましくは 0. 5 m以上と する。一方、第 1榭脂層 304aの膜厚は、光記録媒体 300の反りに影響を与えないた めに、通常 5 m以下とする。
[0049] 第 1榭脂層 304a、第 2榭脂層 304b、 · ·、及び最外榭脂層 304cの合計の厚さ(中 間層 304の厚さ)は、通常 5 m以上、好ましくは 10 m以上とする。一方、第 1榭脂 層 304a、第 2榭脂層 304b、 · ·、及び最外榭脂層 304cの合計の厚さ(中間層 304の 厚さ)は、通常 200 μ m以下、好ましくは 100 μ m以下とする。
[0050] 最外榭脂層 304cの厚さは、以下のように設定される。つまり、最外榭脂層 304cは 、第 2の記録層 305に記録が行った場合に、記録トラック用の溝の変形を抑制できる 程度に十分な厚さを有するようにすればよい。もちろん、最外榭脂層 304cの溝の変 形は、最外榭脂層 304cのみでなぐ最外榭脂層 304cの下側に接して位置する榭脂 層(1又は 2以上の榭脂層)をある程度硬く形成することによって、さらに抑制すること ができる。つまり、最外榭脂層 304cを含む複数の榭脂層を接して用いることにより、 記録トラック用の溝の変形を抑制してもよい。但し、工業生産上は、第 2の記録層 305 への記録時の溝の変形の抑制を、最外榭脂層 304c単独で達成できる程度に、最外 榭脂層 304cの厚さを確保することが好ましい。
[0051] 以上を踏まえ、最外榭脂層 304cの厚さは、通常、中間層 304全体の厚さの 5%以 上とするが、 10%以上であることが好ましぐ 25%以上であることがより好ましぐ 30 %以上であることがさらに好ましぐ 40%以上であることが特に好ましぐ 50%以上で あることが最も好ましい。上記範囲内とすれば、第 2の記録層 305への記録時の溝の 変形を効果的に抑制できるようになる。特に、最外榭脂層 304cの厚さを中間層 304 全体の厚さの 25%以上とすれば、第 2の記録層 305への記録時の溝の変形を、最 外榭脂層 304c単独で抑制しやすくなる。
一方、第 1の基板 301の反りを効果的に抑制する等の観点から、最外榭脂層 304c の厚さは、中間層 304全体の厚さの 80%以下とするのが通常である。最外榭脂層 3 04cの厚さは、中間層 304全体の厚さの 75%以下とすることが好ましい。より好ましく は、最外榭脂層 304cの厚さは、中間層 304全体の厚さの 70%以下とする。
[0052] 中間層 304を構成する榭脂層の数は、特に限定されない。第 1の基板 301の反りを 良好に抑制するためには、榭脂層の数は、通常 10層以下、好ましくは 5層以下、より 好ましくは 4層以下とする。一方、榭脂層の数は、 2層以上とする。
但し、生産効率の観点からは、中間層 304を構成する榭脂層の数は、 2層以上、 5 層以下とすることが好ましい。生産効率の観点力 特に好ましいのは、中間層 304を 構成する榭脂層の数を、 2層又は 3層構造とすることである。
中間層 304の各榭脂層 (第 1榭脂層 304a、第 2榭脂層 304b、 · · ·、最外榭脂層 30 4c)に用いる榭脂の弾性率や収縮率は、榭脂に含まれる組成物、榭脂の結晶化度、 架橋度等を適宜調整することにより、変化させることができる。
[0053] 以下に、榭脂層に用いる榭脂について説明する。 各榭脂層 (第 1榭脂層 304a、第 2榭脂層 304b、…、最外榭脂層 304c)を構成す る材料 (榭脂)としては、例えば、熱可塑性榭脂、熱硬化性榭脂、電子線硬化性榭脂 、紫外線硬化性榭脂 (遅延硬化型を含む)等を挙げることができる。材料は、上記榭 脂から適宜選択すればよい。
熱可塑性榭脂、熱硬化性榭脂等は、適当な溶剤に溶解して塗布液を調製する。そ の後、この塗布液を塗布し、乾燥 (加熱)することによって、榭脂層を形成することが できる。
紫外線硬化性榭脂は、そのままもしくは適当な溶剤に溶解して塗布液を調製する。 その後、この塗布液を塗布し、紫外光を照射して硬化させることによって、榭脂層を 形成することができる。
上記材料は単独または混合して用いても良 、。
塗布方法としては、スピンコート法やキャスト法等の塗布法等の方法が用いられ、こ の中でもスピンコート法が好ましい。高粘度の榭脂を用いた榭脂層は、スクリーン印 刷等によっても塗布形成できる。紫外線硬化性榭脂は、 20°C〜40°Cにおいて液状 であるものを用いると、生産性の観点から、溶媒を用いることなく塗布できるので好ま しい。また、塗布液の粘度は 20mPa' s〜: LOOOmPa' sとなるように調製するのが好ま しい。
[0054] 尚、最外榭脂層 304cの表面には、記録トラック用の所定の溝が形成される。溝の 形成方法は特に制限されない。通常は、溝は以下のように形成する。つまり、最外榭 脂層 304c用の塗布液を塗布する。そして、最外榭脂層 304cに転写する溝形状を有 するスタンパ (スタンパは、後述するように、榭脂製スタンパであることが好ましい。)を 、塗布膜表面に押し当てる。この状態で、塗布膜を硬化又は乾燥等させて最外榭脂 層 304cを形成する。これによつて、所定の溝形状が最外榭脂層 304c表面に形成さ れることとなる。中間層 304のより具体的な製造方法については、後述する。
[0055] 各榭脂層 (第 1榭脂層 304a、第 2榭脂層 304b、 · · ·、最外榭脂層 304c)を構成す る材料の中でも、紫外線硬化性榭脂は、透明度が高ぐ硬化時間が短く製造上有利 な点で好ましい。紫外線硬化性榭脂としては、ラジカル系紫外線硬化性榭脂とカチ オン系紫外線硬化性榭脂が挙げられ、いずれも使用することができる。 カチオン系紫外線硬化性榭脂は、収縮率が小さい性質を有するので、光記録媒体
300の反りを低減するために用いることが好ましい。具体的には、カチオン系紫外線 硬化性榭脂は、最外榭脂層 304c以外の榭脂層に用いることが好ま U、。
[0056] ラジカル系紫外線硬化性榭脂は、紫外線硬化性化合物と光重合開始剤を必須成 分として含む組成物が用いられる。紫外線硬化性化合物としては、単官能 (メタ)ァク リレート及び多官能 (メタ)アタリレートを重合性モノマー成分として用いることができる 。これらは、各々、単独または 2種類以上併用して用いることができる。ここで、アタリ レートとメタアタリレートとを併せて (メタ)アタリレートと称する。
[0057] 単官能 (メタ)アタリレートとしては、例えば、置換基としてメチル、ェチル、プロピル、 ブチル、ァミル、 2—ェチルへキシル、ォクチル、ノエル、ドデシル、へキサデシル、ォ クタデシル、シクロへキシル、ベンジル、メトキシェチル、ブトキシェチル、フエノキシェ チル、ノニルフエノキシェチル、テトラヒドロフルフリル、グリシジル、 2—ヒドロキシェチ ル、 2—ヒドロキシプロピル、 3—クロロー 2—ヒドロキシプロピル、ジメチルアミノエチル 、ジェチルアミノエチル、ノニルフエノキシェチルテトラヒドロフルフリル、力プロラタトン 変性テトラヒドロフルフリル、イソボル-ル、ジシクロペンタ -ル、ジシクロペンテ-ル、 ジシクロペンテ-口キシェチル等の基を有する(メタ)アタリレート等が挙げられる。
[0058] 多官能 (メタ)アタリレートとしては例えば、 1、 3—ブチレングリコール、 1、 4—ブタン ジオール、 1、 5—ペンタンジオール、 3—メチルー 1、 5—ペンタンジオール、 1、 6— へキサンジオール、ネオペンチルグリコール、 1、 8—オクタンジオール、 1、 9ーノナン ジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール 、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピ レングリコール等のジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレート のジ (メタ)アタリレート等が挙げられる。
[0059] また、ネオペンチルグリコール 1モルに 4モル以上のエチレンオキサイドもしくはプロ ピレンオキサイドを付カ卩して得たジオールのジ(メタ)アタリレート、ビスフエノール A1 モルに 2モルのエチレンオキサイドもしくはプロピレンオキサイドを付カ卩して得たジォ 一ルのジ(メタ)アタリレート、トリメチロールプロパン 1モルに 3モル以上のエチレンォ キサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ (メタ)ァ タリレート、ビスフエノール A1モルに 4モル以上のエチレンオキサイドもしくはプロピレ ンオキサイドを付カ卩して得たジオールのジ (メタ)アタリレート、トリメチロールプロパント リ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリトール のポリ (メタ)アタリレート、エチレンオキサイド変性リン酸 (メタ)アタリレート、エチレンォ キサイド変性アルキル化リン酸 (メタ)アタリレート等が挙げられる。
[0060] また、これらの重合性モノマーと同時に併用できるものとしては、重合性オリゴマー として、ポリエステル (メタ)アタリレート、ポリエーテル (メタ)アタリレート、エポキシ (メタ )アタリレート、ウレタン (メタ)アタリレート等が挙げられる。
更に、ラジカル系紫外線硬化性榭脂には、通常、光重合開始剤を配合する。光重 合開始剤としては、分子開裂型または水素引き抜き型のものが好ましい。このような 光重合開始剤として、分子開裂型としては、例えば、ベンゾインイソブチルエーテル、 2、 4 ジェチルチオキサントン、 2 イソプロピルチォキサントン、ベンジル、 2、 4、 6 -トリメチルベンゾィルジフエ-ルフォスフィンォキシド、 2 -ベンジル - 2-ジメチル ァミノ一 1— (4—モルフォリノフエ-ル)一ブタン一 1—オン、ビス(2、 6 ジメトキシべ ンゾィル)—2、 4、 4 トリメチルペンチルフォスフィンォキシド等が挙げられる。
[0061] さらに、 1ーヒドロキシシクロへキシルフエ-ルケトン、ベンゾインェチルエーテル、ベ ンジルジメチルケタール、 2—ヒドロキシ 2—メチル 1 フエニルプロパン 1ーォ ン、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプロパン一 1—オン 及び 2—メチルー 1一(4ーメチルチオフエ-ル) 2 モルフォリノプロパン 1ーォ ン等を併用しても良い。水素引き抜き型光重合開始剤としては、例えば、ベンゾフエ ノン、 4—フエ-ルペンゾフエノン、イソフタルフエノン、 4—ベンゾィル 4,一メチルー ジフエ-ルスルフイド等が挙げられる。
[0062] また、これらの光重合開始剤とともに、増感剤を併用することができる。増感剤として は、例えば、トリメチルァミン、メチルジメタノールァミン、トリエタノールァミン、 p ジェ チルアミノアセトフエノン、 p ジメチルァミノ安息香酸ェチル、 p ジメチルァミノ安息 香酸イソァミル、 N、 N ジメチルベンジルァミン及び 4、 4, 一ビス(ジェチルァミノ)ベ ンゾフエノン等が挙げられる。
[0063] カチオン系紫外線硬化性榭脂としては、例えば、カチオン重合型の光開始剤を含 むエポキシ榭脂が挙げられる。エポキシ榭脂としては、例えば、ビスフエノール A—ェ ピクロールヒドリン型、脂環式エポキシ、長鎖脂肪族型、臭素化エポキシ榭脂、グリシ ジルエステル型、グリシジルエーテル型、複素環式系等が挙げられる。エポキシ榭脂 としては、遊離した塩素及び塩素イオン含有率が少な 、ものを用いるのが好ま 、。 塩素の量は、 1重量%以下が好ましぐより好ましくは 0. 5重量%以下である。
[0064] カチオン重合型の光開始剤としては、スルホ -ゥム塩、ョードニゥム塩、ジ了ゾユウ ム塩等が挙げられる。ョードニゥム塩としては、例えば、ジフエ-ルョードニゥムへキサ フノレオ口ホスフェード、ジフエ-ルョード-ゥムへキサフノレオ口アンチモネート、ジフエ -ルョ一ドニゥムテトラフルォロボレート、ジフエ-ルョードニゥムテトラキス(ペンタフ ルォロフエ-ル)ボレート、ビス(ドデシルフェ -ル)ョード -ゥムへキサフルォロホスフ エート、ビス(ドデシルフェ -ル)ョード -ゥムへキサフルォロアンチモネート、ビス(ドデ シルフェ -ル)ョードニゥムテトラフルォロボレート、ビス(ドデシルフェ -ル)ョード-ゥ ムテトラキス(ペンタフルォロフエ-ル)ボレート等が挙げられる。
[0065] さらに、 4 メチルフエ-ルー 4一(1ーメチルェチル)フエ-ルョードニゥムへキサフ ルォロホスフェート、 4 メチルフエ-ルー 4一(1ーメチルェチル)フエ-ルョード-ゥ ムへキサフルォロアンチモネート、 4—メチルフエ-ルー 4— (1—メチルェチル)フエ -ルョ一ドニゥムテトラフルォロボレート、 4 メチルフエ-ルー 4一(1 メチルェチル )フエ-ルョードニゥムテトラキス(ペンタフルォロフエ-ル)ボレート等が挙げられる。
[0066] カチオン型紫外線硬化性榭脂 100重量部当たりのカチオン重合型光開始剤の割 合は通常、 0. 1重量部〜 20重量部であり、好ましくは 0. 2重量部〜 5重量部である。 尚、紫外線光源の波長域の近紫外領域や可視領域の波長をより有効に利用するた め、公知の光増感剤を併用することができる。この際の光増感剤としては、例えばァ ントラセン、フエノチアジン、ベンジルメチルケタール、ベンゾフエノン、ァセトフエノン 等が挙げられる。
[0067] また、紫外線硬化性榭脂には、必要に応じてさらにその他の添加剤として、熱重合 禁止剤、ヒンダードフエノール、ヒンダードァミン、ホスファイト等に代表される酸ィ匕防 止剤、可塑剤、及びエポキシシラン、メルカプトシラン、(メタ)アクリルシラン等に代表 されるシランカップリング剤等を、各種特性を改良する目的で配合することもできる。 これらは、紫外線硬化性化合物への溶解性に優れたもの、紫外線透過性を阻害しな いものを選択して用いる。
[0068] 本実施の形態においては、中間層 304に用いる榭脂層(第 1榭脂層 304a、第 2榭 脂層 304b、 · · ·、最外榭脂層 304c)には、それぞれの榭脂層の役割に応じて、「高 温 (例えば 150°C)での弾性率の高い樹脂」、「収縮率の比較的大きな榭脂」、「常温 (例えば 30°C)での弾性率の小さ 、榭脂」、「収縮率の比較的小さな榭脂」を適宜用 、ることが好まし!/、。
[0069] 以下に、この 4つの性質を有する榭脂を得るための具体的方法について説明する。
(高温 (例えば 150°C)での弾性率の高 、榭脂を得る方法)
本実施の形態においては、高温での弾性率を高くするような榭脂を用いて榭脂層( 特に最外榭脂層 304c)を形成することが好ましい。このような榭脂層を形成する手法 としては、様々考えられるが、紫外線硬化性榭脂 (より具体的には、ラジカル系紫外 線硬化性榭脂)を用いて榭脂層を形成する場合における具体的な手法を以下に説 明する。
紫外線硬化性榭脂の高温の弾性率を高くするためには、硬化させて得られる架橋 構造のブラウン運動が束縛されるようにすればよい。つまり、架橋密度が高くなるよう にすればよい。より具体的には、アクリルモノマーを用いて紫外線硬化性榭脂を形成 する場合には、例えば、以下の(1)〜(3)を行うことにより、高温の弾性率が高い紫外 線硬化性榭脂を得ることができる。
(1)架橋密度が高くなるようなアクリルモノマーを用いる。
(2)架橋構造に剛直な構造を有するアクリルモノマーを用いる。
(3)架橋密度が高くなるようなアクリルモノマーと架橋構造に剛直な構造を有するァク リルモノマーとを組み合わせて用いる。
[0070] 架橋密度が高くなるようなアクリルモノマーとしては、アタリロイル基 1個あたりの分子 量が小さ!/、多官能アクリルモノマー(多官能 (メタ)アタリレート)を挙げることができる。 多官能 (メタ)アタリレートとしては例えば、 1、 3 ブチレングリコール、 1、 4 ブタン ジオール、 1、 5 ペンタンジオール、 3—メチルー 1、 5 ペンタンジオール、 1、 6— へキサンジオール、ネオペンチルグリコール、 1、 8 オクタンジオール、 1、 9ーノナン ジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール 、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピ レングリコール等のジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレート のジ (メタ)アタリレート等が挙げられる。
[0071] また、ネオペンチルグリコール 1モルに 4モル以上のエチレンオキサイドもしくはプロ ピレンオキサイドを付カ卩して得たジオールのジ(メタ)アタリレート、ビスフエノール A1 モルに 2モルのエチレンオキサイドもしくはプロピレンオキサイドを付カ卩して得たジォ 一ルのジ(メタ)アタリレート、ビスフエノール A1モルに 4モル以上のエチレンォキサイ ドもしくはプロピレンオキサイドを付加して得たジオールのジ (メタ)アタリレート、ェチ レンオキサイド変性リン酸 (メタ)アタリレート、エチレンオキサイド変性アルキル化リン 酸 (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールプロ パン 1モルに 3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付カ卩して 得たトリオールのジまたはトリ(メタ)アタリレート、ペンタエリスルトールトリ(メタ)アタリレ ート、ペンタエリスルトールテトラ(メタ)アタリレート、ペンタエリスルトール 1モルに 4モ ル以上のエチレンオキサイドもしくはプロピレンオキサイドを付カ卩して得たテトラアルコ ールのトリ又はテトラ (メタ)アタリレート、ジペンタエリスリトールのポリ(メタ)アタリレート (例えば、ジペンタエリスリトールペンタ(メタ)アタリレート又は、ジペンタエリスリトール へキサ(メタ)アタリレート)、ジペンタエリスリトール 1モルに 6モル以上のエチレンォキ サイドもしくはプロピレンオキサイドを付カ卩して得たへキサアルコールのペンタ又はへ キサ (メタ)アタリレート等を挙げることができる。
[0072] これらの中でも、高温での弾性率を大きくできる点力も好ましいのは、以下の材料で ある。すなわち、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールプロパン 1 モルに 3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付カ卩して得たト リオールのトリ(メタ)アタリレート、ペンタエリスルトールトリ(メタ)アタリレート、ペンタエ リスルトールテトラ(メタ)アタリレート、ペンタエリスルトール 1モルに 4モル以上のェチ レンオキサイドもしくはプロピレンオキサイドを付加して得たテトラアルコールのトリ又 はテトラ(メタ)アタリレート、ジペンタエリスリトールペンタ (メタ)アタリレート、ジペンタ エリスリトールへキサ(メタ)アタリレート、ジペンタエリスリトール 1モルに 6モル以上の エチレンオキサイドもしくはプロピレンオキサイドを付カ卩して得たへキサアルコールの ペンタ又はへキサ (メタ)アタリレート、等の多官応 (メタ)アタリレート等を挙げることが できる。
[0073] 高温での弾性率を大きくする点から、さらに好ましいのは、トリメチロールプロパント リ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスルトール テトラ(メタ)アタリレート、ジペンタエリスルトールペンタ(メタ)アタリレート、ジペンタエ リスルトールへキサ (メタ)アタリレートである。
[0074] 次に、架橋構造に剛直な構造を有するアクリルモノマーとしては、剛直な環状構造 を有するアクリルモノマーを挙げることができる。
このようなアクリルモノマーの具体例としては、ノルボリナンジメタノールジァクリレー ト、ノルボルナンジエタノールジ(メタ)アタリレート、ノルボルナンジメタノールにェチレ ンォキサォイド又はプロピレンオキサイド 2モル付カ卩して得たジオールのジ (メタ)ァク リレート、トリシクロデカンジメタノールジ (メタ)アタリレート、トリシクロデカンジエタノー ルジ (メタ)アタリレート、トリシクロデカンジメタノールにエチレンオキサイド又はプロピ レンオキサイド 2モル付カ卩して得たジオールのジ (メタ)アタリレート、ペンタシクロペン タデカンジメタノールジ (メタ)アタリレート、ペンタシクロペンタデカンジエタノールジ( メタ)アタリレート、ペンタシクロペンタデカンジメタノールにエチレンオキサイド又はプ ロピレンオキサイド 2モル付カ卩して得たジオールのジ (メタ)アタリレート、ペンタシクロ ペンタデカンジエタノールにエチレンオキサイド又はプロピレンオキサイド 2モル付カロ して得たジオールのジ (メタ)アタリレート等を挙げることができる。
[0075] これらの中でも、高温での弾性率を高くできる観点から好ましいのは、トリシクロデカ ンジメタノールジ (メタ)アタリレート、トリシクロデカンジエタノールジ (メタ)アタリレート 、ペンタシクロペンタデカンジメタノールジ(メタ)アタリレートである。
[0076] このほか、ビス(2—アタリロイルォキシェチル)ヒドロキシェチルイソシァヌレート、ビ
シェチノレ)ヒドロキシェチルイソシァヌレート、ビス(2—メタクリロイルォキシプロピル)ヒ ドロキシプロピルイソシァヌレート、ビス(2—メタクリロイルォキシブチル)ヒドロキシブ チルイソシァヌレート、トリス(2—アタリロイルォキシェチル)イソシァヌレート、トリス(2 —アタリロイルォキシプロピル)イソシァヌレート、トリス(2—アタリロイルォキシブチル) イソシァヌレート、トリス(2—メタクリロイルォキシェチル)イソシァヌレート、トリス(2—メ タクリロイルォキシプロピル)イソシァヌレート、トリス(2—メタクリロイルォキシブチル) イソシァヌレート等を挙げることもできる。
高温での弾性率を高くできる観点力も特に好ま 、のは、トリシクロデカンジメタノー ルジ (メタ)アタリレート、トリシクロデカンジエタノールジ (メタ)アタリレートである。
[0077] 架橋密度が高くなるようなアクリルモノマーと架橋構造に剛直な構造を有するアタリ ルモノマーとを組み合わせて用いる場合には、以下のようにすればよい。すなわち、 上記説明した架橋密度が高くなるようなアクリルモノマーの具体的な化合物を 1以上 選択する。さらに、上記説明した架橋構造に剛直な構造を有するアクリルモノマーの 具体的な化合物を 1以上選択する。そして、これら化合物を、所望の弾性率にあわせ て任意の割合で組み合わせて用いればょ 、。
[0078] (収縮率の比較的高い榭脂を得る方法)
本実施の形態においては、収縮率の比較的大きな榭脂を用いて榭脂層(特に最外 榭脂層 304c)を形成することが好ましい。このような榭脂層を形成する手法としては、 様々考えられるが、紫外線硬化性榭脂 (より具体的には、ラジカル系紫外線硬化性 榭脂)を用いて榭脂層を形成する場合における具体的な手法を以下に説明する。 紫外線硬化性榭脂の場合、収縮度とは硬化収縮度のことをいう。硬化収縮度は、 硬化前の密度に対する硬化時の密度変化の割合である。このため、収縮度を大きく するためには、硬化時の密度変化が大きくなるようにすればよい。具体的には、アタリ ルモノマーを用いて紫外線硬化性樹脂を形成する場合には、アタリロイル基の密度 が高くなるようにすればよい。換言すれば、架橋密度が高くなるようなアクリルモノマ 一を用いればよい。
[0079] 密架橋密度が高くなるようなアクリルモノマーとしては、アタリロイル基 1個あたりの分 子量が小さ!/、多官能アクリルモノマー(多官能 (メタ)アタリレート)を挙げることができ る。このような多官能アクリルモノマー(多官能 (メタ)アタリレート)の具体例としては、 上記「高温 (例えば 150°C)での弾性率の高 、榭脂を得る方法」で説明した多官能( メタ)アタリレートと同様のものを用いればょ 、。
高温 (例えば 150°C)での弾性率を高くして、かつ、収縮度を比較的大きくするよう な榭脂を得る場合には、例えば、上記「高温 (例えば 150°C)での弾性率の高 ヽ榭脂 を得る方法」で説明したように、架橋構造に剛直な構造を有するアクリルモノマーを併 用すればよい。架橋構造に剛直な構造を有するアクリルモノマーの含有量は、所望 される弾性率及び収縮率を得られるような含有量とすればよい。
[0080] (常温 (例えば 30°C)における弾性率が小さ!/、榭脂を得る方法)
本実施の形態においては、 30°Cにおける弾性率が小さい榭脂を用いて榭脂層(例 えば、第 2榭脂層 304b' ·)を形成することが好ましい。このような榭脂層を形成する 手法としては、様々考えられるが、紫外線硬化性榭脂 (より具体的には、ラジカル系 紫外線硬化性榭脂)を用いて榭脂層を形成する場合における具体的な手法を以下 に説明する。
紫外線硬化性榭脂の 30°Cにおける弾性率を小さくするためには、硬化時の密度変 ィ匕が小さくなるようにすればよい。具体的には、アクリルモノマーを用いて紫外線硬化 性榭脂を形成する場合には、アタリロイル基 1個あたりの分子量が大きぐ柔軟な構 造を有するアクリルオリゴマーと単官能アクリルモノマーを組み合わせる方法を挙げる ことができる。柔軟な構造を有するアクリルオリゴマー及び単官能アクリルモノマーの 含有比率は、所望の弾性率を得るために、適宜制御すればよい。
[0081] 柔軟な構造を有するアクリルオリゴマーの具体例としては、ポリエーテル或いはポリ エステルジオールから成るウレタン (メタ)アタリレート、ポリアルキレングリコールジァク リレート等のアクリルオリゴマー等を挙げることができる。
単官能アクリルモノマーの具体例としては、ェチル (メタ)アタリレート、ブチル (メタ) アタリレート、 2—ェチルへキシル (メタ)アタリレート、ノ-ル (メタ)アタリレート、トリデシ ル (メタ)アタリレート、へキサデシル (メタ)アタリレート、ォクタデシル (メタ)アタリレート 、イソアミル (メタ)アタリレート、イソデシル (メタ)アタリレート、イソステアリル (メタ)ァク リレート、 2—ヒドロキシェチル(メタ)アタリレート、 3—クロロー 2—ヒドロキシプロピル( メタ)アタリレート、メトキシェチル (メタ)アタリレート、ブトキシェチル (メタ)アタリレート 、ノユルフェノキシェチル (メタ)アタリレート、 2—ヒドロキシー 3—フエノキシプロピル( メタ)アタリレート等を挙げることができる。
[0082] (収縮率が小さい榭脂を得る方法)
本実施の形態においては、収縮率が小さい榭脂を用いて榭脂層(例えば、第 2榭 脂層 304b' を形成することが好ましい。このような榭脂層を形成する手法としては、 様々考えられるが、紫外線硬化性榭脂 (より具体的には、ラジカル系紫外線硬化性 榭脂)を用いて榭脂層を形成する場合における具体的な手法を以下に説明する。 紫外線硬化性榭脂の場合、収縮度とは硬化収縮度のことをいう。硬化収縮度は、 硬化前の密度に対する硬化時の密度変化の割合である。このため、収縮度を小さく するためには、硬化時の密度変化が小さくなるようにすればよい。具体的には、アタリ ルモノマーを用いて紫外線硬化性榭脂を形成する場合には、アタリロイル基 1個あた りの分子量が大きぐ分子中のアタリロイル基が少ないアクリルオリゴマー及びアタリ ルモノマーを組み合わせればよ 、。アクリルオリゴマー及びアクリルモノマーの含有 比率は、所望の弾性率を得るために、適宜制御すればよい。
[0083] アクリルオリゴマーの具体例としては、上記「常温 (例えば 30°C)における弾性率が 小さい榭脂を得る方法」で説明したものと同様のものを用いることができる。アクリルモ ノマーの具体例としては、上記「常温 (例えば 30°C)における弾性率が小さい榭脂を 得る方法」で説明した単官能アクリルモノマーと同様のものを用いることができる。
[0084] (Π)記録層における留意点
本実施の形態においては、記録層は少なくとも 2個設ける。記録層の数の上限に制 限はないものの、現実的には 10層以下となる。実用化の観点から、最も好ましくは、 2 層以上、 4層以下とすることである。
光記録媒体 300の記録層(図 3では、第 1の記録層 302、第 2の記録層 305)に用 いる材料としては、特に限定はなぐ無機材料も有機材料のいずれも使用することが できる。
[0085] 無機材料としては、所定の合金材料を挙げることができる。これら合金材料から構 成された記録層は、熱を外部より与えることにより構造変化を起こす。通常、この構造 変化に伴い屈折率に差が生じる。この屈折率差によって生じる反射率差及び位相差 変化を利用して、記録情報信号の検出が行われる。合金材料の具体例としては、例 えば、 SbTe系、 GeTe系、 GeSbTe系、 InSbTe系、 AgSbTe系、 AglnSbTe系、 G eSb系、 GeSbSn系、 InGeSbTe系、 InGeSbSnTe系等の材料が挙げられる。これ らの中でも、結晶化速度を高めるために、記録層に Sbを主成分とする組成を用いる ことが好ましい。
尚、記録層に無機材料を用いる場合には、通常、記録層の上下に保護層を設ける 。保護層は、通常、誘電体材料 (例えば、 ZnS-SiO )で形成される。
2
記録層に無機材料を用いる場合の記録層や保護層等については、相変化型の光 記録媒体として公知の技術 (例えば、記録層材料、記録層膜厚、記録層の成膜方法 、保護層材料、保護層膜厚、及び保護層の成膜方法等)を用いればよい。
[0086] 有機材料としては、有機色素を挙げることができる。このような有機色素としては、ァ ゾ系色素、シァニン系色素、フタロシアニン系色素等を挙げることができる。
本発明において好ましいのは、記録層(図 3では、第 1の記録層 302、第 2の記録 層 305)に色素を用いることである。特に、第 2の記録層 305に色素を用いると本発明 の効果が顕著に発揮されるようになる。つまり、第 2の記録層 305に色素を用いると、 記録時の色素の発熱により、最外榭脂層 304cに形成された溝形状が変形しやすく なる。このため、最外榭脂層 304cに所定の弾性率を有する榭脂を用いる意義が大き くなる。
[0087] 第 2の記録層 305のパワーマージンを広げる観点力も好ましい態様は、以下の通り である。つまり、他の記録特性や光学特性に配慮しつつ、第 2の記録層 305の膜厚 を可能な限り薄くすることである。第 2の記録層 305の膜厚を薄くすることによって、第 2の記録層 305の記録時の発熱を下げることができる。これにより、第 2の記録層 305 での放熱性を上げることができる。この結果、中間層 304の溝の変形を抑制して、第 2の記録層 305のパワーマージンを広げることができる。
尚、記録層の詳細にっ 、ては、「 (IV)光記録媒体の好ま 、態様」で説明する。
[0088] (III)その他の層における留意点
図 3を用いて、第 2の記録層 305でのパワーマージンを広げるための有効な一手段 を以下説明する。
最外榭脂層 304cに用いる榭脂の弾性率や収縮率を制御することにより、第 2の記 録層 305の記録特性を良好となりやすくなる点については、上述した通りである。ま た、最外榭脂層 304cに用いる榭脂の弾性率と第 1の基板 301の弾性率との関係を 制御することにより、第 2の記録層 305の記録特性を良好に確保できる点についても 上述した通りである。
[0089] この他に、第 1の反射層 303の膜厚に対して第 2の反射層 306の膜厚を厚くして、 第 2の記録層 305の放熱性を確保することが好ま Uヽ。第 2の記録層 305の放熱性を 確保することによって、第 2の記録層 305から最外榭脂層 304cへの熱の影響を低減 できる。この結果、最外榭脂層 304cの溝の変形を抑制することができる。そして、第 2の記録層 305のパワーマージンを広げやすくなる。但し、第 2の記録層 305の放熱 性を制御する場合、パワーマージン以外の記録特性も考慮する必要があることは 、う までもない。
[0090] 第 2の記録層 305での放熱性を確保して、第 2の記録層 305の記録特性 (特にパヮ 一マージン)を良好にするために、第 2の反射層 306は、第 1の反射層 303と以下の 関係にあることが好ましい。つまり、(第 2の反射層 306の膜厚) Z (第 1の反射層 303 の膜厚)は、好ましくは 2以上、より好ましくは 3以上、特に好ましくは 5以上とする。一 方、パワーマージン以外の記録特性とのバランスから、(第 2の反射層 306の膜厚) Z (第 1の反射層 303の膜厚)は、好ましくは 20以下、より好ましくは 15以下、さらに好 ましくは 10以下とする。上記範囲とすれば、第 2の記録層 305のパワーマージンを第 1の記録層 302のパワーマージンよりも広くしゃすくなる。
[0091] そのほか、図 3における第 1の基板 301、第 1の反射層 303、第 2の反射層 306、接 着層 307、第 2の基板 308等については、後述の「 (IV)光記録媒体の好ましい態様 」で用いるものと同様なので、当該箇所において適宜説明する。
[0092] (IV)光記録媒体の好ま U、態様(中間層が 2層構造の光記録媒体)
第 2の記録層のパワーマージンを広げる観点から、本発明においては、中間層が 2 層構造であり、弾性率が異なる少なくとも 2つの樹脂からなる積層構造を有することが 好ましい。つまり、中間層が、第 1層と第 2層とから構成され、それぞれの層に弾性率 が異なる榭脂を用いることが好ましい。このような、中間層を用いた光記録媒体の好 ま 、例にっ 、て説明する。 [0093] 図 1は、本実施の形態が適用される光記録媒体の好ましい形態を説明するための 図である。
図 1に示された光記録媒体 100は、表面に記録トラック用の溝が設けられ、光透過 性の材料により形成されたディスク状の第 1の基板 101を有している。この第 1の基板 101上に、第 1の基板 101を介して照射されたレーザ光 110により情報の記録 '再生 が行われる色素を含む第 1の記録層 102と、第 1の基板 101側力も入射したレーザ光 110のパワーを振り分ける半透明の第 1の反射層 103とが積層されて 、る。さらに、 第 1の反射層 103上に、第 1の中間層 104a及び第 2の中間層 104bと、第 1の中間層 104a及び第 2の中間層 104bを透過したレーザ光 110により情報の記録再生が行わ れる色素を含む第 2の記録層 105と、第 2の記録層 105を透過したレーザ光 110を反 射する第 2の反射層 106とが積層されている。そして、第 2の反射層 106上に、接着 層 107と、最外層を形成するダミー基板である第 2の基板 108とが、順番に積層され た構造を有している。ここで、第 1の中間層 104a及び第 2の中間層 104bは、光透過 性材料である紫外線硬化性榭脂から構成される。そして、第 2の中間層 104bは、表 面に形成された溝を有し、最外榭脂層となる。
[0094] 第 2の中間層 104bは、第 1の中間層 104aとは異なる弾性率を有する榭脂を用いる ことが好ましい。より好ましくは、第 2の中間層 104bに用いる榭脂の弾性率を、第 1の 中間層 104aに用いる榭脂の弾性率よりも高くする。または、第 2の中間層 104bを構 成する榭脂の 150°Cにおける弾性率を 300MPa以上とすることが好ましい。このよう に、第 2の記録層 105での発熱に伴う溝の変形を抑制するような硬い樹脂で、第 2の 中間層 104bを形成することが好ま 、。
[0095] 図 1に示すように、第 1の基板 101側力も照射されたレーザ光 110により、色素を含 む第 1の記録層 102に光情報が記録され、また、記録された光情報の再生が行われ る。さらに、レーザ光 110の一部は、半透明の第 1の反射層 103を透過し、第 1の中 間層 104a及び第 2の中間層 104bを介して色素を含む第 2の記録層 105に照射され 、第 1の記録層 102と同様に、光情報の記録'再生が行われる。
[0096] 尚、第 1の反射層 103により反射されたレーザ光 110の一部及び第 2の反射層 106 により反射されたレーザ光 110の一部は、それぞれ、レーザ光 110を集光するための フォーカシング(図示せず)に利用される。また、ダミー基板である第 2の基板 108は、 接着層 107により第 2の反射層 106上に積層される。そして、第 2の基板 108は、光 記録媒体 100の最外層を形成すると共に、光記録媒体 100に剛性を付与する。これ により、光記録媒体 100の形状の安定性が保たれる。さら〖こ、第 1の基板 101及び第 2の中間層 104b上にはそれぞれ凹凸状の溝が形成され、それぞれ記録トラックを構 成している。
[0097] ここで、本実施の形態が適用される光記録媒体 100において、「光透過性 (又は透 明)」とは、色素を含む第 1の記録層 102及び第 2の記録層 105に光情報を記録'再 生するために照射される光の波長に対する光透過性を意味するものである。具体的 には、「光透過性 (又は透明)」とは、記録 '再生のための光の波長について 50%以 上、好ましくは 60%以上の透過性があることをいう。尚、光透過性の上限は、理想的 には 100%である。
[0098] 本実施の形態が適用される光記録媒体 100は、色素を含む第 1の記録層 102及び 第 2の記録層 105に挟まれた中間層 104が、弾性率が異なる 2種の樹脂からなる積 層体として構成されている。または、第 2の中間層 104bを構成する榭脂の 150°Cに おける弾性率を 300MPa以上とする。表面に記録トラックの溝が形成された第 2の中 間層 104bに用いる榭脂の 150°Cにおける弾性率を 300MPa以上とする場合、上記 弾性率は、好ましくは 330MPa以上、さらに好ましくは 350MPa以上である榭脂から 形成される。ここで、弾性率とは、所定の動的粘弾性測定機にて測定された動的弾 性率である。尚、第 2の中間層 104bに用いる榭脂の 150°Cにおける弾性率を 300M Pa以上とする場合、第 1の中間層 104aに用いる榭脂は、第 2の中間層 104bに用い る榭脂と同一としてもよいし、異なっていてもよい。この点については、すでに説明し たので、ここでの説明は省略する。
[0099] 表面に記録トラックの溝を有する第 2の中間層 104bを、 150°Cにおける弾性率が 3 OOMPa以上である榭脂を用いて形成すると、レーザ光 110により第 2の記録層 105 に情報を記録する際に、色素の発熱反応に起因すると考えられるグループの変形が 抑制され、記録特性を向上させることができる。但し、生産性の観点から、第 2の中間 層 104bを構成する榭脂の 150°Cにおける弾性率は、通常 2500MPa以下である。 [0100] 第 2の中間層 104bを、 150°Cにおける弾性率が 300MPa以上である榭脂を用い て形成することにより第 2の記録層 105の記録特性が向上する理由は以下のように考 えられる。即ち、従来、光ディスクの分野においては、 150°Cにおける弾性率が 200 MPa程度の紫外線硬化性榭脂等が使用されている。このような高温(150°C)におけ る弾性率が比較的低 、榭脂を用いて、色素を含有する複数の記録層を有する光記 録媒体の記録層間の中間層を形成すると、第 2層目の記録層に情報の記録を行う場 合に、記録層に含まれる色素の化学変化に伴う発熱により、中間層に形成された溝 形状が変形しやすくなることが分力つた。そして、その結果、第 2層目の記録層の記 録特性が低下しやすくなる。
[0101] これに対して、色素を含有する記録層間に設けられる中間層の中、表面に記録トラ ックの溝を有する第 2の中間層 104bを、 150°Cにおける弾性率が 300MPa以上で ある高弾性率の榭脂を用いて形成すると、第 2層目の記録層側の表面に形成された 記録トラックのグループが充分な強度を有する。このため、第 2層目の記録層に情報 を記録する際に、色素の発熱反応に起因すると考えられるグループの変形が抑制さ れる。
[0102] 本実施の形態が適用される光記録媒体 100において、表面に記録トラックの溝が 形成された第 2の中間層 104bを構成する榭脂の収縮率は、通常 6%以上、好ましく は 9%以上、より好ましくは 9. 5%以上、さらに好ましくは 10%以上とする。但し、通 常、収縮率は、 20%以下である。ここで、収縮率とは、比重法により測定した収縮率 である。また、収縮率は、 JIS K71126. 1等に従って測定することもできる。
第 2の中間層 104bを、収縮率が 6%以上の榭脂を用いて形成することにより、以下 の利点が発揮される。つまり、後述するように、榭脂スタンパを用いて第 2の中間層 1 04bを形成する際に、榭脂スタンパからの剥離性が良好となる。榭脂スタンパの剥離 性が良好な理由としては、例えば、榭脂スタンパの溝に入った榭脂が硬化する際に 収縮し、わずかな歪又は隙間が生じることによるものと考えられる。
[0103] 本実施の形態が適用される光記録媒体 100において、第 1の中間層 104aに用い る榭脂の 30°Cにおける弾性率は、通常 1500MPa以下、好ましくは 1300MPa以下 、より好ましくは 700Mpa以下、さらに好ましくは 680Mpa以下、特に好ましくは 650 Mpa以下とする。一方、第 1の中間層 104aに用いる榭脂の 30°Cにおける弾性率は 、現実的には、 40MPa以上となる。
また、第 1の中間層 104aを構成する榭脂の収縮率は、通常 4%以下、好ましくは 3 . 5%以下、さらに好ましくは 3%以下とする。但し、収縮率は、理想的には 0%である 第 1の中間層 104aを構成する榭脂の弾性率が 1500MPa以下である場合、又は、 収縮率が 4%以下である場合、表面に形成された溝を有する第 1の基板 101の反り を効果的に抑制することができる。
[0104] また、 30°Cにおける第 1の中間層 104aの弾性率 (Ra)と第 2の中間層 104bの弾性 率 (Rb)との比は、通常、(RaZRb)≤ (2/3)、好ましくは、 (Ra/Rb)≤ (1/2)、さ らに好ましくは、(RaZRb)≤ (1Z3)である。一方、通常、(RaZRb)の下限値は、 0 . 01程度となる。
尚、中間層の弾性率は、榭脂に含まれる組成物、榭脂の結晶化度、架橋度等を適 宜調整することにより、変化させることが出来る。
[0105] 本実施の形態が適用される光記録媒体 100において、第 1の中間層 104a及び第 2の中間層 104bの合計の厚さは、通常、 5 m以上、好ましくは 10 m以上とする。 但し、第 1の中間層 104a及び第 2の中間層 104bの合計の厚さは、 100 /z m以下が 好ましい。
さらに、第 1の中間層 104aの厚さ(Da)と第 2の中間層 104bの厚さ(Db)との比は、 通常、 DaZDb= (1/4)〜(4ZD、好ましくは DaZDb= (1/3)〜(3ZD、さら に好ましくは DaZDb= (1/2)〜(2Z1)とする。第 1の中間層 104aの厚さ(Da)と 第 2の中間層 104bの厚さ(Db)との比がこの範囲であることにより、第 1の基板 101の 反りを効果的に抑制し、記録層の記録特性を向上させることができる。
[0106] 次に、第 1の中間層 104a又は第 2の中間層 104bを構成する材料の具体例につい て説明する。
第 2の中間層 104bは、最外榭脂層となる。従って、第 2の記録層 105に記録される 際に、第 2の中間層 104bに形成された溝の変形が抑制されるような材料で形成され ることが好ましい。より具体的には、高温での弾性率が高い榭脂、及び Z又は、収縮 率の比較的大き 、榭脂で形成することが好ま 、。
一方、第 1の中間層 104aは、第 2の中間層 104bと同一の材料を用いてもよい。伹 し、第 1の中間層 104aは、第 1の基板 101の反りを低減させるような機能を有すること が好ましい。このため、第 1の中間層 104aに用いる材料としては、 30°Cでの弾性率 力 S小さい榭脂、及び Z又は、収縮率の小さい榭脂を用いることが好ましい。このような 性質を有する榭脂の具体的な材料等については、すでに説明したので、ここでの説 明は省略する。
[0107] 次に、本実施の形態が適用される光記録媒体 100を構成する他の層について説 明する。
(第 1の基板)
第 1の基板 101は、光透過性を有し、複屈折率力 、さい等光学特性に優れることが 望ましい。また射出成形が容易である等成形性に優れることが望ましい。さらに、吸 湿性が小さいことが望ましい。更に、光記録媒体 100がある程度の剛性を有するよう 、形状安定性を備えるのが望ましい。第 1の基板 101を構成する材料としては、特に 限定されない。材料としては、例えば、アクリル系榭脂、メタクリル系榭脂、ポリカーボ ネート榭脂、ポリオレフイン系榭脂(特に非晶質ポリオレフイン)、ポリエステル系榭脂 、ポリスチレン榭脂、エポキシ榭脂、ガラス等が挙げられる。また、ガラス等の基体上 に、光硬化性榭脂等の放射線硬化樹脂からなる榭脂層を設けたもの等も使用できる 。これらの中でも、光学特性、成形性等の高生産性、コスト、低吸湿性、形状安定性 等の点からはポリカーボネートが好ましい。また、耐薬品性、低吸湿性等の点からは 、非晶質ポリオレフインが好ましい。また、高速応答性等の点力もは、ガラス基板が好 ましい。
[0108] 第 1の基板 101の厚さは、通常、 2mm以下、好ましくは lmm以下である。対物レン ズと記録層との距離が小さぐまた、基板が薄いほどコマ収差が小さい傾向があり、記 録密度を上げやすい。但し、光学特性、吸湿性、成形性、形状安定性を十分得るた めに、第 1の基板 101の厚さは、通常 10 m以上、好ましくは 30 m以上である。
[0109] (第 1の記録層)
第 1の記録層 102は、通常、例えば、 CD— R、 DVD-R, DVD+R等の片面型記 録媒体に用 ヽられる記録層と同程度の感度を有する。第 1の記録層 102に使用され る色素は、 350ηπ!〜 900nm程度の可視光〜近赤外域に最大吸収波長 λ maxを有 し、青色〜近マイクロ波レーザでの記録に適する色素化合物が好ましい。中でも、通 常 CD— Rに用いられるような波長 770nm〜830nm程度の近赤外レーザ(例えば、 780nm、 830nm)、 DVD—Rに用いられるような波長 620nm〜690nm程度の赤 色レーザ(例えば、 635nm、 650nm、 680nm)、波長 410nm又は 515nm等のいわ ゆるブルーレーザ等による記録に適する色素がより好ましい。
[0110] 第 1の記録層 102に使用される色素としては、特に限定されないが、通常、有機色 素材料が使用される。有機色素材料としては、例えば、大環状ァザァヌレン系色素( フタロシアニン色素、ナフタロシアニン色素、ポルフィリン色素等)、ピロメテン系色素 、ポリメチン系色素(シァニン色素、メロシアニン色素、スクヮリリウム色素等)、アントラ キノン系色素、ァズレニウム系色素、含金属ァゾ系色素、含金属インドア-リン系色 素等が挙げられる。これらの中でも、含金属ァゾ系色素は、記録感度に優れ、かつ耐 久性、耐光性に優れるため好ましい。これらの色素は 1種又は 2種以上混合して用い ても良い。
[0111] また、第 1の記録層 102には、記録層の安定ゃ耐光性向上のために、一重項酸素 クェンチヤ一として遷移金属キレートイヒ合物(例えば、ァセチルァセトナートキレート、 ビスフエ二ルジチオール、サリチルアルデヒドォキシム、ビスジチォ OCージケトン等) 等を含有させてもよい。また、第 1の記録層 102には、記録感度向上のために、金属 系化合物等の記録感度向上剤を含有させても良い。ここで金属系化合物とは、遷移 金属等の金属が原子、イオン、クラスタ一等の形でィ匕合物に含まれるものを言う。金 属系化合物としては、例えば、エチレンジアミン系錯体、ァゾメチン系錯体、フエ-ル ヒドロキシアミン系錯体、フエナント口リン系錯体、ジヒドロキシァゾベンゼン系錯体、ジ ォキシム系錯体、ニトロソァミノフエノール系錯体、ピリジルトリアジン系錯体、ァセチ ルァセトナート系錯体、メタ口セン系錯体、ボルフイリン系錯体のような有機金属化合 物が挙げられる。金属原子としては特に限定されないが、遷移金属であることが好ま しい。
[0112] さらに第 1の記録層 102には、必要に応じて、ノインダー、レべリング剤、消泡剤等 を併用することもできる。好ましいバインダーとしては、ポリビュルアルコール、ポリビ -ルピロリドン、ニトロセルロース、酢酸セルロース、ケトン系榭脂、アクリル系榭脂、ポ リスチレン系榭脂、ウレタン系榭脂、ポリビニルブチラール、ポリカーボネート、ポリオ レフイン等が挙げられる。
[0113] 第 1の記録層 102の膜厚は、記録方法等により適した膜厚が異なるため、特に限定 されない。第 1の記録層 102の膜厚は、十分な変調度を得るために、通常 5nm以上 、好ましくは lOnm以上であり、特に好ましくは 20nm以上とする。但し、光を透過させ る必要があるため、第 1の記録層 102の膜厚は、通常 3 m以下であり、好ましくは 1 μ m以下、より好ましくは 200nm以下とする。
[0114] 第 1の記録層 102の成膜方法としては、特に限定されない。通常、真空蒸着法、ス ノ ッタリング法、ドクターブレード法、キャスト法、スピンコート法、浸漬法等一般に行 われている薄膜形成法が挙げられる。量産性、コスト面からはスピンコート法等の湿 式製膜法が好ましい。また、均一な記録層が得られるという点から、真空蒸着法が好 ましい。
[0115] スピンコート法による成膜の場合、回転数は 10rpm〜15000rpmが好ましい。また 、通常、スピンコートの後、一般的に加熱処理を行い、溶媒を除去する。ドクターブレ ード法、キャスト法、スピンコート法、浸漬法等の塗布方法により記録層を形成する場 合の塗布溶媒としては、基板を侵さない溶媒であればよぐ特に限定されない。例え ば、ジアセトンアルコール、 3—ヒドロキシ— 3—メチル—2—ブタノン等のケトンアルコ ール系溶媒;メチルセ口ソルブ、ェチルセ口ソルブ等のセロソルブ系溶媒; n—へキサ ン、 n—オクタン等の鎖状炭化水素系溶媒;シクロへキサン、メチルシクロへキサン、 ェチルシクロへキサン、ジメチルシクロへキサン、 n—ブチルシクロへキサン、 tert— プチルシクロへキサン、シクロオクタン等の環状炭化水素系溶媒;テトラフルォロプロ ノ ノール、オタタフノレォロペンタノール、へキサフノレオロブタノ一ノレ等のパーフノレオ口 アルキルアルコール系溶媒;乳酸メチル、乳酸ェチル、 2—ヒドロキシイソ酪酸メチル 等のヒドロキシカルボン酸エステル系溶媒等が挙げられる。
[0116] これらの溶媒を除去するための加熱処理は、溶媒を除去し、且つ、簡便な設備によ り行うという観点から、通常、使用する溶媒の沸点よりやや低い温度で行われる。カロ 熱処理は、通常、 60°C〜100°Cの範囲で行われる。また、加熱処理の方法は、特に 限定されない。例えば、第 1の基板 101上に第 1の記録層 102を形成するために色 素を含有する溶液を塗布して成膜した後、所定の温度で所定時間 (通常 5分間以上 、好ましくは 10分間以上、但し、通常 30分間以内、好ましくは 20分間以内)保持する 方法が挙げられる。また、赤外線、遠赤外線を短時間 (例えば、 5秒間〜 5分間)照射 し、第 1の基板 101を加熱する方法も可能である。
[0117] 真空蒸着法の場合は、例えば、以下のようにして記録層が形成される。つまり、有 機色素と、必要に応じて各種添加剤等の記録層成分を、真空容器内に設置されたる つぼに入れる。そして、真空容器内を適当な真空ポンプで 10_2Pa〜: L0_5Pa程度に まで排気する。その後、るつぼを加熱して記録層成分を蒸発させ、るつぼと向き合つ て置かれた基板上に蒸着させる。
[0118] (第 1の反射層)
第 1の反射層 103は、記録再生光の吸収が小さいことが好ましい。第 1の反射層 10 3は、通常光透過率が 40%以上あり、且つ、通常 30%以上の適度な光反射率を有 する必要がある。例えば、反射率の高い金属を薄く設けることにより適度な透過率を 持たせることができる。また、ある程度の耐食性があることが望ましい。更に、第 1の反 射層 103の上層(ここでは中間層 104)からの他の成分の浸み出しにより第 1の記録 層 102が影響されな 、ような遮断性を持つことが望ま 、。
[0119] 第 1の反射層 103の厚さは、光透過率を 40%以上とするために、通常、 50nm以下 、好ましくは 30nm以下、更に好ましくは 25nm以下とする。但し、第 1の記録層 102 が第 1の反射層 103の上層により影響されな 、ために、第 1の反射層 103の厚さは、 通常 3nm以上、好ましくは 5nm以上とする。
[0120] 第 1の反射層 103を構成する材料としては、特に限定されないが、再生光の波長に おける反射率が適度に高 、ものが好ま 、。第 1の反射層 103を構成する材料として は、 f列えば、、 Au、 Al、 Ag、 Cu、 Ti、 Cr、 Ni、 Pt、 Ta、 Pd、 Mg、 Se、 Hf、 V、 Nb、 Ru 、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 Zn、 Cd、 Ga、 In、 Si、 Ge、 Te、 Pb、 Po、 Sn、 Bi、 希土類金属等の金属及び半金属を単独あるいは合金にして用いることが可能である 。これらの中でも Au、 Al、 Agは反射率が高く第 1の反射層 103の材料として適して いる。また、特に、 Agを 50%以上含有する金属材料はコストが安い点、反射率が高 い点力も好ましい。
[0121] 第 1の反射層 103は膜厚が薄ぐ膜の結晶粒が大きいと再生ノイズの原因となるた め、結晶粒が小さい材料を用いるのが好ましい。純銀は結晶粒が大きい傾向がある ため Agは合金として用いるのが好ましい。中でも Agを主成分とし、 Ti、 Zn、 Cu、 Pd 、 Au及び希土類金属よりなる群力 選ばれる少なくとも 1種の元素を 0. 1原子%〜1 5原子%含有することが好ましい。 Ti、 Zn、 Cu、 Pd、 Au及び希土類金属のうち 2種 以上含む場合は、各々の原子の含有量は、 0. 1原子%〜15原子%としてもよい。 Ti 、 Zn、 Cu、 Pd、 Au及び希土類金属のうち 2種以上含む場合は、それらの合計が 0. 1原子%〜 15原子%であることが好ましい。
[0122] 特に好まし 、合金組成は、 Agを主成分とし、 Ti、 Zn、 Cu、 Pd、 Auよりなる群から 選ばれる少なくとも 1種の元素を 0. 1原子%〜15原子%含有し、そして必要に応じ、 少なくとも 1種の希土類元素を 0. 1原子%〜15原子%含有するものである。希土類 金属の中では、ネオジゥムが特に好ましい。具体的には、 AgPdCu、 AgCuAu、 Ag CuAuNd、 AgCuNd等である。
[0123] 第 1の反射層 103としては Auのみ力もなる層は結晶粒が小さぐ耐食性に優れ好 適である。また、第 1の反射層 103として S もなる層を用いることも可能である。さら に、金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて多層膜を 形成し、反射層として用いることも可能である。
[0124] 第 1の反射層 103を形成する方法としては、例えば、スパッタ法、イオンプレーティ ング法、化学蒸着法、真空蒸着法等が挙げられる。また、第 1の基板 101と第 1の記 録層 102との間、第 1の記録層 102と第 1の反射層 103との間に、反射率の向上、記 録特性の改善、密着性の向上等のために、公知の無機系または有機系材料力 な る中間層、接着層を設けることもできる。
[0125] (第 2の記録層)
第 2の記録層 105は、入射したレーザ光 110のパワーに比べて、第 1の記録層 102 と第 1の反射層 103の存在等により約半分程度に減少したパワーにより記録が行わ れる。このため、第 2の記録層 105は、通常、例えば、 CD— R、 DVD-R, DVD+R 等の片面型記録媒体に用いられる記録層より高い感度の色素を使用することが好ま しい。また、良好な記録再生特性を実現するためには低発熱で高屈折率な色素を用 いることが望ましい。更に、第 2の記録層 105と第 2の反射層 106との組合せにおい て、光の反射及び吸収を適切な範囲とすることが望まし 、。
[0126] 第 2の記録層 105を構成する材料、成膜方法、成膜に使用する溶媒等については 、第 1の記録層 102と同様に説明される。成膜方法としては、湿式成膜法が好ましい 。第 2の記録層 105の膜厚は、記録方法等により適した膜厚が異なる。但し、第 2の 記録層 105のパワーマージンを広げるためには、第 2の記録層 105の記録特性や生 産性を損なわない範囲で、第 2の記録層 105の膜厚をできる限り薄くすることが好ま しい。第 2の記録層 105の膜厚をできる限り薄くすることによって、第 2の記録層 105 の記録時の発熱を小さくできる。その結果、第 2の記録層 105の放熱性を高くしゃす くなり、第 2の中間層 104bに形成された溝の変形を抑制できる。そして、第 2の記録 層 105のパワーマージンを広げることができる。
上記観点 (例えば、適度な反射率及び放熱性を確保する観点)から、第 2の記録層 105の膜厚は、通常 3 μ m以下、好ましくは 1 μ m以下、より好ましくは 200nm以下と する。一方、第 2の記録層 105の膜厚は、通常 10nm以上、好ましくは 30nm以上、 特に好ましくは 50nm以上とする。
第 1の記録層 102と第 2の記録層 105とに用いる材料は同じでも良 、し異なって ヽ てもよい。
[0127] (第 2の反射層)
第 2の反射層 106は、高反射率、かつ高耐久性であることが望ましい。高反射率を 確保するために、第 2の反射層 106の厚さは、通常 20nm以上、好ましくは 30nm、 更に好ましくは 50nm以上とする。但し、生産上のタクトタイムを短縮しコストを低減す るためには、第 2の反射層 106は、通常、 400nm以下、好ましくは 300nm以下とす る。
第 2の記録層 105での放熱性を確保して、第 2の記録層 105のパワーマージンを広 げるために、第 2の反射層 106は、第 1の反射層 103と以下の関係にあることが好ま しい。 具体的には、第 2の記録層 105での放熱性を確保して、第 2の記録層 105のパワー マージンを広げるために、第 2の反射層 106は、第 1の反射層 103と以下の関係にあ ることが好ましい。つまり、(第 2の反射層 106の膜厚) Z (第 1の反射層 103の膜厚) は、好ましくは 2以上、より好ましくは 3以上、特に好ましくは 5以上とする。一方、パヮ 一マージン以外の記録特性、例えば、第 1の記録層 102と第 2の記録層 105との反 射率や感度のバランスから、(第 2の反射層 106の膜厚) / (第 1の反射層 103の膜 厚)は、好ましくは 20以下、より好ましくは 15以下、さらに好ましくは 10以下とする。上 記範囲とすれば、第 2の記録層 105のパワーマージンを第 1の記録層 102のパワー マージンよりも広くしゃすくなる。
[0128] 第 2の反射層 106を構成する材料としては、再生光の波長において反射率の十分 高いものが好ましい。例えば、 Au、 Al、 Ag、 Cu、 Ti、 Cr、 Ni、 Pt、 Ta及び Pdの金属 を単独または合金にして用いることが可能である。これらの中でも、 Au、 Al、 Agは反 射率が高ぐ第 2の反射層 106の材料として適している。また、これらの金属を主成分 とする以外に他の成分を含んでいても良い。他の成分の例としては、 Mg、 Se、 Hf、 V、 Nb、 Ru、 W、 Mn、 Re、 Fe、 Co、 Rh、 Ir、 Cu、 Zn、 Cd、 Ga、 In, Si、 Ge、 Te、 P b、 Po、 Sn、 Bi及び希土類金属などの金属及び半金属を挙げることができる。
[0129] これらの中でも Agを主成分とするものが好ましぐ Agの合金として用いるのが好ま しい。 Agを主成分とするものとしては、 Ti、 Zn、 Cu、 Pd、 Au及び希土類金属よりなる 群力 選ばれる少なくとも 1種の元素を 0. 1原子%〜 15原子%含有することが好まし い。 Ti、 Zn、 Cu、 Pd、 Au及び希土類金属のうち 2種以上含む場合は、各々 0. 1原 子%〜15原子%、またはそれらの合計が 0. 1原子%〜15原子%であることが好まし い。
[0130] 特に好まし!/、合金組成は、 Agを主成分とし、 Ti、 Zn、 Cu、 Pd、 Auよりなる群から 選ばれる少なくとも 1種の元素を 0. 1原子%〜15原子%含有し、そして必要に応じ、 少なくとも 1種の希土類元素を 0. 1原子%〜15原子%含有するものである。希土類 金属の中では、ネオジゥムが特に好ましい。具体的には、 AgPdCu、 AgCuAu、 Ag CuAuNd、 AgCuNd等である。
[0131] また、第 2の反射層 106としては、 Auのみ力もなる層は高耐久性 (高耐食性)が高く 好適である。金属以外の材料で低屈折率薄膜と高屈折率薄膜を交互に積み重ねて 多層膜を形成し、第 2の反射層 106として用いることも可能である。第 2の反射層 106 を形成する方法としては、例えば、スパッタ法、イオンプレーティング法、化学蒸着法 、真空蒸着法等が挙げられる。また、第 2の反射層 106の上下に反射率の向上、記 録特性の改善、密着性の向上等のために、公知の無機系または有機系の中間層、 接着層を設けることもできる。
[0132] (接着層)
接着層 107は、接着力が高ぐ硬化接着時の収縮率が小さいと媒体の形状安定性 が高く好ましい。また、接着層 107は、第 2の反射層 106にダメージを与えない材料 力もなることが望ましい。但し、ダメージを抑えるために両層の間に公知の無機系また は有機系の保護層を設けることもできる。接着層 107の膜厚は、通常、 以上、 好ましくは 5 m以上である。但し光記録媒体をできるだけ薄くするために、また硬化 に時間を要し生産性が低下する等の問題があるため、接着層 107の膜厚は、通常、 100 /z m以下とする。接着層 107の材料は、中間層 104の材料と同様のものが用い うるほか、感圧式両面テープ等も使用可能である。感圧式両面テープを第 2の反射 層 106と第 2の基板 108との間に挟んで押圧することにより、接着層 107を形成でき る。
[0133] (第 2の基板)
第 2の基板 108は、機械的安定性が高ぐ剛性が大きいことが好ましい。また接着 層 107との接着性が高いことが望ましい。このような材料としては、第 1の基板 101に 用いうる材料と同じものが用い得る。このほか、 A1を主成分とした、例えば、 Al-Mg 合金等の A1合金基板や、 Mgを主成分とした、例えば、 Mg—Zn合金等の Mg合金 基板、シリコン、チタン、セラミックスのいずれかからなる基板やそれらを組み合わせ た基板等を用いることができる。
[0134] 尚、成形性等の高生産性、コスト、低吸湿性、形状安定性等の点力 はポリカーボ ネートが好ましい。耐薬品性、低吸湿性等の点力もは、非晶質ポリオレフインが好まし い。また、高速応答性等の点からは、ガラス基板が好ましい。光記録媒体 100に十分 な剛性を持たせるために、第 2の基板 108はある程度厚いことが好ましい。具体的に は、厚さは、 0. 3mm以上が好ましい。但し、厚さは、通常 3mm以下、好ましくは 1. 5 mm以下
[0135] (その他の層)
光記録媒体 100は、上記積層構造において、必要に応じて任意の他の層を挟んで も良い。或いは媒体の最外面に任意の他の層を設けても良い。具体的には、第 1の 反射層 103と中間層 104との間、中間層 104と第 2の記録層 105との間、第 2の反射 層 106と接着層 107との間等にバッファ一層を設けてもよい。ノ ッファー層の厚さは 2 nm以上が好ましぐより好ましくは 5nm以上である。ノ ッファー層の厚さが過度に薄 いと、上記の混和現象の防止が不十分となる虞がある。但し、ノ ッファー層の厚さは、 2000nm以下が好ましぐより好ましくは 500nm以下である。ノ ッファー層が過度に 厚いと、混和防止には不必要であるば力りでなぐ光の透過率を低下させる恐れもあ る。また無機物力もなる層の場合には成膜に時間を要し生産性が低下したり、膜応 力が高くなつたりする虞がある。このため、ノ ッファー層の膜さは、 200nm以下が好 ましい。特に、金属の場合は光の透過率を過度に低下させるため、ノ ッファー層の膜 さは、 20nm以下程度が好ましい。
[0136] また、記録層や反射層を保護するために保護層を設けても良い。保護層の材料と しては、記録層や反射層を外力から保護するものであれば特に限定されない。有機 物質の材料としては、熱可塑性榭脂、熱硬化性榭脂、電子線硬化性榭脂、紫外線硬 化性榭脂等を挙げることができる。また、無機物質としては、酸化ケィ素、窒化ケィ素 、 MgF
2、 SnO等の誘電体が挙げられる。
2
[0137] (V)光記録媒体の製造方法
上記説明したような、第 2の記録層のパワーマージンが、第 1の記録層のパワーマ 一ジンよりも広くなるような光記録媒体を製造する具体的な例について以下に説明す る。
具体的な光記録媒体の製造方法としては、例えば、中間層を複数の榭脂層を順次 積層して形成する。そして、最後に形成する榭脂層に、下記(1)〜(3)の少なくとも 1 つを満たす榭脂を用いる。その後、最後に形成する榭脂層の表面に、記録トラック用 の所定の溝を形成する。 (1)最後に形成する榭脂層に、中間層を形成する他の榭脂層とは異なる弾性率を有 する榭脂を用いる。
(2)最後に形成する榭脂層に用いる榭脂の 150°Cにおける弾性率を 300MPa以上 とする。
(3)基板と榭脂を用いて形成する場合に、基板を形成する榭脂の 150°Cにおける弾 性率よりも、最後に形成する榭脂層に用いる榭脂の 150°Cにおける弾性率を大きく する。
[0138] ここで、生産効率の観点から、複数の榭脂層を順次積層して中間層を形成する際 には、榭脂層は、紫外線硬化性榭脂から構成されることが好ましい。そして、中間層 を形成する榭脂層を順次成膜していき、最後に形成する榭脂層は、下記(1)〜(3) の少なくとも 1つ満たすような紫外線硬化性榭脂で形成する。
(1)他の榭脂層とは異なる弾性率を有する紫外線硬化性榭脂を用いる。
(2)最後に形成する榭脂層に用いる紫外線硬化性榭脂の 150°Cにおける弾性率を 300MPa以上とする。
(3)基板を形成する榭脂の 150°Cにおける弾性率よりも、最後に形成する榭脂層に 用いる紫外線硬化性榭脂の 150°Cにおける弾性率を大きくする。
さらに、この最後に形成する榭脂層の表面に、透明スタンパ(詳細は後述する。)を 押し当てる。その後、透明スタンパ側カゝら紫外線を照射して、各榭脂層を構成する紫 外線硬化性榭脂を硬化させる。硬化後、透明スタンパを剥離すれば、記録トラック用 の所定の溝が最外榭脂層に形成される。
[0139] また、第 2の記録層のパワーマージンが第 1の記録層のパワーマージンよりも広くな るような光記録媒体においては、記録層が有機色素を含有することが好ましい。これ は、前述の通り、有機色素を含有する記録層を用いることにより本発明の効果が顕著 に発揮されるようになるからである。
以下、本実施の形態が適用される光記録媒体を製造する方法の好ましい一例(中 間層が 2層構造の例)について説明する。
図 2は、本実施の形態が適用される光記録媒体を製造する方法を説明する模式図 である。先ず、図 2 (a)に示すように、表面に溝及びランド、グループ及びプリピットが 形成された第 1の基板 201を、スタンパを用いて射出成形法等により作製する。次に 、有機色素を溶媒に溶解させた塗布液を第 1の基板 201の凹凸を有する側の表面に スピンコート等により塗布する。そして、必要に応じて乾燥を行う。このようにして、第 1 の記録層 202を成膜する。第 1の記録層 202を成膜した後、 Ag合金等をスパッタま たは蒸着することにより、第 1の記録層 202上に、半透明な第 1の反射層 203を成膜 する。
[0140] 続いて、図 2 (b)に示すように、第 1の反射層 203の表面全体に紫外線硬化性榭脂 層をスピンコート等により塗布し第 1の中間層 204aを形成する。一方、図 2 (c)に示す ように、光透過性の榭脂スタンパ 210の案内溝が形成された面に、所定の紫外線硬 化性榭脂を円形に滴下し、スピナ一法により、第 2の中間層 204b (この第 2の中間層 204bが最外榭脂層となる。)を形成する。次に、図 2 (d)に示すように、第 1の中間層 204aと第 2の中間層 204bとが対向するように、第 1の基板 201と榭脂スタンパ 210と を貼り合わせる。続いて、榭脂スタンパ 210側力も紫外線を照射して、第 1の中間層 2 04aと第 2の中間層 204bとを硬化接着させる。そして、充分硬化したところで榭脂ス タンパ 210を剥離し、第 1の中間層 204aと第 2の中間層 204bとが積層された中間層 を形成する。このとき、第 2の中間層 204bの表面には榭脂スタンパ 210上に形成さ れた案内溝が転写されている。
[0141] 続いて、図 2 (e)に示すように、有機色素を溶媒に溶解させた塗布液をスピンコート 等により第 2の中間層 204b表面に塗布する。そして、必要に応じて、塗布液に使用 した溶媒を除去するために加熱を行う。このようにして、第 2の記録層 205を成膜する
[0142] 次に、図 2 (f)に示すように、 Ag合金等をスパッタ、蒸着することにより第 2の記録層 205上に第 2の反射層 206を成膜する。その後、図 2 (g)に示すように、ポリカーボネ ートを射出成形して得られたダミー基板である第 2の基板 208としての鏡面基板を、 接着層 207を介して第 2の反射層 206に貼り合わせて光記録媒体の製造が完了す る。尚、第 2の中間層 204bは、上述したように榭脂スタンパ 210上に形成せずに、直 接、第 1の中間層 204aの上に形成しても良い。
[0143] 尚、中間層を 3層以上で構成する場合は、例えば、以下のようにすればよい。つまり 、図 2 (b)において、第 1の中間層 204aの上に、所望の性能を有する 1又は 2以上の 紫外線硬化性榭脂 (不図示)を順次スピンコートで塗布することによって形成すれば よい。この場合に、所望の性能を有する紫外線硬化性榭脂 (紫外線硬化性榭脂は、 硬化後に榭脂層として機能する。)の塗布の順番は、中間層に求められる性能を考 慮して決めればよい。この点についてはすでに説明したので、ここでの説明は省略 する。
[0144] 以上、本実施の形態が適用される光記録媒体及びその製造方法について説明し たが、本実施の形態は上記の態様に限定されるものではなぐ種々変形することがで きる。例えば、各層間や最外層として必要に応じて他の層を設けてもよい。
実施例
[0145] 以下、実施例に基づき本実施の形態をさらに具体的に説明する。尚、本実施の形 態は、その要旨を越えない限り、以下の実施例に限定されるものではない。
(1)光記録媒体の調製
ニッケルスタンパを用いてポリカーボネート(150°Cでの弾性率は 950MPa、 30°C での弹'性率は 2300MPa)を射出成形し、ピッチ 0. 74 μ m、幅 0. 33 μ m、深さ 160 nmの溝が形成された、直径 120mm、厚さ 0. 57mmの基板を得た。
一方、非晶質ポリオレフインを原料として用い、射出成形法により、内径 15mmの中 心孔を有する、外径 120mm、厚さ 0. 6mmの円盤状の光透過性スタンパを形成した 。射出成形は、トラックピッチ 0. 74 ^ m,幅 0. 32 ^ m,深さ 175nmの案内溝を有す るニッケル製原盤を使用した。尚、原子間力顕微鏡 (AFM : Atomic Force Micr oscope)により、光透過性スタンパには、ニッケル製原盤の案内溝が正確に転写され たことが確認された。
[0146] 次に、含金属ァゾ色素のテトラフルォロロペンタノール溶液 (濃度 2重量%)を調製 し、これを基板上に滴下してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾 燥し第 1の記録層を形成した。さらに、第 1の記録層上に、 Ag— Bi(Bi: l. 0原子%) 力もなる Ag合金を用いて、厚さ 17nmの半透明の第 1の反射層をスパッタリング法に より成膜した。
[0147] 次に、第 1の反射層上に、第 1の中間層 (第 1榭脂層)を形成するための所定の紫 外線硬化性榭脂 1を円形に滴下し、スピナ一法により厚さ約 25 μ mの膜を形成した。 一方、予め調製した光透過性スタンパの案内溝が形成された面に、第 2の中間層( 第 2榭脂層、最外榭脂層)を形成するための所定の紫外線硬化性榭脂 2を円形に滴 下し、スピナ一法により厚さ約 25 mの膜を形成した。次に、この紫外線硬化性榭脂 1の膜と紫外線硬化性榭脂 2の膜とが対向するように、第 1の基板と光透過性スタン ノ とを貼り合わせた。続いて、光透過性スタンパ側カも紫外線を照射して、紫外線硬 化性榭脂 1及び紫外線硬化性榭脂 2を硬化接着させた。その後、光透過性スタンパ を剥離して第 1の中間層と第 2の中間層とが積層された厚さ約 の中間層を形 成した。尚、 AFMにより、第 2の中間層の表面には光透過性スタンパ上に形成され た案内溝が転写されていることを確認した。
[0148] 次に、第 2の中間層の上に、含金属ァゾ色素のテトラフルォロロペンタノール溶液( 濃度 2重量%)を滴下してスピナ一法により塗布した。塗布後、 70°Cで 30分間乾燥し 第 2の記録層を形成した。続いて、 Ag-Bi (Bi: l. 0原子0 /0)からなる Ag合金を用い て、厚さ 120nmの第 2の反射層をスパッタリング法により成膜した。さらに、第 2の反 射層上に、紫外線硬化性榭脂をスピンコートして接着層を設けた。そして、この接着 層上に直径 120mm、厚さ 0. 6mmのポリカーボネート基板を載置して第 2の基板と し、紫外線を照射し硬化接着させた。このようにして、 2個の記録層を有する多層型の 光記録媒体を調製した。
[0149] (2)光記録媒体のジッタ (Jitter)の測定
開口数 0. 65の記録再生評価機により、予め調製された 2個の記録層を有する光 記録媒体の第 1の基板側から第 2の記録層に波長 657nmのレーザ光を照射し、記 録線速度 9. lmZs、基準クロック周期 16nsの条件で、 8— 16変調の EFM+信号を 記録パワーを変化させながら記録した。次に、再生線速度 3. 8mZs、再生パワー 0. 7mWの条件で記録信号を再生し、ジッタを測定した (単位: %)。
ここで、ジッタは、ジッタ測定を行う記録トラックの両隣の記録トラックにも記録マーク が存在する状態で測定されている。つまり、ここでのジッタは、 Multi Track Jitter となっている。
尚、ジッタとは以下のようにして求められる値である。つまり、再生信号をイコライザと LPFを通過させた後に、スライサにより 2値ィ匕信号とする。そして、この 2値ィ匕信号のリ ーデイングエッジとトレーリングエッジとの PLLクロックに対する時間のずれの標準偏 差 (ジッタ)を、タイムインターバルアナライザで測定する。さらに、その値を基準クロッ ク周期 Tで規格ィ匕したものがジッタとなる。ジッタは 9%以下であれば、光記録媒体の 記録特性が良好といえる。
[0150] (3)チルトの測定
チルト測定装置 (Dr. Shwab社製: Argus)を用いて、平行光を光記録媒体に照射 して反射光と入射光との間の角度によりチルトを測定した (単位: deg)。数値が小さ!/ヽ ほど光記録媒体の基板の反りが少な 、。
[0151] (4)光記録媒体の Push— Pull信号の測定
予め調製した 2個の記録層を有する光記録媒体の第 2の記録層から得られる Push — Pull信号を測定した。数値が大きいほど、記録特性が良好である。尚、 Push-Pu 11信号は下記式で定義される。
[0152] [数 1]
\ 1 l ?)pp
(Pu s h— Pu l l) =
I ( + …十( 十 ) 2
[0153] 式中、 (I -I )ppは、 (I -I )信号の頂点間振幅である。 (I +1 )maxは、 (I +1 )
1 2 1 2 1 2 1 2 信号の最大値である。 (I +1 )minは (I +1 H言号の最小値である。また、(I )は、光
1 2 1 2 1 記録媒体からの再生信号を 4分割フォトディテクタにより、 4分割されたディテクタ (PD 1、 PD2、 PD3、 PD4)として受光したとき、案内溝の仮想中心に対して左側に位置 する PD1及び PD2の出力の和である(I =PD1 + PD2)。(I )は、案内溝の仮想中
1 2
心に対して右側に位置する PD3及び PD4の出力の和である(I =PD3 + PD4)。
2
[0154] 尚、フォーカスサーボを第 2の記録層にかけ、トラッキングサーボはオープンループ の状態にして、光記録媒体を 3.8mZsで回転させる。通常、光ディスクには数十ミク ロンの偏心が存在するので、再生ビームは案内溝とランドとを、 1回転で数十回横断 することになる。(I I )信号及び (I +1 )信号は正弦波状の出力を示すことになる [0155] (5)光透過性スタンパと中間層との剥離性の評価
光透過性スタンパの中心孔部分カゝら紫外線硬化性榭脂の非塗布部にナイフエッジ を差し込んだ。そして、力を加えて、光透過性スタンパと中間層とを剥離させた。剥離 後の光透過性スタンパの表面について、蛍光灯下の目視検査又は光学顕微鏡観察 を行い、以下の基準により、剥離性を評価した。
〇:容易に剥離でき、光透過性スタンパ表面に紫外線硬化性榭脂の残渣が無い。 △:比較的容易に剥離でき、光学顕微鏡により、光透過性スタンパ表面に紫外線硬 化性榭脂の残渣が認識される。
X:剥離が困難、又は、剥離後の光透過性スタンパ表面に紫外線硬化性榭脂の残 渣が目視検査で認識される。
[0156] (6)榭脂の弾性率、ガラス転移温度
動的粘弾性試験機(レオバイブロン (Rheovibron)社製: DDVシリーズ)を使用し、 測定周波数 3. 5Hz、昇温速度 3°CZminの条件で、温度 150°C、温度 30°Cにおけ る榭脂の動的弾性率を測定した (単位: MPa)。同時に、榭脂のガラス転移温度 (Tg )の測定も行った。
[0157] (7)榭脂の収縮率
比重法により榭脂の収縮率を測定した (単位: %)。
[0158] (8)パワーマージンの測定方法
上記(2)のジッタの測定方法を用いて、第 1の記録層及び第 2の記録層のそれぞれ のジッタ測定を行った。そして、ジッタが 9%以下となる記録パワー Pl、 P2を求めた。 パワーマージンは、ジッタが 9%を下回る記録パワー幅(P2— P1)をその中心値(P2 + P1) Z2で割った値として求めた。
より具体的には、第 1の記録層及び第 2の記録層それぞれの半径 23mm位置にお いて、上記(2)に示す方法に倣って記録を行なった。その後、上記(2)に示す方法 に倣ってジッタの測定を行った。そして、ジッタが 9%以下とするような Pl、 P2を求め 、 [ (P2— P1)Z{ (P2 + P1)Z2}]を算出した。
[0159] (実施例 1〜実施例 4、比較例 1、比較例 2)
表 1に示す 6種類の紫外線硬化性榭脂 (A〜F)を用いた。尚、表 1中の紫外線硬化 性榭脂 (A〜F)は以下のとおりである。
榭脂 A:ラジカル系紫外線硬化性榭脂:大日本インキ株式会社製
榭脂 B:ラジカル系紫外線硬化性榭脂:大日本インキ株式会社製 SD694 榭脂 C:ラジカル系紫外線硬化性榭脂:大日本インキ株式会社製 SD394 榭脂 D:ラジカル系紫外線硬化性榭脂:大日本インキ株式会社製 SD347 榭脂 E:カチオン系紫外線硬化性榭脂:大日本インキ株式会社製 SD4016 榭脂 F:ラジカル系紫外線硬化性榭脂:大日本インキ株式会社製 SD6036
また、上記榭脂 A〜Fの収縮率、弾性率及びガラス転移温度を表 1に示す。但し、 表 1中、( * 1)及び( * 2)で示したデータ(150°Cの弾性率の欄に記載された、榭脂 E、 Fのデータ)は、 100°Cでの弾性率の測定結果である。 150°Cの弾性率は、 100 °Cでの弾性率のデータよりも小さくなると考えられる。
[0160] [表 1]
Figure imgf000052_0001
[0161] そして、表 2に示した紫外線硬化性榭脂 (A〜F)の組み合わせを用い、第 1の中間 層及び第 2の中間層を有する光記録媒体について、それぞれ、ジッタ、チルト、 Push — Pull信号の測定を行った。また、光記録媒体を調製する際の光透過性スタンパと 第 2の中間層との剥離性を評価した。結果を表 2に示す。
[0162] 尚、榭脂 A〜榭脂 Fについて、弾性率'収縮率の制御方法を説明する。
榭脂 Aとしては、架橋密度が高くなるようなアクリルモノマーと架橋構造に剛直な構 造を有するアクリルモノマーとを組み合わせて用いることにより、弾性率及び収縮率を 制御した。 榭脂 Fとしては、アタリロイル基 1個あたりの分子量が大きぐ柔軟な構造を有するァ クリルオリゴマーと単官能アクリルモノマーを組み合わせて用いることにより、弾性率 及び収縮率を制御した。
また、榭脂 Eは収縮率が最も小さいが、これは、カチオン系榭脂を用いているからで ある。尚、榭脂 B、榭脂 C及び榭脂 Dについても、モノマー構造を適宜制御して、所望 の弾性率,収縮率を得た。
[0163] [表 2]
Figure imgf000053_0001
[0164] 表 2に示した結果から、以下のことが分かる。つまり、 2個の記録層を有する多層型 の光記録媒体において、 150°Cの弾性率が 300MPa以上であり、また、収縮率が 6 %以上である紫外線硬化性榭脂 (A、 D)を用いて第 2の中間層 (最外榭脂層)を形 成した場合 (実施例 1〜実施例 4)は、光記録媒体の記録特性 (ジッタ、チルト、 Push — Pull信号)のノ ランスが良好である。また、光記録媒体を調製する際の光透過性ス タンパと第 2の中間層との剥離性が良好であることが分力る。
[0165] 中でも、第 2の中間層(最外榭脂層)を 150°Cの弾性率が 300MPa以上であり、ま た、収縮率が 6%以上である紫外線硬化性榭脂 Aを用いて形成し、第 1の中間層を 収縮率が 4%以下の紫外線硬化性榭脂 Eを用いて形成した場合 (実施例 1)と、第 2 の中間層 (最外榭脂層)を紫外線硬化性榭脂 Aを用いて形成し、第 1の中間層を 30 °Cの弾性率が 700MPa以下の紫外線硬化性榭脂 Fを用いて形成した場合 (実施例 2)とは、光記録媒体の記録特性 (ジッタ、チルト、 Push— Pull信号)のバランスが良 好である。特に、チルトが小さぐ光記録媒体の基板の反りが小さいことが分力る。 [0166] 一方、 2個の記録層を有する多層型の光記録媒体において、 150°Cの弾性率が 3 OOMPaより小さ ヽ紫外線硬化性榭脂 (B、 C)を用いて第 2の中間層(最外榭脂層)を 形成した場合 (比較例 1、比較例 2)は、光記録媒体の記録特性 (ジッタ、チルト、 Pus h— Pull信号)のバランスが不良であり、また、光記録媒体を調製する際に光透過性 スタンパと中間層とをスムーズに剥離できないことが分かる。
[0167] 即ち、第 2の中間層を 150°Cの弾性率が 160MPaである紫外線硬化性榭脂 Bを用 いて形成した場合 (比較例 1)と、第 2の中間層を 150°Cの弾性率が 66MPaである紫 外線硬化性榭脂 Cを用いて形成した場合 (比較例 2)とは、いずれも Push— Pull信 号が極めて小さ!/、ためにトラキングサーボが力からず、記録再生評価が出来な 、こと が分かる。これは、 150°Cの弾性率が低い榭脂製の第 2の中間層上に第 2の反射膜 を成膜する際に、成膜中の発熱により第 2の中間層に形成された溝が変形して浅くな り、その結果、 Push— Pull信号振幅が極端に小さくなつたと考えられる。
[0168] また、実施例 1〜実施例 4の光記録媒体の第 1の記録層と第 2の記録層とのパワー マージンを測定した結果を示す。
実施例 1の光記録媒体においては、第 1の記録層のおける P1は 18. 57mW程度 であり、 P2は 22. 73mW@度であった。これに対して、第 2の記録層における、 P1は 21. 52mW@度であり、 P2は 30. 09mW@度であった。これらの結果を用いて、パ ヮーマージンを算出すると、第 1の記録層は 20. 1%、第 2の記録層は 33. 2%となつ た。
実施例 2の光記録媒体においては、第 1の記録層のおける P1は 18. 21mW程度 であり、 P2は 22. 33mW@度であった。これに対して、第 2の記録層における、 P1は 21. 76mW@度であり、 P2は 30. 09mW@度であった。これらの結果を用いて、パ ヮーマージンを算出すると、第 1の記録層は 20. 3%、第 2の記録層は 32. 2%となつ た。
実施例 3の光記録媒体においては、第 1の記録層のおける P1は 18. 61mW程度 であり、 P2は 22. 59mW@度であった。これに対して、第 2の記録層における、 P1は 21. 13mW@度であり、 P2は 30. 40mW@度であった。これらの結果を用いて、パ ヮーマージンを算出すると、第 1の記録層は 19. 3%、第 2の記録層は 36. 0%となつ た。
実施例 4の光記録媒体においては、第 1の記録層のおける P1は 18. 48mW程度 であり、 P2は 22. 75mW@度であった。これに対して、第 2の記録層における、 P1は 21. 80mW@度であり、 P2は 31. 37mW@度であった。これらの結果を用いて、パ ヮーマージンを算出すると、第 1の記録層は 20. 7%、第 2の記録層は 36. 0%となつ た。
尚、比較例 1と比較例 2の光記録媒体については、 Push— Pull信号が極めて小さ いためにトラキングサーボが力からず、記録再生評価が出来な力つた。このため、第 2 の記録層のパワーマージンの評価を行うこともできなかった。
(実施例 5)
上記の「(1)光記録媒体の調製」における、中間層の形成方法を以下のようにして、 中間層を 3層の榭脂層からなる構造とした。以下の中間層の形成方法以外は、上記「 (1)光記録媒体の調製」と同様にして光記録媒体を調製した。
(中間層の形成方法)
第 1の反射層上に、紫外線硬化性榭脂 (榭脂 D)を滴下し、スピナ一法により、厚さ 約 4 mの塗膜を形成した。その後、紫外線を照射して紫外線硬化性榭脂を硬化さ せて、第 1榭脂層を形成した。この第 1榭脂層は、反射層を保護する為に用いるもの である。
第 1榭脂層の上に、第 2榭脂層を形成するための紫外線硬化性榭脂 1 (榭脂 F)を 円形に滴下した。そして、スピナ一法により厚さ約 23 mの塗膜を形成した。
一方、予め成形しておいた光透過性スタンパの案内溝が形成された面に、第 3榭 脂層 (最外榭脂層)を形成するための所定の紫外線硬化性榭脂 2 (榭脂 A)を円形に 滴下した。そして、スピナ一法により厚さ約 23 μ mの塗膜を形成した。
次に、この紫外線硬化性榭脂 1の塗膜と紫外線硬化性榭脂 2の塗膜とが対向する ように、第 1の基板と光透過性スタンパとを貼り合わせた。次いで、光透過性スタンパ 側から紫外線を照射して、紫外線硬化性榭脂 1及び紫外線硬化性榭脂 2を硬化接 着させた。その後、光透過性スタンパを剥離した。
以上の工程を経て、第 1樹脂層、第 2樹脂層、第 3樹脂層 (最外樹脂層)が積層され た厚さ約 50 /z mの中間層を製造した。尚、 AFMにより、第 2の中間層の表面には光 透過性スタンパ上に形成された案内溝が転写されていることを確認した。
この光記録媒体に対して、上記(2)の Jitter測定、上記 (4)の光記録媒体の Push Pull信号の測定、及び上記(8)のパワーマージンの測定、を行った。第 2の記録 層の Jitter及び Push— Pull信号の測定結果を表 3に示す。尚、 Jitter、 Push -Pull の測定は、光記録媒体の半径 23mm位置、 40mm位置、 58mm位置について行つ た。
[0170] [表 3]
Figure imgf000056_0001
[0171] 表 3より、いずれの半径位置においても、良好な記録特性が得られることが分かる。
また、図 4に、光記録媒体の第 1の記録層と第 2の記録層とのパワーマージンを測定 した結果を示す。図 4において「L0」は、第 1の記録層のパワーマージンを、「L1」は 第 2の記録層のパワーマージンを示す。図 4から、第 1の記録層における P1は 19. 8 mW程度であり、 P2は 24. 2mW程度であった。これに対して、第 2の記録層におけ る P1は 19. 4mW程度であり、 P2は 27mW程度であった。これらの結果を用いて、 ノ ヮ一マージンを算出すると、第 1の記録層は 19%、第 2の記録層は 32%となった。 この結果から、第 2の記録層の方が広 、パワーマージンを有することが分かる。
[0172] (実施例 6)
実施例 5において中間層の形成方法を以下のようにしたこと以外は、実施例 5と同 様にして光記録媒体を調製した。
(中間層の形成方法)
第 1の反射層上に、紫外線硬化性榭脂 (榭脂 D)を滴下し、スピナ一法により、厚さ 約 4 mの塗膜を形成した。その後、紫外線を照射して紫外線硬化性榭脂を硬化さ せて、第 1榭脂層を形成した。この第 1榭脂層は、反射層を保護する為に用いるもの である。
ここで、実験作業の都合から、 1週間ほどサンプルを放置した後に以後の作業を行 つた o
第 1榭脂層の上に、第 2榭脂層を形成するための紫外線硬化性榭脂 1 (榭脂 F)を 円形に滴下した。そして、スピナ一法により所定の厚さの塗膜を形成した。
一方、予め成形しておいた光透過性スタンパの案内溝が形成された面に、第 3榭 脂層 (最外榭脂層)を形成するための所定の紫外線硬化性榭脂 2 (榭脂 A)を円形に 滴下した。そして、スピナ一法により所定の厚さの塗膜を形成した。
次に、この紫外線硬化性榭脂 1の塗膜と紫外線硬化性榭脂 2の塗膜とが対向する ように、第 1の基板と光透過性スタンパとを貼り合わせた。次いで、光透過性スタンパ 側から紫外線を照射して、紫外線硬化性榭脂 1及び紫外線硬化性榭脂 2を硬化接 着させた。その後、光透過性スタンパを剥離した。
以上の工程を経て、第 1樹脂層、第 2樹脂層、第 3樹脂層 (最外樹脂層)が積層され た厚さ約 50 mの中間層を製造した。第 2榭脂層の膜厚及び第 3榭脂層 (最外榭脂 層)のおおよその膜厚を、表 4に示す。
上記のようにして得た光記録媒体に対して、上記(3)のチルトの測定、(4)の Push — Pull信号(半径 23mm位置)の測定を行った。その結果を表 4に示す。
[0173] [表 4]
Figure imgf000057_0001
[0174] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。 産業上の利用可能性
[0175] 本発明によれば、透明基板上に設けられた複数の色素記録層を有する光記録媒 体の記録特性が改善される。
尚、本出願は、 2004年 4月 22日付けで出願された日本出願 (特願 2004— 12714 9)に基づいており、その全体が引用により援用される。
図面の簡単な説明
[0176] [図 1]本実施の形態が適用される光記録媒体の好ましい形態を説明するための図で ある。
[図 2]本実施の形態が適用される光記録媒体を製造する方法を説明する図である。
[図 3]本実施の形態が適用される光記録媒体の一例を示す模式図である。
[図 4]実施例 5における光記録媒体の第 1の記録層と第 2の記録層とのパワーマージ ンを測定した結果を示す図である。
符号の説明
[0177] 100, 300···光記録媒体、 101, 201, 301···第 1の基板、 102, 202, 302···第 1の 記録層、 103, 203, 303···第 1の反射層、 104a, 204a…第 1の中間層、 104b, 20 4b…第 2の中間層、 105, 205, 305···第 2の記録層、 106, 206, 306···第 2の反 射層、 107, 207, 307···接着層、 108, 208, 308···第 2の基板、 110, 310···レー ザ光、 304···中間層、 304a…第 1榭脂層、 304b…第 2榭脂層、 304c…最外榭脂層

Claims

請求の範囲
[1] 基板上に設けられ、照射された光により情報の記録再生が可能な少なくとも 2個の 記録層と、
前記 2個の記録層間に設けられた中間層と、を備え、
前記 2個の記録層のうち、基板カゝらみて近い側の記録層を第 1の記録層、基板から みて遠 、側の記録層を第 2の記録層とし、
前記中間層の両面のうち前記基板側とは反対側の面に、記録トラック用の所定の 溝が形成されており、
前記中間層が複数の榭脂層から構成され、前記記録トラック用の所定の溝を形成 する樹脂層を最外樹脂層とし、
前記第 1の記録層におけるパワーマージンよりも、前記第 2の記録層におけるパヮ 一マージンの方が広 、ことを特徴とする光記録媒体。
[2] 前記最外榭脂層には、前記中間層を形成する他の榭脂層とは異なる弾性率を有 する榭脂を用いることを特徴とする請求項 1に記載の光記録媒体。
[3] 前記最外榭脂層に用いる榭脂の 150°Cにおける弾性率を 300MPa以上とすること を特徴とする請求項 1に記載の光記録媒体。
[4] 前記基板を榭脂で形成し、
(前記最外榭脂層に用いる榭脂の 150°Cにおける弾性率)≥ (前記基板を形成す る榭脂の 150°Cにおける弾性率)とすることを特徴とする請求項 1に記載の光記録媒 体。
[5] 前記最外榭脂層に用 ヽる榭脂の 150°Cにおける弾性率を、前記中間層を形成す る他の榭脂層に用いる榭脂の 150°Cにおける弾性率よりも高くすることを特徴とする 請求項 2乃至請求項 4のいずれか 1項に記載の光記録媒体。
[6] 前記最外榭脂層に用いる榭脂の収縮率を 6%以上とすることを特徴とする請求項 1 乃至請求項 5のいずれか 1項に記載の光記録媒体。
[7] 前記最外榭脂層の厚さを、前記中間層全体の厚さの 5%以上とすることを特徴とす る請求項 1乃至請求項 6のいずれか 1項に記載の光記録媒体。
[8] 前記最外榭脂層以外の榭脂層に、 30°Cにおける弾性率が 1500MPa以下の榭脂 を用いることを特徴とする請求項 1乃至請求項 7のいずれか 1項に記載の光記録媒 体。
[9] 前記最外榭脂層以外の榭脂層に、収縮率が 4%以下の榭脂を用いることを特徴と する請求項 1乃至請求項 8のいずれか 1項に記載の光記録媒体。
[10] 前記中間層を、 3層の榭脂層で構成することを特徴とする請求項 1乃至請求項 9の
V、ずれか 1項に記載の光記録媒体。
[11] 前記中間層が、第 1層と第 2層とから構成され、それぞれの層に弾性率が異なる榭 脂を用いることを特徴とする請求項 1に記載の光記録媒体。
[12] 前記中間層は、第 1層と第 2層とから構成され、前記第 2層を構成する榭脂が、前記 第 1層を構成する榭脂よりも高い弾性率を有することを特徴とする請求項 11に記載 の光記録媒体。
[13] 前記中間層は、第 1層と第 2層とから構成され、前記第 2層を構成する榭脂の 150 °Cにおける弾性率が 300MPa以上であることを特徴とする請求項 1に記載の光記録 媒体。
[14] 前記第 2層を構成する前記樹脂の収縮率が 6%以上であることを特徴とする請求項
11乃至請求項 13のいずれか 1項に記載の光記録媒体。
[15] 前記第 1層の厚さ (Da)と前記第 2層の厚さ (Db)との関係が、 (Da/Db) = (1/4
;)〜 (4Z1)であることを特徴とする請求項 11乃至請求項 14のいずれか 1項に記載 の光記録媒体。
[16] 前記中間層は、 30°Cにおける弾性率が 1500MPa以下の榭脂からなる第 1層と、 前記第 1層上に積層され、 150°Cにおける弾性率が 300MPa以上である樹脂からな る第 2層と、力も構成されることを特徴とする請求項 11乃至請求項 15のいずれ力 1項 に記載の光記録媒体。
[17] 前記第 1層を構成する前記樹脂の収縮率が 4%以下であることを特徴とする請求項
11乃至請求項 16の 、ずれか 1項に記載の光記録媒体。
[18] 前記中間層を構成する榭脂層が紫外線硬化性榭脂から構成されることを特徴とす る請求項 1乃至請求項 17のいずれか 1項に記載の光記録媒体。
[19] 前記記録層が有機色素を含有することを特徴とする請求項 1乃至請求項 18のいず れか 1項に記載の光記録媒体。
前記第 1の記録層と前記中間層との間に第 1の反射層を、前記第 2の記録層の上 に第 2の反射層を設け、
(前記第 2の反射層の膜厚) / (前記第 1の反射層の膜厚)を 2以上、 20以下とする ことを特徴とする請求項 1乃至請求項 19のいずれか 1項に記載の光記録媒体。
PCT/JP2005/007648 2004-04-22 2005-04-21 光記録媒体 WO2005104116A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602005022574T DE602005022574D1 (de) 2004-04-22 2005-04-21 Optisches aufzeichnungsmedium
EP05734677A EP1739667B1 (en) 2004-04-22 2005-04-21 Optical recording medium
US11/578,967 US20070297315A1 (en) 2004-04-22 2005-04-21 Optical Recording Medium
CN200580012579.2A CN1950900B (zh) 2004-04-22 2005-04-21 光记录介质
IN3038KON2006 IN266857B (ja) 2004-04-22 2005-04-21
HK07111246.2A HK1102865A1 (en) 2004-04-22 2007-10-18 Optical recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-127149 2004-04-22
JP2004127149 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005104116A1 true WO2005104116A1 (ja) 2005-11-03

Family

ID=35197233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007648 WO2005104116A1 (ja) 2004-04-22 2005-04-21 光記録媒体

Country Status (8)

Country Link
US (1) US20070297315A1 (ja)
EP (1) EP1739667B1 (ja)
CN (1) CN1950900B (ja)
DE (1) DE602005022574D1 (ja)
HK (1) HK1102865A1 (ja)
IN (1) IN266857B (ja)
TW (1) TW200614218A (ja)
WO (1) WO2005104116A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140726B2 (ja) * 2004-09-14 2008-08-27 太陽誘電株式会社 光情報記録媒体
EP1859444A4 (en) * 2005-03-17 2008-09-03 Ricoh Kk OPTICAL RECORDING MEDIUM
JP2007328873A (ja) * 2006-06-08 2007-12-20 Toshiba Corp 追記型多層光ディスク、記録方法、再生方法、および記録装置
JP4783327B2 (ja) * 2007-04-19 2011-09-28 太陽誘電株式会社 光情報記録媒体
US8211522B2 (en) * 2008-03-10 2012-07-03 Panasonic Corporation Manufacturing method for optical information recording medium and optical information recording medium
JP5393045B2 (ja) * 2008-03-31 2014-01-22 太陽誘電株式会社 光情報記録媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118930A (ja) * 1988-10-27 1990-05-07 Canon Inc 光学的記録媒体
JP2003296978A (ja) * 2002-01-30 2003-10-17 Sony Disc Technology Inc 光学記録媒体の製造方法および光学記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708652A (en) * 1995-02-28 1998-01-13 Sony Corporation Multi-layer recording medium and method for producing same
US5942302A (en) * 1996-02-23 1999-08-24 Imation Corp. Polymer layer for optical media
EP1047055A1 (en) * 1999-04-22 2000-10-25 3M Innovative Properties Company Optical storage medium
JP2003091868A (ja) * 1999-05-24 2003-03-28 Sony Corp 光ディスク及びその製造方法。
JP2002092956A (ja) * 2000-09-13 2002-03-29 Nec Corp 光学情報記録媒体およびその製造方法
JP2003051140A (ja) * 2001-08-06 2003-02-21 Sanyo Electric Co Ltd 光ディスクおよびその製造方法
JP2003077191A (ja) * 2001-08-31 2003-03-14 Pioneer Electronic Corp 多層光記録媒体の製造方法
JP2003272237A (ja) * 2002-03-20 2003-09-26 Sony Corp 光学記録媒体およびその製造方法
JP2003281791A (ja) * 2002-03-22 2003-10-03 Toshiba Corp 片面2層光ディスク及びその製造方法及び装置
JP4139648B2 (ja) * 2002-08-08 2008-08-27 リンテック株式会社 光ディスク製造用シート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118930A (ja) * 1988-10-27 1990-05-07 Canon Inc 光学的記録媒体
JP2003296978A (ja) * 2002-01-30 2003-10-17 Sony Disc Technology Inc 光学記録媒体の製造方法および光学記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1739667A4 *

Also Published As

Publication number Publication date
IN266857B (ja) 2015-06-09
TW200614218A (en) 2006-05-01
HK1102865A1 (en) 2007-12-07
TWI366822B (ja) 2012-06-21
US20070297315A1 (en) 2007-12-27
CN1950900A (zh) 2007-04-18
EP1739667A1 (en) 2007-01-03
CN1950900B (zh) 2010-12-29
DE602005022574D1 (de) 2010-09-09
EP1739667B1 (en) 2010-07-28
EP1739667A4 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
US7907503B2 (en) Optical recording medium and recording/reading method therefor
JP4642539B2 (ja) 光記録媒体
US7427432B2 (en) Optical recording medium
WO2005104116A1 (ja) 光記録媒体
WO2006109722A1 (ja) 光記録媒体
US7371449B2 (en) Optical recording medium
JP2004247024A (ja) 光記録媒体及びその記録再生方法
JP4238170B2 (ja) 光記録媒体
JP4171674B2 (ja) 光記録媒体、光記録媒体の膜厚測定方法、膜厚制御方法、製造方法、膜厚測定装置及び膜厚制御装置
JP4050993B2 (ja) 光記録媒体、光記録媒体の膜厚測定方法、膜厚制御方法及び製造方法
JP4238518B2 (ja) 光記録媒体及びその製造方法
JP3978402B2 (ja) 光記録媒体の製造方法及び光記録媒体用積層体の製造方法
JP2004288264A (ja) 光記録媒体、光記録媒体の製造方法
WO2007058309A2 (ja) 光記録媒体の製造方法及び製造装置
JP2006236476A (ja) 光記録媒体
JP2003331473A (ja) 光記録媒体
JP4603996B2 (ja) 光記録媒体
JP2006048905A (ja) 光記録媒体
JP2009093750A (ja) 光情報記録媒体
JP2007066354A (ja) 光記録媒体及びその製造方法
JP2007109353A (ja) 光情報記録媒体
JP2004318985A (ja) 光記録媒体,光記録媒体の記録再生方法及び光記録媒体の製造方法
JP2008226328A (ja) 光情報記録媒体
JP2005339769A (ja) 光記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 3038/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580012579.2

Country of ref document: CN

Ref document number: 2005734677

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 11578967

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005734677

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578967

Country of ref document: US