WO2008041418A1 - Power supply and vehicle having same - Google Patents

Power supply and vehicle having same Download PDF

Info

Publication number
WO2008041418A1
WO2008041418A1 PCT/JP2007/065683 JP2007065683W WO2008041418A1 WO 2008041418 A1 WO2008041418 A1 WO 2008041418A1 JP 2007065683 W JP2007065683 W JP 2007065683W WO 2008041418 A1 WO2008041418 A1 WO 2008041418A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power storage
node
storage device
voltage
Prior art date
Application number
PCT/JP2007/065683
Other languages
English (en)
French (fr)
Inventor
Hiroki Sawada
Yoshinori Fujitake
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07792328.2A priority Critical patent/EP2068431B1/en
Priority to US12/310,657 priority patent/US8039987B2/en
Priority to BRPI0718370A priority patent/BRPI0718370B1/pt
Priority to CN2007800364913A priority patent/CN101523709B/zh
Priority to JP2008537430A priority patent/JP4780195B2/ja
Publication of WO2008041418A1 publication Critical patent/WO2008041418A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a power supply device and a vehicle including the power supply device.
  • Japanese Patent Application Laid-Open No. Hei 9 1 2 3 3 7 1 0 discloses a charging / discharging device capable of individually charging and discharging a plurality of storage batteries.
  • This charging / discharging device includes a charging rectifier circuit that rectifies an AC power source, a regenerative rectifier circuit that is connected in reverse parallel to the charging rectifier circuit, and regenerates the amount of electricity of the divided storage battery into the AC power source.
  • a plurality of buck-boost converters provided corresponding to the plurality of storage batteries, respectively. Each of the plurality of buck-boost converters is used as a step-down converter when the storage battery is charged, and is used as a boost converter when the storage battery is discharged.
  • the storage battery can be charged unless the output voltage of the charging rectifier circuit is made higher than the voltage between the terminals of the storage battery. It becomes difficult.
  • An object of the present invention is to provide a power supply device that can easily perform external charging and a vehicle including the power supply device.
  • the present invention is a power supply device that is charged by an external power supply, is chargeable / dischargeable, and is connected to a first power storage device connected to a first node and a second node.
  • a first voltage converter that converts a voltage between the first node and the second node, and a second power storage that is chargeable / dischargeable and that is connected to the third node
  • An apparatus a second voltage converter that converts a voltage between a third node and a second node; and a power transmitter that transmits power received from an external power source to the first node.
  • the power supply device includes a first connection unit that can cut off a connection between the first power storage device and the first node, and a second connection that can cut off a connection between the second power storage device and the third node.
  • a control unit for controlling the first and second connection units and the first and second voltage conversion units.
  • the control unit sets the first and second connection parts to the cutoff state and the connection state, respectively, and the first and second voltages so that the voltage of the third node becomes a desired charging voltage.
  • the conversion unit is controlled to charge the second power storage device.
  • the external power source is a DC power source.
  • the power transmission unit transmits the DC voltage from the DC power source to the first node.
  • the external power source is an AC power source.
  • the power transmission unit includes a conversion circuit that converts an AC voltage output from the AC power source into a DC voltage.
  • the power transmission unit can select a connection destination from the first and third nodes.
  • the control unit sets the first and second connection units to the connected state and the disconnected state, respectively, and the voltage of the first node is desired.
  • the first power storage device is charged by controlling the first and second voltage converters so that the charging voltage becomes the same.
  • the power supply apparatus further includes a switching unit that is controlled by the control unit to switch the connection destination of the power transmission unit between the first and third nodes.
  • the storage capacity of the first power storage device is greater than the storage capacity of the second power storage device. Is too small.
  • the control unit puts the first connection unit into a connected state and controls the first and second voltage conversion units to store in the second power storage device.
  • the first power storage device is charged by supplying the generated power to the first power storage device.
  • control unit sets the first and second connection units in the connected state and the disconnected state, respectively, and charges the first power storage device.
  • the power storage capacity of the first power storage device is larger than the power storage capacity of the second power storage device.
  • each of the first and second power storage devices has a positive electrode and a negative electrode.
  • the first connection unit connects the positive electrode of the first power storage device to the first node.
  • the second connection unit connects the positive electrode of the second power storage device to the third node.
  • the power supply device includes a ground wire, a third connection portion that connects the ground wire and the negative electrode of the first power storage device, and a fourth connection portion that connects the ground wire and the negative electrode of the second power storage device. Is further provided.
  • the power transmission unit includes a first output line connected to the first node and a second output line connected to the negative electrode of the first power storage device.
  • an external load that uses power from at least one of the first and second power storage devices is connected to the power transmission unit instead of the external power source.
  • the control unit sets at least one connection part of the first and second connection parts to a connected state, and supplies power from the power storage device corresponding to at least one connection part of the first and second power storage devices. Supply to external load.
  • the power supply device further includes a switching unit that switches a connection destination of the power transmission unit between the first and third nodes.
  • each of the first and second power storage devices has a positive electrode and a negative electrode.
  • the positive electrodes of the first and second power storage devices are connected to the first and third nodes, respectively.
  • the power transmission unit includes a first output line and a second output line connected to the negative electrode of the first power storage device.
  • the power supply device includes: a first switching unit that switches connection / disconnection between the first output line and the first node; and a connection / disconnection between the first output line and the third node. Controls the second switching unit that switches connections and the first and second switching units And a control unit. The control unit sets both the first and second switching units to the connected state and charges the first and second power storage devices.
  • the power storage capacity of the first power storage device is larger than the power storage capacity of the second power storage device.
  • the control unit sets the second switching unit to a disconnected state and ends the charging of the second power storage device.
  • the vehicle includes a power supply device that is charged by an external power source provided outside the vehicle.
  • the power supply device is chargeable / dischargeable and is connected between the first power storage device connected to the first node, the load connected to the second node, and the first node and the second node.
  • Voltage is converted between the first voltage conversion unit that converts the voltage, the second power storage device that is chargeable / dischargeable and connected to the third node, and the third node and the second node A second voltage converter that transmits power received from the external power source to the first node.
  • the power supply device includes a first connection unit that can cut off a connection between the first power storage device and the first node, and a second connection that can cut off a connection between the second power storage device and the third node.
  • a control unit for controlling the first and second connection units and the first and second voltage conversion units.
  • the control unit sets the first and second connection units to the cut-off state and the connection state, respectively, and sets the first and second voltage conversion units so that the voltage of the third node becomes a desired charging voltage.
  • the external power source is a DC power source.
  • the power transmission unit transmits the torrent voltage from the DC power source to the first node.
  • the external power source is an AC power source.
  • the power transmission unit includes a conversion circuit that converts an AC voltage output from the AC power source into a DC voltage.
  • the power transmission unit can select a connection destination from the first and third nodes.
  • the control unit sets the first and second connection units to the connected state and the disconnected state, respectively, and the voltage of the first node is desired.
  • the first power storage device is charged by controlling the first and second voltage converters so that the charging voltage becomes the same.
  • the power supply device further includes a switching unit that is controlled by the control unit to switch the connection destination of the power transmission unit between the first and third nodes. More preferably, the power storage capacity of the first power storage device is smaller than the power storage capacity of the second power storage device.
  • the control unit puts the first connection unit into a connected state and controls the first and second voltage conversion units to store in the second power storage device.
  • the first power storage device is charged by supplying the generated power to the first power storage device.
  • control unit sets the first and second connection units in the connected state and the disconnected state, respectively, and charges the first power storage device.
  • the power storage capacity of the first power storage device is larger than the power storage capacity of the second power storage device.
  • each of the first and second power storage devices has a positive electrode and a negative electrode.
  • the first connection unit connects the positive electrode of the first power storage device to the first node.
  • the second connection unit connects the positive electrode of the second power storage device to the third node.
  • the power supply device includes a ground wire, a third connection portion that connects the ground wire and the negative electrode of the first power storage device, and a fourth connection portion that connects the ground wire and the negative electrode of the second power storage device. Further included.
  • the power transmission unit has a first output line connected to the first node and a second output line connected to the negative electrode of the first power storage device.
  • an external load that uses power from at least one of the first and second power storage devices is connected to the power transmission unit instead of the external power source.
  • the control unit sets at least one connection part of the first and second connection parts to a connected state, and supplies power from the power storage device corresponding to at least one connection part of the first and second power storage devices. Supply to external load.
  • the power supply device further includes a switching unit that switches a connection destination of the power transmission unit between the first and third nodes.
  • each of the first and second power storage devices has a positive electrode and a negative electrode.
  • the positive electrodes of the first and second power storage devices are connected to the first and third nodes, respectively.
  • the power transmission unit includes a first output line and a second output line connected to the negative electrode of the first power storage device.
  • the power supply device includes: a first switching unit that switches connection / disconnection between the first output line and the first node; and a connection between the first output line and the third node. It further includes a second switching unit that switches between connection and disconnection, and a control unit that controls the first and second switching units. The control unit sets both the first and second switching units to the connected state and charges the first and second power storage devices.
  • the power storage capacity of the first power storage device is larger than the power storage capacity of the second power storage device.
  • the control unit sets the second switching unit to a disconnected state and ends the charging of the second power storage device.
  • the present invention it is possible to charge the power storage device by supplying power to the vehicle while preventing an increase in the number of components.
  • FIG. 1 is a diagram showing a main configuration of a vehicle 100 according to the first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of the control device 30 of FIG.
  • FIG. 3 is a diagram schematically showing a state when battery BB is charged in vehicle 100 in FIG.
  • FIG. 4 is a flowchart showing the charging process of the battery BB executed by the control device 30.
  • FIG. 5 is a diagram showing a modification of the first embodiment.
  • FIG. 6 is a simplified diagram showing a method for charging both of a plurality of batteries B A and B B in the power supply device of the second embodiment.
  • FIG. 7 is a diagram showing a modification of the second embodiment.
  • FIG. 8 is a flowchart showing the charging process of the batteries B A and BB executed by the control device 30 shown in FIG.
  • FIG. 9 is a diagram illustrating a main configuration of the vehicle 10 O A according to the third embodiment.
  • FIG. 10 is a diagram schematically showing a state when battery BB is charged in vehicle 10 O A of FIG.
  • FIG. 11 is a flowchart showing the charging process of the battery BB executed by the control device 30.
  • FIG. 12 is a diagram showing a first modification of the third embodiment.
  • FIG. 13 is a flowchart explaining the charging process of the control device 30 shown in FIG.
  • FIG. 14 is a diagram illustrating a second modification of the third embodiment.
  • FIG. 15 is a flowchart illustrating a charging process of control device 30 shown in FIG.
  • FIG. 1 is a diagram showing a main configuration of a vehicle 100 according to the first embodiment of the present invention.
  • the vehicle 100 is a hybrid vehicle that uses both a motor and an engine for driving the vehicle.
  • the present invention can also be applied to an electric vehicle, a fuel cell vehicle, and the like that drive wheels with a motor. .
  • vehicle 100 includes battery BA, BB, boost converters 12 A, 12 B, smoothing capacitors C 1 A, C 1 B, C 2, and voltage sensors 13, 2 1 A. , 21 B, load circuit 23, engine 4, motor generators MG 1 and MG 2, power split mechanism 3, wheels 2, and control device 30.
  • the vehicle 100 further includes a power line PL 1A, PL 1 B, PL 2, a ground line SL, a voltage sensor 1 OA that detects a voltage VBA between the terminals of the battery BA, and a voltage between the terminals of the battery BB. Voltage sensor 10 B for detecting VBB.
  • the batteries BA and BB for example, secondary batteries such as a lead storage battery, a nickel metal hydride battery, and a lithium ion battery can be used.
  • the battery BB includes the battery BB 1 and the battery BB 2.
  • a battery in which these are combined may be used.
  • Vehicle 100 further includes system main relays SMR 1 A, SMR 2 A, SMR 3 A, SMR 1 B, SMR 2 B, and SMR 3 B.
  • System main relays S MR 1A to SMR 3A, S MR 1 B to S MR 3 B are connected according to the control signals CT 1 A to CT 3 A and CT 1 B to CT 3 B supplied from the control unit 30, respectively.
  • State (ON state) Z disconnected state (OFF state) is controlled.
  • the system main relay SMR 2 A is connected between the positive electrode of the battery BA and the power line PL 1 A.
  • System main relay SMR 3 A is negative of battery BA Connected between pole and ground line SL.
  • System main relay SMR 1 A is connected in series with limiting resistor R 1 A.
  • System main relay SMR 1 A and limiting resistor R 1 A are connected in parallel with system main relay SMR 2 A between the positive electrode of battery BA and power supply line PL 1 A.
  • System main relay SMR2B is connected between the positive electrode of battery BB and power supply line PL 1 B.
  • System main relay SMR 3 B is connected between the negative electrode of battery BB and ground line S L.
  • System main relay SMR 1 B is connected in series with limiting resistor R 1 B.
  • System main relay SMR 1 B and limiting resistor R 1 B are connected in parallel with system main relay S MR 2 B between the positive electrode of battery BB and power line PL 1 B.
  • Smoothing capacitor C 1 A smoothes the voltage across battery B A when system main relays SMR 1 A to SMR 3 A are on.
  • the smoothing capacitor C 1 A is connected between the power line P L 1 A and the ground line S L.
  • the voltage sensor 21 A detects the voltage VL A across the smoothing capacitor C 1 A and outputs it to the control device 30.
  • Boost converter 12A boosts the voltage across terminals of smoothing capacitor C 1 A.
  • the voltage sensor 21 B detects the voltage VLB across the smoothing capacitor C 1 B and outputs it to the control device 30.
  • the boost comparator 1 2 B boosts the voltage across the terminals of the smoothing capacitor C 1 B.
  • Smoothing capacitor C2 smoothes the voltage boosted by boost converters 12A and 12B.
  • the voltage sensor 13 detects the voltage VH that is the voltage across the terminals of the smoothing capacitor C 2 and outputs it to the control device 30.
  • Vehicle 100 further includes a discharge resistor R 2 connected in parallel with smoothing capacitor C 2 between power supply line P L 2 and ground line S L. After the power conversion operation by the vehicle 100 is stopped, the residual charge of the smoothing capacitor C2 is consumed by the discharge resistor R2.
  • Load circuit 23 includes inverters 14 and 22.
  • Inverter 14 converts the DC voltage supplied from boost converters 12A and 12B into a three-phase AC and outputs the same to motor generator MG1.
  • the load circuit 23 corresponds to the “load” in the present invention.
  • Power split mechanism 3 is a mechanism that is coupled to engine 4 and motor generators MG 1 and MG 2 and distributes the power between them.
  • a planetary gear mechanism having three rotating shafts of a sun gear, a planetary carrier, and a ring gear can be used as the power split mechanism. These three rotating shafts are connected to the rotating shafts of engine 4 and motor generators MG1 and MG2, respectively.
  • the rotating shaft of motor generator MG 2 is coupled to wheel 2 by a reduction gear and a differential gear (not shown). Further, a reduction gear for the rotating shaft of motor generator MG 2 may be further incorporated in power split mechanism 3. Further, the reduction gear ratio of this reduction gear may be configured to be switchable.
  • Boost converter 12 A includes a reactor L 1 A having one end connected to power line PL 1 A, and an IG 8-element 01 connected in series between power line PL 2 and ground line SL. Includes Q2A and diodes D 1A and D 2 A connected in parallel to 108 elements ⁇ 31 8 and Q 2 A, respectively.
  • the other end of the reactor 1 A is connected to the emitter of the I 08 element 01 A and the collector of the I GBT element Q 2 A.
  • the cathode of diode D 1 A is connected to the collector of I GBT element Q 1 A, and the anode of diode D 1 A is connected to the emitter of I 08 element ⁇ 31 A.
  • the cathode of diode D 2 A is connected to the collector of I GBT element Q 2 A, and the anode of diode D 2 A is connected to the emitter of I 08 element 02.
  • Step-up converter 12 B includes a reactor L 1 B whose one end is connected to power line PL 1 B, and an IG 8-element (318, 318) connected in series between power line PL 2 and ground line SL.
  • Q2B and 108 elements (318, including diodes DIB and D2B connected in parallel to Q 2 B, respectively).
  • the other end of the reactor 1 B is connected to the emitter of the I GBT element Q 1 B and the collector of the I GBT element Q 2 B.
  • the power sword of diode D 1 B is connected to the collector of I GBT element Q 1 B, and the anode of diode D 1 B is connected to the emitter of I GBT element Q 1 B.
  • the cathode of diode D 2 B is connected to the collector of I & 8 element (32 B collector, and the anode of diode D 2 B is connected to the emitter of I08 element 028.
  • Inverter 14 receives the boosted voltage from boost converters 12 A and 12 B, and drives motor generator MG 1 to start engine 4, for example.
  • Inverter 14 returns the electric power generated by motor generator MG 1 to the boost converter 1 2 A or 1 2 B by the power transmitted from engine 4. At this time, step-up converter 12 A or 12 B is controlled by control device 30 so as to operate as a step-down circuit.
  • Inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between power line PL 2 and ground line S L.
  • U-phase arm 15 includes I GBT elements Q3 and Q4 connected in series between power line PL 2 and ground line SL, and diodes D 3 and D4 connected in parallel with 108 elements 03 and Q 4, respectively. including.
  • the power sword of the diode D3 is connected to the collector of the I GBT element Q3, and the anode of the diode D3 is connected to the emitter of the I0-element 03.
  • the cathode of diode D 4 is connected to the collector of I 08 element 04 and the anode of diode D 4 is connected to the emitter of I GBT element Q 4.
  • V-phase arm 16 consists of I GBT elements Q5 and Q6 connected in series between power line PL 2 and ground line SL, and diodes D 5 and D connected in parallel with 10 elements ⁇ 35 and Q 6 respectively. Including 6.
  • the power sword of diode D 5 is connected to the collector of I GBT element Q 5, and the anode of diode D 5 is connected to the emitter of I GBT element Q 5.
  • the power sword of the diode D 6 is connected to the collector of the I GBT element Q 6, and the anode of the diode D 6 is connected to the emitter of the I GBT element Q 6.
  • W-phase arm 1 7 consists of I GBT elements Q 7 and Q 8 connected in series between power line PL 2 and ground line SL 1.
  • Diode D connected in parallel with 8-elements 07 and Q 8 respectively 7, including D 8.
  • the power sword of diode D 7 is connected to the collector of I GBT element Q 7, and the anode of diode D 7 is connected to the emitter of I GBT element Q 7.
  • the power sword of diode D8 is connected to the collector of I GBT element Q8, and the anode of diode D8 is connected to the emitter of I GBT element Q8. It is.
  • each phase arm is connected to one end of each phase coil of motor generator MG1. That is, the motor generator MG 1 is a three-phase permanent magnet synchronous motor, and one end of each of the three coils of the U, V, and W phases is connected to the midpoint.
  • the other end of the U-phase coil is connected to the connection node of IGBT elements Q3 and Q4.
  • the other end of the V-phase coil is connected to the connection node of IGBT elements Q5 and Q6.
  • the other end of the W-phase coil is connected to the connection node of IGBT elements Q7 and Q8.
  • power switching elements such as power MOS FETs may be used in place of the above I GB T elements Q 1 A, Q 2 A, Q 1 B, Q 2 B, and Q3 to Q8.
  • Inverter 22 detects the current flowing through motor generator MG 1 as motor current value M CRT 1, and outputs motor current value MCRT 1 to control device 30.
  • the inverter 22 is connected to the power supply line P L 2 and the ground line S L.
  • Inverter 22 converts the DC voltage output from step-up converters 12A and 12B into a three-phase AC and outputs it to motor generator MG2 that drives wheel 2.
  • Inverter 22 returns the electric power generated in motor generator MG 2 to boost converters 12 A and 12 B in accordance with regenerative braking.
  • boost converters 12 A and 12B are controlled by control device 30 so as to operate as a step-down circuit.
  • the internal configuration of inverter 22 is not shown, it is the same as inverter 14, and detailed description will not be repeated.
  • Control device 30 has torque command values TR 1 and TR2, motor rotation speed MRN 1 and MR N2, voltages VLA, VLB, VB A, VBB, VH, current values detected by current sensor 1 1, and motor current values. MCRT 1, MCRT 2 and start command I GON are received. Then, control device 30 outputs control signals PWCA and PWCB for instructing step-up instruction, step-down instruction and operation prohibition to step-up converters 12 A and 12B.
  • control device 30 outputs drive instruction PWMI 1 and regeneration instruction PWMC 1 to inverter 14.
  • Drive instruction PWMI 1 is the AC voltage for driving motor generator MG 1 using the DC voltage output from boost converters 12 A and 12 B. This is an instruction to convert the voltage.
  • Regenerative instruction PWMC 1 is an instruction for converting the AC voltage generated by motor generator MG 1 into a DC voltage and returning it to boost converters 12 A and 12 B.
  • control device 30 outputs drive instruction PWMI 2 and regeneration instruction PWMC 2 to inverter 22.
  • Drive instruction PWMI 2 is an instruction to convert a DC voltage into an AC voltage for driving motor generator MG 2.
  • the regeneration instruction PWMC 2 is an instruction for converting the AC voltage generated by the motor generator MG 2 into a DC voltage and returning it to the boost converters 12A and 12B.
  • Vehicle 100 further includes a charge / discharge unit 40.
  • the charge / discharge unit 40 includes a conversion circuit 41 and terminals T 1 and ⁇ 2.
  • AC power supply 45 is connected to terminals T l and ⁇ 2, and AC voltage of 100V AC (or 200V AC) is applied between terminals ⁇ 1 and ⁇ 2. It is done.
  • the conversion circuit 41 converts the AC voltage between the terminals T 1 and T 2 into a DC voltage.
  • the DC voltage output from conversion circuit 41 is applied between power supply line PL 1 A and ground line S L.
  • the conversion circuit 41 is constituted by, for example, a rectifier circuit using a diode or an inverter circuit.
  • the conversion circuit 41 is a rectifier circuit using a diode. Accordingly, in the following description, the conversion circuit 41 is referred to as “rectifier element 41”.
  • the storage capacity of battery BB is larger than the storage capacity of battery B A.
  • the charge / discharge unit 40 is connected to the boost converter (boost converter i 2A) corresponding to the battery BA, BB having the smaller storage capacity.
  • a power supply device charged by an external power supply includes chargeable / dischargeable batteries BA, BB, a load circuit 23, and a battery BA.
  • Boost converter 1 2 A that converts voltage between connected node N1 and node N2 to which load circuit 23 is connected, and voltage between node N 3 and node N 2 to which battery BB is connected
  • boost converter 1 2 B for conversion and a charge / discharge unit 40 for transmitting power received from an external power source to the node N 1 are provided.
  • the power supply unit is a system that can cut off the connection between battery BA and node N1.
  • Stem main relay SMR 2 A, system main relay SMR 2 B, system main relay SMR 2 A, S MR 2 B and boost converter 1 that can cut off connection between battery BB and node N 3
  • a control device 30 for controlling 2 A and 12 B is further provided.
  • the control device 30 sets the system main relays SMR 2 A and SMR 2 B to the disconnected state and the connected state, respectively, and sets the system main relay SMR 2 so that the voltage at the node N 3 becomes a desired charging voltage. Controls A and SMR 2 B to charge battery BB.
  • the external power source is an AC power source.
  • the charge / discharge unit 40 includes a conversion circuit 41 that converts an AC voltage output from the AC power supply 45 into a DC voltage.
  • a load 46 can be connected to the terminals T 1 and T 2 of the charge / discharge unit 40 in place of the AC power supply 45.
  • the control device 30 sets at least one of the system main relays SMR 2 A and SMR 2 B to a connected state, and sets at least one system main relay (connected system main relay) of the batteries BA and BB. ) Supply power from the battery corresponding to to load 46.
  • load 46 is a home appliance.
  • FIG. 2 is a functional block diagram of the control device 30 of FIG.
  • the control device 30 can be realized by software or hardware.
  • control device 30 includes a boost converter control unit 131 that controls boost converters 12 A and 12 B, an MG 1 inverter control unit 132 that controls motor generator MG 1, and a motor.
  • Inverter control unit for MG 2 that controls generator MG 2 and relay control unit that controls system main relays SMR 1A, SMR 2 A, SMR 3 A, SMR 1 B, SMR 2 B, SMR 3 B 13 4 and including.
  • boost converter control unit 131 In response to the start instruction I GON, boost converter control unit 131 becomes operable.
  • Step-up converter controller 1 31 outputs control signals PWCA and PWCB for instructing step-up and step-down instructions to step-up converters 12 A and 12 B in FIG. 1, respectively.
  • MG 1 inverter control unit 132 outputs drive instruction PW Ml 1 and regeneration instruction PWMC 1 to inverter 14 based on torque command value TR 1 and motor rotation speed MRN 1.
  • inverter control unit for MG 2 1 3 3 outputs a drive command PWMI 2 and a regeneration command PWMC 2 to the inverter 22 based on the torque command value TR 2 and the motor speed MRN 2.
  • the relay control unit 134 activates the control signals CT 1 A to 3 A and CT 1 B to 3 B in response to the start instruction IG ON to turn on the system main relay, and the batteries BA and BB are respectively connected to the boost converter. 1 Connect electrically to 2 A and 12 B.
  • FIG. 3 is a diagram schematically illustrating a state when battery BB is charged in vehicle 100 in FIG.
  • system main relays SMR 2 B and SMR 3 B are turned on in response to control signals CT 2 B and CT 3 B from control device 30, respectively.
  • the AC voltage from the AC power supply 45 is converted into a DC voltage by the rectifying element 41.
  • the output voltage of the rectifying element 41 is given to the boost converter 12 A.
  • Control device 30 sends control signal PWC A to boost converter 12 A to operate boost converter 12 A.
  • boost converter 12A boosts the input voltage to the charging voltage of battery BB.
  • boost converter 12A The output voltage of boost converter 12A is applied to boost converter 12B.
  • Controller 30 sends control signal PWCB to boost converter 1 2 B, I.
  • the 8 elements 01 B and Q 2 B are turned on and off, respectively.
  • boost converter 1 2 B outputs an output voltage substantially equal to the input voltage.
  • FIG. 4 is a flowchart showing the charging process of battery BB executed by control device 30. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • control device 30 determines whether there is power supply from AC power supply 45 or not. For example, when the AC power supply 45 is connected to the terminals T 1 and T 2 or the user instructs charging by operating the switch, the control device 30 determines that the power is supplied. If power is supplied from AC power supply 45 (YES in step S1), the process proceeds to step S2, otherwise (NO in step S1), the process returns to step S1.
  • step S2 the control device 30 determines whether or not the voltage VBB is smaller than the voltage VLA based on the outputs of the voltage sensors 10B and 21A. If voltage VBB is smaller than voltage VLA (YES in step S2), the process proceeds to step S3. On the other hand, when voltage VBB is equal to or higher than voltage VLA (NO in step S2), the process proceeds to step S5.
  • control device 30 operates boost converters 12A and 12B.
  • Boost converter 1 2 A boosts the input voltage to the charging voltage of battery BB.
  • I GBT elements Q 1 B and Q 2 B are turned on and off, respectively.
  • V BB of battery BB is output from boost converter 12 B.
  • control device 30 turns on system main relays SMR 2 B and SMR 3 B.
  • the positive electrode and the negative electrode of battery BB are connected to power supply line PL 1 B (ie, node N 3) and ground line S L, respectively.
  • control device 30 may turn on system main relays SMR 2 B and SMR 3 B at the same time, or may turn on system main relays SMR 3 B and SMR 2 B in this order.
  • step S4 the system main relay can be controlled as follows. First, the control device 30 turns on the system main relays SMR 1 B and SMR 3 B. Then, after a predetermined time has elapsed, system main relay SMR 2 B is turned on, and system main relay SMR 1 B is turned off.
  • step S5 control device 30 executes the same process as the process of step S4 to turn on system main relays SMR 2 B and SMR 3 B.
  • control device 30 operates boost converters 12A and 12B.
  • the control 1 device 30 first turns on and off the IG 8-cutter elements 01 8 and Q 2 A of the boost converter 12 A, respectively.
  • the output voltage of the charge / discharge unit 40 is applied to the node N 1 (step-up converter 12 A).
  • Control device 30 operates boost converter 12 B as a step-down circuit. As a result, the output voltage of boost converter 12 B can be made substantially equal to voltage 88 of battery 88.
  • step S7 the control device 30 detects the voltage VBB detected by the voltage sensor 10B and the current value of the battery BB detected by the current sensor (not shown in FIG. 1). Based on the above, it is determined whether or not the SOC (State of Charge) of the battery BB has reached a predetermined value (for example, 80%). If the SOC of battery BB reaches the specified value (YES in step S7), the process proceeds to step S8. Otherwise (NO in step S7), the process of step S7 is repeated. Executed.
  • SOC State of Charge
  • control device 30 turns off system main relays SMR 2 B and SMR 3 B.
  • Control device 30 may turn off system main relays SMR 2 B and SMR 3 B at the same time, or may turn off system main relays SMR 2 B and SMR 3 B in this order.
  • the vehicle includes a power supply system that uses a plurality of batteries and a boost converter that boosts the battery voltage corresponding to each battery in order to drive the motor generator.
  • a power supply system that uses a plurality of batteries and a boost converter that boosts the battery voltage corresponding to each battery in order to drive the motor generator.
  • a plurality of batteries having different battery characteristics (for example, storage capacity or output voltage) can be connected.
  • the boost converter can be used to charge the battery. Therefore, it is bothersome to incorporate a transformer (or booster circuit). There is no need to prepare electronic units.
  • an external AC voltage is input between neutral points of motor generators MG 1 and MG 2, and control device 30 is connected to load circuit 23 and boost converter 1. 2
  • a method of charging battery BB by controlling B can be considered. In this case, however, even a very small amount of power is lost in the coils of the motor generators MG 1 and MG 2.
  • the voltage applied to battery BB is The voltage may be lower than that required for charging. In this case, a booster circuit that boosts the voltage from the AC power supply is required.
  • the power supply device since the power supply device is not connected to the neutral point of motor generators MG 1 and MG 2, it is possible to prevent loss in motor generators MG 1 and MG 2 when charging the battery. it can. Thereby, according to the present embodiment, it is possible to obtain high charging efficiency.
  • the voltage from the external power source is boosted by boost converter 12 A, so that the voltage necessary for charging battery BB can be obtained even when the voltage from the external power source is low. It becomes possible.
  • the present embodiment it is not necessary to mount a circuit for controlling the charging / discharging current (voltage) in the charging / discharging unit. No need to install. Therefore, the number of parts of the charging device can be reduced and the fuel efficiency of the vehicle can be improved.
  • FIG. 5 is a diagram showing a modification of the first embodiment.
  • DC power supply 45 A is used as an external power supply.
  • Various types of DC power supply 4 5 A can be used, such as lead-acid batteries and solar cells.
  • the magnitude of the output voltage of the DC power supply 45 A is not particularly limited (the magnitude of the output voltage may be, for example, DC12V).
  • the charge / discharge unit transmits the DC voltage from DC power supply 45 A to node N 1. This eliminates the need for the rectifier element 41 and The number of parts can be reduced.
  • the second embodiment external power reception (and power supply to the outside) is enabled for each of the plurality of batteries.
  • the main configuration of vehicle 100 of the second embodiment is the same as the configuration of vehicle 100 shown in FIG. Therefore, the second embodiment will be described below using the same diagram as FIG. 3, that is, a diagram in which the configuration of the vehicle 100 is simplified. In the following, a case where a plurality of batteries are charged will be described, but the same processing is performed when power is taken out from a plurality of batteries.
  • FIG. 6 is a simplified diagram showing a method for charging both of a plurality of batteries B A and B B in the power supply device of the second embodiment.
  • connection destination of charge / discharge unit 40 can be selected between node N 1 and sword N 3. Therefore, in Embodiment 2, the connection destination of charge / discharge unit 40 can be changed from node N 1 to node N 3.
  • charge / discharge unit 40 is first connected between node N 1 and ground line S to charge battery BB.
  • the charge / discharge unit 40 is connected between the node N 3 and the ground line S L to charge the battery B A.
  • control device 30 sends control signals CT 2 A and CT 3 A to system main relays SMR 2 A and S MR 3 A, respectively, and system main relay S MR 2 A, Turn on S MR 3 A.
  • control device 30 operates boost converter 12 B.
  • boost converter 12 B boosts the output voltage from charging / discharging unit 40 to the charging voltage of battery B A.
  • controller 30 controls boost converter 12 A to turn on and off 108 elements 0 18 and Q 2 A, respectively. Thereby, the electric power of AC power supply 45 is transmitted to battery B A, and battery B A is charged.
  • the boost converters 1 2 A and 1 2 B even when the externally applied voltage is different from the charging voltage of each of the plurality of batteries (especially when it is lower than the charging voltage), by operating the boost converters 1 2 A and 1 2 B, All the batteries can be charged.
  • FIG. 7 is a diagram showing a modification of the second embodiment.
  • the modification of the second embodiment is controlled by control device 30 to connect one of the two output lines of charge / discharge unit 40 to nodes N 1, N 6 is different from the configuration shown in FIG. 6 in that it further includes a switch SW for selecting from among the three.
  • the switch SW is controlled by a control signal SWC from the control device 30.
  • the other output line of the charge / discharge unit 40 is connected to the ground line SL.
  • control device 30 sets system main relay SMR 2 B (SMR3B) to the connected state and controls boost converters 12A and 1 2 B. Then set the voltage at node N 3 to the desired charge voltage. Thereby, battery BB is charged. This charging process is the same as in the first embodiment.
  • the control device 30 sets the system main relay SMR 2 A (SMR 3 A) to the connection state when the output line is connected to the node N 3.
  • the boost converters 12 A and 12 B are controlled to set the voltage at the node N 1 to a desired charging voltage. As a result, the battery B A is charged.
  • FIG. 8 is a flowchart showing a charging process of the batteries BA and BB executed by the control device 30 shown in FIG.
  • the processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • control device 30 determines whether or not power is supplied from AC power supply 45 in step S 11.
  • the process in step S 11 is the same as the process in step S 1 shown in FIG.
  • step S I 1 If power is supplied from AC power supply 45 (YES in step S I 1), the process proceeds to step S 12, and if not (NO in step S I 1), the process returns to step S 11.
  • step S12 the control device 30 sends a control signal SWC to the switch SW.
  • the switch SW is connected to the battery B A side. That is, the two output lines of the charge / discharge unit 40 are connected between the node N 1 and the ground line SL.
  • step S13 control device 30 charges battery BB.
  • the battery BB charging process is the same as the process in steps S2 to S8 shown in FIG.
  • step S14 the control device 30 switches the connection destination of the switch SW.
  • the two output lines of the charge / discharge unit 40 are connected between the node N 3 and the ground line SL.
  • step S 15 control device 30 performs the same processing as in charging battery BB (the same processing as the processing in steps S 2 to S 8 shown in FIG. 4) to charge battery BA.
  • the control device 30 sends control signals 2 and CT3A to the system main relay SMR2A and 3 respectively, and the system main relay SMR2 Turn on A and 3 A.
  • control device 30 operates boost converter 12 B to boost the voltage (output voltage from charge / discharge unit 40) input to boost converter 12 B.
  • controller 30 controls boost converter 12 A to turn on and off 108 elements 0 18 and Q 2 A, respectively.
  • Boost converter 1 2 A outputs the input voltage almost as it is. As a result, the battery B A is charged.
  • the control device 30 turns off the system main relay system main relay SMR 2 A, 3 A and finishes charging the battery BA.
  • step S 15 When the process of step S 15 is completed, the entire process ends.
  • the control device 30 switches the connection destination of the charging / discharging unit 40, so that it is possible to charge a plurality of batteries while reducing the time required for the user to charge.
  • the configuration of the power supply device shown in FIG. 3 when the output voltage of the charge / discharge unit 40 is lower than the charge voltage of the battery B A, the battery B A cannot be charged.
  • a plurality of batteries can be charged even in such a case.
  • a plurality of batteries are charged without using the switch SW.
  • the configuration of the main part of the vehicle in this example is the same as the configuration shown in FIG.
  • control device 30 first charges battery BB according to the flowchart shown in FIG.
  • the predetermined value in step S7 is set to be larger (for example, 85%) than the target value (for example, 80%) when charging of both batteries B B and B A is completed.
  • control device 30 After charging of battery BB is completed, control device 30 sets system main relay SMR 2 A to a connected state and controls boost converters 1 2 A and 1 2 B to control Power stored in battery BB is supplied to battery BA.
  • battery BB has a larger storage capacity than battery BA, if a predetermined value is set slightly higher than the target value, sufficient power is supplied from battery BB to battery BA to set the SOC of battery BA to the target value. be able to.
  • both the batteries BA and BB can be set to a predetermined charged state by supplying power from the battery BB to the battery B A without the switch SW of FIG.
  • the battery BB is charged by the electric power from the external power source, and the battery BA is not charged from the external power source. Therefore, the capacity that can be charged from the external power source can be increased as the entire power circuit.
  • FIG. 9 is a diagram illustrating a main configuration of the vehicle 10 OA of the third embodiment.
  • vehicle 10 OA is different from vehicle 100 in that it includes a charging / discharging unit 50 instead of charging / discharging unit 40.
  • the charging / discharging unit 50 includes an output line L 1 connected to the power supply line P L 1 B and an output line L 2 connected to the negative electrode of the battery BB.
  • Charging / discharging unit 50 includes terminals T 1 and T2 connected to power supply device 52.
  • the power supply 52 may be a DC power supply or an AC power supply.
  • the charge / discharge unit 50 includes a booster circuit. Further, a voltage equal to the charging voltage of battery BB may be input to charging / discharging unit 50. For this reason, the output voltage of the power supply device 52 is not particularly limited.
  • FIG. 10 is a diagram schematically showing a state when battery BB is charged in vehicle 10 OA in FIG.
  • control device 30 sends control signal CT 2 B to system main relay SMR 2 B, and turns on system main relay SMR 2 B.
  • the voltage from the power supply device 52 is converted into the charging voltage of the battery BB by the charging / discharging unit 50. Thereby, battery BB is charged.
  • the system main relay SMR 2 A is off.
  • the control device 30 has a system main relay. Set SMR 2 B and S MR 2 A to the connected and disconnected states, respectively, and charge battery BB.
  • FIG. 11 is a flowchart showing the charging process of the battery BB executed by the control device 30. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • step S21 control device 30 determines whether or not power is supplied from an external power source.
  • the process of step S 21 is the same as the process of step S 1 in FIG.
  • step S21 If power is supplied from an external power source (YES in step S21), the process proceeds to step S22. If not (NO in step S21), the process returns to step S21.
  • control device 30 turns on system main relay SMR 2 B.
  • Control device 30 may turn on system main relay SMR 1 B, turn on system main relay SMR 2 B after a predetermined time has elapsed, and turn off system main relay SMR 1 B.
  • battery BB is charged.
  • step S23 control device 30 determines whether or not SOC of battery BB has reached a predetermined value. If SOC of battery BB reaches the predetermined value (YES in step S23), the process proceeds to step S24. Otherwise (NO in step S23), the process of step S23 is repeatedly executed. Is done. In step S 24, control device 30 turns off system main relay SMR 2 B. When the process of step S24 ends, the entire process ends.
  • battery BB can be charged without going through boost converters 12A and 12B.
  • the boost converters 1 2 A and 1 2 B are operated, so even a slight power loss when the I GBT element is on or power loss due to switching of the I GBT element. Occurs.
  • control device 30 can charge battery BB only by controlling system main relay SMR 2 B. Therefore, the processing of the control device 30 can be simplified.
  • the charge / discharge unit 50 is connected to the battery BA, BB having a larger storage capacity (that is, the battery BB). Therefore, it is possible to charge battery B A using the power charged in battery BB.
  • control device 30 When charging battery B A, control device 30 sends control signals PWCA and PWCB to boost converters 12 A and 12 B, respectively. As a result, the I GBT elements Q 1 A and Q 1 B are turned on. In this case, although a loss occurs in 108 elements 018 and Q 1 B, since the charging time of battery B A is short, the power supply circuit as a whole can reduce the loss.
  • the charging / discharging unit 50 may be configured so that the connection destination of the output line L 1 of the charging / discharging unit 50 can be changed from the node N 1 to the node N 3. This method can charge both batteries BA and BB.
  • FIG. 12 is a diagram showing a first modification of the third embodiment.
  • switch SW1 that selects the connection destination of output line L1 of charge / discharge unit 50 from the positive electrode of battery BA and the positive electrode of battery BB is provided.
  • the control device 30 sends a control signal SW1 C to the switch SW1 to control the switch SW1.
  • the control device 30 can charge both the batteries BA and BB by controlling the switch SW1 instead of controlling the system main relay. Therefore, according to this modification, both the batteries BA and BB can be charged without significantly increasing the processing load of the control device 30.
  • FIG. 13 is a flowchart illustrating a charging process of control device 30 shown in FIG. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • control device 30 determines whether or not power is supplied from power supply device 52 in step S31.
  • Step S31 is the same as the process of step S1 in FIG.
  • step S31 If power is supplied from power supply device 52 (YES in step S31), the process proceeds to step S32; otherwise (NO in step S31), the process returns to step S31.
  • control device 30 connects switch SW1 to the battery BB side. Thereby, battery BB is charged.
  • step S33 control device 30 determines whether or not the SOC of battery BB has reached a predetermined value. If the SOC of battery BB reaches a predetermined value (YES in step S33), the process proceeds to step S34. If not (NO in step S33), the process of step S33 is repeatedly executed. The In step S34, control device 30 switches the connection destination of switch SW1 to battery B A side.
  • step S35 the control device 30 sends control signals CT3A and CT3B to the system main relays SMR3A and 3B, respectively, and turns on these system main relays. As a result, the battery B A is charged.
  • step S36 control device 30 determines whether or not the SOC of battery B A has reached a predetermined value. If SOC of battery B A has not reached the predetermined value (NO in step S36), the process of step S36 is repeated. If the SOC of battery BA reaches a predetermined value (YES in step S36), the process proceeds to step S37.
  • step S37 the control device 30 sends control signals CT 3 A and CT3 B to the system main relays SMR 3 A and SMR 3 B, respectively, and turns off these system main relays.
  • the process of step S37 ends the entire process ends.
  • the control device 30 switches the connection destination of the charging / discharging unit 50, so that it is possible to charge a plurality of batteries while reducing the time required for the user to charge.
  • FIG. 14 is a diagram illustrating a second modification of the third embodiment.
  • switch SW2 is provided instead of switch SW1 included in the first modification.
  • Switch SW2 includes switches SW2A and SW2B.
  • the switch SW2A is a switch for selecting connection or disconnection between the output line L1 of the charge / discharge unit 50 and the positive electrode of the battery BA.
  • Switch SW2B is a switch for selecting connection or disconnection between output line L1 of charge / discharge unit 50 and the positive electrode of battery BB.
  • the control device 30 sends a control signal SW2C to the switch SW2 to control each of the switches SW2 A and SW2 B.
  • the control device 30 can independently control the switches SW2 A and SW 2 B. Therefore, the switch SW2 can be used to switch whether the output line L1 of the charge / discharge unit 50 is connected to the positive electrodes of both the batteries BA and BB.
  • FIG. 15 is a flowchart illustrating a charging process of control device 30 shown in FIG. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.
  • control device 30 determines whether or not power is supplied from power supply device 52 in step S41.
  • the process of step S41 is the same as the process of step S1 in FIG.
  • step S41 If power is supplied from power supply device 52 (YES in step S41), the process proceeds to step S42; otherwise (NO in step S41), the process returns to step S41.
  • step S42 the control device 30 turns on the system main relay. That is, the control device 30 sends control signals CT 3A and CT 3B to the system main relays SMR 3 A and SMR 3 B, respectively, and turns on these system main relays.
  • control device 30 sends control signal SW 2 C to switch SW 2 and turns on both switches SW 2 A and SW 2 B to charge batteries BA and B B.
  • step S44 control device 30 determines whether or not the SOC of battery BA has reached a predetermined value. If the SOC of battery BA reaches a predetermined value (YES in step S44), the process proceeds to step S45. Otherwise (NO in step S44), the process of step S44 is repeatedly executed.
  • control device 30 turns off switch SW 2 A (and system main relay SMR 3 A on the battery B A side), and ends charging of battery B A.
  • step S46 control device 30 determines whether or not the SOC of battery BB has reached a predetermined value. If the SOC of battery BB reaches the predetermined value (YES in step S46), the process proceeds to step S47, and if not (NO in step S46), the process of step S46 is repeatedly executed.
  • step S 47 control device 30 turns off system main relay SMR 3 B on the side of switch SW 2 B and battery B B. This ends the charging of battery BB.
  • the entire process ends.
  • switches SW2A and SW2B are provided corresponding to the batteries BA and BB, respectively, and the control device 30 controls the switches SW2 A and SW2B independently, so that the battery BA is charged before the battery BB is charged. Can be charged. Thereby, overcharging of the battery BA can be prevented.
  • control device 30 may simultaneously turn off the switches SW2 A and SW2 B to end the charging of the batteries BA and BB simultaneously.

Description

明細書 電源装置、 および電源装置を備える車両 技術分野
この発明は、 電源装置、 および電源装置を備える車両に関する。
背景技術
近年、 電気自動車、 燃料電池自動車、 および、 モータとエンジンとを併用する ハイプリッド自動車等の環境にやさしい車両が注目されている。 このような電源、 装置を搭載する車両において、 複数のバッテリを搭載することも検討されている。 このような車両を検討するに際しては、 複数のバッテリへの充電方法も検討す る必要がある。 複数のバッテリへの充電方法に関しては、 従来から様々な技術が 提案されている。
たとえば、 特開平 9一 2 3 3 7 1 0号公報は、 複数の蓄電池を個別に充電およ び放電させることが可能な充放電装置を開示する。 この充放電装置は、 交流電源 を整流する充電用整流回路と、 充電用整流回路に逆並列に接続されて、 複数個に 分割された蓄電池の電気量を交流電源に回生する回生用整流回路と、 複数個の蓄 電池にそれぞれ対応して設けられる複数の昇降圧コンバータとを備える。 複数の 昇降圧コンバータの各々は、 蓄電池の充電時には降圧コンバータとして用いられ、 蓄電池の放電時には昇圧コンバータとして用いられる。
特開平 9— 2 3 3 7 1 0号公報に記載された充放電装置の場合、 充電用整流回 路の出力電圧を蓄電池の端子間電圧よりも高くしなければ、 蓄電池を充電するこ とが困難になる。 この問題を解決するためには、 たとえば高い電圧を出力可能な 電源装置を用いたり、 交流電源と充電用整流回路との間に昇圧回路を設けたりす る必要がある。
上記文献に記載の技術を用いて車両に搭載.される複数個の蓄電池を充電する場 合には、 たとえば高圧電源を用いたり、 家庭用の商用電源と蓄電池との間に昇圧 回路を接続したりすることが考えられる。 しカゝしながら、 これらの方法によれば、 たとえば専用の充電装置を用意する必要がある。 よって車両の部品点数が増えて しまう。 また、 充電装置の接続作業が生じるため、 利用者の負担が増すことも想 定される。
発明の開示
本発明の目的は、 外部からの充電を容易に実行可能にする電源装置、 および、 その電源装置を備える車両を提供することである。
本発明は要約すれば、 外部電源により充電される電源装置であって、 充放電可 能であり、 力つ第 1のノードに接続される第 1の蓄電装置と、 第 2のノードに接 続される負荷と、 第 1のノードと第 2のノードとの間で電圧を変換する第 1の電 圧変換部と、 充放電可能であり、 かつ第 3のノードに接続される第 2の蓄電装置 と、 第 3のノードと第 2のノードとの間で電圧を変換する第 2の電圧変換部と、 外部電源から受ける電力を第 1のノードに伝達する電力伝達部とを備える。
好ましくは、 電源装置は、 第 1の蓄電装置と第 1のノードとの接続を遮断可能 な第 1の接続部と、 第 2の蓄電装置と第 3のノードとの接続を遮断可能な第 2の 接続部と、 第 1および第 2の接続部と、 第 1および第 2の電圧変換部とを制御す る制御部とをさらに備える。 制御部は、 第 1および第 2の接続部を遮断状態およ び接続状態にそれぞれ設定し、 かつ、 第 3のノードの電圧が所望の充電電圧とな るように第 1および第 2の電圧変換部を制御して、 第 2の蓄電装置を充電する。 より好ましくは、 外部電源は、 直流電源である。 電力伝達部は、 直流電源から の直流電圧を第 1のノードに伝達する。
より好ましくは、 外部電源は、 交流電源である。 電力伝達部は、 交流電源から 出力される交流電圧を直流電圧に変換する変換回路を含む。
より好ましくは、 電力伝達部は、 第 1および第 3のノードの中から接続先を選 択可能である。 制御部は、 電力伝達部が第 3のノードに接続されている場合には、 第 1および第 2の接続部を接続状態および遮断状態にそれぞれ設定し、 かつ、 第 1のノードの電圧が所望の充電電圧となるように第 1および第 2の電圧変換部を 制御して、 第 1の蓄電装置を充電する。
さらに好ましくは、 電源装置は、 制御部により制御されて、 電力伝達部の接続 先を第 1および第 3のノードの間で切換える切換部をさらに備える。
より好ましくは、 第 1の蓄電装置の蓄電容量は、 第 2の蓄電装置の蓄電容量よ りも小さい。
さらに好ましくは、 制御部は、 第 2の蓄電装置の充電終了後に、 第 1の接続部 を接続状態にするとともに第 1および第 2の電圧変換部を制御して、 第 2の蓄電 装置に蓄えられた電力を第 1の蓄電装置に供給することにより、 第 1の蓄電装置 を充電する。
より好ましくは、 制御部は、 第 1および第 2の接続部を接続状態および遮断状 態にそれぞれ設定して、 第 1の蓄電装置を充電する。
さらに好ましくは、 第 1の蓄電装置の蓄電容量は、 第 2の蓄電装置の蓄電容量 よりも大きレヽ。
さらに好ましくは、 第 1および第 2の蓄電装置の各々は、 正極および負極を有 する。 第 1の接続部は、 第 1の蓄電装置の正極を第 1のノードに接続する。 第 2 の接続部は、 第 2の蓄電装置の正極を第 3のノードに接続する。 電源装置は、 接 地線と、 接地線と第 1の蓄電装置の負極とを接続する第 3の接続部と、 接地線と 第 2の蓄電装置の負極とを接続する第 4の接続部とをさらに備える。 電力伝達部 は、 第 1のノードに接続される第 1の出力線と、 第 1の蓄電装置の負極に接続さ れる第 2の出力線とを含む。
より好ましくは、 電力伝達部には、 外部電源に代えて、 第 1および第 2の蓄電 装置の少なくとも一方からの電力を使用する外部負荷が接続される。 制御部は、 第 1および第 2の接続部の少なくとも一つの接続部を接続状態に設定して、 第 1 および第 2の蓄電装置のうち少なくとも一つの接続部に対応する蓄電装置からの 電力を外部負荷に供給する。
好ましくは、 電源装置は、 電力伝達部の接続先を、 第 1および第 3のノードの 間で切換える切換部をさらに備える。
好ましくは、 第 1および第 2の蓄電装置の各々は、 正極および負極を有する。 第 1および第 2の蓄電装置の正極は、 第 1および第 3のノードにそれぞれ接続さ れる。 電力伝達部は、 第 1の出力線と、 第 1の蓄電装置の負極に接続される第 2 の出力線とを有する。 電源装置は、 第 1の出力線と第 1のノードとの間の接続お よび非接続を切換える第 1の切換部と、 第 1の出力線と第 3のノードとの間の接 続および非接続を切換える第 2の切換部と、 第 1および第 2の切換部を制御する 制御部とをさらに備える。 制御部は、 第 1および第 2の切換部をともに接続状態 に設定して、 第 1および第 2の蓄電装置を充電する。
より好ましくは、 第 1の蓄電装置の蓄電容量は、 第 2の蓄電装置の蓄電容量よ りも大きレ、。 制御部は、 第 2の蓄電装置の充電状態が所定状態に達した場合には、 第 2の切換部を非接続状態に設定して、 第 2の蓄電装置の充電を終了する。
本発明の他の局面に従うと、 車両であって、 車両の外部に設けられた外部電源 により充電される電源装置を備える。 電源装置は、 充放電可能であり、 かつ第 1 のノードに接続される第 1の蓄電装置と、 第 2のノードに接続される負荷と、 第 1のノードと第 2のノードとの間で電圧を変換する第 1の電圧変換部と、 充放電 可能であり、 かつ第 3のノードに接続される第 2の蓄電装置と、 第 3のノードと 第 2のノードとの間で電圧を変換する第 2の電圧変換部と、 外部電源から受ける 電力を第 1のノードに伝達する電力伝達部とを含む。
好ましくは、 電源装置は、 第 1の蓄電装置と第 1のノードとの接続を遮断可能 な第 1の接続部と、 第 2の蓄電装置と第 3のノードとの接続を遮断可能な第 2の 接続部と、 第 1および第 2の接続部と、 第 1および第 2の電圧変換部とを制御す る制御部とをさらに含む。 制御部は、 第 1および第 2の接続部を遮断状態および 接続状態にそれぞれ設定し、 かつ、 第 3のノードの電圧が所望の充電電圧となる ように第 1および第 2の電圧変換部を制御して、 第 2の蓄電装置を充電する。 より好ましくは、 外部電源は、 直流電源である。 電力伝達部は、 直流電源から の ή流電圧を第 1のノードに伝達する。
より好ましくは、 外部電源は、 交流電源である。 電力伝達部は、 交流電源から 出力される交流電圧を直流電圧に変換する変換回路を有する。
より好ましくは、 電力伝達部は、 第 1および第 3のノードの中から接続先を選 択可能である。 制御部は、 電力伝達部が第 3のノードに接続されている場合には、 第 1および第 2の接続部を接続状態および遮断状態にそれぞれ設定し、 かつ、 第 1のノードの電圧が所望の充電電圧となるように第 1および第 2の電圧変換部を 制御して、 第 1の蓄電装置を充電する。
さらに好ましくは、 電源装置は、 制御部により制御されて、 電力伝達部の接続 先を第 1および第 3のノードの間で切換える切換部をさらに含む。 より好ましくは、 第 1の蓄電装置の蓄電容量は、 第 2の蓄電装置の蓄電容量よ りも小さい。
さらに好ましくは、 制御部は、 第 2の蓄電装置の充電終了後に、 第 1の接続部 を接続状態にするとともに第 1および第 2の電圧変換部を制御して、 第 2の蓄電 装置に蓄えられた電力を第 1の蓄電装置に供給することにより、 第 1の蓄電装置 を充電する。
より好ましくは、 制御部は、 第 1および第 2の接続部を接続状態および遮断状 態にそれぞれ設定して、 第 1の蓄電装置を充電する。
さらに好ましくは、 第 1の蓄電装置の蓄電容量は、 第 2の蓄電装置の蓄電容量 よりも大きレヽ。
さらに好ましくは、 第 1および第 2の蓄電装置の各々は、 正極および負極を有 する。 第 1の接続部は、 第 1の蓄電装置の正極を第 1のノードに接続する。 第 2 の接続部は、 第 2の蓄電装置の正極を第 3のノードに接続する。 電源装置は、 接 地線と、 接地線と第 1の蓄電装置の負極とを接続する第 3の接続部と、 接地線と 第 2の蓄電装置の負極とを接続する第 4の接続部とをさらに含む。 電力伝達部は、 第 1のノードに接続される第 1の出力線と、 第 1の蓄電装置の負極に接続される 第 2の出力線とを有する。
より好ましくは、 電力伝達部には、 外部電源に代えて、 第 1および第 2の蓄電 装置の少なくとも一方からの電力を使用する外部負荷が接続される。 制御部は、 第 1および第 2の接続部の少なくとも一つの接続部を接続状態に設定して、 第 1 および第 2の蓄電装置のうち少なくとも一つの接続部に対応する蓄電装置からの 電力を外部負荷に供給する。
好ましくは、 電源装置は、 電力伝達部の接続先を、 第 1および第 3のノードの 間で切換える切換部をさらに含む。
好ましくは、 第 1および第 2の蓄電装置の各々は、 正極および負極を有する。 第 1および第 2の蓄電装置の正極は、 第 1および第 3のノードにそれぞれ接続さ れる。 電力伝達部は、 第 1の出力線と、 第 1の蓄電装置の負極に接続される第 2 の出力線とを有する。 電源装置は、 第 1の出力線と第 1のノードとの間の接続お よび非接続を切換える第 1の切換部と、 第 1の出力線と第 3のノードとの間の接 続および非接続を切換える第 2の切換部と、 第 1および第 2の切換部を制御する 制御部とをさらに含む。 制御部は、 第 1および第 2の切換部をともに接続状態に 設定して、 第 1および第 2の蓄電装置を充電する。
より好ましくは、 第 1の蓄電装置の蓄電容量は、 第 2の蓄電装置の蓄電容量よ りも大きい。 制御部は、 第 2の蓄電装置の充電状態が所定状態に達した場合には、 第 2の切換部を非接続状態に設定して、 第 2の蓄電装置の充電を終了する。
したがって、 本発明によれば、 部品点数の増加を防ぎつつ車両に電力を供給し て、 蓄電装置を充電することが可能になる。
図面の簡単な説明
図 1は、 本発明の実施の形態 1の車両 1 0 0の主たる構成を示す図である。 図 2は、 図 1の制御装置 3 0の機能プロック図である。
図 3は、 図 1の車両 1 0 0においてバッテリ B Bに充電が行なわれるときの状 態を簡略化して示す図である。
図 4は、 制御装置 3 0が実行するバッテリ B Bの充電処理を示すフローチヤ一 トである。
図 5は、 実施の形態 1の変形例を示す図である。
図 6は、 実施の形態 2の電源装置において複数のバッテリ B A, B Bの両方に 充電を行なうための方法を簡略化して示す図である。
図 7は、 実施の形態 2の変形例を示す図である。
図 8は、 図 7に示す制御装置 3 0が実行するバッテリ B A, B Bの充電処理を 示すフローチヤ一トである。
図 9は、 実施の形態 3の車両 1 0 O Aの主たる構成を示す図である。
図 1 0は、 図 9の車両 1 0 O Aにおいてバッテリ B Bに充電が行なわれるとき の状態を簡略化して示す図である。
図 1 1は、 制御装置 3 0が実行するバッテリ B Bの充電処理を示すフローチヤ ートである。
図 1 2は、 実施の形態 3の第 1の変形例を示す図である。
図 1 3は、 図 1 2に示す制御装置 3 0の充電処理を説明するフローチヤ一トで ある。 図 14は、 実施の形態 3の第 2の変形例を示す図である。
図 15は、 図 14に示す制御装置 30の充電処理を説明するフローチャートで ある。
発明を実施するための最良の形態
以下において、 本発明の実施の形態について図面を参照しながら詳細に説明す る。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1 ]
図 1は、 本発明の実施の形態 1の車両 100の主たる構成を示す図である。 な お車両 100は、 モータとエンジンとを車両の駆動に併用するハイブリッド自動 車であるが、 本発明は、 モータで車輪を駆動する電気自動車、 燃料電池自動車等 に対しても適用することができる。
図 1を参照して、 車両 100は、 ノくッテリ B A, B Bと、 昇圧コンバータ 12 A, 12 Bと、 平滑用コンデンサ C 1 A, C 1 B, C 2と、 電圧センサ 13 , 2 1 A, 21 Bと、 負荷回路 23と、 エンジン 4と、 モータジェネレータ MG 1, MG 2と、 動力分割機構 3と、 車輪 2と、 制御装置 30とを含む。
車両 100は、 さらに、 電源ライン PL 1A, PL 1 B, PL 2と、 接地ライ ン S Lと、 バッテリ B Aの端子間の電圧 VB Aを検出する電圧センサ 1 OAと、 バッテリ BBの端子間の電圧 VBBを検出する電圧センサ 10 Bとを含む。
バッテリ BA, BBとしては、 たとえば、 鉛蓄電池、 ニッケル水素電池、 リチ ゥムイオン電池等の二次電池を用いることができる。 なお、 図 1に示す構成では、 ノくッテリ BBはバッテリ BB 1とバッテリ BB 2とを含むが、 これらをまとめた バッテリでもよレヽ。
車両 100は、 さらに、 システムメインリ レー SMR 1 A, SMR 2A, SM R3A, SMR 1 B, SMR 2 B, SMR 3 Bを含む。 システムメインリ レー S MR 1A〜SMR3A, S MR 1 B〜 S MR 3 Bは、 制御装置 30から与えられ る制御信号 CT 1 A〜CT 3 A, CT 1 B〜C T 3 Bにそれぞれ応じて接続状態 (オン状態) Z非接続状態 (オフ状態) が制御される。
システムメインリ レー SMR 2 Aは、 ノくッテリ B Aの正極と電源ライン P L 1 Aとの間に接続される。 システムメインリレー SMR 3 Aは、 バッテリ BAの負 極と接地ライン S Lとの間に接続される。 システムメインリレー SMR 1 Aは、 制限抵抗 R 1 Aと直列に接続される。 システムメインリレー SMR 1 Aおよび制 限抵抗 R 1 Aはバッテリ B Aの正極と電源ライン P L 1 Aとの間にシステムメイ ンリレー SMR 2 Aと並列接続される。
システムメインリレー SMR2Bは、 ノくッテリ BBの正極と電源ライン PL 1 Bとの間に接続される。 システムメインリ レー SMR 3 Bは、 バッテリ BBの負 極と接地ライン S Lとの間に接続される。 システムメインリ レー SMR 1 Bは、 制限抵抗 R 1 Bと直列に接続される。 システムメインリレー SMR 1 Bおよび制 限抵抗 R 1 Bはバッテリ BBの正極と電源ライン PL 1 Bとの間にシステムメイ ンリ レー S MR 2 Bと並列接続される。
平滑用コンデンサ C 1 Aは、 システムメインリレー SMR 1 A〜SMR 3 Aの オン時において、 バッテリ B Aの端子間電圧を平滑化する。 平滑用コンデンサ C 1 Aは、 電源ライン P L 1 Aと接地ライン S L間に接続される。
電圧センサ 21 Aは、 平滑用コンデンサ C 1 Aの両端間の電圧 VL Aを検知し て制御装置 30に対して出力する。 昇圧コンバータ 12Aは、 平滑用コンデンサ C 1 Aの端子間電圧を昇圧する。 電圧センサ 21 Bは、 平滑用コンデンサ C 1 B の両端間の電圧 VLBを検知して制御装置 30に対して出力する。 昇圧コンパ一 タ 1 2 Bは、 平滑用コンデンサ C 1 Bの端子間電圧を昇圧する。
平滑用コンデンサ C 2は、 昇圧コンバータ 12 A, 12 Bによって昇圧された 電圧を平滑化する。 電圧センサ 1 3は、 平滑用コンデンサ C 2の端子間電圧であ る電圧 VHを検知して制御装置 30に出力する。
車両 100は、 さらに、 電源ライン P L 2と接地ライン S Lとの間に平滑用コ ンデンサ C 2と並列に接続される放電抵抗 R 2を含む。 車両 100による電力変 換動作の停止後には、 放電抵抗 R 2により平滑用コンデンサ C 2の残留電荷が消 費される。
負荷回路 23は、 インバータ 14および 22を含む。 インバータ 14は、 昇圧 コンバータ 12A、 12 Bから与えられる直流電圧を三相交流に変換してモータ ジェネレータ MG 1に出力する。 負荷回路 23は、 本発明における 「負荷」 に対 応する。 動力分割機構 3は、 エンジン 4とモータジェネレータ MG 1, MG2に結合さ れて、 これらの間で動力を分配する機構である。 たとえば動力分割機構としては サンギヤ、 プラネタリキヤリャ、 リングギヤの 3つの回転軸を有する遊星歯車機 構を用いることができる。 この 3つの回転軸がエンジン 4、 モータジェネレータ MG 1, MG2の各回転軸にそれぞれ接続される。
なおモータジェネレータ MG 2の回転軸は、 図示しない減速ギヤおよび差動ギ ャによって車輪 2に結合されている。 また動力分割機構 3の内部にモータジエネ レータ MG 2の回転軸に対する減速機をさらに組み込んでもよい。 また、 この減 速機の減速比を切り替え可能に構成しても良い。
昇圧コンバータ 1 2 Aは、 一方端が電源ライン PL 1 Aに接続されるリアク ト ル L 1 Aと、 電源ライン P L 2と接地ライン S Lとの間に直列に接続される I G 8丁素子01 , Q2Aと、 108丁素子<31八, Q 2 Aにそれぞれ並列に接続 されるダイオード D 1A, D 2 Aとを含む。
リアクトルし 1 Aの他方端は I 08丁素子01 Aのエミッタおよび I GBT素 子 Q 2 Aのコレクタに接続される。 ダイォード D 1 Aのカソードは I GBT素子 Q 1 Aのコレクタと接続され、 ダイォード D 1 Aのアノードは I 08丁素子<31 Aのエミッタと接続される。 ダイォード D 2 Aのカソードは I GBT素子 Q 2 A のコレクタと接続され、 ダイオード D 2 Aのアノードは I 08丁素子02八のェ ミッタと接続される。
昇圧コンバータ 12 Bは、 一方端が電源ライン P L 1 Bに接続されるリアク ト ル L 1 Bと、 電源ライン P L 2と接地ライン S Lとの間に直列に接続される I G 8丁素子(318, Q2Bと、 108丁素子(318, Q 2 Bにそれぞれ並列に接続 されるダイオード D I B, D2Bとを含む。
リアクトルし 1 Bの他方端は I GBT素子 Q 1 Bのエミッタおよび I GBT素 子 Q 2 Bのコレクタに接続される。 ダイオード D 1 Bの力ソードは I GBT素子 Q 1 Bのコレクタと接続され、 ダイォード D 1 Bのアノードは I GBT素子 Q 1 Bのエミッタと接続される。 ダイォード D 2 Bのカソードは I &8丁素子(32 B のコレクタと接続され、 ダイオード D 2 Bのアノードは I〇8丁素子028のェ ミッタと接続される。 インバータ 14は、 昇圧コンバータ 12 A, 1 2 Bから昇圧された電圧を受け て、 たとえばエンジン 4を始動させるために、 モータジェネレータ MG 1を駆動 する。 また、 インバータ 14は、 エンジン 4から伝達される動力によってモータ ジェネレータ MG 1で発電された電力を昇圧コンバータ 1 2 Aまたは 1 2 Bに戻 す。 このとき昇圧コンバータ 12 Aまたは 12 Bは、 降圧回路として動作するよ うに制御装置 30によって制御される。
インバータ 14は、 U相アーム 1 5と、 V相アーム 16と、 W相アーム 1 7と を含む。 U相アーム 15, V相アーム 16, および W相アーム 1 7は、 電源ライ ン PL 2と接地ライン S Lとの間に並列に接続される。
U相アーム 15は、 電源ライン P L 2と接地ライン S Lとの間に直列接続され た I GBT素子 Q3, Q4と、 108丁素子03, Q 4とそれぞれ並列に接続さ れるダイオード D 3, D4とを含む。 ダイオード D3の力ソードは I GBT素子 Q 3のコレクタと接続され、 ダイオード D 3のアノードは I 0 丁素子03のェ ミッタと接続される。 ダイォード D 4のカソードは I 08丁素子04のコレクタ と接続され、 ダイオード D4のアノードは I GBT素子 Q4のェミッタと接続さ れる。
V相アーム 16は、 電源ライン P L 2と接地ライン S Lとの間に直列接続され た I GBT素子 Q5, Q6と、 10 丁素子<35, Q 6とそれぞれ並列に接続さ れるダイオード D 5, D 6とを含む。 ダイオード D 5の力ソードは I GBT素子 Q 5のコレクタと接続され、 ダイオード D 5のアノードは I GBT素子 Q 5のェ ミッタと接続される。 ダイオード D 6の力ソードは I GBT素子 Q6のコレクタ と接続され、 ダイオード D 6のアノードは I GBT素子 Q 6のェミッタと接続さ れる。
W相アーム 1 7は、 電源ライン P L 2と接地ライン S Lとの間に直列接続され た I GBT素子 Q 7, Q8と、 1。8丁素子07, Q 8とそれぞれ並列に接続さ れるダイオード D 7, D 8とを含む。 ダイオード D 7の力ソードは I GBT素子 Q 7のコレクタと接続され、 ダイォード D 7のアノードは I GBT素子 Q 7のェ ミッタと接続される。 ダイオード D 8の力ソードは I GBT素子 Q8のコレクタ と接続され、 ダイォード D 8のアノードは I GBT素子 Q 8のエミッタと接続さ れる。
各相のアームの中間点は、 モータジェネレータ MG 1の各相のコイルの一端に 接続されている。 すなわち、 モータジェネレータ MG 1は、 三相の永久磁石同期 モータであり、 U, V, W相の 3つのコイルは各々一方端が中点に共に接続され ている。 そして、 U相コイルの他方端が I GBT素子 Q 3, Q4の接続ノードに 接続される。 また V相コイルの他方端が I GBT素子 Q 5, Q 6の接続ノードに 接続される。 また W相コイルの他方端が I GBT素子 Q 7, Q 8の接続ノードに 接続される。
なお、 以上の I GB T素子 Q 1 A, Q 2 A, Q 1 B, Q 2 B, Q3〜Q8に代 えてパワー MOS FET等の他の電力スィツチング素子を用いても良い。
電流センサ 24は、 モータジェネレータ MG 1に流れる電流をモータ電流値 M CRT 1として検出し、 モータ電流値 MCRT 1を制御装置 30へ出力する。 インバータ 22は、 電源ライン P L 2と接地ライン S Lに接続されている。 ィ ンバータ 22は、 車輪 2を駆動するモータジェネレータ MG 2に対して昇圧コン バータ 1 2A, 12 Bの出力する直流電圧を三相交流に変換して出力する。 また インバータ 22は、 回生制動に伴い、 モータジェネレータ MG 2において発電さ れた電力を昇圧コンバータ 12 A, 12Bに戻す。 このとき昇圧コンバータ 1 2 A, 12Bは、 降圧回路として動作するように制御装置 30によって制御される。 なお、 インバータ 22の内部の構成は、 図示しないがインバータ 14と同様であ り、 詳細な説明は繰返さない。
制御装置 30は、 トルク指令値 TR 1, TR2、 モータ回転数 MRN 1, MR N2、 電圧 VLA, VLB, VB A, VBB, VH、 電流センサ 1 1が検知した 電流 I Sの各値、 モータ電流値 MCRT 1, MCRT 2および起動指示 I GON を受ける。 そして制御装置 30は、 昇圧コンバータ 1 2 A, 12Bに対して昇圧 指示、 降圧指示および動作禁止を指示する制御信号 PWCA, PWCBを出力す る。
さらに、 制御装置 30は、 インバータ 14に対して、 駆動指示 PWMI 1と回 生指示 PWMC 1とを出力する。 駆動指示 PWMI 1は、 昇圧コンバータ 12 A, 12 Bの出力である直流電圧をモータジェネレータ MG 1を駆動するための交流 電圧に変換させる指示である。 また、 回生指示 PWMC 1は、 モータジエネレー タ MG 1で発電された交流電圧を直流電圧に変換して昇圧コンバータ 1 2A, 1 2 B側に戻すための指示である。
同様に制御装置 30は、 インバータ 22に対して、 駆動指示 PWMI 2と回生 指示 PWMC 2とを出力する。 駆動指示 PWMI 2は、 モータジェネレータ MG 2を駆動するための交流電圧に直流電圧を変換させる指示である。 また回生指示 PWMC 2は、 モータジェネレータ MG 2で発電された交流電圧を直流電圧に変 換して昇圧コンバータ 12A, 12 B側に戻すための指示である。
車両 100は、 さらに、 充放電ュニット 40を含む。 充放電ュニット 40は、 変換回路 41と、 端子 T l, Τ 2とを含む。 ノくッテリ ΒΑ, ΒΒの充電時には端 子 T l, Τ 2に交流電源 45が接続されて、 端子 Τ 1, Τ 2間には AC 100V (AC 200 Vでもよレ、) の交流電圧が与えられる。
変換回路 41は端子 T l, T 2間の交流電圧を直流電圧に変換する。 変換回路 41から出力される直流電圧は電源ライン PL 1 Aおよび接地ライン S Lの間に 印加される。 変換回路 41は、 たとえば、 ダイオードを用いた整流回路、 あるい はィンバータ回路等により構成される。
なお、 以下では変換回路 41はダイォードを用いた整流回路であるとして説明 する。 これにより以下の説明では変換回路 41を 「整流素子 41」 と称する。 バッテリ BBの蓄電容量はバッテリ B Aの蓄電容量よりも大きい。 つまり充放 電ュニット 40はバッテリ BA, BBのうち蓄電容量の小さいほうに対応する昇 圧コンバータ (昇圧コンバータ i 2A) に接続される。
図 1を参照しながら包括的に本実施の形態を説明すると、 外部電源 (交流電源 45) により充電される電源装置は、 充放電可能なバッテリ BA, BBと、 負荷 回路 23と、 バッテリ BAが接続されるノード N1と負荷回路 23が接続される ノード N2との間で電圧を変換する昇圧コンバータ 1 2 Aと、 バッテリ BBが接 続されるノード N 3とノード N 2との間で電圧を変換する昇圧コンバータ 1 2 B と、 外部電源から受ける電力をノード N 1に伝達する充放電ュニット 40とを備 える。
好ましくは、 電源装置は、 バッテリ B Aとノード N 1との接続を遮断可能なシ ステムメインリレー S MR 2 Aと、 ノくッテリ BBとノード N 3との接続を遮断可 能なシステムメインリ レー SMR 2 Bと、 システムメインリ レー SMR 2 A, S MR 2 Bと昇圧コンバータ 1 2 A, 12 Bとを制御する制御装置 30とをさらに 備える。 制御装置 30は、 システムメインリ レー SMR 2 A, SMR 2 Bを遮断 状態および接続状態にそれぞれ設定し、 かつ、 ノード N 3の電圧が所望の充電電 圧となるようにシステムメインリ レー SMR 2 A, SMR 2 Bを制御して、 ノくッ テリ BBを充電する。
より好ましくは、 外部電源は、 交流電源である。 充放電ュニット 40は、 交流 電源 45から出力される交流電圧を直流電圧に変換する変換回路 41を含む。 より好ましくは、 充放電ュニット 40の端子 T 1, T 2には交流電源 45に代 えて負荷 46を接続することができる。 制御装置 30は、 システムメインリ レー SMR 2 A, S MR 2 Bの少なくとも一つを接続状態に設定して、 バッテリ BA, BBのうち、 少なくとも一つのシステムメインリ レー (接続されたシステムメイ ンリレー) に対応するバッテリからの電力を負荷 46に供給する。 たとえば負荷 46は家電製品である。
図 2は、 図 1の制御装置 30の機能ブロック図である。 なお、 この制御装置 3 0は、 ソフトウエアでもハードウエアでも実現が可能である。
図 1, 図 2を参照して、 制御装置 30は、 昇圧コンバータ 12 A, 12 Bを制 御する昇圧コンバータ制御部 131と、 モータジェネレータ MG 1を制御する M G 1用インバータ制御部 132と、 モータジェネレータ MG 2を制御する MG 2 用インバータ制御部 1 33と、 システムメインリ レー SMR 1A, SMR 2 A, SMR 3 A, SMR 1 B, SMR 2 B, S MR 3 Bを制御するリレー制御部 13 4とを含む。
起動指示 I GONに応じて、 昇圧コンバータ制御部 131は動作可能な状態と なる。 昇圧コンバータ制御部 1 3 1からは、 昇圧指示, 降圧指示を行なうための 制御信号 PWCA, PWCBがそれぞれ図 1の昇圧コンバータ 12 A, 12Bに 向けて出力される。 また、 MG 1用インバータ制御部 132は、 トルク指令値 T R 1とモータ回転数 MRN 1に基づいて、 インバータ 14に対して駆動指示 PW Ml 1、 回生指示 PWMC 1を出力する。 また、 MG 2用インバータ制御部 1 3 3は、 トルク指令値 TR 2とモータ回転数 MRN 2に基づいて、 インバータ 22 に対して駆動指示 PWMI 2、 回生指示 PWMC 2を出力する。
リレー制御部 134は、 起動指示 I G ONに応じて制御信号 CT 1 A〜3 A, CT 1 B〜 3 Bを活性化させることによりシステムメインリレーをオンさせて、 バッテリ BA, B Bをそれぞれ昇圧コンバータ 1 2 A, 12 Bに電気的に接続さ せる。
[バッテリへの充電処理]
図 3は、 図 1の車両 100においてバッテリ BBに充電が行なわれるときの状 態を簡略化して示す図である。
図 3を参照して、 システムメインリ レー SMR 2 B, SMR3Bは制御装置 3 0からの制御信号 CT 2 B, CT 3 Bにそれぞれ応じてオンする。
交流電源 45からの交流電圧は整流素子 41によって直流電圧に変換される。 整流素子 41の出力電圧は昇圧コンバータ 1 2 Aに与えられる。 制御装置 30は 昇圧コンバータ 1 2 Aに制御信号 PWC Aを送り、 昇圧コンバータ 12 Aを動作 させる。 これにより昇圧コンバータ 12 Aは入力電圧をバッテリ BBの充電電圧 に昇圧する。
昇圧コンバータ 12 Aの出力電圧は昇圧コンバータ 12 Bに与えられる。 制御 装置 30は昇圧コンバータ 1 2 Bに制御信号 PWCBを送り、 I。8丁素子01 B, Q 2 Bをそれぞれオンおよびオフさせる。 これにより、 昇圧コンバータ 1 2 Bでは入力電圧にほぼ等しい出力電圧を出力する。
よって図 3の矢印に示す経路に沿って交流電源 45の電力がバッテリ BBに伝 達され、 バッテリ BBが充電される。 なおインバータ 14, 22は停止している。 図 4は、 制御装置 30が実行するバッテリ BBの充電処理を示すフローチヤ一 トである。 このフローチャートの処理は、 所定のメインルーチンから一定時間毎 または所定の条件が成立する毎に呼び出されて実行される。
図 4および図 1を参照して、 処理が開始されると、 ステップ S 1では制御装置 30は、 交流電源 45からの電源供給があるかどうかを判定する。 たとえば端子 T l, T 2に交流電源 45が接続されたり、 ユーザがスィッチを操作して充電を 指示したりすることにより、 制御装置 30は電源供給があつたと判定する。 交流電源 45からの電源供給がある場合 (ステップ S 1において YE S) 、 処 理はステップ S 2に進み、 そうでない場合 (ステップ S 1において NO) 、 処理 はステップ S 1に戻る。
ステップ S 2において、 制御装置 30は、 電圧センサ 10 B, 21 Aの出力に 基づいて電圧 VB Bが電圧 VLAよりも小さいか否かを判定する。 電圧 VB Bが 電圧 VL Aよりも小さい場合 (ステップ S 2において YE S) 、 処理はステップ S 3に進む。 一方、 電圧 VB Bが電圧 VLA以上の場合 (ステップ S 2において NO) 、 処理はステップ S 5に進む。
ステップ S 3において、 制御装置 30は、 昇圧コンバータ 12 A, 1 2Bを動 作させる。 昇圧コンバータ 1 2 Aは入力電圧をバッテリ BBの充電電圧に昇圧す る。 一方、 昇圧コンバータ 12 Bでは I GBT素子 Q 1 B, Q 2 Bがそれぞれォ ンおよびオフする。 これにより昇圧コンバータ 1 2 Bからバッテリ BBの電圧 V BBにほぼ等しい電圧が出力される。
次にステップ S 4において、 制御装置 30は、 システムメインリレー SMR 2 B, S MR 3 Bをオンさせる。 これによりバッテリ BBの正極および負極は電源 ライン PL 1 B (すなわちノード N 3) および接地ライン S Lにそれぞれ接続さ れる。
ここで、 制御装置 30は、 システムメインリレー SMR 2 B, SMR 3Bを同 時にオンさせてもよいし、 システムメインリレー SMR 3 B, SMR 2 Bの順に オンさせてもよい。
またステップ S 4では、 次のようにシステムメインリレーを制御することもで きる。 まず制御装置 30はシステムメインリレー SMR 1 B, SMR 3 Bをオン させる。 そして、 所定の時間が経過した後にシステムメインリ レー SMR 2 Bを オンさせ、 システムメインリレー SMR 1 Bをオフさせる。
システムメインリレー SMR 1 B〜SMR 3 Bがすべてオフした状態からシス テムメインリレー SMR 2 B, SMR 3 Bをオンさせると、 システムメインリレ 一 SMR 2B, SMR 3 Bに大電流が瞬間的に流れる可能性がある。 システムメ インリレー SMR 2 Bをオンさせる前にシステムメインリレー SMR 1 Bをオン させた場合には、 システムメインリレ一 SMR 1 B, SMR 3 Bに流れる電流を 制限抵抗 R 1 Bにより制限することができる。 このように大電流が流れる可能性 を予め低くすることによってシステムメインリレーの溶着を防ぐことができる。 一方、 ステップ S 5では、 制御装置 30は、 ステップ S 4の処理と同様の処理 を実行して、 システムメインリ レー SMR 2 B, SMR 3 Bをオンさせる。
ステップ S 6では、 制御装置 30は、 昇圧コンバータ 12 A, 12Bを動作さ せる。 ステップ S 6において、 制 ¾1装置 30はまず昇圧コンバータ 1 2 Aの I G 8丁素子01八, Q 2 Aをそれぞれオンおよびオフさせる。
充放電ユニット 40の出力電圧はノード N 1 (昇圧コンバータ 12 A) に与え られる。 制御装置 30は昇圧コンバータ 1 2 Bを降圧回路として動作させる。 こ れにより、 昇圧コンバータ 12 Bの出力電圧をバッテリ 88の電圧 88にほぼ 等しくすることができる。
ステップ S 4またはステップ S 6の処理が終了すると、 ステップ S 7において、 制御装置 30は、 電圧センサ 10 Bが検出した電圧 VBBおよび電流センサ (図 1に示さず) が検出したバッテリ BBの電流値等に基づいて、 バッテリ BBの S OC (State of Charge:充電状態) が所定値 (たとえば 80%) に達したか否 かを判定する。 バッテリ BBの SOCが所定値に達した場合 (ステップ S 7にお いて YES) 、 処理はステップ S 8に進み、 そうでない場合 (ステップ S 7にお いて NO) 、 ステップ S 7の処理が繰返して実行される。
ステップ S 8において、 制御装置 30はシステムメインリレー SMR 2 B, S MR 3 Bをオフにする。 なお制御装置 30はシステムメインリレー SMR 2 B, SMR 3 Bを同時にオフしてもよいし、 システムメインリ レー SMR 2 B, SM R 3 Bの順にオフにしてもよい。 ステップ S 8の処理が終了すると全体の処理が 終了する。
このように本実施の形態では、 車両はモータジェネレータを駆動するために複 数のバッテリと各バッテリに対応してバッテリ電圧を昇圧する昇圧コンバータと を用いた電源システムを備えている。 この電源システムでは異なるバッテリ特性 (たとえば蓄電容量、 あるいは出力電圧等) を有する複数のバッテリを接続する ことができる。 本実施の形態ではこの昇圧コンバータを利用してバッテリを充電 することができるので、 わざわざトランス (あるいは昇圧回路) を内蔵する充放 電ュニットを用意しなくてもよくなる。
ここで図 1を参照して、 たとえばモータジェネレータ MG 1, MG 2の中性点 の間に外部からの交流電圧が入力され、 かつ、 制御装置 3 0が負荷回路 2 3およ び昇圧コンバータ 1 2 Bを制御することによりバッテリ B Bを充電する方法が考 えられる。 しかしながら、 この場合、 ごくわずかであっても、 モータジエネレー タ MG 1 , MG 2のコイルにおいて電力の損失が発生する。
また、 モータジェネレータ MG 1, MG 2の中性点の間に交流電源 (たとえば 家庭用の商用電源) を直接接続してバッテリ B Bを充電しょうとした場合、 バッ テリ B Bに与えられる電圧がバッテリ B Bの充電に必要な電圧よりも低い可能性 がある。 この場合には、 交流電源からの電圧を昇圧する昇圧回路が必要になる。 一方、 本実施の形態によれば、 電源装置をモータジェネレータ MG 1 , MG 2 の中性点に接続しないので、 バッテリの充電時にモータジェネレータ MG 1 , M G 2での損失が生じるのを防ぐことができる。 これにより本実施の形態によれば 高い充電効率を得ることを可能にする。
また、 本実施の形態によれば、 外部電源からの電圧を昇圧コンバータ 1 2 Aに より昇圧するため、 外部電源からの電圧が低くてもバッテリ B Bを充電するのに 必要な電圧を得ることが可能になる。
また本実施の形態によれば、 充放電ユニットに昇圧回路ゃ充放電電流 (電圧) を制御するための回路を搭載しなくてもよいため、 車両の走行時に不要となる装 置をわざわざ車両に搭載する必要が無くなる。 よって、 充電装置の部品点数を減 らすことが可能になるとともに、 車両の燃費を向上させることも可能になる。
[実施の形態 1の変形例]
図 5は、 実施の形態 1の変形例を示す図である。
図 5および図 3を参照して、 実施の形態 1の変形例では外部電源として直流電 源 4 5 Aを用いる。 直流電源 4 5 Aの種類は鉛蓄電池、 太陽電池等様々なものを 用いることができる。 また、 直流電源 4 5 Aの出力電圧の大きさは特に限定され ない (出力電圧の大きさは、 たとえば D C 1 2 Vでもよレ、) 。
図 5に示す構成によれば、 充放電ユニットは、 直流電源 4 5 Aからの直流電圧 をノード N 1に伝達する。 これにより整流素子 4 1が不要になるため電源装置の 部品点数をより少なくすることができる。
[実施の形態 2 ]
実施の形態 2では、 複数のバッテリの各々に対して外部からの受電 (および外 部への電力供給) を可能にする。 なお、 実施の形態 2の車両 1 0 0の主たる構成 は図 1に示される車両 1 0 0の構成と同様である。 よって以下では図 3と同様の 図、 すなわち車両 1 0 0の構成を簡略化した図を用いながら実施の形態 2を説明 する。 また、 以下では、 複数のバッテリを充電する場合について説明するが、 複 数のバッテリから電力を取り出す場合も同様の処理が行なわれる。
図 6は、 実施の形態 2の電源装置において複数のバッテリ B A, B Bの両方に 充電を行なうための方法を簡略化して示す図である。
図 6を参照して、 充放電ュニット 4 0の接続先はノード N 1とソード N 3との 間で接続先を選択可能である。 よって実施の形態 2では、 充放電ユニット 4 0の 接続先をノード N 1からノード N 3に変えることができる。
実施の形態 2では、 まず充放電ュニット 4 0をノード N 1と接地ライン Sしの 間に接続してバッテリ B Bを充電する。 次に図 6に示すように充放電ュニット 4 0をノード N 3と接地ライン S Lとの間に接続してバッテリ B Aを充電する。 バッテリ B Aを充電する際には、 制御装置 3 0は、 システムメインリ レー S M R 2 A, S MR 3 Aに制御信号 C T 2 A、 C T 3 Aをそれぞれ送り、 システムメ インリレー S MR 2 A, S MR 3 Aをオンさせる。 そして、 制御装置 3 0は昇圧 コンバータ 1 2 Bを動作させる。 これにより昇圧コンバータ 1 2 Bは充放電ュ- ット 4 0からの出力電圧をバッテリ B Aの充電電圧に昇圧する。 さらに制御装置 3 0は昇圧コンバータ 1 2 Aを制御して、 1〇8丁素子0 1八, Q 2 Aをそれぞ れオンおよびオフさせる。 これにより交流電源 4 5の電力がバッテリ B Aに伝達 されてバッテリ B Aが充電される。
実施の形態 2によれば、 外部から与えられる電圧が複数のバッテリの各々の充 電電圧と異なる場合 (特に充電電圧より低い場合) でも昇圧コンバータ 1 2 A, 1 2 Bを動作させることによって、 複数のバッテリをすベて充電できる。
[実施の形態 2の変形例]
図 7は、 実施の形態 2の変形例を示す図である。 図 7および図 6を参照して、 実施の形態 2の変形例は、 制御装置 30により制 御されて、 充放電ュニット 40の 2つの出力線のうちの一方の接続先をノード N 1, N 3の中から選択するスィツチ SWをさらに備える点で図 6に示す構成と異 なる。 スィッチ SWは制御装置 30からの制御信号 SWCにより制御される。 な ぉ充放電ュニット 40の他方の出力線は接地ライン S Lに接続される。
制御装置 30は、 上記の出力線がノード N 1に接続されている場合には、 シス テムメインリレー SMR 2 B (SMR3B) を接続状態に設定するとともに、 昇 圧コンバータ 12A, 1 2 Bを制御してノード N 3の電圧を所望の充電電圧に設 定する。 これによりバッテリ BBが充電される。 この充電処理は実施の形態 1と 同様である。
一方、 図 7に示すように、 制御装置 30は、 上記の出力線がノード N 3に接続 されている場合には、 システムメインリレー SMR 2 A (SMR 3 A) を接続状 態に設定するとともに、 昇圧コンバータ 12 A, 1 2 Bを制御してノード N 1の 電圧を所望の充電電圧に設定する。 これによりバッテリ B Aが充電される。
図 8は、 図 7に示す制御装置 30が実行するバッテリ BA, BBの充電処理を 示すフローチャートである。 このフローチャートの処理は、 所定のメインルーチ ンから一定時間毎または所定の条件が成立する毎に呼び出されて実行される。 図 8および図 7を参照して、 処理が開始されると、 ステップ S 1 1では制御装 置 30は交流電源 45から電源供給があるかどうかを判定する。 ステップ S 1 1 での処理は図 4に示すステップ S 1の処理と同様である。
交流電源 45から電源供給がある場合 (ステップ S I 1において YES) 、 処 理はステップ S 1 2に進み、 そうでない場合 (ステップ S I 1において NO) 、 処理はステップ S 1 1に戻る。
ステップ S 1 2において、 制御装置 30は、 制御信号 SWCをスィッチ SWに 送る。 これによりスィッチ SWはバッテリ B A側に接続される。 すなわち充放電 ュニット 40の 2つの出力線はノード N 1と接地ライン S Lとの間に接続される。 ステップ S 13において、 制御装置 30はバッテリ BBを充電する。 なおバッ テリ BBの充電処理は図 4に示すステップ S 2〜S 8の処理と同様である。
次にステップ S 14において、 制御装置 30は、 スィッチ SWの接続先を切換 える。 これにより充放電ュニット 4 0の 2つの出力線はノード N 3と接地ライン S Lとの間に接続される。
続いてステップ S 1 5において、 制御装置 3 0は、 バッテリ B Bの充電時と同 様の処理 (図 4に示すステップ S 2〜S 8の処理と同様の処理) を行なってバッ テリ B Aを充電する。 ステップ S 1 5での処理を包括的に説明すると、 制御装置 3 0は、 システムメインリレー S MR 2 A, 3 に制御信号じ丁2 、 C T 3 A をそれぞれ送り、 システムメインリ レー S MR 2 A, 3 Aをオンさせる。 そして、 制御装置 3 0は昇圧コンバータ 1 2 Bを動作させて昇圧コンバータ 1 2 Bに入力 される電圧 (充放電ユニット 4 0からの出力電圧) を昇圧する。 さらに制御装置 3 0は昇圧コンバータ 1 2 Aを制御して、 1〇8丁素子0 1八, Q 2 Aをそれぞ れオンおよびオフさせる。 昇圧コンバータ 1 2 Aは入力される電圧をほぼそのま ま出力する。 これによりバッテリ B Aが充電される。 制御装置 3 0はバッテリ B Aの S O Cが所定値 (たとえば 8 0 %) に達した場合には、 システムメインリ レ 一システムメインリレー S MR 2 A, 3 Aをオフしてバッテリ B Aの充電を終了 させる。
ステップ S 1 5の処理が終了すると、 全体の処理が終了する。
この変形例では制御装置 3 0が充放電ュニット 4 0の接続先を切換えるので、 ユーザが充電に要する手間を少なくしながら、 複数のバッテリを充電することが できる。 特に図 3に示す電源装置の構成では、 充放電ュニット 4 0の出力電圧が バッテリ B Aの充電電圧より低い場合にはバッテリ B Aを充電できない。 しかし、 この変形例ではこのような場合であっても複数のバッテリを充電できる。
さらに他の変形例では、 スィツチ S Wを用いずに複数のバッテリを充電する。 この例における車両の主要部の構成は図 1に示す構成と同様になる。
この変形例では制御装置 3 0は、 まず図 4に示すフローチャートに従ってバッ テリ B Bを充電する。 ただしステップ S 7における所定値を、 バッテリ B B, B Aの両方の充電が完了したときの目標値 (たとえば 8 0 %) よりも大きく設定す る (たとえば 8 5 %) 。
制御装置 3 0は、 バッテリ B Bの充電の終了後に、 システムメインリ レー S M R 2 Aを接続状態にするとともに、 昇圧コンバータ 1 2 A, 1 2 Bを制御してバ ッテリ BBに蓄えられた電力をバッテリ B Aに供給する。
ノくッテリ BBがバッテリ B Aよりも蓄電容量が大きいため、 所定値を目標値よ り少し高く設定すれば、 バッテリ B Aの S O Cを目標値とするに十分な電力をバ ッテリ BBからバッテリ B Aに与えることができる。
この変形例によれば、 図 7のスィッチ SWがなくともバッテリ BBからバッテ リ B Aに電力を供給することでバッテリ BA, BBをともに所定の充電状態に設 定できる。 特に、 外部電源からの電力によりバッテリ BBが充電され、 ノくッテリ BAには外部電源から充電が行なわれないので、 電源回路全体としては外部電源 より充電可能な容量を大きくすることができる。
[実施の形態 3]
図 9は、 実施の形態 3の車両 10 OAの主たる構成を示す図である。
図 9および図 1を参照して、 車両 10 OAは、 充放電ユニット 40に代えて、 充放電ュニット 50を含む点で車両 100と異なる。
充放電ユニット 50は、 電源ライン P L 1 Bに接続される出力線 L 1と、 バッ テリ BBの負極に接続される出力線 L 2とを備える。
充放電ユニット 50は、 電源装置 52に接続される端子 T 1 , T2を含む。 な お、 電源装置 52は直流電源でも交流電源でもよい。 また、 充放電ュニット 50 は昇圧回路を含んで構成される。 また、 充放電ユニット 50にバッテリ BBの充 電電圧に等しい電圧が入力されてもよい。 このため電源装置 52の出力電圧は特 に限定されない。
また、 実施の形態 1 , 2と同様に充放電ュニット 50には電源装置 52に代え て負荷 46が接続され、 バッテリ BBの電力により負荷 46を駆動してもよい。 図 10は、 図 9の車両 10 OAにおいてバッテリ BBに充電が行なわれるとき の状態を簡略化して示す図である。
図 10を参照して、 制御装置 30は、 制御信号 CT 2 Bをシステムメインリレ 一 SMR2Bに送り、 システムメインリレー SMR 2 Bをオンさせる。 電源装置 52からの電圧は充放電ュニット 50によりバッテリ BBの充電電圧に変換され る。 これによりバッテリ BBが充電される。 なおこのときシステムメインリ レー SMR 2 Aはオフ状態である。 すなわち制御装置 30は、 システムメインリ レー SMR 2 B, S MR 2 Aを接続状態および遮断状態にそれぞれ設定して、 バッテ リ BBを充電する。
図 1 1は、 制御装置 30が実行するバッテリ BBの充電処理を示すフローチヤ ートである。 このフローチャートの処理は、 所定のメインルーチンから一定時間 毎または所定の条件が成立する毎に呼び出されて実行される。
図 1 1および図 10を参照して、 処理が開始されると、 ステップ S 21では制 御装置 30は、 外部電源から電源供給があるかどうかを判定する。 ステップ S 2 1の処理は図 4のステップ S 1の処理と同様である。
外部電源から電源供給がある場合 (ステップ S 21において YES) 、 処理は ステップ S 22に進み、 そうでない場合 (ステップ S 21において NO) 、 処理 はステップ S 21に戻る。
ステップ S 22において、 制御装置 30は、 システムメインリ レー SMR 2 B をオンさせる。 なお制御装置 30はシステムメインリレー SMR 1 Bをオンさせ て、 所定の時間が経過した後にシステムメインリレー SMR 2 Bをオンさせると ともにシステムメインリレー SMR 1 Bをオフさせてもよい。 ステップ S 22の 処理が実行されるとバッテリ BBが充電される。
ステップ S 23において、 制御装置 30はバッテリ B Bの SO Cが所定値に達 したか否かを判定する。 バッテリ BBの SO Cが所定値に達した場合 (ステップ S 23において YES) 、 処理はステップ S 24に進み、 そうでない場合 (ステ ップ S 23において NO) 、 ステップ S 23の処理が繰返して実行される。 ステップ S 24において、 制御装置 30はシステムメインリ レー SMR 2 Bを オフにする。 ステップ S 24の処理が終了すると全体の処理が終了する。
実施の形態 3においては、 昇圧コンバータ 12 A, 12 Bを介さずにバッテリ BBを充電することができる。 実施の形態 1, 2では昇圧コンバータ 1 2 A, 1 2 Bを動作させるため、 わずかであっても I GBT素子のオン状態での電力の損 失、 あるいは I GBT素子のスイッチングに伴う電力の損失が発生する。 これに 対し、 実施の形態 3では昇圧コンバータ 12 A, 12 Bを動作させずにバッテリ BBを充電できるため、 これらの損失が生じるのを防ぐことができる。 よって、 実施の形態 1 , 2に比べて充電時の損失を少なくすることが可能になる。 また、 実施の形態 3では制御装置 30がシステムメインリレー SMR 2 Bを制 御するだけでバッテリ BBを充電できる。 よって制御装置 30の処理を簡単にす ることができる。
また、 充放電ユニット 50は、 バッテリ BA, BBのうち蓄電容量の大きいほ う (すなわちバッテリ BB) に接続される。 よって、 バッテリ BBに充電された 電力を用いてバッテリ B Aを充電することが可能になる。
バッテリ B Aを充電する場合、 制御装置 30は昇圧コンバータ 12 A, 12 B に制御信号 PWCA, PWCBをそれぞれ送る。 これにより I GBT素子 Q 1 A, Q 1 Bがオンする。 この場合、 108丁素子01八, Q 1 Bでは損失が発生する ものの、 バッテリ B Aの充電時間が短いため、 電源回路全体としては損失を小さ くすることができる。
なお、 実施の形態 2と同様に充放電ュニット 50の出力線 L 1の接続先をノー ド N 1からノード N 3に変更できるように充放電ュニット 50が構成されていて もよい。 このような方法でもバッテリ BA, BBの両方を充電することができる。
[実施の形態 3の第 1の変形例]
図 12は、 実施の形態 3の第 1の変形例を示す図である。
図 12および図 10を参照して、 第 1の変形例では、 充放電ュニット 50の出 力線 L 1の接続先を、 バッテリ B Aの正極とバッテリ BBの正極との中から選択 するスィッチ SW1が追加される。 第 1の変形例の場合、 制御装置 30はスイツ チ SW1に対して制御信号 SW1 Cを送り、 スィッチ SW1を制御する。 制御装 置 30はシステムメインリレーの制御に代えてスィツチ SW1の制御を行なうこ とでバッテリ BA, BBの両方を充電できる。 よってこの変形例によれば制御装 置 30の処理負荷を大幅に増やすことなくバッテリ BA, BBの両方を充電でき る。
図 13は、 図 12に示す制御装置 30の充電処理を説明するフローチャートで ある。 このフローチャートの処理は、 所定のメインルーチンから一定時間毎また は所定の条件が成立する毎に呼び出されて実行される。
図 13および図 1 2を参照して、 処理が開始されると、 ステップ S 31では制 御装置 30は、 電源装置 52から電源供給があるかどうかを判定する。 ステップ S 31の処理は図 4のステップ S 1の処理と同様である。
電源装置 52から電源供給がある場合 (ステップ S 31において YE S) 、 処 理はステップ S 32に進み、 そうでない場合 (ステップ S 31において NO) 、 処理はステップ S 31に戻る。
ステップ S 32において、 制御装置 30は、 スィッチ SW1をバッテリ BB側 に接続する。 これによりバッテリ BBが充電される。
ステップ S 33において、 制御装置 30はバッテリ B Bの SO Cが所定値に達 したか否かを判定する。 バッテリ BBの SOCが所定値に達した場合 (ステップ S 33において YES) 、 処理はステップ S 34に進み、 そうでない場合 (ステ ップ S 33において NO) 、 ステップ S 33の処理が繰返して実行される。 ステップ S 34において、 制御装置 30はスィツチ SW1の接続先をバッテリ B A側に切換える。
次にステップ S 35において、 制御装置 30は制御信号 CT 3 A, CT3Bを それぞれシステムメインリレー SMR 3 A, 3Bに送り、 これらのシステムメイ ンリレーをオンさせる。 これによりバッテリ B Aが充電される。
ステップ S 36において、 制御装置 30はバッテリ B Aの SO Cが所定値に達 したか否かを判定する。 バッテリ B Aの SOCが所定値に達していない場合 (ス テツプ S 36において NO) 、 ステップ S 36の処理が繰返して実行される。 バ ッテリ BAの SOCが所定値に達した場合 (ステップ S 36において YE S) 、 処理はステップ S 37に進む。
ステップ S 37において、 制御装置 30は制御信号 CT 3 A, CT3 Bをそれ ぞれシステムメインリ レー SMR 3 A, SMR 3 Bに送り、 これらのシステムメ インリレーをオフさせる。 ステップ S 37の処理が終了すると全体の処理が終了 する。
このように第 1の変形例によれば制御装置 30が充放電ュニット 50の接続先 を切換えるので、 ユーザが充電に要する手間を少なく しながら、 複数のバッテリ を充電することができる。
[実施の形態 3の第 2の変形例]
図 14は、 実施の形態 3の第 2の変形例を示す図である。 図 14および図 1 2を参照して、 第 2の変形例では、 第 1の変形例に含まれる スィッチ SW1に代えてスィツチ SW2が設けられる。 スィッチ SW2はスィッ チ SW2A, SW2Bを含む。
スィツチ SW2 Aは充放電ュニット 50の出力線 L 1とバッテリ B Aの正極と の間の接続および非接続を選択するためのスィッチである。 スィッチ SW2Bは 充放電ュニット 50の出力線 L 1とバッテリ BBの正極との間の接続および非接 続を選択するためのスィツチである。
制御装置 30は、 スィッチ SW2に対して制御信号 SW2Cを送り、 スィッチ SW2 A, SW2 Bの各々を制御する。 制御装置 30はスィッチ SW2 A, SW 2 Bを独立に制御することができる。 したがって、 スィッチ SW2により充放電 ュニット 50の出力線 L 1をバッテリ BA, BBの両方の正極に接続するか否か を切換えることが可能になる。
図 15は、 図 14に示す制御装置 30の充電処理を説明するフローチャートで ある。 このフローチャートの処理は、 所定のメインルーチンから一定時間毎また は所定の条件が成立する毎に呼び出されて実行される。
図 15および図 14を参照して、 処理が開始されると、 ステップ S 41では制 御装置 30は、 電源装置 52から電源供給があるかどうかを判定する。 ステップ S 41の処理は図 4のステップ S 1の処理と同様である。
電源装置 52から電源供給がある場合 (ステップ S 41において YE S) 、 処 理はステップ S 42に進み、 そうでない場合 (ステップ S 41において NO) 、 処理はステップ S 41に戻る。
ステップ S 42において、 制御装置 30はシステムメインリレーをオンする。 すなわち制御装置 30は、 システムメインリ レー SMR 3 A, S MR 3 Bに対し て制御信号 CT 3A, CT 3Bをそれぞれ送り、 これらのシステムメインリ レー をオンさせる。
ステップ S 43において、 制御装置 30は制御信号 SW2 Cをスィツチ SW2 に送り、 スィッチ SW2 A, SW2 Bをともにオンしてバッテリ BA, B Bを充 電する。
ここで、 バッテリ BAがバッテリ BBより蓄電容量が小さいため、 ノくッテリ B Aの SO Cはバッテリ BBの SOCより先に所定値に達すると考えられる。 そこ で、 ステップ S 44において制御装置 30はバッテリ B Aの SO Cが所定値に達 したか否かを判定する。 バッテリ B Aの SOCが所定値に達した場合 (ステップ S 44において YES) 、 処理はステップ S 45に進み、 そうでない場合 (ステ ップ S 44において NO) 、 ステップ S 44の処理が繰返して実行される。
ステップ S 45において、 制御装置 30はスィッチ SW2 A (およびバッテリ B A側のシステムメインリレー SMR 3 A) をオフさせてバッテリ B Aの充電を 終了する。
ステップ S 46において、 制御装置 30はバッテリ B Bの SO Cが所定値に達 したか否かを判定する。 バッテリ BBの SOCが所定値に達した場合 (ステップ S 46において YES) 、 処理はステップ S 47に進み、 そうでない場合 (ステ ップ S 46において NO) 、 ステップ S 46の処理が繰返して実行される。
ステップ S 47において、 制御装置 30はスィツチ SW2 Bおよびバッテリ B B側のシステムメインリレー SMR 3 Bをオフさせる。 これによりバッテリ BB の充電が終了する。 ステップ S 47の処理が終了すると全体の処理が終了する。 このように変形例 2によれば、 バッテリ BA, BBを同時に充電する期間を設 けることが可能になるので、 バッテリ BA, BBの充電に要する時間を短くする ことができる。 また、 ノくッテリ BA, B Bにそれぞれ対応してスィッチ SW2A, SW2Bが設けられ、 かつ制御装置 30がスィッチ SW2 A, SW2Bを独立に 制御するので、 バッテリ BBの充電が終わるよりも先にバッテリ B Aの充電を終 わらせることができる。 これによりバッテリ BAの過充電を防ぐことができる。 バッテリ B Aが過充電になるとバッテリ B Aの寿命や性能に影響を及ぼす可能性 があるが、 変形例 2によればそのような問題が生じるのを防ぐことができる。 なお、 制御装置 30がスィッチ SW2 A, SW2 Bを同時にオフさせてバッテ リ BA, BBの充電を同時に終了させてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。

Claims

請求の範囲
1 . 外部電源により充電される電源装置であって、
充放電可能であり、 かつ第 1のノードに接続される第 1の蓄電装置と、 第 2のノードに接続される負荷と、
前記第 1のノードと前記第 2のノードとの間で電圧を変換する第 1の電圧変換 部と、
充放電可能であり、 かつ第 3のノードに接続される第 2の蓄電装置と、 前記第 3のノードと前記第 2のノードとの間で電圧を変換する第 2の電圧変換 部と、
前記外部電源から受ける電力を前記第 1のノードに伝達する電力伝達部とを備 える、 電源装置。
2 . 前記電源装置は、
前記第 1の蓄電装置と前記第 1のノードとの接続を遮断可能な第 1の接続部と、 前記第 2の蓄電装置と前記第 3のノードとの接続を遮断可能な第 2の接続部と、 前記第 1および第 2の接続部と、 前記第 1および第 2の電圧変換部とを制御す る制御部とをさらに備え、
前記制御部は、 前記第 1および第 2の接続部を遮断状態および接続状態にそれ ぞれ設定し、 かつ、 前記第 3のノードの電圧が所望の充電電圧となるように前記 第 1および第 2の電圧変換部を制御して、 前記第 2の蓄電装置を充電する、 請求 の範囲第 1項に記載の電源装置。
3 . 前記外部電源は、 直流電源であり、
前記電力伝達部は、 前記直流電源からの直流電圧を前記第 1のノードに伝達す る、 請求の範囲第 2項に記載の電源装置。
4 . 前記外部電源は、 交流電源であり、
前記電力伝達部は、
前記交流電源から出力される交流電圧を直流電圧に変換する変換回路を含む、 請求の範囲第 2項に記載の電源装置。
5 . 前記電力伝達部は、 前記第 1および第 3のノードの中から接続先を選択可 能であり、
前記制御部は、 前記電力伝達部が前記第 3のノードに接続されている場合には、 前記第 1および第 2の接続部を接続状態および遮断状態にそれぞれ設定し、 かつ、 前記第 1のノードの電圧が所望の充電電圧となるように前記第 1および第 2の電 圧変換部を制御して、 前記第 1の蓄電装置を充電する、 請求の範囲第 2項に記載 の電源装置。
6 . 前記制御部により制御されて、 前記電力伝達部の接続先を前記第 1および 前記第 3のノードの間で切換える切換部をさらに備える、 請求の範囲第 5項に記 載の電源装置。
7 . 前記第 1の蓄電装置の蓄電容量は、 前記第 2の蓄電装置の蓄電容量よりも 小さい、 請求の範囲第 2項に記載の電源装置。
8 . 前記制御部は、 前記第 2の蓄電装置の充電終了後に、 前記第 1の接続部を 接続状態にするとともに前記第 1および第 2の電圧変換部を制御して、 前記第 2 の蓄電装置に蓄えられた電力を前記第 1の蓄電装置に供給することにより、 前記 第 1の蓄電装置を充電する、 請求の範囲第 7項に記載の電源装置。
9 . 前記制御部は、 前記第 1および第 2の接続部を接続状態および遮断状態に それぞれ設定して、 前記第 1の蓄電装置を充電する、 請求の範囲第 2項に記載の 電源装置。
1 0 . 前記第 1の蓄電装置の蓄電容量は、 前記第 2の蓄電装置の蓄電容量より も大きい、 請求の範囲第 9項に記載の電源装置。
1 1 . 前記第 1および第 2の蓄電装置の各々は、 正極および負極を有し、 前記第 1の接続部は、 前記第 1の蓄電装置の正極を前記第 1のノードに接続し、 前記第 2の接続部は、 前記第 2の蓄電装置の正極を前記第 3のノードに接続し、 前記電源装置は、
接地線と、
前記接地線と前記第 1の蓄電装置の負極とを接続する第 3の接続部と、 前記接地線と前記第 2の蓄電装置の負極とを接続する第 4の接続部とをさらに 備え、
前記電力伝達部は、 前記第 1のノードに接続される第 1の出力線と、
前記第 1の蓄電装置の負極に接続される第 2の出力線とを含む、 請求の範囲第 1 0項に記載の電源装置。
1 2 . 前記電力伝達部には、 前記外部電源に代えて、 前記第 1および第 2の蓄 電装置の少なくとも一方からの電力を使用する外部負荷が接続され、
前記制御部は、 前記第 1および第 2の接続部の少なくとも一つの接続部を接続 状態に設定して、 前記第 1および第 2の蓄電装置のうち前記少なくとも一つの接 続部に対応する蓄電装置からの電力を前記外部負荷に供給する、 請求の範囲第 2 項に記載の電源装置。
1 3 . 前記電力伝達部の接続先を、 前記第 1および第 3のノードの間で切換え る切換部をさらに備える、 請求の範囲第 1項に記載の電源装置。
1 4 . 前記第 1および第 2の蓄電装置の各々は、 正極および負極を有し、 前記第 1および第 2の蓄電装置の正極は、 前記第 1および第 3のノードにそれ ぞれ接続され、
前記電力伝達部は、
第 1の出力線と、
前記第 1の蓄電装置の負極に接続される第 2の出力線とを有し、
前記電源装置は、
前記第 1の出力線と前記第 1のノードとの間の接続および非接続を切換える第 1の切換部と、
前記第 1の出力線と前記第 3のノードとの間の接続および非接続を切換える第 2の切換部と、
前記第 1および第 2の切換部を制御する制御部とをさらに備え、
前記制御部は、 前記第 1および第 2の切換部をともに接続状態に設定して、 前 記第 1および第 2の蓄電装置を充電する、 請求の範囲第 1項に記載の電源装置。
1 5 . 前記第 1の蓄電装置の蓄電容量は、 前記第 2の蓄電装置の蓄電容量より ち大さく、
前記制御部は、 前記第 2の蓄電装置の充電状態が所定状態に達した場合には、 前記第 2の切換部を非接続状態に設定して、 前記第 2の蓄電装置の充電を終了す る、 請求の範囲第 1 4項に記載の電源装置。
1 6 . 車両であって、
前記車両の外部に設けられた外部電源により充電される電源装置を備え、 前記電源装置は、
充放電可能であり、 かつ第 1のノードに接続される第 1の蓄電装置と、 第 2のノードに接続される負荷と、
前記第 1のノードと前記第 2のノードとの間で電圧を変換する第 1の電圧変換 部と、
充放電可能であり、 かつ第 3のノードに接続される第 2の蓄電装置と、 前記第 3のノードと前記第 2のノードとの間で電圧を変換する第 2の電圧変換 部と、
前記外部電源から受ける電力を前記第 1のノードに伝達する電力伝達部とを含 む、 車両
1 7 . 前記電源装置は、
前記第 1の蓄電装置と前記第 1のノードとの接続を遮断可能な第 1の接続部と、 前記第 2の蓄電装置と前記第 3のノードとの接続を遮断可能な第 2の接続部と、 前記第 1および第 2の接続部と、 前記第 1および第 2の電圧変換部とを制御す る制御部とをさらに含み、
前記制御部は、 前記第 1および第 2の接続部を遮断状態および接続状態にそれ ぞれ設定し、 かつ、 前記第 3のノードの電圧が所望の充電電圧となるように前記 第 1および第 2の電圧変換部を制御して、 前記第 2の蓄電装置を充電する、 請求 の範囲第 1 6項に記載の車両。
1 8 . 前記外部電源は、 直流電源であり、
前記電力伝達部は、 前記直流電源からの直流電圧を前記第 1のノードに伝達す る、 請求の範囲第 1 7項に記載の車両。
1 9 . 前記外部電源は、 交流電源であり、
前記電力伝達部は、
前記交流電源から出力される交流電圧を直流電圧に変換する変換回路を有する、 請求の範囲第 1 7項に記載の車両。
2 0 . 前記電力伝達部は、 前記第 1および第 3のノードの中から接続先を選択 可能であり、
前記制御部は、 前記電力伝達部が前記第 3のノードに接続されている場合には、 前記第 1および第 2の接続部を接続状態および遮断状態にそれぞれ設定し、 かつ、 前記第 1のノードの電圧が所望の充電電圧となるように前記第 1および第 2の電 圧変換部を制御して、 前記第 1の蓄電装置を充電する、 請求の範囲第 1 7項に記 載の車両。
2 1 . 前記電源装置は、
前記制御部により制御されて、 前記電力伝達部の接続先を前記第 1および前記 第 3のノードの間で切換える切換部をさらに含む、 請求の範囲第 2 0項に記載の 車両。
2 2 . 前記第 1の蓄電装置の蓄電容量は、 前記第 2の蓄電装置の蓄電容量より も小さい、 請求の範囲第 1 7項に記載の車両。
2 3 . 前記制御部は、 前記第 2の蓄電装置の充電終了後に、 前記第 1の接続部 を接続状態にするとともに前記第 1および第 2の電圧変換部を制御して、 前記第 2の蓄電装置に蓄えられた電力を前記第 1の蓄電装置に供給することにより、 前 記第 1の蓄電装置を充電する、 請求の範囲第 2 2項に記載の車両。
2 4 . 前記制御部は、 前記第 1および第 2の接続部を接続状態および遮断状態 にそれぞれ設定して、 前記第 1の蓄電装置を充電する、 請求の範囲第 1 7項に記 載の車両。
2 5 . 前記第 1の蓄電装置の蓄電容量は、 前記第 2の蓄電装置の蓄電容量より も大きい、 請求の範囲第 2 4項に記載の車両。
2 6 . 前記第 1および第 2の蓄電装置の各々は、 正極および負極を有し、 前記第 1の接続部は、 前記第 1の蓄電装置の正極を前記第 1のノードに接続し、 前記第 2の接続部は、 前記第 2の蓄電装置の正極を前記第 3のノードに接続し、 前記電源装置は、
接地線と、
前記接地線と前記第 1の蓄電装置の負極とを接続する第 3の接続部と、 前記接地線と前記第 2の蓄電装置の負極とを接続する第 4の接続部とをさらに 含み、
前記電力伝達部は、
前記第 1のノードに接続される第 1の出力線と、
前記第 1の蓄電装置の負極に接続される第 2の出力線とを有する、 請求の範囲 第 2 5項に記載の車两。
2 7 . 前記電力伝達部には、 前記外部電源に代えて、 前記第 1および第 2の蓄 電装置の少なぐとも一方からの電力を使用する外部負荷が接続され、
前記制御部は、 前記第 1および第 2の接続部の少なくとも一つの接続部を接続 状態に設定して、 前記第 1および第 2の蓄電装置のうち前記少なくとも一つの接 続部に対応する蓄電装置からの電力を前記外部負荷に供給する、 請求の範囲第 1 7項に記載の車両。
2 8 . 前記電源装置は、
前記電力伝達部の接続先を、 前記第 1および第 3のノードの間で切換える切換 部をさらに含む、 請求の範囲第 1 6項に記載の車両。
2 9 . 前記第 1および第 2の蓄電装置の各々は、 正極および負極を有し、 前記第 1および第 2の蓄電装置の正極は、 前記第 1および第 3のノードにそれ ぞれ接続され、
前記電力伝達部は、
第 1の出力線と、
前記第 1の蓄電装置の負極に接続される第 2の出力線とを有し、
前記電源装置は、
前記第 1の出力線と前記第 1のノードとの間の接続および非接続を切換える第 1の切換部と、
前記第 1の出力線と前記第 3のノードとの間の接続および非接続を切換える第 2の切換部と、
前記第 1および第 2の切換部を制御する制御部とをさらに含み、
前記制御部は、 前記第 1および第 2の切換部をともに接続状態に設定して、 前 記第 1および第 2の蓄電装置を充電する、 請求の範囲第 1 6項に記載の電源装置。
3 0 . 前記第 1の蓄電装置の蓄電容量は、 前記第 2の蓄電装置の蓄電容量より も大きく、
前記制御部は、 前記第 2の蓄電装置の充電状態が所定状態に達した場合には、 前記第 2の切換部を非接続状態に設定して、 前記第 2の蓄電装置の充電を終了す る、 請求の範囲第 2 9項に記載の車両。
PCT/JP2007/065683 2006-09-29 2007-08-03 Power supply and vehicle having same WO2008041418A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07792328.2A EP2068431B1 (en) 2006-09-29 2007-08-03 Power supply and vehicle having same
US12/310,657 US8039987B2 (en) 2006-09-29 2007-08-03 Power source device and vehicle with power source device
BRPI0718370A BRPI0718370B1 (pt) 2006-09-29 2007-08-03 dispositivo de fonte de energia carregado por uma fonte de energia elétrica externa e veículo
CN2007800364913A CN101523709B (zh) 2006-09-29 2007-08-03 电源装置和具有电源装置的车辆
JP2008537430A JP4780195B2 (ja) 2006-09-29 2007-08-03 電源装置、および電源装置を備える車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-267259 2006-09-29
JP2006267259 2006-09-29

Publications (1)

Publication Number Publication Date
WO2008041418A1 true WO2008041418A1 (en) 2008-04-10

Family

ID=39268283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065683 WO2008041418A1 (en) 2006-09-29 2007-08-03 Power supply and vehicle having same

Country Status (8)

Country Link
US (1) US8039987B2 (ja)
EP (1) EP2068431B1 (ja)
JP (1) JP4780195B2 (ja)
KR (1) KR101066529B1 (ja)
CN (1) CN101523709B (ja)
BR (1) BRPI0718370B1 (ja)
RU (1) RU2412514C2 (ja)
WO (1) WO2008041418A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124535A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 車両の電源システムおよび車両
JP2010259220A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
US8049372B2 (en) * 2008-07-01 2011-11-01 GM Global Technology Operations LLC Precharging a high-voltage bus using a voltage-regulated power supply
KR101278505B1 (ko) * 2008-12-31 2013-07-02 주식회사 엘지화학 이종 배터리를 이용한 구동 제어장치
EP2351676A4 (en) * 2008-10-14 2018-01-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control device and control method
US10377259B2 (en) 2009-12-18 2019-08-13 General Electric Company Apparatus and method for rapid charging using shared power electronics
EP3641097A1 (en) * 2008-10-22 2020-04-22 General Electric Company Electric vehicle charging system
US10766372B2 (en) 2012-05-21 2020-09-08 General Electric Company Method and apparatus for charging multiple energy storage devices

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305553B2 (ja) 2007-10-23 2009-07-29 トヨタ自動車株式会社 電動車両
EP2100525A1 (en) 2008-03-14 2009-09-16 Philip Morris Products S.A. Electrically heated aerosol generating system and method
US8245801B2 (en) * 2009-11-05 2012-08-21 Bluways Usa, Inc. Expandable energy storage control system architecture
JP4915447B2 (ja) * 2009-12-25 2012-04-11 トヨタ自動車株式会社 バッテリの車両搭載構造
DE102010013569A1 (de) * 2010-03-30 2011-10-06 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Versorgungsschaltung für die elektrische Versorgung eines Fahrzeugs
JP5609226B2 (ja) * 2010-04-12 2014-10-22 トヨタ自動車株式会社 電源装置
DE112011102229T5 (de) * 2010-06-29 2013-06-06 Honda Motor Co., Ltd. Elektrisches Automobil
JP5314652B2 (ja) * 2010-09-27 2013-10-16 パナソニック株式会社 ブラシレスモータ駆動回路
BR112013023212A2 (pt) 2011-03-11 2017-01-03 Univ Utah State Método e aparelho para controlar conversores lcl usando técnicas de cancelamento de tensões assimétricas
KR101507952B1 (ko) * 2011-03-29 2015-04-07 현대중공업 주식회사 전기 굴삭기 시스템
KR101704829B1 (ko) * 2011-04-08 2017-02-08 현대중공업 주식회사 전기 굴삭기 시스템
KR101300058B1 (ko) * 2011-04-22 2013-08-29 린나이코리아 주식회사 취반기의 축전지 충/방전장치
KR101251875B1 (ko) * 2011-09-02 2013-04-10 기아자동차주식회사 차량용 고전압분배장치
US9140763B2 (en) 2011-09-19 2015-09-22 Utah State University Wireless power transfer test system
US9240270B2 (en) 2011-10-07 2016-01-19 Utah State University Wireless power transfer magnetic couplers
JP5198645B1 (ja) * 2011-11-22 2013-05-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2013112609A1 (en) 2012-01-23 2013-08-01 Utah State University Switch wear leveling
EP2965935B1 (en) 2014-06-17 2017-10-04 FERRARI S.p.A. Electric power system of a vehicle with electric propulsion
KR101451787B1 (ko) * 2014-06-19 2014-10-21 국방과학연구소 전기추진 차량의 고효율 전력변환 제어방법
WO2016035974A1 (ko) * 2014-09-02 2016-03-10 주식회사 엘지엠 전기추진시스템의 배터리 자동교환시스템
KR101646374B1 (ko) * 2014-11-04 2016-08-05 현대자동차주식회사 배터리 충전 장치 및 이를 이용한 차량간 충전 방법
CN104836496A (zh) * 2015-05-25 2015-08-12 江苏苏美达机电科技有限公司 一种直流发电机组
GB2537275B (en) * 2015-10-16 2018-02-14 Ford Global Tech Llc A vehicle electrical system
JP6314967B2 (ja) * 2015-12-24 2018-04-25 トヨタ自動車株式会社 電力システム
JP6410757B2 (ja) * 2016-05-23 2018-10-24 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
JP6493363B2 (ja) * 2016-11-10 2019-04-03 トヨタ自動車株式会社 電気自動車
JP6751512B2 (ja) 2016-12-08 2020-09-09 株式会社オートネットワーク技術研究所 車載用電源装置
HUE051164T2 (hu) * 2017-02-09 2021-03-01 Samsung Sdi Co Ltd Kettõs tápellátó rendszer
JP7003706B2 (ja) * 2018-02-06 2022-01-21 トヨタ自動車株式会社 電源システム
RU180247U1 (ru) * 2018-03-12 2018-06-06 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Автоматический повышающий преобразователь напряжения
DE102018204845A1 (de) * 2018-03-29 2019-10-02 Audi Ag Multiphasenwandler
JP7163714B2 (ja) * 2018-10-18 2022-11-01 トヨタ自動車株式会社 車両の電源装置
JP7252807B2 (ja) * 2019-03-27 2023-04-05 株式会社Subaru 電源システム
JP7074725B2 (ja) * 2019-07-18 2022-05-24 矢崎総業株式会社 電源システム、dcdcコンバータ装置、及び充電方法
KR102317771B1 (ko) * 2019-12-31 2021-10-27 (주)지필로스 3상 계통 연계를 위한 연료전지 전력변환장치
CN113879139A (zh) * 2020-07-02 2022-01-04 郑州宇通客车股份有限公司 一种分布式电动客车电池系统及电动客车
CN114498866B (zh) * 2022-04-19 2022-07-29 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器
CN115503487A (zh) * 2022-11-23 2022-12-23 深圳市长天智能有限公司 新能源车电池包智能断路单元控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176034A (ja) * 1984-09-20 1986-04-18 トヨタ自動車株式会社 電気自動車の補機バツテリ−充電装置
JPH09233710A (ja) 1996-02-26 1997-09-05 Sansha Electric Mfg Co Ltd 蓄電池化成用充放電装置
JP2000175368A (ja) * 1998-12-03 2000-06-23 Toyota Motor Corp 蓄電池の制御装置
JP2005229733A (ja) * 2004-02-13 2005-08-25 Nipron Co Ltd 電源故障検出回路
JP2006006033A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp 電源システムおよびそれを備えた車両ならびに電源システムの制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
JPH08107608A (ja) 1994-10-04 1996-04-23 Kansai Electric Power Co Inc:The バッテリ充電装置兼用モータ駆動装置及び電気自動車
JP2001157384A (ja) 1999-11-25 2001-06-08 Nissin Electric Co Ltd 電力貯蔵装置
JP4125855B2 (ja) 2000-06-16 2008-07-30 株式会社三社電機製作所 蓄電池用充放電装置
US6791295B1 (en) * 2003-02-20 2004-09-14 Ford Global Technologies, Llc Method and apparatus for charging a high voltage battery of an automotive vehicle having a high voltage battery and a low voltage battery
JP3661689B2 (ja) * 2003-03-11 2005-06-15 トヨタ自動車株式会社 モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP4385664B2 (ja) * 2003-07-08 2009-12-16 パナソニック株式会社 車両用電源装置
JP2005057826A (ja) 2003-08-01 2005-03-03 Masayuki Hattori 充放電装置、充放電方法および2次電池の特性評価装置
US7352154B2 (en) * 2004-01-14 2008-04-01 Vanner, Inc. Electrical system control for a vehicle
US7688029B2 (en) * 2005-11-08 2010-03-30 Eveready Battery Company, Inc. Portable battery powered appliance and method of operation
US7745025B2 (en) * 2006-02-14 2010-06-29 Mti Microfuel Cells Inc. Fuel cell based rechargable power pack system and associated methods for controlling same
US7839121B2 (en) * 2006-03-20 2010-11-23 Lg Electronics Inc. Apparatus and method for managing power of battery packs in a portable device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176034A (ja) * 1984-09-20 1986-04-18 トヨタ自動車株式会社 電気自動車の補機バツテリ−充電装置
JPH09233710A (ja) 1996-02-26 1997-09-05 Sansha Electric Mfg Co Ltd 蓄電池化成用充放電装置
JP2000175368A (ja) * 1998-12-03 2000-06-23 Toyota Motor Corp 蓄電池の制御装置
JP2005229733A (ja) * 2004-02-13 2005-08-25 Nipron Co Ltd 電源故障検出回路
JP2006006033A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp 電源システムおよびそれを備えた車両ならびに電源システムの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2068431A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049372B2 (en) * 2008-07-01 2011-11-01 GM Global Technology Operations LLC Precharging a high-voltage bus using a voltage-regulated power supply
EP2351676A4 (en) * 2008-10-14 2018-01-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control device and control method
EP3641097A1 (en) * 2008-10-22 2020-04-22 General Electric Company Electric vehicle charging system
US11752887B2 (en) 2008-10-22 2023-09-12 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US10994623B2 (en) 2008-10-22 2021-05-04 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
JP2010124535A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 車両の電源システムおよび車両
KR101278505B1 (ko) * 2008-12-31 2013-07-02 주식회사 엘지화학 이종 배터리를 이용한 구동 제어장치
JP2010259220A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
US10543755B2 (en) 2009-12-18 2020-01-28 General Electric Company Apparatus and method for rapid charging using shared power electronics
US10377259B2 (en) 2009-12-18 2019-08-13 General Electric Company Apparatus and method for rapid charging using shared power electronics
US11400820B2 (en) 2009-12-18 2022-08-02 General Electric Company Apparatus and method for rapid charging using shared power electronics
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics
US10766372B2 (en) 2012-05-21 2020-09-08 General Electric Company Method and apparatus for charging multiple energy storage devices
US11318852B2 (en) 2012-05-21 2022-05-03 General Electric Company Method and apparatus for charging multiple energy storage devices
US11697352B2 (en) 2012-05-21 2023-07-11 General Electric Company Method and apparatus for charging multiple energy storage devices

Also Published As

Publication number Publication date
US8039987B2 (en) 2011-10-18
EP2068431A1 (en) 2009-06-10
BRPI0718370A2 (pt) 2014-07-29
BRPI0718370B1 (pt) 2018-11-06
JP4780195B2 (ja) 2011-09-28
EP2068431A4 (en) 2012-12-19
RU2412514C2 (ru) 2011-02-20
RU2009116280A (ru) 2010-11-10
EP2068431B1 (en) 2015-01-07
US20100060080A1 (en) 2010-03-11
CN101523709A (zh) 2009-09-02
KR20090065542A (ko) 2009-06-22
JPWO2008041418A1 (ja) 2010-02-04
CN101523709B (zh) 2012-08-22
KR101066529B1 (ko) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4780195B2 (ja) 電源装置、および電源装置を備える車両
JP5267740B1 (ja) 車両の電源システム
JP4506571B2 (ja) 車両用電源システムおよび車両
JP6696408B2 (ja) 駆動システム
JP4900535B2 (ja) 車両の電力変換装置およびそれを搭載する車両
JP5024454B2 (ja) 電動車両の電源システムおよびその制御方法
KR101011074B1 (ko) 차량의 전원 장치 및 차량
JP4729612B2 (ja) 接続ユニットおよびそれを搭載する車両
WO2010050044A1 (ja) 電動車両の電源システムおよびその制御方法
EP2353920A1 (en) Electrically driven vehicle and electrically driven vehicle control method
US20120022738A1 (en) Electric powered vehicle and control method for the same
WO2007148531A1 (ja) 車両の電源装置およびそれを搭載する車両
JP2009131077A (ja) 車両の電源装置
JP2007143370A (ja) 充電装置、電動車両および充電システム
JP2007244124A (ja) 車両駆動用電源システム
JP2014068485A (ja) 電力供給システム、ならびにそれに用いられる車両および管理装置
JP2007174867A (ja) 車両用電源装置
JP2007274785A (ja) 車両駆動用電源システム
JP2009194986A (ja) 車両の充電装置
JP2010115050A (ja) 車両の電源システム
JP4518852B2 (ja) ハイブリッド自動車およびハイブリッド用駆動装置
CN113859004B (zh) 一种能量转换装置及其车辆
JP2008043100A (ja) 車両の電源装置、車両、車両の電源装置の制御方法およびその制御方法をコンピュータに実行させるためのプログラム、そのプログラムをコンピュータ読み取り可能に記録した記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036491.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12310657

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008537430

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007792328

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097008694

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009116280

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0718370

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090330