WO2008032451A1 - Procédé de mesure de propriétés élastiques de fil à tricoter et machine à tricoter - Google Patents

Procédé de mesure de propriétés élastiques de fil à tricoter et machine à tricoter Download PDF

Info

Publication number
WO2008032451A1
WO2008032451A1 PCT/JP2007/001000 JP2007001000W WO2008032451A1 WO 2008032451 A1 WO2008032451 A1 WO 2008032451A1 JP 2007001000 W JP2007001000 W JP 2007001000W WO 2008032451 A1 WO2008032451 A1 WO 2008032451A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
knitting
tension
range
knitting yarn
Prior art date
Application number
PCT/JP2007/001000
Other languages
English (en)
French (fr)
Inventor
Toshihide Wada
Takeo Yamagata
Original Assignee
Shima Seiki Mfg., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shima Seiki Mfg., Ltd. filed Critical Shima Seiki Mfg., Ltd.
Priority to EP07805855A priority Critical patent/EP2080828B1/en
Priority to CN2007800300235A priority patent/CN101501261B/zh
Priority to JP2008534245A priority patent/JP5161093B2/ja
Priority to KR1020087031494A priority patent/KR101356438B1/ko
Publication of WO2008032451A1 publication Critical patent/WO2008032451A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B7/00Flat-bed knitting machines with independently-movable needles
    • D04B7/16Flat-bed knitting machines with independently-movable needles for producing fabrics consisting of, or incorporating, elastic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/48Thread-feeding devices
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/48Thread-feeding devices
    • D04B15/50Thread-feeding devices for elastic threads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/365Filiform textiles, e.g. yarns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables

Definitions

  • the present invention relates to a method for measuring elastic properties of a knitting yarn and a knitting machine when elastic yarn is used for knitting a knitted fabric with a knitting machine.
  • an elastic yarn which is called a rubber yarn or the like, has a high elongation rate as a knitting yarn in some cases.
  • Elastic yarn is used in combination with other fibers covering the surface side, as it is, with stretchable fibers such as polyurethane fibers and polyether ester fibers, or as core fibers such as covered yarns and core spun yarns.
  • the supply of the rubber yarn to the knitting machine is performed by a rubber yarn supply device equipped with a motor that can rotate forward and backward, and the motor is rotated in reverse to apply tension to the rubber yarn in the direction opposite to the feed direction.
  • the technique to hang is also disclosed (for example, refer to Patent Document 1). By applying tension in the opposite direction, it is possible to form a narrowed rubber width portion on a knitted fabric such as socks.
  • a technique is disclosed in which an elastic yarn is used as a knitting yarn and the gauge texture is partially changed in the knitted fabric to be knitted by controlling the supply length and yarn tension (see, for example, Patent Document 2).
  • a configuration of a knitting yarn supply device that can supply knitting yarn to a knitting machine with a desired tension is also disclosed (for example, see Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 3-1 30 4 4 3
  • Patent Document 2 Table 2 0 0 4— 0 9 4 7 1 2
  • Patent Document 3 US Patent No. 3 8 5 8 4 16
  • the tensile tester measures the relationship between tension and elongation when a sample of a certain length is pulled. Also, trial knitting may be performed to knit the fabric under various conditions, and the characteristics may be judged based on the results. Such work is very labor and skill-intensive work. In addition, this work must be done each time the elastic thread used is changed.
  • An object of the present invention is to provide a method for measuring elastic properties of a knitting yarn and a knitting machine capable of self-evaluating the properties of the elastic yarn to be used with a knitting machine.
  • the present invention includes a yarn feeding device that supplies an elastic yarn as a knitting yarn to a knitting machine, and a yarn tension measuring device that measures a yarn tension in the middle of a supply path of a knitting yarn supplied by the yarn feeding device.
  • the length of the knitting yarn supplied by the yarn feeder is changed within the range of the supply path including the yarn tension measuring device from the yarn feeder,
  • the elastic characteristic of the knitting yarn is measured based on the relationship between the change in the length of the knitting yarn supplied to the range of the supply path and the change in the yarn tension measured by the yarn tension measuring device. This is a method for measuring elastic properties of a knitting yarn.
  • the yarn feeding device is capable of switching between sending the knitting yarn to the range of the supply path and returning from the range of the supply path
  • the yarn feeding device moves the knitting yarn into the supply route range until the yarn tension falls below a predetermined lower limit tension. Send it out
  • the rate of elongation of the knitting yarn under the measured yarn tension is calculated from the distance in the supply path range. It is characterized in that it is obtained as a value obtained by dividing the distance by the length obtained by subtracting the length of the knitting yarn sent out by the feeding device.
  • the elongation rate of the knitting yarn is obtained for each of a plurality of yarn tensions, and the relationship between the yarn tension and the elongation rate of the knitting yarn is interpolated, and the yarn tension is different from the measured yarn tension.
  • the elongation rate of the knitting yarn is obtained.
  • the yarn tension for obtaining the elongation percentage is:
  • the knitting yarn is once fed from the yarn feeding device to the range of the supply path until the yarn tension measured by the yarn tension measuring device falls below a predetermined lower limit, and then the knitting yarn is fed by the yarn feeding device.
  • the yarn tension measured by the yarn tension measuring device is the yarn tension at the time when it deviates from the predicted range based on the elastic characteristics.
  • the present invention relates to a yarn feeding device capable of detecting a length of supplying and supplying elastic yarn as a knitting yarn, and a yarn tension measurement for measuring the yarn tension of the knitting yarn in the course of supplying the knitting yarn.
  • a knitting machine including a device and a control device for controlling a yarn feeding device and a yarn tension device,
  • the control device is a knitting machine characterized in that a range of the supply path is set and control is performed so as to execute the elastic characteristic measurement method for a knitting yarn according to any one of the foregoing.
  • the yarn feeding device feeds the knitting yarn not subjected to yarn tension to the range of the supply path where the yarn tension is applied. Measurements can be taken with no force applied. At the moment when the yarn tension on the side of the supply path falls below a predetermined lower limit, the length of the knitting yarn without any tension is almost equal to the distance of the range of the supply path for sending the knitting yarn from the yarn feeder. Become. The length of the knitting yarn sent out until the yarn tension drops below the lower limit corresponds to the elongation corresponding to the yarn tension at the start of sending the knitting yarn from the yarn feeding device. The difference between the distance of the supply path range and the measured length of the knitting yarn is the length of the knitting yarn existing under the yarn tension at the start of feeding, and the length is near 0, so the distance is divided by this length. Thus, the elongation can be easily calculated.
  • the correspondence between yarn tension and elongation can be calculated by interpolation.
  • FIG. 1 is a block diagram showing a simplified configuration of a flat knitting machine 1 capable of executing a method for measuring elastic properties of a knitting yarn as one embodiment of the present invention.
  • 16 is a graph showing an example of a time change in yarn tension when 16 is reversed.
  • 6 is a graph showing an example of a change in yarn tension when 6 is rotated forward.
  • FIG. 4 is a flowchart showing a schematic procedure of a method for measuring elastic properties of a knitting yarn as one embodiment of the present invention.
  • FIG. 5 is a graph showing the time change of the yarn tension T when measuring the elastic properties of the knitting yarn 5 according to FIG.
  • FIG. 6 is a graph showing the concept of interpolating the relationship between yarn tension and elongation at step s 11 in FIG.
  • FIG. 1 shows a simplified configuration of a flat knitting machine 1 capable of executing a method for measuring elastic properties of a knitting yarn as one embodiment of the present invention.
  • the flat knitting machine 1 is generally formed of a knitting machine body 2 and a yarn feeder 3.
  • the knitting machine body 2 includes a needle bed 4 having a large number of knitting needles.
  • the knitting yarn 5 is supplied to the knitting needle that performs the knitting operation from the yarn supplying device 3 through the supply path via the carrier 6.
  • the gripper 7 which is a yarn end holding device, for example, in Japanese Patent Application Laid-Open No. 2 0 0 5-0 8 9 9 3.
  • the knitting machine body 2 is also provided with a control device 10.
  • the control unit 10 has an input unit
  • the input unit 1 1 receives instructions from the operator of the flat knitting machine 1 and data of the knitted fabric to be knitted. Input can be done via keyboard operation, data communication, or us
  • the knitting control unit 1 2 controls each part of the knitting machine body 2 to perform knitting of the knitted fabric.
  • the yarn feeding control unit 1 3 controls the yarn feeding roller 16 of the yarn feeding device 3 to supply the knitting yarn 5.
  • the storage unit 1 4 stores the data of the knitted fabric to be knitted, and the actual production status. Data is accumulated.
  • a yarn feed roller 16 is provided in the yarn feeder 3 that can supply the knitting yarn 5 from 1 5. If the yarn feed roller 16 is rotated forward, the knitting yarn 5 can be sent out, and if the yarn feed roller 16 is reversed, the knitting yarn 5 can be returned.
  • the rotation amount and the feed length of the knitting yarn 5 correspond to each other as long as slip does not occur.
  • the yarn feed roller 1 6 is rotated in the reverse direction. The yarn tension of the knitting yarn 5 between 6 and the gritsba 7 or the knitted fabric can be increased.
  • Fig. 2 is a test measurement with the flat knitting machine 1 of Fig. 1 assuming that the yarn end of the knitting yarn 5 is held by the gripper 7 and the yarn feed roller 1 6 is reversed at a constant angular velocity.
  • An example of the time change of the thread tension is shown.
  • a yarn end holding device corresponding to gripper 7 is arranged without passing through carrier 6 from yarn feed roller 16 so that free length W is 1 O O m m.
  • a tension meter 17 is provided between the yarn feed roller 16 and the yarn end holding device.
  • the free length W of the knitting yarn 5 from the yarn feed roller 16 to the gripper 7 is about 1 m.
  • the rotation speed of the thread feed roller 16 is low, the thread tension increases rapidly after 25 seconds from the start of rotation. The yarn tension exceeds the upper limit measurable by the tension meter 1 7, and the knitting yarn 5 is cut in about 3 seconds, and the yarn tension returns to 0.
  • FIG. 3 shows the knitting yarn 5 shown in FIG. 1 with a free length W of 19 O mm and a yarn feed roller 16 until the yarn tension reaches 0.14 7 N (15 gf).
  • An example of the change in yarn tension is shown in the test in which the yarn feed roller 16 is rotated forward until the yarn tension is below the lower limit value near 0 after reverse rotation.
  • the change in the thread tension is the range where the thread tension is small. It is estimated that the error is large, and it looks similar to the change of the exponential function except for the range where this error is large.
  • the length of the knitting yarn 5 that is fed until the yarn feed roller 1 6 rotates forward and the yarn tension falls below the lower limit value near 0 corresponds to the length of the yarn feed roller 1 6 on the yarn cone 15 side. To do.
  • the length of the knitting yarn 5 fed from the yarn feed roller 16 is the length in the free length state.
  • the distance from the yarn feed roller 1 6 to the gripper 7 when the yarn tension is 0.1 47 N
  • the knitting yarn 5 having the free length W extends to the length of W + AW, so that the free length of the knitting yarn 5 existing between the yarn feed roller 16 and the gripper 7 in FIG. Is obtained by the following equation (2).
  • T aX (exp (t_b) -c) (6)
  • a, b, and c are constants.
  • FIG. 4 shows a schematic procedure of a method for measuring elastic properties of a knitting yarn as one embodiment of the present invention.
  • the procedure starts from step s0, and in step s1, the yarn end of the knitting yarn 5 is held by the gripper 7 as shown in FIG.
  • step s2 the yarn feeding roller 16 is rotated forward.
  • step s3 check whether the thread tension is below the lower limit. In principle, it is desirable to check whether the thread tension is zero or not. However, in practice, the thread tension measurement accuracy decreases in the range where the thread tension is near zero and becomes smaller. Is set in advance.
  • a small yarn tension may be applied.
  • step s2 If the yarn tension reaches such a small value, it is considered that the knitting yarn 5 is almost free. If the thread tension is not below the lower limit, continue forward rotation in step s2. That is, after the yarn end is held by the gripper 7, the yarn feed roller 16 is rotated forward until the yarn tension falls below the lower limit.
  • step s4 When it is confirmed in step s3 that the yarn tension is below the lower limit, in step s4, the yarn feed roller 16 is reversed and the knitting yarn 5 is returned. Since the knitting yarn 5 is returned to the yarn cone 16 side from the section of the distance W from the thread feed roller 16 force to the grits 7, the knitting yarn 5 extends on the gripper 7 side and the yarn tension increases.
  • the upper limit conditions for measuring the yarn tension such as the standard tension set based on the yarn tension range used when knitting the knitted fabric, or the maximum usable tension. Keep it.
  • step s5 it is determined whether the yarn tension satisfies the condition. If not satisfied, return to step s4.
  • the maximum tension is set as the condition, for example, if the deviation from the range expected to change according to the exponential function exceeds the predetermined standard, the maximum tension is determined and the condition in step s5 is satisfied. Can be used. In this manner, the maximum tension can be obtained from the yarn tension change state by reversing the yarn feed roller 16.
  • the obtained thread tension value T such as the maximum tension is stored in the storage unit 14 in FIG. 1 in step s6.
  • step s7 the yarn feed roller 16 is rotated forward again, and in step s8, it is confirmed that the yarn tension is below the lower limit.
  • the rotation amount of the thread feed roller 16 is memorized. Continue forward rotation of step s7 until the thread tension falls below the lower limit in step s8.
  • the feed amount d of the knitting yarn 5 is calculated based on the rotation amount of the yarn feed roller 16 in step s9. As described above, if the yarn tension on the yarn cone 15 side of the yarn feed roller 16 is set to around 0, the feed amount d can be directly obtained from the rotation amount.
  • the rotation amount is proportional to the rotation time, and therefore the feed amount d can be obtained by measuring the time.
  • the rotational speed changes greatly, including acceleration at start-up and deceleration at stop, the amount of rotation can be reduced by detecting the angular displacement of the rotation axis of the thread feed roller 16 with an encoder. It is desirable to ask directly.
  • step s 1 the free length of the knitting yarn 5 existing between the yarn feeder 1 6 and the gripper 7 at the yarn tension value T stored in step s 6 is calculated as W_d, and the elongation is obtained.
  • the rate is calculated as W / (W-d)%, and the relationship between the thread tension, the elongation rate, and the feed amount is calculated.
  • step s 1 based on the calculated elongation at thread tension value T, the elongation at other thread tensions is obtained by interpolation.
  • step s 1 2 the procedure for measuring the elastic properties of the knitting yarn is completed.
  • a program can be set to 10 in advance and automatically executed.
  • the gripper 7 is used to hold the yarn end of the knitting yarn 5,
  • the gripper 7 may hold the middle of the knitting yarn 5 from the knitted fabric to the yarn feed roller 16.
  • the knitting yarn 5 can be hooked to a knitting needle so that it does not come off during the test, or the knitted knitted fabric itself can be held for measuring elastic properties.
  • FIG. 5 shows a change with time of the yarn tension T when measuring the elastic characteristics of the knitting yarn 5 according to FIG. Since it is assumed that the yarn feed roller 16 is rotated at a constant speed, the yarn tension T changes equally even if the feed amount changes instead of the time change. Until time t1, follow the procedure from step s1 to step s3 in Fig. 4 to rotate the yarn feed roller 16 forward so that the yarn tension is below the lower limit near 0. From time t 1 to t 2, the yarn feed roller 16 is reversed according to the procedure from step s 4 to step s 6 in FIG. 4 to obtain the yarn tension T s that satisfies a certain condition. From time t2 to t3, follow the procedure from step s7 to step s9 in Fig. 4 to rotate the yarn feed roller 16 forward and calculate the return amount d until the yarn tension falls below the lower limit. .
  • the return amount d can also be obtained from a change in yarn tension from time t1 to time t2. If the change in the yarn tension in this time range follows a constant function such as an exponential function with good accuracy, the function is based on the time of t 2 _ t 1 and the angular velocity ⁇ and radius r of the yarn feed roller 16.
  • the return amount d can be calculated as the length of the feed roller 16 sent from the gripper 7 side to the yarn cone 15 side.
  • Yarn feed port It is also possible to measure the return amount d by installing a measuring roller on the side of the yarn cone 15 of La 1 6.
  • the elongation rate can be obtained for each of the plurality of yarn tensions from the return amount corresponding to each yarn tension. .
  • FIG. 6 assumes that the elongation rate at the yarn tension T s obtained in FIG. 5 is 400%, and the relationship between the yarn tension and the elongation rate at step S 11 in FIG. The concept of interpolation is shown. Since the elongation when the yarn tension is 0 is 100%, the elongation is considered to be proportional to the yarn tension between the elongation of 100% and the elongation of 400%. That is, when the yarn tension is 1/3 of T s, the elongation is 200%, and when the yarn tension is 2/3 of T s, the elongation is 30%.
  • the feed rate of knitting yarn 5 is 1 stitch for the feed rate at an elongation rate of 100%, and 1/2 stitch at the rate of elongation of 1/3 T s of yarn tension, and the yarn tension of T s At an elongation rate of 400%, it becomes 1/4 stitch.
  • the relationship between the yarn tension and the elongation rate can be obtained by plotting the data on the graph.
  • the elongation for other yarn tensions can be determined by interpolating the relationship obtained as a graph.
  • the present invention can be suitably applied to, for example, a case where a tubular knitted fabric is knitted into a taper shape with a flat knitting machine 1 as shown in FIG.
  • the taper-shaped part is knitted by gradually changing the tension of the elastic yarn, but by using the knitting yarn 5 that grasps the relationship between the yarn tension and the elongation rate, the shape reproducibility can be improved.
  • it is not only applied when elastic yarn is used as the knitting yarn 5, but can be generally applied when it is necessary to grasp the elastic characteristics of the knitting yarn with a knitting machine for knitting the knitted fabric. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Knitting Machines (AREA)
  • Socks And Pantyhose (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Description

明 細 書
編糸の弾性特性測定方法および編機
技術分野
[0001 ] 本発明は、 編機での編地の編成に弾性糸を使用する場合の編糸の弾性特性 測定方法および編機に関する。
背景技術
[0002] 従来から、 編機で編成する編地のうち、 伸縮性を大きくする部分には、 編 糸として伸び率が大きく、 ゴム糸などとも呼ばれる弾性糸を使用する場合が ある。 弾性糸は、 ポリウレタン繊維やポリエーテル■エステル系繊維などの 伸縮性のある繊維がそのままで、 またはカバ一ドヤーンやコアスパンヤーン などの芯繊維として、 表面側を覆う他繊維との複合で使用される。
[0003] 編機へのゴム糸の給糸を、 正逆回転可能なモータを具備したゴム糸供給装 置によって行い、 モータを逆回転させてゴム糸に送り方向に対して逆方向に 張力を掛ける技術も開示されている (たとえば、 特許文献 1参照。 ) 。 逆方 向に張力を掛けることによって、 靴下などの編地に、 狭く収縮したゴム幅部 分を形成することができる。 また、 編糸として弾性糸を使用し、 供給長さと 糸張力とを制御することによって、 編成される編地で部分的にゲージ風合い を変化させる技術も開示されている (たとえば、 特許文献 2参照。 ) 。 所望 の張力で編糸を編機に供給することが可能な編糸供給装置の構成も開示され ている (たとえば、 特許文献 3参照。 ) 。
特許文献 1 :特開平 3— 1 3 0 4 4 3号公報
特許文献 2:再表 2 0 0 4— 0 9 4 7 1 2号公報
特許文献 3:米国特許第 3 8 5 8 4 1 6号公報
発明の開示
発明が解決しょうとする課題
[0004] 特許文献 1や特許文献 2に開示されているように、 弾性糸を使用すれば、 編成時の張力を変化させて、 編地に変化を与えることができる。 ただし、 こ の変化を制御するためには、 使用する弾性糸の特性を求めるという事前の準 備作業が必要である。 必要な弾性糸の特性としては、 張力と伸び率や送り量 との関係などがある。 編糸の給糸経路でスリップを起す可能性や、 糸切れを 起す可能性がある場合などは、 最大張力を測定することが必要となる。 ただ し、 糸切れやスリップは、 実際に使用する編機を使用して、 比較的容易に判 断することができる。 張力と伸び率や送り量との関係は、 引張り試験機など を用いて測定する必要がある。 引張り試験機では、 一定の長さの試料を引張 るときの張力と伸びとの関係を測定する。 また、 種々の条件で編地を編成す る試編みを行い、 その結果に基づいて特性を判断することもある。 このよう な作業は、 非常に手間と熟練を要する作業である。 さらに、 この作業は、 使 用する弾性糸が変更されれば、 その度に行う必要がある。
[0005] 本発明の目的は、 使用する弾性糸の特性を編機で自己評価することが可能 な編糸の弾性特性測定方法および編機を提供することである。
課題を解決するための手段
[0006] 本発明は、 編機に、 弾性糸を編糸として供給する糸送り装置と、 糸送り装 置が供給する編糸の供給経路の途中で糸張力を測定する糸張力測定装置とを 備えておき、
糸送り装置から糸張力測定装置を含む供給経路の範囲で、 糸送り装置が供 給する編糸の長さを変化させ、
該供給経路の範囲に供給される編糸の長さの変化と、 糸張力測定装置で測 定する糸張力の変化との関係に基づいて、 編糸の弾性特性を測定することを 特徴とする編糸の弾性特性測定方法である。
[0007] また本発明で、 前記糸送り装置は、 編糸の前記供給経路の範囲への送り出 しと、 該供給経路の範囲側からの戻しとが切換え可能であり、
前記糸張力測定装置が編糸を該供給経路の範囲側から戻して糸張力を測定 してから、 糸張力が予め定める下限張力以下になるまで糸送り装置が該供給 経路の範囲へ編糸を送り出して、
測定した糸張力下での編糸の伸び率を、 該供給経路の範囲の距離から糸送 り装置で送り出した編糸の長さを差引いた長さで該距離を除算した値として 求めることを特徴とする。
[0008] また本発明では、 複数の糸張力について前記編糸の伸び率をそれぞれ求め 、 糸張力と編糸の伸び率との関係を補間して、 測定した糸張力とは異なる糸 張力下での編糸の伸び率を求めることを特徴とする。
[0009] また本発明で、 前記伸び率を求める糸張力は、
いったん前記糸送り装置から編糸を前記供給経路の範囲側に、 前記糸張 力測定装置が測定する糸張力が予め定める下限以下になるまで送り出してか ら、 糸送り装置で編糸を該供給経路の範囲側から戻す際に、
糸張力測定装置によって測定される糸張力が弾性特性を前提として予測 される範囲から外れる時点の糸張力とすることを特徴とする。
[0010] さらに本発明は、 弾性糸を編糸として供給して供給する長さを検出可能な 糸送り装置と、 編糸を供給する経路の途中で編糸の糸張力を測定する糸張力 測定装置と、 糸送り装置および糸張力装置を制御する制御装置とを含む編機 であって、
制御装置は、 前記供給経路の範囲を設定して、 前述のいずれか 1つに記載 の編糸の弾性特性測定方法を実行するように制御することを特徴とする編機 である。
発明の効果
[001 1 ] 本発明によれば、 糸張力測定装置が途中に設けられる供給経路の範囲に糸 送り装置から編糸を送出し、 または戻す際に供給する編糸の長さの変化と、 糸張力測定装置で測定する糸張力の変化とに基づいて、 編糸の弾性特性を測 定するので、 編機を使用して編糸の弾性特性を測定することができる。 編地 の編成に使用する編機を使用して、 編糸の弾性特性を測定して自己評価する ことができるので、 事前の準備作業としての弾性特性の測定が不要となり、 編糸の弾性特性を把握しての精度の高い編地の編成が可能となる。
[0012] また本発明によれば、 糸送り装置は糸張力が掛つていない編糸を糸張力が 掛つている供給経路の範囲側に送り出すけれども、 送出す編糸の長さは糸張 力が掛つていない状態で計測することができる。 供給経路の範囲側の糸張力 が予め定める下限以下になる瞬間には、 糸張力が掛つていない編糸の長さが 糸送り装置から編糸を送出す供給経路の範囲の距離にほぼ等しくなる。 糸張 力が下限以下に低下するまでに計測した送り出す編糸の長さは、 糸送り装置 から編糸の送出しを開始する時点の糸張力に対応する伸びに相当する。 供給 経路の範囲の距離と計測した編糸の長さとの差が、 送出し開始時の糸張力下 に存在した編糸の糸張力 0付近での長さとなるので、 この長さで距離を除算 して伸び率を容易に算出することができる。
[0013] また本発明によれば、 種々の値の糸張力に対応する伸びを測定しないでも
、 補間によって糸張力と伸び率との対応関係を算出することができる。
[0014] さらに本発明によれば、 編機を使用して自動的に編糸の弾性特性を自己評 価することができる。
図面の簡単な説明
[0015] [図 1 ]本発明の実施の一形態としての編糸の弾性特性測定方法を実行可能な横 編機 1の構成を簡略化して示すブロック図である。
[図 2]図 1の横編機 1で、 編糸 5の糸端をグリッパ 7で保持し、 糸送りローラ
1 6を逆転させる場合の糸張力の時間変化の一例を示すグラフである。
[図 3]図 1の横編機 1で、 糸送りローラ 1 6を逆転させた後、 糸送りローラ 1
6を正転させるときの糸張力の変化の一例を示すグラフである。
[図 4]本発明の実施の一形態としての編糸の弾性特性測定方法の概略的な手順 を示すフローチヤ一トである。
[図 5]図 4に従って、 編糸 5の弾性特性を測定する際の糸張力 Tの時間変化を 示すグラフである。
[図 6]図 4のステップ s 1 1での糸張力と伸び率との関係補間の考え方を示す グラフである。
符号の説明
[0016] 1 横編機
3 給糸装置 6 キヤリア
7 グリッパ
1 0 制御装置
1 2 編成制御部
1 3 給糸制御部
1 4 記憶部
1 5 糸コーン
1 6 糸送りローラ
1 7 張力計
発明を実施するための最良の形態
[0017] 図 1は、 本発明の実施の一形態としての編糸の弾性特性測定方法を実行可 能な横編機 1の構成を簡略化して示す。 横編機 1は、 大略的に、 編機本体 2 と給糸装置 3とで形成される。 編機本体 2には、 多数の編針を備える針床 4 が含まれ、 編針に編糸 5が供給されて、 編針の編成動作が行われると、 編地 が形成される。 編糸 5は、 編成動作を行う編針に給糸装置 3からキャリア 6 を経由する供給経路で供給される。 一定の編地を編成すると、 編糸 5は切断 され、 次の編地の編成開始まで、 編糸 5の先端はグリッパ 7で保持される。 本件出願人は、 糸端保持装置であるグリッパ 7の構成を、 たとえば特開 2 0 0 5 - 0 8 9 9 3 3号公報などで開示している。
[0018] 編機本体 2には、 制御装置 1 0も設けられる。 制御装置 1 0には、 入力部
1 1、 編成制御部 1 2、 給糸制御部 1 3および記憶部 1 4が含まれる。 入力 部 1 1には、 横編機 1の操作者からの指示や、 編成する編地のデータなどが 入力される。 入力は、 キーボードなどへの操作や、 データ通信、 または u s
Bメモリなどの記憶媒体の装着などによって行われる。 編成制御部 1 2は、 編機本体 2の各部を制御して、 編地の編成を行う。 給糸制御部 1 3は、 給糸 装置 3の糸送りローラ 1 6などを制御して、 編糸 5の供給を行わせる。 記憶 部 1 4には、 編成すべき編地のデータなどが記憶され、 生産状況などの実績 データが蓄積される。
[0019] 編機本体 2への編糸 5の供給は、 給糸装置 3によって行われる。 糸コーン
1 5から編糸 5を供給可能な給糸装置 3では、 糸送りローラ 1 6が設けられ る。 糸送りローラ 1 6を正転させれば編糸 5を送り出し、 糸送りローラ 1 6 を逆転させれば編糸 5を戻すことができる。 糸送り装置である糸送りローラ 1 6では、 スリップが生じない範囲で、 回転量と編糸 5の送り長さとが対応 している。 編糸 5の先端をグリッパ 7で保持したり、 編糸 5が針床 4に係止 される編地に編込まれている状態で、 糸送りローラ 1 6を逆転させると、 糸 送りローラ 1 6とグリツバ 7または編地との間の編糸 5の糸張力を増大させ ることができる。 編地の編成で編糸 5が消費されても、 糸送りローラ 1 6の 正転が遅れる場合も、 糸張力は増大する。 糸送りローラ 1 6が正転して、 編 糸 5を過剰に供給すると、 編糸 5の糸張力は低下する。 糸張力は、 張力計 1 7で測定することができる。
[0020] 図 2は、 図 1の横編機 1で、 編糸 5の糸端をグリッパ 7で保持し、 糸送り ローラ 1 6を一定の角速度で逆転させる場合を想定し、 試験的に測定した糸 張力の時間変化の一例を示す。 ただし、 試験の都合上、 自由長 Wが 1 O O m mとなるように、 糸送りローラ 1 6からキャリア 6を経由しないで、 グリツ パ 7に相当する糸端保持装置を配置している。 糸送りローラ 1 6と糸端保持 装置との間には、 張力計 1 7を設ける。 実際の横編機 1では編糸 5の糸張力 が 0のときの糸送りローラ 1 6からグリッパ 7までの編糸 5の自由長 Wは、 約 1 m程度となる。 糸送りローラ 1 6の回転速度は低速であるけれども、 回 転開始から 2 5秒を過ぎると糸張力は急激に増大する。 糸張力は張力計 1 7 で測定可能な上限を越え、 3 3秒付近で編糸 5は切断されて、 糸張力は 0に 戻る。
[0021 ] 図 3は、 図 1に示す編糸 5について、 自由長 Wを 1 9 O m mとして、 糸張 力が 0 . 1 4 7 N ( 1 5 g f ) に達するまで糸送りローラ 1 6を逆転させた 後、 糸送りローラ 1 6を糸張力が 0付近の下限値以下になるまで正転させる 試験での糸張力の変化の一例を示す。 糸張力の変化は、 糸張力が小さい範囲 では誤差が大きいと推定され、 この誤差が大きい範囲を除いて、 指数関数の 変化に類似しているように見える。 糸送りローラ 1 6を正転させて、 糸張力 が 0付近の下限値以下になるまでに送り出す編糸 5の長さは、 糸送りローラ 1 6の糸コーン 1 5側での長さに対応する。 糸コーン 15側での糸張力が 0付 近であれば、 糸送りローラ 1 6から送り出す編糸 5の長さは、 自由長状態で の長さとなる。 糸張力が 0. 1 47 Nから 0までの間に送り出す編糸 5の長 さを dとすると、 糸張力が 0. 1 47 Nのときに糸送りローラ 1 6からグリ ッパ 7までの距離 Wの区間には、 自由長が W_dの編糸 5が存在し、 伸び率 は W/ (W- d ) X 1 00%となっていることが判る。
[0022] 図 1に示すような一定の距離 Wを保つ状態で、 糸送りローラ 1 6を逆転さ せれば、 糸送りローラ 1 6とグリッパ 7との間の編糸 6は引き延され、 糸張 力が増大している状態で距離 Wを占める編糸 5の自由長は Wよりも小さくな る。 弾性糸が弾性的に伸びる範囲では、 伸び と糸張力 Tとは比例すると 考えられる。 すなわち、 kを比例の係数として、 次の (1 ) 式が成立する。
△ W= k X T … ( 1 )
[0023] 糸張力 Tでは、 自由長 Wの編糸 5は、 W+AWの長さに伸びるので、 図 1 の糸送りローラ 1 6とグリッパ 7との間に存在する編糸 5の自由長は、 次の (2) 式で求められる。
Wx (W/ (W+Δνν) ) =\NZ (1 + ( k x T) /W) … (2)
[0024] 糸送りローラ 1 6が微小時間△ tだけ逆転すると、 糸送りローラ 1 6の半 径を r、 角速度を ωとして、 糸張力 Τの状態の編糸 5が r X ω X△ tだけ伸 びることになる。 (2) 式の状態の編糸 5が伸びるのであるから、 これによ る糸張力 Tの増加量を ΔΤとすると、 次の (3) 式が得られる。
r X ω X Δ t XW/ ( 1 + ( k x T) /W) = k x△ T … (3)
[0025] (3) 式を整理すると、 ひ、 ;3を定数として、 次の (4) 式が得られる。
Δ t = (a x A T) / ( 1 + S x T) … (4)
[0026] (4) 式の両辺を積分すると、 Cを定数として、 次の (5) 式が得られる t = (α β) X I n ( 1 + S x T) +C -" (5)
[0027] (5) 式から糸張力 Tの時間 tについての変化は、 次の (6) 式のように 得られる。
T = a X ( e x p ( t _ b) - c ) … (6) ここで、 a , b, cは定数である。
[0028] 図 2および図 3からも、 糸張力が大きい範囲では、 (6) 式に示すような 指数関数に従って糸張力が変化しているように推定される。 張力計 1 7力 一定区間の糸に対して錘で荷重を付加するときの沈下量を糸張力に対応させ るような形式で糸張力を測定するものの場合、 糸張力が小さい範囲では、 測 定精度が低下するために指数関数に従うようには変化しないと考えられる。
[0029] 図 4は、 本発明の実施の一形態としての編糸の弾性特性測定方法の概略的 な手順を示す。 ステップ s 0から手順を開始し、 ステップ s 1では編糸 5の 糸端を図 1に示すようにグリッパ 7で保持する。 ステップ s 2では、 糸送り ローラ 1 6を正転させる。 ステップ s 3では、 糸張力が下限以下になるか否 かを確認する。 原理的には糸張力が 0となるか否かを確認することが望まし いけれども、 実際上、 糸張力が 0付近となって小さくなる範囲では糸張力の 測定精度が低下するので、 予め下限を設定しておく。 また、 編糸 5の糸端を グリツバ 7で保持する状態では、 小さな糸張力が掛つている可能性がある。 糸張力がこのような小さな値に達すれば、 編糸 5はほぼ自由長になっている と考えられる。 糸張力が下限以下でなければ、 ステップ s 2の正転を続ける 。 すなわち、 糸端をグリッパ 7で保持した後、 糸張力が下限以下になるまで 糸送りローラ 1 6を正転させる。
[0030] ステップ s 3で糸張力が下限以下となることを確認すると、 ステップ s 4 で糸送りローラ 1 6を逆転させ、 編糸 5を戻す。 糸送りローラ 1 6力、らグリ ツバ 7までの距離 Wの区間から編糸 5が糸コーン 1 6側に戻されるので、 グ リッパ 7側では編糸 5が伸び、 糸張力が上昇する。 編糸 5に対して、 編地の 編成時に使用する糸張力の範囲に基いて設定される基準の張力、 または、 使 用可能な最大張力など、 糸張力を測定する上限の条件を予め設定しておく。 ステップ s 5では、 糸張力が条件を満足するか否かを判断する。 満足しなけ れば、 ステップ s 4に戻る。 条件として最大張力が設定される場合、 たとえ ば、 指数関数に従って変化すると予測される範囲からのずれが予め定める基 準を超えると、 最大張力と判断し、 ステップ s 5での条件が満足されるとす ることができる。 このように、 糸送りローラ 1 6を逆転させ、 糸張力の変化 状態から最大張力を求めることができる。 求められた最大張力などの糸張力 値 Tは、 ステップ s 6で図 1の記憶部 1 4などに記憶される。
[0031 ] ステップ s 7では、 再び糸送りローラ 1 6を正転させ、 ステップ s 8で糸 張力が下限以下となるのを確認する。 糸送りローラ 1 6の回転量は記憶して おく。 ステップ s 8で糸張力が下限以下となるまでは、 ステップ s 7の正転 を続ける。 ステップ s 8で糸張力が下限以下となると、 ステップ s 9で、 糸 送りローラ 1 6の回転量に基づいて、 編糸 5の送り量 dを算出する。 前述の ように、 糸送りローラ 1 6の糸コーン 1 5側の糸張力を 0付近にしておけば 、 回転量から送り量 dを直接求めることができる。 なお、 糸送りローラ 1 6 が等速で回転する場合は、 回転量は回転時間に比例するので、 時間を計測し て送り量 dを求めることができる。 ただし、 起動時の加速や停止時の減速も 含めて、 回転速度の変化が大きい場合は、 糸送りローラ 1 6の回転軸の角変 位量をエンコーダで検出するなどの方法で、 回転量を直接求めることが望ま しい。
[0032] ステップ s 1 0では、 ステップ s 6で記憶した糸張力値 Tでの糸送り口一 ラ 1 6とグリッパ 7間に存在する編糸 5の自由長を、 W_ dと算出し、 伸び 率を、 W/ (W- d ) %であると算出して、 糸張力と伸び率、 送り量との関 係を割り出す。 ステップ s 1 1では、 糸張力値 Tでの伸び率の算出値に基づ いて、 他の糸張力での伸び率を、 補間によって求める。 ステップ s 1 2で編 糸の弾性特性測定の手順を終了する。
[0033] 以上の測定手順は、 ステップ s 1での糸端保持を除いて、 図 1の制御装置
1 0に予めプログラムを設定しておいて、 自動的に行わせることができる。 なお、 グリッパ 7を用いて編糸 5の糸端を保持するようにしているけれども 、 グリッパ 7では、 編地から糸送りローラ 1 6に至る編糸 5の途中を保持す るようにしてもよい。 また、 編糸 5を試験時に抜けないように編針にフック させたり、 編成した編地自体で弾性特性測定のための保持を行うようにする こともできる。 さらに、 弾性特性測定専用の保持装置を設けるようにするこ ともできる。
[0034] 図 5は、 図 4に従って、 編糸 5の弾性特性を測定する際の糸張力 Tの時間 変化を示す。 糸送りローラ 1 6を等速回転させることを前提としているので 、 時間変化の代りに送り量の変化としても、 糸張力 Tは同等に変化する。 時 間 t 1までは、 図 4のステップ s 1からステップ s 3までの手順に従い、 糸 送りローラ 1 6を正転させて糸張力を 0付近の下限以下にする。 時間 t 1か ら t 2では、 図 4のステップ s 4からステップ s 6までの手順に従い、 糸送 りローラ 1 6を逆転させて、 ある条件を満たす糸張力 T sを求める。 時間 t 2から t 3までは、 図 4のステップ s 7からステップ s 9までの手順に従い 、 糸送りローラ 1 6を正転させて、 糸張力が下限以下になるまでの戻し量 d を算出する。
[0035] なお、 戻し量 dは、 時間 t 1から t 2までの糸張力変化から求めることも できる。 この時間範囲での糸張力変化が指数関数など、 一定の関数に精度良 く従う場合は、 t 2 _ t 1の時間と、 糸送りローラ 1 6の角速度 ωおよび半 径 rに基づき、 関数の計算で戻し量 dを、 糸送りローラ 1 6がグリッパ 7側 から糸コーン 1 5側に送り出した長さとして求めることができる。 糸送り口 —ラ 1 6の糸コーン 1 5側に測長ローラなどを設けておいて、 戻し量 dを実 測させることもできる。 また、 図 5の時刻 t 2から時刻 t 3までの間の複数 の糸張力に対して、 それぞれの糸張力に対応する戻し量から、 複数の糸張力 に対して伸び率をそれぞれ求めることもできる。
[0036] 図 6は、 図 5で得られる糸張力 T sでの伸び率が 4 0 0 %である場合を想 定し、 図 4のステップ S 1 1での糸張力と伸び率との関係を補間する考え方 を示す。 糸張力が 0のときの伸び率は 1 0 0 %であるので、 1 0 0 %の伸び 率と 4 0 0 %の伸び率との間は、 伸び率が糸張力に比例すると考えられる。 すなわち、 糸張力が T sの 1 / 3になれば、 伸び率は 2 0 0 %となり、 糸張 力が T sの 2 / 3になれば、 伸び率は 3 0 0 %となる。 編糸 5の送り量は、 伸び率 1 0 0 %での送り量を 1針分として、 糸張力 1 / 3 T sの伸び率 2 0 0 %では 1 / 2針分、 糸張力 T sの伸び率 4 0 0 %では 1 / 4針分となる。
[0037] 複数の糸張力に対してそれぞれ伸び率を求めている場合は、 データをグラ フ上にプロッ卜して糸張力と伸び率との関係が得られる。 他の糸張力に対す る伸び率は、 グラフとして得られている関係を補間して求めることができる
[0038] なお、 本発明は、 図 1に示すような横編機 1でたとえば筒状の編地をテ一 パ状に編成する場合などに好適に適用することができる。 テーパ状の部分は 、 弾性糸の張力を徐々に変化させて編成するけれども、 糸張力と伸び率との 関係を把握した編糸 5を使用することによって、 形状の再現性を向上させる ことができる。 さらに、 編糸 5として弾性糸を使用する場合に適用されるば かりではなく、 編地を編成する編機で編糸の弾性特性を把握する必要がある 場合に全般的に適用することができる。

Claims

請求の範囲
[1 ] 編機に、 弾性糸を編糸として供給する糸送り装置と、 糸送り装置が供給す る編糸の供給経路の途中で糸張力を測定する糸張力測定装置とを備えておき 糸送り装置から糸張力測定装置を含む供給経路の範囲で、 糸送り装置が供 給する編糸の長さを変化させ、
該供給経路の範囲に供給される編糸の長さの変化と、 糸張力測定装置で測 定する糸張力の変化との関係に基づいて、 編糸の弾性特性を測定することを 特徴とする編糸の弾性特性測定方法。
[2] 前記糸送り装置は、 編糸の前記供給経路の範囲への送り出しと、 該供給経 路の範囲側からの戻しとが切換え可能であり、
前記糸張力測定装置が編糸を該供給経路の範囲側から戻して糸張力を測定 してから、 糸張力が予め定める下限張力以下になるまで糸送り装置が該供給 経路の範囲へ編糸を送り出して、
測定した糸張力下での編糸の伸び率を、 該供給経路の範囲の距離から糸送 り装置で送り出した編糸の長さを差引いた長さで該距離を除算した値として 求めることを特徴とする請求項 1記載の編糸の弾性特性測定方法。
[3] 複数の糸張力について前記編糸の伸び率をそれぞれ求め、 糸張力と編糸の 伸び率との関係を補間して、 測定した糸張力とは異なる糸張力下での編糸の 伸び率を求めることを特徴とする請求項 2記載の編糸の弾性特性測定方法。
[4] 前記伸び率を求める糸張力は、
いったん前記糸送り装置から編糸を前記供給経路の範囲側に、 前記糸張 力測定装置が測定する糸張力が予め定める下限以下になるまで送り出してか ら、 糸送り装置で編糸を該供給経路の範囲側から戻す際に、
糸張力測定装置によって測定される糸張力が弾性特性を前提として予測 される範囲から外れる時点の糸張力とすることを特徴とする請求項 2または 3記載の編糸の弾性特性測定方法。
[5] 弾性糸を編糸として供給して供給する長さを検出可能な糸送り装置と、 編 糸を供給する経路の途中で編糸の糸張力を測定する糸張力測定装置と、 糸送 り装置および糸張力装置を制御する制御装置とを含む編機であって、 制御装置は、 前記供給経路の範囲を設定して、 請求項 1〜4のいずれか 1 つに記載の編糸の弾性特性測定方法を実行するように制御することを特徴と する編機。
PCT/JP2007/001000 2006-09-15 2007-09-13 Procédé de mesure de propriétés élastiques de fil à tricoter et machine à tricoter WO2008032451A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07805855A EP2080828B1 (en) 2006-09-15 2007-09-13 Method of measuring elastic characteristics of kitting yarn and knitting machine
CN2007800300235A CN101501261B (zh) 2006-09-15 2007-09-13 针织纱的弹性特性测定方法和针织机
JP2008534245A JP5161093B2 (ja) 2006-09-15 2007-09-13 編糸の弾性特性測定方法および編機
KR1020087031494A KR101356438B1 (ko) 2006-09-15 2007-09-13 편사의 탄성특성 측정방법 및 편성기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006250304 2006-09-15
JP2006-250304 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032451A1 true WO2008032451A1 (fr) 2008-03-20

Family

ID=39183520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001000 WO2008032451A1 (fr) 2006-09-15 2007-09-13 Procédé de mesure de propriétés élastiques de fil à tricoter et machine à tricoter

Country Status (5)

Country Link
EP (1) EP2080828B1 (ja)
JP (1) JP5161093B2 (ja)
KR (1) KR101356438B1 (ja)
CN (1) CN101501261B (ja)
WO (1) WO2008032451A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110249A1 (ja) * 2008-03-07 2009-09-11 株式会社島精機製作所 弾性糸使用の編地編成装置および方法
KR101954658B1 (ko) 2017-05-08 2019-03-06 가부시키가이샤 시마세이키 세이사쿠쇼 횡편기에 있어서의 탄성사의 실 이송장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104164743B (zh) * 2014-06-23 2016-08-31 泉州精准机械有限公司 一种电脑横机送纱器及其纱线检测控制系统
JP6562890B2 (ja) * 2016-10-31 2019-08-21 株式会社島精機製作所 プレーティング編成方法及びそれに用いる横編機
CN107631933A (zh) * 2017-09-12 2018-01-26 广东溢达纺织有限公司 针织面料裁片回弹性测量机构及测量方法
JP7048407B2 (ja) * 2018-05-11 2022-04-05 株式会社島精機製作所 編機の張力測定装置及びその張力測定方法
CN110760989B (zh) * 2019-11-08 2021-01-26 西安工程大学 一种横机氨纶纱线控制器
KR102344155B1 (ko) * 2019-12-19 2021-12-27 신한대학교 산학협력단 극세 양면 편물의 래더링 테스트 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858416A (en) 1973-07-23 1975-01-07 Eugene F White Knitting machine yarn feeding apparatus
JPH03130443A (ja) 1989-10-12 1991-06-04 Watsuku Data Service Kk 編機へのゴム糸の給糸方法
JPH06200453A (ja) * 1992-12-29 1994-07-19 Tsudakoma Corp 横編み機用張力制御方法
JPH08120548A (ja) * 1994-09-02 1996-05-14 Shima Seiki Mfg Ltd 横編機での糸長制御方法及びその装置
JP3010171B2 (ja) * 1998-03-26 2000-02-14 メミンガー−イロ・ゲーエムベーハー 給糸装置及び給糸方法
JP2001130443A (ja) 1999-11-04 2001-05-15 Hitachi Constr Mach Co Ltd 防振支持機構を有する建設機械
WO2004094712A1 (ja) 2003-04-18 2004-11-04 Shima Seiki Manufacturing Limited 弾性糸使用の編成方法および装置
JP2005089933A (ja) 2003-09-19 2005-04-07 Shima Seiki Mfg Ltd 横編機の端糸処理装置および方法
JP2006118059A (ja) * 2004-10-19 2006-05-11 Shima Seiki Mfg Ltd 編機と編機での糸加工方法、並びに編機での糸加工制御装置とそのプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067607A (en) * 1959-04-15 1962-12-11 Dow Chemical Co Tensile tester
JPS6166229A (ja) * 1984-09-06 1986-04-05 Matsushita Electric Ind Co Ltd 光学記録装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858416A (en) 1973-07-23 1975-01-07 Eugene F White Knitting machine yarn feeding apparatus
JPH03130443A (ja) 1989-10-12 1991-06-04 Watsuku Data Service Kk 編機へのゴム糸の給糸方法
JPH06200453A (ja) * 1992-12-29 1994-07-19 Tsudakoma Corp 横編み機用張力制御方法
JPH08120548A (ja) * 1994-09-02 1996-05-14 Shima Seiki Mfg Ltd 横編機での糸長制御方法及びその装置
JP3010171B2 (ja) * 1998-03-26 2000-02-14 メミンガー−イロ・ゲーエムベーハー 給糸装置及び給糸方法
JP2001130443A (ja) 1999-11-04 2001-05-15 Hitachi Constr Mach Co Ltd 防振支持機構を有する建設機械
WO2004094712A1 (ja) 2003-04-18 2004-11-04 Shima Seiki Manufacturing Limited 弾性糸使用の編成方法および装置
JP2005089933A (ja) 2003-09-19 2005-04-07 Shima Seiki Mfg Ltd 横編機の端糸処理装置および方法
JP2006118059A (ja) * 2004-10-19 2006-05-11 Shima Seiki Mfg Ltd 編機と編機での糸加工方法、並びに編機での糸加工制御装置とそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2080828A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110249A1 (ja) * 2008-03-07 2009-09-11 株式会社島精機製作所 弾性糸使用の編地編成装置および方法
US8090467B2 (en) 2008-03-07 2012-01-03 Shima Seiki Mfg., Ltd. Apparatus and method for knitting fabric using elastic yarns
JP5330371B2 (ja) * 2008-03-07 2013-10-30 株式会社島精機製作所 弾性糸使用の編地編成装置および方法
KR101954658B1 (ko) 2017-05-08 2019-03-06 가부시키가이샤 시마세이키 세이사쿠쇼 횡편기에 있어서의 탄성사의 실 이송장치

Also Published As

Publication number Publication date
CN101501261A (zh) 2009-08-05
CN101501261B (zh) 2011-06-08
EP2080828A1 (en) 2009-07-22
JP5161093B2 (ja) 2013-03-13
JPWO2008032451A1 (ja) 2010-01-21
KR101356438B1 (ko) 2014-01-29
EP2080828A4 (en) 2011-04-20
KR20090053750A (ko) 2009-05-27
EP2080828B1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2008032451A1 (fr) Procédé de mesure de propriétés élastiques de fil à tricoter et machine à tricoter
JP4637981B2 (ja) 繊維機械と、繊維機械に供給する糸の供給を制御する装置とからなる構成
EP1715091B1 (en) Method and apparatus for circular knitting with elastomeric yarn that compensate for yarn package relaxation
JP2009173445A5 (ja)
KR101155977B1 (ko) 편성기와 편성기에서의 편사 가공 방법, 및편성기에서의 편사 가공 제어장치와 그 프로그램
JP5963393B2 (ja) 横編機
JP4489702B2 (ja) 弾性糸使用の編成方法および装置
CN108866785B (zh) 横机中的弹性纱的送纱装置
JP5330371B2 (ja) 弾性糸使用の編地編成装置および方法
EP2573026B1 (en) Thread supply system
JP4943803B2 (ja) 編機での張力設定方法および編機
KR101520525B1 (ko) 니트웨어 또는 양말류용 환편기에서 생산하는 편직 물품들의 크기를 조절하기 위한 공정
US6195856B1 (en) Method and device for warping with a cone sectional warper
EP3567148B1 (en) Tension measuring device for knitting machine and tension measuring method
JP3407996B2 (ja) ミシンの上糸張力決定方法並びに上糸張力決定装置及び糸調子装置
KR100235189B1 (ko) 사속조정이 가능한 펀와인더 제어 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030023.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087031494

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008534245

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007805855

Country of ref document: EP