WO2008029835A1 - Matériau en acier destiné à une paroi continue souterraine, procédé de production du matériau en acier destiné à une paroi continue souterraine, paroi continue souterraine et procédé de fabrication d'une paroi continue souterraine - Google Patents

Matériau en acier destiné à une paroi continue souterraine, procédé de production du matériau en acier destiné à une paroi continue souterraine, paroi continue souterraine et procédé de fabrication d'une paroi continue souterraine Download PDF

Info

Publication number
WO2008029835A1
WO2008029835A1 PCT/JP2007/067290 JP2007067290W WO2008029835A1 WO 2008029835 A1 WO2008029835 A1 WO 2008029835A1 JP 2007067290 W JP2007067290 W JP 2007067290W WO 2008029835 A1 WO2008029835 A1 WO 2008029835A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped steel
hat
sheet pile
steel sheet
steel
Prior art date
Application number
PCT/JP2007/067290
Other languages
English (en)
French (fr)
Inventor
Ryuuta Tanaka
Tatsuaki Kurosawa
Shinji Taenaka
Masataka Tatsuta
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CN2007800319994A priority Critical patent/CN101512074B/zh
Priority to JP2008533182A priority patent/JP4927086B2/ja
Priority to US12/438,079 priority patent/US8408844B2/en
Publication of WO2008029835A1 publication Critical patent/WO2008029835A1/ja
Priority to HK10101285.0A priority patent/HK1133683A1/xx

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • Underground continuous wall steel method for producing underground continuous wall steel, underground continuous wall, and method for constructing underground continuous wall
  • the present invention relates to a steel material for underground continuous walls, a method for manufacturing steel materials for continuous underground walls, and a steel material for underground continuous walls, which are widely used when constructing retaining walls or revetment walls in civil engineering works.
  • the present invention relates to a constructed underground continuous wall and a method of constructing an underground continuous wall with steel materials for the underground continuous wall.
  • U-shaped steel sheet pile and H-shaped steel, I-shaped steel or T-shaped steel are combined as steel material for underground continuous wall, which is more rigid than the steel material for underground continuous wall of (1).
  • Steel materials for underground underground walls are also known! /, E.g. (see Patent Documents 3 to 6).
  • the existing hat-shaped steel sheet pile is the hat-shaped steel sheet pile 2 having dimensions (unit: mm) as shown in Fig. 10 and Fig. 11.
  • flanges 5 that are inclined so as to spread outwardly at both ends of the web 7 are integrally connected, and the arm portions 3, 4 are parallel to the web 7 on each flange 5.
  • a joint 14 (14a, 14b) is formed in the body at the end of each arm 3 and 4, and the cross section is a hat shape.
  • the left and right joints 14a and 14b are point-symmetrical with respect to the center point of the central axis of the arm parts 3 and 4, and when the adjacent hat-shaped steel sheet piles 2 are fitted with the joints 14a and 14b.
  • the hat-shaped steel sheet pile 2 can be disposed on the arm center axis.
  • the advantage of the hat-shaped steel sheet pile 2 is that the inclined flange 5 and the arm portions 3 and 4 are provided on both sides thereof.
  • the power to build is S.
  • a hat-shaped steel sheet pile having high bending rigidity without changing the sheet pile width dimension cannot be easily manufactured at low cost.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-133209
  • Patent Document 2 JP-A-11 140864
  • Patent Document 3 Japanese Patent Laid-Open No. 55-68918
  • Patent Document 4 Japanese Patent Laid-Open No. 06 280251
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2005-127033
  • Patent Document 6 Japanese Patent No. 3603793
  • the length dimension of the H-shaped steel relative to the hat-shaped steel sheet pile 2 is specified in the steel material for the underground continuous wall in which the H-shaped steel is incorporated into the steel while incorporating the advantages of the hat-shaped steel sheet pile 2.
  • the purpose is to provide a steel material for underground continuous wall that is cheaper and more practical. That is, the purpose is to provide a steel material for underground continuous walls that can be used to construct cheaper and more practical earth retaining walls or underground continuous walls.
  • the present inventor uses the underground continuous wall steel material. Pays attention to the fact that there is no reasonable reason for the same cross section over the entire length in the vertical direction. In addition, if it is possible to suppress the top wall displacement of the retaining wall to a displacement that does not cause any problems in practice, it will be a cheaper steel material for underground continuous walls, and by using such a steel material for continuous underground walls, The present invention was completed in consideration of a cheaper underground continuous wall or retaining wall.
  • the present invention has the following configuration.
  • the first aspect of the steel for continuous underground wall is a hat-shaped steel sheet pile having a hat-shaped cross section perpendicular to the length direction, and an H-shaped steel having a H-shaped cross section perpendicular to the length direction.
  • the hat-shaped steel sheet pile includes a web, a pair of flanges integrally connected to both ends of the web, and inclined so as to have a wide force toward the outside, and each of the pair of flanges.
  • the H-shaped steel has a pair of substantially parallel flanges and a pair of flange portions that are substantially parallel to each other, and a pair of flange portions that are connected to each other with a gap therebetween.
  • the web in one of the pair of flange portions of the H-shaped steel on the outer surface of the web opposite to the groove side formed by the web of the hat-shaped steel sheet pile and the flanges is fixed, and the hat-shaped steel
  • the dimension in the length direction of the H-section steel is shorter than the dimension in the length direction of the sheet, and the total length in the length direction of the H-section steel is arranged in the dimension in the length direction of the hat-shaped steel sheet pile.
  • the rear end of the H-shaped steel is located on the front end side in the length direction with respect to the rear end of the hat-shaped steel sheet pile.
  • a steel material for underground continuous wall is placed in the ground to When constructing a retaining wall or revetment wall, etc., the upper end side of the steel material for underground continuous wall in the state where the earth retaining wall or revetment wall has been constructed is moved from the placing machine (clamp (gripping part) and vibration device). ) And place the steel wall for underground continuous wall into the ground with the lower end side of the steel material for underground continuous wall as the head and the upper end side of the steel material for underground continuous wall as the tail.
  • the tip of the underground continuous wall steel is the lower end when the earth retaining wall or revetment wall is constructed by the underground continuous wall steel, and the rear end of the underground continuous wall steel. Is the upper end when a retaining wall or revetment wall is constructed from steel for underground continuous walls.
  • the dimension in the length direction of the H-section steel is shorter than the dimension in the length direction of the steel, sheet steel sheet pile, it is inexpensive and lightweight.
  • Steel for underground continuous walls can be obtained.
  • an economical retaining wall or revetment wall can be constructed.
  • the placing work it is necessary to perform the placing work by alternately using a special placing machine and a normally used placing machine for placing steel steel for underground continuous wall made only of hat-shaped steel sheet piles. This is very complicated.
  • the first aspect of the present invention If so, only the rear end of the hat-shaped steel sheet pile can be gripped without interference by the H-section steel. For this reason, it is possible to perform both of the placing operations using only a conventionally used placing machine for placing the hat-shaped steel sheet pile, and to simplify the placing operation.
  • the positions of the tip of the hat-shaped steel sheet pile and the tip of the H-shaped steel in the length direction may coincide.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is the wall height from the design ground to the ground surface in the retaining wall made of steel for underground continuous wall. It may be less than 50%.
  • the separation length force between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel, the design ground in the retaining wall by the steel for the underground continuous wall It can be seen that the top-end displacement rises sharply when it exceeds 50% of the wall height from to the ground surface.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is 50% of the wall height from the design ground to the ground surface in the retaining wall made of steel for underground continuous wall. In the following cases, the rate of increase in top displacement is kept low.
  • the separation length is 50% or less of the wall height, compared to the case where the separation length exceeds 50% of the wall height, it has sufficient rigidity and is inexpensive and lightweight.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is the wall height from the design ground to the ground surface in the retaining wall made of steel for underground continuous wall. It may be 10% or more and 50% or less.
  • the separation length is 50% or less of the wall height
  • the design of the steel plate for the continuous wall in which a hat-shaped steel sheet pile and an H-shaped steel sheet pile of the same length are welded over the entire length is used. It can be suppressed to a displacement of 10% or less of the top end displacement Y (that is, 110% or less of the top end displacement Y), and it can be a steel material for underground continuous wall with sufficient rigidity.
  • the separation length is 10% or more of the wall height, it can be a cheap and lightweight underground continuous wall steel with great economic effects.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is the wall height from the design ground to the ground surface in the retaining wall made of steel for underground continuous wall. It may be 30% or less.
  • the top-end displacement is almost the same as when using a steel material for underground continuous wall in which a hat-shaped steel sheet pile of the same length and an H-shaped steel sheet pile are welded over the entire length.
  • the same top end displacement can be maintained, and the steel material for underground continuous wall with sufficient rigidity can be obtained.
  • the tip of the H-shaped steel may be located on the rear end side in the length direction with respect to the tip of the hat-shaped steel sheet pile.
  • the configuration in which only the tip of the H-shaped steel is arranged on the rear end side than the tip of the hat-shaped steel sheet pile and Compared to the configuration in which the rear end of the section steel is only arranged on the front end side, the cut length of the H-section steel (the sum of the cut length of the front end of the H-section steel and the cut length of the rear end of the H-section steel) Even if it is made larger, high rigidity can be maintained without any problem. Therefore, compared to the above two configurations, the cost can be reduced and the workability can be improved by further reducing the weight.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is from the design ground to the ground surface in the retaining wall by the steel material for the continuous wall in the ground.
  • the separation length between the tip of the hat-shaped steel sheet pile and the tip of the H-shaped steel is not more than 50% of the wall height, and is 30% of the total length in the length direction of the steel material for underground continuous wall. It may be less than or equal to%.
  • the underground wall steel is used as a steel for the retaining wall where the earth pressure acts on one side, the earth pressure is applied.
  • Earth retaining Even when the top edge of the wall is displaced in the direction of earth pressure action, the design of the steel plate for the continuous wall in which a hat-shaped steel sheet pile and an H-shaped steel sheet pile of the same length are welded over the entire length is used. It is possible to suppress the displacement to 10% or less of the top end displacement Y (ie 110% or less of the top end displacement Y), and to provide a steel material for underground continuous wall that has sufficient rigidity and is inexpensive and lightweight. it can.
  • the separation length force between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel, the design ground in the retaining wall by the steel for the underground continuous wall The distance between the tip of the hat-shaped steel sheet pile and the tip of the H-shaped steel exceeds 30% of the total length in the longitudinal direction of the steel for continuous underground wall. If it exceeds%, it will be understood that the top end displacement increases rapidly.
  • the distance between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is 50% of the wall height from the design ground to the ground surface in the retaining wall made of steel for underground continuous wall.
  • the distance between the tip of the hat-shaped steel sheet pile and the tip of the H-shaped steel is 30% or less of the total length in the length direction of the steel for continuous wall, The rate of increase is kept low. As described above, compared to other cases, it has sufficient rigidity and is inexpensive and lightweight.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is the height of the wall from the design ground to the ground surface in the retaining wall made of steel material for the continuous wall in the ground.
  • the distance between the tip of the hat-shaped steel sheet pile and the tip of the H-shaped steel is 10% or more and 50% or less, and is 5% of the total length in the length direction of the steel material for underground continuous wall. It may be between% and 30%.
  • the distance between the trailing edge of the hat-shaped steel sheet pile and the trailing edge of the H-shaped steel sheet is 50% or less of the wall height, and the tip of the hat-shaped steel sheet pile and the leading edge of the H-shaped steel Since the distance between them is 30% or less of the total length, when the underground continuous wall steel is used as the steel for the retaining wall where earth pressure acts from one side, the earth pressure acts and the earth Even when the top end of the retaining wall is displaced in the direction of earth pressure action, the design of the steel plate for continuous wall with the same length of hat-shaped steel sheet pile and H-shaped steel sheet pile welded over the entire length
  • the displacement of the top end displacement Y can be suppressed to 10% or less (that is, 110% or less of the top end displacement Y), and the strength S can be achieved with a steel material for continuous underground walls with sufficient rigidity.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel is 10% or more of the wall height, and between the front end of the hat-shaped steel sheet pile and the front end of the H-shaped steel. of Since the separation length is 5% or more of the total length, it is possible to obtain an inexpensive and light steel for underground connecting walls with great economic effects.
  • the separation length between the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel may be 50 Omm or more! /.
  • the length of the rear edge of steel for continuous underground walls held by the driving machine is 500mm or less. Therefore, there is no H-shaped steel in the part that the driving machine grips, and the rear end of the underground continuous wall steel (the rear end of the hat-shaped steel sheet pile) can be easily gripped by the driving machine. Installation work can be performed.
  • the second aspect of the steel material for underground continuous wall of the present invention is a hat-shaped steel sheet pile having a hat-shaped cross section perpendicular to the length direction, and an H-shaped cross section perpendicular to the length direction.
  • the hat-shaped steel sheet pile includes a web, a pair of flanges integrally connected to both end portions of the web, and inclined so as to widen toward the outside, and the pair of flanges A pair of arm portions that are substantially parallel to the web, and the H-shaped steel has a pair of flange portions that are substantially parallel to each other and a gap between the pair of flange portions.
  • An outer surface opposite to the surface connected to the web portion is fixed to the hat.
  • the dimension in the length direction of the H-section steel is shorter than the dimension in the length direction of the section steel sheet pile, and the total length in the length direction of the H-section steel is within the dimension in the length direction of the hat-shaped steel sheet pile.
  • the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel are aligned in the length direction, and the front end of the H-shaped steel is more than the front end of the hat-shaped steel sheet pile.
  • the separation length between the front end of the hat-shaped steel sheet pile and the front end of the H-section steel is located on the rear end side in the length direction, and is in the length direction of the steel material for underground continuous wall. Less than 35% of the total length.
  • the steel material for underground continuous wall is used for earth retaining walls where earth pressure acts from one side.
  • the same length of hat-shaped steel sheet pile and H-shaped steel sheet pile are welded over the entire length.
  • Steel for underground continuous wall The top-of-the-top displacement Y when using the can be suppressed to a displacement of 10% or less (that is, 110% or less of the top-end displacement ⁇ ), has sufficient rigidity, and is inexpensive and lightweight underground. It can be steel for continuous walls.
  • the separation length force S between the tip of the hat-shaped steel sheet pile and the tip of the saddle-shaped steel, the total length in the length direction of the steel for continuous underground wall 35 It can be seen that when the value exceeds%, the top edge displacement increases rapidly. On the other hand, if the distance between the tip of the hat-shaped steel sheet pile and the tip of the saddle-shaped steel is 35% or less of the total length in the length direction of the steel material for underground continuous wall, the top end displacement increases. The rate is kept low. As described above, when the separation length is 35% or less of the total length, compared to the case where the separation length exceeds 35% of the total length, it has sufficient rigidity, and is inexpensive and lightweight.
  • the separation length between the tip of the hat-shaped steel sheet pile and the tip of the saddle shaped steel is determined for the underground continuous wall. It may be 5% or more of the total length in the length direction of the steel material.
  • the separation length between the tip of the hat-shaped steel sheet pile and the tip of the saddle-shaped steel may be 20% or less of the total length in the length direction of the steel material for the continuous wall in the ground. Good.
  • the top end displacement is almost the same as the top end displacement when using the steel material for the continuous wall of the same length of hat-shaped steel sheet pile and saddle-shaped steel sheet pile.
  • the same top end displacement can be maintained, and the steel material for underground continuous wall with sufficient rigidity can be obtained.
  • a first aspect of the method for producing a steel material for underground continuous wall includes a hat-shaped steel sheet pile having a hat-shaped cross section perpendicular to the length direction, and a cross section perpendicular to the length direction.
  • the hat-shaped steel sheet pile is provided with a web, a pair of flanges integrally connected to both ends of the web, and inclined so as to spread outward.
  • a pair of arm portions that are integrally connected to each of the flanges and substantially parallel to the web; and the saddle shaped steel includes a pair of flange portions that are substantially parallel to each other, and the pair of flange portions.
  • a web portion that is connected with a gap, and the length of the saddle-shaped steel in the length direction is the length of the hat-shaped steel sheet pile.
  • the overall length in the length direction of the H-shaped steel is disposed within the dimension in the length direction of the hat-shaped steel sheet pile shorter than the dimension in the longitudinal direction, and the H-shaped steel sheet pile is more than the rear end of the hat-shaped steel sheet pile.
  • the cheap and lightweight 1st aspect of the steel material for underground continuous walls of this invention can be manufactured.
  • the tip of the hat-shaped steel sheet pile and the tip of the H-shaped steel are arranged so as to coincide with each other in the length direction. You may do it.
  • the tip of the H-shaped steel may be arranged so as to be positioned on the rear end side in the length direction with respect to the tip of the hat-shaped steel sheet pile.
  • a second aspect of the method for producing a steel material for underground continuous wall of the present invention includes a hat-shaped steel sheet pile having a hat-shaped cross section perpendicular to the length direction, and a cross-section perpendicular to the length direction being H.
  • the hat-shaped steel sheet pile has a web, a pair of flanges integrally connected to both ends of the web, and slanted so as to spread outward, and the pair of A pair of arm portions that are integrally connected to each of the flanges and substantially parallel to the web; and the H-shaped steel includes a pair of flange portions that are substantially parallel to each other and the pair of flange portions.
  • the dimension in the length direction of the H-shaped steel is larger than the dimension in the length direction of the hat-shaped steel sheet pile in the length direction of the steel material for underground continuous wall.
  • the overall length of the H-shaped steel in the length direction is disposed, and the rear end of the hat-shaped steel sheet pile and the rear end of the H-shaped steel are aligned in the length direction, and the hat-shaped steel sheet pile A groove side formed by the web of the hat-shaped steel sheet pile and the flanges in a state in which the tip of the H-shaped steel is positioned so as to be located on the rear end side in the length direction rather than the tip.
  • the outer surface of the opposite side of the pair of flange portions of the H-shaped steel is brought into contact with the outer surface of the opposite side of the web portion, and the outer surface of the opposite side to the web portion, and is in contact with each other.
  • the web of the steel sheet pile and the flange of the H-shaped steel are fixed to each other by welding.
  • the second aspect of the method for producing a steel material for underground continuous wall of the present invention it is possible to produce the second aspect of the steel material for underground continuous wall of the present invention that has sufficient rigidity and is inexpensive and lightweight. .
  • the dimension in the length direction of the H-section steel is more than the dimension in the length direction of the hat-shaped steel sheet pile. It may be shorter by 20% or less of the total length in the length direction of the steel wall for underground continuous wall.
  • the underground continuous wall of the present invention is constructed by using a plurality of steel materials for the underground continuous wall of the present invention.
  • the method for constructing the underground continuous wall of the present invention is constructed by using a plurality of steel materials for the underground continuous wall of the present invention.
  • an inexpensive and lightweight underground continuous wall steel can be obtained, and when this underground continuous wall steel is used, a retaining wall or revetment wall that is economically free from problems is constructed. it can.
  • FIG. 1A is a plan view showing a state in which steel materials for underground continuous walls of the first to third embodiments of the present invention are arranged in parallel and fitted together.
  • FIG. 1B is a side view of the steel material for underground continuous wall of the first embodiment.
  • FIG. 1C is a side view of the steel material for underground continuous wall of the second embodiment.
  • FIG. 1D is a side view of the steel material for underground continuous wall of the third embodiment.
  • FIG. 2 is a plan view of the rear end side of the steel material for underground continuous wall according to the embodiment of the present invention.
  • FIG. 3A is a view showing a state in which a hat-shaped steel sheet pile and an H-shaped steel are brought into contact with each other in the method for manufacturing a steel material for an underground continuous wall according to an embodiment of the present invention.
  • FIG. 3B is a diagram showing a state in which the hat-shaped steel sheet pile and the H-shaped steel are joined by welding in the method for manufacturing a steel material for underground continuous wall according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing how the steel material for underground continuous wall according to the embodiment of the present invention is placed in the ground using a placement machine.
  • Fig. 5 is a longitudinal side view when the steel material for underground continuous wall of each embodiment is used as a retaining wall, and shows the relationship between the dimension of steel material for underground underground wall and the top edge displacement. It is an explanatory diagram for explaining.
  • Fig. 6 shows the relationship between the cut length of the rear end of the H-shaped steel and the wall height when the retaining wall is constructed using the steel material for underground continuous wall according to the first embodiment of the present invention. It is a figure which shows the relationship between ratio (abbreviated length A / wall height H) and top edge displacement.
  • FIG. 7 shows the cut length of the tip of the H-shaped steel and the hat-shaped steel sheet pile when the retaining wall is constructed using the steel for underground continuous wall of the second embodiment of the present invention. It is a figure which shows the relationship with ratio (abbreviated length B / sheet pile total length) with the total length, and top end displacement.
  • FIG. 8 shows the rear end of the H-shaped steel when the tip position is constant when the retaining wall is constructed using the steel material for underground continuous wall according to the third embodiment of the present invention. It is a figure which shows the relationship between ratio (abbreviation length A / wall height H) of the cutting length and wall height of and the top end displacement.
  • Fig. 9 shows the tip of the H-section steel when the rear end position is constant when the retaining wall is constructed using the steel material for underground continuous wall of the third embodiment of the present invention. It is a figure which shows the relationship between ratio (abbreviated length B / total length of sheet piles) of the cutting length of and the total length of a hat-shaped steel sheet pile, and a top end displacement.
  • FIG. 10 is a plan view showing one form of a conventional hat-shaped steel sheet pile.
  • FIG. 11 is a plan view showing another form of a conventional hat-shaped steel sheet pile.
  • the steel material for underground continuous wall 1 of the present invention is a combination of a hat-shaped steel sheet pile 2 and a H-shaped steel 6 having a length dimension shorter than the length dimension of the hat-shaped steel sheet pile 2.
  • H-section steel 6 is arranged so as to fit within the length dimension of the hat-shaped steel sheet pile 2.
  • the above-mentioned steel, sheet steel sheet pile 2 and H-section steel 6 are all rolled steel materials by hot rolling.
  • the tip of the steel material for underground continuous wall 1 is the lower end when a retaining wall or a revetment wall is constructed by the steel material for underground continuous wall 1, and the steel material for underground continuous wall 1
  • the rear end is the upper end when a retaining wall or revetment wall is constructed from steel for underground continuous walls.
  • the groove 12a in one joint 14a of the hat-shaped steel sheet pile 2 and the groove 12b in the other joint 14b of the hat-shaped steel sheet pile 2 are usually In the length direction of the steel material 1 for continuous wall (the height direction of the retaining wall using the steel material 1 for underground continuous wall), the openings are opposite to each other. For this reason, when multiple underground steel walls 1 are arranged in a row along the longitudinal direction of the arm parts 3 and 4, the adjacent hat-shaped steel sheet piles 2 can be fitted together with the joints 14a and 14b. It has become.
  • the underground continuous wall steel 1 If the earth retaining wall or the like is constructed with the underground continuous wall steel 1, if the underground continuous wall steel 1 is to be installed upside down, the underground continuous wall steel 1 that has been installed upside down 1 Joints with adjacent underground continuous wall steel 1 cannot connect 4a, 14b, and cannot connect multiple underground continuous wall steel 1 End up. For the reasons described above, the front and rear ends of the steel material 1 for the underground continuous wall can be clearly grasped at the construction stage of the underground continuous wall.
  • the tip 19 position of the hat-shaped steel sheet pile 2 and the tip 21 of the H-section steel 6 are arranged.
  • the positions are the same, and the rear end 20 position of H-section steel 6 is the front end side rather than the rear end 18 position of hat-shaped steel sheet pile 2.
  • the steel material 1 for the underground continuous wall with the rear end 20 side of the H-section steel 6 cut short, and the steel material 1 for the underground continuous wall is a hat composed only of the hat-shaped steel sheet pile 2 in cross section.
  • This steel material has a cross section of a shape and a cross section of both a cross section composed of a hat-shaped steel sheet pile 2 and an H-section steel 6. More specifically, when the steel material for underground continuous wall 1 is used as a wall material for retaining walls, the rear end 18 position of the hat-shaped steel sheet pile 2 in the steel material 1 for underground continuous wall and the H shape
  • the difference dimension (A) from the rear end 20 position of steel 6 is 50 of the wall height H (see Fig. 5) from the design ground surface 10 to the ground surface 9 in the retaining wall 8 by the steel material 1 for underground continuous wall.
  • the H-section steel 6 is cut short by the difference dimension (A).
  • the relationship between the wall height H, the length dimension L1 of the hat-shaped steel sheet pile 2 and the length dimension L2 of the H-section steel 6 is ⁇ ⁇ 0 ⁇ 50 ⁇ (L1 ⁇ L2) Satisfied.
  • the (L1 L2) force is the length A of the portion having a cross section composed of only the hat-shaped steel sheet pile 2 on the rear end side in the steel material 1 for underground continuous wall.
  • a high-rigidity portion C having a cross section in which the hat-shaped steel sheet pile 2 and the H-shaped steel 6 are integrated is formed from the middle to the tip side of the steel material 1 for the underground continuous wall. is doing.
  • 6a is one flange portion of H-section steel
  • 6b is the other flange portion of H-section steel
  • 6c is a web portion of H-section steel.
  • the hat-shaped steel sheet steel sheet pile 2 is aligned with the rear end 1 8 position of the hat-shaped steel sheet pile 2 and the rear end 20 position of the H-shaped steel 6.
  • the tip 21 position of the H-section steel 6 is set to the rear end side rather than the tip 19 position of the sheet pile 2.
  • it is a steel material 1 for continuous underground walls in which the tip 21 side of the H-section steel 6 is pressed short.
  • the difference dimension (B) between the tip 19 position of the hat-shaped steel sheet pile 2 and the tip 21 position of the H-section steel 6 in the above-mentioned underground continuous wall steel 1 is the steel for the underground continuous wall.
  • the steel material for underground continuous wall 1 is located from the middle to the upper side.
  • the steel sheet pile 2 and the H-section steel 6 are integrated to form a highly rigid section C having a cross section.
  • the relationship between the length dimension L1 of the hat-shaped steel sheet pile 2 and the length dimension L2 of the H-section steel 6 is made to satisfy LI X 0.35 ⁇ (L1-L2)! /
  • the above (L1 ⁇ L2) is the length B of the portion having a cross section composed only of the hat-shaped steel sheet pile 2 on the front end side in the steel material 1 for underground continuous wall.
  • the rear end 20 position of the H-section steel 6 is set to the front end side rather than the 18 position, and the front end 21 position of the H-section steel 6 is set to the rear end side rather than the front end 19 position of the force and hat-shaped steel sheet pile 2. That is, the steel material 1 for the underground continuous wall in which the rear end 20 and the front end 21 of the H-section steel 6 are cut short. More specifically, the difference dimension (B) between the tip 18 position of the hat-shaped steel sheet pile 2 and the tip position 20 of the H-section steel 6 in the above-mentioned underground continuous wall steel 1 is the steel for the underground continuous wall. The tip 20 side of H-section steel 6 is cut short so that it is less than 30% of the total length of 1.
  • a high-rigidity section having a cross section in which the hat-shaped steel sheet pile 2 and one flange 6a of the H-section steel 6 are integrated in the middle portion excluding the upper and lower ends of the steel material 1 for the underground continuous wall.
  • the length dimension of the hat-shaped steel sheet pile 2 (the overall length of the steel material 1 for the underground continuous wall 1) L1, the length dimension L2 of the H-shaped steel 6 and the rear end side of the steel material 1 for the underground continuous wall material 1
  • the joints 14a, 14a are integrally formed on the arm portions 3 and 4 of the end portion of the hat-shaped steel sheet pile 2 manufactured by hot rolling.
  • 14b is formed.
  • An upward opening having a groove 12a and a locking claw 13 that open upward on the paper surface toward the opposite side of the H-shaped steel 6 side (upper side of the paper surface) at the end of one arm 3 located on the left side of the paper.
  • a groove-shaped joint 14a is provided, and the end of the other arm portion 4 located on the right side of the drawing is a groove 12b that opens downward toward the H-section steel 6 side (downside of the drawing).
  • a downward opening groove joint 14b having a pawl portion 13 is provided.
  • the above-described first to third embodiments have been studied in order to realize a more economical underground wall steel material 1 with no practical problems.
  • the top end displacement (upper end (rear end) displacement) of the steel material for underground continuous wall 1 is equal to the hat-shaped steel sheet pile of the same length.
  • H-shaped steel sheet piles are welded over the entire length to suppress the design top edge displacement Y to 10% or less (that is, 110% or less of top edge displacement Y).
  • the dimensions of steel material 1 for underground continuous wall were examined as follows. For each embodiment, we performed a frame calculation analysis with various ground N values and wall heights H changed, and created top-end displacement graphs as shown in Figs.
  • Wall height H is the height dimension from the design ground surface (bottom surface when excavating the ground) 10 to the ground surface 9
  • (2) EL is the virtual ground surface (in Fig. 5, the earth pressure from the ground on the right side of steel wall 1 for underground continuous wall 1 and the ground on the left side of steel material 1 for underground continuous wall 1 (Ground surface at the same height of earth pressure from the ground) Height dimension from 11 to the design ground surface 10
  • Rooting length L is the height dimension from virtual ground surface 11 to hat-shaped steel sheet pile 2 tip 19
  • the steel material 1 for the underground continuous wall of the first embodiment shown in Fig. 1B is more specifically used as a retaining wall 8 having a configuration as shown in Fig. 5 and is 10 kN per unit area on the ground surface 9.
  • a retaining wall 8 having a configuration as shown in Fig. 5 and is 10 kN per unit area on the ground surface 9.
  • the steel wall sheet material with the same length and welded over the entire length of the steel sheet pile and the H-shaped steel sheet pile (the conventional steel sheet for underground wall with the cross section shown in Fig. 2 over the entire length)
  • the maximum value of the top displacement when using) is 0.05 m [50 mm].
  • conventional steel materials for continuous underground walls that are normally used are manufactured so that the design top edge displacement Y is 40 mm to 45 mm at the maximum. Therefore, the top end displacement of 10% or less of the top end displacement Y (45mm) in the design of conventional steel plate for underground continuous wall is within the range where the top end displacement occurs. If the steel for medium continuous wall is designed, the top end displacement can be controlled to 50mm or less.
  • the top end displacement is set to a maximum 10% or less increase of the top end displacement Y [m] in the design of conventional steel materials for underground continuous walls.
  • the horizontal axis is the ratio of the cut length (omitted length A [m]) of the rear end 20 of the H-section steel 6 to the wall height H [m] (omitted length A [m] / wall It is shown as dimensionless as high H [m]).
  • the vertical axis shows the top end displacement for the combination of H-section steel 6 with the rear end 20 side cut and hat-shaped steel sheet pile 2 (in the graph, the top end displacement when H-section steel is omitted) and the hat Ratio of top end displacement when H-section steel 6 with the same length as the shape steel sheet pile 2 is welded over the full length (in the graph, indicated as top end displacement during full length welding) It is shown as dimensionless as the increase rate of the top end displacement during full length welding), that is, the increase rate of the top end displacement! As shown in the relationship between the ratio of the cut dimension A [m] on the rear end 20 side of the H-section steel and the increase rate of the top end displacement, in each case, the increase rate of the top end displacement is 10%. In order to fit below, it can be seen that it is possible to cut to 50% or less of the wall height H as shown by the vertical dotted line.
  • the separation length (A) between the rear end 18 of the hat-shaped steel sheet pile 2 and the rear end 20 of the H-section steel 6 is different from the design ground 10 in the retaining wall 8 by the steel material 1 for underground continuous wall. It can be seen that when the wall height H up to surface 9 exceeds 50%, the top edge displacement increases rapidly. On the other hand, the separation length (A) between the rear end 18 of the hat-shaped steel sheet pile 2 and the rear end 20 of the H-section steel 6 is the design ground in the retaining wall 8 by the steel material 1 for underground continuous wall. When the wall height H from 10 to the ground surface 9 is 50% or less, the rate of rise of the top edge displacement is kept low. As described above, when the separation length (A) is 50% or less of the wall height H, the separation length (A) has sufficient rigidity as compared with the case where the separation length (A) exceeds 50% of the wall height H. Inexpensive and lightweight.
  • the H-section steel 6 can be cut to exceed 0% of the wall height H and to 50% or less of the wall height H. For example, when cutting H-section steel 6 to 10% of the wall height H, if the wall height H is 5.5 m, the H-section steel 6 If the wall height is 6m, 0.6m of H-section steel 6 can be cut, resulting in an inexpensive H-section steel. When cutting H-section steel 6 up to 50% of wall height H, if wall height H is 5.5 m, 2.75 m of H-section steel 6 can be cut, and if wall height H is 6. Om, H-section steel 6 3. Om can be cut, and extremely inexpensive H-section steel 6 can be used, resulting in an inexpensive underground steel 1 for underground walls. In addition, if the wall height H is 30% or less, the steel sheet pile 2 and the H-section steel 6 that have almost the same change in the increasing rate of the top end displacement will have the same length as the steel member for continuous underground wall. It can be seen that it is.
  • the N value is a value indicating the degree of firmness or softness of the ground obtained by the standard penetration test.
  • a weight of a predetermined mass is dropped freely from a predetermined height, and the sampler penetrates into the ground at a predetermined depth. It is the number of hits required to make it happen.
  • the horizontal axis represents the ratio of the cut length of the tip 21 of the H-section steel 6 (omitted length B [m]) to the total length [m] of the hat-shaped steel sheet pile 2 (omitted length B [m ] / Sheet length [m]
  • the vertical axis shows the top end displacement in the case of the combination of H-section steel 6 with the tip 21 side cut and hat-shaped steel sheet pile 2 (in the graph, the top-end displacement when H-section steel is omitted) and the hat Ratio of top end displacement (noted as top end displacement during full length welding in the graph) when full length welding of H section steel 6 with the same length as the steel sheet pile 2 (not cut) (when H steel is omitted)
  • the top edge displacement / the top edge displacement during full length welding that is, the increase rate of the top edge displacement is shown in a dimensionless manner.
  • the increase rate of the top end displacement is To fit within 10% or less, it is possible to cut to 35% or less of the total length of the hat-shaped steel sheet pile 2, as indicated by the vertical dotted line. It can be seen that
  • the separation length (B) between the tip 19 of the hat-shaped steel sheet pile 2 and the tip 21 of the H-section steel 6 exceeds 35% of the total length in the length direction of the steel material for underground continuous wall 1, It can be seen that the top-end displacement rises rapidly. In contrast, the separation length (B) between the tip 19 of the hat-shaped steel sheet pile 2 and the tip 21 of the H-section steel 6 is 35% or less of the total length in the length direction of the steel material 1 for underground continuous wall. In this case, the rate of increase of the top end displacement is kept low. As described above, when the separation length is 35% or less of the total length, compared to the case where the separation length exceeds 35% of the total length, it has sufficient rigidity and is inexpensive and lightweight.
  • the H-section steel 6 up to more than 0% and less than 35% of the overall length of the hat-shaped steel sheet pile 2. In addition, if it is 20% or less of the total length of the hat-shaped steel sheet pile 2, there is almost no change in the increase rate of the top end displacement, and the steel sheet pile 2 and the H-shaped steel 6 have the same length. It turns out that it is a member equivalent to the steel material for continuous walls.
  • Fig. 8 the ratio of the cut length B [m] on the tip 21 side of H-section steel 6 to steel material for underground continuous wall (total sheet pile length of hat-shaped steel sheet pile 2) 1 Is fixed at 0.30, that is, with the cut length B [m] on the tip 21 side of the H-section steel 6 fixed, the force length A [ The result of changing m] is shown. From Fig. 8, the top end displacement is calculated as the top end displacement Y. In order to suppress the increase to 10% or less, the ratio of the wall height H to the rear end 20 side of the H-section steel 6 is examined.
  • the ratio of the cut length A [m] on the rear end 20 side of the H-section steel 6 to the wall height H is fixed to 0.50, that is, the rear end 20 of the H-section steel 6
  • the result of changing the cut length B [m] on the tip 21 side of the H-section steel 6 with the cut length A [m] fixed to is shown. From Fig. 9, it is investigated to what extent the tip 21 side of the H-section steel 6 can be cut with respect to the total length of the steel material 1 for underground continuous wall in order to suppress the top end displacement to 10% or less. If the cut length B [m] on the tip 21 side of H-section steel 6 is reduced, naturally the rigidity of the steel material for underground continuous wall 1 will be increased and the top end displacement will be reduced.
  • the top displacement Y [m] It can be seen that it can be suppressed to an increase of 10% or less.
  • the vertical and horizontal axes are the same as in FIG.
  • the separation length (A) between the rear end 18 of the hat-shaped steel sheet pile 2 and the rear end 20 of the H-section steel 6 is the steel material for underground continuous wall 1
  • the height of the wall between the design ground 10 and the ground surface 9 at the retaining wall 8 exceeds 50% of the height H, and the distance between the tip 19 of the hat-shaped steel sheet pile 2 and the tip 21 of the H-shaped steel 6
  • (B) exceeds 30% of the total length in the longitudinal direction of the steel material for underground continuous wall 1, it is understood that the top end displacement increases rapidly.
  • the separation length (A) between the rear end 18 of the hat-shaped steel sheet pile 2 and the rear end 20 of the H-section steel 6 is the design ground in the retaining wall 8 of the steel material 1 for underground continuous wall.
  • the wall height H from 10 to the ground surface 9 is 50% or less and the distance between the tip 19 of the hat-shaped steel sheet pile 2 and the tip 21 of the H-shaped steel 6 (B) 1S Continuous underground wall.
  • the cut on the rear end 20 side of H-section steel 6 is set at 10% or more and 50% or less of the wall height H.
  • the cut on the tip 21 side of the shape steel 6 should be set in the range of 5% to 30% of the total length of the steel wall 1 for underground wall.
  • the length of the rear end of the underground continuous wall steel 1 held by the driving machine is 500 mm or less. Therefore, when separating the rear end 20 of the H-section steel 6 from the rear end 18 of the hat-shaped steel sheet pile 2, the separation length between the rear end 18 of the hat-shaped steel sheet pile 2 and the rear end 20 of the H-section steel 6 (A) should be at least 500 mm! /.
  • the manufacturing method of the steel material 1 for underground continuous walls of the present invention is as follows.
  • the hat-shaped steel sheet pile 2 and the H-section steel 6 constituting the steel material 1 for the underground continuous wall of the present invention described above are prepared.
  • the shapes and dimensions of the hat-shaped steel sheet pile 2 and the H-shaped steel 6 are the same as those in the above-described embodiment.
  • a joint portion that can use the hat-shaped steel sheet pile 2 manufactured by hot rolling the entire member is manufactured by hot rolling and fixed to the arm portions 3 and 4 by welding.
  • a hat-shaped steel sheet pile 2 may be used.
  • one flange portion 6a in the H-section steel 6 is arranged on the opposite side of the groove D formed by the web 7 and the flange 5 in the hat-shaped steel sheet pile 2, and the H-section steel 6
  • One flange portion 6 a in this case is brought into contact with the outer surface 71 of the web 7 of the hat-shaped steel sheet pile 2.
  • the separation length (A) between the rear end 18 of the hat-shaped steel sheet pile 2 and the rear end 20 of the H-shaped steel 6 and the front end 19 of the hat-shaped steel sheet pile 2 and the front end 21 of the H-shaped steel 6 The spacing length (B) between them is appropriately adjusted so as to be the steel material for underground continuous wall 1 of the above-described embodiment.
  • both sides of the flange 6a of the H-shaped steel 6 are welded over the entire length.
  • the web 7 is fixed to the outer surface 71 (outer surface) side.
  • the clamp (gripping) Part) 16 hold the rear end of steel wall 1 for underground continuous wall.
  • the force S which shows the case where the pair of flanges 7 of the hat-shaped steel sheet pile 2 are gripped by the clamp 16, only the web 5, and the tip side of the steel material 1 for the underground continuous wall 1
  • the ground connecting wall steel 1 is driven in the underground direction S to a predetermined depth by the vibration device 17.
  • a plurality of underground continuous wall steel members 1 are arranged on the ground surface 9 in advance to form the underground continuous wall to be formed, and the joints 14a and 14b of the adjacent underground continuous wall steel members 1 are connected. In this state, the underground continuous wall steel 1 may be sequentially placed by the placing machine 15.
  • the underground continuous wall steel 1 of the present invention may be used.
  • the underground continuous wall steel may be constructed by alternately connecting the steel material for underground continuous wall 1 and the steel material for underground continuous wall made only of slab and t-shaped steel sheet piles in the lateral direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)

Description

明 細 書
地中連続壁用鋼材、地中連続壁用鋼材の製造方法、地中連続壁、及び 、地中連続壁を構築する方法
技術分野
[0001] 本発明は、建築土木工事における土留め壁あるいは護岸壁等を構築する場合に 広く用いられる地中連続壁用鋼材、地中連続壁用鋼材の製造方法、地中連続壁用 鋼材により構築された地中連続壁、及び、地中連続壁用鋼材により地中連続壁を構 築する方法に関する。 本願は、 2006年 9月 5日に出願された特願 2006— 24065 4号に対し優先権を主張し、その内容をここに援用する。
背景技術
[0002] 従来、土留め壁あるいは地中連続壁を構築する場合に用いられ、鋼矢板と H形鋼 とを組み合わせて複合一体化した地中連続壁用鋼材 (複合鋼矢板)としては、 (D H 形鋼の一方のフランジに直線状鋼矢板あるいは壁版状鋼矢板を溶接により固定した 地中連続壁用鋼材が知られて!/、る (例えば特許文献 1参照)。
また、前記(1)の地中連続壁用鋼材よりも、より剛性の高い地中連続壁用鋼材とし て、 U形鋼矢板と、 H形鋼または I形鋼あるいは T形鋼とを組み合わせた地中連続壁 用鋼材も知られて!/、る(例えば特許文献 3乃至 6参照)。
[0003] 地中連続壁を構築する場合に、前記のような鋼矢板を多数横方向に連結して構築 するため多額の費用がかかる。地中連続壁用鋼材一本の鋼矢板の長さ寸法を低減 できると、多数の鋼矢板を使用して構築される地中連続壁あるいは土留め壁では、 地中連続壁用鋼材の重量が軽量になる分、運搬が容易になる。また、打ち込みも容 易になり、施工ェ期の短縮化も可能になる。このため地中連続壁を安価に構築でき、 また施工コストを低減でき、格段の効果を生じることになる。そのため、軽量安価な地 中連続壁用鋼材が望まれる。
[0004] U形鋼矢板における溝内に H形鋼を固定する形態では、 U形鋼矢板のフランジの 傾斜角が大きい内面側に H形鋼が固定されるために、地盤に打設した場合に、 U形 鋼矢板の溝内側の地盤が圧密されて閉塞しやす!/、と!/、う課題がある。これに対して U形鋼矢板の傾斜角よりも緩!/、ハット形鋼矢板と H形鋼との組み合わせでは、地盤の 圧密を低減し前記の課題をより解消してレ、るとレ、う利点を有して!/、る。
[0005] ところで、図 10に示すような圧延により製造されるハット形鋼矢板 2は、その寸法が 変わると、圧延製造設備費が多大にかかる。現存するハット形鋼矢板としては、図 10 および図 1 1に示すような寸法(単位 mm)のハット形鋼矢板 2である。これらのハット形 鋼矢板 2では、ウェブ 7の両端部に外側に向力 て広がるように傾斜したフランジ 5が 一体に連設され、各フランジ 5に前記ウェブ 7と平行にアーム部 3 , 4がー体に連設さ れ、各アーム部 3 , 4の端部に、継手 14 ( 14a、 14b)がー体に形成されており、断面 がハット形である。左右の各継手 14a、 14bは、アーム部 3 , 4の中心軸線の中央点に 対して、点対称形状とされ、隣り合うハット形鋼矢板 2相互の継手 14a、 14bを嵌合し た場合に、アーム中心軸線上にハット形鋼矢板 2を配設できるようになつている。
[0006] 前記のハット形鋼矢板 2の利点は、傾斜したフランジ 5およびその両側にアーム部 3 , 4を備えているので、矢板幅寸法が広いため打ち込み枚数が少なくなり、安価な壁 体を構築すること力 Sできることである。反面、矢板幅寸法を変えずに高い曲げ剛性を 有するハット形鋼矢板を安価に容易に製造できない課題を有している。
[0007] 特許文献 1:特開昭 62— 133209号公報
特許文献 2:特開平 1 1 140864号公報
特許文献 3:特開昭 55— 68918号公報
特許文献 4 :特開平 06 280251号公報
特許文献 5:特開 2005— 127033号公報
特許文献 6:特許第 3603793号公報
発明の開示
発明が解決しょうとする課題
[0008] 前記各従来技術では、 U形鋼矢板と H形鋼とを組み合わせることは開示されている
1S U形鋼矢板に対する H形鋼の長さ寸法との関係を具体的に明らかにして、より経 済的な地中連続壁用鋼材にすることにつ!/、ては開示されて!/、な!/、。
また、矢板幅寸法を変えずに高い曲げ剛性を有するハット形鋼矢板を安価に容易 に製造できない課題を有しているため、現存するまたは将来製造されるハット形鋼矢 板を利用して、より剛性の高い安価な地中連続壁用鋼材が望まれる。
本発明は、前記のハット形鋼矢板 2の利点を生力もながら、これに H形鋼を組み込 む地中連続壁用鋼材において、ハット形鋼矢板 2に対する H形鋼の長さ寸法を具体 的に規定して、より安価で実用的な地中連続壁用鋼材を提供することを目的とする。 すなわち、より安価で実用的な土留め壁あるいは地中連続壁を構築可能な地中連 続壁用鋼材の提供を目的とする。
課題を解決するための手段
[0009] 本発明者は、ハット形鋼矢板 2に H形鋼 6を組み込んだ地中連続壁用鋼材を用い て地中連続壁あるいは土留め壁を構築する場合に、地中連続壁用鋼材はその上下 方向の全長に渡って同じ断面である合理的な理由がないことに着目した。さらに土 留め壁の天端変位を実用上問題のない変位に抑えることが可能であれば、より安価 な地中連続壁用鋼材となり、そのような地中連続壁用鋼材を使用することにより、より 安価な地中連続壁あるいは土留め壁となることを考慮して本発明を完成させた。
[0010] 前記課題を解決するために、本発明は、以下の構成を有する。
本発明の地中連続壁用鋼材の第 1の態様は、長さ方向に対し垂直な断面がハット 形のハット形鋼矢板と、長さ方向に対し垂直な断面が H形の H形鋼とを備え、前記ハ ット形鋼矢板は、ウェブと、該ウェブの両端部に一体に連設され、外側に向かって広 力 ¾ように傾斜した一対のフランジと、前記一対のフランジの各々に一体に連設され 、前記ウェブと略平行な一対のアーム部とを有し、前記 H形鋼は、互いに略平行な一 対のフランジ部と、該一対のフランジ部同士を間隔を設けて連結するウェブ部とを有 し、前記ハット形鋼矢板の前記ウェブと前記各フランジとにより形成される溝側と反対 側のウェブ外面に、前記 H形鋼の前記一対のフランジ部の一方における前記ウェブ 部と連結される側の面と反対側の外面が固定され、前記ハット形鋼矢板の長さ方向 における寸法よりも H形鋼の長さ方向における寸法が短ぐかつ前記ハット形鋼矢板 の前記長さ方向における寸法内に前記 H形鋼の前記長さ方向における全長が配設 され、前記ハット形鋼矢板の後端よりも前記 H形鋼の後端が、前記長さ方向における 先端側に位置する。
[0011] なお、後述するように、本発明において、地中連続壁用鋼材を地中に打設して、土 留め壁または護岸壁等を構築する際、土留め壁または護岸壁等を構築した状態に おける地中連続壁用鋼材の上端側を、打設機 (クランプ (把持部)および加振装置か らなる)により把持し、地中連続壁用鋼材の下端側を先頭にし、地中連続壁用鋼材の 上端側を後尾にして、地中連続壁用鋼材を地中に打設する。よって、本発明におい て、地中連続壁用鋼材の先端とは、地中連続壁用鋼材により土留め壁または護岸壁 等を構築した際の下端であり、地中連続壁用鋼材の後端とは、地中連続壁用鋼材に より土留め壁または護岸壁等を構築した際の上端である。
前記地中連続壁用鋼材の第 1の態様によれば、ノ、ット形鋼矢板の長さ方向におけ る寸法よりも H形鋼の長さ方向における寸法が短いので、安価で軽量な地中連続壁 用鋼材を得ることができる。この地中連続壁用鋼材を使用した場合、経済的な土留 め壁または護岸壁を構築できる。
また、打設機により、地中連続壁用鋼材の後端部を把持する場合、ハット形鋼矢板 の後端と H形鋼の後端の長さ方向における位置が一致する地中連続壁用鋼材では 、打設機が把持しょうとする地中連続壁用鋼材の後端には、ハット形鋼矢板と H形鋼 の双方が存在してしまい、打設機による地中連続壁用鋼材の把持が著しく困難にな る。これに対して、前記第 1の態様では、ハット形鋼矢板の後端よりも H形鋼の後端が 、長さ方向における先端側に位置するので、地中連続壁用鋼材の後端にはハット形 鋼矢板のみが存在する。このため、打設機により、容易に、地中連続壁用鋼材の後 端部を把持できる。例えばハット形鋼矢板の後端部のみを把持する場合、 H形鋼に より干渉されずに容易に把持できる。
地中連続壁を構築する際、ハット形鋼矢板と H形鋼を一体化させた地中連続壁用 鋼材、及びハット形鋼矢板のみからなる地中連続壁用鋼材を横方向に交互に接続 すること力 Sあり得る。ハット形鋼矢板と H形鋼を一体化させた地中連続壁用鋼材として 、ハット形鋼矢板の後端と H形鋼の後端の長さ方向における位置が一致するものを 用いる場合、この地中連続壁用鋼材を地中に打設するためには特殊な打設機を用 いる必要がある。このため、特殊な打設機と、ハット形鋼矢板のみからなる地中連続 壁用鋼材を打設するための通常使用される打設機とを交互に使用して、打設作業を 行う必要が生じ、非常に、作業が煩雑になってしまう。これに対し、本発明の第 1の態 様であれば、 H形鋼により干渉されずにハット形鋼矢板の後端部のみを把持できる。 このため、ハット形鋼矢板を打設するための通常使用される打設機のみを使用して 双方の打設作業を行うことができ、打設作業の簡略化を図ることができる。
[0013] 前記地中連続壁用鋼材の第 1の態様では、前記ハット形鋼矢板の先端と前記 H形 鋼の先端の、前記長さ方向における位置が一致してもよい。
この場合、地中連続壁用鋼材の第 1の態様における上記効果が同様に得られる。
[0014] 前記ハット形鋼矢板の前記後端と前記 H形鋼の前記後端との間の離間長さは、地 中連続壁用鋼材による土留め壁における設計地盤から地表面までの壁高の 50%以 下であってもよい。
地中連続壁用鋼材を一側面側から土圧が作用する土留め壁用の鋼材として使用 した場合に、土圧が作用して土留め壁の天端が土圧作用方向に変位しても、同じ長 さのハット形鋼矢板と H形鋼矢板を全長に渡って溶接した地中連続壁用鋼材を用い た時の設計上の天端変位 Yの 10%増以下 (すなわち、天端変位 Yの 110%以下)の 変位に抑えることができ、十分な剛性を有すると共に、安価で軽量な地中連続壁用 ま岡材とすること力 Sでさる。
また、後述する実験結果で記載されているように、ハット形鋼矢板の後端と H形鋼の 後端との間の離間長さ力、地中連続壁用鋼材による土留め壁における設計地盤から 地表面までの壁高の 50%を超えると、天端変位が急激に上昇することが把握される 。これに対し、ハット形鋼矢板の後端と H形鋼の後端との間の離間長さが、地中連続 壁用鋼材による土留め壁における設計地盤から地表面までの壁高の 50%以下の場 合、天端変位の上昇率は低く抑えられている。以上のように、離間長さが壁高の 50 %以下の場合は、離間長さが壁高の 50%を超える場合と比較し、十分な剛性を有す ると共に、安価で軽量である。
[0015] 前記ハット形鋼矢板の前記後端と前記 H形鋼の前記後端との間の離間長さは、地 中連続壁用鋼材による土留め壁における設計地盤から地表面までの壁高の 10%以 上 50%以下であってもよい。
この場合、離間長さが壁高の 50%以下であるので、地中連続壁用鋼材を一側面側 力、ら土圧が作用する土留め壁用の鋼材として使用した場合に、土圧が作用して土留 め壁の天端が土圧作用方向に変位しても、同じ長さのハット形鋼矢板と H形鋼矢板 を全長に渡って溶接した地中連続壁用鋼材を用いた時の設計上の天端変位 Yの 10 %増以下 (すなわち、天端変位 Yの 110%以下)の変位に抑えることができ、十分な 剛性を有する地中連続壁用鋼材とすることができる。また、離間長さが壁高の 10% 以上であるので、経済的効果が大きぐ安価で軽量な地中連続壁用鋼材とすること ができる。
[0016] 前記ハット形鋼矢板の前記後端と前記 H形鋼の前記後端との間の離間長さは、地 中連続壁用鋼材による土留め壁における設計地盤から地表面までの壁高の 30%以 下であってもよい。
この場合、後述の実験結果から把握されるように、同じ長さのハット形鋼矢板と H形 鋼矢板を全長に渡って溶接した地中連続壁用鋼材を用いた時の天端変位とほぼ同 様の天端変位を維持でき、十分な剛性を有する地中連続壁用鋼材とすることができ
[0017] 前記ハット形鋼矢板の先端よりも前記 H形鋼の先端が、前記長さ方向における後端 側に位置してもよい。
この場合、後述の実験結果から把握されるように、ハット形鋼矢板の先端よりも H形 鋼の先端を後端側に配置したのみの構成、及び、ハット形鋼矢板の後端よりも H形鋼 の後端を先端側に配置したのみの構成と比較し、 H形鋼のカット長さ (H形鋼の先端 部のカット長さと H形鋼の後端部のカット長さの和)をより大きくしても、問題がない高 剛性を維持できる。よって、上記 2つの構成と比較し、より安価とでき、更により軽量と して作業性を向上できる。
[0018] 前記ハット形鋼矢板の前記後端と前記 H形鋼の前記後端との間の離間長さは、前 記地中連続壁用鋼材による土留め壁における設計地盤から地表面までの壁高の 50 %以下であり、かつ前記ハット形鋼矢板の前記先端と前記 H形鋼の前記先端との間 の離間長さは、前記地中連続壁用鋼材の長さ方向における全長の 30%以下であつ てもよい。
この場合、後述の実験結果から把握されるように、地中連続壁用鋼材を一側面側 力、ら土圧が作用する土留め壁用の鋼材として使用した場合に、土圧が作用して土留 め壁の天端が土圧作用方向に変位しても、同じ長さのハット形鋼矢板と H形鋼矢板 を全長に渡って溶接した地中連続壁用鋼材を用いた時の設計上の天端変位 Yの 10 %増以下 (すなわち、天端変位 Yの 110%以下)の変位に抑えることができ、十分な 剛性を有すると共に、安価で軽量な地中連続壁用鋼材とすることができる。
また、後述する実験結果で記載されているように、ハット形鋼矢板の後端と H形鋼の 後端との間の離間長さ力、地中連続壁用鋼材による土留め壁における設計地盤から 地表面までの壁高の 50%を超え、かつ、ハット形鋼矢板の先端と H形鋼の先端との 間の離間長さが、地中連続壁用鋼材の長さ方向における全長の 30%を超えた場合 、天端変位が急激に上昇することが把握される。これに対し、ハット形鋼矢板の後端 と H形鋼の後端との間の離間長さが、地中連続壁用鋼材による土留め壁における設 計地盤から地表面までの壁高の 50%以下であり、かつ、ハット形鋼矢板の先端と H 形鋼の先端との間の離間長さが、地中連続壁用鋼材の長さ方向における全長の 30 %以下の場合、天端変位の上昇率は低く抑えられている。以上のように、他の場合と 比較し、十分な剛性を有すると共に、安価で軽量である。
前記ハット形鋼矢板の前記後端と前記 H形鋼の前記後端との間の離間長さは、前 記地中連続壁用鋼材による土留め壁における設計地盤から地表面までの壁高の 10 %以上 50%以下であり、かつ前記ハット形鋼矢板の前記先端と前記 H形鋼の前記 先端との間の離間長さは、前記地中連続壁用鋼材の長さ方向における全長の 5%以 上 30%以下であってもよい。
この場合、ハット形鋼矢板の後端と H形鋼記後端との間の離間長さが壁高の 50% 以下であり、かつ、ハット形鋼矢板の先端と H形鋼の先端との間の離間長さが全長の 30%以下であるので、地中連続壁用鋼材を一側面側から土圧が作用する土留め壁 用の鋼材として使用した場合に、土圧が作用して土留め壁の天端が土圧作用方向 に変位しても、同じ長さのハット形鋼矢板と H形鋼矢板を全長に渡って溶接した地中 連続壁用鋼材を用いた時の設計上の天端変位 Yの 10%増以下 (すなわち、天端変 位 Yの 110%以下)の変位に抑えることができ、十分な剛性を有する地中連続壁用 鋼材とすること力 Sできる。また、ハット形鋼矢板の後端と H形鋼記後端との間の離間長 さが壁高の 10%以上であり、かつ、ハット形鋼矢板の先端と H形鋼の先端との間の 離間長さが全長の 5%以上であるので、経済的効果が大きぐ安価で軽量な地中連 続壁用鋼材とすることができる。
[0020] 前記ハット形鋼矢板の前記後端と前記 H形鋼の前記後端との間の離間長さは、 50 Omm以上であってもよ!/、。
通常、打設機が把持する、地中連続壁用鋼材の後端部の長さは 500mm以下であ る。よって、打設機が把持する部分に H形鋼は存在せず、打設機により、容易に地中 連続壁用鋼材の後端部 (ハット形鋼矢板の後端部)を把持でき、打設作業を行うこと ができる。
[0021] 本発明の地中連続壁用鋼材の第 2の態様は、長さ方向に対し垂直な断面がハット 形のハット形鋼矢板と、長さ方向に対し垂直な断面が H形の H形鋼とを備え、前記ハ ット形鋼矢板は、ウェブと、該ウェブの両端部に一体に連設され、外側に向かって広 力 ¾ように傾斜した一対のフランジと、前記一対のフランジの各々に一体に連設され 、前記ウェブと略平行な一対のアーム部とを有し、前記 H形鋼は、互いに略平行な一 対のフランジ部と、該一対のフランジ部同士を間隔を設けて連結するウェブ部とを有 し、前記ハット形鋼矢板の前記ウェブと前記各フランジとにより形成される溝側と反対 側のウェブ外面に、前記 H形鋼の前記一対のフランジ部の一方における前記ウェブ 部と連結される側の面と反対側の外面が固定され、前記ハット形鋼矢板の長さ方向 における寸法よりも H形鋼の長さ方向における寸法が短ぐかつ前記ハット形鋼矢板 の前記長さ方向における寸法内に前記 H形鋼の前記長さ方向における全長が配設 され、前記ハット形鋼矢板の後端と前記 H形鋼の後端の、前記長さ方向における位 置が一致し、前記ハット形鋼矢板の先端よりも前記 H形鋼の先端が、前記長さ方向に おける後端側に位置し、前記ハット形鋼矢板の前記先端と前記 H形鋼の前記先端と の間の離間長さは、前記地中連続壁用鋼材の長さ方向における全長の 35 %以下で ある。
本発明の地中連続壁用鋼材の第 2の態様によれば、後述の実験結果から把握され るように、地中連続壁用鋼材を一側面側から土圧が作用する土留め壁用の鋼材とし て使用した場合に、土圧が作用して土留め壁の天端が土圧作用方向に変位しても、 同じ長さのハット形鋼矢板と H形鋼矢板を全長に渡って溶接した地中連続壁用鋼材 を用いた時の設計上の天端変位 Yの 10%増以下 (すなわち、天端変位 Υの 110% 以下)の変位に抑えることができ、十分な剛性を有すると共に、安価で軽量な地中連 続壁用鋼材とすることができる。
また、後述する実験結果で記載されているように、ハット形鋼矢板の先端と Η形鋼の 先端との間の離間長さ力 S、地中連続壁用鋼材の長さ方向における全長の 35%を超 えると、天端変位が急激に上昇することが把握される。これに対し、ハット形鋼矢板の 先端と Η形鋼の先端との間の離間長さが、地中連続壁用鋼材の長さ方向における全 長の 35%以下の場合、天端変位の上昇率は低く抑えられている。以上のように、離 間長さが全長の 35%以下の場合は、離間長さが全長の 35%を超える場合と比較し 、十分な剛性を有すると共に、安価で軽量である。
[0022] 本発明の地中連続壁用鋼材の第 2の態様では、前記ハット形鋼矢板の前記先端と 前記 Η形鋼の前記先端との間の離間長さは、前記地中連続壁用鋼材の長さ方向に おける全長の 5%以上であってもよい。
この場合、経済的効果が大きぐ安価で軽量な地中連続壁用鋼材とすることができ
[0023] 前記ハット形鋼矢板の前記先端と前記 Η形鋼の前記先端との間の離間長さは、前 記地中連続壁用鋼材の長さ方向における全長の 20%以下であってもよい。
この場合、後述の実験結果から把握されるように、同じ長さのハット形鋼矢板と Η形 鋼矢板を全長に渡って溶接した地中連続壁用鋼材を用いた時の天端変位とほぼ同 様の天端変位を維持でき、十分な剛性を有する地中連続壁用鋼材とすることができ
[0024] 本発明の地中連続壁用鋼材の製造方法の第 1の態様は、長さ方向に対し垂直な 断面がハット形のハット形鋼矢板と、長さ方向に対し垂直な断面が Η形の Η形鋼とを 用意し、前記ハット形鋼矢板は、ウェブと、該ウェブの両端部に一体に連設され、外 側に向かって広がるように傾斜した一対のフランジと、前記一対のフランジの各々に 一体に連設され、前記ウェブと略平行な一対のアーム部とを有し、前記 Η形鋼は、互 いに略平行な一対のフランジ部と、該一対のフランジ部同士を間隔を設けて連結す るウェブ部とを有し、前記 Η形鋼の長さ方向における寸法が前記ハット形鋼矢板の長 さ方向における寸法より短ぐ前記ハット形鋼矢板の前記長さ方向における寸法内に 前記 H形鋼の前記長さ方向における全長を配設し、かつ前記ハット形鋼矢板の後端 よりも前記 H形鋼の後端を、前記長さ方向における先端側に位置させるように配置し た状態で、前記ハット形鋼矢板の前記ウェブと前記各フランジとにより形成される溝 側と反対側のウェブ外面に、前記 H形鋼の前記一対のフランジ部の一方における前 記ウェブ部と連結される側の面と反対側の外面を当接させ、互いに当接されている前 記ハット形鋼矢板の前記ウェブ及び前記 H形鋼の前記フランジ部を、溶接により互!/、 に固定する。
本発明の地中連続壁用鋼材の製造方法の第 1の態様によれば、安価で軽量な本 発明の地中連続壁用鋼材の第 1の態様を製造できる。
[0025] 本発明の地中連続壁用鋼材の製造方法の第 1の態様では、前記ハット形鋼矢板の 先端と前記 H形鋼の先端の、前記長さ方向における位置を一致させるように配置し てもよい。
[0026] 前記ハット形鋼矢板の先端よりも前記 H形鋼の先端を、前記長さ方向における後端 側に位置させるように配置してもよい。
[0027] 本発明の地中連続壁用鋼材の製造方法の第 2の態様は、長さ方向に対し垂直な 断面がハット形のハット形鋼矢板と、長さ方向に対し垂直な断面が H形の H形鋼とを 用意し、前記ハット形鋼矢板は、ウェブと、該ウェブの両端部に一体に連設され、外 側に向かって広がるように傾斜した一対のフランジと、前記一対のフランジの各々に 一体に連設され、前記ウェブと略平行な一対のアーム部とを有し、前記 H形鋼は、互 いに略平行な一対のフランジ部と、該一対のフランジ部同士を間隔を設けて連結す るウェブ部とを有し、前記 H形鋼の長さ方向における寸法が前記ハット形鋼矢板の長 さ方向における寸法より地中連続壁用鋼材の長さ方向における全長の 35%以下の 長さ分だけ短ぐ前記ハット形鋼矢板の前記長さ方向における寸法内に前記 H形鋼 の前記長さ方向における全長を配設し、かつ前記ハット形鋼矢板の後端と前記 H形 鋼の後端の、前記長さ方向における位置を一致させ、前記ハット形鋼矢板の先端より も前記 H形鋼の先端を、前記長さ方向における後端側に位置させるように配置した 状態で、前記ハット形鋼矢板の前記ウェブと前記各フランジとにより形成される溝側と 反対側のウェブ外面に、前記 H形鋼の前記一対のフランジ部の一方における前記ゥ エブ部と連結される側の面と反対側の外面を当接させ、互いに当接されている前記 ノ、ット形鋼矢板の前記ウェブ及び前記 H形鋼の前記フランジ部を、溶接により互いに 固定する。
本発明の地中連続壁用鋼材の製造方法の第 2の態様によれば、十分な剛性を有 すると共に、安価で軽量な本発明の地中連続壁用鋼材の第 2の態様を製造できる。
[0028] 本発明の地中連続壁用鋼材の製造方法の第 2の態様では、前記 H形鋼の前記長 さ方向における寸法は、前記ハット形鋼矢板の前記長さ方向における寸法より、前記 地中連続壁用鋼材の長さ方向における全長の 20%以下の長さ分だけ短くてもよい。
[0029] 本発明の地中連続壁は、本発明の地中連続壁用鋼材を複数使用して構築されて いる。
本発明の地中連続壁を構築する方法は、本発明の地中連続壁用鋼材を複数使用 して構築する。
発明の効果
[0030] 本発明によれば、安価で軽量な地中連続壁用鋼材が得られ、この地中連続壁用鋼 材を使用した場合、経済的に問題がない土留め壁または護岸壁を構築できる。 図面の簡単な説明
[0031] [図 1A]図 1Aは、本発明の第 1〜第 3実施形態の地中連続壁用鋼材を並列配置して 嵌合させた状態を示す平面図である。
[図 1B]図 1Bは、第 1実施形態の地中連続壁用鋼材の側面図である。
[図 1C]図 1Cは、第 2実施形態の地中連続壁用鋼材の側面図である。
[図 1D]図 1Dは、第 3実施形態の地中連続壁用鋼材の側面図である。
[図 2]図 2は、本発明の実施形態の地中連続壁用鋼材の後端側の平面図である。
[図 3A]図 3Aは、本発明の実施形態の地中連続壁用鋼材の製造方法において、ハツ ト形鋼矢板と H形鋼とを当接させた状態を示す図である。
[図 3B]図 3Bは、本発明の実施形態の地中連続壁用鋼材の製造方法において、ハツ ト形鋼矢板と H形鋼とを溶接により接合した状態を示す図である。
[図 4]図 4は、本発明の実施形態の地中連続壁用鋼材を、打設機により、地中に打設 してレ、る状態を示す図である。
[図 5]図 5は、各実施形態の地中連続壁用鋼材を土留め壁として使用した場合の縦 断側面図であり、地中連続壁用鋼材の寸法と天端変位との関係を説明するための説 明図である。
[図 6]図 6は、本発明の第 1実施形態の地中連続壁用鋼材を使用して土留め壁を構 築した場合に、 H形鋼の後端のカット長さと壁高との比 (省略長 A/壁高 H)と、天端 変位との関係を示す図である。
[図 7]図 7は、本発明の第 2実施形態の地中連続壁用鋼材を使用して土留め壁を構 築した場合に、 H形鋼の先端のカット長さとハット形鋼矢板の全長との比 (省略長 B/ 矢板全長)と、天端変位との関係を示す図である。
[図 8]図 8は、本発明の第 3実施形態の地中連続壁用鋼材を使用して土留め壁を構 築した場合に、先端位置を一定にした際の H形鋼の後端のカット長さと壁高との比( 省略長 A/壁高 H)と天端変位との関係を示す図である。
[図 9]図 9は、本発明の第 3実施形態の地中連続壁用鋼材を使用して土留め壁を構 築した場合に、後端位置を一定にした際の H形鋼の先端のカット長さとハット形鋼矢 板の全長との比 (省略長 B/矢板全長)と、天端変位との関係を示す図である。
[図 10]図 10は、従来のハット形鋼矢板の一形態を示す平面図である。
[図 11]図 11は、従来のハット形鋼矢板の他の形態を示す平面図である。
符号の説明
1 地中連続壁用鋼材、 2 ハット形鋼矢板、 3 ノヽット形鋼矢板のアーム部、 4 ノ、ット 形鋼矢板のアーム部、 5 ノ、ット形鋼矢板のフランジ、 6 H形鋼、 6a H形鋼の一方 のフランジ部、 6al H形鋼の一方のフランジ部の接合面、 6b H形鋼の他方のフラ ンジ部、 6c H形鋼のウェブ部、 7 ハット形鋼矢板のウェブ、 8 土留め壁、 9 地表 面(地盤表面)、 10 設計地盤面、 11 仮想地盤面、 12a、 12b 溝、 13 係止爪部、 14、 14a、 14b 継手、 15 打設機、 16 クランプ、 17 加振装置、 18 ハット形鋼矢 板の後端、 19 ハット形鋼矢板の先端、 20 H形鋼の後端、 21 H形鋼の先端、 71 ハット形鋼矢板のウェブの接合面、 A ハット形鋼矢板の後端と H形鋼の後端との間 の離間長さ、 B ハット形鋼矢板の先端と H形鋼の先端との間の離間長さ、 C ノ、ット 形鋼矢板と H形鋼とが一体化された断面の高剛性部、 D ハット形鋼矢板におけるゥ
Figure imgf000015_0001
発明を実施するための最良の形態
[0033] 本発明を図示の実施形態に基づいて詳細に説明する。
まず、図 1A〜図 1D、および図 2を参照して本発明において使用される地中連続壁 用鋼材 1の基本形態について説明する。
[0034] 本発明の地中連続壁用鋼材 1は、ハット形鋼矢板 2と、そのハット形鋼矢板 2の長さ 寸法よりも短!/、長さ寸法の H形鋼 6とが組み合わされ、かつハット形鋼矢板 2の長さ寸 法内に収まるように H形鋼 6が配置された特殊な組み合わせ構成を有する。前記の ノ、ット形鋼矢板 2および H形鋼 6はいずれも熱間圧延加工による圧延鋼材である。
[0035] なお、本発明において、図 4に示されたように、地中連続壁用鋼材 1を地中に打設 して、土留め壁または護岸壁等を構築する際、土留め壁または護岸壁等を構築した 状態における地中連続壁用鋼材 1の上端側を、打設機 15 (クランプ (把持部) 16およ び加振装置 17からなる)により把持する。そして、地中連続壁用鋼材 1の下端側を先 頭にし、地中連続壁用鋼材 1の上端側を後尾にして、地中連続壁用鋼材 1を地中方 向 Sに移動し、地中連続壁用鋼材 1を地中に打設する。よって、本発明において、地 中連続壁用鋼材 1の先端とは、地中連続壁用鋼材 1により土留め壁または護岸壁等 を構築した際の下端であり、地中連続壁用鋼材 1の後端とは、地中連続壁用鋼材に より土留め壁または護岸壁等を構築した際の上端である。
[0036] また、図 2に示されたように、通常、ハット形鋼矢板 2の一方の継手 14aにおける溝 1 2a、及び、ハット形鋼矢板 2の他方の継手 14bにおける溝 12bは、地中連続壁用鋼 材 1の長さ方向(地中連続壁用鋼材 1を使用した土留め壁における高さ方向)におい て、互いに反対側に開口している。このため、複数の地中連続壁用鋼材 1をアーム部 3, 4の長手方向に沿って一列に配設した場合、隣り合うハット形鋼矢板 2相互の継 手 14a、 14bを嵌合できるようになつている。もし、地中連続壁用鋼材 1により土留め 壁等を構築する際、地中連続壁用鋼材 1の上下を逆さまにして施工しょうとすれば、 逆さまにして施工した地中連続壁用鋼材 1と隣接する地中連続壁用鋼材 1との継手 1 4a、 14b同士を接続できず、複数の地中連続壁用鋼材 1同士を接続できなくなって しまう。以上のような理由等により、地中連続壁の施工段階において、地中連続壁用 鋼材 1の先端と後端は、明確に把握され得る。
[0037] 第 1実施形態の地中連続壁用鋼材 1では、図 1Bに示されたように、長さ方向にお いて、ハット形鋼矢板 2の先端 19位置と H形鋼 6の先端 21位置が一致し、ハット形鋼 矢板 2の後端 18位置よりも H形鋼 6の後端 20位置が先端側となっている。すなわち、 H形鋼 6の後端 20側を短くカットした地中連続壁用鋼材 1であり、その地中連続壁用 鋼材 1は、横断面で、ハット形鋼矢板 2のみで構成されるハット形の横断面と、ハット 形鋼矢板 2と H形鋼 6で構成される合成断面との両方の横断面とを備えた鋼材である 。より具体的には、地中連続壁用鋼材 1を土留め壁用の壁材として用いる場合に、前 記の地中連続壁用鋼材 1におけるハット形鋼矢板 2の後端 18位置と H形鋼 6の後端 20位置との差寸法 (A)は、前記地中連続壁用鋼材 1による土留め壁 8における設計 地盤面 10から地盤表面 9までの壁高 H (図 5参照)の 50%以下の寸法にされ、 H形 鋼 6は、前記の差寸法 (A)分、短くカットされている。
この実施形態では、前記の壁高 Hと、ハット形鋼矢板 2の長さ寸法 L1と、 H形鋼 6の 長さ寸法 L2との関係は、 Η Χ 0· 50≥(L1— L2)を満足する。前記の(L1 L2)力 地中連続壁用鋼材 1における後端側のハット形鋼矢板 2のみで構成される断面を有 する部分の長さ Aである。
[0038] したがって、この実施形態では、地中連続壁用鋼材 1の中間から先端部側で、ハツ ト形鋼矢板 2と H形鋼 6とが一体化された断面の高剛性部 Cを形成している。なお、図 中、 6aは H形鋼 6の一方のフランジ部、 6bは H形鋼 6の他方のフランジ部、 6cは H形 鋼のウェブ部である。
[0039] また、図 1A、図 1Cおよび図 2に示す第 2実施形態では、ハット形鋼矢板 2の後端 1 8位置と H形鋼 6の後端 20位置を一致させて、ハット形鋼矢板 2の先端 19位置よりも H形鋼 6の先端 21位置を後端側としている。すなわち、 H形鋼 6の先端 21側を短く力 ットした地中連続壁用鋼材 1である。より具体的には、前記の地中連続壁用鋼材 1に おけるハット形鋼矢板 2の先端 19位置と H形鋼 6の先端 21位置との差寸法 (B)が、 地中連続壁用鋼材 1の全長の 35%以下となるように短くカットされた H形鋼 6とされて いる。したがって、この実施形態では、地中連続壁用鋼材 1の中間から上部側で、ハ ット形鋼矢板 2と H形鋼 6とが一体化された断面の高剛性部 Cを形成している。
この実施形態では、ハット形鋼矢板 2の長さ寸法 L1と、 H形鋼 6の長さ寸法 L2との 関係は、 LI X 0. 35≥ (L1 -L2)を満足するようにされて!/、る。前記の(L1— L2)が 、地中連続壁用鋼材 1における先端側のハット形鋼矢板 2のみで構成される断面を 有する部分の長さ Bである。
[0040] さらに、図 1A、図 IDおよび図 2に示す第 3実施形態では、ハット形鋼矢板 2の後端
18位置よりも H形鋼 6の後端 20位置を先端側とし、力、つハット形鋼矢板 2の先端 19 位置よりも H形鋼 6の先端 21位置を後端側としている。すなわち、 H形鋼 6の後端 20 および先端 21を短くカットした地中連続壁用鋼材 1である。より具体的には、前記の 地中連続壁用鋼材 1におけるハット形鋼矢板 2の先端 18位置と H形鋼 6の先端 20位 置との差寸法 (B)が、地中連続壁用鋼材 1の全長の 30%以下となるように H形鋼 6の 先端 20側は短くカットされている。また、ハット形鋼矢板 2の後端 18位置と H形鋼 6の 後端 20位置との差寸法 (A) 1 壁高 Hの 50%以下となるように H形鋼 6の後端 20側 は短くカットされている。したがって、この実施形態では、地中連続壁用鋼材 1の上下 両端部を除く中間部で、ハット形鋼矢板 2と H形鋼 6の一方のフランジ 6aとが一体化 された断面の高剛性部 Cを形成して!/、る。
この実施形態では、ハット形鋼矢板 2の長さ寸法 (地中連続壁用鋼材 1の全長) L1 と、 H形鋼 6の長さ寸法 L2と、地中連続壁用鋼材 1における後端側のハット形鋼矢板 2のみで構成される断面を有する部分の長さ Aと、地中連続壁用鋼材 1における先端 側のハット形鋼矢板 2のみで構成される断面を有する部分の長さ Bとの関係は、 A+ B = L1— L2を満足させ、かつ Α≤Η Χ 0· 50を満足させ、さらに B≤L1 X 0. 30を満 足するようにされている。
[0041] なお、前述のように、各実施形態のハット形鋼矢板 2では、熱間圧延加工により製造 されたハット形鋼矢板 2の端部のアーム部 3, 4には一体に継手 14a、 14bが形成され ている。紙面上左側に位置する一方のアーム部 3の端部に、 H形鋼 6側とは反対側( 紙面上側)に向かって紙面上向きに開口する溝 12aおよび係止爪部 13を有する上 向き開口溝形継ぎ手 14aが設けられ、また紙面上右側に位置する他方のアーム部 4 の端部に、 H形鋼 6側(紙面下側)に向かって紙面下向きに開口する溝 12bおよび係 止爪部 13を有する下向き開口溝形継ぎ手 14bが設けられている。
[0042] 前記の第 1実施形態から第 3実施形態について、実用上支障がなぐより経済的な 地中連続壁用鋼材 1を実現するために検討を行った。具体的には、図 5に示すような 土留め壁 8を構築した場合において、地中連続壁用鋼材 1の天端変位(上端 (後端) 変位)を、同じ長さのハット形鋼矢板と H形鋼矢板を全長に渡って溶接した地中連続 壁用鋼材を用いた時の設計上の天端変位 Yの 10%増以下 (すなわち、天端変位 Y の 110%以下)に抑え、これにより合理的な土留め壁 8を構築可能とするために、以 下のように地中連続壁用鋼材 1の寸法を検討した。各実施形態について、各種の地 盤 N値と壁高 Hを変化させた骨組計算解析をし、図 6〜図 9に示すような天端変位の グラフを作成した。
[0043] なお、図 5中の主な寸法は、下記の通りである。
(1)壁高 Hは、設計地盤面(地盤を掘削したときの底面) 10から地盤表面 9までの 高さ寸法
(2) ELは、仮想地盤面(図 5において、地中連続壁用鋼材 1に対する、地中連続壁 用鋼材 1の右側の地盤からの土圧と地中連続壁用鋼材 1の左側の地盤からの土圧 が同一となる高さにおける地盤面) 11から設計地盤面 10までの高さ寸法
(3)根入れ長 Lは、仮想地盤面 11からハット形鋼矢板 2先端 19までの高さ寸法
[0044] 図 1Bに示す第 1実施形態の地中連続壁用鋼材 1について、さらに具体的に、図 5 に示すような形態の土留め壁 8として使用し、地表面 9に単位面積あたり 10kN/m2 の荷重を載荷した場合に、壁高 Hに対してどの程度の長さ寸法まで H形鋼 6の後端 2 0側を実用上カット可能かについて、前記の骨組計算解析により検討した。得られた 結果を図 6に示す。
ノ、ット形鋼矢板と H形鋼矢板の長さが同じであり全長に渡って溶接された地中連続 壁用鋼材 (全長にわたって図 2に示す断面を有する従来の地中連続壁用鋼材)を用 いた場合の天端変位の最大値は 0. 05m[50mm]とされている。このため、通常使 用される従来の地中連続壁用鋼材は、設計上の天端変位 Yが最大で 40mm〜45m mとなる性能を有するように製造されている。よって、従来の地中連続壁用鋼材の設 計上の天端変位 Y (45mm)に対して 10%増以下の天端変位が生じる範囲内で地 中連続壁用鋼材を設計すれば、天端変位を 50mm以下に抑えられる。このため、地 中連続壁用鋼材の設計が容易になると共に、これを使用した土留め壁 8としても実用 上特に支障がない。そこで本発明では、天端変位を、従来の地中連続壁用鋼材の 設計上の天端変位 Y[m]の最大 10%増以下に設定した。
[0045] 図 6では、横軸は、 H形鋼 6の後端 20のカット長さ(省略長 A[m] )と壁高 H[m]との 比 (省略長 A[m]/壁高 H[m] )として無次元化して示されている。縦軸は、後端 20 側をカットした H形鋼 6とハット形鋼矢板 2との組み合わせの場合の天端変位(グラフ では、 H形鋼省略時の天端変位と記した)と、ハット形鋼矢板 2と同じ長さの H形鋼 6 を全長溶接した場合の天端変位 (グラフでは、全長溶接時の天端変位と記した)との 比 (H鋼省略時の天端変位/全長溶接時の天端変位)、すなわち天端変位の増加 割合として無次元化して示されて!/、る。 H形鋼の後端 20側のカット寸法 A[m]の割合 と、天端変位の増加割合との関係に示されたように、いずれの場合も、天端変位の増 加割合を 10%以下に収めるには、縦点線で示すように、壁高 Hの 50%以下までカツ トすることが可能であることがわかる。
また、ハット形鋼矢板 2の後端 18と H形鋼 6の後端 20との間の離間長さ (A)が、地 中連続壁用鋼材 1による土留め壁 8における設計地盤 10から地表面 9までの壁高 H の 50%を超えると、天端変位が急激に上昇することが把握される。これに対し、ハット 形鋼矢板 2の後端 18と H形鋼 6の後端 20との間の離間長さ (A)が、地中連続壁用鋼 材 1による土留め壁 8における設計地盤 10から地表面 9までの壁高 Hの 50%以下の 場合、天端変位の上昇率は低く抑えられている。以上のように、離間長さ (A)が壁高 Hの 50%以下の場合は、離間長さ (A)が壁高 Hの 50%を超える場合と比較し、十分 な剛性を有すると共に、安価で軽量である。
さらに、図 6に示されたように、壁高 Hの 30%以下に H形鋼 6の後端 20側をカットし た場合、同じ長さのハット形鋼矢板と H形鋼を全長に渡って溶接した地中連続壁用 鋼材を用いた時の天端変位とほぼ同じ天端変位を維持でき、十分な剛性を有する地 中連続壁用鋼材とすることができる。
[0046] したがって、壁高 Hの 0%を超え壁高 Hの 50%以下まで H形鋼 6をカットできる。た とえば、壁高 Hの 10%まで H形鋼 6をカットする場合、壁高 Hが 5. 5mでは、 H形鋼 6 の 0. 55mをカットでき、壁高 6mでは、 H形鋼 6の 0. 6mをカットでき、安価な H形鋼 となる。壁高 Hの 50%まで H形鋼 6をカットする場合、壁高 Hが 5. 5mでは、 H形鋼 6 の 2. 75mをカットでき、壁高 Hが 6. Omでは、 H形鋼 6の 3. Omをカットでき、格段に 安価な H形鋼 6を使用でき、安価な地中連続壁用鋼材 1となる。また、壁高 Hの 30% 以下までなら天端変位の増加割合にほとんど変化がなぐハット形鋼矢板 2と H形鋼 6とが同じ長さ寸法とした地中連続壁用鋼材と同等の部材であることがわかる。
なお、前記の図 6および後記する図 7〜図 9のグラフでは、地盤の N値が 10で壁高 Hが 5. 5mの場合を黒丸で示し、 N値が 20で壁高 Hが 5. 5mの場合を白丸で示し、 N値が 5で壁高 Hが 5. 5mの場合を白四角で示し、 N値が 10で壁高 Hが 6. Omの場 合を黒四角で示している。
ここで、 N値とは、標準貫入試験により求めた地盤の硬軟ゃ締り具合を示す値であ り、所定質量の重りを所定高さから自由落下させ、サンプラーを地盤内に所定深さ貫 入させるために要する打撃回数のことである。
N値が大きくなると天端変位が小さくなり、壁高 Hが高くなると天端変位が大きくなる ことが予想される力 S、これらのグラフからも同様なことがわかる。
[0047] 次に、前記第 2実施形態の地中連続壁用鋼材 1について、前記第 1実施形態と同 様に、天端変位が前記 Y[m]の 10%増以下に収まる寸法を見出すために骨組計算 解析を行った。得られた結果を図 7に示す。
[0048] 図 7では、横軸は、 H形鋼 6の先端 21のカット長さ(省略長 B[m] )とハット形鋼矢板 2の全長 [m]との比 (省略長 B [m] /矢板全長 [m] )として無次元化して示されて!/、 る。縦軸は、先端 21側をカットした H形鋼 6とハット形鋼矢板 2との組み合わせの場合 の天端変位 (グラフでは、 H形鋼省略時の天端変位と記した)と、前記ハット形鋼矢板 2と同じ長さの(カットしない) H形鋼 6を全長溶接した場合の天端変位 (グラフでは、 全長溶接時の天端変位と記した)との比 (H鋼省略時の天端変位/全長溶接時の天 端変位)、すなわち天端変位の増加割合として無次元化して示されている。 H形鋼 6 の先端 21側のカット寸法 B [m]の全長に対する割合と、天端変位の増加割合との関 係に示されたように、いずれの場合も、天端変位の増加割合を 10%以下に収めるに は、縦点線で示すように、ハット形鋼矢板 2の全長の 35%以下までカットすることが可 能であることがわかる。
また、ハット形鋼矢板 2の先端 19と H形鋼 6の先端 21との間の離間長さ (B)が、地 中連続壁用鋼材 1の長さ方向における全長の 35%を超えると、天端変位が急激に 上昇することが把握される。これに対し、ハット形鋼矢板 2の先端 19と H形鋼 6の先端 21との間の離間長さ(B)が、地中連続壁用鋼材 1の長さ方向における全長の 35% 以下の場合、天端変位の上昇率は低く抑えられている。以上のように、離間長さが全 長の 35%以下の場合は、離間長さが全長の 35%を超える場合と比較し、十分な剛 性を有すると共に、安価で軽量である。
したがって、ハット形鋼矢板 2の全長の 0%を超え 35%以下まで H形鋼 6をカットす ること力 S可能である。また、ハット形鋼矢板 2の全長の 20%以下では、天端変位の増 加割合にほとんど変化がなぐノ、ット形鋼矢板 2と H形鋼 6とが同じ長さ寸法とした地 中連続壁用鋼材と同等の部材であることがわかる。
その他の構成は前記実施形態の場合と同様である。
[0049] 次に、第 3実施形態の地中連続壁用鋼材 1について、前記第 1実施形態と同様に、 天端変位が前記天端変位 Y[m]の 10%増以下に収まる寸法 (H形鋼の後端 20側お よび先端 21側の両方のカット長さの割合)を具体的に見出すために骨組計算解析を 行った。得られた結果を図 8および図 9に示す。図 8は、 H形鋼 6の先端 21のカット長 さ B [m]の割合を一定に固定して、 H形鋼 6の後端 20のカット長さ A[m]の割合を変 化させた場合の結果を示す。図 9は、 H形鋼 6の後端 20側のカット長さ A[m]の割合 を一定に固定して、 H形鋼 6の先端 21のカット長さ B [m]の割合を変化させた場合の 結果を示す。これら図 8, 9より、 H形鋼 6の先端 21と後端 20の両端をカットする場合 に、 H形鋼 6の後端 20のカット長さ A[m]の壁高 Hに対する可能な割合と、 H形鋼 6 の先端 21のカット長さ B [m]の矢板全長に対するカット可能な割合力 S、以下のように 導き出される。
[0050] 具体的には、図 8では、地中連続壁用鋼材 (ハット形鋼矢板 2の矢板全長) 1に対す る H形鋼 6の先端 21側のカット長さ B[m]の割合を 0. 30に固定し、すなわち H形鋼 6 の先端 21側のカット長さ B [m]を一定に固定した状態で、 H形鋼 6の後端 20側の力 ット長さ A[m]を変化させた結果を示す。この図 8より、天端変位を前記天端変位 Yの 10%増以下に抑えるには、壁高 Hに対してどの程度の割合で H形鋼 6の後端 20側 をカットできる力、調べる。 H形鋼 6の後端 20側のカット長さ A[m]が少なくなれば、当 然、地中連続壁用鋼材 1の剛性が高まり、天端変位が少なくなるから、後端 20側の力 ット長さ Aが壁高 Hの 0%を超え、かつ縦点線で示すように 50%以下であれば、前記 天端変位 Y[m]の 10%増以下に抑えることができることがわかる。なお、縦軸および 横軸は、図 6と同様である。
[0051] また、図 9では、壁高 Hに対する H形鋼 6の後端 20側のカット長さ A[m]の割合を 0 . 50に固定し、すなわち、 H形鋼 6の後端 20のカット長さ A[m]を一定に固定した状 態で、 H形鋼 6の先端 21側のカット長さ B [m]を変化させた結果を示す。この図 9より 、天端変位を 10%増以下に抑えるには、地中連続壁用鋼材 1の全長に対してどの 程度の割合で H形鋼 6の先端 21側をカットできるか調べる。 H形鋼 6の先端 21側の カット長さ B [m]が少なくなれば、当然、地中連続壁用鋼材 1の剛性が高まり、天端変 位が少なくなるから、先端 21側のカット長さ Bが、地中連続壁用鋼材 1 (ハット形鋼矢 板 2)の全長の 0%を超え、かつ縦点線で示すように 30%以下であれば、前記天端 変位 Y[m]の 10%増以下に抑えることができることがわかる。なお、縦軸および横軸 は、図 7と同様である。
また、図 8, 9に示されたように、ハット形鋼矢板 2の後端 18と H形鋼 6の後端 20との 間の離間長さ (A)が、地中連続壁用鋼材 1による土留め壁 8における設計地盤 10か ら地表面 9までの壁高 Hの 50%を超え、かつ、ハット形鋼矢板 2の先端 19と H形鋼 6 の先端 21との間の離間長さ(B)が、地中連続壁用鋼材 1の長さ方向における全長の 30%を超えた場合、天端変位が急激に上昇することが把握される。これに対し、ハツ ト形鋼矢板 2の後端 18と H形鋼 6の後端 20との間の離間長さ (A)が、地中連続壁用 鋼材 1による土留め壁 8における設計地盤 10から地表面 9までの壁高 Hの 50%以下 であり、かつ、ハット形鋼矢板 2の先端 19と H形鋼 6の先端 21との間の離間長さ(B) 1S 地中連続壁用鋼材 1の長さ方向における全長の 30%以下の場合、天端変位の 上昇率は低く抑えられている。以上のように、この場合、他の場合と比較し、十分な剛 性を有すると共に、安価で軽量である。
[0052] H形鋼 6の後端 20側をカットする場合に、前記のように壁高 Hの 0%を超える値であ れば、経済的なメリットが生じる力 壁高 Hの 0%に近い数値では、経済的なメリットが 小さい。このため、実用的には、例えば、前記の壁高 Hの 10%以上 50%以下で設定 するのが好ましい。また、 H形鋼 6の先端 21側をカットする場合に、前記のように地中 連続壁用鋼材 1全長の 0%を超える値であれば、経済的なメリットが生じる力 地中連 続壁用鋼材 1全長の 0%に近い数値のカットの割合では、経済的なメリットが小さい。 このため、例えば、実用的には、地中連続壁用鋼材 1全長の 5%以上 35%以下の範 囲で設定するようにするとよい。なお、 H形鋼 6の先端 21側および後端 20側をカット する場合、 H形鋼 6の後端 20側のカットは、前記壁高 Hの 10%以上 50%以下で設 定し、 H形鋼 6の先端 21側のカットは、地中連続壁用鋼材 1全長の 5%以上 30%以 下の範囲で設定するようにするとよい。
また、通常、打設機が把持する地中連続壁用鋼材 1の後端部の長さは 500mm以 下である。よって、ハット形鋼矢板 2の後端 18から H形鋼 6の後端 20を離間させる場 合、ハット形鋼矢板 2の後端 18と H形鋼 6の後端 20との間の離間長さ (A)は、 500m m以上であることが望まし!/、。
本発明の地中連続壁用鋼材 1の製造方法は以下の通りである。
まず前述した本発明の地中連続壁用鋼材 1を構成するハット形鋼矢板 2と H形鋼 6 を用意する。ハット形鋼矢板 2と H形鋼 6の形状および寸法は、前述した実施形態の 通りである。本発明においては、部材全体を熱間圧延加工により製造したハット形鋼 矢板 2を使用してもよぐ継手部を熱間圧延加工により製作し、アーム部 3, 4に溶接 により固定するようなハット形鋼矢板 2を使用してもよい。
図 3Aに示されたように、 H形鋼 6における一方のフランジ部 6aを、ハット形鋼矢板 2 におけるウェブ 7とフランジ 5とにより形成される溝 Dと反対側に配置し、 H形鋼 6にお ける一方のフランジ部 6aを、ハット形鋼矢板 2のウェブ 7外面 71に当接する。ここで、 ハット形鋼矢板 2の後端 18と H形鋼 6の後端 20との間の離間長さ (A)およびハット形 鋼矢板 2の先端 19と H形鋼 6の先端 21との間の離間長さ (B)は、前述した実施形態 の地中連続壁用鋼材 1となるように適宜調整される。
このように、ハット形鋼矢板 2と H形鋼 6が当接された状態で、図 3Bに示されたように 、 H形鋼 6のフランジ部 6aの両側部を、全長に渡って溶接 Wにより、ハット形鋼矢板 2 におけるウェブ 7外面 71 (外側面)側に固定する。
本発明の地中連続壁を構築する方法を以下に示す。
図 4に示されたように、本発明の地中連続壁用鋼材 1の先端部を地盤表面 9に向け て地中連続壁用鋼材 1を直立した状態で、打設機 15のクランプ (把持部) 16により地 中連続壁用鋼材 1の後端部を把持する。なお、図 4では、クランプ 16によりハット形鋼 矢板 2の一対のフランジ 7をそれぞれ把持した場合を示している力 S、ウェブ 5のみ、ま そして、地中連続壁用鋼材 1の先端部側を先頭にして、加振装置 17により地中連 続壁用鋼材 1を地中方向 Sに所定の深さまで打設する。
次に別の地中連続壁用鋼材 1を用意し、この地中連続壁用鋼材 1の継手 14aと、既 に打設済みの地中連続壁用鋼材 1の継手 14bとを嵌合させた状態で、別の地中連 続壁用鋼材 1を打設する位置に配置する。そして、前述したようにクランプ 16によりハ ット形鋼矢板 2の一対のフランジ 7をそれぞれ把持し、加振装置 17により地中方向 S に所定の深さまで打設する。
以上の操作を繰り返し、複数の地中連続壁用鋼材 1を地盤表面 9に打設し、本発 明の地中連続壁を構築する。
なお、形成する地中連続壁となるように、予め複数の地中連続壁用鋼材 1を地盤表 面 9上に配置し、隣接する地中連続壁用鋼材 1のそれぞれの継手 14a, 14bを嵌合 させ、この状態で地中連続壁用鋼材 1を順次、打設機 15によって打設しても構わな い。
また本発明の地中連続壁用鋼材 1と共に、他の地中連続壁用鋼材を用いても構わ ない。例えば地中連続壁用鋼材 1と、ノ、ット形鋼矢板のみからなる地中連続壁用鋼 材とを横方向に交互に接続して地中連続壁を構築してもよい。

Claims

請求の範囲
[1] 長さ方向に対し垂直な断面がハット形のハット形鋼矢板(2)と、長さ方向に対し垂 直な断面が H形の H形鋼(6)とを備え、
前記ハット形鋼矢板(2)は、ウェブ(7)と、該ウェブ(7)の両端部に一体に連設され 、外側に向かって広がるように傾斜した一対のフランジ(5)と、前記一対のフランジ(5 )の各々に一体に連設され、前記ウェブ(7)と略平行な一対のアーム部(3、 4)とを有 し、
前記 H形鋼(6)は、互いに略平行な一対のフランジ部(6a、 6b)と、該一対のフラン ジ部(6a、 6b)同士を間隔を設けて連結するウェブ部(6c)とを有し、
前記ハット形鋼矢板(2)の前記ウェブ(7)と前記各フランジ(5)とにより形成される 溝 (D)側と反対側のウェブ(7)外面(71 )に、前記 H形鋼(6)の前記一対のフランジ 部(6a、 6b)の一方(6a)における前記ウェブ部(6c)と連結される側の面と反対側の 外面(6a l )が固定され、
前記ハット形鋼矢板(2)の長さ方向における寸法 (L1 )よりも H形鋼(6)の長さ方向 における寸法 (L2)が短ぐかつ前記ハット形鋼矢板(2)の前記長さ方向における寸 法 (L1 )内に前記 H形鋼(6)の前記長さ方向における全長が配設され、
前記ハット形鋼矢板(2)の後端(18)よりも前記 H形鋼(6)の後端(20)が、前記長 さ方向における先端側に位置することを特徴とする地中連続壁用鋼材(1)。
[2] 前記ハット形鋼矢板(2)の先端(19)と前記 H形鋼(6)の先端(21 )の、前記長さ方 向における位置が一致している請求項 1に記載の地中連続壁用鋼材(1 )。
[3] 前記ハット形鋼矢板(2)の前記後端(18)と前記 H形鋼(6)の前記後端(20)との間 の離間長さ (A)は、地中連続壁用鋼材(1 )による土留め壁(8)における設計地盤(1 0)から地表面(9)までの壁高(H)の 50%以下である請求項 2に記載の地中連続壁 用鋼材(1)。
[4] 前記ハット形鋼矢板(2)の前記後端(18)と前記 H形鋼(6)の前記後端(20)との間 の離間長さ (A)は、地中連続壁用鋼材(1 )による土留め壁(8)における設計地盤(1 0)から地表面(9)までの壁高(H)の 10%以上 50%以下である請求項 2に記載の地 中連続壁用鋼材(1)。 [5] 前記ハット形鋼矢板(2)の前記後端(18)と前記 H形鋼(6)の前記後端(20)との間 の離間長さ (A)は、地中連続壁用鋼材(1)による土留め壁(8)における設計地盤(1 0)から地表面(9)までの壁高(H)の 30%以下である請求項 2に記載の地中連続壁 用鋼材(1)。
[6] 前記ハット形鋼矢板(2)の先端(19)よりも前記 H形鋼(6)の先端(21)が、前記長 さ方向における後端側に位置する請求項 1に記載の地中連続壁用鋼材(1)。
[7] 前記ハット形鋼矢板(2)の前記後端(18)と前記 H形鋼(6)の前記後端(20)との間 の離間長さ (A)は、前記地中連続壁用鋼材(1)による土留め壁(8)における設計地 盤(10)から地表面(9)までの壁高(H)の 50%以下であり、かつ前記ハット形鋼矢板 (2)の前記先端(19)と前記 H形鋼(6)の前記先端(21)との間の離間長さ (B)は、前 記地中連続壁用鋼材(1)の長さ方向における全長の 30%以下である請求項 6に記 載の地中連続壁用鋼材(1)。
[8] 前記ハット形鋼矢板(2)の前記後端(18)と前記 H形鋼(6)の前記後端(20)との間 の離間長さ (A)は、前記地中連続壁用鋼材(1)による土留め壁(8)における設計地 盤(10)から地表面(9)までの壁高(H)の 10%以上 50%以下であり、かつ前記ハット 形鋼矢板(2)の前記先端(19)と前記 H形鋼(6)の前記先端(21)との間の離間長さ (B)は、前記地中連続壁用鋼材(1)の長さ方向における全長の 5%以上 30%以下 である請求項 6に記載の地中連続壁用鋼材(1)。
[9] 前記ハット形鋼矢板(2)の前記後端(18)と前記 H形鋼(6)の前記後端(20)との間 の離間長さ (A)は、 500mm以上である請求項 1に記載の地中連続壁用鋼材(1)。
[10] 長さ方向に対し垂直な断面がハット形のハット形鋼矢板(2)と、長さ方向に対し垂 直な断面が H形の H形鋼(6)とを備え、
前記ハット形鋼矢板(2)は、ウェブ(7)と、該ウェブ(7)の両端部に一体に連設され 、外側に向かって広がるように傾斜した一対のフランジ(5)と、前記一対のフランジ(5 )の各々に一体に連設され、前記ウェブ(7)と略平行な一対のアーム部(3、 4)とを有 し、
前記 H形鋼(6)は、互いに略平行な一対のフランジ部(6a、 6b)と、該一対のフラン ジ部(6a、 6b)同士を間隔を設けて連結するウェブ部(6c)とを有し、 前記ハット形鋼矢板(2)の前記ウェブ(7)と前記各フランジ(5)とにより形成される 溝 (D)側と反対側のウェブ(7)外面(71 )に、前記 H形鋼(6)の前記一対のフランジ 部(6a、 6b)の一方(6a)における前記ウェブ部(6c)と連結される側の面と反対側の 外面(6a l )が固定され、
前記ハット形鋼矢板(2)の長さ方向における寸法 (L1 )よりも H形鋼(6)の長さ方向 における寸法 (L2)が短ぐかつ前記ハット形鋼矢板(2)の前記長さ方向における寸 法 (L1 )内に前記 H形鋼(6)の前記長さ方向における全長が配設され、
前記ハット形鋼矢板(2)の後端(18)と前記 H形鋼(6)の後端(20)の、前記長さ方 向における位置が一致し、
前記ハット形鋼矢板(2)の先端(19)よりも前記 H形鋼(6)の先端(21 )が、前記長 さ方向における後端側に位置し、
前記ハット形鋼矢板(2)の前記先端(19)と前記 H形鋼(6)の前記先端(21 )との間 の離間長さ(B)は、前記地中連続壁用鋼材(1 )の長さ方向における全長の 35%以 下であることを特徴とする地中連続壁用鋼材(1)。
前記ハット形鋼矢板(2)の前記先端(19)と前記 H形鋼(6)の前記先端(21 )との間 の離間長さ(B)は、前記地中連続壁用鋼材(1 )の長さ方向における全長の 5%以上 である請求項 10に記載の地中連続壁用鋼材(1)。
前記ハット形鋼矢板(2)の前記先端(19)と前記 H形鋼(6)の前記先端(21 )との間 の離間長さ(B)は、前記地中連続壁用鋼材(1 )の長さ方向における全長の 20%以 下である請求項 10に記載の地中連続壁用鋼材(1)。
長さ方向に対し垂直な断面がハット形のハット形鋼矢板(2)と、長さ方向に対し垂 直な断面が H形の H形鋼(6)とを用意し、前記ハット形鋼矢板(2)は、ウェブ(7)と、 該ウェブ(7)の両端部に一体に連設され、外側に向かって広がるように傾斜した一対 のフランジ(5)と、前記一対のフランジ(5)の各々に一体に連設され、前記ウェブ(7) と略平行な一対のアーム部(3、 4)とを有し、前記 H形鋼(6)は、互いに略平行な一 対のフランジ部(6a、 6b)と、該一対のフランジ部(6a、 6b)同士を間隔を設けて連結 するウェブ部(6c)とを有し、前記 H形鋼(6)の長さ方向における寸法 (L2)が前記ハ ット形鋼矢板(2)の長さ方向における寸法 (L1 )より短ぐ 前記ハット形鋼矢板(2)の前記長さ方向における寸法 (L1)内に前記 H形鋼(6)の 前記長さ方向における全長を配設し、かつ前記ハット形鋼矢板(2)の後端(18)よりも 前記 H形鋼(6)の後端(20)を、前記長さ方向における先端側に位置させるように配 置した状態で、前記ハット形鋼矢板(2)の前記ウェブ(7)と前記各フランジ(5)とによ り形成される溝 (D)側と反対側のウェブ(7)外面(71)に、前記 H形鋼(6)の前記一 対のフランジ部(6a、 6b)の一方(6a)における前記ウェブ部(6c)と連結される側の 面と反対側の外面(6al)を当接させ、
互いに当接されて!/、る前記ハット形鋼矢板(2)の前記ウェブ(7)及び前記 H形鋼の 前記フランジ部(6a)を、溶接により互いに固定することを特徴とする地中連続壁用鋼 材(1)の製造方法。
前記ハット形鋼矢板(2)の先端(19)と前記 H形鋼(6)の先端(21)の、前記長さ方 向における位置を一致させるように配置する請求項 13に記載の地中連続壁用鋼材( 1)の製造方法。
前記ハット形鋼矢板(2)の先端(19)よりも前記 H形鋼(6)の先端(21)を、前記長さ 方向における後端側に位置させるように配置する請求項 13に記載の地中連続壁用 鋼材(1)の製造方法。
長さ方向に対し垂直な断面がハット形のハット形鋼矢板(2)と、長さ方向に対し垂 直な断面が H形の H形鋼(6)とを用意し、前記ハット形鋼矢板(2)は、ウェブ(7)と、 該ウェブ(7)の両端部に一体に連設され、外側に向かって広がるように傾斜した一対 のフランジ(5)と、前記一対のフランジ(5)の各々に一体に連設され、前記ウェブ(7) と略平行な一対のアーム部(3、 4)とを有し、前記 H形鋼(6)は、互いに略平行な一 対のフランジ部(6a、 6b)と、該一対のフランジ部(6a、 6b)同士を間隔を設けて連結 するウェブ部(6c)とを有し、前記 H形鋼(6)の長さ方向における寸法 (L2)が前記ハ ット形鋼矢板(2)の長さ方向における寸法 (L1)より地中連続壁用鋼材(1)の長さ方 向における全長の 35%以下の長さ分だけ短ぐ
前記ハット形鋼矢板(2)の前記長さ方向における寸法 (L1)内に前記 H形鋼(6)の 前記長さ方向における全長を配設し、かつ前記ハット形鋼矢板(2)の後端(18)と前 記 H形鋼(6)の後端(20)の、前記長さ方向における位置を一致させ、前記ハット形 鋼矢板(2)の先端(19)よりも前記 H形鋼(6)の先端(21)を、前記長さ方向における 後端側に位置させるように配置した状態で、前記ハット形鋼矢板(2)の前記ウェブ(7 )と前記各フランジ(5)とにより形成される溝 (D)側と反対側のウェブ(7)外面(71)に 、前記 H形鋼(6)の前記一対のフランジ部(6a、 6b)の一方(6a)における前記ウェブ 部(6c)と連結される側の面と反対側の外面(6al)を当接させ、
互いに当接されて!/、る前記ハット形鋼矢板(2)の前記ウェブ(7)及び前記 H形鋼( 6)の前記フランジ部(6a)を、溶接により互いに固定することを特徴とする地中連続 壁用鋼材(1)の製造方法。
[17] 前記 H形鋼(6)の前記長さ方向における寸法 (L2)は、前記ハット形鋼矢板(2)の 前記長さ方向における寸法 (L1)より、前記地中連続壁用鋼材(1)の長さ方向にお ける全長の 20%以下の長さ分だけ短い請求項 16に記載の地中連続壁用鋼材(1) の製造方法。
[18] 請求項;!〜 12の何れ力、 1つに記載の地中連続壁用鋼材( 1 )を複数使用して構築さ れた地中連続壁。
[19] 請求項 1〜; 12の何れ力、 1つに記載の地中連続壁用鋼材(1)を複数使用して、地中 連続壁を構築する方法。
PCT/JP2007/067290 2006-09-05 2007-09-05 Matériau en acier destiné à une paroi continue souterraine, procédé de production du matériau en acier destiné à une paroi continue souterraine, paroi continue souterraine et procédé de fabrication d'une paroi continue souterraine WO2008029835A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800319994A CN101512074B (zh) 2006-09-05 2007-09-05 地下连续壁用钢材、地下连续壁用钢材的制造方法、地下连续壁以及构筑地下连续壁的方法
JP2008533182A JP4927086B2 (ja) 2006-09-05 2007-09-05 地中連続壁用鋼材、地中連続壁用鋼材の製造方法、地中連続壁、及び、地中連続壁を構築する方法
US12/438,079 US8408844B2 (en) 2006-09-05 2007-09-05 Steel material for underground continuous wall, method for producing steel material for underground continuous wall, underground continuous wall, and method for constructing underground continuous wall
HK10101285.0A HK1133683A1 (en) 2006-09-05 2010-02-05 Steel material for underground continuous wall, method for producing steel material for underground continuous wall, underground continuous wall, and method for constructing underground continuous wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006240654 2006-09-05
JP2006-240654 2006-09-05

Publications (1)

Publication Number Publication Date
WO2008029835A1 true WO2008029835A1 (fr) 2008-03-13

Family

ID=39157261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067290 WO2008029835A1 (fr) 2006-09-05 2007-09-05 Matériau en acier destiné à une paroi continue souterraine, procédé de production du matériau en acier destiné à une paroi continue souterraine, paroi continue souterraine et procédé de fabrication d'une paroi continue souterraine

Country Status (6)

Country Link
US (1) US8408844B2 (ja)
JP (1) JP4927086B2 (ja)
CN (1) CN101512074B (ja)
HK (1) HK1133683A1 (ja)
SG (1) SG177970A1 (ja)
WO (1) WO2008029835A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061346A (zh) * 2013-01-11 2013-04-24 东南大学 采用螺栓连接的钢板桩和h型钢组合基坑支护结构
JP2015140517A (ja) * 2014-01-27 2015-08-03 新日鐵住金株式会社 鋼矢板基礎構造

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943080B1 (fr) * 2009-03-13 2016-09-30 Inoxys S A Elements du type gabions pour la realisation de constructions tels que des murs, des merlons ou similaires
CN102619214B (zh) * 2012-04-25 2014-06-18 上海智平基础工程有限公司 一种u形接口钢板桩及其在基坑围护中的应用
USD808782S1 (en) * 2016-03-23 2018-01-30 Richard Heindl Connecting element for sheet piles
USD808783S1 (en) * 2016-03-23 2018-01-30 Richard Heindl Connecting element for sheet piles
CN107653872A (zh) * 2017-11-07 2018-02-02 中建局集团建设发展有限公司 超深地连墙刚性接头综合止水系统及其施工方法
USD938810S1 (en) * 2019-03-26 2021-12-21 Richard Heindl Sheet pile connector
USD938267S1 (en) * 2019-03-26 2021-12-14 Richard Heindl Sheet pile connector
USD938811S1 (en) * 2019-03-26 2021-12-21 Richard Heindl Sheet pile connector
USD938809S1 (en) * 2019-03-26 2021-12-21 Richard Heindl Sheet pile connector
WO2020236031A1 (ru) * 2019-05-22 2020-11-26 Kalinin Aleksej Leonidovich Элемент шпунтовой стенки
USD947015S1 (en) 2020-07-22 2022-03-29 Richard Heindl Sheet pile connector
CN113756321A (zh) * 2021-08-31 2021-12-07 山东大学 一种地铁车站基坑临时构件全回收支护体系及施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140233U (ja) * 1982-03-12 1983-09-21 住友金属工業株式会社 鋼矢板
JPS60186343U (ja) * 1984-05-16 1985-12-10 新日本製鐵株式会社 山留壁用鋼製エレメント
JPH05140928A (ja) * 1991-11-15 1993-06-08 Sumitomo Metal Ind Ltd 非対称u型鋼矢板
JP2002212943A (ja) * 2001-01-19 2002-07-31 Sumitomo Metal Ind Ltd 地中連続壁用鋼材および地中連続壁

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568918A (en) 1978-11-16 1980-05-24 Sumitomo Metal Ind Ltd Steel sheet pile
DE2951628C2 (de) * 1979-12-21 1985-06-27 Leifheit AG, 5408 Nassau Einrichtung zur Versorgung von Topfpflanzen mit Wasser, Luft und gegebenenfalls Nährstoffen
JPS58140233A (ja) * 1982-02-16 1983-08-19 笹岡 治郎 薄膜断熱材
JPS60186343A (ja) * 1984-03-02 1985-09-21 Enshu Ltd 自動工具交換装置
JPS6128616A (ja) * 1984-07-18 1986-02-08 Ozawa Concrete Kogyo Kk 鋼矢板の連続壁
JPS62133209A (ja) 1985-12-06 1987-06-16 Shuzo Toriuchi 鋼矢板土留壁工法及び土留壁用鋼矢板
JPH06280251A (ja) 1993-03-29 1994-10-04 Sumitomo Metal Ind Ltd 地中連続壁用鋼製部材
JPH11140864A (ja) 1997-11-05 1999-05-25 Kawasaki Steel Corp 壁型鋼矢板、その製造方法及びその継ぎ合わせ方法
JP2000144718A (ja) 1998-11-11 2000-05-26 Ps Corp コンクリート合成矢板
JP2003342948A (ja) * 2002-05-28 2003-12-03 Marufuji Sheet Piling Co Ltd 土留杭とその杭を用いる土留工法
EP1420116B1 (en) * 2002-11-15 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Metal sheet pile
JP2005127033A (ja) 2003-10-24 2005-05-19 Sumitomo Metal Ind Ltd 地中連続壁用鋼材の製造方法
JP4389570B2 (ja) 2003-12-08 2009-12-24 住友金属工業株式会社 鋼製壁と鉄筋コンクリート床版との結合構造
JP2005299202A (ja) * 2004-04-12 2005-10-27 Nippon Steel Corp 鋼矢板とそれを用いた土留め構造及び土留め構造の構築方法
JP4498172B2 (ja) 2005-03-03 2010-07-07 住友金属工業株式会社 地中連続壁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140233U (ja) * 1982-03-12 1983-09-21 住友金属工業株式会社 鋼矢板
JPS60186343U (ja) * 1984-05-16 1985-12-10 新日本製鐵株式会社 山留壁用鋼製エレメント
JPH05140928A (ja) * 1991-11-15 1993-06-08 Sumitomo Metal Ind Ltd 非対称u型鋼矢板
JP2002212943A (ja) * 2001-01-19 2002-07-31 Sumitomo Metal Ind Ltd 地中連続壁用鋼材および地中連続壁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061346A (zh) * 2013-01-11 2013-04-24 东南大学 采用螺栓连接的钢板桩和h型钢组合基坑支护结构
JP2015140517A (ja) * 2014-01-27 2015-08-03 新日鐵住金株式会社 鋼矢板基礎構造

Also Published As

Publication number Publication date
SG177970A1 (en) 2012-02-28
HK1133683A1 (en) 2010-04-01
US20100166508A1 (en) 2010-07-01
CN101512074A (zh) 2009-08-19
US8408844B2 (en) 2013-04-02
JPWO2008029835A1 (ja) 2010-01-21
CN101512074B (zh) 2011-10-05
JP4927086B2 (ja) 2012-05-09

Similar Documents

Publication Publication Date Title
WO2008029835A1 (fr) Matériau en acier destiné à une paroi continue souterraine, procédé de production du matériau en acier destiné à une paroi continue souterraine, paroi continue souterraine et procédé de fabrication d'une paroi continue souterraine
JP4943218B2 (ja) 地中連続壁用鋼材、地中連続壁および地中連続壁の構築方法
KR100487143B1 (ko) 접합 구조체
JP4916932B2 (ja) 鋼矢板および鋼矢板基礎構造
US7877959B2 (en) Connector
WO2011111474A1 (ja) 鋼製連続壁の施工方法および鋼製連続壁
WO2011132489A1 (ja) 組合せ鋼矢板壁
JP5158249B2 (ja) 鋼矢板および鋼矢板基礎構造
JP6536323B2 (ja) 鋼矢板の縦継構造及び鋼矢板壁
JP5163246B2 (ja) 地中連続壁及びその構築方法
WO2010089966A1 (ja) 組合せ鋼矢板、組合せ鋼矢板を利用した連続壁、及び組合せ鋼矢板の圧入方法
JP4014216B2 (ja) 構造材、接続構造体及び構造材の接続方法
JP5114726B2 (ja) 地中連続壁用鋼材及び地中連続壁用鋼材の設計方法
CN103180516B (zh) 钢板桩及由该钢板桩形成的钢板桩壁
JP4389570B2 (ja) 鋼製壁と鉄筋コンクリート床版との結合構造
KR101068223B1 (ko) 콘크리트 강합성구조의 교량에서 복부강판과 콘크리트를 폐합철근으로 결합시킨 합성구조
JP5268470B2 (ja) 鉄筋かごの揚重方法
JP2006322229A (ja) ナット付き鋼矢板及びその施工方法
JP2006322230A (ja) 鋼材付き鋼矢板及びその施工方法
JPH05140928A (ja) 非対称u型鋼矢板
CN213390771U (zh) 一种免焊叠合板
KR20180049596A (ko) 복공판 구조체
CN111206690A (zh) 一种分离不等厚端板式钢管混凝土束墙梁刚接节点
JP4123063B2 (ja) U形鋼矢板
JP3746508B1 (ja) 鋼矢板用圧入機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031999.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008533182

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12438079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806733

Country of ref document: EP

Kind code of ref document: A1