WO2008029681A1 - Système de surveillance de fuite d'eau - Google Patents

Système de surveillance de fuite d'eau Download PDF

Info

Publication number
WO2008029681A1
WO2008029681A1 PCT/JP2007/066737 JP2007066737W WO2008029681A1 WO 2008029681 A1 WO2008029681 A1 WO 2008029681A1 JP 2007066737 W JP2007066737 W JP 2007066737W WO 2008029681 A1 WO2008029681 A1 WO 2008029681A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow rate
data
rate change
water
Prior art date
Application number
PCT/JP2007/066737
Other languages
English (en)
French (fr)
Inventor
Atsushi Yukawa
Katsuya Yokokawa
Naoto Oishi
Original Assignee
Kabushiki Kaisha Toshiba
City Of Kitakyushu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba, City Of Kitakyushu filed Critical Kabushiki Kaisha Toshiba
Priority to AU2007292609A priority Critical patent/AU2007292609B2/en
Priority to CN2007800184713A priority patent/CN101449141B/zh
Priority to EP07806214.8A priority patent/EP2060896A4/en
Publication of WO2008029681A1 publication Critical patent/WO2008029681A1/ja
Priority to US12/266,025 priority patent/US8072340B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Definitions

  • the present invention relates to a water leakage monitoring system for estimating the water leakage positions of a plurality of water distribution blocks constituting a water distribution pipe network.
  • the water purified in the water supply treatment facility is supplied to a large number of customers distributed in a wide area through a distribution pipe network. Therefore, the water distribution network plays a role as a lifeline network that is essential for maintaining the daily life of each consumer, and it is always highly reliable and highly reliable. Need to meet demand. By the way, if a part of the distribution pipes that make up each distribution block breaks down, it will lead to disasters such as road collapses and submersion. In addition, leakage due to cracks and breaks in pipes reduces the effective water volume (effective rate) with respect to the total water distribution, so pipe cracks and pipe breaks including pipe wall thickness reduction are detected as early as possible. It is desirable.
  • the water leakage detection method that has been generally used in the past uses a method of checking the amount of inflow to each distribution block over a long period of time and capturing the water leakage from the change in the amount of inflow. For example, at night time when each customer uses little water, measure the minimum inflow of each distribution block at night, check the inflow during the same time, and if the inflow tends to increase, the distribution block Is judged to be leaking from any of the water distribution pipes
  • the worker when it is determined that there is water leakage, the worker carries a water leakage detector and taps the water distribution pipe including the service pipes of the customers who make up the water distribution block. During the time when is not in use, the leak sound is measured by the leak detector and the leak point of the pipeline is determined.
  • One water leakage detection technology detects specific sound detected from the water meter main body in the lid that can be opened and closed of the water meter installed in the water supply pipe introduced to each customer from the distribution pipe, This is a proposal to determine the occurrence of water leakage in the pipe and output the determination contents to the outside (see Japanese Patent Laid-Open No. 2004-191139 (Fig. 1)).
  • Another water leakage detection technology includes a vibration sound detector that measures a vibration level of a pipe obtained by a water flow flowing in the water supply pipe from a water distribution pipe to a water supply pipe introduced to each consumer.
  • Data storage means for storing the measurement data of the vibration sound detector together with the flow measurement data of the customer's water flow measurement device is provided to detect water leakage from the vibration sound of water flowing (Japanese Patent Laid-Open No. 2001-311676). Publication (see Figure 1)).
  • Both of the two water leakage detection techniques as described above are provided with acoustic detection means in the water supply pipe introduced to each consumer from the distribution pipe, and determine whether or not the water supply pipe leaks for each consumer. Therefore, it is impossible to comprehensively judge the leakage status of many water distribution blocks connected to the main line of the waterworks.
  • the state of the sound level measured by the sound detection means and the flow rate measurement data of the water flow rate measuring device for a certain period of time are compared and judged to determine the water leak in the vicinity of the water supply pipe of each consumer. Yes, even if water leaks due to pipe cracks, etc., it cannot be judged accurately unless a certain period of time has passed. In addition, there is a problem that only the presence or absence of individual water leaks, such as per customer, can be determined.
  • the present invention has been made in view of the above circumstances, and a plurality of water distribution blocks constituting a water distribution pipe network.
  • the purpose is to provide a water leakage monitoring system that quickly and easily estimates the water leakage position from the measurement data of the equipment installed in the lock.
  • a water leakage monitoring system is a flow rate data measured by a flow meter and a pressure gauge installed in each water distribution block constituting the water distribution pipe network.
  • the monitoring device that receives the pressure data and stores the flow rate and pressure data in a time-sequential manner for each distribution block, and the leak location that estimates the leak location from the flow rate and pressure data stored in this monitoring device
  • the leakage position estimation device takes out flow rate data and pressure data of a predetermined cycle for each water distribution block from the monitoring device, and changes the flow rate to predict leakage from the flow rate data of the predetermined cycle and the at least 2 Period data acquisition means for extracting and outputting a signal relating to a pressure change that changes due to the change in the flow rate from pressure data of a predetermined period for one pressure gauge, and this period Signal force related to two pressure changes output from the data acquisition means
  • Pressure gauge reaction time calculation means for calculating the difference in pressure reaction time, pressure response time difference obtained by this pressure gauge reaction time calculation means, and
  • the water leakage monitoring system is obtained by the storage unit that stores at least the relationship between the flow rate change value and the pipe diameter, and the periodic data acquisition unit.
  • the memory means is referred to based on the flow rate change value, and a pipe diameter specifying means for specifying the pipe diameter of the pipe line where the flow rate has changed is added.
  • the pipe diameter data is sent to the flow rate change position estimating means, and is output and displayed together with the flow rate change position data.
  • the water leakage monitoring system is newly provided with the above-described storage means and pipe diameter specifying means, and at least the flow rate change value and cracks and breaks in the pipes installed in each of the water distribution blocks.
  • Storage means for storing the relationship with various flow rate change factor data including When a signal regarding the flow rate change obtained by the periodic data acquisition means is received, the storage means is referred to based on the flow rate change value, and at least whether the pipe is cracked or broken, whether a fire hydrant is used, or the water tank is in operation.
  • the flow rate change factor acquisition means for estimating and displaying the flow rate change factor data indicating that the flow rate change is caused by any one of the above is added.
  • a pipe wall thickness estimation means for estimating and displaying the pipe wall thickness where the flow rate has changed based on a predetermined pressure propagation speed calculation formula using the pressure propagation speed.
  • the predetermined pressure propagation speed using the pressure propagation speed estimated by the pressure propagation estimating means and the thickness and pipe diameter of the pipe having a flow rate change obtained from the distribution pipe network map data. It is possible to compare the pressure propagation speed obtained from the above formula and output and display the pipe line data with the flow rate change when both pressure propagation speeds are different.
  • the flow meter installed in the plurality of water distribution blocks constituting the water distribution network and the flow rate change of the measurement data of the two pressure gauges, and the flow rate change due to the flow rate change can provide a water leakage monitoring system that can quickly and easily estimate the water leakage position from pressure changes.
  • FIG. 1 is a diagram showing a schematic configuration of a water leakage monitoring system provided with a water leakage position estimating device according to the present invention.
  • FIG. 2 is a diagram showing an example of a data array arranged in the monitoring database shown in FIG.
  • FIG. 3 is a configuration diagram of a water leakage monitoring system for explaining a first embodiment of a water leakage position estimating device according to the present invention.
  • FIG. 4 is a graph showing changes in flow rate data and pressure data in a cycle of 1 second measured by a flow meter and a pressure gauge installed in a water distribution block.
  • FIG. 5 is an enlarged view of region (2) shown in FIG.
  • FIG. 6 is a diagram showing a distribution pipe network map of an area equipped with a flow meter and a pressure gauge.
  • FIG. 7 is a configuration diagram of a water leakage monitoring system for explaining a second embodiment of a water leakage position estimating device according to the present invention.
  • FIG. 8 is a diagram showing reference data for specifying the water leakage cause pipe diameter.
  • FIG. 9 is a block diagram of a water leakage monitoring system for explaining another example of the second embodiment of the water leakage position estimating apparatus according to the present invention.
  • FIG. 10 is a configuration diagram of a water leakage monitoring system for explaining a third embodiment of a water leakage position estimating device according to the present invention.
  • the target process is, for example, a plurality of water distribution blocks 3a, 3b, ... that make up the water distribution network connected to the main water supply main line 2 derived from the distribution reservoir 1, and each of the water purified in the distribution reservoir 1 To each customer 4,... distributed over a wide area via distribution blocks 3a, 3b,... It is a water supply process to supply.
  • the water distribution block 3a is installed at least on the inlet side pipe of the water distribution block 3a, and has a flow meter 5 for measuring the amount of water flowing into the water distribution block 3a, the main line 2 force, and the water distribution block 3a.
  • One or more pressure gauges 6a, 6b,... For measuring the pressure inside are provided.
  • the water distribution block 3b,... Is provided with a flow meter 5 and one or more pressure gauges 6a, 6b,.
  • Telemeters 7a, 7b, ... are provided individually corresponding to each of the water distribution blocks 3a, 3b, ..., and the flowmeters 5 and each installed in the water distribution blocks 3a, 3b, ... in the required cycle
  • As the data transmission lines 8a, 8b,... There are various transmission methods such as wireless, wired, public network, Internet, etc.
  • the flow meter 5 and the pressure gauges 6a, 6b,. ... Send to the water leakage monitoring system side using a dedicated line laid every time.
  • an interface for receiving bit data which is measurement data of the flowmeter 5 and the pressure gauges 6a, 6b, transmitted from the telemeters 7a, 7b, ... of each distribution block 3a, 3b, ...
  • a telemeter 11 having a function, a monitoring device 12, and a water leakage position estimating device 13 are provided.
  • the telemeter 11 When the telemeter 11 receives the bit data of the flow meter 5 and the pressure gauges 6 a, 6 b,... Sent from the telemeters 7 a, 7 b,..., The telemeter 11 sends the telemeters 7 a, 7 b,. Based on the distribution block 3a, 3b, ... and the flow meter 5 and each pressure gauge 6a, 6b, ... in each distribution block 3a, 3b, ... Notify monitoring device 12.
  • the monitoring device 12 receives the start (synchronization) signal first transmitted from the telemeter 11.
  • the monitoring device 12 receives bit data in the order of the water distribution block 3a, the self water block 3b, ... according to the measurement order, the measurement of any water distribution block 3a, 3b, ... and any flow meter 5 and each pressure gauge 6, ... It is possible to easily grasp whether it is data.
  • the monitoring device 12 includes a monitoring server 12-1 and a monitoring database 12-2.
  • the monitoring server 12-1 is provided with data collection means 12a, data conversion means 12b, and data storage means 12c.
  • the data collection means 12a has a function of collecting bit data including target specifying data regarding the flow meter 5 and the pressure gauges 6a, 6b, ... in the water distribution blocks 3a, 3b, ... from the telemeter 11.
  • the data conversion means 12b collects bit data related to the flow rate and pressure collected by the telemeters 7a, 7b,... At a constant cycle (for example, 0.85 seconds), the data conversion means 12b performs calculation processing from each bit data of the cycle of 0.85 seconds. It has a function to convert to true flow rate data and pressure data for every cycle required for example, 1 second cycle, 5 seconds or 1 minute cycle.
  • the data storage means 12c is based on the object specifying data or based on the object specified by the data collecting means 12a itself of the monitoring device 12, and each of the water distribution blocks 3a, 3b,.
  • flow rate data and pressure data are stored in a time-sequential manner with a cycle of 1 second, for example, flow meter 5, pressure gauge 6a, 6b,.
  • FIG. 2 is a diagram showing an example of a data array of the monitoring database 12-2.
  • “100”, “101”, etc. in the column mean each distribution block, and “100M” is the flow meter 5, “100P1”, “100P2” installed in the distribution block “100”.
  • Each row represents the data collection time for each specific weapon. That is, it is divided into each distribution block 3a, 3b,... And each flow meter 5, pressure gauge 6a, 6b,.
  • water leakage position estimation device 13 will be described separately for each embodiment described later.
  • FIG. 3 is a configuration diagram of the water leakage monitoring system for explaining the first embodiment of the water leakage position estimating device 13 according to the present invention.
  • This water leakage monitoring system is provided with a distribution pipe network map creation device 14 in addition to the monitoring device 12 and the water leakage position estimation device 13 described above.
  • the distribution pipe network map creation device 14 is based on, for example, a design drawing of the distribution pipe network and the flowmeters 5 installed in the main line, each distribution block 3a, 3b,..., Each distribution block 3a, 3b,.
  • a pressure gauge 6, ... etc. (Appliance) is generated so that it can be displayed as a pipeline network, and the pipe Water distribution pipes that define the installation position that represents the distance between adjacent equipment (distribution reservoir 1, main trunk line 2, flow meter 5, 6a, 61 ⁇ ⁇ ) for each water distribution block 3a, 3b, ... constituting the road network
  • a mapping device 141 for creating a road network map and a pipeline network map database 142 for storing distribution pipe network map data created by the mapping device 141 are provided.
  • the mapping device 14-1 includes, for example, a pipe connection point A1 representing the distance from the distribution reservoir 1 to the water distribution block 3a, and a flow meter installation position representing the distance from the pipe connection point A1 to the flow meter 5.
  • Distance data such as the position of the pressure gauge indicating the distance from the flow meter 5 to each pressure gauge 6a, 6b,..., the pipe connection point of each distribution pipe that forms the distribution block 3a, 3b,... from the flow meter 5
  • the connection point position representing the distance from A11 to A19 is input, and the pipeline network map data that can display images in the water distribution blocks 3a, 3b, ... is created.
  • the water leakage position estimation device 13 designates the water distribution blocks 3a, 3b,... From the monitoring database 12-2, and periodically obtains periodic data, for example, flow data and pressure data with a period of 1 second arranged in time series. 21, pressure gauge reaction time calculation means 22, pressure propagation speed estimation means 23, flow rate change position (water leakage position) estimation means 24, and water leakage position display control means 25.
  • the periodic data acquisition means 21 determines the flow rate change and the pressure change individually from the flow rate data and pressure data of the 1 second period taken out from the monitoring database 12-2, and the flow rate change time and pressure change time. In response to the trigger signal, or if necessary, for example, change value data, or flow data and pressure data before and after the change or after the change (hereinafter collectively referred to as signals related to the flow change and pressure change) are output.
  • the pressure gauge reaction time calculation means 22 calculates the pressure reaction time difference between the pressure gauges 6a and 6b from the pressure change times included in the two pressure change signals output from the periodic data acquisition means 21. The pressure is transmitted to the pressure propagation speed estimation means 23.
  • the pressure propagation speed estimation means 23 uses the pressure reaction time difference and the pressure gauge installation position (installation distance) related to the two pressure gauges 6a and 6b extracted from the pipeline network map database 14 2 to calculate the pressure propagation speed. presume.
  • the flow rate change position estimating means 24 is adapted to change the flow rate output from the periodic data acquiring means 21.
  • the distribution block 3a is configured based on the flow meter installation position (installation distance), the two pressure gauge installation positions, and the pressure propagation speed from the pipeline network map data in the pipeline network map database 14-2. It has a function to estimate the flow rate change position (corresponding to the leak position) of the distribution pipe.
  • the water leakage position is a force indicating an increase factor of flow rate (for example, identification of a water receiving tank during operation, which will be described later) in addition to cracks and breaks in the pipe line in this embodiment. It is not a crack or breakage of the road, but includes the position of the pipe diameter and wall thickness reduction due to pipe wear and other factors that will affect the pipe in the future.
  • the water leakage position display control means 25 sends the data regarding the water leakage position of the water distribution pipes constituting the water distribution block 3a received from the flow rate change position estimation means 24 to the monitoring server 12-1 and the mapping device 14-1.
  • the monitoring server 12-1 displays that the flow rate change corresponding to the water leakage has occurred, and the mapping device 14 1 displays the pipeline network near the pipeline where the flow rate changed by marking, for example. To do.
  • the flow rate meter 5 installed in each of the water distribution blocks 3a, 3b,... And the two pressure gauges 6a, 6b as shown in FIG. 1 second period flow data and pressure data are stored.
  • the periodic data acquisition means 21 of the water leakage position estimation device 13 designates, for example, the water distribution block 3a, and the flow rate data M and pressure data with a period of 1 second including the measurement time from the monitoring database 12-2. Read PI and P2 sequentially. Periodic data acquisition means 21 compares the previous flow rate with the current flow rate one by one, and when the difference between the two flow rates exceeds the set value that predicts water leakage, it determines that there is a change in flow rate at a certain measurement time, and Sends a flow rate change signal including the measurement time in block 3a to the flow rate change position estimation means 24.
  • the period data acquisition means 21 compares the previous pressure and the current pressure for the two pressure data PI and P2 respectively, and when the pressure difference before and after exceeds a predetermined set value, It is determined that there is a pressure change, and a signal related to the pressure change including the measurement time is sent to the pressure gauge reaction time calculation means 22.
  • the pressure gauge reaction time calculation means 22 relates to a pressure change including two measurement times. From the signal, calculate the time difference between the two pressure gauges 6a and 6b.
  • FIG. 4 is a graph showing changes in the actual flow rate value M and the actual pressure values PI and P2 measured in a 1 second cycle measured by the flow meter 5 and the two pressure gauges 6a and 6b in the water distribution block 3a.
  • the horizontal axis represents the time per second
  • the left vertical axis represents the water head [mAq]
  • the right vertical axis 2 represents the flow rate [m3 / s].
  • the pressure values (A) and (B) indicated by the solid lines in the figure are calculated based on a predetermined arithmetic expression from the flow rate, for example, a deformation formula of Heather Williams, and are calculated every day using the least square method.
  • the head loss (pressure value) ⁇ is calculated using the total pipe length L and the flow rate correction coefficient ⁇ as parameters.
  • Pressure approximation formula calculation means is provided on the output side of 2b, and for example, the data conversion means 12b converts it into time-series flow rate data of a predetermined period (for example, 5-second period), then the loss from the following Hezen Williams deformation formula Obtain the head (pressure value) H.
  • L is the total length of the virtual pipeline (m)
  • Q is the flow meter flow data
  • C is the flow velocity coefficient (110 here)
  • D is the pipe diameter
  • is the flow correction coefficient of the distribution block.
  • a 30m3 receiving tank 4a (see Fig. 6) is installed in the distribution pipe with the distributing block 3a, and the receiving tank 4a is in operation as shown in Fig. (C).
  • the flow rate actual value M rises with the operation of the water receiving tank 4a, the actual pressure values PI and P2 decrease at almost the same time.
  • FIG. 5 is an enlarged view of the area (D) represented by the dotted frame shown in FIG.
  • the pressure gauge reaction time calculation means 22 calculates a pressure reaction time difference (3 to 4 seconds) from both measurement times included in a signal related to pressure change of each pressure actual measurement value PI and P2, and the pressure propagation Send to speed estimation means 23.
  • the flow rate change position estimating means 24 receives a signal related to the flow rate change from the periodic data obtaining means 21, the flow rate meter 5 of the distribution block 3a is installed from the pipeline network map database 14-2, the pressure gauge 6a , 6b pressure gauge installation position, water tank 4a installation position, etc.
  • the flow rate rise time by flow meter 5 and pressure drop time of pressure gauge 6a are approximately the same time difference, and flow meter 5 Considering that the change in flow rate is a large change in flow rate that differs from cracks in the distribution pipe, and the distance obtained from the pressure propagation speed, etc., the water tank 4a installed between the flow meter 5 and the pressure gauge 6a Estimated to be the flow change position (leakage position) due to operation, and sends it to the leak position display control means 25.
  • the flow rate change position estimating means 24 can also store reference data for estimating the water leakage position in an auxiliary manner based on past experience and knowledge. For example, the expected flow rate change factors (cracks, breaks, receiving tank 4a) of water supply tank 4a existing near the installation position of flow meter 5, pressure gauge 6a, 6b, and various supplies such as water pipes to each customer 4 The pressure change time difference between the pressure gauges 6a and 6b with respect to the flow rate change may be determined in the flow meter 5 for every operation).
  • the flow rate change position estimating unit 24 estimates the flow rate change position as described above, the monitoring server 12-1 and the mapping are transmitted via the estimated water leakage position display control unit 25 together with the corresponding water distribution block identification data. Transmit to device 14 1.
  • the monitoring server 12-1 stores the flow rate change position data together with the distribution block identification data in the monitoring database 12-2 etc., and then the flow related to the water leakage in the distribution block 3a. Displays that the amount has changed.
  • the mapping device 141 stores the flow rate change position data together with the water distribution block identification data in an appropriate storage means, and then receives the display instruction from the monitoring device 12 or the like, the distribution device block 1 1 Based on the pipeline network map database 14-2, as shown in Fig. 6, the pipeline network related to the water distribution block is displayed on the display unit, and the flow rate change position is marked based on the flow rate change position data. To display.
  • the pressure reaction time is calculated from the pressure change of each pressure gauge 6a, 6b, and the pressure propagation speed is obtained from this pressure reaction time and the installation position between each pressure gauge 6a, 6b.
  • FIG. 7 is a configuration diagram of a water leakage monitoring system for explaining a second embodiment of the water leakage position estimating device according to the present invention.
  • the leak position estimation device 13 in this embodiment has substantially the same configuration as that of Fig. 3 described in the first embodiment, and therefore, the same or equivalent parts are denoted by the same reference numerals here. In the following, the description will be made with reference to FIG.
  • the diameter specifying reference data storage means 26 and the pipe diameter specifying means 27 for specifying the diameter of the pipe with a flow rate change are newly added to the components in the first embodiment. It is a thing.
  • the bore diameter specific reference data storage means 26 has a flow rate change factor (crack, breakage) for each type of water distribution pipe (the size of the diameter) constituting the water distribution blocks 3a, 3b,.
  • the type of the distribution pipe diameter
  • the pre-scheduled multiple pipe inflow pressure values the flow change factors (large and small cracks, large and small breaks), and the flow change values. Relationship with Has been.
  • the pipe diameter specifying means 27 is provided on the output side of the periodic data acquiring means 21.
  • the pipe diameter specifying means 27 becomes an object of the flow rate change. Identify the diameter of the distribution pipeline.
  • the periodic data acquisition means 21 takes in time-series flow rate data with a period of 1 second from the monitoring database 12-2, compares the previous flow rate value with the current flow rate value, and changes both flow rate values ( When the flow rate difference exceeds the set value that is assumed to be water leakage, the flow rate change value is sent to the pipe diameter specifying means 27.
  • the pipeline size specifying unit 27 Upon receipt of the flow rate change value from the cycle data acquisition unit 21, the pipeline size specifying unit 27 refers to the reference data defined in the port size specifying reference data storage unit 26, and determines the flow rate change value and the inflow pressure value (for example, Based on the measured pressure value), the diameter of the distribution pipe is determined and sent to the flow rate change position estimating means 24.
  • the flow rate change position estimating means 24 is obtained by the pressure propagation speed calculating means 23 when receiving a signal relating to the flow rate change together with the distribution block identification data as described in the first embodiment.
  • Pressure flow velocity and pipeline network map database 14 2 Using the flow meter installation position of flow meter 5, pressure gauge installation positions of pressure gauges 6a and 6b, and other necessary position data, for example, pressure gauge 6a
  • the flow rate change position (leakage position)
  • the flow rate change determined by the pipe diameter specifying means 27 together with the estimated flow rate change position
  • the diameter of the distribution pipe is sent to the monitoring server 12-1 and the mapping device 14-1 through the leakage position display control means 25.
  • the monitoring server 12-1 displays that there is a change in the flow rate that causes water leakage in the distribution pipe having the pipe diameter.
  • the mapping device 14-1 retrieves the relevant distribution block, for example, 3a pipeline network map data based on the distribution block identification data from the pipeline network map database 14-2, and installs the XX pipe diameter installed at the flow change position. It is displayed that there is water leakage in the distribution pipe.
  • the flow rate change assumed as the flow rate change factor is In addition to estimating the flow rate change position and specifying the diameter of the distribution pipe embedded in the flow rate change position, the same effects as in the first embodiment can be obtained, and more quickly and appropriately. Recovery or first aid can be taken.
  • a flow rate change factor acquisition unit 28 is provided on the output side of the period data acquisition unit 21.
  • the flow rate change factor acquisition unit 28 receives the flow rate change value that is assumed to be a water leak from the periodic data acquisition unit 21, the flow rate change factor acquisition unit 28 refers to the reference data in the caliber specific reference data storage unit 26, and indicates the type of the pipe that represents the flow rate change factor. The flow rate change factor corresponding to the flow rate change value is searched from the item.
  • the flow rate change value during operation of the water receiving tank 4a should be specified.
  • the flow rate change factor acquisition means 28 determines whether the distribution pipe is cracked or broken, the force due to the use of the fire hydrant, the operation of the water receiving tank 4a, or other Identify the flow rate change factor due to the supply factor and send it to the monitoring server 12-1.
  • data such as the flow rate change position and the pipe diameter described in the first and second embodiments are transmitted almost simultaneously to the monitoring server 12-1.
  • the monitoring server 12-1 confirms that there has been a change in flow rate due to the use of a specific flow rate change factor, for example, a digestive plug. indicate.
  • the flow rate change is within the range of the distribution pipe line with the distribution blocks 3a, 3b, ... ) Can be easily grasped as a result of the operation of a certain product installed inside.
  • FIG. 10 is a configuration diagram of a water leakage monitoring system for explaining the third embodiment of the water leakage position estimating device according to the present invention.
  • the pressure propagation speed can be estimated by the pressure propagation speed estimation means 23 described above, but the physical expression (1) (“Civil Engineering Fundamentals Series 5—2 Hydraulics”, p 150-152, author: Nobuyuki Tamai, Issuing place: Baifukan, Issuing date: 1989. 1. 10) The pressure propagation speed can also be obtained.
  • Pressure propagation speed
  • Volume modulus (2.06 [G Pa] for water)
  • p Water density (1000 [kg / m 3 ])
  • D Pipe diameter [mm
  • e wall thickness [mm
  • E longitudinal elastic modulus 158 [GPa] (in the case of ductile pig iron pipe).
  • the pressure propagation speed ⁇ is affected by the pipe diameter D and the wall thickness e from the above equation (1). This is because, when the pressure propagation speed is obtained by the difference in reaction time between the actual pressure gauges 6a and 6b, this known pressure propagation speed is substituted into the above equation (3), so that It is possible to obtain the wall thickness in a reverse calculation.
  • a pipe thickness estimation means 32, and a pipe thickness display control means 33 are provided to estimate the pipe thickness of the distribution pipe whose flow rate has changed.
  • Periodic data acquisition means 21, pressure gauge reaction time calculation means 22 and pressure propagation speed estimation means 23 are the same as in FIG.
  • the pipe diameter calculating means 31 receives a signal relating to the flow rate change from the periodic data obtaining means 21, the pipe diameter calculating means 31 includes the longitudinal elastic modulus related to the water distribution pipes constituting the water distribution block 3a from the water distribution pipe network map database 142. Then, the distribution pipe connecting the flow meter 5 and the pressure gauge 6a is taken out, and the diameter data of the distribution pipe connecting the pressure gauges 6a and 6b is taken out.
  • the pipe diameter calculation means 32 is based on the moving average when the diameters of the distribution pipes extracted from the distribution pipe network map database 14-2 are different, that is, when pipes with different diameters are connected.
  • the longitudinal elastic modulus and the pipe diameter are sent to the pipe wall thickness estimation means 32.
  • the pipe diameter calculating means 31 sends the pipe diameter and the longitudinal elastic modulus of the water distribution pipe to the pipe thickness estimating means 32.
  • a fixed parameter based on the equation (1) is set in advance, and the pressure propagation speed and the pipe diameter calculation sent from the pressure propagation speed estimating means 23 based on the flow rate change are calculated.
  • the pipe wall thickness estimation means 32 uses the longitudinal elastic modulus and pipe diameter received from means 32, the calculation process according to the above equation (1) is executed, and the wall thickness of the distribution pipe where the flow rate of the corresponding distribution block has changed is calculated and estimated. Then, the pipe wall thickness estimation means 32 sends the obtained pipe wall thickness estimation value to the monitoring server 12-1 and the mapping device 14-1 via the pipe wall thickness display control means 33.
  • the wall thickness of the water distribution pipe where the flow rate has changed can be easily determined.
  • a pressure propagation speed calculating means (not shown) is provided instead of the pipe wall thickness estimating means 32 shown in FIG.
  • the pressure propagation speed estimated from the pressure stress time difference between the actual pressure gauges 6a and 6b is compared with the pressure propagation speed obtained by the equation (1) above by the pressure propagation speed computing means.
  • the thickness of the water distribution pipe where the flow rate of the piping block has changed will be reduced. I can think of it.
  • the pressure propagation speed calculation means is at least a mapping device for the distribution pipe data in which the flow rate of the piping block has changed via the display control means (corresponding to the pipe thickness display control means 33). 14 Send to 1.
  • the mapping device 14 1 Upon receiving the distribution pipe data in which the flow rate of the piping block has changed, the mapping device 14 1 receives the distribution pipe network in the vicinity of the distribution pipe data of the distribution block from the distribution pipe network map database 14 2. The map is displayed on the mapping device 14 1. [0084] According to this embodiment, when there is a large divergence between the pressure propagation speed obtained by the pressure propagation speed estimation means 23 and the pressure propagation speed obtained by the equation (1), there is a change in flow rate. By displaying the distribution pipe network map around the distribution pipe, it is possible that the thickness of the distribution pipe is thin or that the inside of the pipe is wrinkled, and that cracks and breaks may occur in the future. The ability to offer life S
  • the flow rate change factor acquisition unit 28 shown in FIG. 9 determines that the water leakage position estimation device 13 is a crack or rupture in the pipeline
  • a signal related to the crack or break is used to estimate the flow change position.
  • the flow rate change position estimation means 24 estimates the flow change position based on the pressure propagation speed obtained by the pressure propagation estimation means 23 and the installation positions of the flowmeters 5, pressure gauges 6a, 6b, etc. as described above. Then, it is sent to the monitoring server 12-1 and the mapping device 13-1 via the water leakage position display control means 26.
  • the pipe thickness estimation shown in FIG. Use means 32 when the flow rate change factor acquisition means 28 determines that a product other than a crack or break in the pipeline is a flow rate change factor, the pipe thickness estimation shown in FIG. Use means 32.
  • This pipe wall thickness estimating means 32 is preset with a fixed parameter based on the equation (1), and receives from the pressure propagation speed and pipe diameter calculating means 32 sent from the pressure propagation speed estimating means 23 based on the flow rate change.
  • the calculation process according to the above equation (1) is executed to calculate and estimate the thickness of the water distribution pipe where the flow rate of the water distribution block has changed.
  • the pipe wall thickness estimation means 32 sends the obtained pipe wall thickness estimation value to the monitoring server 12-1 and the mapping device 14-1 via the pipe wall thickness display control means 33.
  • the pipe flow rate change position estimating means 24 and the pipe wall thickness estimating means 32 are selectively used, and the flow rate change position or the pipe wall thickness is estimated and output. It is possible to display the status of other products in accordance with the flow rate change factor.
  • the distribution network map map creating device 14 is used to create a distribution pipeline network map, which is stored and managed in the distribution pipeline network map database 14 2.
  • the data on the water distribution network map created by the water distribution network map creation device 14 The configuration may be such that the data stored in the estimation device 13 is used and data relating to the distribution pipe network map is used to estimate the leak location and displayed on the display unit of the leak location estimation device 13 itself.

Description

明 細 書
漏水監視システム
技術分野
[0001] 本発明は配水管路網を構成する複数の配水ブロックの漏水位置を推定する漏水 監視システムに関する。
背景技術
[0002] 上水道処理施設で浄化された水は、配水管路網を経て広域地域に分布する多数 の需要家に供給される。従って、配水管路網は、各需要家の日常生活を維持する上 で必須となるライフライン網としての役割を担っており、高!/、信頼性を持って恒常的に 各需要家の水需要に応える必要がある。因みに、各配水ブロックを構成する配水管 路の一部に破断が生じた場合、道路の陥没や水没などの災害につながる。また、管 路の亀裂,破断による漏水は総配水量に対する有効水量 (有効率)の減少となるの で、極力早い段階で管路の肉厚減少を含む管路の亀裂や破断個所を検知すること が望ましい。
[0003] ところで、従来から一般的に行われている漏水検出手法は、各配水ブロックへの流 入量を長期にわたってチェックし、その流入量の変化から漏水を捉える手法を用いて いる。例えば、各需要家がほとんど水を使用しない夜の時間帯に、各配水ブロックの 夜間最小流入量を計測し、その後同じ時間帯の流入量をチェックし、流入量が増加 傾向にあれば配水ブロックを構成する何れかの配水管路から漏水していると判断す
[0004] ここで、漏水有りと判断されたとき、作業員は、漏水検知器を携行し、配水ブロックを 構成する需要家の引込み管路を含む複雑な配水管路を迪りながら、水道水が使用 されていない時間帯に漏水検知器で管路の流入音を計測し、管路の漏水個所を推 疋 。
[0005] 従って、このような漏水検出手法は、長期間にわたって夜間最小流入量を収集する 必要があるので、現段階で配水ブロックのある個所で漏水しているにも拘らず、長期 間にわたって検証しないと漏水有りと判断できない。その結果、配水管路の小さな亀 裂が時間の経過とともに拡大し、ひいては管路の破断等となって道路の陥没や水没 などの災害を招く虞れがある。
[0006] また、この漏水検出手法は、ある配水ブロック内に漏水有りと判断しても、配水ブロ ック内の何れの配水管路から漏水している力、を推定できない。その結果、作業員は、 配水ブロックを構成する配水管路を迪りながら、漏水検知器で詳細に管路内の流入 音を収集しなければならず、作業員の負担が増大し、また長期にわたって有効水量 を減少させる問題がある。
[0007] そこで、近年、幾つかの漏水検出技術が提案されている。
その 1つの漏水検出技術は、配水管路から各需要家に導入される給水管に設置さ れる水道メータの開閉可能な蓋体に、水道メータ本体から検出される特定の音響を 検出し、給水管における漏水の発生を判定し、その判定内容を外部に出力する提案 である(特開 2004— 191139号公報(図 1)参照)。
[0008] 他のもう 1つの漏水検出技術は、配水管路から各需要家に導入される給水管に、 当該給水管内を流れる水流により得られる管路の振動レベルを測定する振動音検知 器及び需要家の水道流量測定器の流量測定データとともに前記振動音検知器の測 定データを記憶するデータ記憶手段を設け、水の流れる振動音から漏水を検出する ものである(特開 2001 - 311676号公報(図 1)参照)。
発明の開示
[0009] 以上のような 2つの漏水検出技術は、何れも配水管路から各需要家に導入される 給水管に音響検知手段を設け、需要家ごとの給水管の漏水有無を判断するもので あって、上水道の主幹線に連なる多数の配水ブロックの漏水状態を総合的に判断す ることができない。
[0010] また、音響検知手段によって測定される音響レベルの状態と一定期間ごとの水道 流量測定器の流量測定データとを比較検討し、各需要家の給水管近傍の漏水を判 断するものであり、管路の亀裂等で漏水しても一定期間経過しないと正確な漏水状 態を判断できない。また、需要家単位といった個別的な漏水の有無しか判断できな い問題がある。
[0011] 本発明は上記事情に鑑みてなされたもので、配水管路網を構成する複数の配水ブ ロック内に設置する機器の測定データから迅速、かつ、容易に漏水位置を推定する 漏水監視システムを提供することを目的とする。
[0012] (1) 上記課題を解決するために、本発明に係る漏水監視システムは、配水管路網 を構成する各配水ブロック内に設置される流量計及び圧力計で測定される流量デー タ及び圧力データを受信し、配水ブロックごとに所定周期で時系列的に流量及び圧 力データを記憶する監視装置と、この監視装置に記憶される流量及び圧力データか ら漏水位置を推定する漏水位置推定装置とを有し、この漏水位置推定装置は、前記 監視装置から配水ブロックごとに所定周期の流量データ及び圧力データを取り出し、 当該所定周期の流量データから漏水を予想させる流量変化及び前記少なくとも 2つ の圧力計に関する所定周期の圧力データから当該流量変化に起因して変化する圧 力変化に関する信号を取り出して出力する周期データ取得手段と、この周期データ 取得手段から出力される 2つの圧力変化に関する信号力 圧力反応時間差を算出 する圧力計反応時間算出手段と、この圧力計反応時間算出手段で得られる圧力反 応時間差と予め記憶される配水管路網地図データに規定される該当配水ブロックの 2つの圧力計設置位置から得られる圧力計間距離とを用いて、圧力伝播速度を推定 する圧力伝播推定手段と、前記周期データ取得手段から流量変化に関する信号を 受けたとき、前記圧力伝播推定手段で推定された圧力伝播速度と前記配水管路網 地図データに規定される流量計設置位置 ·圧力計設置位置とを用いて、流量変化位 置 (漏水位置)を推定し表示する流量変化位置推定手段とを備えた構成である。
[0013] また、本発明に係る漏水監視システムは、以上のような構成に新たに、少なくとも流 量変化値と管口径との関係を記憶する記憶手段と、前記周期データ取得手段で得ら れる流量変化に関する信号を受けたとき、当該流量変化値に基づいて前記記憶手 段を参照し、流量変化のあった管路の管口径を特定する管口径特定手段とを付加し 、この特定された管口径データを前記流量変化位置推定手段に送出し、流量変化 位置データとともに出力し表示する構成である。
[0014] また、本発明に係る漏水監視システムは、前述した記憶手段及び管口径特定手段 を備えた構成に新たに、少なくとも流量変化値と前記各配水ブロックに設置される管 路の亀裂,破断を含む各種の流量変化要因データとの関係を記憶する記憶手段と、 前記周期データ取得手段で得られる流量変化に関する信号を受けたとき、当該流量 変化値に基づいて前記記憶手段を参照し、少なくとも管路の亀裂,破断か、消火栓の 利用か、受水槽の稼動かの何れか 1つを要因とする流量変化であることを表す前記 流量変化要因データを推定し表示する流量変化要因取得手段を付加した構成であ
[0015] (2) また、本発明に係る漏水監視システムは、漏水位置推定装置としては、監視装 置から配水ブロックごとに所定周期の流量データ及び圧力データを取り出し、当該所 定周期の流量データから漏水を予想させる流量変化及び前記少なくとも 2つの圧力 計に関する所定周期の圧力データから当該流量変化に起因して変化する圧力変化 に関する信号を取り出して出力する周期データ取得手段と、この周期データ取得手 段から出力される 2つの圧力変化に関する信号力 圧力反応時間差を算出する圧力 計反応時間算出手段と、この圧力計反応時間算出手段で得られる圧力反応時間差 と予め記憶される配水管路網地図データに規定される該当配水ブロックの 2つの圧 力計設置位置から得られる圧力計間距離とを用いて、圧力伝播速度を推定する圧 力伝播推定手段と、前記周期データ取得手段から流量変化に関する信号を受けた とき、予め記憶される配水管路網地図データから該当配水ブロックの前記圧力計同 士または前記流量計と圧力計とをつなぐ管口径を取り出し、この取り出した管口径が 異なる管口径の管路で接続されてレ、るとき管口径の平均値を求める管口径演算手 段と、この管口径演算手段により得られる管口径及び前記圧力伝播速度を用いて、 所定の圧力伝播速度の演算式に基づいて前記流量変化のあった管路の肉厚を推 定し表示する管路肉厚推定手段とを備えた構成である。
[0016] なお、前記圧力伝播推定手段で推定された圧力伝播速度と前記配水管路網地図 データから得られる流量変化のあった管路の肉厚及び管口径を用いて前記所定の 圧力伝播速度の演算式から求める圧力伝播速度とを比較し、両圧力伝播速度が乖 離しているとき、流量変化のあった管路データを出力し表示する構成であってもよい
[0017] 本発明によれば、配水管路網を構成する複数の配水ブロック内に設置する流量計 及び 2つの圧力計の測定データの流量変化及び当該流量変化に起因して変化する 圧力変化から迅速、かつ、容易に漏水位置を推定する漏水監視システムを提供でき 図面の簡単な説明
[0018] [図 1]図 1は本発明に係る漏水位置推定装置を備えた漏水監視システムの概略構成 を示す図である。
[図 2]図 2は図 1に示す監視用データベースに配列されるデータ配列の一例を示す 図である。
[図 3]図 3は本発明に係る漏水位置推定装置の第 1の実施の形態を説明する漏水監 視システムの構成図である。
[図 4]図 4は配水ブロックに設置される流量計及び圧力計で実測された 1秒周期の流 量データ及び圧力データの推移を示す図である。
[図 5]図 5は図 4に示す領域 (二)を拡大して示す図である。
[図 6]図 6は流量計及び圧力計を備えた領域の配水管路網地図を表示した図である
[図 7]図 7は本発明に係る漏水位置推定装置の第 2の実施の形態を説明する漏水監 視システムの構成図である。
[図 8]図 8は漏水原因管路口径を特定するための参照データを示す図である。
[図 9]図 9は本発明に係る漏水位置推定装置の第 2の実施の形態の他の例を説明す る漏水監視システムの構成図である。
[図 10]図 10は本発明に係る漏水位置推定装置の第 3の実施の形態を説明する漏水 監視システムの構成図である。
発明を実施するための最良の形態
[0019] 以下、本発明に係る漏水監視システムの基本構成について図面を参照して説明す 本発明システムで適用する対象とするプロセスについて図 1を参照して説明する。 対象とするプロセスは、例えば配水池 1から導出される上水道の主幹線 2に配水管 路網を構成する複数の配水ブロック 3a, 3b,…が連なり、当該配水池 1で浄化された 水が各配水ブロック 3a, 3b,…を経由して広範囲地域に分布する各需要家 4,…に 供給する水供給プロセスである。
[0020] 配水ブロック 3aには、少なくとも配水ブロック 3aの入口側管路に設置され、主幹線 2 力、ら配水ブロック 3a内に流入する水の流入量を測定する流量計 5と、配水ブロック 3a 内の圧力を測定する一つ以上の圧力計 6a, 6b,…が設けられている。配水ブロック 3b、…についても同様に流量計 5及び一つ以上の圧力計 6a, 6b,…が設けられて いる。
[0021] 各配水ブロック 3a, 3b,…に対応して個別にテレメータ 7a, 7b,…が設けられ、所 要とする周期で配水ブロック 3a, 3b,…内に設置される流量計 5及び各圧力計 6a, 6 b,…で測定される流量及び圧力データを取り込み、例えば 12ビットデータに変換し た後、データ伝送ライン 8a, 8b,…を通して漏水位置推定システムへ送信する。なお 、データ伝送ライン 8a, 8b,…としては、無線,有線の他、公衆回線網、インターネッ ト等の種々の伝送方式が考えられる力 ここでは、例えば流量計 5及び圧力計 6a, 6 b,…ごとに敷設される専用線を用いて、漏水監視システム側へ送信する。
[0022] 漏水監視システムとしては、各配水ブロック 3a, 3b,…のテレメータ 7a, 7b,…から 送信されてくる流量計 5及び各圧力計 6a, 6bの測定データであるビットデータを受信 するインタフェース機能を有するテレメータ 11と、監視装置 12と、漏水位置推定装置 13とが設けられている。
[0023] テレメータ 11は、各テレメータ 7a, 7b,…から送られてくる流量計 5及び各圧力計 6 a, 6b,…のビットデータを受信すると、送信元となるテレメータ 7a, 7b,…に基づい て配水ブロック 3a, 3b,…及び各配水ブロック 3a, 3b,…内の流量計 5及び各圧力 計 6a, 6b,…等の対象を特定し、対象特定データを含む測定結果のビットデータを 監視装置 12に通知する。
[0024] なお、予めテレメータ 11と監視装置 12との間で測定順序の取り決めを定めておけ ば、当該監視装置 12は、テレメータ 11から最初に送信されてくるスタート(同期)信号 を受け取った後、測定順序に従って配水ブロック 3a、酉己水ブロック 3b,…の順番にビ ットデータを受信することにより、何れの配水ブロック 3a, 3b,…及び何れの流量計 5 及び各圧力計 6, …の測定データであるかを容易に把握することが可能である。
[0025] 監視装置 12は、監視サーバ 12— 1及び監視用データベース 12— 2からなる。 監視サーバ 12— 1は、データ収集手段 12a、データ変換手段 12b及びデータ記憶 手段 12cが設けられている。
[0026] データ収集手段 12aは、テレメータ 11から各配水ブロック 3a, 3b, …内の流量計 5 及び各圧力計 6a, 6b,…に関する対象特定データを含むビットデータを収集する機 能を有する。データ変換手段 12bは、各テレメータ 7a, 7b,…が一定周期(例えば 0 . 85秒)ごとに収集した流量及び圧力に関するビットデータを収集した場合、 0. 85 秒周期の各ビットデータから計算処理に必要な周期、例えば 1秒周期、 5秒もしくは 1 分周期毎の真の流量データ及び圧力データに変換する機能を持っている。データ 記憶手段 12cは、対象特定データに従い、或いは監視装置 12のデータ収集手段 12 a自身により特定される対象に基づき、監視用データベース 12— 2に対して、各配水 ブロック 3a, 3b, …及び各流量計 5,圧力計 6a, 6b, …等の対象に分けて、例えば 1 秒周期で時系列的に流量データ及び圧力データを記憶する。
[0027] 図 2は、監視用データベース 12— 2のデータ配列の一例を示す図である。同図に おいて、縦列の「100」、「101」、…は各配水ブロックを意味し、「100M」は配水ブロ ック「100」に設置される流量計 5、「100P1」, 「100P2」は配水ブロック「100」に設 置される 2つの圧力計 6a, 6bを意味する。また、各行には、所定凶器ごとのデータ収 集時刻を表す。すなわち、各配水ブロック 3a, 3b, …及び各流量計 5,圧力計 6a, 6 b,…ごとに分けて、流量データ X X X及び圧力データ X X X力 秒周期ごとに順次 蓄積されていく。
[0028] さらに、漏水位置推定装置 13は、後記する各実施の形態ごとに分けて説明する。
[0029] (第 1の実施の形態)
図 3は本発明に係る漏水位置推定装置 13の第 1の実施の形態を説明する漏水監 視システムの構成図である。
[0030] この漏水監視システムは、前述した監視装置 12及び漏水位置推定装置 13の他、 配水管路網地図作成装置 14が設けられている。
配水管路網地図作成装置 14は、例えば配水管路網の設計図等に基づき、主幹線 ,各配水ブロック 3a, 3b,…、各配水ブロック 3a, 3b,…に設置される流量計 5、圧力 計 6, …等 (用品)を接続した管路網として画像表示可能に生成するとともに、当該管 路網を構成する配水ブロック 3a, 3b,…ごとに各隣接する用品(配水池 1、主幹線 2、 流量計 5、 6a, 61ν · ·)相互間の距離を表す設置位置を規定する配水管路網地図を 作成するマッピング装置 14 1と、このマッピング装置 14 1により作成された配水 管路網地図データを保存する管路網地図データベース 14 2が設けられている。
[0031] また、マッピング装置 14— 1は、例えば配水池 1から配水ブロック 3aまでの距離を 表す管路接続点 A1、管路接続点 A1から流量計 5までの距離を表す流量計設置位 置、流量計 5から各圧力計 6a, 6b, …までの距離を表す圧力計設置位置などの距離 データ、流量計 5から配水ブロック 3a, 3b, …を構成する各配水管路の管路接続点 A11〜A19までの距離を表す接続点位置を入力し、配水ブロック 3a, 3b,…におけ る画像表示可能な管路網地図データを作成する。
[0032] 次に、本発明に係る漏水位置推定装置 13について説明する。
漏水位置推定装置 13は、監視用データベース 12— 2から配水ブロック 3a, 3b,… を指定し、時系列的に配列された例えば 1秒周期の流量データ及び圧力データを順 次取り出す周期データ取得手段 21と、圧力計反応時間算出手段 22と、圧力伝播速 度推定手段 23と、流量変化位置 (漏水位置)推定手段 24と、漏水位置表示制御手 段 25とで構成される。
[0033] また、周期データ取得手段 21は、監視用データベース 12— 2から取り出す 1秒周 期の流量データ及び圧力データからそれぞれ個別に流量変化及び圧力変化を判定 し、流量変化時刻及び圧力変化時刻に伴うトリガ信号または必要に応じて当該トリガ 信号に代わる例えば変化値データ、または変化前後又は変化後の流量データ及び 圧力データ(以下、流量変化,圧力変化に関する信号と総称する)を出力する。
[0034] 圧力計反応時間算出手段 22は、周期データ取得手段 21から出力される 2つの圧 力変化に関する信号に含む各圧力変化時刻から各圧力計 6a及び 6bの圧力反応時 間差を算出し、圧力伝播速度推定手段 23に送出する。
[0035] 圧力伝播速度推定手段 23は、圧力反応時間差と管路網地図データベース 14 2 から取り出す前記 2つの圧力計 6a、 6bに関する圧力計設置位置 (設置距離)とを用 いて、圧力伝播速度を推定する。
[0036] 流量変化位置推定手段 24は、周期データ取得手段 21から出力される流量変化に 関する信号を受けたとき、管路網地図データベース 14— 2の管路網地図データから 流量計設置位置 (設置距離)及び 2つの圧力計設置位置と圧力伝播速度とに基づい て配水ブロック 3aを構成する配水管路の流量変化位置 (漏水位置に相当する)を推 定する機能を有する。ここで、漏水位置とは、本実施の形態では管路の亀裂、破断 の他、流量上昇要因(例えば後記する稼動時の受水槽の特定等)を指す力 他の実 施の形態では、管路の亀裂、破断ではないが、管路の摩耗による管口径や肉厚の減 少位置その他将来的に管路に影響を与える要因の位置を含む。
[0037] 漏水位置表示制御手段 25は、流量変化位置推定手段 24から受け取った配水プロ ック 3aを構成する配水管路の漏水位置に関するデータを監視サーバ 12— 1及びマ ッビング装置 14— 1に送出し、監視サーバ 12— 1に漏水に相当する流量変化が生じ たことを表示し、またマッピング装置 14 1には流量変化があった管路近傍の管路網 に例えばマーキングなどを施して表示する。
[0038] 次に、以上のように構成された漏水位置推定装置 13の作用について説明する。
先ず、漏水位置を推定するに際し、監視装置 12の監視用データベース 12— 2に 図 2に示すように各配水ブロック 3a, 3b,…に設置される流量計 5及び例えば 2つの 圧力計 6a, 6bに関する 1秒周期の流量データ及び圧力データが蓄積されている。
[0039] この状態において、漏水位置推定装置 13の周期データ取得手段 21は、例えば配 水ブロック 3aを指定し、監視用データベース 12— 2から測定時刻を含む 1秒周期の 流量データ M及び圧力データ PI , P2を順次読み出す。そして、周期データ取得手 段 21は、順次前回流量と今回流量とを比較し、 2つの流量差が漏水を予想させる設 定値を超えたとき、ある測定時刻に流量変化有りと判定し、該当配水ブロック 3aにお ける測定時刻を含む流量変化に関する信号を流量変化位置推定手段 24に送出す
[0040] また、周期データ取得手段 21は、 2つの圧力データ PI , P2についても同様にそれ ぞれ前回圧力と今回圧力とを比較し、前後の圧力差が予め定める設定値を超えたと き、圧力変化有りと判定し、その測定時刻を含む圧力変化に関する信号を圧力計反 応時間算出手段 22に送出する。
[0041] ここで、圧力計反応時間算出手段 22は、 2つの測定時刻を含む圧力変化に関する 信号から 2つの圧力計 6a, 6bの間で圧力変化の生じた時間差を算出する。
[0042] 図 4は配水ブロック例えば 3a内の流量計 5及び 2つの圧力計 6a, 6bで測定された 1 秒周期の流量実測値 M及び圧力実測値 PI , P2の変化推移を示す図である。同図 において、横軸は 1秒周期毎の時刻、左縦軸は水頭 [mAq]、右縦軸 2は流量 [m3 /s]を示している。
[0043] なお、図示実線で示す圧力値 (A) , (B)は流量から所定の演算式,例えばへーゼ ンウイリアムズの変形式に基づいて演算を実行し、最小二乗法を用いて 1日毎の仮想 管路総延長 Lと流量補正係数 αをパラメータとして、損失水頭 (圧力値) Η を求める
。この損失水頭 (圧力値) H を求める場合、監視サーバ 12— 1のデータ変換手段 1
2bの出力側に圧力近似式演算手段を設け、例えばデータ変換手段 12bで所定周 期(例えば 5秒周期)の時系列的な流量データに変換した後、下記するへーゼンウイ リアムズの変形式から損失水頭 (圧力値) H を求める。
[0044] H = 10. 67 X L X QL85 X V(CL85 X D4 87) …… (1)
ここで、 L:仮想管路総延長 (m)、 Q:流量計の流量データ、 C:流速係数 (ここでは 110)、 D :管口径、 α:配水ブロックの流量補正係数である。
[0045] なお、配水ブロックの管路網を 1本の仮想的な管路で近似した場合には、次の式に よりおおよその損失水頭 Η を求めることができる。
H = 10. 67 X L/CL85 X D485 ……(2)
L:仮想管路延長、 C:管路係数、 D:管口径である。
[0046] また、配水ブロック 3aのある配水管路には 30m3受水槽 4a (図 6参照)が設置され、 図示(C)時点で当該受水槽 4aが稼動したことを示している。この図 4から明らかなよう に、受水槽 4aの稼動に伴って流量実測値 Mが上昇したとき、各圧力実測値 PI , P2 がほぼ同じ時刻で低下していることが分る。
[0047] 図 5は、図 4に示す点線枠で表す領域 (D)をさらに拡大して示した図である。
この図 5から明らかなように、受水槽 4aの稼動開始に伴い、流量実測値 Mが上昇し 始めると、それに伴って圧力計 6aの圧力実測値 P1が低下する。その後、 3秒〜 4秒 程度の遅れで圧力計 6bの圧力実測値 P2が低下して!/、ること力 S分る。この 3秒〜 4秒 の時間差は管内の圧力伝播速度によるものである。 [0048] すなわち、前記圧力計反応時間算出手段 22は、各圧力実測値 PI , P2の圧力変 化に関する信号に含む両測定時刻から圧力反応時間差 (3秒〜 4秒)を算出し、圧力 伝播速度推定手段 23に送出する。
[0049] 圧力伝播速度推定手段 23は、圧力反応時間差を受け取ると、管路網地図データ ベース 14 2から 2つの圧力計 6a、 6bに関する圧力計設置位置 (設置距離),例え ば 2つの圧力計 6a、 6b間の距離データを取り出し、圧力伝播速度を推定する。今、 管路網地図データベース 14— 2から取り出した圧力計 6aと 6b間の距離が図 6に示 すように約 2500mとすると、圧力伝播速度推定手段 23は、 2500m/ (3〜4)秒なる 演算を実行し、圧力伝播速度 = 600〜800 [m/s]を推定する。そして、推定した圧 力伝播速度を流量変化位置推定手段 24に送る。
流量変化位置推定手段 24は、周期データ取得手段 21から流量変化に関する信 号を受けたとき、管路網地図データベース 14— 2から該当配水ブロック 3aの流量計 5 の流量計設置設置、圧力計 6a, 6bの圧力計設置位置、受水槽 4aに関する設置位 置等のデータを取り出し、流量計 5による流量上昇時刻と圧力計 6aの圧力低下時刻 とがほぼ等しい時間差であり、かつ、流量計 5の流量変化が配水管路の亀裂とは異 なる大きな流量変化であること、さらに圧力伝播速度から得られる距離等を考慮し、 流量計 5と圧力計 6aとの間に設置される受水槽 4aの稼動による流量変化位置 (漏水 位置)と推定し、漏水位置表示制御手段 25に送出する。
[0050] なお、流量変化位置推定手段 24には、過去の経験'知識のもとに補助的に漏水位 置を推定する参照データを格納することも可能である。例えば流量計 5,圧力計 6a, 6bの設置位置近傍に存在する受水槽 4a,各需要家 4までの各配水管路等の各種 用品の予想される流量変化要因(亀裂、破断、受水槽 4aの稼動有無)ごとに流量計 5に流量変化に対する圧力計 6a, 6bまでの圧力変化時間差を定めてもよい。
[0051] そして、流量変化位置推定手段 24は、以上のようにして流量変化位置を推定する と、該当配水ブロック識別データとともに推定漏水位置表示制御手段 25を介して監 視サーバ 12— 1及びマッピング装置 14 1に送信する。
[0052] ここで、監視サーバ 12— 1は、配水ブロック識別データとともに流量変化位置デー タを監視用データベース 12— 2等に記憶した後、配水ブロック 3aに漏水に関わる流 量変化があったことを表示する。
[0053] 一方、マッピング装置 14 1は、配水ブロック識別データとともに流量変化位置デ ータを適宜な記憶手段に記憶した後、監視装置 12等から表示指示を受けたとき、配 水ブロック識別データに基づき、管路網地図データベース 14— 2から図 6に示すよう に該当配水ブロックに関する管路網を表示部に表示するとともに、流量変化位置デ ータに基づき、流量変化位置にマーキングなどを付して表示する。
[0054] 従って、以上のような実施の形態によれば、各配水ブロック 3a, 3b,…内に設置され る流量計 5,圧力計 6a, 6bで測定される 1秒周期の測定データの変化を捉え、流量 変化があつたとき、各圧力計 6a, 6bの圧力変化から圧力反応時間を算出し、この圧 力反応時間と各圧力計 6a, 6b間の設置位置とから圧力伝播速度を求めた後、当該 圧力伝播速度と既に登録済みの配水ブロックの流量計 5、圧力計 6a,6b等の設置位 置や近傍の例えば受水槽 4aの設置位置等を取り出し、流量変化位置を推定し、漏 水等による流量変化位置を出力するので、各配水ブロック 3a, 3b, …の範囲を絞り 込んだ状態で迅速に漏水を含む流量変化位置を容易に把握することができる。
[0055] (第 2の実施の形態)
図 7は本発明に係る漏水位置推定装置の第 2の実施の形態を説明する漏水監視 システムの構成図である。
[0056] この実施の形態における漏水位置推定装置 13は、第 1の実施の形態で説明した 図 3とほぼ同様の構成であるので、ここでは同一又は等価な部分には同一符号を付 して図 3の説明に譲り、以下、特に異なる部分について説明する。
[0057] この実施の形態は、第 1の実施の形態における構成要素に新たに、口径特定参照 データ記憶手段 26及び流量変化を伴う管路の口径を特定する管路口径特定手段 2 7を設けたものである。
[0058] 口径特定参照データ記憶手段 26には、過去の経験値に基づき、配水ブロック 3a, 3b,…を構成する各配水管路の種類(口径の大小)ごとに流量変化要因(亀裂、破 断等)が生じたとき、どの程度の流量変化が発生するかを規定したものである。例え ば、図 8に示すように、配水管路の種類(口径)と予め予定される複数の管路流入圧 力値と流量変化要因(亀裂の大中小、破断の大中小)と流量変化値との関係が規定 されている。
[0059] 管路口径特定手段 27は、周期データ取得手段 21の出力側に設けられ、当該周期 データ取得手段 21から漏水と想定される流量変化に関する信号を受けたとき、流量 変化の対象となっている配水管路の口径を特定する。
[0060] すなわち、周期データ取得手段 21は、監視用データベース 12— 2から 1秒周期の 時系列的な流量データを取り込み、前回流量値と今回流量値とを比較し、両流量変 化値 (流量差)が漏水と想定される設定値を超えたとき、当該流量変化値を管路口径 特定手段 27に送出する。
[0061] 管路口径特定手段 27は、周期データ取得手段 21から流量変化値を受け取ると、 口径特定参照データ記憶手段 26に規定される参照データを参照し、流量変化値と 流入圧力値 (例えば圧力実測値)とに基づき、配水管路の口径を決定し、流量変化 位置推定手段 24に送出する。
[0062] ここで、流量変化位置推定手段 24は、第 1の実施の形態で説明したように配水プロ ック識別データとともに流量変化に関する信号を受け取ったとき、圧力伝播速度算出 手段 23で得られた圧力伝播速度と管路網地図データベース 14 2から読み出す流 量計 5の流量計設置位置、圧力計 6a, 6bの圧力計設置位置その他必要な位置デ 一タとを用いて、例えば圧力計 6aから半径何 mで位置で流量変化があったことを示 す流量変化位置 (漏水位置)を推定した後、当該推定した流量変化位置とともに管 路口径特定手段 27で決定された流量変化のあった配水管路の口径を漏水位置表 示制御手段 25を介して監視サーバ 12— 1及びマッピング装置 14— 1に送出する。
[0063] 監視サーバ 12— 1は、管口径を有する配水管路に漏水を予想させる流量変化があ つたことを表示する。マッピング装置 14— 1は、管路網地図データベース 14— 2から 配水ブロック識別データに基づいて該当する配水ブロック例えば 3aの管路網地図デ ータを取り出し、流量変化位置に敷設される X X管口径の配水管路に漏水が生じて いることを表示する。
[0064] その他の作用については、第 1の実施の形態と同様であるので、当該第 1の実施の 形態の作用の説明に譲り、ここでは省略する。
[0065] 従って、以上のような実施の形態によれば、流量変化要因と想定される流量変化が あつたとき、流量変化位置を推定するとともに、流量変化位置に埋設される配水管路 の口径を特定することにより、第 1の実施形態と同様の効果を奏する他、より迅速、か つ、適切な回復ないし応急処置を講ずることができる。
[0066] また、第 2の実施の形態における他の構成例としては、例えば図 9に示すように、周 期データ取得手段 21の出力側に流量変化要因取得手段 28を設けたものである。
[0067] 具体的には、 口径特定参照データ記憶手段 26に記憶される流量変化要因(管路 の種類)の中に、純粋に配水管路の亀裂、破断の他に、例えば消火栓の利用時、受 水槽 4aの稼動時その他の用品の稼動時に対する流量変化値を規定する。流量変化 要因取得手段 28は、周期データ取得手段 21から漏水と想定される流量変化値を受 けたとき、口径特定参照データ記憶手段 26の参照データを参照し、流量変化要因を 表す管路の種類の項目から流量変化値に対応する流量変化要因を検索する。この とき、予め口径特定参照データ記憶手段 26に、管路の亀裂や破断のごとき直接的な 漏水要因の他、例えば消火栓の利用ゃ受水槽 4aの稼動時の流量変化値を規定し ておけば、流量変化要因取得手段 28は、参照データの中から流量変化値に応じ、 配水管路の亀裂、破断による力、、消火栓の利用による力、、受水槽 4aの稼動によるか 、さらには他の用品の要因によるかの流量変化要因を特定し、監視サーバ 12— 1に 送出する。この時、監視サーバ 12— 1には第 1 ,第 2の実施の形態で説明した流量変 化位置や管口径等のデータもほとんど同時に送信されてくる。
[0068] 監視サーバ 12— 1は、流量変化位置推定手段 24から少なくとも流量変化位置デ ータが送られてくると、特定の流量変化要因、例えば消化栓の利用による流量変化 があったことを表示する。
[0069] 従って、この実施の形態によれば、第 1 ,第 2の実施の形態の効果を奏する他、流 量変化が配水ブロック 3a,3b,…のある配水管路の範囲(漏水相当位置)内に設置さ れるある用品の稼動によって生じたことを容易に把握することができる。
[0070] (第 3の実施の形態)
図 10は本発明に係る漏水位置推定装置の第 3の実施の形態を説明する漏水監視 システムの構成図である。
[0071] この実施の形態を説明するに先立ち、次のような理論的な物理式が知られている。 圧力伝播速度は、前述した圧力伝播速度推定手段 23で推定できるが、さらに(1)式 による物理式(「土木工学基礎シリーズ 5— 2 水理学」、 p 150— 152、著者:玉井信 行、発行所:培風館、発行年月日: 1989. 1. 10)によっても圧力伝播速度を求める ことが可能である。
[0072] α = { (Κ/ ) / [1 + (Κ/Ε) (D/e) ] } 1/2 (3)
なお、上式において、 α:圧力伝播速度、 Κ :体積弾性率 (水の場合には 2. 06 [G Pa] ) , p:水密度(1000 [kg/m3] )、 D :管口径 [mmコ、 e :肉厚 [mmコ、 E :縦弾性 係数 158 [GPa] (ダクタイル铸鉄管の場合)である。
[0073] よって、圧力伝播速度 αは、上記(1)式から管口径 Dや肉厚 eに影響されることが 分る。このことは、実際の圧力計 6a, 6bの反応時間差によって圧力伝播速度が得ら れた場合、この既知の圧力伝播速度を前記(3)式に代入することにより、対象となる 配水管路の肉厚を逆算的に求めることが可能である。
[0074] そこで、この実施の形態における漏水位置推定装置 13においては、図 3と同様に 周期データ取得手段 21、圧力計反応時間算出手段 22、圧力伝播速度推定手段 23 の他に、管口径演算手段 31、管路肉厚推定手段 32及び管路肉厚表示制御手段 33 が設け、流量変化のあった配水管路の管路肉厚を推定する。
[0075] 周期データ取得手段 21、圧力計反応時間算出手段 22及び圧力伝播速度推定手 段 23は、図 3と同様であるので、ここではそれらの説明は省略する。
[0076] 管口径演算手段 31は、周期データ取得手段 21から流量変化に関する信号を受け たとき、配水管路網地図データベース 14 2から配水ブロック例えば 3aを構成する 配水管路に関する縦弾性係数の他、流量計 5と圧力計 6aとをつなぐ配水管路ゃ圧 力計 6a, 6bどうしをつなぐ配水管路の口径データを取り出す。ここで、管口径演算手 段 32は、配水管路網地図データベース 14— 2から取り出した配水管路の口径が異 なる場合、つまり口径の異なる管路どうしが接続されている場合、移動平均による演 算を実施することにより管口径の平均値を求めた後、縦弾性係数及び管口径を管路 肉厚を管路肉厚推定手段 32に送る。勿論、管口径演算手段 31は、 1つの口径によ る配水管路の場合には、当該配水管路の管口径及び縦弾性係数を管路肉厚推定 手段 32に送る。 [0077] 管路肉厚推定手段 32は、予め(1)式に基づく固定パラメータが設定され、流量変 化に基づいて圧力伝播速度推定手段 23から送られてくる圧力伝播速度と管口径演 算手段 32から受け取る縦弾性係数及び管口径とを用い、前記(1)式による演算処 理を実行し、該当配水ブロックの流量変化のあった配水管路の肉厚を計算し推定す る。そして、管路肉厚推定手段 32は、得られた管路肉厚推定値を管路肉厚表示制 御手段 33を介して監視サーバ 12— 1及びマッピング装置 14— 1に送出する。
[0078] 従って、この実施の形態によれば、実際の圧力計 6a, 6bの反応時間差から圧力伝 播速度を推定すれば、この推定された圧力伝播速度と既知のデータとを用い、前記( 1)式に基づいて流量変化のあった配水管路の肉厚を容易に知ることができる。
[0079] また、他の実施の形態例としては、例えば複数の圧力計 6a, 6bが設置されていな い場合、圧力計反応時間差を算出できないので、圧力伝播速度を推定することがで きない。
[0080] そこで、複数の圧力計例えば 6aだけ設置されて!/、る場合、予め配水管路網地図デ ータベース 14 2に該当配水ブロックの管口径、肉厚、縦弾性係数が規定されてい れば、配水管路網地図データベース 14— 2からそれらデータを用いて、(1)式の演 算式により圧力伝播速度を推定することができる。
[0081] さらに、別の実施の形態例としては、図 10に示す管路肉厚推定手段 32に代えて圧 力伝播速度演算手段(図示せず)を設け、圧力伝播速度推定手段 23により得られる 実際の圧力計 6a, 6bの圧力応力時間差から推定される圧力伝播速度と圧力伝播速 度演算手段による前記(1)の演算式で求めた圧力伝播速度とを比較する。ここで、 両圧力伝播速度の間に大きな乖離があれば、配管ブロックの流量変化のあった配水 管路の肉厚が薄くなつてレ、ると力、、管路内が鯖つレ、てレ、ること力 S考えられる。
[0082] そこで、圧力伝播速度演算手段は、配管ブロックの流量変化のあった配水管路デ ータを表示制御手段(管路肉厚表示制御手段 33に相当する)を介して少なくともマツ ビング装置 14 1に送信する。
[0083] マッピング装置 14 1は、配管ブロックの流量変化のあった配水管路データを受け 取ると、配水管路網地図データベース 14 2から該当配水ブロックの配水管路デー タ近傍の配水管路網地図をマッピング装置 14 1に表示する。 [0084] この実施の形態によれば、圧力伝播速度推定手段 23で求めた圧力伝播速度と前 記(1)式で求めた圧力伝播速度との間に大きな乖離があるとき、流量変化のあった 配水管路周辺の配水管路網地図を表示することにより、配水管路の肉厚が薄くなつ ているか、管路内が鯖付いていること,ひいては将来的に亀裂や破断が生じる可能 十生を巴提すること力 Sできる。
[0085] さらに、漏水位置推定装置 13としては、図 9に示す流量変化要因取得手段 28にお いて、管路の亀裂,破断であると判定したとき、亀裂,破断に関する信号を流量変化 位置推定手段 24に送出する。ここで、流量変化位置推定手段 24は、前述したように 圧力伝播推定手段 23で求めた圧力伝播速度と流量計 5,圧力計 6a,6b等の設置位 置とに基づいて流量変化位置を推定し、漏水位置表示制御手段 26を介して監視サ ーバ 12—1やマッピング装置 13—1に送出する。
[0086] 一方、流量変化要因取得手段 28が管路の亀裂,破断以外の用品を流量変化要因 と判定したとき、管流量変化位置推定手段 24に代えて、図 10に示す管路肉厚推定 手段 32を用いる。この管路肉厚推定手段 32は、予め(1)式に基づく固定パラメータ が設定され、流量変化に基づいて圧力伝播速度推定手段 23から送られてくる圧力 伝播速度と管口径演算手段 32から受け取る縦弾性係数及び管口径とを用い、前記 (1)式による演算処理を実行し、該当配水ブロックの流量変化のあった配水管路の 肉厚を計算し推定する。そして、管路肉厚推定手段 32は、得られた管路肉厚推定値 を管路肉厚表示制御手段 33を介して監視サーバ 12— 1及びマッピング装置 14— 1 に送出する。
[0087] つまり、流量変化要因に応じて、管流量変化位置推定手段 24と管路肉厚推定手 段 32とを使い分けし、流量変化位置または管路の肉厚を推定し出力することにより、 流量変化要因に応じた管路ゃ他の用品の状況を表示することが可能となる。
[0088] その他、本発明は、上記実施の形態に限定されるものでなぐその要旨を逸脱しな V、範囲で種々変形して実施できる。
[0089] (1) 上記各実施の形態では、配水管路網地図作成装置 14を用いて配水管路網地 図を作成し、配水管路網地図データベース 14 2に保存し管理した力 S、例えば配水 管路網地図作成装置 14で作成された配水管路網地図に関するデータを漏水位置 推定装置 13に保存し、漏水位置を推定する際に配水管路網地図に関するデータを 利用し、漏水位置推定装置 13自体の表示部に表示する構成であってもよい。
(2) 上記各実施の形態では、各配水ブロック 3a, 3b,…に 1つの流量計 5、 2つの 圧力計 6a, 6bを設置した例について説明した力 例えば流量計 5が 2つ以上でもよく 、また、圧力計が 1つまたは 3つ以上であってもよい。

Claims

請求の範囲
[1] 配水管路網を構成する各配水ブロック内に 1つ以上の流量計及び 2つ以上の圧力 計が設置され、これら流量計及び圧力計で測定される流量データ及び圧力データか ら漏水位置を推定する漏水監視システムにおいて、
前記流量計及び圧力計で測定される流量データ及び圧力データを受信し、配水ブ ロックごとに所定周期で時系列的に流量及び圧力データを記憶する監視装置と、こ の監視装置に記憶される流量及び圧力データから漏水位置を推定する漏水位置推 定装置とを有し、
この漏水位置推定装置は、
前記監視装置から配水ブロックごとに所定周期の流量データ及び圧力データを取 り出し、当該所定周期の流量データから漏水を予想させる流量変化及び前記少なく とも 2つの圧力計に関する所定周期の圧力データから当該流量変化に起因して変化 する圧力変化に関する信号を取り出して出力する周期データ取得手段と、
この周期データ取得手段から出力される 2つの圧力変化に関する信号から圧力反 応時間差を算出する圧力計反応時間算出手段と、
この圧力計反応時間算出手段で得られる圧力反応時間差と予め記憶される配水 管路網地図データに規定される該当配水ブロックの 2つの圧力計設置位置から得ら れる圧力計間距離とを用いて、圧力伝播速度を推定する圧力伝播推定手段と、 前記周期データ取得手段から流量変化に関する信号を受けたとき、前記圧力伝播 推定手段で推定された圧力伝播速度と前記配水管路網地図データに規定される流 量計設置位置 ·圧力計設置位置とを用いて、流量変化位置 (漏水位置)を推定し表 示する流量変化位置推定手段とを備えたことを特徴とする漏水監視システム。
[2] 請求項 1に記載の漏水監視システムにお!/、て、
少なくとも流量変化値と管口径との関係を記憶する記憶手段と、前記周期データ取 得手段で得られる流量変化に関する信号を受けたとき、当該流量変化値に基づいて 前記記憶手段を参照し、流量変化のあった管路の管口径を特定する管口径特定手 段とを付加し、この特定された管口径データを前記流量変化位置推定手段に送出し 、流量変化位置データとともに出力し表示することを特徴とする漏水監視システム。
[3] 請求項 2に記載の漏水監視システムにおいて、
少なくとも流量変化値と前記各配水ブロックに設置される管路の亀裂,破断を含む 各種の流量変化要因データとの関係を記憶する記憶手段と、前記周期データ取得 手段で得られる流量変化に関する信号を受けたとき、当該流量変化値に基づいて前 記記憶手段を参照し、少なくとも管路の亀裂,破断か、消火栓の利用力、、受水槽の稼 動かの何れか 1つを要因とする流量変化であることを表す前記流量変化要因データ を推定し表示する流量変化要因取得手段を付加したことを特徴とする漏水監視シス テム。
[4] 配水管路網を構成する各配水ブロック内に 1つ以上の流量計及び 2つ以上の圧力 計が設置され、これら流量計及び圧力計で測定される流量データ及び圧力データか ら漏水位置を推定する漏水監視システムにおいて、
前記流量計及び圧力計で測定される流量データ及び圧力データを受信し、配水ブ ロックごとに所定周期で時系列的に流量及び圧力データを記憶する監視装置と、こ の監視装置に記憶される流量及び圧力データから漏水位置を推定する漏水位置推 定装置とを有し、
この漏水位置推定装置は、
前記監視装置から配水ブロックごとに所定周期の流量データ及び圧力データを取 り出し、当該所定周期の流量データから漏水を予想させる流量変化及び前記少なく とも 2つの圧力計に関する所定周期の圧力データから当該流量変化に起因して変化 する圧力変化に関する信号を取り出して出力する周期データ取得手段と、
この周期データ取得手段から出力される 2つの圧力変化に関する信号から圧力反 応時間差を算出する圧力計反応時間算出手段と、
この圧力計反応時間算出手段で得られる圧力反応時間差と予め記憶される配水 管路網地図データに規定される該当配水ブロックの 2つの圧力計設置位置から得ら れる圧力計間距離とを用いて、圧力伝播速度を推定する圧力伝播推定手段と、 前記周期データ取得手段から流量変化に関する信号を受けたとき、予め記憶され る配水管路網地図データから該当配水ブロックの前記圧力計同士または前記流量 計と圧力計とをつなぐ管口径を取り出し、この取り出した管口径が異なる管口径の管 路で接続されているとき管口径の平均値を求める管口径演算手段と、 この管口径演算手段により得られる管口径及び前記圧力伝播速度を用いて、所定 の圧力伝播速度の演算式に基づいて前記流量変化のあった管路の肉厚を推定し表 示する管路肉厚推定手段とを備えたことを特徴とする漏水監視システム。
[5] 請求項 4に記載の漏水監視システムにおいて、
前記圧力伝播推定手段で推定された圧力伝播速度と前記配水管路網地図データ 力、ら得られる流量変化のあった管路の肉厚及び管口径を用いて前記所定の圧力伝 播速度の演算式から求める圧力伝播速度とを比較し、両圧力伝播速度が乖離して いるとき、流量変化のあった管路データを出力し表示する手段を設けたことを特徴と する漏水監視システム。
[6] 請求項 3に記載の漏水監視シテムにおいて、
前記流量変化要因取得手段が管路の亀裂,破断とする流量変化要因を推定したと き、前記流量変化位置推定手段が前記圧力伝播推定手段で求めた圧力伝播速度 に基づいて流量変化位置を推定し出力し、また管路の亀裂,破断以外とする流量変 化要因を推定したとき、前記請求項 4に記載する構成によって流量変化のあった肉 厚を推定し表示することを特徴とする漏水監視システム。
PCT/JP2007/066737 2006-09-07 2007-08-29 Système de surveillance de fuite d'eau WO2008029681A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2007292609A AU2007292609B2 (en) 2006-09-07 2007-08-29 Water leakage monitoring system
CN2007800184713A CN101449141B (zh) 2006-09-07 2007-08-29 漏水监视系统
EP07806214.8A EP2060896A4 (en) 2006-09-07 2007-08-29 Water leakage monitoring system
US12/266,025 US8072340B2 (en) 2006-09-07 2008-11-06 Water leakage monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-243143 2006-09-07
JP2006243143A JP4822990B2 (ja) 2006-09-07 2006-09-07 漏水監視システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/266,025 Continuation US8072340B2 (en) 2006-09-07 2008-11-06 Water leakage monitoring system

Publications (1)

Publication Number Publication Date
WO2008029681A1 true WO2008029681A1 (fr) 2008-03-13

Family

ID=39157113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066737 WO2008029681A1 (fr) 2006-09-07 2007-08-29 Système de surveillance de fuite d'eau

Country Status (6)

Country Link
US (1) US8072340B2 (ja)
EP (1) EP2060896A4 (ja)
JP (1) JP4822990B2 (ja)
CN (1) CN101449141B (ja)
AU (1) AU2007292609B2 (ja)
WO (1) WO2008029681A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142470A1 (en) * 2007-05-18 2008-11-27 Hambleden Consultant Group Lp Electronic device used to detect and signal water leaks in hydraulic circuits installed in buildings
US7920983B1 (en) 2010-03-04 2011-04-05 TaKaDu Ltd. System and method for monitoring resources in a water utility network
US8341106B1 (en) 2011-12-07 2012-12-25 TaKaDu Ltd. System and method for identifying related events in a resource network monitoring system
US9053519B2 (en) 2012-02-13 2015-06-09 TaKaDu Ltd. System and method for analyzing GIS data to improve operation and monitoring of water distribution networks
US10242414B2 (en) 2012-06-12 2019-03-26 TaKaDu Ltd. Method for locating a leak in a fluid network
US20230111271A1 (en) * 2021-10-08 2023-04-13 Itron, Inc. Coordinated acoustic leak detection sensor sampling
CN116188203A (zh) * 2023-05-04 2023-05-30 东莞先知大数据有限公司 一种用户水管漏水检测方法、装置、电子设备和存储介质

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011004330A (es) 2008-10-27 2011-08-03 Mueller Int Llc Sistema y metodo de monitoreo de infraestructura.
EP2433440B1 (en) * 2009-05-22 2018-07-25 Mueller International, LLC Infrastructure monitoring devices, systems, and methods
FR2946429B1 (fr) * 2009-06-09 2011-07-08 Christian Mavridoglou Dispositif de detection de fuite d'eau
US9177678B2 (en) * 2009-07-23 2015-11-03 Westinghouse Electric Company Llc Method of processing steam generator tubes of nuclear power plant
CN101832787B (zh) * 2010-04-19 2012-05-23 哈尔滨工程大学 一种管道压力实时监测装置
CN102235575B (zh) * 2010-04-29 2013-12-25 国际商业机器公司 用于检查管道泄露的数据处理方法及系统
WO2011159403A1 (en) 2010-06-16 2011-12-22 Mueller International, Llc Infrastructure monitoring devices, systems, and methods
JP4653254B1 (ja) * 2010-07-12 2011-03-16 有限会社大和設備 排水管の漏洩試験装置
US8939016B2 (en) 2010-12-14 2015-01-27 Roger Brasel Flow sentinel
US8583386B2 (en) * 2011-01-18 2013-11-12 TaKaDu Ltd. System and method for identifying likely geographical locations of anomalies in a water utility network
US20120296580A1 (en) * 2011-05-16 2012-11-22 Dov Barkay Method and system for identifying leaks in liquid pipe construction
US8833390B2 (en) 2011-05-31 2014-09-16 Mueller International, Llc Valve meter assembly and method
CN102853261A (zh) 2011-06-27 2013-01-02 国际商业机器公司 确定输送管道中的流体泄漏量的方法和装置
DE102011078240A1 (de) * 2011-06-28 2013-01-03 Siemens Aktiengesellschaft Leckageerkennung mittels stochastischer Massenbilanz
US8855569B2 (en) 2011-10-27 2014-10-07 Mueller International, Llc Systems and methods for dynamic squelching in radio frequency devices
US8930150B2 (en) 2012-02-01 2015-01-06 International Business Machines Corporation Leak detection in a fluid distribution network
EP4215884A1 (en) 2013-03-15 2023-07-26 Mueller International, LLC Systems for measuring properties of water in a water distribution system
US9506785B2 (en) 2013-03-15 2016-11-29 Rain Bird Corporation Remote flow rate measuring
WO2015083551A1 (ja) * 2013-12-02 2015-06-11 株式会社東芝 漏水抑制装置、漏水抑制システム、および漏水抑制プログラム
JP6370596B2 (ja) * 2014-04-28 2018-08-08 株式会社東芝 漏水監視システム、漏水監視方法、漏水監視装置、および漏水監視プログラム
US9494249B2 (en) 2014-05-09 2016-11-15 Mueller International, Llc Mechanical stop for actuator and orifice
FR3024260B1 (fr) * 2014-07-25 2016-07-29 Suez Environnement Procede pour detecter des anomalies dans un reseau de distribution, en particulier d'eau potable
CN106415421B (zh) * 2014-08-20 2019-01-08 三菱电机株式会社 工厂系统信息制作装置
US9565620B2 (en) 2014-09-02 2017-02-07 Mueller International, Llc Dynamic routing in a mesh network
JP6318053B2 (ja) * 2014-09-03 2018-04-25 株式会社日立製作所 漏水分布推定装置
US9435675B2 (en) * 2014-10-02 2016-09-06 BreatheWise, LLC Method and apparatus for monitoring, communicating, and analyzing the amount of fluid in a tank
EP4287025A3 (en) * 2014-11-07 2024-03-13 BL TECHNOLOGIES, Inc. Analytic engine for use with remote monitoring data and imperfect asset models
JP6334417B2 (ja) * 2015-01-13 2018-05-30 株式会社東芝 センサ配置位置選択装置、漏水量推定装置、漏水診断システム、漏水診断方法及びコンピュータプログラム
US11041839B2 (en) 2015-06-05 2021-06-22 Mueller International, Llc Distribution system monitoring
WO2017053396A1 (en) 2015-09-21 2017-03-30 AMI Investments, LLC Remote monitoring of water distribution system
JP6625851B2 (ja) * 2015-09-25 2019-12-25 株式会社東芝 漏水診断装置、漏水診断方法及びコンピュータプログラム
US9360871B1 (en) * 2015-10-07 2016-06-07 Charles Jorgensen Integrated fluid flow management apparatus
GB2545158B (en) * 2015-10-09 2019-07-03 Imperial Innovations Ltd Monitoring Fluid Dynamics
JP6605357B2 (ja) * 2016-02-29 2019-11-13 株式会社日立製作所 異常検知装置、異常検知システムおよびその方法
US10634538B2 (en) 2016-07-13 2020-04-28 Rain Bird Corporation Flow sensor
US10234350B1 (en) * 2016-10-18 2019-03-19 United Services Automobile Association (Usaa) Appliance hose ballooning/failure detector loop
US10359336B2 (en) * 2016-12-09 2019-07-23 Verizon Patent And Licensing Inc. Leak detection in irrigation systems
US10697848B1 (en) * 2016-12-12 2020-06-30 Kirk A. Dobbs Smart building water supply management system with leak detection and flood prevention
CN106641738B (zh) * 2016-12-27 2019-02-22 上海科勒电子科技有限公司 管路滴漏监控方法、控制单元、装置及系统
US10473494B2 (en) 2017-10-24 2019-11-12 Rain Bird Corporation Flow sensor
US11047761B1 (en) * 2018-02-08 2021-06-29 Moen Incorporated Integrated leak detection
JP6850748B2 (ja) * 2018-02-23 2021-03-31 株式会社日立製作所 水圧計配置支援システムおよび方法
CN108755898B (zh) * 2018-05-30 2020-07-24 上海水顿智能科技有限公司 一种分析地下管网地下水渗入和管道污水渗出分布的方法
WO2019239461A1 (ja) * 2018-06-11 2019-12-19 株式会社日立製作所 漏水検知方法、漏水検知装置及び振動センサ端末
CN109029853A (zh) * 2018-08-03 2018-12-18 浙江欧琳生活健康科技有限公司 一种基于水离子发生器检测水槽漏水的方法及系统
US11662242B2 (en) 2018-12-31 2023-05-30 Rain Bird Corporation Flow sensor gauge
WO2020168037A1 (en) 2019-02-15 2020-08-20 Fb Global Plumbing Group Llc Fluid usage monitoring and control system
US11725366B2 (en) 2020-07-16 2023-08-15 Mueller International, Llc Remote-operated flushing system
CN112099542A (zh) * 2020-09-10 2020-12-18 熊猫智慧水务有限公司 一种智能调压节水方法
CN113883422B (zh) * 2021-09-10 2023-06-02 江苏禹治流域管理技术研究院有限公司 一种城市供水管网漏损在线监测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120143A (ja) * 1982-01-12 1983-07-16 Mitsubishi Electric Corp 送液管路の破裂事故点検知方法
JP2000131179A (ja) * 1998-10-22 2000-05-12 Sonoda Engineering:Kk 導管漏洩位置検出方法およびその装置
JP2001311676A (ja) 2000-04-28 2001-11-09 Data Tech Corp 漏水検出システム
JP2002228538A (ja) * 2001-01-31 2002-08-14 Nec Eng Ltd 送水管路の破断検出方法及び破断検出装置
JP2005114583A (ja) * 2003-10-08 2005-04-28 Toshiba Corp 管路更新計画支援装置及びシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852054A (en) * 1986-11-20 1989-07-25 Nde Technology, Inc. Volumetric leak detection system for underground storage tanks and the like
US5272646A (en) * 1991-04-11 1993-12-21 Farmer Edward J Method for locating leaks in a fluid pipeline and apparatus therefore
US5920265A (en) * 1998-06-01 1999-07-06 Johnson, Jr.; George Waterline leak detection and shutoff system
US6317051B1 (en) * 1998-08-03 2001-11-13 Jeffrey D. Cohen Water flow monitoring system determining the presence of leaks and stopping flow in water pipes
JP2004191139A (ja) 2002-12-10 2004-07-08 Akuasu Kk 漏水監視機能付水道メータ蓋および水道メータ
US20060191323A1 (en) * 2005-02-25 2006-08-31 Michael Garabedian Automated system for detection and control of water leaks, gas leaks, and other building problems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120143A (ja) * 1982-01-12 1983-07-16 Mitsubishi Electric Corp 送液管路の破裂事故点検知方法
JP2000131179A (ja) * 1998-10-22 2000-05-12 Sonoda Engineering:Kk 導管漏洩位置検出方法およびその装置
JP2001311676A (ja) 2000-04-28 2001-11-09 Data Tech Corp 漏水検出システム
JP2002228538A (ja) * 2001-01-31 2002-08-14 Nec Eng Ltd 送水管路の破断検出方法及び破断検出装置
JP2005114583A (ja) * 2003-10-08 2005-04-28 Toshiba Corp 管路更新計画支援装置及びシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MR. NOBUYUKI TAMAI: "Doboku Kogaku Kiso Series 5-2 Hydraulics", 10 January 1989, BAIFUKAN, pages: 150 - 152
See also references of EP2060896A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142470A1 (en) * 2007-05-18 2008-11-27 Hambleden Consultant Group Lp Electronic device used to detect and signal water leaks in hydraulic circuits installed in buildings
US7920983B1 (en) 2010-03-04 2011-04-05 TaKaDu Ltd. System and method for monitoring resources in a water utility network
US8341106B1 (en) 2011-12-07 2012-12-25 TaKaDu Ltd. System and method for identifying related events in a resource network monitoring system
US9053519B2 (en) 2012-02-13 2015-06-09 TaKaDu Ltd. System and method for analyzing GIS data to improve operation and monitoring of water distribution networks
US10242414B2 (en) 2012-06-12 2019-03-26 TaKaDu Ltd. Method for locating a leak in a fluid network
US20230111271A1 (en) * 2021-10-08 2023-04-13 Itron, Inc. Coordinated acoustic leak detection sensor sampling
US11788919B2 (en) * 2021-10-08 2023-10-17 Itron, Inc. Coordinated acoustic leak detection sensor sampling
CN116188203A (zh) * 2023-05-04 2023-05-30 东莞先知大数据有限公司 一种用户水管漏水检测方法、装置、电子设备和存储介质
CN116188203B (zh) * 2023-05-04 2023-08-18 东莞先知大数据有限公司 一种用户水管漏水检测方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
JP4822990B2 (ja) 2011-11-24
JP2008064623A (ja) 2008-03-21
CN101449141B (zh) 2011-06-08
CN101449141A (zh) 2009-06-03
US8072340B2 (en) 2011-12-06
US20090066524A1 (en) 2009-03-12
AU2007292609A1 (en) 2008-03-13
AU2007292609B2 (en) 2010-09-09
EP2060896A4 (en) 2017-02-22
EP2060896A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
WO2008029681A1 (fr) Système de surveillance de fuite d'eau
JP2020091269A (ja) 配送管の漏出モニタリング装置及び方法
JP5329871B2 (ja) 漏水節点推定装置
US5708193A (en) System and method for locating release of fluid from a pipeline
JP4314038B2 (ja) 流体搬送管網中の異常箇所を推定する方法
JP6370596B2 (ja) 漏水監視システム、漏水監視方法、漏水監視装置、および漏水監視プログラム
CN105927863A (zh) Dma分区管网泄漏在线检测定位系统及其检测定位方法
KR20080005694A (ko) 상수도관망 원격통합 누수감시시스템 및 그 방법
US20180292292A1 (en) Pipe condition detection device, pipe condition detection method, computer-readable recording medium, and pipe condition detection system
WO2018034187A1 (ja) 配管ネットワーク漏れ検知システム、及びそれに用いる漏れ検知装置、漏れ検知方法
JP5019197B2 (ja) 配水情報管理装置
CN108506740A (zh) 一种基于流速计的液体管道泄漏区域确定方法及系统
JP2007199002A (ja) ガス器具判別装置
US11703414B2 (en) Method for detecting a leak in a line system and control system for carrying out the method
EP3076138A1 (en) A meter and method for detection of a meter having been tampered with
CN107621293A (zh) 地下用高精度气体超声流量测量装置及测量方法
KR20220061558A (ko) 상하수도관의 소리감지장치, 누수감시서버, 그리고 이들을 포함하는 누수 감시 시스템
JP6245653B2 (ja) 液体漏洩検知装置、液体漏洩検知方法、および記録媒体
CN102644848A (zh) 一种可监测渗漏的输送管道
JP2011252867A (ja) 漏水判断システムおよび漏水判断方法
US11583713B2 (en) Fire-extinguishing facility, fire-extinguishing system comprising same, and method for determining the extent of a fire
JPH07140033A (ja) パイプラインの漏洩検知方法
JP3901159B2 (ja) ガス配管漏洩監視装置
EP4261511A1 (en) Network monitoring method and heat distribution network
JP4862698B2 (ja) 流量計測装置およびこの装置を用いたガス供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018471.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9314/DELNP/2008

Country of ref document: IN

Ref document number: 2007806214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007292609

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007292609

Country of ref document: AU

Date of ref document: 20070829

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE