WO2015083551A1 - 漏水抑制装置、漏水抑制システム、および漏水抑制プログラム - Google Patents

漏水抑制装置、漏水抑制システム、および漏水抑制プログラム Download PDF

Info

Publication number
WO2015083551A1
WO2015083551A1 PCT/JP2014/080752 JP2014080752W WO2015083551A1 WO 2015083551 A1 WO2015083551 A1 WO 2015083551A1 JP 2014080752 W JP2014080752 W JP 2014080752W WO 2015083551 A1 WO2015083551 A1 WO 2015083551A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
nodes
pressure
information
unit
Prior art date
Application number
PCT/JP2014/080752
Other languages
English (en)
French (fr)
Inventor
勝也 横川
諒 難波
理 山中
寿治 杉野
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to US15/100,812 priority Critical patent/US10095246B2/en
Priority to JP2015551458A priority patent/JP6139700B2/ja
Priority to CN201480073737.4A priority patent/CN105917157B/zh
Publication of WO2015083551A1 publication Critical patent/WO2015083551A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations

Definitions

  • Embodiments of the present invention relate to a water leakage suppression device, a water leakage suppression system, and a water leakage suppression program.
  • a terminal pressure control device that determines a pressure at a pressure operation point based on a terminal pressure and a target value at a terminal position of a distribution pipe network that supplies water is known.
  • the situation of the water distribution pipe network could not be sufficiently grasped.
  • the problem to be solved by the present invention is to provide a water leakage suppression device, a water leakage suppression system, and a water leakage suppression program capable of suppressing water leakage from a water distribution pipeline network.
  • the water leakage suppression device of the embodiment includes an acquisition unit, a pressure estimation unit, an extraction unit, and a control unit.
  • An acquisition part acquires the information regarding the quantity of the water which flows in into the water distribution pipe network containing a some node, and the information regarding the quantity of the water which flows out from the said node.
  • the pressure estimation unit estimates the water pressure at at least a part of the nodes in the distribution pipeline network based on the model information including the information acquired by the acquisition unit and the connection information of the nodes in the distribution pipeline network.
  • the extraction unit extracts a minimum value of the water pressure from a plurality of water pressures including the water pressure estimated by the pressure estimation unit.
  • a control part controls the adjustment part which can adjust the water pressure or flow volume of the water which flows in into the distribution pipe network based on the minimum value extracted by the extraction part.
  • the image figure which illustrated the time change of the water pressure of the terminal when a pressure setting value is set up by conventional technology.
  • the image figure which illustrated the time change of the water pressure of the point with the smallest water pressure when a pressure setting value is set by this embodiment.
  • the figure which shows an example of a system configuration in case the water leak suppression apparatus 30 and the control apparatus 60 corresponded to the control part 40 are comprised as a different body.
  • the figure which shows an example of a system configuration in case the water leak suppression apparatus 30 and the control apparatus 60 corresponded to the control part 40 are comprised as a different body.
  • FIG. 1 is a diagram illustrating an example of a configuration of a water leakage suppression system 1 including a water leakage suppression device 30 according to the first embodiment.
  • the water leakage suppression system 1 supplies water (purified water) stored in the distribution reservoir 10 to a home, a business office, or the like by a pump 20.
  • a rotation speed sensor 22 is attached to the pump 20.
  • the rotation speed sensor 22 outputs the rotation speed Npv of the pump 20 to the water leakage suppression device 30.
  • the pressure of water pumped by the pump 20 is detected by the discharge pressure sensor 23.
  • the discharge pressure sensor 23 outputs the discharge pressure P0pv to the water leakage suppression device 30.
  • the flow rate of water that the pump 20 flows out is detected by the flow rate sensor 24.
  • the flow sensor 24 outputs the water flow rate to the water leakage suppression device 30.
  • a smart meter capable of detecting the amount of water used is attached to at least a part of homes, business establishments, and the like where water is supplied from each node.
  • the smart meter transmits the amount of water used to the water leakage suppression device 30 at a frequency of once per minute or once per hour, for example.
  • the information on the amount of water used is, for example, tabulated as information for each node in the water leakage suppression device 30 and treated as the amount of water flowing out from the node.
  • a device that measures or tabulates the amount of water used at home or office for each node instead of providing a mechanism in which the information on the amount of water used is tabulated as information for each node in the water leakage suppression device 30, a device that measures or tabulates the amount of water used at home or office for each node. It may be provided.
  • the configuration for acquiring information related to the amount of water flowing out from the node should be capable of collecting and providing information related to the amount of water flowing out from the node at least several times a day to the water leakage suppression device 30. preferable.
  • the mechanism for collecting information on the amount of water flowing out from the node is not limited to the provision of a device that measures the amount of water used and automatically transmits it to the water leakage suppression device 30. May be read and input to the device, and a mechanism transmitted from the device to the water leakage suppression device 30 may be employed.
  • FIG. 2 is a diagram exemplifying the relationship between nodes and homes and offices. In the figure, black circles indicate homes and offices. Further, it is preferable that the pressure sensor 26 is attached to a desired position of the water distribution pipe network PN. In the present embodiment, the pressure sensor 26 can be omitted.
  • the water leakage suppression device 30 includes, for example, a processor such as a CPU (Central Processing Unit), a storage device such as a ROM (Read Only Memory) and a RAM (Random Access Memory), a flash memory, an HDD (Hard Disk Drive), and various communication devices ( Network card).
  • the water leakage suppression device 30 includes a water usage acquisition unit 32, a nodal pressure estimation unit 34, a minimum pressure extraction unit 36, and a control unit 40.
  • the nodal pressure estimation unit 34 includes an equation automatic construction unit 34A.
  • the control unit 40 further includes a minimum pressure control unit 42, a discharge pressure control unit 44, and an actuator control unit 46.
  • the water leakage suppression device 30 may include a display unit 50 such as an LCD (Liquid Crystal Display) or an organic EL (Electroluminescence) display device, and a display image generation unit 52.
  • These functional units are software functional units that function when the CPU executes a program stored in the storage device, for example.
  • the program may be stored in advance in the storage device (non-temporary storage medium) of the water leakage suppression device 30, or may be acquired from another computer via a network such as the Internet, or the program may be stored.
  • the portable storage medium non-temporary storage medium
  • Some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • the water leakage suppression device 30 stores the water distribution pipe network model information 38 in the storage device.
  • FIG. 3 is a diagram showing an example of information stored as the water distribution pipe network model information 38.
  • the distribution pipe network model information 38 in addition to the number of nodes and the number of pipes, information such as effective head [m], type, and installation altitude [m] for each node is associated with the node number. Is described.
  • the type “1” indicates a node into which water is injected from the pump 20, and the type “ ⁇ 1” indicates a terminal node to which the pressure sensor 26 is attached.
  • information such as the start and end node numbers, pipe lengths (lengths), pipe friction coefficients, and the like for each pipe is described in association with the pipe numbers.
  • the water usage amount acquisition unit 32 aggregates the usage amount of water received from a smart meter attached to a home or business, and uses the water usage at each node (that is, the water flowing out from the node). Amount).
  • the node pressure estimation unit 34 determines the pressure at each node ( Estimate the water pressure.
  • the water pressure is referred to as water pressure as necessary.
  • the nodal pressure estimation unit 34 estimates the pressures p1, p2,... Pn at the respective nodes by solving the ordinary differential equation (1) and the mass balance equation (2).
  • i and j are node numbers
  • vij is the flow velocity of water in the pipe line ij (the pipe line connecting the node i and the node j)
  • Lij is the length [m] of the pipe line ij.
  • Equation (2) A is a connection matrix shown in Equation (3), S is a pipeline area matrix shown in Equation (4), and V is a vector in which the flow velocities vij are arranged in order of pipeline numbers.
  • the transposed vector [vij] T, f is the inflow vector shown in Equation (5), and Q is a vectorization of the amount of water used at each node.
  • connection matrix A “1” of the matrix element indicates a node upstream of the water flow among the nodes at both ends of the pipe line indicated by the pipe number, and “ ⁇ 1” indicates the water flow. Indicates a downstream node for flow.
  • Sij in the pipeline area matrix is the area (( ⁇ / 4) ⁇ Dij2) of the pipeline ij of the pipeline represented by the horizontal position.
  • the value ⁇ in the inflow amount vector f is the flow rate input from the flow rate sensor 24.
  • ASV-f-Q 0 (2)
  • the equation automatic construction unit 34A of the nodal pressure estimation unit 34 when new distribution pipe network model information 38 is stored in the storage device, or when the distribution pipe network model information 38 is updated, the distribution pipe network model information 38.
  • the nodal pressure estimator 34 uses the flow rate input from the flow sensor 24, the amount of water used for each node, and the pressure input from the pressure sensor 26 to the software generated by the automatic equation construction unit 34A. By inputting as a parameter, a process for solving the equations (1) and (2) is executed, and the pressure (water pressure) at each node is estimated.
  • the pressure (water pressure) at each node is estimated only by inputting the above parameters. be able to.
  • the water leakage suppression device 30 is customized to a specific water distribution network
  • software including equations (1) and (2) corresponding to the water distribution network is prepared from the beginning, and the equation is automatically constructed. Generation of software by the unit 34A may be omitted. Further, the automatic equation construction unit 34A itself may be omitted.
  • the minimum pressure extraction unit 36 may extract a substantial minimum value by performing a process of excluding abnormal values or the like instead of strictly extracting the minimum value.
  • the minimum pressure control unit 42 of the control unit 40 is an appropriate discharge pressure target value of the pump 20 based on the minimum value min (pi) input from the minimum pressure extraction unit 36 and a preset pressure set value Psv. P0sv is calculated.
  • the pressure set value Psv is, for example, from a node or a home or office by the structure illustrated in FIG. 2 with respect to a limit water pressure (for example, 200 kPa) for ejecting water from a faucet at a home or office. It is calculated
  • the pressure set value Psv is set to, for example, about 15 m with an effective water head.
  • the minimum pressure control unit 42 sets the minimum value min (pi) in advance by controlling the flow rate of the water flowing into the water distribution network PN instead of the water pressure of the water flowing into the water distribution network PN. Control may be made so as not to fall below the set pressure set value Psv.
  • the discharge pressure control unit 44 performs a feedback calculation such as PID on the basis of the discharge pressure target value P0sv set by the minimum pressure control unit 42 and the discharge pressure P0pv input from the discharge pressure sensor 23. A target rotational speed Nsv of 20 is determined.
  • the discharge pressure target value P0sv calculated by the minimum pressure control unit 42 is not automatically output to the discharge pressure control unit 44, but is displayed on the display unit 50 or the like so that a person can follow the displayed contents.
  • the discharge pressure target value P0sv for the discharge pressure control unit 44 may be input.
  • the discharge pressure target value P0sv may be a discrete value or discrete data (for example, high-medium-low, or ABC) instead of a continuous value.
  • the calculation timing of the discharge pressure target value P0sv does not need to coincide with the information acquisition cycle or the control cycle of the pump 20, and may be every fixed time (for example, every hour).
  • the actuator control unit 46 controls the energization of the pump 20 so that the rotation speed Npv of the pump 20 input from the rotation speed sensor 22 matches the target rotation speed Nsv, or accompanies the pump 20 (or alone). Control the actuator that opens and closes the valve.
  • Equation (6) there is a relationship represented by Equation (6) between the pressure in the water distribution block and the amount of water leakage.
  • L is the amount of water leakage [L / sec] at node i
  • C is the water leakage coefficient.
  • the water leakage coefficient is a coefficient depending on the pipe line extension and diameter regarding the node i, the shape of the water leakage hole, and the area.
  • h is an effective head [m] of the node i
  • is an experimental multiplier (for example, 1.15).
  • the water leakage suppression effect can be obtained by reducing the water pressure (effective water head) at each node as much as possible.
  • L c ⁇ h ⁇ (6)
  • the water pressure at each node is estimated by the above-described method, and control is performed so that the estimated minimum value of the pressure is equal to or higher than the pressure setting value. In comparison, it is less necessary to set the pressure set value higher with a margin. As a result, the water leakage suppression device 30 can set the pressure set value relatively low. For this reason, the water leakage suppression apparatus 30 can suppress the water pressure as the whole water distribution pipe network PN, and can reduce the amount of water leakage to the ground.
  • FIG. 4 is an image diagram illustrating the time variation of the water pressure at the end when the pressure set value is set by the conventional technique
  • FIG. 5 is the most water pressure when the pressure set value is set according to the present embodiment.
  • the water leakage suppression device 30 performs control based on the node estimated to have the lowest water pressure, and thus reduces the water pressure of the entire distribution pipeline network PN, and leaks water into the ground. Can be suppressed.
  • FIG. 6 is a diagram illustrating an example of a water distribution status display image generated by the display image generation unit 52.
  • the amount of water used and the pressure estimated for each node are displayed superimposed on a simple map of the water distribution pipe network PN. By displaying such an image, the relationship between the amount of water used and the pressure in the water distribution network PN can be grasped at a glance.
  • the display image generation unit 52 may visualize the water leakage suppression effect and display it on the display unit 50.
  • the display image generation unit 52 may cause the display unit 50 to display a graph in which the discharge pressure of the pump 20 is plotted on the horizontal axis and the minimum value for each discharge pressure value is plotted on the vertical axis.
  • the flow rate can be monitored using the detection value of the flow rate sensor 24, for example.
  • FIG. 7 is a diagram illustrating the relationship between the discharge pressure of the pump 20 and the minimum flow rate detected at night (night minimum flow rate).
  • the nighttime minimum flow rate may show different flow rates even at the same discharge pressure. This variation is considered to be caused by variation in the actual amount of water used.
  • the water leakage suppression effect in order to visualize the water leakage suppression effect, it is effective to extract and display the minimum value for each discharge pressure from the night minimum flow rate.
  • the data within the broken line in FIG. 7 corresponds to the minimum value for each discharge pressure in the night minimum flow rate.
  • FIG. 8 is a diagram illustrating an example of a configuration of the water leakage suppression system 1 including the water leakage suppression device 30 according to the second embodiment.
  • the water leakage suppression device 30 according to the second embodiment includes a water usage pattern creation unit 33 and a water usage database 39 in addition to the configuration of the first embodiment.
  • a smart meter attached to a home or office is measured at the same frequency as the first embodiment (for example, once a minute or once an hour). However, it is possible to cope with the case where information is transmitted less frequently than measurement (for example, about once a day).
  • the water usage amount acquisition unit 32 writes the water usage amount for each node, for example, for each day of the week or for each time zone.
  • the water usage pattern creation unit 33 associates, for example, the flow rate detected by the flow sensor 24, the water pressure detected by the pressure sensor 26, and the water usage with the water usage database 39.
  • the correlation model is constructed by storing in Then, the water usage pattern creation unit 33 inputs the flow rate detected by the flow sensor 24 and the water pressure detected by the pressure sensor 26 as parameters for the correlation model, thereby using the water for each node at that time. The amount is estimated and output to the nodal pressure estimation unit 34.
  • the correlation model may be a multiple regression model with flow rate, pressure, and time as explanatory variables, an ARMA (Auto Regressive Moving Average) model, an ARIMA (Auto Regressive Integrated Moving Average) model, or the like.
  • the water usage pattern creation unit 33 estimates the water usage at each node at a point in time by a simple method of multiplying the normalized water usage pattern of the previous day by the current injection flow rate. May be. Since the subsequent processing is the same as that of the first embodiment, description thereof is omitted.
  • information on the amount of water flowing into the distribution pipeline network and information on the amount of water flowing out from nodes in the distribution pipeline network are obtained, and these information, It is possible to estimate the water pressure at the nodes in the distribution pipe network based on the distribution pipe network model information including the connection information, and to adjust the water pressure flowing into the distribution pipe network based on the minimum estimated value. Since the adjustment unit is controlled, water leakage from the water distribution pipeline network can be suppressed.
  • the water leakage suppression device 30 includes the control unit 40, but is configured separately from the control unit 40, and the control target values such as the minimum pressure min (pi) and the discharge pressure P0pv correspond to the control unit 40. It may be transmitted to a device that performs the above.
  • FIGS. 9 and 10 are diagrams illustrating an example of a system configuration in the case where the water leakage suppression device 30 and the control device 60 corresponding to the control unit 40 are configured as separate bodies. In these drawings, the same reference numerals as those in the above embodiment have the same functions as those in the above embodiment.
  • the water leakage suppression device 30 may transmit the minimum pressure min (pi) to the control device 60 via a network NW such as the Internet. As shown in FIG.
  • the 30 may transmit the discharge pressure P0pv to the control device 60 via a network NW such as the Internet.
  • NW such as the Internet.
  • the minimum pressure min (pi) and the discharge pressure P0pv may be discrete values or discrete data (for example, high-medium-low or ABC) instead of continuous values.
  • the minimum pressure min (pi) and the discharge pressure P0pv received from the water leakage suppression device 30 are not automatically input to the function unit of the control device 60, but are displayed on the display device on the control device 60 side. However, the control target may be input to the control device 60.
  • the interface portion to which the detection values of the flow sensor 24 and the pressure sensor 26 and the water usage acquisition unit 32 in the water leakage suppression device 30 are input are examples of the “acquisition unit”.
  • the estimation unit 34 is an example of a “pressure estimation unit”
  • the minimum pressure extraction unit 36 is an example of an “extraction unit”
  • the water usage pattern creation unit 33 is an example of a “water amount estimation unit”.
  • the discharge pressure target value P0sv is an example of the “control target value”.

Abstract

 実施形態の漏水抑制装置は、取得部と、圧力推定部と、抽出部と、制御部とを持つ。取得部は、複数の節点を含む配水管路網に流入する水の量に関する情報と、前記節点から流出する水の量に関する情報とを取得する。圧力推定部は、前記取得部により取得された情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定する。抽出部は、前記圧力推定部により推定された水圧を含む複数の水圧の中から水圧の最小値を抽出する。制御部は、前記抽出部により抽出された最小値に基づいて、前記配水管路網に流入する水の水圧または流量を調整可能な調整部を制御する。

Description

漏水抑制装置、漏水抑制システム、および漏水抑制プログラム
 本発明の実施形態は、漏水抑制装置、漏水抑制システム、および漏水抑制プログラムに関する。
 従来、水を供給する配水管路網の末端の位置における末端圧力と目標値に基づいて、圧力操作点の圧力を決定する末端圧力制御装置が知られている。従来の技術では、配水管路網の状況を十分に把握することができなかった。このため、従来の技術では、各家庭等の需要点において確実に水が供給できるようにするために、注入する水の水圧を高めに設定する必要があり、配水管路網からの漏水が増加する場合があった。
特開2001-280597号公報
 本発明が解決しようとする課題は、配水管路網からの漏水を抑制することができる漏水抑制装置、漏水抑制システム、および漏水抑制プログラムを提供することである。
 実施形態の漏水抑制装置は、取得部と、圧力推定部と、抽出部と、制御部とを持つ。取得部は、複数の節点を含む配水管路網に流入する水の量に関する情報と、前記節点から流出する水の量に関する情報とを取得する。圧力推定部は、前記取得部により取得された情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定する。抽出部は、前記圧力推定部により推定された水圧を含む複数の水圧の中から水圧の最小値を抽出する。制御部は、前記抽出部により抽出された最小値に基づいて、前記配水管路網に流入する水の水圧または流量を調整可能な調整部を制御する。
第1の実施形態に係る漏水抑制装置30を含む漏水抑制システム1の構成の一例を示す図。 節点と家庭や事業所等との関係を例示した図。 配水管路網モデル情報38として格納される情報の一例を示す図。 従来の技術によって圧力設定値が設定された場合の末端の水圧の時間変化を例示したイメージ図。 本実施形態によって圧力設定値が設定された場合の最も水圧が小さい地点の水圧の時間変化を例示したイメージ図。 表示画像生成部52が生成する配水状況表示画像の一例を示す図。 ポンプ20の吐出圧力と、夜間に検出された最小の流量(夜間最小流量)との関係を例示した図。 第2の実施形態に係る漏水抑制装置30を含む漏水抑制システム1の構成の一例を示す図。 漏水抑制装置30と、制御部40に相当する制御装置60とが別体として構成される場合のシステム構成の一例を示す図。 漏水抑制装置30と、制御部40に相当する制御装置60とが別体として構成される場合のシステム構成の一例を示す図。
 以下、図面を参照し、漏水抑制装置、漏水抑制システム、および漏水抑制プログラムの実施形態について説明する。
 (第1の実施形態)
 図1は、第1の実施形態に係る漏水抑制装置30を含む漏水抑制システム1の構成の一例を示す図である。漏水抑制システム1は、配水池10に蓄えられた水(浄水)を、ポンプ20によって家庭や事業所等に供給する。ポンプ20には、回転数センサ22が取り付けられる。回転数センサ22は、ポンプ20の回転数Npvを漏水抑制装置30に出力する。また、ポンプ20が圧送する水の圧力は、吐出圧力センサ23によって検出される。吐出圧力センサ23は、吐出圧力P0pvを漏水抑制装置30に出力する。また、ポンプ20が流出させる水の流量は、流量センサ24によって検出される。流量センサ24は、水の流量を漏水抑制装置30に出力する。
 ポンプ20から家庭や事業所等に水を提供する配水管路網PNには、節点q1、q2、‥qn(図ではn=9)が設定されている。各節点から水が提供される家庭や事業所等の少なくとも一部には、水の使用量を検出可能なスマートメータが取り付けられている。スマートメータは、例えば1分間に1回や1時間に1回といった頻度で、漏水抑制装置30に水の使用量を送信する。この水の使用量の情報は、例えば、漏水抑制装置30において節点毎の情報として集計され、節点から流出する水の量として扱われる。なお、水の使用量の情報が漏水抑制装置30において節点毎の情報として集計される仕組みを備えることに代えて、節点毎に家庭や事業所等の水の使用量を計測または集計する装置が備えられてもよい。節点から流出する水の量に関する情報を取得するための構成は、少なくとも1日に複数回、節点から流出する水の量に関する情報を収集して漏水抑制装置30に提供可能なものであることが好ましい。また、節点から流出する水の量に関する情報を収集する仕組みとして、水の使用量を計測して自動的に漏水抑制装置30に送信する機器を備えることに限らず、検針メータの検出値を人が読み取り、機器に入力することで、その機器から漏水抑制装置30に送信される仕組みが採用されてもよい。
 図2は、節点と家庭や事業所等との関係を例示した図である。図中、黒丸が家庭や事業所等を示している。また、配水管路網PNの所望の位置には、圧力センサ26が取り付けられると好適である。なお、本実施形態において、圧力センサ26は省略することができる。
 漏水抑制装置30は、例えば、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)やRAM(Random Access Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等の記憶装置、各種通信装置(ネットワークカード等)を備える。漏水抑制装置30は、水使用量取得部32と、節点圧力推定部34と、最小圧力抽出部36と、制御部40とを備える。節点圧力推定部34は、方程式自動構築部34Aを備える。制御部40は、更に、最小圧力制御部42と、吐出圧力制御部44と、アクチュエータ制御部46とを備える。また、漏水抑制装置30は、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)表示装置などの表示部50と、表示画像生成部52とを備えてもよい。これらの機能部(表示部50を除く)は、例えば、記憶装置に格納されたプログラムをCPUが実行することにより機能するソフトウェア機能部である。プログラムは、予め漏水抑制装置30の記憶装置(非一時的記憶媒体)に格納されていてもよいし、インターネットなどのネットワークを介して他のコンピュータから取得されてもよいし、プログラムを格納した可搬型の記憶媒体(非一時的記憶媒体)が漏水抑制装置30のドライブ装置に装着されることで漏水抑制装置30にインストールされてもよい。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。また、漏水抑制装置30は、配水管路網モデル情報38を記憶装置に格納している。
 図3は、配水管路網モデル情報38として格納される情報の一例を示す図である。図示するように、配水管路網モデル情報38では、節点数や管路数の他、節点毎の有効水頭[m]や種別、設置標高[m]などの情報が、節点番号に対応付けられて記述されている。ここで、種別「1」とは、ポンプ20から水が注入される節点であることを示し、種別「―1」とは、圧力センサ26が取り付けられた末端節点であることを示す。また、配水管路網モデル情報38では、管路毎の始点および終点の節点番号、管長(長さ)、管路摩擦係数などの情報が、管路番号に対応付けられて記述されている。
 水使用量取得部32は、前述したように、家庭や事業所等に取り付けられたスマートメータから受信した水の使用量を集計し、節点毎の水の使用量(すなわち節点から流出する水の量)を取得する。
 節点圧力推定部34は、流量センサ24から入力された流量、節点毎の水の使用量、圧力センサ26から入力された圧力、および配水管路網モデル情報38に基づいて、各節点における圧力(水圧)を推定する。以下、水の圧力のことを、必要に応じて水圧と称する。節点圧力推定部34は、常微分方程式(1)と、物質収支の式(2)とを解くことで、各節点における圧力p1、p2、‥pnを推定する。式(1)において、i、jは節点の番号であり、vijは管路ij(節点iと節点jを結ぶ管路)における水の流速であり、Lijは管路ijの長さ[m]であり、ρは水密度[kg/m3]であり、Hiは節点iの標高であり、Dijは管路ijの口径[m]であり、λijは管路ijの管路摩擦抵抗である。また、式(2)おいて、Aは式(3)に示す接続行列であり、Sは式(4)に示す管路面積行列であり、Vは流速vijを管路番号順に並べたベクトルの転置ベクトル[vij]Tであり、fは式(5)に示す流入量ベクトルであり、Qは節点毎の水の使用量をベクトル化したものである。接続行列Aにおいて、行列要素の「1」は、その管路番号の示す管路の両端の節点のうち、水の流れに関して上流側の節点であることを示し、「―1」は、水の流れに関して下流側の節点であることを示す。また、管路面積行列におけるSijは、横位置によって表される管路の管路ijの面積((π/4)・Dij2)である。また、流入量ベクトルfにおける値αは、流量センサ24から入力された流量である。
Figure JPOXMLDOC01-appb-M000001
 ASV―f―Q=0 ‥(2)
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 節点圧力推定部34の方程式自動構築部34Aは、新規な配水管路網モデル情報38が記憶装置に格納されたり、配水管路網モデル情報38が更新されたりすると、配水管路網モデル情報38の接続関係や管路の数などを反映した次数の常微分方程式(1)と物質収支の式(2)とを含むソフトウェアを生成する。この場合、節点圧力推定部34は、方程式自動構築部34Aにより生成されたソフトウェアに対して、流量センサ24から入力された流量、節点毎の水の使用量、圧力センサ26から入力された圧力をパラメータとして入力することで、式(1)と式(2)を解く処理を実行し、各節点における圧力(水圧)を推定する。なお、方程式自動構築部34Aにより、ある配水管路網について式(1)と式(2)を含むソフトウェアが生成された後は、上記パラメータの入力のみで各節点における圧力(水圧)を推定することができる。また、漏水抑制装置30が特定の配水管路網にカスタマイズされたものである場合、最初から配水管路網に対応する式(1)と式(2)を含むソフトウェアが用意され、方程式自動構築部34Aによるソフトウェアの生成は省略されてもよい。また、方程式自動構築部34A自体が省略されてもよい。
 最小圧力抽出部36は、節点圧力推定部34により推定された圧力pi(i=1~n)から、最小値min(pi)を抽出し、制御部40に出力する。ここで、最小圧力抽出部36は、厳密に最小値を抽出するのではなく、異常値を除外する処理等を行って、実質的な最小値を抽出するようにしてもよい。
 制御部40の最小圧力制御部42は、最小圧力抽出部36から入力された最小値min(pi)と、予め設定された圧力設定値Psvとに基づいて、ポンプ20の適切な吐出圧力目標値P0svを演算する。この圧力設定値Psvは、例えば、家庭や事業所等の蛇口から水を十分な勢いで噴出させるための限界水圧(例えば200kPa)に対して、図2に例示した構造によって節点から家庭や事業所等までの間に減少する圧力見込み値を加算することで、予め求められている。圧力設定値Psvは、例えば有効水頭で15m程度に設定される。全ての節点における水の圧力piが、圧力設定値Psv以上となるように制御することで、配水管路網PNを利用する家庭や事業所等に、水を十分に提供することができる。なお、最小圧力制御部42は、配水管路網PNに流入する水の水圧に代えて、配水管路網PNに流入する水の流量を制御することで、最小値min(pi)が予め設定された圧力設定値Psvを下回らないように制御してよい。
 吐出圧力制御部44は、最小圧力制御部42により設定された吐出圧力目標値P0svと、吐出圧力センサ23から入力された吐出圧力P0pvとに基づいて、PID等のフィードバック演算を行うことにより、ポンプ20の目標回転数Nsvを決定する。なお、最小圧力制御部42により演算された吐出圧力目標値P0svは、自動的に吐出圧力制御部44に出力されるのではなく、表示部50などに表示され、人が、表示された内容に従って吐出圧力制御部44に対する吐出圧力目標値P0svを入力するように構成されてもよい。この場合、吐出圧力目標値P0svは、連続値ではなく離散値または離散データ(例えば、高―中―低、或いはA―B―Cといったもの)であってよい。また、吐出圧力目標値P0svの演算タイミングは、情報の取得周期やポンプ20の制御周期と一致させる必要はなく、一定時間毎(例えば1時間毎)であってもよい。アクチュエータ制御部46は、回転数センサ22から入力されるポンプ20の回転数Npvが、目標回転数Nsvに一致するように、ポンプ20への通電制御を行ったり、ポンプ20に付随する(或いは単独の)バルブを開閉するアクチュエータを制御したりする。
 [従来の技術との比較]
 ここで、従来の技術として、配水管路網内で最も水圧が低くなると想定された固定地点(末端)の水圧を測定し、末端の水圧が圧力設定値以上となるように制御する技術が知られている。末端は、配水管路網の入り口から遠方であったり、或いは標高が高いことによって水圧が低くなると想定された固定地点である。しかしながら、この「末端」の水圧が、必ずしも最も低くなるとは限らない。現実の配水管路網では、水需要の偏りなどに起因して、最も水圧の低い地点が、時間の経過に応じて変動する場合がある。このため、固定地点における水圧が圧力設定値以上となるように制御する場合、より水圧が低い地点が生じ得ることを想定して、圧力設定値を高めに設定せざるを得ない場合がある。圧力設定値を高めに設定すると、配水管路網全体としての水圧が上昇するため、地中への漏水量が多くなってしまう。
 なお、一般に配水ブロック内の圧力と漏水量との間には、式(6)に示す関係があることが、実験的に確認されている。式中、Lは節点iの漏水量[L/sec]であり、Cは漏水係数である。漏水係数は、節点iに関する管路延長や口径、漏水孔の形状、面積に依存する係数である。また、hは節点iの有効水頭[m]であり、κは実験乗数(例えば1.15)である。式(6)から分かるように、各節点の水圧(有効水頭)をなるべく小さくすることで、漏水抑制の効果を得ることができる。
 L=c・hκ ‥(6)
 本実施形態の漏水抑制装置30では、上記説明した手法によって各節点における水の圧力を推定し、推定された圧力の最小値が圧力設定値以上となるように制御するため、上記従来の技術と比較すると、圧力設定値に余裕を持たせて高めに設定する必要性が小さくなる。この結果、漏水抑制装置30は、圧力設定値を比較的低く設定することができる。このため、漏水抑制装置30は、配水管路網PN全体としての水圧を抑制することができ、地中への漏水量を低減することができる。図4は、従来の技術によって圧力設定値が設定された場合の末端の水圧の時間変化を例示したイメージ図であり、図5は、本実施形態によって圧力設定値が設定された場合の最も水圧が小さい地点の水圧の時間変化を例示したイメージ図である。これらの図中において、LPは限界水圧である。また、図5において、最も水圧が小さい地点は、固定地点ではなく、動的に変化する。図示するように、本実施形態の漏水抑制装置30は、水圧が最も低いと推定された節点を基準として制御を行うため、配水管路網PN全体としての水圧を低下させ、地中への漏水を抑制することができる。
 [表示画像]
 表示画像生成部52には、漏水抑制装置30内で参照可能な各種情報が入力される。表示画像生成部52は、例えば、各節点における水の使用量と、推定された圧力と比較可能な態様で表示する表示画面を生成し、表示部に表示させる。図6は、表示画像生成部52が生成する配水状況表示画像の一例を示す図である。この配水状況表示画像では、節点毎に、水の使用量と推定された圧力が、配水管路網PNの簡易的な地図に重畳して表示される。このような画像を表示することで、配水管路網PNにおける水の使用量と圧力の関係を一目で把握させることができる。
 また、表示画像生成部52は、漏水抑制効果を可視化して表示部50に表示させてもよい。例えば、表示画像生成部52は、横軸にポンプ20の吐出圧力、縦軸に夜間最小流量のうち吐出圧力値毎の最小値をプロットしたグラフを表示部50に表示させてもよい。流量は、例えば流量センサ24の検出値を用いて監視することができる。図7は、ポンプ20の吐出圧力と、夜間に検出された最小の流量(夜間最小流量)との関係を例示した図である。このように、夜間最小流量は、同じ吐出圧力であっても、異なる流量を示すことがある。このバラつきは、実際の水の使用量のバラつきに起因するものであると考えられる。従って、漏水抑制効果を可視化するには、夜間最小流量のうち吐出圧力毎の最小値を抽出して表示するのが効果的である。図7における破線内のデータが、夜間最小流量のうち吐出圧力毎の最小値に相当する。このような画像を、漏水抑制装置30の適用前と適用後の状態のそれぞれについて表示することで、漏水抑制装置30による漏水抑制効果を把握させることができる。
 [まとめ]
 以上説明した本実施形態の漏水抑制装置30、およびこれを利用した漏水抑制システムによれば、配水管路網PNに流入する水の量に関する情報(流量センサ24によって検出される流量)と、配水管路網PNにおける節点から流出する水の量に関する情報(水使用量取得部32により取得される水の使用量)を取得し、これらの情報と、節点の接続情報を含む配水管路網モデル情報38とに基づいて、配水管路網PNにおける節点の水圧を推定し(圧力センサ26が取り付けられている節点については推定不要)、推定値の最小値に基づいて配水管路網PNに流入する水の水圧を調整可能な調整部(ポンプ20)を制御するため、配水管路網PNからの漏水を抑制することができる。
 (第2の実施形態)
 図8は、第2の実施形態に係る漏水抑制装置30を含む漏水抑制システム1の構成の一例を示す図である。第2の実施形態に係る漏水抑制装置30は、第1の実施形態の構成に加えて、水使用量パターン作成部33と、水使用量データベース39とを備える。第2の実施形態の漏水抑制装置30は、家庭や事業所等に取り付けられたスマートメータが、第1の実施形態と同様の頻度(例えば1分間に1回や1時間に1回)で計測を行うが、情報の送信を、計測よりも低頻度に(例えば1日1回程度)行う場合に対応することができる。
 水使用量データベース39には、節点毎に、例えば、曜日毎、時間帯毎の水の使用量が、水使用量取得部32によって書き込まれる。水使用量パターン作成部33は、例えば、流量センサ24によって検出された流量や、圧力センサ26によって検出された水圧と、水の使用量とを、水の使用量と関連付けて水使用量データベース39に格納することで、相関モデルを構築しておく。そして、水使用量パターン作成部33は、流量センサ24によって検出された流量と、圧力センサ26によって検出された水圧とを相関モデルに対するパラメータとして入力することで、その時点における節点毎の水の使用量を推定し、節点圧力推定部34に出力する。
 相関モデルは、流量や圧力、時間を説明変数とする重回帰モデルであってもよいし、ARMA(Auto Regressive Moving Average)モデルやARIMA(Auto Regressive Integrated Moving Average)モデル等であってもよい。また、水使用量パターン作成部33は、正規化された前日と同じ水使用量のパターンに、現在の注入流量を乗じるといった簡易的な方法で、その時点における節点毎の水の使用量を推定してもよい。なお、以降の処理については、第1の実施形態と同様であるため、説明を省略する。
 [まとめ]
 以上説明した本実施形態の漏水抑制装置30、およびこれを利用した漏水抑制システムによれば、第1の実施形態と同様、配水管路網PNからの漏水を抑制することができる。また、第1の実施形態と比較すると、節点毎の水の使用量を取得する頻度が低い場合にも、対応することができる。
 以上述べた少なくともひとつの実施形態によれば、配水管路網に流入する水の量に関する情報と、配水管路網における節点から流出する水の量に関する情報を取得し、これらの情報と、節点の接続情報を含む配水管路網モデル情報とに基づいて、配水管路網における節点の水圧を推定し、推定値の最小値に基づいて配水管路網に流入する水の水圧を調整可能な調整部を制御するため、配水管路網からの漏水を抑制することができる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、漏水抑制装置30は、制御部40を含むものとしたが、制御部40とは別体として構成され、最小圧力min(pi)や吐出圧力P0pv等の制御目標値を制御部40に相当する装置に送信するものであってもよい。図9および図10は、漏水抑制装置30と、制御部40に相当する制御装置60とが別体として構成される場合のシステム構成の一例を示す図である。これらの図において、上記実施形態と同じ符号が付されているものは、上記実施形態と同様の機能を有するものとする。図9に示すように、漏水抑制装置30は、最小圧力min(pi)を、インターネット等のネットワークNWを介して制御装置60に送信してもよいし、図10に示すように、漏水抑制装置30は、吐出圧力P0pvを、インターネット等のネットワークNWを介して制御装置60に送信してもよい。上記実施形態と同様、最小圧力min(pi)や吐出圧力P0pvは、連続値ではなく、離散値または離散データ(例えば、高―中―低、或いはA―B―Cといったもの)であってよい。なお、図9または図10で示す構成において、上記第2の実施形態のように、水使用量パターン作成部33や水使用量データベースを備える構成としてもよい。また、漏水抑制装置30から受信した最小圧力min(pi)や吐出圧力P0pvは、自動的に制御装置60の機能部に入力されるのではなく、制御装置60側の表示装置に表示され、人が制御目標を制御装置60に入力するようにしてもよい。
 なお、上記各実施形態において、漏水抑制装置30における、流量センサ24や圧力センサ26の検出値が入力されるインターフェース部分、および水使用量取得部32が「取得部」の一例であり、節点圧力推定部34が「圧力推定部」の一例であり、最小圧力抽出部36が「抽出部」の一例であり、水使用量パターン作成部33が「水量推定部」の一例である。また、吐出圧力目標値P0svが「制御目標値」の一例である。

Claims (15)

  1.  複数の節点を含む配水管路網に流入する水の量に関する情報と、前記節点から流出する水の量に関する情報とを取得する取得部と、
     前記取得部により取得された情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定する圧力推定部と、
     前記圧力推定部により推定された水圧を含む複数の水圧の中から水圧の最小値を抽出する抽出部と、
     前記抽出部により抽出された最小値に基づいて、前記配水管路網に流入する水の水圧または流量を調整可能な調整部を制御する制御部と、
     を備える漏水抑制装置。
  2.  複数の節点を含む配水管路網に流入する水の量に関する情報と、前記節点から流出する水の量に関する情報とを取得する取得部と、
     前記取得部によって過去に取得された前記節点から流出する水の量に関する情報に基づいて、現在の前記節点から流出する水の量を推定する水量推定部と、
     前記取得部により取得された情報、前記水量推定部により推定された水の量、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定する圧力推定部と、
     前記圧力推定部により推定された水圧を含む複数の水圧の中から水圧の最小値を抽出する抽出部と、
     前記抽出部により抽出された最小値に基づいて、前記配水管路網に流入する水の水圧または流量を調整可能な調整部を制御する制御部と、
     を備える漏水抑制装置。
  3.  複数の節点を含む配水管路網に流入する水の量に関する情報、前記節点から流出する水の量に関する情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定する圧力推定部と、
     前記圧力推定部により推定された水圧を含む複数の水圧の中から水圧の最小値を抽出する抽出部と、を備え、
     前記抽出部により抽出された最小値、または前記抽出部により抽出された最小値に基づく制御目標値を出力する、
     漏水抑制装置。
  4.  前記取得部は、前記配水管路網における所定の節点における水圧を更に取得する、
     請求項1から3のうちいずれか1記載の漏水抑制装置。
  5.  前記圧力推定部は、節点間の圧力差と節点間を流れる流量との関係を示す方程式と、物質収支の式とを連立的に解くことで、前記配水管路網における節点の少なくとも一部における水圧を推定する、
     請求項1から3のうちいずれか1項記載の漏水抑制装置。
  6.  前記圧力推定部は、前記モデル情報に基づいて、前記節点間の圧力差と前記節点間を流れる流量との関係を示す方程式と、前記物質収支の式とを含むソフトウェアを生成し、前記生成したソフトウェアに対して前記取得部により取得された情報を入力することで、前記節点間の圧力差と前記節点間を流れる流量との関係を示す方程式と、前記物質収支の式とを解き、前記配水管路網における節点の少なくとも一部における水圧を推定する、
     請求項5記載の漏水抑制装置。
  7.  配水管路網に流入する水の水圧または流量を調整可能な調整部を制御する制御装置と、漏水抑制装置とを備える漏水抑制システムであって、
     前記漏水抑制装置は、
     複数の節点を含む配水管路網に流入する水の量に関する情報と、前記節点から流出する水の量に関する情報とを取得する取得部と、
     前記取得部により取得された情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定する圧力推定部と、
     前記圧力推定部により推定された水圧を含む複数の水圧の中から水圧の最小値を抽出する抽出部と、を備え、
     前記抽出部により抽出された最小値、または前記抽出部により抽出された最小値に基づく制御目標値を、前記制御装置に送信する、
     漏水抑制システム。
  8.  前記取得部は、前記配水管路網における所定の節点における水圧を更に取得する、
     請求項7記載の漏水抑制システム。
  9.  前記圧力推定部は、節点間の圧力差と節点間を流れる流量との関係を示す方程式と、物質収支の式とを連立的に解くことで、前記配水管路網における節点の少なくとも一部における水圧を推定する、
     請求項7または8記載の漏水抑制システム。
  10.  前記圧力推定部は、前記モデル情報に基づいて、前記節点間の圧力差と前記節点間を流れる流量との関係を示す方程式と、前記物質収支の式とを含むソフトウェアを生成し、前記生成したソフトウェアに対して前記取得部により取得された情報を入力することで、前記節点間の圧力差と前記節点間を流れる流量との関係を示す方程式と、前記物質収支の式とを解き、前記配水管路網における節点の少なくとも一部における水圧を推定する、
     請求項9記載の漏水抑制システム。
  11.  コンピュータに、
     複数の節点を含む配水管路網に流入する水の量に関する情報、前記節点から流出する水の量に関する情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定させ、
     前記推定された水圧を含む複数の水圧の中から水圧の最小値を抽出させ、
     前記抽出された最小値に基づいて、前記配水管路網に流入する水の水圧または流量を調整可能な調整部を制御させる、
     漏水抑制プログラム。
  12.  コンピュータに、
     複数の節点を含む配水管路網に流入する水の量に関する情報、前記節点から流出する水の量に関する情報、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定させ、
     前記推定された水圧を含む複数の水圧の中から水圧の最小値を抽出させ、
     前記抽出部により抽出された最小値、または前記抽出された最小値に基づく制御目標値を出力させる、
     漏水抑制プログラム。
  13.  前記推定させる処理において、前記コンピュータに、複数の節点を含む配水管路網に流入する水の量に関する情報、前記節点から流出する水の量に関する情報、前記配水管路網における所定の節点における水圧、および前記配水管路網における節点の接続情報を含むモデル情報に基づいて、前記配水管路網における節点の少なくとも一部における水圧を推定させる、
     請求項11または12に記載の漏水抑制プログラム。
  14.  前記推定させる処理において、前記コンピュータに、節点間の圧力差と節点間を流れる流量との関係を示す方程式と、物質収支の式とを連立的に解くことで、前記配水管路網における節点の少なくとも一部における水圧を推定させる、
     請求項11または12に記載の漏水抑制プログラム。
  15.  前記推定させる処理において、前記コンピュータに、前記モデル情報に対応する、前記節点間の圧力差と前記節点間を流れる流量との関係を示す方程式と、前記物質収支の式とを含むソフトウェアを生成させ、前記生成させたソフトウェアに対して前記取得部により取得された情報を入力することで、前記節点間の圧力差と前記節点間を流れる流量との関係を示す方程式と、前記物質収支の式とを解き、前記配水管路網における節点の少なくとも一部における水圧を推定させる、
     請求項14記載の漏水抑制プログラム。
PCT/JP2014/080752 2013-12-02 2014-11-20 漏水抑制装置、漏水抑制システム、および漏水抑制プログラム WO2015083551A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/100,812 US10095246B2 (en) 2013-12-02 2014-11-20 Leakage suppression apparatus, leakage suppression system, and leakage suppression program
JP2015551458A JP6139700B2 (ja) 2013-12-02 2014-11-20 漏水抑制装置、漏水抑制システム、および漏水抑制プログラム
CN201480073737.4A CN105917157B (zh) 2013-12-02 2014-11-20 漏水抑制装置、漏水抑制系统及计算机可读取的存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-249487 2013-12-02
JP2013249487 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083551A1 true WO2015083551A1 (ja) 2015-06-11

Family

ID=53273318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080752 WO2015083551A1 (ja) 2013-12-02 2014-11-20 漏水抑制装置、漏水抑制システム、および漏水抑制プログラム

Country Status (4)

Country Link
US (1) US10095246B2 (ja)
JP (1) JP6139700B2 (ja)
CN (1) CN105917157B (ja)
WO (1) WO2015083551A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141884A1 (ja) * 2016-02-19 2017-08-24 日本電気株式会社 制御装置、制御システム、制御方法及びコンピュータ読み取り可能記録媒体
JP2019140954A (ja) * 2018-02-19 2019-08-29 国立研究開発法人農業・食品産業技術総合研究機構 配水制御システム
JP2020038460A (ja) * 2018-09-03 2020-03-12 株式会社東芝 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911013B2 (ja) 2015-09-03 2021-07-28 フジフィルム ソノサイト インコーポレイテッド 超音波変換器アセンブリ
RU2019108800A (ru) * 2016-09-29 2020-10-29 Сиват Текнолоджис Лтд. Система, платформа и способ постоянного онлайн мониторинга качества и безопасности воды всей системы с текучей средой с использованием блоков с множеством датчиков с онлайн анализом перекрестной проверки данных на 5 удаленных серверах с помощью программного обеспечения и алгоритмов искусственного интеллекта
US10663933B2 (en) * 2017-01-10 2020-05-26 Sensus Spectrum Llc Systems and methods for subnetwork hydraulic modeling
US20200320650A1 (en) * 2019-04-05 2020-10-08 I D Technologies Inc. Multi-utility integrity monitoring and display system
CN111536423A (zh) * 2020-04-30 2020-08-14 苏州智品信息科技有限公司 一种基于粒子群算法的爆管定位方法
EP4150310A1 (en) 2020-05-15 2023-03-22 Phyn LLC Liquid flow processing for plumbing systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306893A (ja) * 1993-04-22 1994-11-01 Meidensha Corp 配水圧力制御方式
JPH0895645A (ja) * 1994-09-29 1996-04-12 Toshiba Corp 配水末端圧力制御装置
JP2001005531A (ja) * 1999-06-22 2001-01-12 Toshiba Corp 末端圧制御装置
JP2001280597A (ja) * 2000-03-28 2001-10-10 Ffc:Kk 配水管網の末端圧力制御装置
JP2003064729A (ja) * 2001-08-27 2003-03-05 Toshiba Corp 配水運用支援装置
JP2009192329A (ja) * 2008-02-13 2009-08-27 Toshiba Corp 配水管路の漏水診断装置及び漏水診断方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200922A (en) * 1961-01-30 1980-04-29 The United States Of America As Represented By The Secretary Of The Navy Self-propelled vehicle for destroying ground mines
JPS58700A (ja) * 1981-06-26 1983-01-05 Hitachi Ltd 流体輸送システムの制御方式
US4712182A (en) 1983-03-09 1987-12-08 Hitachi, Ltd. Method of estimating fracture point of pipe line network
GB9212122D0 (en) * 1992-06-09 1992-07-22 Technolog Ltd Water supply pressure control apparatus
JP3673066B2 (ja) * 1997-09-11 2005-07-20 株式会社東芝 配水圧力制御装置
JP4342278B2 (ja) 2003-11-18 2009-10-14 アジア航測株式会社 水運用管理システム
JP5019197B2 (ja) * 2006-03-31 2012-09-05 株式会社東芝 配水情報管理装置
JP4822990B2 (ja) * 2006-09-07 2011-11-24 株式会社東芝 漏水監視システム
CN100492233C (zh) * 2007-11-26 2009-05-27 天津大学 一种燃气管网事故预警方法
AU2009200516B2 (en) 2008-02-13 2011-02-10 City Of Kitakyushu System for distributing water with diagnosing leakage of water
US20120013483A1 (en) * 2010-07-17 2012-01-19 Jung Sungeun Water Supply Maintenance System
SG188534A1 (en) * 2010-09-14 2013-04-30 Amitsur Preis System and method for water distribution modelling
US20120291886A1 (en) * 2011-05-17 2012-11-22 Federico Rivera Water volume and pressure control system
CN102777770A (zh) 2012-08-07 2012-11-14 河北农业大学 一种供水管网泄漏故障诊断的流量监测点优化布置方法
CN102865459A (zh) * 2012-09-26 2013-01-09 华北电力大学(保定) 一种供热管网泄漏定位系统及定位方法
US9576081B2 (en) * 2013-05-30 2017-02-21 International Business Machines Corporation Pressurized water distribution network management

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306893A (ja) * 1993-04-22 1994-11-01 Meidensha Corp 配水圧力制御方式
JPH0895645A (ja) * 1994-09-29 1996-04-12 Toshiba Corp 配水末端圧力制御装置
JP2001005531A (ja) * 1999-06-22 2001-01-12 Toshiba Corp 末端圧制御装置
JP2001280597A (ja) * 2000-03-28 2001-10-10 Ffc:Kk 配水管網の末端圧力制御装置
JP2003064729A (ja) * 2001-08-27 2003-03-05 Toshiba Corp 配水運用支援装置
JP2009192329A (ja) * 2008-02-13 2009-08-27 Toshiba Corp 配水管路の漏水診断装置及び漏水診断方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141884A1 (ja) * 2016-02-19 2017-08-24 日本電気株式会社 制御装置、制御システム、制御方法及びコンピュータ読み取り可能記録媒体
GB2561519A (en) * 2016-02-19 2018-10-17 Nec Corp Control device, control system, control method, and program
JP2019140954A (ja) * 2018-02-19 2019-08-29 国立研究開発法人農業・食品産業技術総合研究機構 配水制御システム
JP2020038460A (ja) * 2018-09-03 2020-03-12 株式会社東芝 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム
JP7182961B2 (ja) 2018-09-03 2022-12-05 株式会社東芝 末端圧力制御支援装置、末端圧力制御支援方法及びコンピュータプログラム

Also Published As

Publication number Publication date
JP6139700B2 (ja) 2017-05-31
US10095246B2 (en) 2018-10-09
JPWO2015083551A1 (ja) 2017-03-16
CN105917157B (zh) 2019-08-16
US20160306366A1 (en) 2016-10-20
CN105917157A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6139700B2 (ja) 漏水抑制装置、漏水抑制システム、および漏水抑制プログラム
US9714741B2 (en) Method and system to volumetrically control additive pump
US10677041B2 (en) Fault detection in electric submersible pumps
US20170356278A1 (en) Method and system for maximizing production of a well with a gas assisted plunger lift
US20160041565A1 (en) Intelligent electronic water flow regulation system
WO2012127783A1 (ja) 配水圧制御システム
EP3568682A1 (en) Systems and methods for subnetwork hydraulic modeling
RU2014147670A (ru) Способ и система для оценки прогнозной добычи углеводородов
US8244499B2 (en) Methods and systems for managing aquifer operation
WO2015187976A3 (en) Fuel dispenser pump assembly
Creaco et al. Operation and cost-effectiveness of local and remote RTC
Weston et al. Short-term impacts of the filling transition across elevations in intermittent water supply systems
CN107250753B (zh) 传感器配置位置选择装置、漏水量推断装置、诊断系统及方法、非暂时存储介质
GB2591638A (en) Managing gas bubble migration in a downhole liquid
JP6670295B2 (ja) 低産出量井戸を効果的に使用するためのシステムおよび方法
JP2024022274A (ja) 検知装置、検知方法及び検知システム
JP6614285B1 (ja) 採取する天然資源の状態を推測するための装置、方法およびプログラム
JP6610156B2 (ja) 燃料供給装置および燃料供給方法
TW201635227A (zh) 水網路之監控方法(二)
Sadowska et al. Automated ESP-Lifted Well Startup Using Model Predictive Control: Introduction of the Algorithm and Field Tests Results
Lea et al. Measurement and Calculation of Key Events During the Plunger Lift Cycle
MacDonald et al. Twin
Ross et al. The Case for Integrated Process Simulations in Allocation Systems
JP2008014507A (ja) ボイラユニットの起動回数管理システム
WO2014073266A1 (ja) 設備管理装置、設備管理方法、プログラム、および記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551458

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15100812

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604462

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14868092

Country of ref document: EP

Kind code of ref document: A1