WO2012127783A1 - 配水圧制御システム - Google Patents

配水圧制御システム Download PDF

Info

Publication number
WO2012127783A1
WO2012127783A1 PCT/JP2012/001265 JP2012001265W WO2012127783A1 WO 2012127783 A1 WO2012127783 A1 WO 2012127783A1 JP 2012001265 W JP2012001265 W JP 2012001265W WO 2012127783 A1 WO2012127783 A1 WO 2012127783A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
water distribution
flow rate
water
pipe network
Prior art date
Application number
PCT/JP2012/001265
Other languages
English (en)
French (fr)
Inventor
信補 高橋
進吾 足立
達広 佐藤
宏充 栗栖
田所 秀之
弘泰 安富
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012127783A1 publication Critical patent/WO2012127783A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
    • G05D16/2073Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source with a plurality of pressure sources
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof

Definitions

  • the present invention relates to a water distribution pressure control device in the case of supplying purified water from a distribution area to a terminal customer via a water distribution pipe network by using a pump. Considering disturbances to the distribution system such as modeling errors in the pipe resistance model used for distribution pressure control, sudden water demand in the event of a fire, and water interchange in the distribution section, etc.
  • the present invention relates to a water distribution pressure control device capable of precisely controlling the terminal pressure.
  • a distribution pressure control device for supplying purified water by a pump from a distribution pipe network of a water supply system arranged through a pipeline from a distribution area to a terminal consumer, in a distribution block to be controlled, Pipe resistance is modeled based on actual process data of inflow rate, discharge pressure, terminal pressure, and demand volume, and control performance degradation caused by demand fluctuations and aging of pipeline network processes can be suppressed using the model.
  • a distribution pressure control device is provided.
  • Patent Document 2 in order to precisely control the end pressure in response to an interchange between water distribution areas or in case of an abnormality such as a fire, the state of the water distribution pipe network is simulated using real-time process data. It realizes water distribution control that can be set by automatically calculating the optimum operation amount for the operation point including the injection point.
  • Patent Document 1 it is possible to maintain the control accuracy corresponding to the process characteristic change due to aging, but the modeling error of the pipe resistance model is not taken into consideration, and the terminal pressure is precisely controlled to the limit lower limit value. There is a problem that it is difficult to do. This consumes extra pump energy. In addition, there is a problem that it is difficult to maintain control performance in response to sudden disturbances such as the flow rate of fire extinguishing plugs, which is different from the demands of homes and factories.
  • Patent Document 2 it is possible to control the end pressure by capturing pressure fluctuations in the water distribution system using a pipe network model, but because the calculation load of the pipe network calculation is large and the control cycle is large, the flow rate of digestive plugs etc. decreases rapidly. There is a problem that it is difficult to control in response to various flow rate changes. That is, there is a problem that the terminal pressure deviates from the target value more than expected.
  • An object of the present invention is to provide a water distribution pressure control device that enhances the performance.
  • Distribution pressure control system Discharge pressure measured by the discharge pressure measuring instrument installed between the distribution pipe network and the pump, and end pressure installed between the water pipe of the distribution destination that receives water supply from the distribution pipe network and the distribution pipe network Based on the end pressure measured by the measuring instrument and the flow measured by the flow measuring instrument installed between the distribution pipe network and the pump, the distribution pipe network reflects the influence of the modeling error at a predetermined level.
  • a pipe resistance model generation unit for generating a pipe resistance model of
  • a pressure loss calculation unit for calculating a pressure loss amount of water pressure generated in the distribution pipe network based on a pipe resistance model and a distribution flow rate pattern that the distribution pressure control system has in advance
  • a target discharge pressure calculation unit that receives the target value of the terminal pressure and calculates the target discharge pressure based on the pressure loss amount and the target value of the terminal pressure
  • a rotation speed control unit that controls the rotation speed of the pump so as to achieve the target discharge pressure.
  • the pipe resistance model of the water distribution block to be controlled is modeled and its modeling error is calculated. Based on the pipe resistance model taking into account the modeling error, the end pressure is calculated even in the worst case. It is possible to control the water distribution pressure so that becomes more than the target value.
  • sudden demand disurbance
  • a target discharge pressure with a cycle shorter than the original using a pipe resistance model.
  • water distribution pressure can be precisely controlled.
  • it is possible to precisely control the water distribution pressure by constructing an original pipe resistance model that takes into account the sudden demand model (disturbance) that is different from the original demand pattern.
  • Example 1 will be described with reference to FIGS.
  • FIG. 1 is a configuration diagram of a water distribution pressure control system according to the first embodiment.
  • the control system includes a distribution pipe network 1, a distribution reservoir 11, a first pressure sensor 2 that measures discharge pressure, a second pressure sensor 3 that measures terminal pressure, a flow rate sensor 4 that measures distribution flow rate, and pumps 8 and 9. 10, rotational speed sensors 5, 6, 7 for measuring the pump rotational speed, DB (database) 101 for storing measurement time series data, pipe resistance model identification means 102, measured values by the various sensors described above, pipe resistance model
  • the water supply pressure control device 100 controls the pump rotational speed so as to realize the target terminal pressure with the target terminal pressure as an input.
  • the first pressure sensor 2 is a sensor that measures the pressure (discharge pressure) of water distributed from the pump to the water distribution network 1 and is installed between the pumps 8, 9, 10 and the water distribution network 1.
  • the second pressure sensor 3 is a sensor for measuring a water distribution pressure (terminal pressure) to a water pipe of a supply destination (also referred to as a water distribution destination) that receives water supply from the water distribution pipe network 1. It is installed at the boundary with the previous water pipe.
  • the flow rate sensor 4 is a sensor that measures the flow rate of water distributed from the pump to the water distribution network 1, and is installed between the pumps 8, 9, 10 and the water distribution network 1.
  • Each of the DB 101, the pipe resistance model identification means 102, and the water distribution pressure control device 100 is a computer having a processor, a memory, and a storage device such as an HDD. That is, the DB 101 obtains measurement values from the various sensors described above by the processor executing a program stored in the memory, and saves the measured values as DB data in a storage device.
  • the pipe resistance model identification means 102 accesses the DB 101 by the processor executing a program stored in the memory, acquires the measured values of various sensors, models the pipe resistance, and estimates modeling errors. Calculate the value.
  • various means described later included in the water distribution pressure control apparatus 100 are realized by the processor executing various programs stored in the memory. Note that the DB 1010, the pipe resistance model identification unit 102, and the water distribution pressure control device 100 may be configured by different computers or by the same computer.
  • the distribution water pressure control device 100 includes a demand prediction unit 103, a pressure loss calculation unit 104, a target discharge pressure calculation unit 105, and a rotation speed control unit 107.
  • the pressure sensors 2 and 3 are respectively installed at the entrance and the end of the water distribution pipe network, and measure the discharge pressure and the end pressure, respectively.
  • the flow sensor 4 is installed at the entrance of the distribution pipe network and measures the distribution flow rate.
  • the DB 101 stores the values of various sensors at a predetermined time, that is, the values of the field flow rate, the discharge pressure, and the terminal pressure.
  • a predetermined time that is, the values of the field flow rate, the discharge pressure, and the terminal pressure.
  • An example is shown in FIG. In this example, data is measured and stored every 3 hours. It is also possible to improve the accuracy of pipe resistance model identification described later by shortening the measurement cycle.
  • the pipe resistance identification means 102 uses the data stored in the database to model the pipe resistance model and estimate the level of modeling error.
  • the pipe resistance model is given by the following equation and is stored in the memory of a computer constituting the pipe resistance identifying means 102.
  • P Pe + h + k ⁇ Q ⁇ (1) here, P: Discharge pressure (m) Pe: Terminal pressure (m) h: Elevation at discharge pressure measurement point (m)-Elevation at end pressure measurement point (m) k: Constant Q: Water distribution flow rate (m 3 / s) ⁇ : Constant (uses values of 1.85 and 2.0) h is a known real number, and is set in advance in a memory of a computer constituting the pipe resistance identifying means 102. Since the time series data of P, Pe, and Q exist in the DB 101, the pipe resistance identification unit 102 can estimate (calculate) the constant k by the least square method using the equation (1). Here, ⁇ can also be estimated together with k as an unknown parameter. When calculating ⁇ , the pipe resistance identifying means 102 applies the least square method after calculating the logarithm of both sides of the equation (1).
  • the pipe resistance identification means 102 can estimate the standard error ⁇ k representing the variation of the coefficient estimated value together with the estimated value k0 of the coefficient k by the least square method. This represents how much the coefficient k varies around the estimated value (expected value) as a standard deviation.
  • the probability that the coefficient k falls between k0-2 ⁇ k and k0 + 2 ⁇ k is about 95%.
  • the pressure loss H is (P-Pe).
  • the distribution pressure control device 100 stores the demand pattern data for each season and day of the week stored in the storage device (that is, the distribution flow rate pattern data, for example, the demand pattern in FIG. 5). To predict future demand. For example, if the control period of the control device is 5 minutes, the current demand Q0 and the demand Q2.5 2.5 minutes ahead are searched. When the current distribution flow rate measurement value is Q, the demand forecast amount Qf is calculated by the following equation.
  • the pressure loss calculation means 104 calculates the pressure loss H based on the following equation.
  • the target discharge pressure calculation means 105 receives the input of the target end pressure Pe0, adds the pressure loss to this, and calculates the target discharge pressure P0 by the following equation.
  • FIG. 6 shows a performance curve of a pump illustrating the performance characteristic data of the pump that the water distribution pressure control device 100 has in its storage device.
  • the vertical axis represents the flow rate Q and the horizontal axis represents the head H. ing. Performance curves for single pump operation, dual pump operation, and triple pump operation are drawn. This can be expressed as follows:
  • H fi (Q, N) (5)
  • H head
  • Q flow rate
  • N number of pump revolutions
  • f function expressing performance curve
  • i constants of 1, 2, 3 correspond to the number of pumps operated.
  • the discharge pressure control means 106 determines the number of operating pumps under the constants Q1 and Q2 (Q1 ⁇ Q2) as follows.
  • N gi (H, Q) (7) Using this equation, the target rotational speed N0 is calculated by the following equation.
  • N0 gi (P0, Qf) (8)
  • P0 target discharge pressure
  • Qf predicted demand
  • N0 pump target rotational speed
  • the pump rotational speed control means 107 controls the signal to the pump so that the measured rotational speed matches the target rotational speed.
  • the control cycle can be set to any length such as lengthening or shortening by setting in the water distribution pressure control device. If the control cycle is lengthened, the control performance is degraded, but if it is shortened, the calculation load increases. Therefore, it is desirable to set a cycle that can balance the trade-off between the two.
  • the process shown in FIG. 4 is executed by the water distribution pressure control apparatus 100.
  • the demand prediction means 103 calculates the predicted demand from the demand pattern data based on the equation (2).
  • the pressure loss calculation means 104 calculates the pressure loss based on the equation (3).
  • the target discharge pressure calculation means 105 calculates the target discharge pressure based on the equation (4).
  • the rotational speed control means 107 determines the number of operating pumps using the determination formula described in the formula (6).
  • the rotational speed control means 107 calculates the target rotational speed of the pump based on the equation (8).
  • the rotation speed control means 107 controls a signal to the pump so that the measured rotation speed matches the target rotation speed. The process ends here.
  • the terminal pressure can be maintained at a target value or higher with a high probability as shown in FIG. Moreover, the energy consumption of the pump can be minimized by setting the target discharge pressure to the lower limit.
  • a pressure control method capable of maintaining the terminal pressure at a target value even when sudden demand such as digestive plug flow occurs.
  • Fig. 8 shows the overall configuration of the water distribution pressure control system.
  • the water distribution pipe network 1 is provided with digestive plugs 801 and 802, the sensors 803 and 804 for measuring the flow rate of the digestive plugs are provided, and a temporary provision in the water distribution pressure control device.
  • a processing determination means 805 is provided. Other processes are the same as those in the first embodiment.
  • the temporary process determination means 805 determines whether or not a temporary control process is necessary when the digestive plug flow rate is generated, and activates the water distribution pressure control process shown in FIG. 4 when the temporary control process is necessary. .
  • the process by the temporary process determination means 805 is executed at a considerably shorter period, for example, 100 ms than the control period (5 minutes) of the water distribution pressure control process shown in FIG.
  • the temporary processing determination unit 805 determines whether the following conditions are satisfied.
  • FIG. 10 shows a flow of this temporary processing.
  • the process shown in FIG. 10 is executed with a startup period of 100 ms.
  • the temporary processing determination means 805 calculates the changes ⁇ q1 and ⁇ q2 in the digestive plug flow based on the following equations.
  • step 1002 the temporary processing determination unit 805 determines whether or not the amount of change is equal to or greater than a predetermined threshold value. If it is less than the predetermined threshold, the process ends.
  • step 1003 the temporary process determination means 805 starts the water distribution pressure control process shown in FIG. However, the demand forecast 401 is not executed. Instead of the demand pattern data, the demand prediction means 103 acquires the latest flow rate measurement value from the flow rate sensor 4 and sets this value as Qf. Thereafter, each means calculates various state quantities based on this Qf.
  • FIG. 9 shows the effect of the second embodiment.
  • the terminal pressure is greatly reduced immediately after the generation of the digestive plug flow, but this can be prevented by using the method of the present invention.
  • a present Example has shown the case where there are two digestive plugs, the case where there are three or more digestive plugs can be handled by the same process.
  • a fire hydrant is used as an example of a case where sudden demand for water is required.
  • the fire hydrant may not be used as long as it generates a demand not based on the demand pattern.
  • Example 3 will be described with reference to FIGS.
  • the end pressure is controlled with higher accuracy by using a more precise model considering the digestive plug flow rate as the pipe resistance model.
  • FIG. 11 shows an overall configuration diagram of the water distribution pressure control system. The difference from FIG. 8 is that a digestive plug flow rate measurement value is added to the input of the database. In consideration of these digestive plug flow rates, the pipeline resistance model identifying means 1102 in this embodiment constructs a pipeline resistance model. The database 1101 stores the flow rate for each hydrant in addition to the original flow rate and pressure.
  • the following model is used as the pipe resistance model.
  • the pipe resistance model identification means 1102 estimates the coefficients m1, m2, and m3 by the least square method using the time series of pressure and flow rate stored in the database 1101, and standard errors ⁇ m1, ⁇ m2, and ⁇ m3 is calculated. q uses the flow rate for each hydrant, and calculates the coefficient value and standard miscalculation for each hydrant as shown in FIG. Using these calculated values, the pressure loss calculating means 1103 calculates the pressure loss H by the following equation.
  • FIG. 13 shows a flow of control processing corresponding to a sudden change in demand, such as a fire hydrant flow rate.
  • the processing in steps 1001 and 1002 is the same as the processing in steps 1001 and 1002 in FIG. 10 and is executed by the temporary processing determination unit 805.
  • step 1301 the table of FIG. 12 is searched to obtain a coefficient value and a standard error corresponding to the fire hydrant in which the flow rate is generated.
  • the table shown in FIG. 12 is a coefficient calculated by the least square method by the pipe resistance model path means 1102, and the water distribution pressure control device 100 acquires the latest coefficient value from the pipe resistance model path means 1102 and stores it in the memory. Stored in
  • step 1302 the pressure loss calculation means 1103 calculates the pressure loss using the equation (12).
  • the subsequent processing in steps 403 to 406 is equivalent to the processing of the same step number in FIG.
  • the demand prediction unit 103 sets the latest flow rate measurement value acquired from the flow rate sensor 4 as Qf instead of the demand pattern data.
  • this process is performed in parallel with the water distribution pressure control (FIG. 4) performed every 5 minutes normally performed.
  • the third embodiment it is possible to precisely control the terminal pressure with respect to the sudden demand such as the hydrant flow rate.
  • this embodiment can be used for precise control of the end pressure when there is water accommodation by replacing the flow rate of the digestive plug, which is a disturbance, with the accommodation flow rate of the water distribution section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Fluid Pressure (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

 配水圧制御システムは、 配水管網とポンプの間に設置された吐出圧力計測器が計測する吐出圧と、配水管網から水の供給を受ける配水先の水道管と当該配水管網との間に設置された末端圧計測器が計測する末端圧と、配水管網とポンプとの間に設置された流量計測器が計測する流量とに基いて、所定のレベルのモデル化誤差による影響を反映させた当該配水管網の管路抵抗モデルを生成する管路抵抗モデル生成部と、 管路抵抗モデルと予め配水圧制御システムが有する配水流量パターンとに基いて、配水管網の中で生じる水圧の圧力損失量を算出する圧力損失計算部と、 末端圧の目標値を受信し、圧力損失量と末端圧の目標値とに基いて、目標吐出圧を計算する目標吐出圧計算部と、 目標吐出圧を達成するようポンプの回転数を制御する回転数制御部とを有する。

Description

配水圧制御システム
 浄水をポンプにより、配水地から上水道の配水管網を経て末端の需要家へ送水する場合の配水圧制御装置に関する。特に、配水圧制御に利用する管路抵抗モデルのモデル化誤差や、火災が起こったときの突発的な水需要や配水区間の水融通などなど配水系に対する外乱を考慮して、配水管網の末端圧を精密制御可能な配水圧制御装置に関する。
 特許文献1には、配水地から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプにより送水する配水圧制御装置において、制御対象となる配水ブロックにおいて、その流入流量と吐出圧、末端圧、需要量の実プロセスデータに基づいて管路抵抗をモデル化し、そのモデルを活用して需要変動や管路網プロセスの経年変化によって生じる制御性能劣化を抑制可能な配水圧制御装置を提供している。
 特許文献2には、配水エリア間の融通が行われた場合や火災などの異常時に対応して末端圧を精密に制御するため、リアルタイムのプロセスデータにより配水管網の状態をシミュレーションし、各配水注入点を含む操作点に対して最適な操作量を自動的に算出して設定可能な配水コントロールを実現するものである。
特開2009-209523 特開2006-104777
 特許文献1は、経年変化によるプロセス特性変化に対応して制御精度を維持することは可能であるが、管路抵抗モデルのモデル化誤差が未考慮であり、末端圧を限界下限値に精密制御するのは困難という問題がある。これにより余分なポンプエネルギーが消費されることになる。また、本来の家庭、工場などの需要と異なる火災の消化栓流量など突発な外乱に対応して制御性能を維持するのは困難という問題がある。
 特許文献2では、管網モデルを用いて配水系細部の圧力変動を捕らえて末端圧を制御可能であるが、管網計算の演算負荷が大きく制御周期が大きくなるため、消化栓流量などの急減な流量変化に対応した制御が困難という問題がある。すなわち、末端圧が想定以上に目標値からはずれるという問題がある。
 そこで、制御対象となる配水ブロックの管路抵抗モデルをモデル化するとともにそのモデル化誤差を算出し、圧力モデル化誤差を考慮した管路抵抗モデルに基づいて、末端圧が目標値以上になる可能性を高めるような配水圧制御装置を提供することにある。
 配水圧制御システムは、
 配水管網とポンプの間に設置された吐出圧力計測器が計測する吐出圧と、配水管網から水の供給を受ける配水先の水道管と当該配水管網との間に設置された末端圧計測器が計測する末端圧と、配水管網とポンプとの間に設置された流量計測器が計測する流量とに基いて、所定のレベルのモデル化誤差による影響を反映させた当該配水管網の管路抵抗モデルを生成する管路抵抗モデル生成部と、
 管路抵抗モデルと予め配水圧制御システムが有する配水流量パターンとに基いて、配水管網の中で生じる水圧の圧力損失量を算出する圧力損失計算部と、
 末端圧の目標値を受信し、圧力損失量と末端圧の目標値とに基いて、目標吐出圧を計算する目標吐出圧計算部と、
 目標吐出圧を達成するようポンプの回転数を制御する回転数制御部とを有する。
 本発明によれば、制御対象となる配水ブロックの管路抵抗モデルをモデル化するとともにそのモデル化誤差を算出し、モデル化誤差を考慮した管路抵抗モデルに基づいて、最悪ケースにおいても末端圧が目標値以上になるような配水圧を制御できる。また、消化栓流量など通常の需要パターンと異なる突発的な需要(外乱)を流量センサで計測することで突発需要を速やかに判定し、管路抵抗モデルを用いて本来より短い周期で目標吐出圧を計算することで、配水圧を精密制御できる。また、本来の需要パターンと異なる突発需要モデル(外乱)を考慮した独自の管路抵抗モデルを構築して配水圧を精密制御できる。
配水圧制御システムの構成例を示す図である。 データベースに格納されるデータの例を示す図である。 流量と圧力損失の関係例を表すグラフである。 配水圧制御処理例を示すフローチャートである。 需要パターンの例を示す図である。 ポンプの流量-揚程特性の例を示す図である。 推定値のばらつきを考慮した場合と考慮しない場合の制御性能の一例を示す図である。 配水圧制御システムの他の構成例を示す図である。 消化栓流量が発生した場合とそうでない場合の末端圧の変化の一例を示す図である 配水圧制御処理の他の一例を示すフローチャートである。 配水圧制御システムの他の構成例を示す図である。 管路抵抗モデルの係数値と係数の標準誤差の一例を示す図である。 配水圧制御処理の他の一例を示すフローチャートである。
 本発明の実施形態を、図面を用いて説明する。
 図1から図7を参照し実施例1を説明する。
 図1は、実施例1の配水圧制御システムの構成図である。制御システムは、配水管網1、配水池11、吐出圧を計測する第1の圧力センサ2、末端圧を計測する第2の圧力センサ3、配水流量を計測する流量センサ4、ポンプ8、9、10、ポンプ回転数を計測する回転数センサ5、6、7、計測時系列データを蓄えるDB(データベース)101、管路抵抗モデル同定手段102、前述の各種センサによる計測値、管路抵抗モデル、目標末端圧を入力として、目標末端圧を実現するようポンプ回転数を制御する配水圧制御装置100からなる。
 第1の圧力センサ2はポンプから配水管網1に配水される水の圧力(吐出圧)を計測するセンサで、ポンプ8、9、10と配水管網1との間に設置されている。第2の圧力センサ3は配水管網1から水の供給を受ける供給先(配水先とも呼ぶ)の水道管への水の配水圧力(末端圧)を計測するセンサで、配水管網1と供給先の水道管との境界に設置される。流量センサ4はポンプから配水管網1へ配水される水の流量を計測するセンサであって、ポンプ8、9、10と配水管網1との間に設置される。
 DB101、管路抵抗モデル同定手段102、配水圧制御装置100は各々、プロセッサとメモリ、HDDなどの記憶装置を有する計算機である。即ち、DB101はプロセッサがメモリ内に格納されたプログラムを実行することにより、先述の各種センサから計測値を取得して、これをDBデータとして記憶装置に保存する。管路抵抗モデル同定手段102はプロセッサがメモリ内に格納されたプログラムを実行することによって、DB101にアクセスし、各種センサの計測値を取得して管路抵抗をモデル化すると共にモデル化誤差の推定値を計算する。配水圧制御装置100ではメモリに格納された各種プログラムをプロセッサが実行することにより、配水圧制御装置100が有する後述の各種手段が実現される。 なお、DB1010、管路抵抗モデル同定手段102、配水圧制御装置100は各々別の計算機によって構成されていても、同じ計算機によって構成されていても構わない。
 配水圧制御装置100は、需要予測手段103、圧力損失計算手段104、目標吐出圧計算手段105、回転数制御手段107を有する。圧力センサ2、3はそれぞれ、配水管網の入り口、末端に設置され、吐出圧、末端圧を各々計測する。流量センサ4は、配水管網の入り口に設置され配水流量を計測する。
 DB101には、所定時刻における各種センサの計測、即ち野流量、吐出圧、末端圧の値が格納されるようになっている。図2にその一例を示す。本例では、3時間ごとにデータが計測され記憶されるようになっている。計測周期を短くして、後述する管路抵抗モデル同定精度を向上することもできる。
 管路抵抗同定手段102では、データベースに格納されたデータを利用して、管路抵抗モデルをモデル化するとともにモデル化誤算のレベルを推定する。ここで管路抵抗モデルとは、次式で与えられ、管路抵抗同定手段102を構成する計算機のメモリに記憶される。
  P=Pe+h+k・Qα                   (1)
 ここに、
  P:吐出圧(m)
  Pe:末端圧(m)
  h:吐出圧測定点の標高(m)-末端圧測定点の標高(m)
  k:定数
  Q:配水流量(m3/s)
  α:定数(1.85や2.0の値を活用)
 hは既知の実数であり管路抵抗同定手段102を構成する計算機のメモリに予め設定されている。P、Pe、Qの時系列データはDB101内に存在するので、管路抵抗同定手段102は式(1)を用いた最小2乗法により定数kを推定(算出)できる。ここでは、αも未知パラメータとして、kと共に推定することもできる。αを算出する場合は、管路抵抗同定手段102は式(1)の両辺の対数を計算した上で最小二乗法を適用する。
 管路抵抗同定手段102は最小二乗法により係数kの推定値k0とともに、係数推定値のばらつきを表す標準誤差σkを推定できる。これは係数kがその推定値(期待値)を中心にどの程度ばらつくかを標準偏差で表すものである。
 たとえば、係数kがk0-2σk以上、k0+2σk以下に入る確率は、約95%になる。これをグラフで示したものが図3である。グラフで圧力損失Hは(P-Pe)である。点線で表された2つの曲線に囲まれた範囲が95%信頼区間である。末端圧が最も大きく低下するのは上の曲線の場合、すなわちk=k0+2σkの場である。従ってk=k0+2σkの場合の管路抵抗モデルを用いて制御を行えば、末端圧をほぼ目標値以上に保つことができる。
 図7は係数kのばらつきを考慮しない管路抵抗モデルを用いて制御を行った場合と、係数kのばらつきを考慮してk=k0+2σkの場合の管路抵抗モデルを用いて制御をおこなった場合を比較したものである。係数kのばらつきを考慮しないと目標圧をたびたび下回る可能性があるのに対して、係数kのばらつきを考慮してk=k0+2σkの場合の管路抵抗モデルを用いて制御を行えば、97.5%の確率で実際の末端圧は目標値以上になる(実際の末端圧が目標値以下になるのは2.5%の確率)ので、目標圧以上に末端圧を制御できる可能性が高まる。更にモデル値の目標圧をぎりぎりの下限に設定することでポンプ消費エネルギーを最小化できる。
 さて、この制御を実現するための配水圧制御装置の処理概要を図1、図5を参照しながら説明する。
 図1の需要予測手段103では、例えば、配水圧制御装置100がその記憶装置内に格納されている、季節や曜日ごとの需要パターンデータ(即ち、配水流量パターンデータ、例えば図5の需要パターンを示すデータ)を用いて、将来の需要を予測する。例えば、制御装置の制御周期が5分であれば、現時点の需要Q0、及び、2.5分先の需要Q2.5を検索する。現在の配水流量計測値をQとするとき、需要予測量Qfを次式で計算する。
  Qf= Q-Q0+Q2.5                     (2)
 次に、圧力損失計算手段104では、次式に基づいて圧力損失Hを計算する。
  H=h+(k0+2σk)Qf2               (3)
 目標吐出圧計算手段105では、目標末端圧Pe0の入力を受け付けて、これに圧力損失を加算し、目標吐出圧P0を次の式で算出する。
  P0=Pe0+h+(k0+2σk)Qf2          (4)
 吐出圧制御手段106、及び、回転数制御手段107では、算出された目標吐出圧が、計測吐出圧に一致するよう各ホンプへの信号によりポンプ回転数を制御する。まず吐出圧制御手段106は、目標回転数N0を決定する。図6は、配水圧制御装置100がその記憶装置内に有しているポンプの性能特性データを図示したホンプの性能曲線を表すものであり、縦軸が流量Q、横軸が揚程Hとなっている。ポンプ1台運転、2台運転、3台運転の場合の性能曲線が描かれている。これを数式で表現すると次のようになる。
   H=fi(Q,N)                  (5)
 ここで、H:揚程、Q:流量、N:ポンプ回転数、f:性能曲線を表現する関数、i:1,2,3の定数でポンプ運転台数に相当する。
 ここで、ポンプ運転台数を決定する必要があるが、それは予測流量Qfに基づいて行う。例えば、定数Q1,Q2(Q1<Q2)のもとで以下のように吐出圧制御手段106はポンプの運転台数を判定する。
  Qf<Q1の時、1台運転
Q1≦Qf<Q2の時、2台運転                 (6)
Q2≦Qf   の時、3台運転
(5)式を回転数について解いて次式を得る。
  N=gi(H,Q)                    (7)
 この式を利用して目標回転数N0は、次式で計算する。
  N0=gi(P0,Qf)                 (8)
 ここで、P0:目標吐出圧、Qf:予測需要、N0:ポンプ目標回転数
 次にポンプ回転数制御手段107では、計測回転数が目標回転数に一致するようポンプへの信号を制御する。 次に、図4に基づいて、以上のべた圧力制御装置の処理フローを説明する。この処理は、例えば、5分周期で実行されるようになっている。制御周期は配水圧制御装置への設定により、長くしたり短くしたりと任意の長さに設定することが可能である。制御周期を長くすると制御性能が劣化するが、短くすると演算負荷が大きくなるので、両者のトレードオフのバランスが取れる周期が設定されることが望ましい。尚、図4に示す処理は配水圧制御装置100によって実行される。
 まず、ステップ401では、(2)式に基づいて需要予測手段103が需要パターンデータから予測需要を計算する。ステップ402では、(3)式に基づいて圧力損失計算手段104が圧力損失を計算する。ステップ403では、(4)式に基づいて目標吐出圧計算手段105が目標吐出圧を計算する。ステップ404では、(6)式に記載した判定式を用いて回転数制御手段107がポンプ運転台数を判定する。ステップ405では、(8)式に基づいて回転数制御手段107がポンプの目標回転数を計算する。最後にステップ406では、回転数制御手段107が、計測回転数が目標回転数に一致するようポンプへの信号を制御する。以上で処理を終了する。
 以上、実施例1によれば、図7に示すように高い確率をもって末端圧を目標値以上に保持できる。また目標吐出圧をぎりぎりの下限に設定することでポンプ消費エネルギーを最小化できる。
 次に、図8から図10を参照し、第2の実施例を説明する。この実施例においては、消化栓流量などの突発需要発生時にも、末端圧を目標値に維持可能な圧力制御方法を提供するものである。
 図8に配水圧力制御システムの全体構成図を示す。実施例1と異なる点は、配水管網1に消化栓801、802が設けられている点、その消化栓流量を計測するセンサ803、804が設けられている点、配水圧制御装置内に臨時処理判定手段805が設けられている点である。その他の処理は、実施例1と同じである。
 臨時処理判定手段805は、消化栓流量発生に伴い、臨時の制御処理が必要かどうかを判定し、臨時の制御処理が必要な場合には図4に示す配水圧制御処理を起動するものである。臨時処理判定手段805による処理は、図4に示す配水圧制御処理の制御周期(5分)より、かなり短い周期例えば、100msで実行される。
 時刻tの消化栓1の流量q1(t)、消化栓2の流量q2(t)としたとき、臨時処理判定手段805は以下の条件が満足されるかどうかを判定する。
 |q1(t)-q1(t-0.1)|>ある閾値、
 あるいは、                         (9)
 |q2(t)-q2(t-0.1)|>ある閾値
 これらの条件は、消化栓流量の発生や、その停止の瞬間を判定するものである。
これらの判定条件が満たされる限り、配水圧制御装置100は100msの周期で、図4の配水圧制御処理を実行する。これにより、火災などの突発的な需要の発生や需要の消失時に手適応して末端圧の急速な低下や上昇を防止できる。
 図10に本臨時処理のフローを示す。図10に示す処理は100msの起動周期で実行される。
ステップ1001では、臨時処理判定手段805が消化栓流量の変化量Δq1、Δq2を次式に基づき計算する。
 Δq1=|q1(t)-q1(t-0.1)|        (10)
 Δq2=|q2(t)-q2(t-0.1)|        (11)
ステップ1002では、臨時処理判定手段805がこれらの変化量が予め定められた所定の閾値以上かどうかを判定する。所定の閾値未満なら処理終了、所定の閾値以上ならステップ1003に進む。ステップ1003では臨時処理判定手段805が図4に示す配水圧制御処理を起動する。但し、需要予測401は実行されない。需要パターンデータに代わり、需要予測手段103は流量センサ4から最新の流量計測値を取得しこの値をQfとする。そして以降各手段はこのQfに基いて、各種状態量を計算する。
 図9に実施例2の効果を示す。従来技術では、消化栓流量発生直後、末端圧が大きく低下するが、本発明の方式を用いると、それを防止することができる。
なお本実施例は、消化栓が2つある場合を示しているが、3個以上の場合も、同様の処理で対応可能である。
 尚、本実施形態では水の突発的な需要を要するものの例として消火栓を用いたが、需要パターンに基かない需要を生じさせるものであれば、消化栓でなくても良い。
 次に、図11から図13を参照し、実施例3を説明する。本実施例は、管路抵抗モデルとして、消化栓流量を考慮したより精緻なモデルを利用することで、より高精度に末端圧を制御しようとするものである。
 図11には、配水圧制御システムの全体構成図が示されている。図8と異なるのは、データベースの入力に消化栓流量計測値が加わっている点である。これらの消化栓流量を加味して本実施形態における管路抵抗モデル同定手段1102は管路抵抗モデルの構築を行う。データベース1101には、本来の流量、圧力に加え、消火栓ごとの流量が記憶される。
 管路抵抗モデルとして次のモデルを利用する。
 P=Pe+h+m1・Q2+m2・Q・q+m3・q2      (12)
 ここに、P:吐出圧(m)
     Pe:末端圧(m)
     h:吐出圧測定点の標高(m)-末端圧測定点の標高(m)
     k:定数
     Q:消化栓流量を除いた配水流量(本来の需要)(m3/s)
     q:消化栓流量(m3/s)
 消火栓流量変数qを本来の需要Qとは別に設けることで、モデルの精緻化を図っている。
 管路抵抗モデル同定手段1102では、データベース1101に格納された圧力、流量の時系列を利用して最小2乗法により係数m1、m2、m3を推定するとともに、それらの係数の標準誤差σm1、σm2、σm3を算出する。qは、消火栓ごとの流量を用い、図12に示すように消火栓ごとの係数値、標準誤算を計算する。これらの計算値を用いて、圧力損失計算手段1103では、圧力損失Hを次式で計算することになる。
 H=h+(m10+2・σm1)Q2+(m20+2・σm2)Q・q
                   +(m20+2・σm2)q2                                (13)
  図13に、消火栓流量などの需要急変に対応する制御処理のフローを示す。ステップ1001、1002の処理は、図10のステップ1001,1002の処理と同様であり臨時処理判定手段805によって実行される。
 ステップ1301では、図12のテーブルを検索して流量が発生している消火栓に対応する係数値、標準誤差を求める。ここで図12に示すテーブルは管路抵抗モデル道程手段1102によって最小二乗法により算出された係数であり、配水圧制御装置100は管路抵抗モデル道程手段1102から最新の係数値を取得してメモリに格納されている。
 ステップ1302では、圧力損失計算手段1103が(12)式を利用して圧力損失を計算する。その後のステップ403から406の処理は、図4の同じステップ番号の処理に等しい。但し、実施例2と同様に、需要予測手段103は需要パターンデータに代わり、流量センサ4から取得した最新流量計測値をQfとする。なお、この処理は、通常行われる5分ごとの配水圧制御(図4)と平行して実行されるものである。
 以上、実施例3によれば、消火栓流量など突発的な需要に対して、末端圧を精密制御できる。
 なお、消化栓が同時に複数起動したときも、同様の方法で管路抵抗モデルを構築しておき、対応することが可能である。
 また、本実施例は、外乱である消化栓流量を配水区間の融通流量に置き換えることで、水融通がある場合の末端圧精密制御にも利用可能なものである。
100配水圧力制御装置
101DB
102管路抵抗モデル同定手段
103需要予測手段
104圧力損失計算手段
105目標吐出圧計算手段
106吐出圧制御手段
107回転数制御手段

Claims (6)

  1.  配水地からポンプを介して配水管網へ水を配水する際の当該ポンプから当該配水管網への配水圧を制御する配水圧制御システムであって、
     前記配水管網と前記ポンプの間に設置された吐出圧力計測器が計測する吐出圧と、前記配水管網から水の供給を受ける配水先の水道管と当該配水管網との間に設置された末端圧計測器が計測する末端圧と、前記配水管網と前記ポンプとの間に設置された流量計測器が計測する流量とに基いて、所定のレベルのモデル化誤差による影響を反映させた当該配水管網の管路抵抗モデルを生成する管路抵抗モデル生成部と、
     前記管路抵抗モデルと予め配水圧制御システムが有する配水流量パターンとに基いて、前記配水管網の中で生じる水圧の圧力損失量を算出する圧力損失計算部と、
     末端圧の目標値を受信し、前記圧力損失量と末端圧の目標値とに基いて、目標吐出圧を計算する目標吐出圧計算部と、
     前記目標吐出圧を達成するよう前記ポンプの回転数を制御する回転数制御部とを有することを特徴とする配水圧制御システム。
  2.  請求項1記載の配水圧制御システムであって、
     前記管路抵抗モデル生成部は、前記吐出圧と前記末端圧と前記流量とに基いて、最小二乗法により最小二乗法により生じる標準誤差を反映させた管路抵抗モデルを生成することを特徴とする配水圧制御システム。
  3.  請求項1記載の配水圧制御システムであって、
     所定の周期毎に前記圧力損計算部が圧力損失量を計算し、前記目標吐出圧計算部が目標吐出圧を計算し、前記回転数制御部がポンプの回転数を制御することを特徴とする配水圧制御システム。
  4.  請求項3記載の配水圧制御システムであって、
     更に、前記配水管網の所定の位置に設置された流量計測器が計測した流量に基いて、当該流量が所定の条件を満たすか否かを判定し、当該流量が所定の条件を満たす場合には、前記周期に関わらず、前記圧力損計算部に前記管路抵抗モデルと前記配水管網と前記ポンプとの間に設置された流量計測器が計測する流量に基いて圧力損失量を計算させ、前記目標吐出圧計算部に目標吐出圧を計算させ、前記回転数制御部にポンプの回転数を制御させる臨時処理部を有することを特徴とする配水圧制御システム。
  5.  請求項3記載の配水制御システムであって、
     更に、前記配水管網の所定の位置に設置された流量計測器が計測した流量に基いて、当該流量が所定の条件を満たす場合には、
     前記管路抵抗モデル生成部に、前記所定の位置に設置された流量計測器が計測した流量と、前記配水管網と前記ポンプとの間に設置された流量計測器が計測する流量と、前記吐出圧と、前記末端圧とに基いて管路抵抗モデルを生成を生成させ、
     前記周期に関わらず、前記圧力損失計算部に当該管路抵抗モデルと前記配水管網と前記ポンプとの間に設置された流量計測器が計測する流量とに基いて圧力損失量を計算させ、前記目標吐出圧計算部に目標吐出圧を計算させ、前記回転数制御部にポンプの回転数を制御させる臨時処理部を有することを特徴とする配水圧制御システム。
  6.  請求項4に記載の配水圧制御システムであって、流量計測器が設置される前記配水管網の所定の位置とは、前記配水管網に設置されている消火栓への配水口であることを特徴とする配水圧制御システム。
PCT/JP2012/001265 2011-03-18 2012-02-24 配水圧制御システム WO2012127783A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011060027A JP5723642B2 (ja) 2011-03-18 2011-03-18 配水圧制御システム
JP2011-060027 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012127783A1 true WO2012127783A1 (ja) 2012-09-27

Family

ID=46810259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001265 WO2012127783A1 (ja) 2011-03-18 2012-02-24 配水圧制御システム

Country Status (3)

Country Link
JP (1) JP5723642B2 (ja)
CN (1) CN102677740B (ja)
WO (1) WO2012127783A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915926A3 (de) * 2014-02-05 2015-10-28 Wilo Se Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes
RU2620742C1 (ru) * 2015-12-21 2017-05-29 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Способ энергосбережения в системах водоснабжения
JP2017522558A (ja) * 2014-07-18 2017-08-10 カーエスベー・アクチエンゲゼルシャフトKsb Akti ポンプの吐出量の決定
US9863425B2 (en) 2013-03-11 2018-01-09 Grundfos Holding A/S Pump system
CN108337310A (zh) * 2018-02-02 2018-07-27 武汉远众科技有限公司 一种基于大数据的二次供水分布算法
CN112099542A (zh) * 2020-09-10 2020-12-18 熊猫智慧水务有限公司 一种智能调压节水方法
WO2021140885A1 (ja) * 2020-01-06 2021-07-15 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム
CN117348618A (zh) * 2023-11-16 2024-01-05 北京人卫中药饮片有限公司 一种药材自动清洗过程水压控制方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104153424B (zh) * 2014-06-10 2015-10-28 青岛沈源水务科技有限公司 一种基于模型的二次供水设备控制方法及其控制系统
CN104208838B (zh) * 2014-09-05 2017-12-29 徐工消防安全装备有限公司 高层供水的控制方法和系统、以及消防车
GB2549209B (en) 2014-10-29 2020-11-04 Nec Corp Tap water management system, tap water management device, tap water management method, and tap water management program recording medium
WO2017141884A1 (ja) * 2016-02-19 2017-08-24 日本電気株式会社 制御装置、制御システム、制御方法及びコンピュータ読み取り可能記録媒体
ES2900473T3 (es) * 2016-07-08 2022-03-17 Suez Groupe Procedimiento y sistema mejorados para estimar los flujos de agua en los límites de una subred de una red de distribución de agua
CN110080341B (zh) * 2019-06-03 2024-01-30 太原科技大学 一种二次供水系统监测装置及控制模型
CN114110735B (zh) * 2021-11-04 2023-05-23 南京宁绿信节能环保科技有限公司 一种暖通空调水系统变流量节能自控系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141018A (ja) * 1984-12-14 1986-06-28 Hitachi Ltd 配水圧力制御システム
JP2006104777A (ja) * 2004-10-06 2006-04-20 Yokogawa Electric Corp 配水コントロールシステム
JP2009209523A (ja) * 2008-02-29 2009-09-17 Toshiba Corp 配水圧力最適制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279392A (ja) * 2002-03-25 2003-10-02 Susumu Hirowatari 圧力管路または管網で生じた異常流量の発生位置を推定する方法
CN2703798Y (zh) * 2004-06-01 2005-06-08 山东双轮集团股份有限公司 管网无负压供水设备
JP4573679B2 (ja) * 2005-03-28 2010-11-04 ダイハツ工業株式会社 内燃機関の制御装置
CN1730948A (zh) * 2005-08-26 2006-02-08 浙江科技学院 水泵的变压变流量控制方法与控制系统
JP2010146266A (ja) * 2008-12-18 2010-07-01 Seiko Epson Corp 表示装置及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141018A (ja) * 1984-12-14 1986-06-28 Hitachi Ltd 配水圧力制御システム
JP2006104777A (ja) * 2004-10-06 2006-04-20 Yokogawa Electric Corp 配水コントロールシステム
JP2009209523A (ja) * 2008-02-29 2009-09-17 Toshiba Corp 配水圧力最適制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863425B2 (en) 2013-03-11 2018-01-09 Grundfos Holding A/S Pump system
US10323645B2 (en) 2013-03-11 2019-06-18 Grundfos Holding A/S Regulating pump device in water supply mains, method
EP2915926A3 (de) * 2014-02-05 2015-10-28 Wilo Se Verfahren zur Bestimmung der Systemkennlinie eines Verteilernetzes
JP2017522558A (ja) * 2014-07-18 2017-08-10 カーエスベー・アクチエンゲゼルシャフトKsb Akti ポンプの吐出量の決定
RU2620742C1 (ru) * 2015-12-21 2017-05-29 Государственное Унитарное Предприятие "Водоканал Санкт-Петербурга" Способ энергосбережения в системах водоснабжения
CN108337310A (zh) * 2018-02-02 2018-07-27 武汉远众科技有限公司 一种基于大数据的二次供水分布算法
WO2021140885A1 (ja) * 2020-01-06 2021-07-15 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム
JP7291637B2 (ja) 2020-01-06 2023-06-15 株式会社日立産機システム 圧縮機制御装置の設定値決定支援装置及び設定値決定支援方法、並びに圧縮機運転制御システム
CN112099542A (zh) * 2020-09-10 2020-12-18 熊猫智慧水务有限公司 一种智能调压节水方法
CN117348618A (zh) * 2023-11-16 2024-01-05 北京人卫中药饮片有限公司 一种药材自动清洗过程水压控制方法及系统

Also Published As

Publication number Publication date
JP2012193585A (ja) 2012-10-11
JP5723642B2 (ja) 2015-05-27
CN102677740A (zh) 2012-09-19
CN102677740B (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5723642B2 (ja) 配水圧制御システム
JP5901140B2 (ja) システムの高い可用性のためにセンサデータを補間する方法、コンピュータプログラム、システム。
KR102189649B1 (ko) 냉각탑 시스템의 동적 모니터링, 진단 및 제어
US9147018B2 (en) Method and system for use in controlling a pressure vessel
JP2013096311A (ja) ポンプ制御システム
CN113464415B (zh) 控制空压站的空压机的方法、设备和计算机存储介质
JP6378489B2 (ja) 給水ポンプ再循環弁のためにオーバライド制御を提供するためのシステムおよび方法
US20150241304A1 (en) Method for the computer-assisted monitoring of the operation of a technical system, particularly of an electrical energy-generating installation
TW202400929A (zh) 用於控制氣體供應系統之氣體供應之方法及設備
AU2013343647B2 (en) A method for operating a compressor in case of failure of one or more measure signal
US10852177B2 (en) Calibration apparatus and sensitivity determining module for virtual flow meter and associated methods
CN115237081B (zh) 确定具有异常的后处理设备的方法、设备和介质
GB2561519A (en) Control device, control system, control method, and program
US10775211B2 (en) Real-time vessel monitoring system
US20140238147A1 (en) Fuel instrument determination device, flow meter device, gas meter and fuel instrument determination method
WO2017154301A1 (ja) プラント評価装置及びプラント評価方法
US9507344B2 (en) Index generation and embedded fusion for controller performance monitoring
US11320164B2 (en) Continuous monitoring for early failure detection in climate control systems
JP6874847B2 (ja) 状態分析装置、状態分析方法及びプログラム
JP7043261B2 (ja) モデル予測コントローラ及び推定器の機器点検のためのシステム及び方法
US20230315028A1 (en) Estimation device and estimation method
JP6917558B2 (ja) ガス器具管理装置及びその運転方法
US11248817B2 (en) Continuous monitoring system for early failure detection in HVAC systems
JP6546869B2 (ja) 流量測定装置およびその運転方法
JP2024027909A (ja) 流量推定装置、流量推定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760662

Country of ref document: EP

Kind code of ref document: A1