JP6670295B2 - 低産出量井戸を効果的に使用するためのシステムおよび方法 - Google Patents

低産出量井戸を効果的に使用するためのシステムおよび方法 Download PDF

Info

Publication number
JP6670295B2
JP6670295B2 JP2017505563A JP2017505563A JP6670295B2 JP 6670295 B2 JP6670295 B2 JP 6670295B2 JP 2017505563 A JP2017505563 A JP 2017505563A JP 2017505563 A JP2017505563 A JP 2017505563A JP 6670295 B2 JP6670295 B2 JP 6670295B2
Authority
JP
Japan
Prior art keywords
well
pump
pressure
tank
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017505563A
Other languages
English (en)
Other versions
JP2017524084A5 (ja
JP2017524084A (ja
Inventor
エップ ケヴィン
エップ ケヴィン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kevin Epp
Original Assignee
Kevin Epp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kevin Epp filed Critical Kevin Epp
Publication of JP2017524084A publication Critical patent/JP2017524084A/ja
Publication of JP2017524084A5 publication Critical patent/JP2017524084A5/ja
Application granted granted Critical
Publication of JP6670295B2 publication Critical patent/JP6670295B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • E03B3/15Keeping wells in good condition, e.g. by cleaning, repairing, regenerating; Maintaining or enlarging the capacity of wells or water-bearing layers
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B11/00Arrangements or adaptations of tanks for water supply
    • E03B11/02Arrangements or adaptations of tanks for water supply for domestic or like local water supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • E03B3/12Obtaining and confining water by means of wells by means of vertical pipe wells
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • E03B5/02Use of pumping plants or installations; Layouts thereof arranged in buildings
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B5/00Use of pumping plants or installations; Layouts thereof
    • E03B5/04Use of pumping plants or installations; Layouts thereof arranged in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

関連出願の相互参照
本願は、2014年7月28日に出願され、参照により本明細書に援用される米国仮特許出願第62029692号明細書の利益を主張するものである。
本発明は、井戸産出物に関する。より詳細には、本発明は、低産出量井戸に関する。
典型的な井戸は、地面に掘られ、ケーシングで覆われた中空の立坑であり、この立坑は、地面の帯水層の階層に侵入する。この侵入により、水が立坑に流入するのが可能になり、次いで、水を立坑から汲み上げることができる。しかし、一部の井戸では、水は使用者が必要とする最大使用量に対して十分な速度(補充速度)で立坑に流入しない。水が井戸坑から抽出される速度が、水が地層から立坑に流入する速度を超える場合に、立坑内の水位はだんだん下がる。最終的に、水位が立坑の底部まで落ちることがあり、井戸は、少なくとも一時的に「干上がった」とされる。井戸を汲み干す、またはほぼ汲み干すことで、通常、冷却および潤滑用の水を受け入れるように設計されたポンプが損傷することがある。井戸を汲み干す、またはほぼ汲み干すことで、別の形で井戸を害することがある。立坑内の水位が、隣接する地層の地下水面よりも低くなると、堆積物が立坑に流入する可能性が高くなる。連続する過剰なポンプ汲み上げ動作は、長い時間をかけて産出水を劣化させることがある。
使用速度が補充速度を頻繁に超える井戸を効果的に使用するシステムおよび方法が必要である。
工学的管理および監視法を使用することで、低産出量井戸最適化システムは、低産出量井戸の所有者が、現在の給水量に対して増量した産出量を得ることができるようにする。このシステムおよび方法は、既存の低産出量井戸に大きな修正を加えることなしに実施することができる。このシステムは、要求に応じて十分な水を産出できず、最大使用時に、ポンプで汲み干される井戸用に設計されている。システムは、産出水が低産出量井戸から入手できるときに、産出水のすべてを要求するために、1日24時間体制でポンプをオフ/オンし、次いで、最大使用量を賄うために、必要に応じて産出水をハウスに送る。圧力変換器の使用により、計画に合わせて入力レベルおよびデータを変えることができるようになる。例えば、これは、家族が、新たな井戸を掘るコストおよびリスクなしに、分当たり1/4ガロンの水で生活できるようにするし、または既存の井戸から消火スプリンクラシステムを追加できるようにする。
方法は、圧力変換器が、貯蔵タンクの水が少なくなっていることを制御ボックスに知らせることで始まる。次いで、コントローラは、井戸ポンプを作動させ、次いで、水は、背圧を示す圧力変換器を通り過ぎ、調整器を通って貯蔵タンクまでパイプを上に向かって流れる。コントローラは、タンクの水位および背圧レベルを絶えず監視して、貯蔵タンクへの過剰な充填か、または井戸からの過剰な汲み上げのいずれかを止めるために、井戸をいつ停止させるべきかを知らせる。これは、「インテリジェント」コントローラが、(井戸に残った水の高さ位置を示す)背圧に応じて調整を行い、どれくらいの時間取水するか、および再度取水できるまでどのくらいの時間待機するかを決める段階である。これは、タンク内の水の必要性と、井戸内の水の入手可能性とに応じて変わる。システムは、井戸をポンプで汲み干すのを防止し、ポンプおよび井戸を良好な動作状態に保つように設計される。井戸内の水が少なくなった場合、コントローラは、ポンプを停止させ、汲み上げプロセスを再始動させるのに特定の時間だけ待機する。同時に、システムは、貯蔵タンクに十分な量の水がある限り、エンドユーザに向かう水の圧力を監視し、適切な圧力を維持するために、必要に応じて、昇圧ポンプを作動させる。貯蔵タンク内の水が少なすぎる場合、昇圧ポンプは、昇圧ポンプを再始動させるための最小水位に達するまで待機する。システムの何らかの不具合による過剰充填のあらゆる可能性を阻止するために、貯蔵タンクの上部に、フェイルセーフ越流遮断スイッチもある。
本発明は、限定するものではないが、添付図面に示す第1の実施形態を用いて説明され、添付図面において、同じ参照符号は、同様の要素を示す。
本明細書に組み込まれ、本明細書の一部を構成する添付図面は、本発明の1つまたは複数の実施形態を示し、詳細な説明と共に、本発明の原理および実施例を説明する助けとなる。
単一の井戸および単一の貯蔵タンクを有する低産出量井戸汲み上げシステムの第1の実施形態を示している。 複数の井戸および複数の貯蔵タンクを有する低産出量井戸汲み上げシステムの第2の実施形態を示している。 複数の井戸および単一の貯蔵タンクを有する低産出量井戸汲み上げシステムの第2の実施形態を示している。 例示的な昇圧ポンプによる方法の流れ図を示している。 例示的な井戸ポンプによる方法の流れ図を示している。
本発明の詳細な説明を始める前に、以下のことをまとめて指摘しておく。適切な場合に、様々な図において同一の、または対応する、または同様の構成要素を示すために、同じ参照物および参照文字が使用される。本開示に関連する図は、通常、一定縮尺の寸法精度で作図されていない、すなわち、そのような図面は、明瞭に示すことと、寸法精度よりもむしろ理解させることとに重点を置いて描かれている。
明瞭にするために、本明細書で説明する実施例の決まりきった特徴のすべてが示され、説明されるとは限らない。もちろん、そのような実際の任意の実施例の開発に当たって、開発者の特定の目標を達成するために、出願およびビジネス関連の制約事項の順守などの様々な実施例特有の判断をしなければならず、これらの特定の目標は、実施例によって、および開発者によって異なるのは当然のことである。さらに、当然のことながら、そのような開発作業は、複雑で時間のかかることがあるが、それでも、本開示の利益を得る当業者にとって日常の設計業務である。
「上部の」「下部の」「〜の上の」「〜の下の」「〜の前の」「〜の後ろの」などの方向を示す用語の使用は、様々な図に示すように、本発明の様々な構成要素の互いに対する位置および/または向きを説明することを意図され、本発明の任意の実施形態の、指示対象の外部の任意の基準点に対する任意の位置および/または向きに制約を課すことを意図されていない。
請求項に記載した発明の範囲から逸脱することなく、第1の実施形態に対して、様々な修正および変更を行うことができると当業者には分かるであろう。もちろん、本発明の様々な態様における本発明の修正が当業者に明らかになるのは当然のことであり、一部は、検討後にのみ明らかになり、他は、日々の機械的、化学的、および電子的設計事項である。第1の実施形態の単一の特徴、機能、または特性は必須ではない。他の実施形態も可能であり、それらの実施形態の特定の構造は、特定の用途によって決まる。したがって、本発明の範囲は、本明細書で説明する特定の実施形態によって限定されるものではなく、添付の特許請求の範囲およびそれの等価物によってのみ規定されなければならない。
低産出量井戸汲み上げシステムの第1の実施形態
図1Aは、低産出量井戸汲み上げシステム100の第1の実施形態を示している。低産出量井戸汲み上げシステム100は、井戸102、貯蔵タンク104、圧力タンク106、および制御パネル128を含む。貯蔵タンク104、圧力タンク106、および制御パネル128は、通常、環境から保護するために建物の内部に配置され、井戸102に至る水および電気接続体は、建物の壁134および建物の床136を貫通している。
井戸102は、地盤138の中を地下水面148の下まで掘り下げられた井戸坑142を含む。井戸坑142は、地下水面148より下に貫入して、水が、隣接する地層から井戸坑142に流入するのを可能にする井戸ケーシング144で覆われている。井戸102は、井戸坑142の内部に井戸ポンプ108を有する。井戸ポンプ配線130は、井戸ポンプ108を制御パネル128に接続し、井戸ポンプ108に電力を供給する。井戸出力パイプ112は、井戸ポンプ108を貯蔵タンク104に接続し、井戸ポンプ108から貯蔵タンク104に流れる水用のチャネルを形成している。
井戸出力パイプ112は、貯蔵タンク104内の水位が、井戸出力パイプ112内の流量および背圧に影響を及ぼさないように、貯蔵タンク104の上部近くで貯蔵タンク104に接続されている。井戸出力パイプ112は、直列配置の井戸背圧変換器120および流れ検出器125を有する。流れ検出器125は、最小レベルの流れが検出されたかどうかについての情報と共に、電気信号を制御パネル128に送る。井戸背圧変換器120は、井戸背圧変換器120の位置での井戸出力パイプ112内の圧力についての情報と共に、電気信号を制御パネル128に送る。井戸出力パイプ112は、井戸背圧変換器120より下流に直列配置の流れ調整器124を有する。流れ調整器124は、井戸出力パイプ112内で、流れ調整器124より上流に一定の流量をもたらし、これは、井戸背圧変換器120の位置での圧力が、流量の変化によって変わることがないことを保証する。流れ調整器124がない場合、背圧変換器120の位置での井戸出力パイプ112内の圧力は、井戸ポンプ108の位置での背圧が一定のままであっても、流量の変化により変わる。
貯蔵タンク104は、貯蔵タンク104の底部に貯蔵タンク水位変換器118を有する。貯蔵タンク水位変換器118は、貯蔵タンク水位変換器118の位置での貯蔵タンク104内の圧力についての情報と共に、電気信号を制御パネル128に送る。貯蔵タンク104は、開放連通によって直接大気につながって加圧されない。制御パネル128は、貯蔵タンク104内の水位を求めるために、貯蔵タンク水位変換器118から送られた圧力情報を使用することができる。貯蔵タンク104は、越流セイフティスイッチ140を有し、この越流セイフティスイッチ140は、始動した場合に、制御パネル128が井戸ポンプ108を停止させるようにする。越流セイフティスイッチ140はフェイルセーフである。通常、水位変換器118からの情報は、制御パネル128が、いつ停止すべきかを井戸ポンプ108に知らせるために使用するものである。
貯蔵タンク104は、貯蔵タンク104の底部に、または底部の近くに配置された第1の昇圧ポンプ110を有する。第1の昇圧ポンプ110は、貯蔵タンク104の底部、または底部の近くから水を取り込むように配置および構成されていて、圧力を上昇させ、貯蔵タンク出力パイプ114を介して、圧力タンク106に送り出す。第1の昇圧ポンプ110は、昇圧ポンプ配線132によって制御パネル128に接続され、昇圧ポンプ配線132は、第1の昇圧ポンプ110に電力を供給する。
貯蔵タンク出力パイプ114は、水が貯蔵タンク104から圧力タンク106に流れるのを可能にするが、逆は可能にしないように構成された逆止弁126を有する。これは、第1の昇圧ポンプ110が作動していない場合でさえ、圧力タンク106が、貯蔵タンク104よりも高い圧力を維持することを可能にする。貯蔵タンク出力パイプ114は、直列配置の圧力タンク変換器122を有する。圧力タンク変換器122は、制御パネル128に電気的に接続されて、貯蔵タンク出力パイプ114内において、圧力タンク変換器122の位置で測定された圧力に関する情報を送出する。第1の昇圧ポンプ110が作動しておらず、逆止弁126が閉じている場合に、圧力タンク変換器122の位置の圧力は、圧力タンク106内の圧力と同じである。第1の昇圧ポンプ110が作動している場合に、圧力タンク変換器122の位置での圧力は、圧力タンク106内の圧力よりも若干高いが、その差は、圧力タンク変換器122と圧力タンク106との間の貯蔵タンク出力パイプ114の長さが比較的短い場合に有意ではない。同じ実施形態において、圧力タンク変換器122は、圧力タンク106の中に直接配置することができるが、ほとんどの実施形態では、圧力タンク変換器122を、貯蔵タンク出力パイプ114内で、簡便であるような程度に圧力タンク106に接近させて置く方がより好都合である。
圧力タンク106は、圧力タンク106内の任意の水に作用する圧力を維持するように構成された内部空気袋を有する。昇圧ポンプ110は、圧力タンク106に水を押し込み、空気袋内の空気を圧縮する。昇圧ポンプ110が停止した後、空気袋は、圧力タンク106内の圧力を維持する。圧力タンク出力パイプ116は、圧力タンク106に接続しており、水をエンドユーザまで搬送する。圧力タンク出力パイプ116内で下流にある弁が開くと、空気袋によって生じた圧力は、圧力タンク出力パイプ116を介して水を圧力タンク106の外に押し出す。空気袋は膨らむので、圧力タンク106内の圧力は落ちる。制御パネル128が、圧力タンク106内の圧力が第1のタンク圧力値未満まで低下したという圧力タンク変換器122からの情報を受け取った場合に、制御パネル128は、昇圧ポンプを始動させる。
低産出量井戸汲み上げシステムの第2の実施形態
図1Bは、低産出量井戸汲み上げシステム160の第2の実施形態を示している。第2の実施形態の低産出量井戸システム160は、第1の実施形態の低産出量井戸汲み上げシステム100のすべての構成要素を含み、さらに、第2の井戸162、第2の貯蔵タンク164、第2の井戸出力パイプ166、および第2の貯蔵タンク出力パイプ168を有する。第2の貯蔵タンク出力パイプ168は、貯蔵タンク出力パイプ114内で逆止弁126より下流の貯蔵タンク出力パイプ114に接続している。第2の実施形態の低産出量井戸システム160では、第1の貯蔵タンク104は、内部に第1の昇圧ポンプ110を有し、第2の貯蔵タンク164は、第2の昇圧ポンプ111を有する。第2の昇圧ポンプ配線170は、第2の昇圧ポンプ111を制御パネル128に接続している。第2の逆止弁176は、第2の昇圧ポンプ111が停止しているときに、圧力タンク106内の圧力を維持するように機能する。第2の井戸背圧変換器172および第2の流れ調整器174は、第2の井戸162に係わり、第1の井戸102に対する相当物と同様な機能を果たす。代替の実施形態は、多数の貯蔵タンクを有することができ、多数の貯蔵タンクの1つまたは複数は、2つ以上の昇圧ポンプを有する。
さらに別の実施形態では、第3、またはさらに多くの貯蔵タンクを増設することができる。一部の実施形態では、これらの多数の貯蔵タンクは独立し、貯蔵タンク出力パイプ114で相互接続されるだけであるが、他の実施形態では、多数の貯蔵タンクは、共通の水位を共有するように、低い高さ位置で直接相互接続される。各多数の貯蔵タンクは、それら自体の井戸ポンプを有してよいし、または1つまたは複数の井戸ポンプを共有してもよい。
低産出量井戸汲み上げシステムの第3の実施形態
図1Cは、低産出量井戸汲み上げシステム180の第2の実施形態を示している。低産出量井戸システム180の第3の実施形態は、第1の実施形態の低産出量井戸汲み上げシステム100のすべての構成要素を含み、第2の実施形態160と同様に、第2の井戸162および第2の井戸出力パイプ166を有する。しかし、低産出量井戸システム180の第3の実施形態では、第2の井戸出力パイプ166は、第1の井戸102が接続しているのと同じ貯蔵タンク104に接続している。第2の井戸背圧変換器172および第2の流れ調整器174は、第2の井戸162に係わり、第1の井戸102に対する相当物と同様な機能を果たす。代替の実施形態は、共通の水位を共有するように、低い高さ位置で直接相互接続される多数の貯蔵タンクを有することができる。多数の貯蔵タンクの1つまたは複数は、すべてが共通の貯蔵タンク出力パイプ114に接続する1つまたは複数の昇圧ポンプを有する。
低産出量井戸汲み上げシステムを動作させる例示的な方法
図2〜3は、図1Aに示す低産出量井戸汲み上げシステム100の実施形態を動作させる例示的な方法の流れ図を示し、同様な実施形態およびシステムに適用可能である。図2は、例示的な、昇圧ポンプによる方法200の流れ図を示している。図3は、例示的な、井戸ポンプによる方法300の流れ図を示している。これらの方法のすべては、同時に、またはほぼ同時に実施することができる。
図2に示す昇圧ポンプによる方法200は、制御パネル128用の電源を投入するステップであるステップ202で始まる。昇圧ポンプによる方法200はステップ204に進み、このステップ204は、井戸タンクフィードバック(貯蔵タンク104の水位)が、第1のタンク水位以上であるかどうかを検証する判断ブロックである。制御パネル128は、貯蔵タンク水位変換器118から情報を受け取り、その情報からタンク水位情報を導出する。例示的な昇圧ポンプによる方法200では、第1のタンク水位の値は8インチであるが、他の実施形態では異なる値を取ることができ、貯蔵タンク104の大きさ、および形状に応じて変わることがある。ステップ204の検証に対する答えが「いいえ」の場合、昇圧ポンプによる方法200は元に戻ってステップ204を繰り返す。ステップ204の検証に対する答えが「はい」の場合、昇圧ポンプによる方法200はステップ218に進む。これの趣旨は、貯蔵タンク104が第1のタンク水位以上でない限り、昇圧ポンプによる方法200の残りの部分は実施されず、昇圧ポンプは作動しないということである。
ステップ218で、第1のフラグ(フラグ001)が落とされる。第1のフラグを落とすのは、貯蔵タンク104が、昇圧ポンプを作動させるのに十分な水を貯蔵タンク内に有することを意味する。昇圧ポンプによる方法200は、次いでステップ206に進む。
ステップ206は、PSIタンクフィードバック(圧力タンク106の圧力)が第1のタンク圧力以上であるかどうかを検証する判断ブロックである。例示的な昇圧ポンプによる方法200では、第1のタンク圧力の値は40PSIであるが、他の実施形態では異なる値を取ることができる。ステップ206の検証に対する答えが「いいえ」の場合、昇圧ポンプによる方法200は元に戻ってステップ206を繰り返す。ステップ206の検証に対する答えが「はい」の場合、次いで、昇圧ポンプによる方法200はステップ208に進む。
ステップ208は、第1の昇圧ポンプ110を作動させ、昇圧ポンプタイマを始動させる処理ブロックである。第1の実施形態では、昇圧ポンプタイマの値は5秒であるが、他の実施形態対では他の値を取ることができる。昇圧ポンプによる方法200は、次いでステップ210に進む。
ステップ210は、昇圧ポンプタイマがタイムアウトしたことを検証する判断部分である。ステップ208の検証に対する答えが「いいえ」の場合、昇圧ポンプによる方法200は元に戻ってステップ208を繰り返す。ステップ208の検証に対する答えが「はい」の場合、次いで、昇圧ポンプによる方法200はステップ212に進む。ステップ208、210の趣旨は、止めるかどうかを検証する前に、第1の昇圧ポンプ110が、少なくとも短時間にわたって作動し、急速なオン/オフサイクルを防止するのを保証することである。
ステップ212は、PSIタンクフィードバック(圧力タンク106の圧力)が第1のタンク圧力以下であるかどうかを検証する判断ブロックである。例示的な方法では、第1のタンク圧力の値は40PSIであるが、他の実施形態では他の値を取ることができる。ステップ212の検証に対する答えが「いいえ」の場合、昇圧ポンプによる方法200はステップ214に進む。ステップ206の検証に対する答えが「はい」の場合、次いで、昇圧ポンプによる方法200はステップ222に進む。ステップ212の趣旨は、(昇圧ポンプタイマの値によって決まる)短い時間にわたって、昇圧ポンプ104を作動させた後、圧力タンク106の圧力が、第1のタンク圧力未満である場合に、水の付加的流れを圧力タンク106に向かわせることで第1を補助するために、第2の昇圧ポンプ111を始動させるということである。
ステップ222は、第2の昇圧ポンプ111を作動させ、昇圧ポンプタイマをリセットする処理ブロックである。昇圧ポンプによる方法200は、次いでステップ214に進む。ステップ212、222は、低産出量井戸汲み上げシステム100が、貯蔵タンク104または他の貯蔵タンク(図示せず)内に第2の昇圧ポンプ111を有する場合にのみ、昇圧ポンプによる方法200に含まれる。
ステップ214は、PSIタンクフィードバック(圧力タンク106の圧力)が第2のタンク圧力以上であるかどうかを検証する判断ブロックである。例示的な方法では、第2のタンク圧力の値は60PSIであるが、他の実施形態では他の値を取ることができる。ステップ214の検証に対する答えが「いいえ」の場合、昇圧ポンプによる方法200はステップ224に進む。ステップ214の検証に対する答えが「はい」の場合、次いで、昇圧ポンプによる方法200はステップ216に進む。
ステップ216は、第1の昇圧ポンプ110および第2の昇圧ポンプ111を停止させ、昇圧ポンプタイマをリセットする処理ブロックである。昇圧ポンプによる方法200は、次いでステップ230に進む。
ステップ224は、井戸タンクフィードバック(貯蔵タンク104の水位)が、第2のタンク水位以下であるかどうかを検証する判断ブロックである。例示的な昇圧ポンプによる方法200では、第2のタンク水位の値は3インチであるが、他の実施形態では異なる値を取ることができ、貯蔵タンク104の大きさ、および形状に応じて変わることがある。ステップ224の検証に対する答えが「いいえ」の場合、昇圧ポンプによる方法200は元に戻ってステップ212を繰り返す。ステップ224の検証に対する答えが「はい」の場合、次いで、昇圧ポンプによる方法200はステップ226に進む。ステップ214、224の趣旨は、貯蔵タンク104が、第2のタンク水位以下でない限り、または第2のタンク圧力を超えない限り、昇圧ポンプは作動し続けるということである。
ステップ226は、第1のフラグを立てる処理ブロックである。第1のフラグを立てるのは、貯蔵タンク104が、昇圧ポンプを作動させるのに十分な水を貯蔵タンク内に有していないことを意味する。昇圧ポンプによる方法200は、次いでステップ220に進む。
ステップ220は、第1の昇圧ポンプ110および第2の昇圧ポンプ111を停止させ、昇圧ポンプタイマをリセットする処理ブロックである。昇圧ポンプによる方法200は、次いでステップ204に戻る。
ステップ228〜250は、第1の昇圧ポンプ110が(ステップ208で)最初に始動し、第2の昇圧ポンプ111が(ステップ222で)2番目に始動するのではなくて、第2の昇圧ポンプ111が(ステップ232で)最初に始動し、第1の昇圧ポンプ110が(ステップ246で)後に始動することを除いて、基本的にステップ204〜226と同じである。また、ステップ240は、ステップ204〜226のグループの開始に戻る。ステップのこれら2つのグループの趣旨は、両方の昇圧ポンプが均等に使用され、一方のポンプが待機しないということである。使用パターンが、まれな状況においてのみ第2の昇圧ポンプ111が必要とされるようなものである場合、他方の昇圧ポンプは、長期間にわたって待機し、故障して気付かれないままのことがある。例えば、第2の昇圧ポンプ111が、スプリンクラシステムの助けとするためにだけ必要とされる場合に、第2の昇圧ポンプ111の隠れた故障は、火災がスプリンクラシステムを始動させるまで気付かれず、望ましくない結果となる。
図3では、井戸ポンプによる方法300は、制御パネル128の電源を投入し、第2のフラグ(フラグ000)を落とす処理ブロックであるステップ302で始まる。井戸ポンプによる方法300は、次いでステップ304に進む。
ステップ304は、井戸タンクフィードバック(貯蔵タンク104の水位)が、第3のタンク水位以下であるかどうかを検証する判断ブロックである。制御パネル128は、貯蔵タンク水位変換器118から情報を受け取り、その情報からタンク水位情報を導出する。例示的な、井戸ポンプによる方法300では、第3のタンク水位の値は68インチであるが、他の実施形態では異なる値を取ることができ、貯蔵タンク104の大きさ、および形状に応じて変わることがある。ステップ304の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ304を繰り返す。ステップ304の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ306に進む。この趣旨は、貯蔵タンク104が、第3のタンク水位以下でない限り、井戸ポンプ方法300の残りの部分は実施されず、井戸ポンプ108は作動しないということである。
ステップ306は、井戸ポンプ108および流れチェックタイマを始動させる処理ブロックである。井戸ポンプによる方法300は、次いでステップ308に進む。
ステップ308は、流れチェックタイマが終わっているかどうかを検証する判断ブロックである。ステップ308の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ308を繰り返す。ステップ308の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ310に進む。流れチェックタイマが終了するまでループを実行することで、ステップ310で流れがあるかどうかをチェックする前に、井戸ポンプ108が始動して、流れを生じさせる時間が付与される。
ステップ310は、流れ検出器125(入力00)が、井戸ポンプ108からの流れを検出しているかどうか検証する判断ブロックである。ステップ310の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ312に進む。ステップ310の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ318に進む。
ステップ312は、井戸背圧変換器120で測定した井戸ポンプ背圧が、第1の背圧よりも大きいかどうかを検証する判断ブロックである。例示的な方法では、第1の背圧は、20PSIの値を取るが、他の実施形態では、特定の井戸ポンプ108の特性、井戸ポンプ108の水深、および井戸出力パイプ112の穴径に応じて異なる値を取ることができる。ステップ312の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ326に進む。ステップ312の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ314に進む。
ステップ314は、流れ入力センサ(入力00)が、井戸ポンプ108からの流れを検出しているかどうか検証する判断ブロックである。ステップ314の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ316に進む。ステップ314の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ318に進む。
ステップ316は、井戸タンクフィードバック(貯蔵タンク104の水位)が、第4のタンク水位よりも高いかどうかを検証する判断ブロックである。制御パネル128は、貯蔵タンク水位変換器118から情報を受け取り、その情報からタンク水位情報を導出する。例示的な井戸ポンプによる方法300では、第4のタンク水位の値は71インチであるが、他の実施形態では異なる値を取ることができ、貯蔵タンク104の大きさ、および形状に応じて変わることがある。ステップ316の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ312を繰り返す。ステップ316の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ336に進む。
ステップ318は、井戸ポンプ108を止めて、流れチェックタイマをリセットし、井戸枯渇遅延タイマを始動させ、井戸抽出タイマ(低位)をリセットする処理ブロックである。井戸ポンプによる方法300は、次いでステップ320に進む。
ステップ320は、井戸抽出タイマ(中位)をリセットし、第3のフラグ(フラグ002)を立てる処理ブロックである。井戸ポンプによる方法300は、次いでステップ322に進む。
ステップ322は、井戸枯渇遅延タイマがタイムアウトしたかどうかを検証する判断ブロックである。第1の実施形態では、井戸枯渇遅延タイマは、1時間45分であるが、異なる実施形態では、特定の井戸102がポンプで汲み干された後に回復するのにどのくらいの時間を必要とするかに応じて、異なる値を取ることができる。ステップ322の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ322を繰り返す。ステップ322の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ324に進む。
ステップ324は、井戸回復タイマをリセットし、井戸枯渇遅延タイマをリセットし、流れチェックタイマをリセットし、第3のフラグ(フラグ002)を落とす処理ブロックである。井戸ポンプによる方法300は、次いでステップ322に進む。
ステップ326は、井戸背圧変換器120で測定した井戸ポンプ背圧が、第2の背圧よりも大きいかどうかを検証する判断ブロックである。第2の背圧の値は、ステップ312で使用される第1の背圧の値よりも小さい。例示的な方法では、第2の背圧は、13PSIの値を取るが、他の実施形態では、特定の井戸ポンプ108の特性、井戸ポンプ108の水深、および井戸出力パイプ112の穴径に応じて異なる値を取ることができる。ステップ326の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ340に進む。ステップ326の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ328に進む。
ステップ328は、流れ入力センサ(入力00)が、井戸ポンプ108からの流れを検出しているかどうか検証する判断ブロックである。ステップ328の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ330に進む。ステップ328の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ318に進む。
ステップ330は、井戸抽出タイマ(中位)を始動させる処理ブロックである。井戸ポンプによる方法300は、次いでステップ332に進む。
ステップ332は、井戸抽出タイマ(中位)がタイムアウトしたかどうかを検証する判断ブロックである。第1の実施形態では、中位井戸抽出タイマは10分にセットされるが、異なる実施形態に対しては、特定の井戸ポンプが、井戸を汲み干すことなく、第1の背圧よりも低い背圧で、どのくらいの時間作動できると認められるかに応じて、異なる値にセットすることができる。ステップ332の検証に対する答えが「はい」の場合、井戸ポンプによる方法300はステップ336に進む。ステップ332の検証に対する答えが「いいえ」の場合、次いで、井戸ポンプによる方法300はステップ334に進む。
ステップ334は、井戸タンクフィードバック(貯蔵タンク104の水位)が、第4のタンク水位よりも高いかどうかを検証する判断ブロックである。ステップ334の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ326を繰り返す。ステップ334の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ336に進む。
ステップ336は、井戸ポンプ108を停止させ、井戸抽出タイマ(中位)をリセットし、井戸抽出タイマ(低位)をリセットし、井戸回復タイマを始動させる処理ブロックである。井戸ポンプによる方法300は、次いでステップ338に進む。
ステップ338は、井戸回復タイマがタイムアウトしたかどうかを検証する判断ブロックである。ステップ338の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ338を繰り返す。ステップ338の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ324に進む。ステップ338は、水が、隣接する地層から井戸に逆流するのを可能にして、井戸回復タイマがタイムアウトしつつある間、井戸ポンプ108を停止した状態に保つ。第1の実施形態では、井戸回復タイマは30分にセットされるが、異なる実施形態に対しては、特定の井戸ポンプが、通常の汲み上げ作業の後、回復するのにどのくらいの時間が必要であると認められるかに応じて、異なる値にセットすることができる。
ステップ340は、井戸背圧変換器120で測定した井戸ポンプ背圧が、第2の背圧以下であるかどうかを検証する判断ブロックである。ステップ340の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ312に戻る。ステップ340の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ342に進む。
ステップ342は、流れ入力センサ(入力00)が、井戸ポンプ108からの流れを検出しているかどうか検証する判断ブロックである。ステップ342の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ334に進む。ステップ342の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ318に進む。
ステップ344は、井戸抽出タイマ(低位)を始動させる処理ブロックである。井戸ポンプによる方法300は、次いでステップ346に進む。
ステップ346は、井戸抽出タイマ(低位)がタイムアウトしたかどうかを検証する判断ブロックである。第1の実施形態では、低位井戸抽出タイマは1分にセットされるが、異なる実施形態に対しては、特定の井戸ポンプが、井戸を汲み干すことなく、第2の背圧値よりも低い背圧で、どのくらいの時間作動できると認められるかに応じて、異なる値にセットすることができる。ステップ346の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300はステップ348に進む。ステップ346の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ336に進む。
ステップ348は、井戸タンクフィードバック(貯蔵タンク104の水位)が、第4のタンク水位よりも高いかどうかを検証する判断ブロックである。ステップ348の検証に対する答えが「いいえ」の場合、井戸ポンプによる方法300は元に戻ってステップ340を繰り返す。ステップ348の検証に対する答えが「はい」の場合、次いで、井戸ポンプによる方法300はステップ336に進む。

Claims (14)

  1. 井戸ポンプを有する井戸と、
    前記井戸ポンプを井戸出力パイプと接続する貯蔵タンクと、
    前記井戸出力パイプと直列に配置した井戸背圧変換器と、
    前記井戸出力パイプと直列に、かつ前記井戸背圧変換器より下流に配置し、前記井戸出力パイプ内において上流側の一定の流量を付与する流れ調整器と、
    前記井戸ポンプを制御するように構成され、前記井戸背圧変換器から井戸ポンプ背圧情報を受け取るように構成され、前記井戸ポンプ背圧情報に基づいて、前記井戸ポンプを制御するように構成された制御パネルと、
    を含むシステム。
  2. 前記井戸出力パイプ内で流れが検出されたかどうかの情報を前記制御パネルに送るように構成された、前記井戸出力パイプ内の流れ検出器をさらに含み、
    前記制御パネルは、前記流れ検出器が、流れが検出されないという情報を送った場合に、前記井戸ポンプを停止させるようにさらに構成され、井戸枯渇タイマを始動させるようにさらに構成され、前記井戸枯渇タイマがタイムアウトするまで、前記井戸ポンプを停止した状態に保つようにさらに構成される、請求項1に記載のシステム。
  3. 前記制御パネルは、井戸背圧が第1の背圧未満であり、かつ第2の背圧よりも大きい場合に、中位井戸抽出タイマを始動させるようにさらに構成され、前記第2の背圧は、前記第1の背圧未満であり、
    前記制御パネルは、前記中位井戸抽出タイマがタイムアウトした場合に、前記井戸ポンプを停止させるようにさらに構成される、請求項1または2に記載のシステム。
  4. 前記制御パネルは、前記井戸背圧が前記第2の背圧未満の場合に、低位井戸抽出タイマを始動させるようにさらに構成され、
    前記制御パネルは、前記低位井戸抽出タイマがタイムアウトした場合に、前記井戸ポンプを停止させるようにさらに構成される、請求項3に記載のシステム。
  5. 前記制御パネルは、前記中位井戸抽出タイマが始動し、タイムアウトするか、または前記低位井戸抽出タイマが始動し、タイムアウトするか、または前記貯蔵タンクが満たされた場合に、井戸回復タイマを始動させるようにさらに構成され、
    前記制御パネルは、前記井戸回復タイマがタイムアウトするまで、前記井戸ポンプを停止した状態に保つようにさらに構成される、請求項4に記載のシステム。
  6. 前記貯蔵タンクから取水するように構成された昇圧ポンプと、
    前記昇圧ポンプと貯蔵タンク出力パイプで接続する圧力タンクと、
    をさらに含み、
    前記制御パネルは、前記圧力タンク内の圧力が第1のタンク圧力未満に落ちたときに、前記昇圧ポンプを始動させるようにさらに構成される、請求項1に記載のシステム。
  7. 低産出量井戸システムを動作させる方法であって、
    制御パネルにおいて、貯蔵タンクに接続する井戸出力パイプに直列に配置した井戸背圧変換器から井戸ポンプ背圧情報を受け取るステップと、
    前記井戸ポンプ背圧情報に基づいて井戸ポンプを制御するステップと、
    前記井戸出力パイプと直列にかつ前記井戸背圧変換器より下流に配された流れ調整器により、前記井戸出力パイプ内において前記流れ調整器の上流側の一定の流量を付与するステップと、
    を含む方法。
  8. 流れ検出器から前記制御パネルに情報を送り、前記情報は、井戸出力パイプ内で流れが検出されたかどうかに関し、前記流れ検出器は、井戸の出力パイプ内に配置されるステップと、
    前記流れ検出器が、流れが検出されないという情報を送った場合に、前記井戸ポンプを停止させるステップと、
    井戸枯渇タイマを始動させるステップと、
    前記井戸枯渇タイマがタイムアウトするまで、前記井戸ポンプを停止した状態に保つステップと、
    をさらに含む、請求項7に記載の方法。
  9. 前記井戸背圧が第1の背圧未満であり、かつ第2の背圧よりも大きい場合に、中位井戸抽出タイマを始動させ、前記第2の背圧は、前記第1の背圧未満であるステップと、
    前記井戸抽出タイマがタイムアウトした場合に、前記井戸ポンプを停止させるステップと、
    をさらに含む、請求項7または8に記載の方法。
  10. 前記井戸背圧が前記第2の背圧未満の場合に、低位井戸抽出タイマを始動させるステップと、
    前記低位井戸抽出タイマがタイムアウトした場合に、前記井戸ポンプを停止させるステップと、
    をさらに含む、請求項9に記載の方法。
  11. 前記中位井戸抽出タイマが始動し、タイムアウトするか、または前記低位井戸抽出タイマが始動し、タイムアウトするか、または貯蔵タンクが満たされた場合に、井戸回復タイマを始動させるステップと、
    前記井戸回復タイマがタイムアウトするまで、前記井戸ポンプを停止した状態に保つステップと、
    をさらに含む、請求項10に記載の方法。
  12. 前記貯蔵タンクに接続され前記貯蔵タンクからの水を収容する圧力タンク内の圧力が第1のタンク圧力未満に落ちたときに、第1の昇圧ポンプを始動させるステップをさらに含む、請求項7に記載の方法。
  13. 前記圧力タンク内の圧力が、第2のタンク圧力未満に落ちた場合に、第2の昇圧ポンプを始動させ、前記第2のタンク圧力は、前記第1のタンク圧力よりも低いステップをさらに含む、請求項12に記載の方法。
  14. 前記第1の昇圧ポンプおよび前記第2の昇圧ポンプを止めるステップと、
    前記圧力タンク内の圧力が、第2の時間にわたって前記第1のタンク圧力未満に落ちた場合に、第2の昇圧ポンプを始動させるステップと、
    前記圧力タンク内の圧力が、第2の時間にわたって前記第2のタンク圧力未満に落ちた場合に、第1の昇圧ポンプを始動させるステップと、
    をさらに含む、請求項13に記載の方法。
JP2017505563A 2014-07-28 2015-07-27 低産出量井戸を効果的に使用するためのシステムおよび方法 Active JP6670295B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462029692P 2014-07-28 2014-07-28
US62/029,692 2014-07-28
PCT/US2015/042294 WO2016018824A1 (en) 2014-07-28 2015-07-27 System and method for effective use of a low-yield well

Publications (3)

Publication Number Publication Date
JP2017524084A JP2017524084A (ja) 2017-08-24
JP2017524084A5 JP2017524084A5 (ja) 2018-09-06
JP6670295B2 true JP6670295B2 (ja) 2020-03-18

Family

ID=55218219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017505563A Active JP6670295B2 (ja) 2014-07-28 2015-07-27 低産出量井戸を効果的に使用するためのシステムおよび方法

Country Status (7)

Country Link
US (1) US10508420B2 (ja)
EP (1) EP3175052B1 (ja)
JP (1) JP6670295B2 (ja)
AU (1) AU2015296773B2 (ja)
BR (1) BR112017001650A2 (ja)
CA (1) CA2956222C (ja)
WO (1) WO2016018824A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508420B2 (en) * 2014-07-28 2019-12-17 Kevin Epp System and method for effective use of a low-yield well
US10865787B2 (en) * 2016-12-06 2020-12-15 Pentair Flow Technologies, Llc Connected pump system controller and method of use
CN109537678A (zh) * 2017-09-21 2019-03-29 贵港市厚顺信息技术有限公司 一种家庭蓄水系统

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2239612A (en) * 1940-06-13 1941-04-22 Joseph P Lawlor Iron removal apparatus
US3274940A (en) * 1965-01-12 1966-09-27 Robert A Cottrell Control system for well pump
JPS5226242Y2 (ja) * 1973-07-26 1977-06-15
US4118148A (en) * 1976-05-11 1978-10-03 Gulf Oil Corporation Downhole well pump control system
JPS5344903A (en) * 1976-10-06 1978-04-22 Hitachi Ltd Pumping apparatus
US4180374A (en) * 1978-03-07 1979-12-25 Bristow Elliott R Well pump protection system
US4329120A (en) * 1980-04-24 1982-05-11 William Walters Pump protector apparatus
US4461157A (en) * 1982-02-03 1984-07-24 Snyder General Corporation Ground water heat pump system for low yield well
US4507053A (en) * 1982-06-15 1985-03-26 Frizzell Marvin L Pump off control
US5222867A (en) * 1986-08-29 1993-06-29 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4781536A (en) * 1986-09-10 1988-11-01 Hicks Russell R Low-flow pump-off control
US4744729A (en) * 1986-09-11 1988-05-17 Conoco Inc. Pressure activated pump-off control
US5006044A (en) * 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4874294A (en) * 1988-05-25 1989-10-17 Karg Thomas A Oil well pump control
US5028212A (en) * 1989-09-26 1991-07-02 Brophey Robert W Method and apparatus for removal of floating immiscible liquids
US5035581A (en) * 1989-11-17 1991-07-30 Mcguire Danny G Fluid level monitoring and control system
JPH07103865B2 (ja) * 1990-11-15 1995-11-08 株式会社荏原製作所 汚水・汚物ポンプの運転停止方法
JP2522134Y2 (ja) * 1991-08-23 1997-01-08 冨士川機械株式会社 井戸水位自動測定制御装置
US5218986A (en) * 1992-04-13 1993-06-15 Farwell Duane C Pneumatically pressurized water pumping apparatus
JPH07259786A (ja) * 1994-03-23 1995-10-09 Kubota Corp ポンプの運転方法
US5580221A (en) * 1994-10-05 1996-12-03 Franklin Electric Co., Inc. Motor drive circuit for pressure control of a pumping system
US5823262A (en) * 1996-04-10 1998-10-20 Micro Motion, Inc. Coriolis pump-off controller
US5819848A (en) * 1996-08-14 1998-10-13 Pro Cav Technology, L.L.C. Flow responsive time delay pump motor cut-off logic
US5901744A (en) * 1996-09-06 1999-05-11 Richards; Samuel K. Water supply system for a water source with limited flow capability
US5797452A (en) * 1996-12-12 1998-08-25 Martin; John Kaal Double-acting, deep-well fluid extraction pump
DE19720511C2 (de) 1997-05-16 1999-09-30 Guenter Schall Versorgungseinrichtung zur Brauchwasserversorgung
US6138750A (en) * 1997-06-30 2000-10-31 Ford; William M. Water well stagnant bottom rehabilitation means and method
JPH1182311A (ja) * 1997-09-10 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd 給水設備の制御装置
US6077044A (en) * 1998-02-23 2000-06-20 Reid; John A. Well production management and storage system
AU2001236146A1 (en) * 2000-02-19 2001-08-27 Zion Technics, Co., Ltd. Method and system for automatically controlling water level in storage tank through wireless control process
JP2003082716A (ja) * 2001-09-04 2003-03-19 Hitachi Service & Engineering (East) Ltd 給水装置
US6817419B2 (en) * 2002-10-30 2004-11-16 John A. Reid Well production management and storage system controller
JP4420691B2 (ja) * 2004-02-06 2010-02-24 株式会社竹中工務店 井戸装置の制御方法及び井戸装置
US7901190B2 (en) * 2004-07-28 2011-03-08 Ian Gray Pump control system
US7380608B2 (en) * 2004-12-14 2008-06-03 Howard Geier Pumping water from a natural gas well
JP4425232B2 (ja) 2006-03-10 2010-03-03 株式会社Taiyo 圧入工程における割れの有無の判定方法および装置
JP4843385B2 (ja) * 2006-06-06 2011-12-21 株式会社川本製作所 自動給水装置のポンプ渇水保護装置
JP5347154B2 (ja) * 2006-06-28 2013-11-20 小出 仁 二酸化炭素地中貯留の処理方法及びその処理システム
CA2631994C (en) * 2008-05-13 2015-08-04 Jason Corbeil Low rate hydraulic artificial lift
US8032256B1 (en) * 2009-04-17 2011-10-04 Sje-Rhombus Liquid level control systems
US8700220B2 (en) * 2009-09-08 2014-04-15 Wixxi Technologies, Llc Methods and apparatuses for optimizing wells
WO2011043764A1 (en) * 2009-10-05 2011-04-14 Halliburton Energy Services, Inc. Integrated geomechanics determinations and wellbore pressure control
US8820404B2 (en) * 2010-06-23 2014-09-02 Mike Lisk Water well pumping and control system
US9879510B2 (en) * 2010-06-23 2018-01-30 Mike Lisk Pump and control system for distributing fluid
WO2012122468A1 (en) * 2011-03-09 2012-09-13 Prad Research And Development Limited Method for automatic pressure control during drilling including correction for drill string movement
WO2014007797A1 (en) * 2012-07-02 2014-01-09 Halliburton Energy Services, Inc. Pressure control in drilling operations with choke position determined by cv curve
BR112015008928B1 (pt) * 2012-10-22 2018-02-06 Safekick Ltd “Método de monitoramento de poço para um sistema de monitoramento de poço”
WO2015142819A1 (en) * 2014-03-21 2015-09-24 Canrig Drilling Technology Ltd. Back pressure control system
US10508420B2 (en) * 2014-07-28 2019-12-17 Kevin Epp System and method for effective use of a low-yield well

Also Published As

Publication number Publication date
BR112017001650A2 (pt) 2018-01-30
US10508420B2 (en) 2019-12-17
WO2016018824A1 (en) 2016-02-04
EP3175052B1 (en) 2020-08-05
JP2017524084A (ja) 2017-08-24
AU2015296773A1 (en) 2017-02-16
AU2015296773B2 (en) 2020-01-23
CA2956222A1 (en) 2016-02-04
EP3175052A4 (en) 2018-04-25
US20170226719A1 (en) 2017-08-10
CA2956222C (en) 2022-08-16
EP3175052A1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US6048175A (en) Multi-well computerized control of fluid pumping
EP2630329B1 (en) Submersible pump system
JP6670295B2 (ja) 低産出量井戸を効果的に使用するためのシステムおよび方法
KR101933901B1 (ko) 펌프들을 자동적으로 서로 교대로 작동시키기 위한 방법
US10995595B2 (en) System and method for artifically recharging a target reservoir via water injection from a local source
JP2018003786A (ja) ポンプ装置
WO2006049930A2 (en) Method and system for reducing utility costs
BR112015023458B1 (pt) Produção de petróleo melhorada utilizando controle de pressão de gás no invólucro do poço
US11248459B2 (en) Selective automated powering of downhole equipment during run-in-hole operations
US8138932B2 (en) Method and apparatus for verifying a leak in connection with a flow inhibitor
US20190174687A1 (en) Motor drive with moisture control features
US20080202586A1 (en) Automatic wireless liquid/water level controller
US10830024B2 (en) Method for producing from gas slugging reservoirs
KR20170055377A (ko) 수중운동체용 자흡식 펌프의 마중물 유입장치 및 그 제어방법
JP6222873B1 (ja) 貯水制御方法及び貯水システム
US20180291910A1 (en) Methods and Apparatus for an Automated Fluid Pumping System
WO2016048786A1 (en) Smarter slug flow conditioning and control
JP4843385B2 (ja) 自動給水装置のポンプ渇水保護装置
US20220268270A1 (en) Pumping unit engine speed oscillation detection and mitigation
CN115853060A (zh) 一种远距离高位供水系统及其控制方法
US20230019795A1 (en) Sump pump system, including sump pump monitor and application
JP6555767B1 (ja) 温泉集中管理システム
JP6241980B1 (ja) 貯水制御方法及び貯水システム
JP2010101291A (ja) 深層水取水設備およびその運転方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200228

R150 Certificate of patent or registration of utility model

Ref document number: 6670295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250