WO2008019579A1 - Catalyseur à microsphères utilisés pour la transformation d'un composé oxygène en oléfine et son procédé de fabrication - Google Patents

Catalyseur à microsphères utilisés pour la transformation d'un composé oxygène en oléfine et son procédé de fabrication Download PDF

Info

Publication number
WO2008019579A1
WO2008019579A1 PCT/CN2007/002309 CN2007002309W WO2008019579A1 WO 2008019579 A1 WO2008019579 A1 WO 2008019579A1 CN 2007002309 W CN2007002309 W CN 2007002309W WO 2008019579 A1 WO2008019579 A1 WO 2008019579A1
Authority
WO
WIPO (PCT)
Prior art keywords
sapo
olefin
microsphere catalyst
catalyst
meapso
Prior art date
Application number
PCT/CN2007/002309
Other languages
English (en)
French (fr)
Inventor
Zhongmin Liu
Peng Tian
Lei Xu
Lixin Yang
Zhihui Lv
Yue Qi
Changqing He
Yingxu Wei
Jinling Zhang
Shuanghe Meng
Mingzhi Li
Cuiyu Yuan
Xiangao Wang
Yue Yang
Xiao Lu
Shukui Zhu
Peng Xie
Xinde Sun
Hongyi Yang
Hua Wang
Bing Li
Original Assignee
Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences filed Critical Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences
Priority to JP2009523137A priority Critical patent/JP5174815B2/ja
Priority to AU2007283967A priority patent/AU2007283967B2/en
Priority to BRPI0715406A priority patent/BRPI0715406B1/pt
Priority to KR1020097004424A priority patent/KR101127996B1/ko
Publication of WO2008019579A1 publication Critical patent/WO2008019579A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to the field of catalyst technology, and is a catalyst for the conversion of an oxygen-containing compound to an olefin microsphere and a preparation method thereof, and a catalytic application of the above catalyst in the conversion of an oxygen-containing compound to a low-carbon olefin.
  • Ethylene and propylene are two of the most demanding and versatile basic organic chemical raw materials in the petrochemical industry, and are known as the mother of modern organic synthesis industry.
  • the methods for preparing low-carbon olefins such as ethylene and propylene can be generally divided into two categories: one is the petroleum route, the domestic is mainly the light oil cracking method, and the United States and some countries with abundant resources are produced by the high-temperature conversion method. Ethylene.
  • the other is a non-oil route that produces low-carbon olefins from coal, natural gas and other resources.
  • ZSM-5 zeolite molecular sieve as a methanol to olefin (MTO) catalyst, which made the process a breakthrough (USP5367100).
  • MTO methanol to olefin
  • ZSM-5 zeolite is a medium pore zeolite with a straight line-shaped pore structure. Although its excellent shape selection effect can obtain a high yield of light olefins, the acidity is too strong and the selectivity of ethylene still needs to be improved.
  • SAPO-n silicoaluminophosphate molecular sieves
  • USP 4440871 a class of crystalline silicoaluminophosphates from P0 4 +, A10 4 —
  • the tetrahedron of Si0 4 constitutes a three-dimensional skeleton structure.
  • MTO reactions such as SAPO-17, SAPO-18, SAPO-34, SAPO-44, etc.
  • the pore size is about 0.43 nm, which is a good type of shape-selective catalyst.
  • SAPO-34 molecular sieve has become a hot spot in current research because it has excellent acidity and pore structure and exhibits excellent catalytic performance in MTO reaction.
  • MeAPSO molecular sieve formed by introducing the transition metal into the molecular sieve framework above also shows a higher low olefin selectivity for the MTO reaction (J. Mol. Cat. A 160 (2000) 437, CN1108867, CN1108868, CN1111091, CN1108869, CN1132698, CN1108870).
  • an inactive component in the catalyst can also act as a dilution molecular sieve to reduce the thermal effect of the reaction.
  • USP 5,126,298 reports the preparation of a high-strength cracking catalyst which is prepared by spray drying two different clays, zeolite molecular sieves and phosphorus-containing compounds into a slurry having a pH ⁇ 3; USP 5248647 reports the use of SAPO-34 molecular sieve, kaolin.
  • USP6153552 reports a preparation method of microsphere catalyst containing SAPO molecular sieve, which is prepared by mixing SAPO molecular sieve, inorganic oxide sol, and phosphorus-containing compound by spray drying
  • USP6787501 reports the spray-drying of SAPO-34 molecular sieves, binders and matrix materials to methanol conversion catalysts
  • CN01132533A reports the preparation of wear-resistant index catalysts for methanol conversion by reducing the mass content of molecular sieves in the catalyst It has the effect of reducing the catalyst wear index.
  • the present invention is characterized in that the catalyst system is composed of silicon oxide, phosphorus oxide and aluminum oxide, and may also contain an alkaline earth metal oxide and a transition metal oxide.
  • the mass content of each component is 2 ⁇ 60% of silicon oxide, 8-50% of phosphorus oxide, 20-70% of alumina, 0-10% of alkaline earth metal oxide, 0-20% of transition metal oxide, and meets each component. The sum of the mass contents is 100%.
  • the invention is characterized in that the silicon source, aluminum source and phosphorus source used in the catalyst are from SAPO molecular sieves or MeAPSO molecular sieves.
  • the silicon source may also be from a mixture of one or both of silica sol and kaolin.
  • the aluminum source may also be derived from a mixture of one or more of an aluminum sol, pseudo-boehmite, pseudoboehmite, and kaolin.
  • the phosphorus source may also be derived from a mixture of one or more of phosphoric acid, diammonium phosphate, ammonium hydrogen phosphate.
  • the source of the alkaline earth metal is one or a mixture of any of an oxide, an inorganic salt or an organic salt of calcium, strontium and barium.
  • the source of the transition metal is MeAPSO molecular sieve, one or a mixture of oxides, inorganic salts or organic salts of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium or the like.
  • the invention is characterized in that SAPO and MeAPSO molecular sieves are used as catalyst active components, and the oxide content in the catalyst is 15-50%.
  • the molecular sieves are SAPO-17, MeAPSO-17, SAPO-18, MeAPSO-18 ; SAPO-34, MeAPSO-34, SAPO-35, MeAPSO-35, SAPO-44, MeAPSO-44, SAPO-56, MeAPSO-56 One or any mixture of several.
  • the metal contained in the MeAPSO molecular sieve is a mixture of one or any of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium and the like.
  • the invention is characterized in that the microsphere catalyst has an abrasion index of less than 2.
  • the diameter of the microspheres is in the range of 2-220 ⁇ m.
  • the invention provides a method for preparing an oxygenate-converted olefin microsphere catalyst, which is characterized in that the preparation process is as follows:
  • Al 2 O 3 / SAPO 0 ⁇ 4.5 A1 2 0 3 from aluminum sol, pseudo-boehmite, pseudo-thin aluminum
  • AO/ SAPO 0 - 0.7 AO is alkaline earth metal oxide
  • MeO/ SAPO 0 - 1.3
  • MeO is a transition metal oxide
  • 3 ⁇ 4O/SAPO 1.0 ⁇ 37,0 b)
  • the slurry obtained in the step a) is stirred and milled by a colloid mill to reduce the diameter of the particles contained therein, wherein the diameter of the particles contained in the slurry after the grinding is smaller than 20 ⁇ , 90% of the particles are smaller than ⁇ , 70% of the particles have a diameter of less than 5 ⁇ m ;
  • step c) drying the slurry obtained in step b) by spray drying to form microspherical particles; d) calcining the microspherical particles in 500-800 Q C to obtain an oxygenate-converted olefin catalyst.
  • the pore-forming agent added in the step a) is natural phthalocyanine powder or starch, and the amount added is 0.01-3% of the total mass of all inorganic oxides; the spray drying device used in the step c) is pressure type or centrifugation formula.
  • microsphere catalyst prepared by the invention can be directly applied to the conversion of oxygenates to olefins. detailed description
  • Example 1 Silicon-phosphorus-aluminum system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (pressure spray dryer).
  • the resulting spray dried product was calcined in 650 Q C air for 4 h to obtain an oxygenate-converted olefin microsphere catalyst.
  • Example 2 Silicon-phosphorus-aluminum system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (pressure spray dryer).
  • the resulting spray dried product was calcined in 650 Q C air for 4 h to obtain an oxygenate-converted olefin microsphere catalyst.
  • Example 3 Silicon-phosphorus-aluminum system catalyst
  • the material liquid was subjected to a colloid mill grinding so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter manufactured by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (centrifugal spray drying device), and the spray dried product was calcined in 650 Q C air for 4 hours to obtain an oxygenate conversion olefin microsphere catalyst.
  • Example 4 Silicon-phosphorus-aluminum system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry is spray dried (centrifugal spray drying device).
  • the resulting spray dried product was calcined in 650 air for 4 hours to obtain an oxygenate-converted olefin microsphere catalyst.
  • Example 5 Silicon-phosphorus-aluminum system catalyst
  • the pseudoboehmite 0.29kg (content 70wt%), 0.71kg of kaolin (moisture content of 15wt%, after burning solid Si0 2 content of 53wt%, A1 2 0 3 content of 45wt%), 0.84kg of SAPO -34 molecular sieve raw powder and 2.5 kg of aluminum sol (A1 2 0 3 content of 20 wt%) were sequentially introduced into 1.37 kg of deionized water, and finally 10 g of wheat starch (infiltrated with a small amount of ethanol) was added, and stirred for 30 minutes.
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out by using a ⁇ -9300 laser particle size distribution meter manufactured by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (centrifugal spray drying device).
  • the obtained spray-dried product was calcined in air at 650 G C for 4 hours to obtain an oxygenate-converted olefin microsphere catalyst.
  • Example 6 Silicon-phosphorus-aluminum system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out by using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (pressure spray dryer).
  • the obtained spray-dried product was calcined in air at 650 G C for 4 hours to obtain an oxygenate-converted olefin; a microsphere catalyst.
  • Example 7 Silicon-phosphorus-aluminum-alkali metal system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (pressure spray dryer).
  • the obtained spray-dried product was calcined in air at 650 G C for 4 hours to obtain an oxygenate-converted olefin microsphere catalyst.
  • Example 9 Silicon-phosphorus-aluminum-transition metal system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry is spray dried (centrifugal spray drying device).
  • the resulting spray dried product was calcined in 650 D C air for 4 h to obtain an oxygenate conversion olefin microsphere catalyst.
  • Example 10 Silicon-phosphorus-aluminum-alkali metal-transition metal system catalyst
  • the material liquid was subjected to rubber grinding by a colloid mill, so that the particle diameter of the finally obtained slurry was 70% less than 5 ⁇ m (the particle size distribution test was carried out using a ⁇ -9300 laser particle size distribution meter produced by Dandong Baite Instrument Co., Ltd.).
  • the slurry was spray dried (pressure spray dryer).
  • the resulting spray dried product was calcined in 650 air for 4 hours to obtain an oxygenate-converted olefin microsphere catalyst.
  • Example 11 Silicon-phosphorus-aluminum system catalyst
  • the elemental composition (using X-ray fluorescence analysis method) and particle size distribution of the catalyst in Example 1, 2, 3, 4, 5, 6, 7, 8, 10 and the comparative examples (using Dandong Baite Instrument Co., Ltd. BT-9300) Type laser particle size distribution analyzer) See Table 1. It can be seen that, except for the sample of Comparative Example 1, the elemental composition of other samples is required in this patent.
  • the composition of the catalyst element is within the range of composition.
  • the catalyst samples obtained in Examples 1-10 were subjected to wear index measurement, and the wear indexes of all the samples were all less than 1.5.
  • the catalyst sample obtained in Comparative Example 1 was subjected to a wear index measurement with an abrasion index of 5.
  • Abrasion Index Determination Method Approximately 7 g of the catalyst sample was placed in a gooseneck having an inner diameter of about 2.5 cm, and humid air was passed through the tube at a flow rate of 20 L/min to provide a fluidized environment. The fine catalyst powder blown out of the catalyst was collected in a special filter bag and tested for 4 hours. The wear index is calculated as the mass percentage of the average loss per hour of the catalyst initial loading.
  • aMeO transition metal oxide
  • AO alkaline earth metal oxide
  • the particle size distribution test uses the BT-9300 laser particle size distribution instrument produced by Dandong Baite Instrument Co., Ltd.
  • the catalyst obtained in Examples 1, 2, 3, 4, 8, 10 was subjected to methanol conversion to a low carbon olefin (MTO) reaction evaluation.
  • MTO low carbon olefin
  • the reaction product was analyzed by on-line gas chromatography. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

一种含氧化合物转化制烯烃微球催化剂及其制备方法
技术领域 本发明涉及催化剂技术领域, 是一种含氧化合物转化制烯烃微球催化剂及制备方 法, 及上述催化剂在含氧化合物转化制低碳烯烃反应中的催化应用。
背景技术
乙烯、 丙烯是石油化学工业中两种需求量最大和用途最广的基本有机化工原料, 被誉为现代有机合成工业之母。 制取乙烯、 丙烯等低碳烯烃的方法总体上可分为两大 类: 一类是石油路线, 国内主要采用轻油裂解方法, 美国和一些乙垸资源丰富的国家 采用乙垸高温转化方法生产乙烯。另一类是非石油路线, 以煤、天然气等 资源生产 低碳烯烃。 随着乙烯、 丙烯等低碳烯烃需求量的日益增加及应用领域的不断扩大, 加 之石油资源紧缺,价格上涨, 因此,开发以非石油路线制取低碳烯烃的技术日益迫切。 近十几年来, 采用煤、 天然气制备乙烯、 丙烯的研究和开发已成为国内外研究机构和 国际各大公司技术投入的热点。 天然气(或煤)制取甲醇的单系列、 大规模工业化的 技术已十分成熟, 所以由甲醇制取烯烃的研究成为非石油路线制取低碳烯烃的关键技 术。
1977年, 美国 Mobil公司首次采用 ZSM-5沸石分子筛作为甲醇制烯烃 (MTO) 催化剂, 使得该过程获得了突破(USP5367100)。 ZSM-5沸石是具有直管线形孔道结 构的中孔沸石, 其优良的形状选择作用虽可获得较高的轻烯烃收率, 但是酸性太强, 乙烯的选择性仍有待提高。 1984年, 美国联合碳化物公司 (UCC)开发了新型磷酸硅 铝系列分子筛(SAPO-n) (USP 4440871), SAPO分子筛是一类结晶硅铝磷酸盐, 由 P04+、 A104—、及 Si04的四面体构成三维骨架结构。随着磷酸硅铝系列分子筛的问世, 人们开始将这种小孔且酸性适中的分子筛用于 MTO反应, 如 SAPO-17, SAPO-18, SAPO-34, SAPO-44等 (US4499327), 它们的孔径大约为 0.43nm, 是一类较好的择 形催化剂。其中 SAPO-34分子筛由于具有适宜的酸性和孔道结构在 MTO反应中呈现 出优异的催化性能, 成为当前研究的热点。 此外, 将过渡金属引入到上面的分子筛骨 架中形成的 MeAPSO分子筛也对 MTO反应显示了较高的低碳烯烃选择性 (J. Mol. Catal. A 160(2000)437, CN1108867, CN1108868, CN1111091, CN1108869, CN1132698, CN1108870)。
上面这些分子筛虽然具有较好的 MTO催化性能, 但并不能直接应用到工业生产 中。 工业催化剂一般需要在保持较高催化性能的前提下, 具有一定的强度, 适宜的形 貌及合适的粒度。 开发甲醇转化制烯烃催化剂也必须符合上面的几个条件, 只有各方 面都满足要求才能应用于到工业装置中。通常甲醇转化制烯烃反应采用循环流化床操 作模式, 催化剂是具有适宜粒度分布的微球状。 从文献报道来看, 微球催化剂均由活 性组分如分子筛和粘结剂构成, 粘结剂起分散活性组分、 提高催化剂强度的作用。 此 夕卜, 催化剂中非活性成分的存在还可以起到稀释分子筛, 从而达到降低反应热效应的 作用。 如 USP5126298报道了一种高强度裂化催化剂的制备, 将两种不同的粘土, 沸 石分子筛和含磷化合物制成 pH <3 的浆料, 喷雾干燥制得; USP5248647报道了将 SAPO-34分子筛, 高岭土和硅溶胶制成的浆料喷雾干燥的方法; USP6153552报道了 一种含 SAPO分子筛的微球催化剂制备方法,其是将 SAPO分子筛,无机氧化物溶胶, 及含磷化合物混合, 喷雾干燥制得; USP6787501报道了将 SAPO-34分子筛、 粘结剂 和基质材料经喷雾干燥制成甲醇转化用催化剂; CN01132533A报道了用于甲醇转化的 耐磨损指数催化剂制备, 其是通过降低催化剂中分子筛的质量含量起到降低催化剂磨 损指数的效果。
所有这些关于微球催化剂制备的文献报道均是从使用原料的角度出发,探索适宜 的制备条件。如果直接从元素组成的角度出发进行催化剂的制备将会使研究工作站在 一种新的高度, 从更本质的层面进行催化剂的设计和制备。 到目前为止, 这方面的研 究还未见文献报道。
发明内容
本发明的目的在于提供一种含氧化合物转化制烯烃微球催化剂及其制备方法。 本发明的特点在于该催化剂体系由氧化硅、氧化磷及氧化铝构成,亦可同时含有 碱土金属氧化物及过渡金属氧化物。 各组分质量含量为氧化硅 2〜60%, 氧化磷 8-50 % , 氧化铝 20-70%, 碱土金属氧化物 0-10%,过渡金属氧化物 0-20% , 且满足各组分 质量含量之和为 100%。 本发明的特点在于催化剂所用的硅源、铝源和磷源来自 SAPO分子筛或 MeAPSO 分子筛。 硅源还可来自硅溶胶和高岭土中的一种或两者的混合物。 铝源还可来自铝溶 胶, 假勃母石, 拟薄水铝石, 高岭土中的一种或几种的混合物。 磷源还可来自磷酸, 磷酸氢二铵, 磷酸氢铵中的一种或几种的混合物。 碱土金属的来源为钙, 锶和钡的氧 化物、 无机盐类或有机盐类中的一种或任意几种的混合物。 过渡金属的来源为 MeAPSO分子筛, 钛、 钒、 铬、 锰、 铁、 钴、 镍、 铜、 锌、 锆等的氧化物、 无机盐类 或有机盐类中的一种或任意几种的混合物。
本发明的特点在于 SAPO和 MeAPSO分子筛作为催化剂活性组分, 在催化剂中 的氧化物质量含量为 15-50%。分子筛为 SAPO-17, MeAPSO-17, SAPO-18, MeAPSO- 18; SAPO-34, MeAPSO-34, SAPO-35, MeAPSO-35, SAPO-44, MeAPSO-44, SAPO-56, MeAPSO-56中的一种或任意几种的混合物。 MeAPSO分子筛中所含金属为钛、 钒、 铬、 锰、 铁、 钴、 镍、 铜、 锌、 锆等的一种或任意几种的混合物。 关于部分 SAPO分 子筛和 MeAPSO 分子筛的合成参见我们已授权专利 CN1037334, CN1038125, CN1131845, CN1108867, CN1108868, CN1111091, CN1108869, CN1132698, CN1108870.
本发明的特点在于微球催化剂的磨损指数小于 2。微球的直径在 2-220μιη范围内。 本发明提供的含氧化合物转化制烯烃微球催化剂的制备方法, 其特征在于制备过 程如下:
a) 将 SAPO或 MeAPSO分子筛、 造孔剂及其它含硅、 磷、 铝、 碱土金属和过渡 金属的原料与去离子水混合, 各组分的配料比例如下 (按氧化物质量比): Si02/ SAPO =0 ~ 2.5 Si02来自硅溶胶
Al2O3/ SAPO = 0〜4.5 A1203来自铝溶胶、 假勃母石、 拟薄水铝
石其中的一种或几种的混合物
P205/ SAPO = 0 - 3.0
V SAPO = 0〜 5.0 T为高岭土
AO/ SAPO = 0 - 0.7 AO为碱土金属氧化物
MeO/ SAPO = 0 - 1.3 MeO为过渡金属氧化物
¾O/SAPO= 1.0〜37,0 b) 将步骤 a) 中得到的浆料搅拌, 并过胶体磨进行胶磨以降低所含的颗粒直径, 其中胶磨后浆料中所含的颗粒直径小于 20μπχ, 90%的颗粒直径小于 ΙΟμιη, 70%的颗粒直径小于 5μπι;
c) 采用喷雾干燥方法将步骤 b) 中得到的浆料干燥, 制成微球状颗粒; d) 将微球状颗粒于 500— 800QC中焙烧, 即得到含氧化合物转化制烯烃催化剂。 所述步骤 a) 中加入的造孔剂为天然田菁粉或淀粉,加入量为所有无机氧化物总质 量的 0.01-3%; 所述步骤 c) 中采用的喷雾干燥装置为压力式或离心式。
本发明所制备的微球催化剂可直接应用于含氧化合物转化制烯烃反应。 具体实施方式
下面通过实施例详述本发明。 实施例 1 (硅一磷一铝体系催化剂)
将 2.0kg的硅溶胶(Si02含量为 30wt% )、 0.94kg的高岭土(水分含量为 15wt% , 灼烧后固体中 Si02含量 53wt%, A1203含量为 45wt% )和 0.72kg的 SAPO-34分子筛 原粉顺次加入到 3kg的去离子水中, 最后加入 10g的田菁粉(用少量乙醇浸润), 搅 拌 30min。 料液过胶体磨进行胶磨, 使得最后所得浆料中颗粒直径 70%小于 5μιη (粒 度分布测试采用丹东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料 进行喷雾干燥 (压力式喷雾干燥装置)。 得到的喷雾干燥产品于 650QC空气中焙烧 4h 即得到含氧化合物转化制烯烃微球催化剂。 实施例 2 (硅—磷一铝体系催化剂)
将 3.0kg的铝溶胶(A1203含量为 20wt% )、 0.94kg的高岭土(水分含量为 15wt%, 灼烧后固体中 Si02含量 53wt% , AI2O3含量为 45wt% )和 0.72kg的 SAPO-34分子筛 原粉顺次加入到 2kg的去离子水中, 最后加入 15g的田菁粉 (用少量乙醇浸润), 搅 拌 30min。 料液过胶体磨进行胶磨, 使得最后所得浆料中颗粒直径 70%小于 5μιη (粒 度分布测试采用丹东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料 进行喷雾干燥 (压力式喷雾干燥装置)。 得到的喷雾干燥产品于 650QC空气中焙烧 4h 即得到含氧化合物转化制烯烃微球催化剂。 实施例 3 (硅—磷一铝体系催化剂)
将 1.69kg磷酸(H3P04含量 85wt% ) 与 9kg去离子水, 2.95kg假勃姆石 (A1203 含量 70wt% )混合,搅拌 30min制成磷酸铝凝胶。将 1.56kgSAPO-34分子筛原粉, 0.83kg 硅溶胶(含量 30% )和 10kg去离子水混合, 搅拌 20min, 然后加入到前面的凝胶中。 料液中氧化物固含量为 20wt%,最后加入 20g田菁粉(用少量乙醇浸润),搅拌 30min。 料液过胶体磨胶磨使得最后所得浆料中颗粒直径 70%小于 5μιη (粒度分布测试釆用丹 东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料进行喷雾干燥 (离心 式喷雾干燥装置), 喷雾干燥产品于 650QC空气中焙烧 4h即得到含氧化合物转化制烯 烃微球催化剂。 实施例 4 (硅一磷一铝体系催化剂)
将 1.33kg的硅溶胶(Si02含量为 30wt% )、 0.94kg的高岭土(水分含量为 15wt%, 灼烧后固体中 Si02含量 53wt%, A1203含量为 45wt% )、 0.72kg的 SAPO-34分子筛原 粉及 1.0kg的铝溶胶 (A1203含量为 20wt% )顺次加入到 1.72kg的去离子水中, 最后 加入 5g的田菁粉 (用少量乙醇浸润), 搅拌 30min。 料液过胶体磨进行胶磨, 使得最 后所得浆料中颗粒直径 70%小于 5μηι (粒度分布测试采用丹东市百特仪器有限公司生 产的 ΒΤ-9300型激光粒度分布仪)。桨料进行喷雾干燥 (离心式喷雾干燥装置)。得到的 喷雾干燥产品于 650 空气中焙烧 4h即得到含氧化合物转化制烯烃微球催化剂。 实施例 5 (硅一磷一铝体系催化剂)
将 0.29kg的假勃姆石 (含量 70wt% )、 0.71kg的高岭土 (水分含量为 15wt%, 灼 烧后固体中 Si02含量 53wt%, A1203含量为 45wt% )、 0.84kg的 SAPO-34分子筛原粉 及 2.5kg的铝溶胶 (A1203含量为 20wt% )顺次入到 1.37kg的去离子水中, 最后加入 10g的小麦淀粉(用少量乙醇浸润), 搅拌 30min。 料液过胶体磨进行胶磨, 使得最后 所得浆料中颗粒直径 70%小于 5μηι (粒度分布测试釆用丹东市百特仪器有限公司生产 的 ΒΤ-9300型激光粒度分布仪)。浆料进行喷雾干燥 (离心式喷雾干燥装置)。得到的喷 雾干燥产品于 650GC空气中焙烧 4h即得到含氧化合物转化制烯烃微球催化剂。 实施例 6 (硅一磷一铝体系催化剂)
将 1.0kg的硅溶胶(Si02含量为 30wt% )、 0.94kg的高岭土(水分含量为 15wt% , 灼烧后固体中 Si02含量 53wt% , A1203含量为 45wt% )和 1.08kg的 SAPO-34分子筛 原粉顺次加入到 2.69kg的去离子水中, 最后加入 10g的田菁粉 (用少量乙醇浸润), 搅拌 30min。料液过胶体磨进行胶磨,使得最后所得浆料中颗粒直径 70%小于 5μηι (粒 度分布测试采用丹东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料 进行喷雾干燥 (压力式喷雾干燥装置)。 得到的喷雾干燥产品于 650GC空气中焙烧 4h 即得到含氧化合物转化制烯; 微球催化剂。 实施例 7 (硅一磷一铝一碱金属体系催化剂)
将 0.67kg的硅溶胶(Si02含量为 30wt% )、 0.71kg的高岭土(水分含量为 15wt% , 灼烧后固体中 Si02含量 53wt%, A1203含量为 45wt% )和 0.72kg的 SAPO-34分子筛 原粉及 2.5kg铝溶胶(A1203含量为 20wt% )顺次混合, 搅拌。将 0.2kg的硝酸锶 (SrO 含量 49wt%)加入到 0.2kg去离子水中,搅拌溶解,然后将硝酸锶溶液加入到前面的混 合料浆中, 最后加入 10g的田菁粉(用少量乙醇浸润), 搅拌 30min。料液过胶体磨进 行胶磨,使得最后所得浆料中颗粒直径 70%小于 5μπι (粒度分布测试采用丹东市百特 仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料迸行喷雾干燥 (离心式喷雾干 燥装置)。 得到的喷雾干燥产品于 650QC空气中焙烧 4h即得到含氧化合物转化制烯烃 微球催化剂。 实施例 8 (硅一磷一铝一过渡金属体系催化剂)
将 1.25kg碳酸锆(Zr02含量 40wt% ) 5kg去离子水、 5kg硅溶胶(Si02含量 30wt % )依次混合, 搅拌 20min。 将 1.76kg高岭土 (水分含量为 15wt%, 灼烧后固体中 Si02含量 53wt%, A1203含量为 45wt% ), 1.8kgSAPO-34分子筛和 5kg水依次混合, 搅拌 20min。 将两个料液混合, 搅拌 20min。 最后加入 15g的田菁粉(用少量乙醇浸 润),搅拌 30min。料液过胶体磨进行胶磨,使得最后所得浆料中颗粒直径 70%小于 5μιη (粒度分布测试釆用丹东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料进行喷雾干燥 (压力式喷雾干燥装置)。 得到的喷雾干燥产品于 650GC空气中焙 烧 4h即得到含氧化合物转化制烯烃微球催化剂。 实施例 9 (硅一磷—铝一过渡金属体系催化剂)
将 1.33kg硅溶胶(Si02含量 30wt% )、 0.82kg高岭土(水分含量为 15wt%, 灼烧 后固体中 Si02含量 53wt%, A1203含量为 45wt% )、 0.84kg ZnSAPO-34分子筛(氧化 锌含量 2wt% )及 1.0kg的铝溶胶(A1203含量为 20wt% ) 依次加入到 2.68kg去离子 水中, 搅拌 20min。 最后加入 5g的田菁粉(用少量乙醇浸润), 搅拌 30min。 料液过 胶体磨进行胶磨,使得最后所得浆料中颗粒直径 70%小于 5μιη (粒度分布测试采用丹 东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料迸行喷雾干燥 (离心 式喷雾干燥装置)。 得到的喷雾干燥产品于 650DC空气中焙烧 4h即得到含氧化合物转 化制烯烃微球催化剂。 实施例 10 (硅一磷—铝一碱金属—过渡金属体系催化剂)
将 0.5kg碳酸锆 (Zr02含量 40wt% )、 3.19kg去离子水、 1.67kg硅溶胶(Si02含 量 30wt% )、 0.71kg高岭土 (水分含量为 15wt% , 灼烧后固体中 Si02含量 53wt%, A1203含量为 45wt% )、 0.72kg SAPO-34分子筛依次混合, 搅拌 20min。 将 0.21kg的 硝酸锶 (SrO含量 49wt%)加入到 1.0kg去离子水中, 搅拌溶解, 然后将硝酸锶溶液加 入到前面的混合料浆中,. 搅拌 20min。 最后加入 5g的田菁粉(用少量乙醇浸润), 搅 拌 30min。 料液过胶体磨进行胶磨, 使得最后所得浆料中颗粒直径 70%小于 5μιη (粒 度分布测试采用丹东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料 进行喷雾干燥(离心式喷雾干燥装置)。 得到的喷雾干燥产品于 650QC空气中焙烧 4h 即得到含氧化合物转化制烯烃微球催化剂。 对比例 1 (硅—磷一铝体系催化剂)
将 3.33kg的硅溶胶(Si02含量为 30wt% )、 0.47kg的高岭土(水分含量为 15wt%, 灼烧后固体中 Si02含量 53wt%, A1203含量为 45wt% )和 0.72kg的 SAPO-34分子筛 原粉顺次加入到 3kg的去离子水中, 最后加入 10g的田菁粉 (用少量乙醇浸润), 搅 拌 30min。 料液过胶体磨进行胶磨, 使得最后所得浆料中颗粒直径 70%小于 5μιη (粒 度分布测试采用丹东市百特仪器有限公司生产的 ΒΤ-9300型激光粒度分布仪)。 浆料 进行喷雾干燥 (压力式喷雾干燥装置)。 得到的喷雾干燥产品于 650 空气中焙烧 4h 即得到含氧化合物转化制烯烃微球催化剂。 实施例 11 (硅一磷―铝体系催化剂)
实施例 1, 2, 3, 4, 5, 6, 7, 8, 10及对比例中催化剂的元素组成 (采用 X射 线荧光分析方法)和粒度分布(采用丹东市百特仪器有限公司 BT-9300型激光粒度分 布仪) 见表 1。 可以看到, 除对比例 1的样品外, 其它样品的元素组成均在本专利要 求的催化剂元素组成范围内。
将实施例 1-10中得到的催化剂样品进行磨损指数测量, 所有样品的磨损指数均 小于 1.5。将对比例 1得到的催化剂样品进行磨损指数测量, 磨损指数为 5。磨损指数 测定方法: 将约 7g催化剂样品放于内径 2.5cm左右的鹅颈管中, 湿空气以 20L/min 的流速通过该管提供一个流化环境。 从催化剂中吹出的催化剂细粉末被收集在一个特 制的滤袋中, 测试进行 4h。按催化剂初装量平均每小时损失的质量百分数来计算磨损 指数。
对比例 1中样品较高的磨损指数显然与其不适宜的元素组成有关。因此,本专利 直接从元素组成的角度出发进行微球催化剂的设计, 可以在催化剂制备的初期对各原 料组分的使用量给以指导, 避免催化剂制备过程中的盲目性, 从而获得具有较低磨损 指数的微球催化剂。 表 1微球催化剂元素组成及粒度分布
实施 元素组成 (wt% )
粒度分布
例 Si02 A1203 P2O5 MeO AO
1 54.2 30.3 4.7 0.6 0.2 <20μηι:4% 20μηι-40μηι.·13.7%
40-80μιη:42.5% 80-120μπι: 23.2 % >120μπΐ: 16.6%
2 30.1 55.1 13.8 0.7 0.3 <20μπι:4.5% 20μπι-40μιη:17.6% 40-80μηι:
50.3% 80-120μηι:16.4% >120μηΐ: 11.2 %
Figure imgf000010_0001
<20μηι:3.2 % 20μπι-40μπι:12.7% 40-80μηι:
48.5% 80-120μιη: 19.2% >120μιη: 16.4
%
Figure imgf000010_0002
<20μιη:5.6% 20μιη-40μπι:17.7% 40-80μηι:
53.1% 80-120μιη: 14.6% >120μιη: 9.0
%
28.9 50.8 14.1 0.3 5.6 8 48.9 26.6 15.0 8.9 0.6
10 44.7 26.3 14.6 9.3 4.6
对比 63.5 21.0 14.6 0.6 0.3
例 1
aMeO=过渡金属氧化物, AO=碱土金属氧化物
粒度分布测试采用丹东市百特仪器有限公司生产的 BT-9300型激光粒度分布仪 实施例 12
将实施例 1, 2, 3, 4, 8, 10中所得到的催化剂进行甲醇转化制低碳烯烃(MTO ) 反应评价。评价条件:称取 10g样品装入固定流化床反应器,样品首先在 40ml/min 的氮气下升至 550°C活化半小时,然后降温至 500°C进行化学反应。停止通氮气, 用微量泵进料, 40wt%甲醇水溶液, 重量空速 WHSV为 2.0h— 反应产物由在线 气相色谱进行分析, 结果见表 2。
可以看到, 几个催化剂均对甲醇转化制烯烃反应表现出较高的低碳烯烃选择 性。 表 2甲醇转化制烯烃反应结果 八 催化剂样 :
产物分布
例 1 例 2 例 3 例 4 例 8 例 10
CH4 3.57 2.57 2.60 2.81 3.06 2.70
C2H4 57.90 57.18 57.23 57.10 57.91 57.03
C2H6 0.52 0:45 0.52 0.52 0.50 0.40
C3H6 31.25 31.75 31.98 31.98 31.69 31.95
C3H8 0.51 0.82 0.56 0.60 0.50 0.76
C4+ 5.00 5.31 5.31 5.43 5.01 5.46 c5+ 1.21 1.65 1.80 1.56 1.33 1.70 c6+ 0.00 0.27 0.00 0.00 0.00 0.00
∑c2 =-c3 = 89.15 88.93 89.21 89.08 89.60 88.98 a: 甲醇转化率为 100%时的最高低碳烯烃选择性。

Claims

1. 一种含氧化合物转化制烯烃微球催化剂, 其特征在于, 该催化剂包括氧化硅、 5 氧化磷及氧化铝, 或同时含有碱土金属氧化物及过渡金属氧化物, 其各组分质量 含量为:氧化硅 2〜60%,氧化磷 8-50%,氧化铝 20-70% ,碱土金属氧化物 0-10%, 过渡金属氧化物 0-20%, 且满足各组分质量含量之和为 100%。
2、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 权
微球的直径在 2-220μιη范围内。
L0 3、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 氧化硅所用的硅源, 氧化铝所用的铝源和氧化磷所用的磷源来自磷酸硅铝 SAPO 求
分子筛或含金属的磷酸硅铝 MeAPSO分子筛。
4、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 氧化硅所用的硅源, 还可来自硅溶胶和高岭土中的一种或两者的混合物,氧化硅在
L5 微球催化剂中的总质量含量为 5-55 %。
5、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 氧化铝所用的铝源, 还可来自铝溶胶, 假勃母石, 拟薄水铝石, 高岭土中的一种 或几种的混合物,氧化铝在微球催化剂中的总质量含量为 25-65%。
6、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 ^0 氧化磷所用的磷源, 还可来自磷酸, 磷酸氢二铵, 磷酸氢铵其中的一种或几种的 混合物,氧化磷在微球催化剂中的总质量含量为 10-45 %。
7、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 碱土金属氧化物的来源为钙, 锶和钡的氧化物、 无机盐类或有机盐类中的一种或 任意几种的混合物,碱土金属氧化物在微球催化剂中的总质量含量为 0-8%。
^5 8、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 过渡金属氧化物的来源为 MeAPSO分子筛, 钛、 钒、 铬、 锰、 铁、 钴、 镍、 铜、 锌、 锆的氧化物、 无机盐类或有机盐类中的一种或任意几种的混合物,过渡金属氧 化物在微球催化剂中的总质量含量为 0-16%。
9、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述
50 微球催化剂是采用喷雾干燥方法干燥成型的。 、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 催化剂的磨损指数小于 2。
、 按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂,其特征在于,所述 催化剂可直接应用于含氧化合物转化制烯烃反应。
、 按照权利要求 3所述的含氧化合物转化制烯烃微球催化剂,其特征在于,所述 SAPO或 MeAPSO分子筛是催化剂的活性组分, 其在催化剂中的氧化物质量含量 为 15-50%
、 按照权利要求 3所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 MeAPSO分子筛中所含金属为钛、 钒、 铬、 锰、 铁、 钴、 镍、 铜、 锌、 锆其中的 一种或任意几种的混合物。
、 按照权利要求 3 所述的含氧化合物转化制烯烃微球催化剂, 其特征在于, 所述 SAPO 禾卩 MeAPSO 分子筛为 SAPO-17, MeAPSO-17, SAPO-18, MeAPSO- 18, SAPO-34, MeAPSO-34, SAPO-44, MeAPSO-44, SAPO-35, MeAPSO-35, SAPO-56, MeAPSO-56其中的一种或任意几种的混合物。
、 一种按照权利要求 1所述的含氧化合物转化制烯烃微球催化剂的制备方法,其特 征在于, 制备过程如下- a) 将 SAPO或 MeAPSO分子筛、 造孔剂及其它含硅、 磷、 铝、 碱土金属和过渡 金属的原料与去离子水混合, 各组分的配料比例如下 (按氧化物质量比计): Si02/ SAPO =0 ~ 2.5 Si02来自硅溶胶
A1203/ SAPO = 0 - 4.5 A1203来自铝溶胶、 假勃母石、 拟薄水铝
石其中的一种或几种的混合物
P205/ SAPO = 0 - 3.0
T/ SAPO = 0 - 5.0 T为高岭土
AO/ SAPO = 0 - 0.7 AO为碱土金属氧化物
MeO/ SAPO = 0 ~ 1.3 MeO为过渡金属氧化物
H20/SAPO= 1.0-37.0 b) 将步骤 a) 中得到的浆料搅拌, 并过胶体磨进行胶磨以降低所含的颗粒直径, 其中胶磨后浆料中所含的颗粒直径小于 20μηι, 90%的颗粒直径小于 10μπι, 70%的颗粒直径小于 5μιη;
c) 采用喷雾干燥方法将步骤 b) 中得到的浆料干燥, 制成微球状颗粒; d) 将微球状颗粒于 500— 800QC中焙烧, 即得到含氧化合物转化制烯烃催化剂。 、 按照权利要求 15所述的方法,其特征在于,所述步骤 a)中加入的造孔剂为天然 田菁粉或淀粉。
、 按照权利要求 15所述的方法,其特征在于,所述步骤 a)中加入造孔剂的量为所 有无机氧化物总质量的 0.01-3%。
、 按照权利要求 15所述的方法,其特征在于,所述步骤 c)中采用的喷雾干燥装置 为压力式或离心式。
PCT/CN2007/002309 2006-08-08 2007-07-31 Catalyseur à microsphères utilisés pour la transformation d'un composé oxygène en oléfine et son procédé de fabrication WO2008019579A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009523137A JP5174815B2 (ja) 2006-08-08 2007-07-31 酸素含有化合物のオレフィンへの転化反応に用いられるミクロスフィア触媒及びその製造方法
AU2007283967A AU2007283967B2 (en) 2006-08-08 2007-07-31 A microsphere catalyst used for converting oxygen compound to olefine and preparation method thereof
BRPI0715406A BRPI0715406B1 (pt) 2006-08-08 2007-07-31 catalisador de microesfera para a conversão de compostos que contêm oxigênio para olefinas e método para a preparação do mesmo
KR1020097004424A KR101127996B1 (ko) 2006-08-08 2007-07-31 산소 함유 화합물을 올레핀으로 전환시키는 반응에 이용되는 마이크로스피어 촉매 및 이의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200610089171 2006-08-08
CN200610089171.1 2006-08-08
CN2006101606828A CN101121145B (zh) 2006-08-08 2006-12-04 一种含氧化合物转化制烯烃微球催化剂及其制备方法
CN200610160682.8 2006-12-04

Publications (1)

Publication Number Publication Date
WO2008019579A1 true WO2008019579A1 (fr) 2008-02-21

Family

ID=39081925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002309 WO2008019579A1 (fr) 2006-08-08 2007-07-31 Catalyseur à microsphères utilisés pour la transformation d'un composé oxygène en oléfine et son procédé de fabrication

Country Status (6)

Country Link
JP (1) JP5174815B2 (zh)
KR (1) KR101127996B1 (zh)
CN (1) CN101121145B (zh)
AU (1) AU2007283967B2 (zh)
MY (1) MY154554A (zh)
WO (1) WO2008019579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103878020A (zh) * 2014-04-17 2014-06-25 中国华电集团科学技术研究总院有限公司 一种高选择性非贵金属长链烷烃异构化催化剂的制备及应用方法
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030601B (zh) * 2009-09-29 2013-06-05 中国石油化工股份有限公司 一种含氧有机化合物转化的方法
CN102059111B (zh) * 2009-11-12 2013-08-21 卓润生 一种用于液化石油气生产高价值烯烃的催化剂及其制备和应用
CN102962012B (zh) * 2012-11-21 2016-04-13 陕西煤化工技术工程中心有限公司 一种流化床用惰性剂及其制备与使用方法
JP5832560B2 (ja) * 2014-01-21 2015-12-16 日揮触媒化成株式会社 リン酸アルミニウムで修飾された金属担持結晶性シリカアルミノフォスフェート触媒の製造方法
CN104190465B (zh) * 2014-09-05 2016-08-24 福州大学 一种sapo-5分子筛负载金属氧化物的光催化剂
CN105126902B (zh) * 2015-07-29 2018-05-04 深圳科冠华太新材料技术有限公司 甲醇制烯烃反应中催化剂细粉的提质再利用方法
CN106582490B (zh) * 2015-10-19 2019-05-21 中国石油化工股份有限公司 一种制备微球组合物的方法
CN106890672B (zh) * 2015-12-18 2019-04-05 卓润生 一种甲醇转化制轻烯烃催化剂及其制备方法和应用
CN105854932A (zh) * 2016-04-20 2016-08-17 东南大学 一种Cu-Mn双金属复合型低温脱硝催化剂及其制备方法
CN109650404B (zh) * 2018-12-20 2020-12-15 中国天辰工程有限公司 一种实心硅铝磷分子筛成型方法及装置
CN112264024B (zh) * 2020-11-12 2021-12-17 西南化工研究设计院有限公司 一种环保型流化床烷烃脱氢催化剂及其制备方法
CN114479914A (zh) * 2021-12-31 2022-05-13 内蒙古伊泰煤基新材料研究院有限公司 一种费托合成油中含氧化合物的脱除方法
CN116328752A (zh) * 2022-12-13 2023-06-27 中国科学院大连化学物理研究所 一种催化剂、制备方法及制备碳酸丙烯酯的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167654A (zh) * 1996-06-07 1997-12-17 中国科学院大连化学物理研究所 金属改性小孔磷硅铝型分子筛催化剂及其制备方法和应用
US20040158111A1 (en) * 2002-06-19 2004-08-12 Johnson David L. Manufacture of xylenes using reformate
CN1754624A (zh) * 2004-09-28 2006-04-05 中国石油化工股份有限公司 一种金属改性的sapo-34分子筛及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861938A (en) * 1987-07-07 1989-08-29 Uop Chemical conversion process
US5962762A (en) * 1995-12-13 1999-10-05 Sun; Hsian-Ning Use of transition metal containing small pore molecular sieve catalysts in oxygenate conversion
WO2000006493A1 (en) * 1998-07-29 2000-02-10 Exxon Chemical Patents, Inc. Processes for manufacture of molecular sieves
US6812372B2 (en) * 2001-03-01 2004-11-02 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieve
EP1523535A1 (en) * 2002-06-19 2005-04-20 Exxonmobil Chemical Patents Inc. Manufacture of xylenes from reformate
CN101754624B (zh) * 2008-12-19 2012-07-25 鸿富锦精密工业(深圳)有限公司 金属壳体及其成型方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1167654A (zh) * 1996-06-07 1997-12-17 中国科学院大连化学物理研究所 金属改性小孔磷硅铝型分子筛催化剂及其制备方法和应用
US20040158111A1 (en) * 2002-06-19 2004-08-12 Johnson David L. Manufacture of xylenes using reformate
CN1754624A (zh) * 2004-09-28 2006-04-05 中国石油化工股份有限公司 一种金属改性的sapo-34分子筛及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses
CN103878020A (zh) * 2014-04-17 2014-06-25 中国华电集团科学技术研究总院有限公司 一种高选择性非贵金属长链烷烃异构化催化剂的制备及应用方法

Also Published As

Publication number Publication date
AU2007283967A1 (en) 2008-02-21
CN101121145B (zh) 2010-10-20
KR101127996B1 (ko) 2012-03-29
JP5174815B2 (ja) 2013-04-03
CN101121145A (zh) 2008-02-13
AU2007283967B2 (en) 2011-06-23
MY154554A (en) 2015-06-30
JP2010500157A (ja) 2010-01-07
KR20090053803A (ko) 2009-05-27

Similar Documents

Publication Publication Date Title
WO2008019579A1 (fr) Catalyseur à microsphères utilisés pour la transformation d&#39;un composé oxygène en oléfine et son procédé de fabrication
AU2005230817B2 (en) Catalyst compositions comprising metal phosphate bound zeolite and methods of using same to catalytically crack hydrocarbons
CN101743061B (zh) 磷酸硅铝(sapo)分子筛的制备方法、含有所述分子筛的催化剂以及采用所述催化剂的催化脱水方法
CN1327964C (zh) 包括分子筛的催化剂组合物、其制备及在转化方法中的应用
CN106890672B (zh) 一种甲醇转化制轻烯烃催化剂及其制备方法和应用
CN104056653B (zh) 一种甲醇制丙烯催化剂
WO2008095359A1 (fr) Procédé de recyclage d&#39;un catalyseur à microbille sur lit fluidisé
CN104056654B (zh) 一种zsm-5分子筛组合物、制备方法及其应用
CN104056652A (zh) 一种核壳型zsm-5分子筛小球催化剂
CN101318143B (zh) 制备分子筛流化床催化剂的方法
CN102389834A (zh) 分子筛催化剂微粉再利用的方法及其获得的产品和应用
CA3048119A1 (en) Process to convert synthesis gas to olefins using a bifunctional chromium / zinc oxide-sapo-34 catalyst
CN101239866A (zh) 含氧化合物生产乙烯、丙烯的方法
CN103833047B (zh) 一种sapo-5/sapo-18/sapo-34共生复合分子筛及其制备方法
CN109701609B (zh) Aei复合分子筛催化剂、制备方法及其应用
CN105579422A (zh) 甲醇转化方法
CN104056655B (zh) 一种核壳型小球催化剂
CN101580448B (zh) 一种由含氧化合物制备低碳烯烃的方法
CN104226364B (zh) 制备分子筛流化床催化剂的方法
CN104437615A (zh) 分子筛流化床催化剂的制备方法
CN114425436B (zh) 分子筛流化床催化剂的制备方法及制备的催化剂和应用
CN112961699B (zh) 一种合成气与混合c4共进料一步法制备液体燃料的方法
CN112209404B (zh) 高锌硅比Zn-SSZ-13/SAPO-11复合结构分子筛及其合成方法
US20230234899A1 (en) Processes for preparing c2 to c3 hydrocarbons in the presence of a hybrid catalyst
CN104226363B (zh) 含氧化合物制烯烃分子筛流化床催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009523137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007283967

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020097004424

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1321/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2007283967

Country of ref document: AU

Date of ref document: 20070731

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07785223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0715406

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090206