WO2008014663A1 - Additifs composites de température élevée pour batterie rechargeable cuivre hydrogène - Google Patents

Additifs composites de température élevée pour batterie rechargeable cuivre hydrogène Download PDF

Info

Publication number
WO2008014663A1
WO2008014663A1 PCT/CN2007/001803 CN2007001803W WO2008014663A1 WO 2008014663 A1 WO2008014663 A1 WO 2008014663A1 CN 2007001803 W CN2007001803 W CN 2007001803W WO 2008014663 A1 WO2008014663 A1 WO 2008014663A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
compound
battery
parts
rechargeable battery
Prior art date
Application number
PCT/CN2007/001803
Other languages
English (en)
French (fr)
Inventor
Xuefeng Gao
Xun Xie
Ping Zhang
Shi Liao
Yanqiu Yang
Original Assignee
Lexel Battery (Shenzhen) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexel Battery (Shenzhen) Co., Ltd. filed Critical Lexel Battery (Shenzhen) Co., Ltd.
Priority to EP07721376A priority Critical patent/EP2048728A4/en
Publication of WO2008014663A1 publication Critical patent/WO2008014663A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an additive for a rechargeable battery, and more particularly to an additive for a nickel-based rechargeable battery.
  • Nickel-based battery rechargeable battery containing nickel hydroxide, nickel cadmium and nickel zinc, such as nickel hydroxide/nickel oxyhydroxide as positive electrode, has high energy density, long life, small size, light weight, easy to use, safe, reliable and economical. The advantages are increasingly used in various fields. However, its charging performance at high temperature is defective, which restricts the application field of such batteries. The main problem is low-temperature charging efficiency. Ordinary nickel-based batteries are trickle-charged in an environment above 45 °C, and their capacity is only nominal.
  • the battery's working environment may exceed 45 ° C, or even 80 V, so it is possible to improve the high-temperature charging performance of nickel-based batteries. The key to wider application.
  • An object of the present invention is to provide a high temperature composite additive for a nickel-based rechargeable battery, and the technical problem to be solved is to improve the trickle charge conversion efficiency of the battery at a high temperature.
  • the invention adopts the following technical scheme: a high-temperature composite additive for a nickel-based rechargeable battery, comprising a mass ratio component: a simple substance of a rare earth element or a compound thereof, a simple substance of a WB group element or a compound thereof, and a simple substance of a group II A element. Or a compound of any of the two groups/classes, each of which is 0. 1-10 parts, 100 parts of nickel hydroxide.
  • the high-temperature composite additive for a nickel-based rechargeable battery of the present invention contains a simple substance of a rare earth element or a compound thereof, a simple substance of a group IVB element or a compound thereof, and a simple substance of a group III A element or a compound thereof. 1-10 parts.
  • the rare earth elements of the present invention are lanthanum, cerium and lanthanum elements.
  • the compounds of ruthenium , osmium and iridium of the present invention are ⁇ , ⁇ (0 ⁇ ) : ⁇ , Yb , Yb (0H) :i , ErO , , Er,0 ; i , Er (0H) :i .
  • the Group IVB elements of the present invention are titanium and zirconium elements.
  • the titanium and zirconium compounds of the present invention are Ti(OH):, Ti(0H) 2 , ⁇ , ⁇ , Ti0 2 , Ti0, Ti: A, Zr (0H) ; i . Zr (0H) 2 , Zr 2 0:,, Zr0 2 , Zr0, Zr:, 0 5 .
  • the Group II A elements of the present invention are calcium and magnesium elements.
  • the calcium and magnesium compounds of the present invention are Ca0, Ca(OH), Mg0, Mg(0H) 2 .
  • the mass ratio of the simple substance of the rare earth element of the present invention or a compound thereof, a simple substance of the IVB group element or a compound thereof, and a simple mass ratio of the compound of the II steroid element or a compound thereof is preferably 0.5 to 5 parts by weight.
  • the present invention is characterized in that the composition of the additive is at least one of a simple substance of a rare earth element such as lanthanum, cerium and lanthanum or a compound thereof, and a simple substance of a lanthanum element such as titanium or zirconium or a compound thereof by adding a composite high-temperature additive.
  • a rare earth element such as lanthanum, cerium and lanthanum or a compound thereof
  • a simple substance of a lanthanum element such as titanium or zirconium or a compound thereof by adding a composite high-temperature additive.
  • At least one of the elements of the IVB group element such as calcium and magnesium, or at least one of the compounds thereof, substantially lowers the conversion potential of the positive electrode active material at a high temperature and increases the oxygen evolution overpotential at a high temperature
  • the trickle charge conversion efficiency is increased by 20-50%, the battery can be used normally in an environment of 80 ° C, the field of use thereof is broadened, and the manufacturing process and structure of the battery are consistent with conventional nickel-hydrogen batteries, and the operation is simple. detailed description
  • the elemental substance of calcium and magnesium II A element or its compound CaO, Ca(OH) 2 , MgO, Mg(0H) 2 , select any group/class A substance is added to the battery in a mass ratio of 0.1-10 parts and Ni(0H) 2 100 parts to form a comparative example; in each of the two groups/classes or three groups/classes, one substance is selected in each of 0.1-10 by mass ratio. Parts and Ni (0H) 2100 parts were added to the battery to constitute an example.
  • Comparative Example a to prepare a nickel positive electrode: mass ratio of spherical Ni (OH) 2 100 parts, Ti0 2 5 parts of a 1% solution of a binder EMC 30 parts, are mixed into a slurry paste, filled into a foamed nickel substrate Medium, dried, rolled, and cut into a positive electrode sheet of No. 7 600 mAh battery.
  • Preparation of the negative electrode 100 parts of the negative electrode active material hydrogen storage alloy MmNi5 and 2.75% binder EMC 12.0 parts solution were mixed into a paste slurry, coated on a 0.04-thick thick punched nickel-plated steel strip, dried, and rolled. Pressed and cut into the size specification of No. 7 600mAh battery.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, Na0H, LiOH ternary electrolyte is injected. Spot welding cap, sealing, charging with 60mA for 16 hours, 120mA discharge to the voltage difference between the positive and negative terminals is 1.0V, cycle for two weeks, fully activated to make the battery.
  • Comparative Example II to prepare a nickel positive electrode mass ratio of spherical Ni (0H) 2 100 parts, Er0 2 5 parts of a 1% solution of a binder EMC 30 parts, are mixed into a slurry paste, filled into a foamed nickel substrate Medium, dried, rolled, and cut into a positive electrode sheet of No. 7 600 mAh battery.
  • Preparation of the negative electrode 100 parts of the negative electrode active material hydrogen storage alloy MmNi5 and 2.75% binder EMC 12.0 parts The liquid was mixed into a paste slurry, and applied to a 0.04 mm thick punched nickel-plated steel strip, dried, rolled, and cut into a No. 7 600 mAh battery negative electrode sheet.
  • a polypropylene diaphragm is sandwiched between the positive electrode and the negative electrode of the nickel, and wound into a spiral-shaped pole piece group.
  • the pole piece is assembled into a circular metal casing, and the NaOH, LiOH ternary electrolyte is infused.
  • Soldering cap, sealing, charging with 60mA for 16 hours, 120mA discharge to the voltage difference between the positive and negative electrodes is 1. 0V, cycle for two weeks, fully activated to make the battery.
  • Comparative Example 3 Preparation of nickel positive electrode: 100 parts of spherical Ni (OH), 5 parts of Ca (OH) and 30 parts of 1% binder EMC were mixed in a mass ratio to form a paste slurry and filled into foamed nickel. In the substrate, it was dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery. 0 ⁇ The negative electrode active material hydrogen storage alloy MmNi5 100 parts and 2.75% binder EMC1. 0 parts mixed into a paste slurry, coated on a 0. 04mm thick punched nickel plated steel, dried , Rolling, cutting into a No. 7 600mAh battery size specifications negative electrode.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, NaOH, LiOH ternary electrolyte is injected. Spot welding cap, sealing, ⁇ with 60mA charge for 16 hours, 120raA discharge to the positive and negative ends of the voltage difference of 1. 0V, cycle two weeks, fully activated to make the battery.
  • Example 1 Preparation of Nickel Positive Electrode: 2100 parts of spherical Ni (0H), Er0 2 2.5 parts, Ti0 2 2.5 parts and 1% binder EMC 30 parts solution were mixed into a paste slurry by mass ratio. The material was filled into a foamed nickel substrate, dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery. The thickness of the 0. 04mm thick punched plated. The film is applied to the 0. 04mm thick punched plated. On the nickel steel strip, it is dried, rolled, and cut into a No. 7 600 mAh battery size negative electrode.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, NaOH, LiOH ternary electrolyte is injected.
  • Spot welding cap, sealing, charging with 60mA for 16 hours, 120mA discharge to the voltage difference between the positive and negative terminals is 1. 0V, cycle for two weeks, fully activated to make the battery.
  • Example 2 Preparation of nickel positive electrode: mixing spherical ⁇ ( ⁇ ), ⁇ , Ca(0H) 2 2.5 parts, Ti0 2 2.5 parts and 1% binder EMC 30 parts by mass ratio
  • the paste slurry was filled into a foamed nickel substrate, dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery.
  • the thickness of the 0. 04mm thick punched plated is prepared by mixing the negative electrode active material hydrogen storage alloy Mm i5 100 parts with 2.75% binder EMC 12. 0 parts and the binder solution to form a paste slurry. On the nickel steel strip, it is dried, rolled, and cut into a No. 7 600 mAh battery size negative electrode.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, NaOH, LiOH ternary electrolyte is injected. Spot welding cap, sealing, using 60 ⁇ for 16 hours, 120 mA discharge to the positive and negative ends of the voltage difference of 1. 0V, cycle two weeks, fully activated after the system into a battery.
  • Example 3 Preparation of nickel positive electrode: spherical Ni (0H), 100 parts, Ca (0H) 2 2.5 parts, Er0 2 2.5 parts and binder 1% binder EMC 30 parts by mass ratio The solution was mixed into a paste slurry, filled into a foamed nickel substrate, dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery.
  • 0 ⁇ plating The negative electrode active material hydrogen storage alloy Mm i5 100 parts and 2.75% of the binder EMC 12. 0 parts and the binder solution is mixed into a paste slurry, coated to 0. 04mra thick punching plating On the nickel steel strip, it is dried, rolled, and cut into a No. 7 600 mAh battery size negative electrode.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and K0H and NaOH are injected.
  • LiOH ternary electrolyte, spot welding cap, sealing, charging with 60raA for 16 hours, 120mA discharge to a voltage difference between the positive and negative electrodes is 1.0 V, cycle for two weeks, fully activated to make a battery.
  • Example 4 Preparation of nickel positive electrode: 100 parts of spherical Ni (OH), Er0 2 2.0 parts, Ti0 2 2.0 parts, Ca (OH), 1.0 parts and 1% binder by mass ratio 30 parts of EMC solution, mixed into a paste slurry, filled into a foamed nickel substrate, dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery.
  • the thickness of the nickel-plated nickel plated is 0. 04mm thick punched nickel plating.
  • the negative electrode active material hydrogen storage alloy MraNi5 100 parts and 2.75% binder EMC 12. 0 parts and the binder solution are mixed into a paste slurry, coated to 0.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, NaOH, LiOH ternary electrolyte is injected. Spot welding cap, sealing, charging with 60mA for 16 hours, 120mA discharge to the voltage difference between the positive and negative electrodes is 1. 0V, cycle for two weeks, fully activated to make the battery.
  • the nickel positive electrode is prepared by mass ratio of spherical Ni (0H) 2100 parts, Er0 2 1. 0 parts, Ti powder 5. 0 parts, Ca (0H), 0.5 parts and 1% binder 30 parts of EMC solution, mixed into a paste slurry, filled into a foamed nickel substrate, dried, rolled, and cut into positive electrode sheets of No. 7 600 mAh battery.
  • the thickness of the punching plate is 0. 04mm thick punched plated.
  • the film is applied to the 0. 04mm thick punched plated.
  • On the nickel steel strip it is dried, rolled, and cut into a No. 7 600 mAh battery size negative electrode.
  • a separator made of polypropylene is sandwiched between the positive electrode and the negative electrode of the nickel, and wound into a spiral-shaped pole piece group.
  • the pole piece is assembled into a circular metal casing, and the K0H, painted, LiOH ternary electrolyte is injected. Spot welding cap, sealing, ⁇ with 60mA charge for 16 hours, 120mA discharge to the positive and negative ends of the voltage difference of 1. 0V, cycle two weeks, fully activated to make the battery.
  • Example 6 Preparation of nickel positive electrode: spherical Ni (0H) 2 100 parts, Y powder 0.1 parts, Ti0 2 5 parts, Ca (0H) 2 1.0 parts and 1% binder EMC by mass ratio 30 parts of the solution, mixed into a paste slurry, filled into a foamed nickel substrate, dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, NaOH, LiOH ternary electrolyte is injected. Spot welding cap, sealing, ⁇ with 60mA charge for 16 hours, 120mA discharge to the positive and negative ends of the voltage difference of 1. 0V, cycle two weeks, fully activated to make the battery.
  • Example 7 the preparation of the nickel positive electrode: spherical Ni (OH) 2100 parts, Er0 2 0. 5 parts, Ti0 2 10 parts, Mg powder 0.5 parts and 1% binder EMC 30 parts by weight, The mixture was mixed into a paste slurry, filled into a foamed nickel substrate, and dried, rolled, and cut into a positive electrode sheet of a No. 7 600 mAh battery.
  • a polypropylene diaphragm is sandwiched between the nickel positive electrode and the negative electrode, and wound into a spiral-shaped pole piece group.
  • the pole piece assembly is placed in a circular metal casing, and a K0H, NaOH, LiOH ternary electrolyte is injected.
  • Spot welding cap, sealing, charging with 60mA for 16 hours, 120raA discharge to the voltage difference between the positive and negative electrodes is 1. 0V, cycle for two weeks, fully activated to make the battery.
  • the battery was charged at a temperature of 60 mA for 16 hours at room temperature, and then left for 1 hour, and discharged at 120 mA until the voltage difference between the positive and negative electrodes was 1.0 V.
  • the initial capacity is C () mAh; respectively, at 60 ° C and 80 ° C, with 60 mA for 48 hours, and then set aside for 1 hour, 120 mA to the positive and negative voltages across the voltage difference of 1.0 V, to obtain the discharge capacity
  • Table 1 The comparison results of the capacity and charging efficiency ⁇ of each of the above Comparative Examples and Examples are shown in Table 1.
  • the oxide or hydroxide of the element is exemplified as an additive, since the additive acts by the elemental cation dissolution-redeposition process to form oxide/hydroxide deposition on the surface of the nickel hydroxide, Any compound that can provide elemental cations in an alkaline electrolyte environment, such as various salts, and an oxide/hydroxide element which reacts with an alkaline electrolyte to form an element, can be used as an additive, of course, anion to battery harmless.
  • additives can be added to the positive electrode active material, and addition to the negative electrode, the separator or the electrolyte can also hinder the formation of oxygen evolution side reactions on the surface of the nickel hydroxide by the dissolution-redeposition process of the cation. The effect is the same.
  • the rare earth elements include lanthanides and lanthanum and cerium.
  • the valence electron structures of lanthanum, cerium and lanthanum atoms are (n-d 1 ⁇ 2 , and the total number of electrons in the highest energy group of the outer electrons is 3, Three electrons can be lost to form a compound with an oxidation state of +3. Therefore, they are very similar in nature to each other.
  • the lanthanide has a f-electron in the ground state electronic layer structure. However, the outermost two electron layers of the remaining elements of the lanthanide have a strong shielding effect on the 4f orbital.
  • the valence electron layer structure of the atom of group IVB is (nl)d 2 nS 2 , the highest level of the outer electron
  • the total number of electrons in the group is also the same. Since the d orbit is completely empty, the structure of the atom is relatively stable. Therefore, in addition to the two outermost two s electrons participating in the bonding, the two outer d electrons are also easy. Participate in the keying, they are very similar in nature to each other. Due to the influence of the lanthanide shrinkage, the atomic radii and ionic radii of both zirconium and hafnium are very close, so their chemical properties are also very similar. Therefore, the methods and methods of the present invention are equally applicable to the elements and compounds of other Group IVB elements other than titanium and zirconium.
  • the outermost electron arrangement of the metal atoms of Group II A elements is ns 2 , which are strongly reducible.
  • The number of the outermost electrons of the lan elements is the same as 2, so they are very similar in nature to each other. Therefore, the compounds of the Group IIA elements other than calcium and magnesium are equally applicable to the process of the present invention.
  • the element II element and the rare earth element have a relatively simple elemental reduction property, are not stably present after being added to the battery system, and are oxidized to form a compound, so that the elemental substance or a compound thereof is also suitable for the method of the present invention.
  • the high-temperature composite additive for a nickel-based rechargeable battery of the present invention comprises a component selected from at least one element selected from the group consisting of a lanthanum, a group IVB and a rare earth element in the periodic table, and is added as a simple substance or a compound to the rechargeable nickel.
  • a component selected from at least one element selected from the group consisting of a lanthanum, a group IVB and a rare earth element in the periodic table and is added as a simple substance or a compound to the rechargeable nickel.
  • a single unit/class of elements added
  • the accumulation between the additives and the accumulation between the positive electrode constituent materials are prevented, and the additive is uniformly distributed on the surface of the active material.
  • the additive plays a more comprehensive role, improving the charging and conversion efficiency of the active material.
  • An excellent effect is obtained in improving the utilization rate of the positive electrode active material, that is, the composite high temperature additive further improves the oxygen evolution overpotential of the positive electrode as compared with the single compound additive.
  • the addition of a composite high temperature additive to the negative electrode active material hydrogen storage alloy contributes to the improvement of the characteristics of the hydrogen storage alloy electrode.
  • the high-temperature composite additive for a nickel-based rechargeable battery of the present invention is co-deposited or coated on the surface of the positive electrode nickel hydroxide, or mechanically mixed in the positive electrode active material, or distributed in the negative electrode active material, or has a solubility on the surface of the separator.
  • a compound of Group A, Group IVB and a rare earth metal is present, the compound can be dissolved and present in an alkaline electrolyte, and is distributed in the positive electrode, the negative electrode and the separator of the battery by diffusion of the electro-liquid, thereby making the charging reaction more uniform.
  • the inhibition of the oxygen evolution reaction becomes stronger, and at the same time, the charging reaction of converting nickel oxide into nickel hydroxide is enhanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

镍基充电电池用高温复合添加剂
技术领域
本发明涉及一种可充电电池用的添加剂, 特别是一种镍基可充电 电池用的添加剂。
背景技术
镍基电池, 包含镍氢、镍镉和镍锌等以氢氧化镍 /羟基氧化镍作为 正极的可充电电池具有能量密度高、 寿命长、 体积小、 重量轻、 使用 方便、 安全可靠和经济实惠的优点,在各领域得到越来越广泛的应用。 但其在高温下充电性能存在缺陷, 制约了此类电池的应用领域, 主要 问题是高温充电效率低下, 普通镍基电池在 45°C以上的环境中涓流充 电,其容量只为其标称容量的 50%或更低; 而在应急照明、 户外太阳能 应用和 HEV等领域, 电池的工作环境可能会超过 45°C, 甚至达到 80 V, 因此提高镍基电池的高温充电性能是其能否更广泛应用的关键。
镍基电池在充电时其正极进行有两个并行的电化学反应: 充电反应: Ni (0H) 2+0H— = Ni00H+ ¾0 + e" (1)
析氧反应: 40tf = 2¾0+02+ 4e— (2)
镍基电池在 25°C以下的温度充电时, 直至充入 90%电量, 反应式 (2)过程所占的比例非常小,大部分电量的充入进行反应式(1)的过程。 当温度升高时, 反应式 (2)的过程变得更容易进行, 因此可能在充入 50%或更少电量时析氧反应就开始发生, 析出的氧扩散到负极, 发生化 学反应: 使得电池内部温度更高, 析氧反应得到进一步促进, 结果形成恶 性循环, 使充入的电量大部分用于析氧反应, 从而造成正极的充电反 应进行不完全, 电池放电容量偏低。 为了提高电池在高温条件下的容 量利用率, 即实际放电容量 /标称容量,一条途径是让充电反应变得更 加容易进行, 如申请号为 97117716. 3的中国专利申请, 在氢氧化镍中 共沉积 5%wt的氢氧化钴;另外一条途径是添加能够阻碍析氧反应发生 的化学物质, 如申请号为 99116113. 0的中国专利申请, 在正极中添加 l-5%wt 的钛化合物, 申请号为 97120505. 1 的中国专利申请, 在正极 中添加 0. l_5%wt .的钇、铒、镱组成的基团中选择至少两种元素的化合 物,申请号为 200510040591. 6的中国专利申请,在正极中添加锆元素。 采用这些技术手段虽然对提高镍基充电电池的高温充电性能产生明显 的效果, 但是对 80°C条件下的涓流充电, 即 0. 05倍率电流充电 48小 时, 其容量利用率最高只能到 40%, 仍然不能达到正常使用的水平, 镍基充电电池在高温下的涓流充电转化效率。
发明内容
本发明的目的是提供一种镍基充电电池用高温复合添加剂, 要解 决的技术问题是提高电池在高温下的涓流充电转化效率。
本发明采用以下技术方案:一种镍基充电电池用高温复合添加剂, 包含的质量比组份为: 在稀土元素的单质或其化合物、 WB族元素的 单质或其化合物和 II A族元素的单质或其化合物中, 任意两族 /类中的 一种物质各 0. 1-10份、 氢氧化镍 100份。 本发明的镍基充电电池用高温复合添加剂含有稀土元素的单质或 其化合物、 IVB族元素的单质或其化合物和 II A族元素的单质或其化合 物三族 /类中的各一种物质 0. 1-10份。
本发明的稀土元素是钇、 镱和铒元素。
本发明的钇、 镱和铒的化合物是 Υ 、 Υ(0Η) 、 Yb 、 Yb (0H) :i、 ErO, 、 Er,0;i, Er (0H) :i
本发明的 IVB族元素是钛和锆元素。
本发明的钛和锆的化合物是 Ti (OH):,、 Ti (0H) 2、 Τΐ,Ο,, Ti02、 Ti0、 Ti:A、 Zr (0H) ;i. Zr (0H) 2、 Zr20:,、 Zr02、 Zr0、 Zr:,05
本发明的 II A族元素是钙和镁元素。
本发明的钙和镁化合物是 Ca0、 Ca(OH) ,, Mg0、 Mg (0H) 2
,本发明的稀土元素的单质或其化合物、 IVB族元素的单质或其化 合物和 II Α族元素的单质或其化合物优选的质量比是 0. 5-5份。
本发明与现有技术相比, 通过加入复合高温添加剂, 添加剂的组 成为钇、 镱和铒等稀土元素的单质或其化合物中至少一种, 以及钛、 锆等 ΠΑ族元素的单质或其化合物中的至少一种, 及钙和镁元素等 IVB 族元素的单质或其化合物的至少一种, 较大幅度地降低正极活性物质 在高温下的转化电位并提高析氧过电位, 使在高温下的涓流充电转化 效率提高 20-50%, 实现电池在 80°C环境中能正常使用, 拓宽了其使用 领域, 且电池的制造工艺流程、 结构与常规镍氢电池一致, 操作简单。 具体实施方式
下面结合实施例对本发明作进一步详细说明。 从钇、 镱和铒稀土元素的单质或其化合物 Υ 、 Y(0H):i、 YbA、 Yb(0H):,、 ErO, 、 Er20:1、 Er(OH):冲, 钛和锆 WB族元素的单质或其化合 物 Ti(0H):!、 Ti(0H)2、 Ti20:i、 Ti02、 TiO、 Ti: 、 Zr(OH):,、 Zr(0H)2、 Zr20:,、 ZrO^ ZrO、 Zr:iOs中,钙和镁 II A族元素的单质或其化合物 CaO、 Ca(OH) 2、 MgO、 Mg(0H)2中, 选择任意一族 /类的一种物质按质量比 0.1-10份、 Ni(0H)2100份加入电池中构成比较例; 在任意两族 /类中或三族 /类中 各选择一种物质按质量比各 0.1-10份、 Ni(0H) 2100份加入电池中构 成实施例。
比较例一, 镍正极的制作: 按质量比将球形 Ni(OH)2100份、 Ti025 份与 1%粘结剂 EMC 30份溶液, 混合成糊状浆料, 填充到发泡镍基体 中, 经干燥、 辊压、 裁切成 7号 600mAh电池的正极片。 负极的制作: 将负极活性物质贮氢合金 MmNi5 100份与 2.75%粘结剂 EMC 12.0份溶 液混合成糊状浆料, 涂布到 0.04画厚的冲孔镀镍钢带上, 经干燥、 辊 压、 裁切成 7号 600mAh电池尺寸规格。 电池的制作: 在镍正极和负极 中间夹以聚丙烯材质隔膜, 卷绕成涡卷状极片组, 将此极片组装入圆 形金属外壳, 经注 K0H、 Na0H、 LiOH三元电解液、 点焊盖帽, 封口, 采用 60mA充 16小时, 120mA放电至正负极两端电压差为 1.0V,循环二 周, 充分活化后制成电池。
比较例二, 镍正极的制作: 按质量比将球形 Ni(0H)2100份、 Er025 份与 1%粘结剂 EMC 30份溶液, 混合成糊状浆料, 填充到发泡镍基体 中, 经干燥、 辊压、 裁切成 7号 600mAh电池的正极片。 负极的制作: 将负极活性物质贮氢合金 MmNi5 100份与 2.75%粘结剂 EMC12.0份溶 液混合成糊状浆料,涂布到 0. 04mm厚冲孔镀镍钢带上,经干燥、辊压、 裁切成 7号 600mAh电池负极片。 电池的制作: 在镍正极和负极中间夹 以聚丙烯材质隔膜, 卷绕成涡卷状极片组, 将此极片组装入圆形金属 外壳, 经注亂 NaOH、 LiOH三元电解液、点焊盖帽, 封口, 采用 60mA 充 16小时, 120mA放电至正负极两端电压差为 1. 0V,循环二周,充分活 化后制成电池。
比较例三,镍正极的制作:按质量比将球形 Ni (OH) 100份、 Ca (OH) 5份与 1%粘结剂 EMC 30份溶液, 混合成糊状桨料, 填充到发泡镍基体 中, 经干燥、 辊压、 裁切成 7号 600mAh电池的正极片。 负极的制作: 将负极活性物质贮氢合金 MmNi5 100份与 2. 75%粘结剂 EMC12. 0份混 合成糊状浆料, 涂布到 0. 04mm厚冲孔镀镍钢带上, 经干燥、 辊压、 裁 切成 7号 600mAh电池尺寸规格负极片。 电池的制作: 在镍正极和负极 中间夹以聚丙烯材质隔膜, 卷绕成涡卷状极片组, 将此极片组装入圆 形金属外壳, 经注 K0H、 NaOH、 LiOH三元电解液、 点焊盖帽, 封口, 釆用 60mA充 16小时, 120raA放电至正负极两端电压差为 1. 0V,循环二 周, 充分活化后制成电池。
实施例一,镍正极的制作:按质量比将球形 Ni (0H) 2100份、 Er02 2. 5 份、 Ti02 2. 5份与 1%粘结剂 EMC 30份溶液, 混合成糊状浆料, 填充 到发泡镍基体中, 经干燥、 辊压、 裁切成 7号 600mAh电池的正极片。 负极的制作: 将负极活性物质贮氢合金 MmNi 5 100份与 2. 75%粘结剂 EMC 12. 0份与粘结剂溶液混合成糊状浆料, 涂布到 0. 04mm厚冲孔镀 镍钢带上, 经干燥、 辊压、 裁切成 7号 600mAh电池尺寸规格负极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质隔膜, 卷绕成涡卷 状极片组, 将此极片组装入圆形金属外壳, 经注 K0H、 NaOH、 LiOH三 元电解液、 点焊盖帽, 封口, 采用 60mA充 16小时, 120mA放电至正负 极两端电压差为 1. 0V,循环二周, 充分活化后制成电池。
实施例二,镍正极的制作:按质量比将球形 Μ (ΟΗ) , ΙΟΟ份、 Ca(0H) 2 2. 5份、 Ti02 2. 5份与 1%粘结剂 EMC 30份溶液, 混合成糊状桨料, 填 充到发泡镍基体中,经干燥、辊压、裁切成 7号 600mAh电池的正极片。 负极的制作: 将负极活性物质贮氢合金 Mm i5 100份与 2. 75%粘结剂 EMC 12. 0份与粘结剂溶液混合成糊状浆料, 涂布到 0. 04mm厚冲孔鍍 镍钢带上, 经干燥、 辊压、 裁切成 7号 600mAh电池尺寸规格负极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质隔膜, 卷绕成涡卷 状极片组, 将此极片组装入圆形金属外壳, 经注 K0H、 NaOH, LiOH三 元电解液、 点焊盖帽, 封口, 采用 60πιΑ充 16小时, 120mA放电至正负 极两端电压差为 1. 0V,循环二周, 充分活化后制.成电池。
实施例三,镍正极的制作:按质量比将球形 Ni (0H) , 100份、 Ca (0H) 2 2. 5份、 Er02 2. 5份与粘结剂 1%粘结剂 EMC 30份溶液, 混合成糊状浆 料, 填充到发泡镍基体中, 经干燥、 辊压、 裁切成 7号 600mAh电池的 正极片。 负极的制作: 将负极活性物质贮氢合金 Mm i5 100份与 2. 75% 粘结剂 EMC 12. 0份与粘结剂溶液混合成糊状浆料, 涂布到 0. 04mra厚 冲孔镀镍钢带上, 经干燥、 辊压、裁切成 7号 600mAh电池尺寸规格负 极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质隔膜, 卷绕 成涡卷状极片组, 将此极片组装入圆形金属外壳, 经注 K0H、 NaOH, LiOH三元电解液、 点焊盖帽, 封口, 采用 60raA充 16小时, 120mA放电 至正负极两端电压差为 1. 0V,循环二周, 充分活化后制成电池。
实施例四,镍正极的制作:按质量比将球形 Ni (OH) 100份、 Er02 2. 0 份、 Ti02 2. 0份、 Ca (OH) , 1. 0份与 1%粘结剂 EMC 30份溶液, 混合成 糊状浆料, 填充到发泡镍基体中, 经干燥、 辊压、 裁切成 7号 600mAh 电池的正极片。 负极的制作: 将负极活性物质贮氢合金 MraNi5 100份 与 2. 75%粘结剂 EMC 12. 0 份与粘结剂溶液混合成糊状桨料, 涂布到 0. 04mm厚冲孔镀镍钢带上, 经千燥、 辊压、 裁切成 7号 600mAh电池 尺寸规格负极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质 隔膜,卷绕成涡卷状极片组,将此极片组装入圆形金属外壳,经注 K0H、 NaOH、 LiOH三元电解液、点焊盖帽,封口,采用 60mA充 16小时, 120mA 放电至正负极两端电压差为 1. 0V,循环二周, 充分活化后制成电池。
实施例五,镍正极的制作:按质量比将球形 Ni (0H) 2100份、 Er02 1. 0 份、 Ti粉 5. 0份、 Ca (0H) , 0. 5份与 1%粘结剂 EMC 30份溶液, 混合 成糊状浆料,填充到发泡镍基体中,经干燥、辊压、裁切成 7号 600mAh 电池的正极片。 负极的制作: 将负极活性物质贮氢合金 Miri i5 100份 与 2. 75%粘结剂 EMC 12. 0 份与粘结剂溶液混合成糊状浆料, 涂布到 0. 04mm厚冲孔镀镍钢带上, 经干燥、 辊压、 裁切成 7号 600mAh电池 尺寸规格负极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质 隔膜,卷绕成涡卷状极片组,将此极片组装入圆形金属外壳,经注 K0H、 画、 LiOH三元电解液、点焊盖帽,封口,釆用 60mA充 16小时, 120mA 放电至正负极两端电压差为 1. 0V,循环二周, 充分活化后制成电池。 实施例六,镍正极的制作:按质量比将球形 Ni (0H) 2100份、 Y粉 0. 1 份、 Ti02 5份、 Ca (0H) 2 1. 0份与 1%粘结剂 EMC 30份溶液, 混合成糊 状浆料, 填充到发泡镍基体中, 经干燥、 辊压、 裁切成 7号 600mAh电 池的正极片。 负极的制作: 将负极活性物质贮氢合金 Mrri i5 100份与 2. 75%粘结剂 EMC 12. 0份与粘结剂溶液混合成糊状浆料,涂布到 0. 04mm 厚冲孔镀镍钢带上, 经干燥、辊压、 裁切成 7号 600mAh电池尺寸规格 负极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质隔膜, 卷 绕成涡卷状极片组, 将此极片组装入圆形金属外壳, 经注 K0H、 NaOH、 LiOH三元电解液、 点焊盖帽, 封口, 釆用 60mA充 16小时, 120mA放电 至正负极两端电压差为 1. 0V,循环二周, 充分活化后制成电池。
实施例七,镍正极的制作:按质量比将球形 Ni (OH) 2100份、 Er02 0. 5 份、 Ti02 10份、 Mg粉 0. 5份与 1%粘结剂 EMC 30份溶液, 混合成糊 状浆料, 填充到发泡镍基体中, 经干燥、 辊压、 裁切成 7号 600mAh电 池的正极片。 负极的制作: 将负极活性物质贮氢合金 MmNi5 100份与 2. 75%粘结剂 EMC 12. 0份与粘结剂溶液混合成糊状浆料,涂布到 0. 04mm 厚冲孔镀镍钢带上, 经干燥、辊压、裁切成 7号 600raAh电池尺寸规格 负极片。 电池的制作: 在镍正极和负极中间夹以聚丙烯材质隔膜, 卷 绕成涡卷状极片组, 将此极片组装入圆形金属外壳, 经注 K0H、 NaOH、 LiOH三元电解液、 点焊盖帽, 封口, 采用 60mA充 16小时, 120raA放电 至正负极两端电压差为 1. 0V,循环二周, 充分活化后制成电池。
将比较例和实施例中活化稳定后制得的电池在室温下 60mA 充电 16小时,然后搁置 1小时,在 120mA放电至正负极两端电压差为 1. 0V, 得到初始容量为 C() mAh; 分别在 60°C和 80°C条件下, 用 60mA充电 48 小时, 然后搁置 1小时, 120mA放至正负极两端电压差为 1. 0V, 得到 放电容量为 CtmAh和 C2 mAh , 利用公式 n = (C,/C()) X 100%、 (C2/C()) X 100%计算在 60°C和 80°C的充电转化效率。 前述各比较例和实施例 容量和充电效率 η的比较结果如表 1所示。
前述实施例中只列举了元素的氧化物或氢氧化物作为添加剂的例 子, 由于添加剂是通过元素阳离子溶解-再沉积过程生成在氢氧化镍表 面的氧化物 /氢氧化物沉积而产生作用, 因此任何可以在碱性电解液环 境中提供元素阳离子的化合物, 如各种盐类、 与碱性电解液反应生成 元素的氧化物 /氢氧化物的单质都可以作为添加剂使用, 当然要考虑阴 离子对电池无害。 同理, 这些添加剂除可以添加到正极活性物质中以 夕卜, 添加到负极、 隔膜或电解液中也能通过阳离子的溶解 -再沉积过程 在氢氧化镍表面形成析氧副反应的阻碍, 因此效果也是相同的。
稀土元素中包括镧系元素和钇、 镱两元素, 钇、 镱和镧原子的价 层电子构型为 (n- d1^2, 外层电子最高能级组中的电子总数同为 3, 可失去 3个电子形成氧化态为 +3的化合物。 因此它们彼此之间性质 非常相似。 另镧系元素除镧原子外, 其余原子的基态电子层结构中都 有 f 电子。 镧虽然没有 f 电子, 但镧系其余元素最外两个电子层对 4f 轨道有较强的屏蔽作用, 因此尽管 4f能级中电子数不同, 它们的化学 性质受 4f电子数的影响很小,因而它们的化学性质很相似,所以除钇、 镱和铒外的其他稀土元素的单质和化合物同样适用本发明的方法。
IVB族元素原子的价电子层结构为 (n-l)d2 nS 2, 外层电子最高能级 组中的电子总数同为 4, 由于 d轨道在全空 的情况下, 原子的结构 比较稳定, 所以除了最外层的两个 s电子参加成键以外, 次外层的两 个 d电子也容易参加成键, 它们彼此之间性质非常相似。 由于镧系收 縮的影响, 使锆和铪两者的原子半径和离子半径非常接近, 因而它们 的化学性质也非常相似。 所以除钛和锆外的其他 IVB 族元素的单质和 化合物同样适用本发明的方法。
II A族元素金属原子的最外层电子排布为 ns2, 它们具有强还原 性。 Π Α族元素最外层电子数目一样同为 2, 因此它们彼此之间性质 非常相似。所以除钙和镁外的其他 II A族元素的化合物同样适用本发 明的方法。
II A族元素与稀土元素的单质还原性较强, 加入电池系统后不能 稳定存在, 会被氧化为化合物的形式存在, 所以单质或其化合物同样 适用本发明的方法。
《国际电池》杂志曾报道, 单独加入稀土元素、 IVB族元素或 ΠΑ 族元素, 可以通过溶解-再沉积在氢氧化镍表面生成该元素的氧化物 / 氢氧化物沉积, 阻碍析氧副反应的发生。 本发明采用两类以上特别是 三类元素共同加入时, 其作用比单类元素有明显的提高, 其机理目前 尚不明确, 但估计是多种不同外电子结构的元素阳离子可以起到协同 阻碍析氧副反应发生的缘故。
本发明的镍基充电电池用高温复合添加剂, 其包含的组分从元素 周期表中 ΠΑ族、 IVB族和稀土类元素中各选取至少一种元素, 以单质 或化合物形式添加在可充式镍基电池内,与添加单一族 /类的元素的单 质或化合物的情况相比, 通过在正极氢氧化镍的表面共沉积或包覆, 防止添加剂之间的聚积以及在正极构成材料之间的聚积, 使添加剂均 匀地分布在活性物质的表面上, 并粘附或被吸附在该材料的表面上, 从而使添加剂发挥较全面的作用, 提高活性物质充电转化效率。 在提 高正极活性能物质的利用率上获得极佳的效果, 也就是说这种复合高 温添加剂与单一化合物添加剂相比,进一步提高了正极的析氧过电位。 在负极活性物质贮氢合金中添加复合高温添加剂, 有助于改进贮氢合 金电极的特性。
当本发明的镍基充电电池用高温复合添加剂在正极氢氧化镍的表 面共沉积或包覆, 或机械混合在正极活性物质中, 或分布在负极活性 物质中, 或在隔膜表面上具有可溶性的 II A族、 IVB族和稀土金属的化 合物时, 此化合物能溶解并存在于碱性电解液内, 通过电液的扩散分 布在电池的正、 负极及隔膜中, 从而使充电反应进行得更加均匀, 提 高氧生成电位, 对析氧反应的抑制作用变得更强, 同时可增强氧化镍 转化成氢氧化镍的充电反应。
表 1 容量和充电效率 η比较
电池 比 较 比 较 比 较 实 施 实 施 实 施 实 施 实 施 实 施 实 施 例一 例二 例二 例一 例一 例二 例四 例五 例六 例七 i¾¾曰m Ί 1、、·
613.2 619.8 613.6 623.5 609.8 628.7 621.1 618.9 612.8 602.7 容量 Cl,
60°C下
383.3 404.7 359.6 549.9 508.6 570.2 616.1 579.9 563.8 573.2 容量 Ci
60。C下
充电效 62.5% 58.6% 88.2% 83.4% 90.7% 99.2% 93.7% 92.0% 95.1% 率 n
80。C下
249.0 264.7 223.4 339.2 354.3 357.7 485.7 375.7 362.8 377.3 容: t c2
80Ό下
充电效 40.6% 42.7% 36.4% 54.4% 58.1% 56.9% 78.2% 60.7% 59.2% 62.6% 率 η

Claims

1. 一种镍基充电电池用高温复合添加剂, 其特征在于: 包含的质量比 组份为: 在稀土元素的单质或其化合物、 IVB族元素的单质或其化 合物和 II A族元素的单权质或其化合物中,任意两族 /类中的一种物质 各 0. 1- 10份、 氢氧化镍 100份。
2. 根据权利要求 1所述的镍基充电电池用高温复合添加剂, 其特征在 于: 所述镍基充电电池用高温复合添加剂含有稀土元素的单质或其 化合物、 WB族元素的单质或其化合物和求 II A族元素的单质或其化 合物三族 /类中的各一种物质 0. 1-10份。
3. 根据权利要求 1或 2所述的镍基充电电池用高温复合添加剂, 其特 征在于: 所述稀土元素是钇、 镱和铒元素。
4. 根据权利要求 3所述的镍基充电电池用高温复合添加剂, 其特征在 于:所述钇、镱和铒的化合物是 ΥΛ、 Y(0H):、、 Yb.A、 Yb (0H) :i、 Er02 、 Er203、 Er (0H) 3
5. 根据权利要求 1或 2所述的镍基充电电池用高温复合添加剂, 其特 征在于: 所述 IVB族元素是钛和锆元素。
6. 根据权利要求 5所述的镍基充电电池用高温复合添加剂, 其特征在 于: 所述钛和锆的化合物是 Ti (OH):,、 Ti (0H) 2、 TiA> Ti02、 Ti0、 Ti,0R> Zr (0H) :i、 Zr (0H)2、 Zr^、 ZrO^ Zr0、 Zr:,05。
7. 根据权利要求 1或 2所述的镍基充电电池用高温复合添加剂, 其特 征在于: 所述 II A族元素是钙和镁元素。
8. 根据权利要求 7所述的镍基充电电池用高温复合添加剂, 其特征在 于: 所述钙和镁化合物是 Ca0、 Ca(OH),, Mg0、 Mg(0H)2
9. 根据权利要求 1或 2所述的镍基充电电池用高温复合添加剂, 其特 征在于: 所述稀土元素的单质或其化合物、 IVB族元素的单质或其 化合物和 ΠΑ族元素的单质或其化合物优选的质量比是 0.5-5份。
PCT/CN2007/001803 2006-07-27 2007-06-07 Additifs composites de température élevée pour batterie rechargeable cuivre hydrogène WO2008014663A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07721376A EP2048728A4 (en) 2006-07-27 2007-06-07 HIGH TEMPERATURE COMPOSITE ADDITIVES FOR HYDROGEN COPPER RECHARGEABLE BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006100618955A CN100557867C (zh) 2006-07-27 2006-07-27 镍基充电电池用高温复合添加剂
CN200610061895.5 2006-07-27

Publications (1)

Publication Number Publication Date
WO2008014663A1 true WO2008014663A1 (fr) 2008-02-07

Family

ID=38996861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001803 WO2008014663A1 (fr) 2006-07-27 2007-06-07 Additifs composites de température élevée pour batterie rechargeable cuivre hydrogène

Country Status (3)

Country Link
EP (1) EP2048728A4 (zh)
CN (1) CN100557867C (zh)
WO (1) WO2008014663A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253353A (zh) * 2023-03-22 2023-06-13 吉林大学 一种铜、铟共掺杂氢氧化镱纳米材料的制备方法及应用
CN116253353B (zh) * 2023-03-22 2024-06-04 吉林大学 一种铜、铟共掺杂氢氧化镱纳米材料的制备方法及应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079385B2 (en) 2012-03-05 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for alkaline storage battery and alkaline storage battery using the same
CN102924759B (zh) * 2012-10-11 2016-11-09 青岛欧美亚橡胶工业有限公司 橡胶空气弹簧皮囊胶的原料配方及生产方法
CN104733774A (zh) * 2013-12-20 2015-06-24 苏州宝时得电动工具有限公司 电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174419A (zh) 1996-08-21 1998-02-25 松下电器产业株式会社 碱性蓄电池用镍正极及其镍-金属氢化物蓄电池
CN1179631A (zh) 1996-09-30 1998-04-22 松下电器产业株式会社 镍正电极及采用该镍正电极的碱性蓄电池
US5773169A (en) * 1996-02-29 1998-06-30 Matsushita Electric Industrial Co., Ltd. Active material and positive electrode for alkaline storage battery
CN1269615A (zh) 1999-04-05 2000-10-11 深圳市比亚迪实业有限公司 高温镍氢电池及其制造方法
CN1276093A (zh) * 1997-09-30 2000-12-06 三洋电机株式会社 镍氢蓄电池
US20010012586A1 (en) * 1995-10-23 2001-08-09 Kuochih Hong Method to make nickel positive electrodes and batteries using same
CN1322383A (zh) * 1998-10-08 2001-11-14 松下电器产业株式会社 碱性电池
CN1424783A (zh) * 2001-12-07 2003-06-18 松下电器产业株式会社 碱性蓄电池用正极活性物质、正极及碱性蓄电池
CN1702902A (zh) * 2005-06-17 2005-11-30 宜兴新兴锆业有限公司 高温镍氢电池
CN1725546A (zh) * 2004-07-23 2006-01-25 日本无公害电池研究所 电池用镍极及使用该镍极的碱性蓄电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579273B2 (ja) * 1998-12-16 2004-10-20 三洋電機株式会社 水素吸蔵合金電極
WO2001097305A1 (fr) * 2000-06-16 2001-12-20 Matsushita Electric Industrial Co., Ltd. Matiere active d'anode pour accumulateur alcalin, anode comprenant cette matiere et accumulateur alcalin
JP4578038B2 (ja) * 2001-04-17 2010-11-10 三洋電機株式会社 アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
CN1753215A (zh) * 2004-09-17 2006-03-29 江苏省新动力电池及其材料工程技术研究中心有限公司 一种可高温储存的锌镍一次电池制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010012586A1 (en) * 1995-10-23 2001-08-09 Kuochih Hong Method to make nickel positive electrodes and batteries using same
US5773169A (en) * 1996-02-29 1998-06-30 Matsushita Electric Industrial Co., Ltd. Active material and positive electrode for alkaline storage battery
CN1174419A (zh) 1996-08-21 1998-02-25 松下电器产业株式会社 碱性蓄电池用镍正极及其镍-金属氢化物蓄电池
CN1179631A (zh) 1996-09-30 1998-04-22 松下电器产业株式会社 镍正电极及采用该镍正电极的碱性蓄电池
CN1276093A (zh) * 1997-09-30 2000-12-06 三洋电机株式会社 镍氢蓄电池
CN1322383A (zh) * 1998-10-08 2001-11-14 松下电器产业株式会社 碱性电池
CN1269615A (zh) 1999-04-05 2000-10-11 深圳市比亚迪实业有限公司 高温镍氢电池及其制造方法
CN1424783A (zh) * 2001-12-07 2003-06-18 松下电器产业株式会社 碱性蓄电池用正极活性物质、正极及碱性蓄电池
CN1725546A (zh) * 2004-07-23 2006-01-25 日本无公害电池研究所 电池用镍极及使用该镍极的碱性蓄电池
CN1702902A (zh) * 2005-06-17 2005-11-30 宜兴新兴锆业有限公司 高温镍氢电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2048728A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253353A (zh) * 2023-03-22 2023-06-13 吉林大学 一种铜、铟共掺杂氢氧化镱纳米材料的制备方法及应用
CN116253353B (zh) * 2023-03-22 2024-06-04 吉林大学 一种铜、铟共掺杂氢氧化镱纳米材料的制备方法及应用

Also Published As

Publication number Publication date
CN100557867C (zh) 2009-11-04
EP2048728A1 (en) 2009-04-15
EP2048728A4 (en) 2011-11-30
CN101114711A (zh) 2008-01-30

Similar Documents

Publication Publication Date Title
JP5467086B2 (ja) 複合陽極材料
KR101769630B1 (ko) 이차 아연 배터리용의 페이스트된 아연 전극
US7063915B1 (en) Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
WO2008014663A1 (fr) Additifs composites de température élevée pour batterie rechargeable cuivre hydrogène
JPH1074512A (ja) ニッケル水素二次電池とその正極
EP2472652B1 (en) Additive for nickel-zinc battery
JP4474722B2 (ja) アルカリ蓄電池とそれに用いるアルカリ蓄電池用正極
JP3788485B2 (ja) アルカリ蓄電池
JP3632866B2 (ja) ニッケル水素化物蓄電池
JP2001313069A (ja) ニツケル水素蓄電池
JP4215407B2 (ja) 水素吸蔵合金電極及びその製造方法並びにアルカリ蓄電池
JP4147748B2 (ja) ニッケル正極およびニッケル−水素蓄電池
JPH10154508A (ja) アルカリ蓄電池とそのニッケル極及びその製造法
JP2001155725A (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JP4796233B2 (ja) アルカリ蓄電池のニッケル電極用活物質およびアルカリ蓄電池
JP3960726B2 (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JP2002260644A (ja) 水素吸蔵合金電極及びアルカリ蓄電池
JP2007234440A (ja) ニッケル水素電池及びその製造方法
JP2001076716A (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JP2001325956A (ja) アルカリ蓄電池とニッケル極板およびその製造方法
JP2000223127A (ja) アルカリ蓄電池用焼結式ニッケル極板及び該生産方法
JP2000277103A (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JPH01260761A (ja) アルカリ蓄電池用ペースト式カドミウム負極の製造法
JPH02215048A (ja) アルカリ亜鉛蓄電池の製造方法
JP2000012074A (ja) ニッケル水素二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007721376

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU