WO2008013197A1 - Spherical crude granule and method for production thereof - Google Patents

Spherical crude granule and method for production thereof Download PDF

Info

Publication number
WO2008013197A1
WO2008013197A1 PCT/JP2007/064571 JP2007064571W WO2008013197A1 WO 2008013197 A1 WO2008013197 A1 WO 2008013197A1 JP 2007064571 W JP2007064571 W JP 2007064571W WO 2008013197 A1 WO2008013197 A1 WO 2008013197A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
minor axis
film
granules
drug
Prior art date
Application number
PCT/JP2007/064571
Other languages
English (en)
French (fr)
Inventor
Yoshihito Yaginuma
Rika Matsumoto
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EP07791287.1A priority Critical patent/EP2050438B1/en
Priority to US12/309,629 priority patent/US20090196934A1/en
Priority to JP2008526791A priority patent/JP5271081B2/ja
Publication of WO2008013197A1 publication Critical patent/WO2008013197A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41521,2-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. antipyrine, phenylbutazone, sulfinpyrazone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5073Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
    • A61K9/5078Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention relates to a technique for producing a film-coated granule which is a kind of dosage form of a pharmaceutical preparation.
  • Solid pharmaceutical preparations are film coatings such as sustained release, enteric properties, bitterness masks, etc. for the purpose of reducing side effects, reducing the number of doses, improving the effect of drugs, suppressing bitterness, stabilizing drugs, etc. May be applied.
  • One dosage form suitable for film coating is highly sphericity granules. Such granules are called spherical elementary granules.
  • the layering method is a method of producing granules by coating spherical core particles with a drug-containing coating layer. Specifically, there are a method of supplying and coating a drug powder and an aqueous binder solution simultaneously, a method of supplying and coating a suspension of drug particles, and a method of supplying and coating a drug aqueous solution.
  • the layering method spherical particles having a high sphericity and a narrow particle size distribution can be obtained by using spherical core particles having a high sphericity and a narrow particle size distribution. Therefore, the layering method is suitable as a method for producing spherical elementary granules for film coating.
  • the spherical granule has a uniform shape.
  • the reason is that if there is a distribution in the shape, there will be a difference in film thickness between individual particles when film coating is applied.
  • the uniformity of the shape of the spherical granule is important.
  • spherical elementary granules should be monodisperse of spheres, and conventionally, particle size distribution and sphericity of core particles and elementary granules have been considered (see, for example, Patent Document 3 and Patent Document 4). It is practically impossible to make a sphere or to make the particle size distribution monodisperse.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-301816
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-1429
  • Patent Document 3 Japanese Patent Laid-Open No. 7-173050
  • Patent Document 4 JP-A-10-139659
  • An object of the present invention is to provide spherical elementary granules having physical properties suitable for film coating.
  • the short-major axis ratio distribution is an important factor, and the sphericity is somewhat low.
  • uniform film coating can be achieved by increasing the short-major axis ratio distribution coefficient.
  • the present invention is as follows.
  • the average minor axis is 50-1200, 1 m [;! ] ⁇ [7] V, slip or spherical elemental granule according to item 1.
  • the minor axis distribution coefficient is 0.60 or more, the average minor axis ratio is 0.80 or more, and the minor axis ratio distribution coefficient is 0.70 or more.
  • the crushing strength is lOMPa or more.
  • a film-coated granule comprising the spherical elementary granule according to any one of [1] to [; 13] and a film coating layer covering the periphery thereof.
  • [17] A method for producing film-coated granules, wherein a film coating is applied to the spherical elementary granules according to any one of [1] to [; 13].
  • the fluidized bed type film coating apparatus force S is a spouted bed type having a guide tube (Worster one-force ram) inside, or a rolling fluidized bed type having a rotating mechanism at the bottom.
  • the invention's effect [0011] According to the present invention, it is possible to produce a film-tung granule capable of precise elution control with high productivity.
  • the spherical elementary granule of the present invention needs to be “spherical” and “uniform”.
  • D is the value of 10% integration in the cumulative distribution under the short diameter, and D is 90% integration.
  • the short axis distribution coefficient of the spherical granule is 0.65 or more, even if the sphericity is somewhat inferior, uniform film coating is possible.
  • it is 0.7 or more, more preferably 0.8 or more.
  • the theoretical maximum value is 1, and it is V when the coating is applied to a uniform film. Since the yield is remarkably lowered, about 0.9 is the maximum value from the viewpoint of production efficiency.
  • [D / L] is the cumulative distribution when the minor-major axis ratio of particles is accumulated from the minimum value side.
  • the average minor axis ratio needs to be 0.85 or more. Preferably it is 0.9 or more, more preferably 0.95 or more.
  • the theoretical maximum value is 1, which means that a uniform film is coated, and it is close to 1 from the point of view.
  • the short and long diameter ratio distribution coefficient of the spherical elementary granule is a value represented by the following formula.
  • Short major axis ratio distribution coefficient [D / L] / [D / L]
  • [D / L] is the product in the cumulative distribution when the minor axis ratio is accumulated from the minimum value side.
  • the calculated value is 10%
  • [D / L] means a value of 90% integration.
  • the minor-major axis ratio distribution coefficient needs to be 0.7 or more. Preferably it is 0.8 or more, more preferably 0.9 or more. The theoretical maximum is 1, and the closer to 1, the better.
  • the minor axis distribution coefficient and sphericity are about 0.65-0.8 and 0.85-0.9, respectively. Even when the value is relatively low, precise sustained-release film coating becomes possible, and bitterness masking can be achieved with a minimum of film.
  • the size of the spherical elementary granules preferably has an average minor axis (D) of 50 to about 1200 in.
  • the average minor axis (D) is the cumulative in the cumulative distribution under the short diameter
  • the spherical elementary granules of the present invention preferably contain at least 0.01% by mass of a drug.
  • the “drug” is used for the treatment, prevention and diagnosis of human or animal diseases, and is not a device or a machine!
  • Antiepileptics phenytoin, acetinole phenetride, trimethadione, phenobarbital, primidone, nitrazepam, sodium valproate, sultiam, etc.
  • antipyretic analgesics acetoaminophene, phenylacetyl glycine methylamide, mefenenic acid, diclofenac sodium, phlofenac sodium
  • Aspirin aspirin aluminum, ethenzamide, oxifenbutazone, sulpyrine, fenenobutazone, ibuprofen, alclofenac, naloxene, ketoprofen, tinolidine hydrochloride, benzydamine hydrochloride, thiaramide hydrochloride, indomethacin, piroxicam, salicylamide)
  • Dimenhydrinate metallidine hydrochloride, d
  • film coating is applied to the spherical granules for the purpose of adjusting the drug elution rate (sustained release, intestinal release, timed release, pulse release, bitterness mask, etc.), moisture prevention, and coloring. be able to.
  • Spherical granules can be film coated using a known apparatus such as a centrifugal fluidized coating apparatus (such as “CF Dara Unitor” manufactured by Freund Corporation) or a fluidized bed coating apparatus.
  • a centrifugal fluidized coating apparatus such as “CF Dara Unitor” manufactured by Freund Corporation
  • a fluidized bed coating apparatus may be a spouted bed type having a guide tube (star column) inside, or a rolling fluidized bed type having a rotating mechanism at the bottom.
  • Examples of equipment include “Flow coater” and “Spiraflow” manufactured by Freund Corporation, “WST / WSG series” and “GPCG series” manufactured by Glatt, “New Malmerizer I” manufactured by Fuji Padal, and “ Multiplex “and the like.
  • a method suitable for each apparatus such as top spray, bottom spray, side spray, tangential spray, and the like can be selected, and the film coating liquid is sprayed onto the spherical elementary granules. After spraying, the film-coated granules can be dried without taking out the sample or by adjusting the air volume and temperature as appropriate.
  • the film coating solution for example, a solid film coating agent dissolved in an organic solvent, a fine powder film coating agent dispersed in water together with a plasticizer, or a latex type film coating agent as required.
  • a plasticizer can be used.
  • Film coating agents include acrylic resin coatings such as ethyl acrylate methacrylate dispersion, aminoalkyl methacrylate copolymer E, aminoalkyl methacrylate copolymer RS, methacrylic acid copolymer L, methacrylic acid copolymer LD, and methacrylic acid copolymer S.
  • These film coating solutions may contain additives such as plasticizers, inorganic particles, and water-soluble substances in order to adjust film forming properties, coating properties, stability, elution properties, and the like.
  • additives such as plasticizers, inorganic particles, and water-soluble substances in order to adjust film forming properties, coating properties, stability, elution properties, and the like.
  • organic solvents is avoided from the viewpoint of work environment and natural environment conservation, and it is preferable to use an aqueous solvent.
  • Particularly preferred film coating solutions are composed of latex type coating agents such as ethyl acrylate acrylate / methyl methacrylate copolymer dispersion, methacrylic acid copolymer LD aqueous dispersion, ethyl cellulose aqueous dispersion, and aqueous acetic acid resin resin dispersion. is there.
  • the spherical elementary granule of the present invention is required to have a crushing strength of lOMPa or more, preferably 15 MPa or more, more preferably 20 MPa or more.
  • the film can be stably coated without breaking the elementary granules and peeling the drug layer.
  • the crushing strength is a value represented by the following formula.
  • Crushing strength [MPa] 0.7 XP / ⁇ X (d / 2) 2 ⁇
  • the spherical elementary granule of the present invention is obtained by a method of spheronizing after extrusion granulation, a method of spheronizing after high-speed stirring granulation, a method of coating the surface of spherical core particles with a drug (layering method), or the like. It is possible to manufacture S. As an example, the case of manufacturing by the layering method will be described below.
  • the preferred spherical core particles used in the layering method are 30 crystalline cellulose It contains more than%. If the crystalline cellulose is less than 30% by mass, it is difficult to make it spherical, and the strength decreases. More preferably, the crystalline cellulose is 70% by mass, and still more preferably 100% by mass.
  • crystalline cellulose means one that conforms to the “crystalline crystalline” standard of the 14th revised Japanese Pharmacopoeia.
  • the spherical core particles are preferably pharmaceutically inert, that is, do not contain a drug.
  • components other than crystalline cellulose include additives usually used for pharmaceutical preparations.
  • excipients such as lactose, sucrose, D-mannitol, corn starch, powdered cellulose, calcium hydrogen phosphate, calcium carbonate; low-substituted hydroxypropyl cellulose, carmellose calcium, partially alpha-ized starch, croscarme Disintegrants such as roth sodium, crospovidone, carboxymethyl starch; binders such as hydroxypropyl cellulose, povidone, xanthan gum; coatings such as hydroxypropyl methyl cellulose, methacrylic acid copolymer LD, aqueous ethyl cellulose dispersion Agents: Emulsifiers such as sucrose fatty acid ester, glycerin fatty acid ester, sodium lauryl sulfate, polysorbate 60; talc, magnesium stearate, magnesium metasilicate aluminate, titanium oxide, light And other additives such as crystalline anhydrous carboxylic acid and crystalline cellulose 'carmel
  • the formulation of the water-soluble pharmaceutical additive increases the aggregation of particles during layering, so it is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the spherical core particles preferably have a uniform shape.
  • 50 is preferably 50 to 1000 m.
  • the minor axis distribution coefficient is preferably 0.60 or more, the average minor axis ratio is 0.80 or more, and the minor axis ratio distribution coefficient is preferably 0.7 or more. This makes it possible to easily adjust the minor axis distribution coefficient, the average minor axis ratio, and the minor axis ratio distribution coefficient of the spherical elementary granules obtained after layering the drug-containing layer within the numerical range of the present invention.
  • the water retention of the spherical core particles is preferably 0.5 cm 3 / g or more. When it is 0.7 cm 3 / g, aggregation is remarkably suppressed, which is more preferable. More preferably 0.9 cm 3 / g or more.
  • swelling with water absorption is not preferable because it shrinks upon drying after coating the drug-containing layer, and the strength of the spherical elementary granules decreases.
  • the maximum water retention of particles that do not swell when absorbed is approximately 2. Ocm 3 / g.
  • the bulk density is determined by the balance between strength and water retention, but is approximately 0.5 to 2 ⁇ Ocm 3 / g. In the case of spherical core particles composed only of crystalline cellulose, it is about 0.5 to 1.0 cm 3 / g.
  • water retention is the volume of water that can be retained per unit mass, and is represented by the following equation.
  • a suitable apparatus is a fluidized bed coating of a spouted bed type having a guide tube (Worster one-force ram) inside or a rolling fluidized bed type having a rotating mechanism at the bottom.
  • a layering solution such as an aqueous solution or suspension of the drug is used instead of the film coating solution.
  • the layering solution can be an organic solvent system. From the viewpoint of preservation of the working environment and the natural environment, the layering liquid is preferably an aqueous system.
  • the concentration of the drug in the layering solution is preferably about 1 to 5% by mass based on 1S depending on the solubility and viscosity of the drug and the suspendability.
  • Other pharmaceutical additives may be added to the layering solution as necessary.
  • water-soluble polymer compounds which can increase the strength of the drug-containing layer.
  • Water-soluble polymer compound cellulose
  • methylcellulose methylcellulose
  • carmellose sodium starch starch pregelatinized
  • arabia gum powder carboxybule polymer
  • povidone polybulurpyrrolidone
  • polybulua examples include lecol, carrageenan, xanthan gum, and pullulan.
  • hypromellose substitution type: 2910 having both binding properties and immediate drug dissolution is preferred.
  • the drug powder and an aqueous solution of the water-soluble polymer compound can be simultaneously supplied to the spherical core particles.
  • additives other than drugs, such as excipients can be used by appropriately mixing with drug powder.
  • Such a layering solution is sprayed continuously or intermittently on spherical core particles, and dried to form a drug-containing layer.
  • the amount of warm air, the rotational speed of the rotating mechanism, and the spray pressure of the drug spray solution are applied so that the particles do not aggregate, and the spray solution is dried before adhering to the core particles and is not pulverized.
  • Etc. are preferably optimized.
  • the breaking strength of the spherical core particles is preferably l OMPa or more. If the crushing strength is low, the stirring force of the particles must be set low, and the spray rate of the aqueous drug solution (water suspension) also becomes low, resulting in a decrease in productivity. More preferably, it is 15 MPa or more, more preferably 20 MPa or more.
  • the spherical granules are dried. At this time, without taking out the sample, it is possible to dry the spherical granule as it is or by appropriately adjusting the air volume and temperature.
  • the coating amount of the drug-containing layer is a force S which is determined by the formulation design power such as a single dose and the size of the formulation S, for example, 0.5 to 200 for spherical core particles.
  • the spherical elementary granule of the present invention can be precisely controlled by applying a sustained-release film coating to the spherical elementary granule. There is no need for sustained release. Rather, from the viewpoint of preventing the drug from remaining undissolved, it is preferable that the spherical condyles themselves are not sustained-released.
  • the drug-containing layer is water soluble with the drug It is preferable that the total amount of the drug and water-soluble polymer compound that are preferably composed mainly of a polymer compound is 80% by mass or more of the drug-containing layer, more preferably 90% by mass or more. is there. In addition, it is preferable to add no additives (eg, water-insoluble polymer compounds) that reduce the dissolution rate to the drug-containing layer of spherical elementary granules!
  • no additives eg, water-insoluble polymer compounds
  • the obtained spherical elementary granules are sized according to need, coated with a film such as sustained release, enteric, bitterness mask, etc., and can be used as granules, capsules, tablets, and the like.
  • a film such as sustained release, enteric, bitterness mask, etc.
  • Samples of the shape digital microscope (VH- 7000, (Ltd.) manufactured by Keyence) taken with (using 50-fold or 100 fold the lens), an image analyzer (Im a geHyp er, (Ltd.) inter- Quest) Measure the short diameter (D) and long diameter (L) of 100 particles.
  • VH- 7000, (Ltd.) manufactured by Keyence taken with (using 50-fold or 100 fold the lens
  • an image analyzer Im a geHyp er, (Ltd.) inter- Quest
  • D short diameter
  • L long diameter
  • the minor axis and the major axis are the short sides of the circumscribed rectangle that minimizes the circumscribed area on the boundary pixel of the particle.
  • the minor axis is the major axis.
  • the cumulative 10% particle size in the cumulative distribution under the short diameter is “D” and the cumulative 50% particle size is “D”.
  • ratio of the minor axis to the major axis is expressed as “D / L”, and the integrated 10% minor axis to major axis ratio in the integrated distribution when integrating from the minimum D / L side is “[D / L ] ”, 50% short major axis
  • the ratio is represented by “[D / L]”, and the 90% cumulative minor axis ratio is represented by “[D / L]”.
  • Recovery [mass%] ⁇ recovered amount [g] / total amount of raw material [g] ⁇ X 100
  • Spherical particles or film-coated granules are dispersed on paper, and the number of particles (a [pieces]) and the number of single particles (b [pieces]) constituting the agglomerated granules are visually counted, and the following formula is calculated. .
  • Aggregation rate [%] ⁇ a / (a + b) ⁇ X 100
  • Three expert panelists force s including the film-coated granules 0. 5 g mouth causes the on the tongue, the average time to bitter with no moving the tongue and the bitter detection time.
  • Average tumbling fluidized bed granulator crystalline cellulose 10kg of polymerization degree 220 ( "multiplex" MP- 25 type, Ltd. Paurekku) were charged to a rotational speed 336Rpm, air volume 1 ⁇ 7 ⁇ 4 ⁇ 5m 3 / Under conditions of min and supply air temperature of 55 ° C, 14 kg of distilled water was sprayed at a rate of 100 g / min by the top spray method. After that, rolling and flowing for 60 minutes under the same conditions, then setting the supply air temperature to 70 ° C, decreasing the rotation speed by 50rpm every 20 minutes, until the exhaust temperature reaches 35 ° C Dried. After drying, coarse particles of 710 m or more and fine particles of 300 m or less were removed with a sieve to obtain spherical core particles A.
  • Table 2 shows the physical properties of the core particles.
  • Spherical granules had a high recovery rate and a low cohesion rate.
  • the results are shown in Table 1.
  • An aqueous dispersion of ethylcellulose (“8 11 & 00 & 0-30, solid content 30% by mass, manufactured by FMC) 10.9 parts (solid content)
  • a film coating solution comprising 2-7 parts of triethyl citrate (manufactured by Tokyo Chemical Industry Co., Ltd.), D-mannitol (manufactured by Towa Chemical Industry Co., Ltd.) 1. 4 parts, and 85 parts of water was prepared.
  • the rotation speed of the rotating plate was set to 200 rpm, the exhaust temperature was increased to 40 ° C, and then the heater was turned off and the supply air temperature was decreased to 40 ° C.
  • the obtained film-coated granules were thinly spread on a vat and cured (heated film formation treatment) in an oven at 80 ° C for 60 minutes to obtain film-coated granules.
  • the resulting film-coated granules have a bitterness suppressed for about 48 seconds and are extremely flocculated.
  • Average tumbling fluidized bed granulator crystalline cellulose 10kg of polymerization degree 220 ( "multiplex" MP- 25 type, Ltd. Paurekku) were charged to a rotational speed 336Rpm, air volume 1 ⁇ 7 ⁇ 4 ⁇ 5m 3 / Under conditions of min and supply air temperature of 55 ° C, 14 kg of distilled water was sprayed at a rate of 200 g / min by the top spray method. After that, rolling and flowing for 60 minutes under the same conditions, then, the supply air temperature is set to 80 ° C, and the rotation speed is reduced by 50rpm every 20 minutes until the exhaust temperature reaches 35 ° C. Dried. After drying, coarse particles of 710 m or more and fine particles of 300 m or less were removed with a sieve to obtain spherical core particles B.
  • Table 2 shows the physical properties of the core particles. (Manufacture of spherical elementary granules)
  • film coating was performed in the same manner as in Example 1 to obtain film-coated coated granules.
  • Example 1 While stirring 540 g of water with a propeller, 10 g of povidone (K-30, made by ISP Tec. Inc.) and 50 g of sulpyrine (made by Merck Whey) were added and stirred until completely dissolved to prepare a layering solution.
  • a spherical fluid particle Al. 0 kg obtained in Example 1 was charged into a rolling fluid coating device (“Multiplex” MP-01 type, manufactured by Baureku Co., Ltd.), and the supply temperature was 75 ° C. and the air volume was 3 7 50 m 3 / h, in the state of the rotary plate rotation speed 200 rpm, prewarmed to an exhaust temperature is 40 ° C.
  • Og / min (corresponding to a coating rate of 0.8 g / min as solid content per lkg of spherical core particles) 6.0% by mass (5% as drug) (0% by mass) was layered. After that, the rotating plate was rotated at 200 rpm and dried until the exhaust temperature rose to 42 ° C. Then, the heating heater for the supply air was turned off and the supply air temperature was cooled to 40 ° C.
  • film coating was performed in the same manner as in Example 1 to obtain film-coated coated granules.
  • the bitterness of the obtained film-coated granules was suppressed for about 35 seconds and there was little aggregation.
  • Table 2 shows the physical properties of the core particles.
  • film coating was performed in the same manner as in Example 1 to obtain film-coated coated granules.
  • Example 4 Layering was performed in the same manner as in Example 3 except that the spherical core particles C obtained in Example 4 were used as spherical core particles to obtain spherical elementary granules.
  • Rotating fluidized bed fluidized bed granulation granulator (““ Mamarru chip pre-rex box ”) MMPP--type 2255, (made by Papa Relekku Co., Ltd.)), rotation speed 225500rrppmm, air volume 33 ⁇ 55 ⁇ 55 ⁇ 55mm 33 // mmiinn, in the condition of supply air temperature temperature 5555 °° CC, distilled distilled water is 1144kkgg at speed of 220000gg / mmiinn The spray was sprayed with the top-up spray method. . After that, the air volume is 88mm 33 // mmiinn, and the supply air temperature is 8800 ° CC, and the rotational speed is reduced by 5500rrppmm every 2200 minutes.
  • Table 22 shows the physical properties of the core particles. .
  • Spherical spherical elemental condyles and granulates are mostly concentrated in the amount of power and coagulation that are collected and collected almost in total for the raw material charged. It was . The results are shown in Table 11. .
  • film coating was performed in the same manner as in Example 1 to obtain film-coated coated granules.
  • 200 g crystalline cellulose with an average degree of polymerization of 140, lactose (Pharmatose, 200M, DMV) 132.2 g, corn starch (Nissho Chemical Co., Ltd.) 60 g, and sulpyrine 7.8 g are mixed with a planetary mixer (5DM-03 — R type, beater type paddle (manufactured by Shinagawa Seisakusho Co., Ltd.), stirred at 63 rpm, added 240 g of water, and further mixed for 5 minutes.
  • a planetary mixer (5DM-03 — R type, beater type paddle (manufactured by Shinagawa Seisakusho Co., Ltd.), stirred at 63 rpm, added 240 g of water, and further mixed for 5 minutes.
  • the resulting mixture is granulated with an extruding granulator (Dome Gran, DG-L1 type, 300 m hole diameter die, screw rotation speed 40 rpm, manufactured by Fuji Baudal Co., Ltd.), and further a spheronizer (Malmerizer) 1, Q-230 type, 3mm Giza plate, manufactured by Fuji Padal Co., Ltd.) and spheroidized at 690 rpm for 20 minutes.
  • the above operation was performed three times, and the resulting granulated material was collected and dried in an oven at 45 ° C for 16 hours. Coarse particles of 710 m or more and fine powder of 300 m or less were removed with a sieve to remove sulpyrin. A spherical elementary granule containing 1.95% by mass was obtained.
  • Table 1 shows the physical properties.
  • film coating was performed in the same manner as in Example 1 to obtain film-coated coated granules.
  • Granulation was carried out in the same manner as in Comparative Example 3 except that the amount of water added was 280 g to obtain spherical elementary granules containing 1.95% by mass of sulpyrine. Table 1 shows the physical properties.
  • film coating was performed in the same manner as in Example 1, and film coating coating was performed. Ting granules were obtained.
  • Table 1 shows the results of Examples;! -5 and Comparative Examples;!-4.
  • the minor axis ratio distribution coefficient is By making it within the numerical range of the present invention, aggregation during film coating could be suppressed, and uniform film coating with sufficient bitterness suppression could be achieved.
  • Sustained-release film-coated granules were prepared using the spherical element granules obtained in Example 2.
  • Example 2 0.5 kg of the spherical granule obtained in Example 2 was charged into a jet type (Worster type) coating device (GPCG-1 type, manufactured by Glatt), and the supply temperature was 65 ° C and the exhaust temperature was 47-50. ° C, air volume 80 m 3 / h, a spray air pressure of 0. 16 MPa, under the conditions of the coating solution spray rate of 2. Og / min, the coating with respect to the spherical elementary granules to a solid content of the film quotes queuing solution is 5 wt% did. In order to suppress the incorporation of sulpyrine into the film, it was dried until the exhaust temperature reached 53 ° C and then coated again.
  • GPCG-1 type jet type coating device
  • the conditions at this time were set the same as before except that the coating liquid spraying speed was changed to 3.0 to 4.8 g / min. After the coating was completed, the exhaust temperature was increased to 53 ° C, and then the heater was turned off and the supply air temperature was decreased to 36 ° C. The obtained granule was spread thinly on a vat and cured in an oven at 80 ° C for 60 minutes (heated film formation treatment) to obtain a sustained-release film-coated granule.
  • the dissolution rate of sulpyrine from the obtained film-coated granules was measured according to the second method (paddle method) of the 14th revised Japanese pharmacopoeia, general test method “dissolution test method”. Padnore Rotation speed was lOOrpm, and "Elution test first liquid" was used as the test liquid. As a result of the measurement, the elution rate of sulpyrine from the film-coated granule was 2 hours: 37.5%, 4 hours: 54.1%, 6 hours: 63.2%, 8 hours: 69.1%, 10 hours. : 73.1%.
  • Spherical granules obtained in the same manner as in Comparative Example 3 were subjected to film coating in the same manner as in Example 6 to obtain sustained-release film-coated granules.
  • the elution rate of sulpyrine from film-coated granules is 2 hours: 41.9%, 4 hours: 60.4%, 6 hours: 70.2%, 8 hours: 76.5%, 10 hours: 81.0% Met.
  • the elution rate of sulpyrine in the film-coated granule of Comparative Example 5 is about 10% larger and stronger than the elution rate of sulpyrine in the film-coated granule of Example 6. This is thought to be due to the small diameter distribution coefficient.
  • the production method of the present invention is preferable in the field of production of pharmaceutical granules coated with a film. Can be used appropriately.

Description

明 細 書
球形素顆粒およびその製造方法
技術分野
[0001] 本発明は、医薬品製剤の剤形の一種であるフィルムコーティング顆粒の製造技術 に関する。
背景技術
[0002] 医薬品固形製剤は副作用の低減、服用回数の低減、薬物の効果向上、苦味の抑 制、薬物の安定化、等を目的として、徐放性、腸溶性、苦味マスク、等のフィルムコー ティングを施す場合がある。フィルムコーティングに供されるのに適した剤形の一つと して、真球度の高い顆粒がある。このような顆粒を球形素顆粒という。
[0003] 球形素顆粒の製造方法としては、薬物と賦形剤を原料として押出造粒した後、球形 化する方法(押出 マルメ法)や、球状核粒子の表面を薬物で被覆する方法(レイヤ リング法)(例えば、特許文献 1、特許文献 2参照)などが知られている。
[0004] レイヤリング法は、球状核粒子を、薬物含有被覆層で被覆して顆粒を製造する方 法である。具体的には、薬物粉末と結合剤水溶液を同時に供給して被覆する方法、 薬物粒子の懸濁液を供給して被覆する方法、薬物水溶液を供給して被覆する方法、 などがある。
[0005] レイヤリング法は、真球度が高ぐ粒度分布の狭い球状核粒子を使用することによ つて、真球度が高ぐ粒度分布の狭い球形素顆粒を得ることができる。そのため、レイ ヤリング法はフィルムコーティングを施すための球形素顆粒を製造する方法として好 適である。
[0006] ところで、球形素顆粒の形状は均一であることが望ましレ、。その理由は、形状に分 布があると、フィルムコーティングを施した場合に個々の粒子間でフィルムの厚みに 差が出るからである。特に徐放性フィルムの場合、精緻な溶出制御を求めるので、球 形素顆粒の形状の均一性は重要である。
球形素顆粒は真球の単分散とすることが理想であり、従来、核粒子や素顆粒の粒 度分布や真球度について考慮されてきたが(例えば、特許文献 3、特許文献 4参照) 、真球にすることも、粒度分布を単分散にすることも現実的には不可能である。
[0007] 特許文献 1:特開昭 63— 301816号公報
特許文献 2:特開 2000— 1429号公報
特許文献 3:特開平 7— 173050号公報
特許文献 4 :特開平 10— 139659号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、フィルムコーティングに適した物性を有する球形素顆粒を提供すること を目的とする。
課題を解決するための手段
[0009] 本発明者等は、前記課題を解決するため、球形素顆粒の諸物性について鋭意検 討した結果、特定の形状を有する球形素顆粒が、フィルムコーティングの製造にきわ めて適していることを見出した。
具体的には、均一なフィルムコーティングを可能とするためには、球形素顆粒の真 球度、粒度分布に加え、短長径比分布が重要な因子であること、および、真球度が 多少低ぐ粒度分布が単分散とはいえない場合であっても、短長径比分布係数を高 くすることにより均一なフィルムコーティングが可能となることを見出した。
[0010] すなわち、本発明は下記の通りである。
[1]薬物を含有し、短径分布係数が 0. 65以上、平均短長径比が 0. 85以上、短長 径比分布係数が 0. 75以上、圧壊強度が lOMPa以上である球形素顆粒。
[2]短径分布係数が 0. 65以上、 0. 80以下である [1]記載の球形素顆粒。
[3]平均短長径比が 0. 85以上、 0. 90以下である [1]又は [2]記載の球形素顆粒。
[4]平均短長径比が 0. 90以上である [1]又は [2]記載の球形素顆粒。
[5]平均短長径比が 0. 95以上である [4]記載の球形素顆粒。
[6]圧壊強度が 15MPa以上である [1]〜[5]記載の球形素顆粒。
[7]圧壊強度が 20MPa以上である [6]記載の球形素顆粒。
[8]平均短径が 50〜 1200 ,1 mである [;!]〜 [7] V、ずれか 1項記載の球形素顆粒。
[9]前記薬物の含有量が 0. 01質量%以上である [1]記載の球形素顆粒。 [10]以下の条件(1)〜(4)を満たす薬学的に不活性な球状核粒子と、
その周囲を被覆する、薬物と水溶性高分子化合物を含む薬物含有層と、 を有する、 [ 1 ]〜 [9]レ、ずれか 1項記載の球形素顆粒;
(1)結晶セルロースを 30質量%以上含有し、
(2)平均短径が 50〜; 1000 mであり、
(3)短径分布係数が 0. 60以上、平均短長径比が 0. 80以上、短長径比分布係数が 0. 70以上であり、
(4)圧壊強度が lOMPa以上である。
[11 ]球状核粒子の圧壊強度が 15MPa以上である [10]の球形素顆粒。
[12]球状核粒子の圧壊強度が 20MPa以上である [11]の球形素顆粒。
[13]球状核粒子の保水性が 0. 5g/cm3以上である [10]〜[; 12]いずれか 1項の球 形顆粒。
[14]フィルムコーティング顆粒製造用である [1]〜[; 13]いずれか 1項記載の球形素 顆粒。
[15] [1]〜[; 13]いずれか 1項記載の球形素顆粒と、その周囲を被覆するフィルムコ 一ティング層とを有するフィルムコーティング顆粒。
[16]フィルムコーティング顆粒製造のための [1]〜[; 13]いずれか 1項記載の球形素 顆粒の使用。
[17] [1]〜[; 13]いずれか 1項記載の球形素顆粒にフィルムコーティングを施す、フ イルムコーティング顆粒の製造方法。
[18]流動層型フィルムコーティング装置を使用して、前記条件( 1 )〜(4)を満たす薬 学的に不活性な球状核粒子に薬物と水溶性高分子化合物を含む水溶液または水 懸濁液を噴霧し、該球状核粒子を薬物含有層で被覆する [10]記載の球形素顆粒を 製造する製造方法。
[19]前記流動層型フィルムコーティング装置力 S、内部に案内管(ワースタ一力ラム) を有する噴流層型であるか、または、底部に回転機構を備えた転動流動層型である [ 18 ]記載の球形素顆粒の製造方法。
発明の効果 [0011] 本発明によれば、高い生産性で、精緻な溶出制御を可能とするフィルム ティン グ顆粒を製造し得る。
発明を実施するための最良の形態
[0012] 本発明について、以下具体的に説明する。
本発明の球形素顆粒は、その形状が「球形」で、かつ、「均一」であることが必要で ある。
本発明において、球形素顆粒の短径分布係数とは、以下の式で表される値である 短径分布係数 =D /Ό
10 90
ここで、 D は短径の篩下積算分布における積算 10%の値であり、 D は積算 90%
10 90
の値を意味する。
球形素顆粒の短径分布係数が、 0. 65以上であれば、真球度の点で多少劣ってい ても、均一なフオルムコーティングが可能となる。好ましくは 0. 7以上、より好ましくは 0 . 8以上である。理論上の最大値は 1であり、均一なフィルムにコーティングを施すと V、う観点からは 1に近!/、ほど好まし!/、が、現行の製造技術では 1にすることは難しく、 収率が著しく低下するので、製造効率の観点から 0. 9程度が最大の値である。
[0013] 本発明において、球形素顆粒の平均短長径比とは、以下の式で表される値である 平均短長径比 = [D/L]
50
ここで、 [D/L] は粒子の短長径比を最小値側から積算したときの積算分布にお
50
ける積算 50%の値を意味する。
平均短長径比は、 0. 85以上である必要がある。好ましくは 0. 9以上、より好ましく は 0. 95以上である。理論上の最大値は 1であり、均一なフィルムにコーティングを施 すとレ、う観点からは 1に近!/、ほど好ましレ、。
[0014] 本発明にお!/、て、球形素顆粒の短長径比分布係数とは、以下の式で表される値で ある。
短長径比分布係数 = [D/L] / [D/L]
10 90
ここで、 [D/L] は短長径比を最小値側から積算したときの積算分布における積 算 10%の値であり、 [D/L] は積算 90%の値を意味する。
90
短長径比分布係数は、 0. 7以上である必要がある。好ましくは 0. 8以上、より好まし くは 0. 9以上である。理論上の最大値は 1であり、 1に近いほど好ましい。
短長径比分布係数を 0. 75以上とすることにより、短径分布係数や真球度(平均短 長径比)が、それぞれ、 0. 65-0. 8、 0. 85-0. 9程度の比較的低い値である場合 にも、精緻な徐放性フィルムコーティングが可能となり、また、最低限のフィルムで苦 味マスキングを達成することができる。
[0015] 球形素顆粒の大きさは、平均短径(D )が 50〜; 1200 in程度であることが好まし
50
い。
ここで、本発明において、平均短径 (D )とは、短径の篩下積算分布における積算
50
50%粒子径を意味する。
[0016] 本発明の球形素顆粒は、少なくとも 0. 01質量%の薬物を含有することが好ましい
本発明において「薬物」とは、人または動物の疾病の治療、予防、診断に使用され るものであって、器具'機械ではなレ、もののことを!/、う。
具体例としては、下記のようなものが挙げられる。抗癲癇剤(フエニトイン、ァセチノレ フエネトライド、トリメタジオン、フエノバルビタール、プリミドン、ニトラゼパム、バルプロ 酸ナトリウム、スルチアム等)、解熱鎮痛消炎剤(ァセトァミノフェン、フエニルァセチル グリシンメチルアミド、メフエナム酸、ジクロフェナクナトリウム、フロクタフェニン、ァスピ リン、アスピリンアルミニウム、ェテンザミド、ォキシフェンブタゾン、スルピリン、フエ二 ノレブタゾン、イブプロフェン、アルクロフエナク、ナロキセン、ケトプロフェン、塩酸チノリ ジン、塩酸べンジダミン、塩酸チアラミド、インドメタシン、ピロキシカム、サリチルアミド 等)、鎮暈剤(ジメンヒドリナート、塩酸メタリジン、塩酸ジフエ二ドール等)、麻薬 (塩酸 ァヘンアルカロイド、塩酸モルヒネ、リン酸コディン、リン酸ジヒドロコディン、ォキシメ テバノール等)、精神神経用剤(塩酸クロルプロマジン、マレイン酸レポメプロマジン、 マレイン酸ペラジン、プロペリシァジン、ぺノレフエナジン、クロノレプロチキセン、ノヽロぺ リドール、ジァゼパム、ォキサゼパム、ォキサゾラム、メキサゾラム、アルプラゾラム、ゾ テピン等)、骨格筋弛緩剤(クロルゾキサゾン、力ルバミン酸クロルフエネシン、クロルメ ザノン、メシル酸プリジノール、塩酸エペリゾン等)、自律神経用剤(塩化べタネコール 、臭化ネオスチグミン、臭化ピリドスチグミン等)、鎮痙剤 (硫酸アト口ピン、臭化ブト口 ピウム、臭化ブチルスポコラミン、臭化プロパンテリン、塩酸パパべリン等)、抗パーキ ンソン剤(塩酸ビペリデン、塩酸トリへキシフエ二ジル、塩酸ァマンタジン、レポドパ等) 、抗ヒスタミン剤(塩酸ジフェンヒドラミン、 dl—マレイン酸クロルフエ二ラミン、プロメタジ ン、メキタジン、フマル酸クレマスチン等)、強心剤(アミノフィリン、カフェイン、 dl—塩 酸イソプロテレノール、塩酸ェチレフリン、塩酸ノルフエネリン、ュビデカレノン等)、不 整脈用剤 (塩酸プロ力インアミド、ピンドロール、酒石酸メトプロロール、ジソビラミド等 )、利尿剤(塩化カリウム、シクロペンチアジド、ヒドロクロ口チアジド、トリアムテレン、ァ セタゾラミド、フロセミド等)、血圧降下剤(臭化へキサメトニゥム、塩酸ヒドララジン、シ 口シンゴピン、レセルピン、塩酸プロプラノール、カプトプリル、メチルドパ等)、血管収 縮剤 (メシル酸ジヒドロエルゴタミン等)、血管拡張剤 (塩酸エタフエノン、塩酸ジルチ ァゼム、塩酸カルボクロメン、四硝酸ペンタエリスリトール、ジピリダモール、硝酸イソソ ルビド、二フエジピン、クェン酸二カメタート、シクランデレート、シンナリジン等)、動脈 硬化用剤(リノール酸ェチル、レシチン、クロフイブラート等)、循環器官用剤 (塩酸二 カルジピン、塩酸メクロフエノキサート、チトクローム c、ピリジノール力ルバメート、ピン ボセチン、ホパンテン酸カルシウム、ペントキシフィリン、イデべノン等)、呼吸促進剤( 塩酸ジメフリン等)、鎮咳去痰剤(臭化水素酸デキストロメトルファン、ノス力ピン、塩酸
L—メチルシスティン、塩酸ブロムへキシン、テオフィリン、塩酸エフェドリン、アンレキ サノクス、等)、利胆剤 (ォサルミド、フエニルプロパノール、ヒメクロモン等)、整腸剤( 塩化ベルべリン、塩酸口ペラミド等)、消化器官用剤 (メトク口ブラミド、フエ二ペントー ル、ドンペリドン等)、ビタミン剤(酢酸レチノール、ジヒドロタキステロール、エトレチナ ート、塩酸チアミン、硝酸チアミン、フルスルチアミン、ォクトチアミン、シコチアミン、リ ボフラビン、塩酸ピリドキシン、リン酸ピリドキサール、ニコチン酸、パンテチン、シァノ コバラミン、ビォチン、ァスコルビン酸、フイトナジオン、メナテトレノン等)、抗生物質( ベンジルペニシリンベンザチン、ァモキシシリン、アンピシリン、シクラシリン、セファタ 口ノレ、セファレキシン、セフロキシムアキセチノレ、エリスロマイシン、キタサマイシン、ジ ョサマイシン、クロラムフエ二コール、テトラサイクリン、グリセオフルビン、セフゾナムナ トリウム等)、化学療法剤 (スルファメトキサゾール、イソ二アジド、ェチォナミド、チアゾ スノレホン、ニトロフラントイン、エノキサシン、才フロキサシン、ノノレフロキサシン等)が 挙げられる。
[0017] 球形素顆粒にフィルムコーティングを施す場合につ!/、て説明する。
本発明においては、薬物の溶出速度の調整 (徐放、腸内放出、時限放出、パルス 放出、苦味マスクなど)や、防湿、色つけなどを目的として、球形素顆粒にフィルムコ 一ティングを施すことができる。
球形素顆粒は、遠心流動コーティング装置 (フロイント産業社製「CFダラ二ユレータ 一」など)や流動層コーティング装置など、公知の装置を使用してフィルムコーティン グできる。流動層コーティング装置は、通常の流動層型の他に、内部に案内管(ヮー スターカラム)を有する噴流層型や、底部に回転機構を備えた転動流動層型なども 使用できる。
装置の例としては、フロイント産業社製「フローコーター」「スパイラフロー」、 Glatt社 製「WST/WSGシリーズ」「GPCGシリーズ」、不二パゥダル社製「ニューマルメライ ザ一」、バウレック社製「マルチプレックス」などを挙げることができる。
[0018] フィルムコーティング液の供給は、トップスプレー、ボトムスプレー、サイドスプレー、 タンジェンシャルスプレー等の各装置に適した方法が選択でき、球形素顆粒に噴霧 される。噴霧終了後は、サンプルを取り出すことなぐそのまま、あるいは風量および 温度を適宜調節して、フィルムコーティング顆粒を乾燥できる。
フィルムコーティング液としては、例えば、固体状のフィルムコーティング剤を有機 溶媒に溶解したもの、微粉末状のフィルムコーティング剤を可塑剤とともに水に分散 したもの、あるいはラテックスタイプのフィルムコーティング剤に必要に応じて可塑剤 を配合したもの等が使用できる。
フィルムコーティング剤としては、アクリル酸ェチル 'メタクリル酸メチルコポリマー分 散液、アミノアルキルメタクリレートコポリマー E、アミノアルキルメタクリレートコポリマー RS、メタクリル酸コポリマー L、メタクリル酸コポリマー LD、メタクリル酸コポリマー Sな どのアクリル樹脂系コーティング剤;ェチルセルロース、ェチルセルロース水分散液、 カノレポキシメチノレエチノレセノレロース、酢酸フタノレ酸セノレロース、ヒプロメロースフタノレ 酸エステル、ヒドロキシプロピルメチルセルロースアセテートサクシネートなどのセル口 ース系コーティング剤;酢酸ビュル樹脂水分散液などの酢酸ビュル樹脂系コーティン グ剤などが使用できる。
これらのフィルムコーティング液には、成膜性、コーティング性、安定性、溶出性な どを調整するために、可塑剤、無機物粒子、水溶性物質などの添加剤を配合しても よい。有機溶媒の使用は、作業環境および自然環境保全の点から忌避されており、 水系のものを使用することが好ましい。
特に好ましいフィルムコーティング液は、アクリル酸ェチル 'メタクリル酸メチルコポリ マー分散液、メタクリル酸コポリマー LD水分散液、ェチルセルロース水分散液、酢酸 ビュル樹脂水分散液などのラテックスタイプのコーティング剤からなるものである。
[0019] 最近は、生産性の観点に加え、より小さな素顆粒に対するフィルムコーティング性 の観点から、ワースタ一力ラムを有する噴流層型あるいは転動流動層型の流動層コ 一ティング装置が使用されることが多い。これらの装置は粒子に対する転動力が強い 点が特徴である力、安定/大量生産のためには被フィルムコーティング顆粒 (球形素 顆粒)の強度が高くなければならない。特に、生産機になると仕込み量が増すため、 装置の攪拌力に加え、素顆粒自身の重力に耐える必要がある。
[0020] そのため、本発明の球形素顆粒は、その圧壊強度が lOMPa以上であることが必要 であり、好ましくは 15MPa以上、さらに好ましくは 20MPa以上である。これによつて、 素顆粒の破壊、薬物層の剥離が起こらず、安定的にフィルムコーティングを行うこと ができる。
なお、本発明において、圧壊強度とは、以下の式で表される値である。 圧壊強度 [MPa] = 0. 7 X P /{ π X (d/2) 2}
0
ここで、 dは粒子の直径 m]、 Pは粒子が破壊される荷重 [N]を意味する。
0
[0021] 本発明の球形素顆粒は、押出造粒後に球形化する方法、高速撹拌造粒後に球形 化する方法、および、球状核粒子の表面を薬物で被覆する方法(レイヤリング法)等 により製造すること力 Sできる。以下に一例として、レイヤリング法により製造する場合に ついて説明する。
レイヤリング法において使用される好ましい球状核粒子は、結晶セルロースを 30質 量%以上含んだものである。結晶セルロースが 30質量%未満であると、球状にする ことが困難であり、また、強度が低下する。より好ましくは結晶セルロースが 70質量% であり、さらに好ましくは 100質量%である。
なお、本発明において「結晶セルロース」とは、第十四改正日本薬局方の「結晶セ ノレロース」の規格に適合するものを意味する。
[0022] 本発明において、球状核粒子は薬学的に不活性、すなわち、薬物を含まないこと が好ましい。結晶セルロース以外の成分としては、医薬品の製剤化に通常使用され る添加物を例示することができる。
例えば、乳糖、白糖、 D—マンニトール、トウモロコシデンプン、粉末セルロース、リ ン酸水素カルシウム、炭酸カルシウムなどの賦形剤;低置換度ヒドロキシプロピルセ ノレロース、カルメロースカルシウム、部分アルファ一化デンプン、クロスカルメロースナ トリウム、クロスポビドン、カルボキシメチルスターチなどの崩壊剤;ヒドロキシプロピル セルロース、ポビドン、キサンタンガムなどの結合剤;ヒドロキシプロピルメチルセル口 ース、メタクリル酸コポリマー LD、ェチルセルロース水分散液、などのコーティング剤 ;ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ラウリル硫酸ナトリウム、ポリソル ペート 60などの乳化剤;タルク、ステアリン酸マグネシウム、メタケイ酸アルミン酸マグ ネシゥム、酸化チタン、軽質無水ケィ酸、結晶セルロース 'カルメロースナトリウムなど のその他の添加物等を挙げることができる。
水溶性の医薬品添加物の配合は、レイヤリング時の粒子の凝集を増やすので、 10 質量%以下であることが好ましぐより好ましくは 5質量%以下である。
[0023] 本発明において、球状核粒子の形状は均一であることが好ましい。平均短径 (D )
50 は、 50〜; 1000〃 mであることが好ましい。
そして、短径分布係数は 0. 60以上、平均短長径比は 0. 80以上、短長径比分布 係数は 0. 7以上であることが好ましい。これによつて、薬物含有層のレイヤリング後に 得られる球形素顆粒の短径分布係数、平均短長径比、短長径比分布係数を本発明 の数値範囲に容易に調整することができる。
[0024] 球状核粒子の保水性は 0. 5cm3/g以上であることが好ましい。 0. 7cm3/gである と凝集が著しく抑制されるので、より好ましい。さらに好ましくは 0. 9cm3/g以上であ る。上限は無いが、吸水して膨潤すると、薬物含有層被覆後の乾燥時に収縮し、球 形素顆粒の強度が低下するので好ましくない。吸水しても、膨潤しない粒子の最大 の保水性は、おおよそ 2. Ocm3/gである。嵩密度は、強度と保水性の兼ね合いによ つて決まるが、おおよそ 0. 5〜2· Ocm3/gである。結晶セルロースのみからなる球 状核粒子の場合は、 0. 5〜; 1. 0cm3/g程度である。
ここで、保水性とは、単位質量あたりに保持できる水の容量であり、以下の式で表さ れる。
保水性 G [cm3/g] =H/W
H:球状核粒子が保持できる水の容量 [cm3/g]
W :球状核粒子の質量 [g]
具体的には、サンプル 10g (乾燥物換算)に純水 30mLを加え、 1時間室温で放置 後、固形分を濾紙で分離し、表面付着水を別の濾紙で軽くぬぐい取った後、その質 量重量を測定し、 10gを差し引いた値 (含水量)を 10で除すことによって求められる。
[0025] 球状核粒子を薬物含有層でレイヤリング (被覆)するためには、フィルムコーティン グの場合と同様の装置が、同様の使い方で使用できる。好適な装置は、フィルムコー ティングの場合と同様に、内部に案内管(ワースタ一力ラム)を有する噴流層型、ある いは、底部に回転機構を備えた転動流動層型の流動層コーティング装置である。た だし、異なる点は、フィルムコーティング液ではなぐ薬物の水溶液あるいは水懸濁液 等のレイヤリング液を使用することである。レイヤリング液は、有機溶媒系とすることも できる力 作業環境および自然環境の保全の観点から、水系とすることが好ましい。
[0026] レイヤリング液中の薬物の濃度は、薬物の溶解度と粘度、および懸濁性に依存する 1S おおよそ、 5〜30質量%であることが好ましい。レイヤリング液には、必要に応じ て、その他の医薬品添加物を配合しても良い。
[0027] このような医薬品添加物として最も有効なものは水溶性高分子化合物 (結合剤)で あり、これにより薬物含有層の強度を上げることができる。水溶性高分子化合物の具 セルロース)、メチルセルロース、カルメロースナトリウム、アルファ一化デンプン、ァラ ビアゴム末、カルボキシビュルポリマー、ポビドン(ポリビュルピロリドン)、ポリビュルァ ルコール、カラギーナン、キサンタンガム、プルランなどを挙げることができる。なかで も、結合性と薬物の即溶出性を兼ね備えたヒプロメロース(置換度タイプ: 2910)ゃポ ビドンが好ましい。
また、レイヤリング液が水懸濁液である場合の薬物粒子の懸濁安定性向上、および 球形素顆粒における薬物含有層の剥離防止のために、結晶セルロース 'カルメロ一 スナトリウムを配合することも有効である。
[0028] 薬物と水溶性高分子化合物の水溶液あるいは水懸濁液等のレイヤリング液に替え て、薬物粉末と水溶性高分子化合物水溶液を球状核粒子に同時に供給することも できる。この方法の場合、薬物以外の添加剤、例えば賦形剤は、適宜、薬物粉末と 混合して使用できる。
[0029] このようなレイヤリング液を球状核粒子に、連続的に、あるいは間欠的に噴霧しつつ 、乾燥し、薬物含有層を形成する。この時、粒子が凝集しないように、また、噴霧液が 核粒子に付着する前に乾燥し、粉末化(ダステイング)しないように、温風量、回転機 構の回転速度、薬物噴霧液の噴霧圧などを最適化することが好ましい。そのため、 球状核粒子の破壊強度は、 l OMPa以上であることが好ましい。圧壊強度が低いと、 粒子の攪拌力を低く設定せざるを得ず、薬物水溶液 (水懸濁液)の噴霧速度もまた、 低速になり、生産性が低下する。より好ましくは 15MPa以上、さらに好ましくは 20MP a以上でめる。
[0030] レイヤリング液噴霧終了後は、球形素顆粒を乾燥する。このとき、サンプルを取り出 すことなく、そのまま、あるいは風量および温度を適宜調節して、球形素顆粒を乾燥 することあでさる。
[0031] 薬物含有層の被覆量は、一回の服用量や製剤の大きさなどの製剤設計力 決まる ものである力 S、あえて例を示せば、球状核粒子に対して 0. 5〜200質量%程度であ また、本発明の球形素顆粒は、これに徐放性フィルムコーティングを施すことによつ て、含有する薬物の溶出を精緻に制御することができるので、球形素顆粒自体を徐 放性にする必要はない。むしろ、薬物の溶け残りを防ぐという観点からは、球形素顆 粒自体は除放性ではない方が好ましい。したがって、薬物含有層は、薬物と水溶性 高分子化合物を主成分とするものであることが好ましぐ薬物と水溶性高分子化合物 の合計量が薬物含有層の 80質量%以上であることが好ましぐより好ましくは 90質量 %以上である。さらに、球形素顆粒の薬物含有層には、その溶出速度を低下させる ような添加物(例えば、水不溶性高分子化合物)は配合しな!/、ことが好まし!/、。
[0032] 球形素顆粒の製造工程の一例を、説明する。
(a)レイヤリング液の調製;まず、水に薬物と、必要な医薬品添加剤を配合し、充分撹 拌溶解 (懸濁)する。
(b)球状核粒子および流動層コーティング装置の加温;次いで、流動層コーティング 装置に球状核粒子を仕込み、排風温度が所定の温度に達するまで、温風を装置下 部から供給し、核粒子を流動させる(流動層コーティング装置が転動流動層型である 場合、同時に回転部を回転する)。
(c)薬物含有層の被覆;次に、レイヤリング液を所定の速度で連続的に、あるいは間 欠的に、あるいは段階的に速度を上げて噴霧し、所定の被覆量に達したらレイヤリン グ液の供給を停止する。
(d)球形素顆粒の乾燥;必要に応じて、温風の量および温度(転動流動層型の場合 は回転部の回転速度)を調節し、乾燥する。
(e)球形素顆粒の取り出し;最後に、球形素顆粒を取り出す。
[0033] 得られた球形素顆粒は、必要に応じて整粒され、徐放性、腸溶性、苦味マスクなど のフィルムコーティングを施され、顆粒剤、カプセル剤、錠剤、等として使用できる。 実施例
[0034] 本発明を実施例に基づいて説明する。まず、物性の測定方法を以下にまとめて記 す。
<球状核粒子および球形素顆粒の平均短径、短径分布係数、短長径比分布係数、 平均短長径比〉
サンプルの形状を、デジタルマイクロスコープ(VH— 7000、(株)キーエンス製)で 撮影し(50倍または 100倍レンズを使用)、画像解析装置 (ImageHyper、(株)イン タークエスト製)を用いて 100個の粒子の短径 (D)、長径 (L)を測定する。ここで、短 径と長径は、粒子の境界画素上に外接する面積が最小となる外接長方形の短辺を 短径とし、長辺を長径とする。
短径の篩下積算分布における積算 10%粒子径を「D 」、積算 50%粒子径を「D
10 50
」、積算 90%粒子径を「D 」で表す。平均短径とは、 D のことであり、短径分布係数
90 50
とは、 D /Ό のことである。
10 90
また、短径と長径の比(短長径比)を「D/L」で表し、 D/Lの最小値の側から積算 したときの積算分布における積算 10%短長径比を「[D/L] 」、積算 50%短長径
10
比を「[D/L] 」、積算 90%短長径比を「 [D/L] 」で表す。短長径比分布係数と
50 90
は、 [D/L] / [D/L] のことであり、平均短長径比とは、 [D/L] のことである。
10 90 50
平均短径 [ m] D
50
短径分布係数 [ ] =D /Ό
10 90
短長径比分布係数 [ ] = [D/L] / [D/L]
10 90
平均短長径比 [ ] = [D/L]
50
[0035] <球状核粒子および球形素顆粒の圧壊強度 [MPa] >
顆粒強度測定装置 (ダラノ、岡田精ェ (株)製)を用いて、粒子の直径 (d m] )と 破壊荷重 (P [N] )を測定する。定格 5Nまたは 20Nのロードセルを使用し、下降速度 を 100 m/sでチップを下降させ粒子に荷重を付加する。チップの変位に対するチ ップが粒子から受ける荷重の推移をグラフ化した時、荷重が 0. 15N以上低下する点 を破壊点とし、その時、粒子に力、かっていた荷重を破壊荷重 P [N]として、下式より
0
圧壊強度を算出する。 50個の粒子について測定を繰り返し、その平均値を求める。 圧壊強度 [MPa] = 0· 7 X P /{ π X (d/2) 2}
0
[0036] <球形素顆粒およびフィルムコーティング顆粒の回収率 [質量%] >
球形素顆粒またはフィルムコーティング顆粒の回収量 [g]、用いた原料の総量 [g] から、下式により算出する。
回収率 [質量%] = {回収量 [g] /原料の総量 [g] } X 100
[0037] <球形素顆粒およびフィルムコーティング顆粒の凝集率[%] >
球形素顆粒あるいはフィルムコーティング顆粒を紙上に分散させ、 目視で凝集顆粒 を構成している粒子数 (a [個] )と、単一粒子数 (b [個] )を数え、下式により算出する 。観察する粒子数は 1000個( = a + b)とする。 凝集率 [ % ] = { a/ (a + b) } X 100
[0038] <フィルムコーティング顆粒の苦味感知時間 [sec] >
三人の専門パネラー力 s、フィルムコーティング顆粒 0. 5g口中に含み、舌の上にの せ、舌を動かさない状態で苦味を感じるまでの時間の平均値を、苦味感知時間とし た。
[0039] [実施例 1]
(核粒子の製造)
平均重合度 220の結晶セルロース 10kgを転動流動層造粒装置(「マルチプレック ス」 MP— 25型、(株)パゥレック製)に仕込み、回転数 336rpm、風量 1 · 7〜4· 5m3 /min、給気温度 55°Cの条件で、蒸留水を 100g/minの速度で 14kgをトップスプ レー方式で噴霧した。その後、そのままの条件で 60分間、転動と流動を行い、次い で、給気温度を 70°Cとし、 20分毎に回転数を 50rpmずつ減少し、排気温度が 35°C になるまで乾燥した。乾燥後、 710 m以上の粗大粒子と、 300 m以下の微粉を 篩で除去して球状核粒子 Aを得た。
核粒子の物性を表 2に示す。
(球形素顆粒の製造)
水 102gをプロペラ攪拌しながら、ポビドン(K— 30、 ISP Tec. Inc.製) 3g、スル ピリン (メルクホエイ製) 15gを投入し、完全に溶解するまで攪拌し、レイヤリング液を 調整した。噴流型(ワースタ一型)コーティング装置(「マルチプレックス」 MP— 01型、 ワースタ一力ラム使用、(株)バウレック製)に上記球状核粒子を 0· 5kg仕込み、スプ レーエアー圧 0. 16MPa、スプレーエアー流量 40L/min、給気温度 75°C、風量 3 ;!〜 43m3/h、の条件で、排気温度が 40°Cになるまで予備加温した。レイヤリング液 噴霧速度 3g/min (球状核粒子 lkgあたり、固形分として 0. 9g/minの被覆速度に 相当)の条件で、球状核粒子に対して 2. 4質量% (薬物として 2. 0質量%)になるま でレイヤリングした。以上の操作を 2回行い、得られたものを混合して、球形素顆粒と した。
球形素顆粒は、高回収率で、し力、も低凝集率であった。結果を表 1に示す。 (フィルムコーティング) 苦味をマスクするためのフィルムコーティングを行うために、まず、ェチルセルロース 水分散液(「八 11&00& £じ0— 30、固形分濃度 30質量%、 FMC製) 10. 9部(固 形分)、クェン酸トリェチル (東京化成工業 (株)製) 2· 7部、 D—マンニトール (東和化 成工業 (株)製) 1. 4部、水 85部の割合からなるフィルムコーティング液を調製した。 次いで、転動流動コーティング装置(「マルチプレックス」 MP— 01型、(株)バウレック 製)に球形素顆粒を 0. 8kg仕込み、給気温度 75°C、風量 37〜50m3/h、回転板回 転数 200rpmの条件で核粒子を転動流動し、排気温度が 38°Cになるまで予備加温 した。タンジェンシャルボトムスプレーを使用し、スプレーエアー圧 0. 16MPa、スプレ 一エアー流量 40L/min、排気温度 36〜38°C、コーティング液噴霧速度 10. 0g/ minの条件で、球形素顆粒に対してフィルムコーティング液の固形分が 15質量%に なるまでコーティングした。コーティング終了後、乾燥時は回転板回転数を 200rpmと して、排気温度が 40°Cになるまで加温し、次いで、ヒーターを切り給気温度が 40°C になるまで冷却した。得られたフィルムコーティング顆粒はバットに薄く広げ、 80°Cの オーブン中で 60分間キュアリング (加熱成膜処理)し、フィルムコーティング顆粒を得 た。
得られたフィルムコーティング顆粒は、苦味は 48秒程度抑制され、また、凝集も極 め
て少な力 た。結果を表 1に示す。
[実施例 2]
(核粒子の製造)
平均重合度 220の結晶セルロース 10kgを転動流動層造粒装置(「マルチプレック ス」 MP— 25型、(株)パゥレック製)に仕込み、回転数 336rpm、風量 1 · 7〜4· 5m3 /min,給気温度 55°Cの条件で、蒸留水を 200g/minの速度で 14kgをトップスプ レー方式で噴霧した。その後、そのままの条件で 60分間、転動と流動を行い、次い で、給気温度を 80°Cとし、 20分毎に回転数を 50rpmずつ減少し、排気温度が 35°C になるまで乾燥した。乾燥後、 710 m以上の粗大粒子と、 300 m以下の微粉を 篩で除去して球状核粒子 Bを得た。
核粒子の物性を表 2に示す。 (球形素顆粒の製造)
次いで実施例 1と同様にしてレイヤリングを行い、球形素顆粒を得た。
球形素顆粒は、仕込み原料に対してほぼ全量が回収され、凝集も少なかった。結 果を表 1に示す。
(フィルムコーティング)
次いで実施例 1と同様にしてフィルムコーティングを行い、フィルムコーティングコー ティング顆粒を得た。
得られたフィルムコーティング顆粒の苦味は 29秒程度抑制され、凝集も少なかった 。結果を表 1に示す。
[実施例 3]
(球形素顆粒の製造)
水 540gをプロペラ攪拌しながら、ポビドン(K— 30、 ISP Tec. Inc.製) 10g、スル ピリン (メルクホエイ製) 50gを投入し、完全に溶解するまで攪拌し、レイヤリング液を 調製した。転動流動コーティング装置(「マルチプレックス」 MP— 01型、(株)バウレツ ク製)に、実施例 1で得られた球状核粒子 Al . 0kgを仕込み、給気温度 75°C、風量 3 7〜50m3/h、回転板回転数 200rpmの状態で、排気温度が 40°Cになるまで予備 加温した。タンジェンシャルボトムスプレーを使用し、回転板回転数 380rpm、スプレ 一エアー圧 0. 16MPa、スプレーエアー流量 40L/min、給気温度 75°C、排気温度 40°C、風量 37〜50m3/h、レイヤリング液噴霧速度 8. Og/min (球状核粒子 lkg あたり、固形分として 0. 8g/minの被覆速度に相当)の条件で、球状核粒子に対し て 6. 0質量% (薬物として 5. 0質量%)になるまでレイヤリングした。その後、回転板 回転数を 200rpmにし、排気温度が 42°Cに上昇するまで乾燥し、次いで、給気の加 熱ヒーターをオフにして、給気温度が 40°Cになるまで冷却した。
得られた球形素顆粒は、コーティング装置の内壁への付着が少なぐほぼ全量が 回収された。また、凝集もきわめて少なかった。結果を表 1に示す。
(フィルムコーティング)
次いで実施例 1と同様にしてフィルムコーティングを行い、フィルムコーティングコー ティング顆粒を得た。 得られたフィルムコーティング顆粒の苦味は 35秒程度抑制され、凝集も少なかった
結果を表 1に示す。
[0041] [実施例 4]
(核粒子の製造)
平均重合度 140の結晶セルロース 10kgを転動流動層造粒装置(「マルチプレック ス」 MP— 25型、(株)パゥレック製)に仕込み、回転数 250rpm、風量 3· 5〜4· 5m3 /min、給気温度 50°Cの条件で、蒸留水を 150g/minの速度で 11kgをトップスプ レー方式で噴霧した。その後、そのままの条件で 30分間、転動と流動を行い、次い で、給気温度を 80°Cとし、 20分毎に回転数を 50rpmずつ減少し、排気温度が 35°C になるまで乾燥した。乾燥後、 710 m以上の粗大粒子と、 300 m以下の微粉を 篩で除去して球状核粒子 Cを得た。
核粒子の物性を表 2に示す。
(球形素顆粒の製造)
次いで実施例 1と同様にしてレイヤリングを行い、球形素顆粒を得た。
球形素顆粒は、仕込み原料に対してほぼ全量が回収され、凝集も少なかった。結 果を表 1に示す。
(フィルムコーティング)
次いで実施例 1と同様にしてフィルムコーティングを行い、フィルムコーティングコー ティング顆粒を得た。
得られたフィルムコーティング顆粒の苦味は 53秒程度抑制され、凝集も少なかった 。結果を表 1に示す。
[0042] [実施例 5]
(球形素顆粒の製造)
球状核粒子として、実施例 4で得られた球状核粒子 Cを用いる以外は実施例 3と同 様にしてレイヤリングを行い、球形素顆粒を得た。
球形素顆粒は、仕込み原料に対してほぼ全量が回収され、凝集も少なかった。結 果を表 1に示す。 ((フフィィルルムムココーーテティィンンググ))
次次いいでで実実施施例例 11とと同同様様ににししててフフィィルルムムココーーテティィンンググをを行行いい、、フフィィルルムムココーーテティィンンググココーー テティィンンググ顆顆粒粒をを得得たた。。
得得らられれたたフフィィルルムムココーーテティィンンググ顆顆粒粒のの苦苦味味はは 5511秒秒程程度度抑抑制制さされれ、、凝凝集集もも少少ななかかっったた 。。結結果果をを表表 11にに示示すす。。
[[00004433]] [[比比較較例例 11]]
((核核粒粒子子のの製製造造))
平平均均重重合合度度 222200のの結結晶晶セセルルロローースス 1100kkggをを転転動動流流動動層層造造粒粒装装置置((「「ママルルチチププレレッックク スス」」 MMPP—— 2255型型、、((株株))パパゥゥレレッックク製製))にに仕仕込込みみ、、回回転転数数 225500rrppmm、、風風量量 33·· 55〜〜55·· 55mm33 //mmiinn、、給給気気温温度度 5555°°CCのの条条件件でで、、蒸蒸留留水水をを 220000gg//mmiinnのの速速度度でで 1144kkggををトトッッププススププ レレーー方方式式でで噴噴霧霧ししたた。。そそのの後後、、風風量量 88mm33//mmiinn、、給給気気温温度度 8800°°CCととしし、、 2200分分毎毎にに回回転転 数数をを 5500rrppmmずずつつ減減少少しし、、排排気気温温度度がが 3355°°CCににななるるままでで乾乾燥燥ししたた。。乾乾燥燥後後、、 550000 mm以以 上上のの粗粗大大粒粒子子とと、、 225500 mm以以下下のの微微粉粉をを篩篩でで除除去去ししてて球球状状核核粒粒子子 aaをを得得たた。。
核核粒粒子子のの物物性性をを表表 22にに示示すす。。
((球球形形素素顆顆粒粒のの製製造造))
次次いいでで実実施施例例 11とと同同様様ににししててレレイイヤヤリリンンググをを行行いい、、球球形形素素顆顆粒粒をを得得たた。。
球球形形素素顆顆粒粒はは、、仕仕込込みみ原原料料にに対対ししててほほぼぼ全全量量がが回回収収さされれたた力力 凝凝集集がが多多かかっったた。。 結結果果をを表表 11にに示示すす。。
((フフィィルルムムココーーテティィンンググ))
次次いいでで実実施施例例 11とと同同様様ににししててフフィィルルムムココーーテティィンンググをを行行いい、、フフィィルルムムココーーテティィンンググココーー テティィンンググ顆顆粒粒をを得得たた。。
得得らられれたたフフィィルルムムココーーテティィンンググ顆顆粒粒のの苦苦味味はは 88秒秒程程度度でで感感じじらられれ、、充充分分にに抑抑制制さされれ てていいななかかっったた。。結結果果をを表表 11にに示示すす。。
[[00004444]] [[比比較較例例 22]]
((球球形形素素顆顆粒粒のの製製造造))
球球状状核核粒粒子子ととししてて、、比比較較例例 11でで得得らられれたた球球状状核核粒粒子子 aaをを用用いいたた以以外外はは、、実実施施例例 33とと
Figure imgf000019_0001
球球形形素素顆顆粒粒はは、、ほほぼぼ全全量量回回収収さされれたたがが、、凝凝集集がが多多かかっったた。。結結果果をを表表 11にに示示すす。。 (フィルムコーティング)
次いで実施例 1と同様にしてフィルムコーティングを行い、フィルムコーティングコー ティング顆粒を得た。
得られたフィルムコーティング顆粒の苦味は 11秒程度で感じられ、充分に抑制され ていなかった。結果を表 1に示す。
[0045] [比較例 3]
(球形素顆粒の製造)
平均重合度 140の結晶セルロース 200g、乳糖(Pharmatose、 200M、 DMV製) 132. 2g、トウモロコシデンプン(日澱化学(株)製) 60g、およびスルピリン 7· 8gをプ ラネタリーミキサー(5DM— 03— R型、ビータ一型パドル、(株)品川製作所製)に仕 込み、 63rpmで撹拌し、水 240gを加え、さらにそのまま 5分間混合した。得られた混 合物を押出造粒機(ドームグラン、 DG— L1型、 300 m孔径のダイ、スクリュー回転 数 40rpm、(株)不二バウダル製)で造粒し、さらに球形化装置(マルメライザ一、 Q— 230型、 3mmギザプレート、(株)不二パゥダル製)に仕込み、 690rpmで 20分間、 球形化した。以上の操作を 3回行い、得られた造粒物をまとめてオーブン中で、 45°C 、 16時間乾燥し、 710 m以上の粗大粒子と、 300 m以下の微粉を篩で除去して スルピリンを 1. 95質量%含有する球形素顆粒を得た。物性を表 1に示す。
(フィルムコーティング)
次いで実施例 1と同様にしてフィルムコーティングを行い、フィルムコーティングコー ティング顆粒を得た。
得られたフィルムコーティング顆粒の苦味は 9秒程度で感じられ、充分に抑制され ていなかった。結果を表 1に示す。
[0046] [比較例 4]
(球形素顆粒の製造)
加水量を 280gとした以外は、比較例 3と同様にして造粒を行い、スルピリンを 1. 95 質量%含有する球形素顆粒を得た。物性を表 1に示す。
(フィルムコーティング)
次いで実施例 1と同様にしてフィルムコーティングを行い、フィルムコーティングコー ティング顆粒を得た。
得られたフィルムコーティング顆粒の苦味は 13秒程度で感じられ、充分に抑制され ていなかった。結果を表 1に示す。
[0047] 実施例;!〜 5、比較例;!〜 4の結果を表 1に示す。
短長径比分布係数、平均短長径比、短径分布係数が本発明の数値範囲にある実 施例;!〜 5の球形素顆粒は、フィルムコーティングを施した際の凝集が少なぐ苦味が 充分抑制されていた。これに対して、比較例;!〜 4の球形素顆粒は、フィルムコーティ ングの際に凝集が発生し、苦味の抑制も充分でなかった。
特に、実施例 2、 4、 5のように、平均短長径比、短径分布係数が比較的低ぐ真球- 単分散とは言い難い球形素顆粒であっても、短長径比分布係数を本発明の数値範 囲内にすることにより、フィルムコーティングの際の凝集を抑制でき、苦味の抑制が充 分な均一なフィルムコーティングが達成できた。
[0048] [表 1]
Figure imgf000022_0001
[表 2]
Figure imgf000023_0001
[実施例 6]
実施例 2で得た球形素顆粒を用いて徐放性フィルムコーティング顆粒を調製した。 まず、ェチルセルロース水分散液(「セリオスコート」 EC— 30A、固形分濃度 30質 量%、旭化成ケミカルズ) 11. 5部(固形分)、クェン酸トリェチル (東京化成工業 (株) 製) 2· 9部、 D—マンニトール (東和化成工業 (株)製) 0· 6部、水 85部の割合からな るフィルムコーティング液を調製した。次いで、噴流型(ワースタ一型)コーティング装 置 (GPCG—1型、グラット社製)に実施例 2で得た球形素顆粒 0. 5kgを仕込み、給 気温度 65°C、排気温度 47〜50°C、風量 80m3/h、スプレーエアー圧 0. 16MPa、 コーティング液噴霧速度 2. Og/minの条件で、球形素顆粒に対してフィルムコーテ イング液の固形分が 5質量%になるまでコーティングした。スルピリンのフィルムへの 混入を抑制するために、排気温度が 53°Cになるまで乾燥した後、再度コーティング を行った。この時の条件はコーティング液噴霧速度を 3. 0〜4. 8g/minとした以外 は先ほどと同じに設定した。コーティング終了後、排気温度が 53°Cになるまで加温し 、次いで、ヒーターを切り給気温度が 36°Cになるまで冷却した。得られた顆粒をバット に薄く広げ、 80°Cのオーブン中で 60分間キュアリング (加熱成膜処理)し、徐放性フ イルムコーティング顆粒を得た。
得られたフィルムコーティング顆粒からのスルピリンの溶出速度を、第十四改正日 本薬局方、一般試験法「溶出試験法」の第 2法 (パドル法)に準じて測定した。パドノレ 回転数は lOOrpmとし、試験液は「溶出試験第 1液」を使用した。測定の結果、フィル ムコーティング顆粒からのスルピリンの溶出率は、 2時間: 37. 5%、4時間: 54. 1 %、 6時間: 63. 2%、 8時間: 69. 1 %、 10時間: 73. 1 %であった。
[0051] [比較例 5]
比較例 3と同様にして得た球形素顆粒に、実施例 6と同様にしてフィルムコーティン グを行い、徐放性フィルムコーティング顆粒を得た。フィルムコーティング顆粒からの スルピリンの溶出率は、 2時間: 41. 9%、 4時間: 60. 4%、 6時間: 70. 2%、 8時間: 76. 5%、 10時間: 81. 0%であった。
比較例 5のフィルムコーティング顆粒のスルピリンの溶出速度は、実施例 6のフィル ムコーティング顆粒のスルピリンの溶出速度と比較して、 1割程度大き力、つた力 これ は、用いた球形素顆粒の短径分布係数が小さいことによると考えられる。
産業上の利用可能性
[0052] 本発明の製造方法は、フィルムコーティングを施した医薬品顆粒製造の分野で好 適に利用できる。

Claims

請求の範囲
[I] 薬物を含有し、短径分布係数が 0. 65以上、平均短長径比が 0. 85以上、短長径 比分布係数が 0. 75以上、圧壊強度が lOMPa以上である球形素顆粒。
[2] 短径分布係数が 0. 65以上、 0. 80以下である請求項 1記載の球形素顆粒。
[3] 平均短長径比が 0. 85以上、 0. 90以下である請求項 1又は 2記載の球形素顆粒。
[4] 平均短長径比が 0. 90以上である請求項 1又は 2記載の球形素顆粒。
[5] 平均短長径比が 0. 95以上である請求項 4記載の球形素顆粒。
[6] 圧壊強度が 15MPa以上である請求項 1〜5いずれ力、 1項記載の球形素顆粒。
[7] 圧壊強度が 20MPa以上である請求項 6記載の球形素顆粒。
[8] 平均短径が 50〜1200 mである請求項 1〜7いずれか 1項記載の球形素顆粒。
[9] 前記薬物の含有量が 0. 01質量%以上である請求項 1記載の球形素顆粒。
[10] 以下の条件(1)〜(4)を満たす薬学的に不活性な球状核粒子と、
その周囲を被覆する、薬物と水溶性高分子化合物を含む薬物含有層と、 を有する、請求項;!〜 9いずれか 1項記載の球形素顆粒;
(1)結晶セルロースを 30質量%以上含有し、
(2)平均短径が 50〜; 1000 mであり、
(3)短径分布係数が 0. 60以上、平均短長径比が 0. 80以上、短長径比分布係数が 0. 70以上であり、
(4)圧壊強度が lOMPa以上である。
[I I] 球状核粒子の圧壊強度が 15MPa以上である請求項 10の球形素顆粒。
[12] 球状核粒子の圧壊強度が 20MPa以上である請求項 11の球形素顆粒。
[13] 球状核粒子の保水性が 0. 5g/cm3以上である請求項 10〜; 12いずれか 1項の球 形顆粒。
[14] フィルムコーティング顆粒製造用である請求項 1〜; 13いずれ力、 1項記載の球形素 顆粒。
[15] 請求項;!〜 13いずれか 1項記載の球形素顆粒と、その周囲を被覆するフィルムコ 一ティング層とを有するフィルムコーティング顆粒。
[16] フィルムコーティング顆粒製造のための請求項 1〜13いずれ力、 1項記載の球形素 顆粒の使用。
[17] 請求項 1〜; 13いずれ力、 1項記載の球形素顆粒にフィルムコーティングを施す、フィ ルムコーティング顆粒の製造方法。
[18] 流動層型フィルムコーティング装置を使用して、前記条件(1)〜(4)を満たす薬学 的に不活性な球状核粒子に薬物と水溶性高分子化合物を含む水溶液または水懸 濁液を噴霧し、該球状核粒子を薬物含有層で被覆する請求項 10記載の球形素顆 粒を製造する製造方法。
[19] 前記流動層型フィルムコーティング装置力 内部に案内管(ワースタ一力ラム)を有 する噴流層型であるか、または、底部に回転機構を備えた転動流動層型である請求 項 18記載の球形素顆粒の製造方法。
PCT/JP2007/064571 2006-07-26 2007-07-25 Spherical crude granule and method for production thereof WO2008013197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07791287.1A EP2050438B1 (en) 2006-07-26 2007-07-25 Spherical crude granule and method for production thereof
US12/309,629 US20090196934A1 (en) 2006-07-26 2007-07-25 Spherical elementary granule and method for production thereof
JP2008526791A JP5271081B2 (ja) 2006-07-26 2007-07-25 球形素顆粒およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-203415 2006-07-26
JP2006203415 2006-07-26

Publications (1)

Publication Number Publication Date
WO2008013197A1 true WO2008013197A1 (en) 2008-01-31

Family

ID=38981508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064571 WO2008013197A1 (en) 2006-07-26 2007-07-25 Spherical crude granule and method for production thereof

Country Status (5)

Country Link
US (1) US20090196934A1 (ja)
EP (1) EP2050438B1 (ja)
JP (1) JP5271081B2 (ja)
CN (1) CN101495097A (ja)
WO (1) WO2008013197A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135593A2 (de) * 2008-05-07 2009-11-12 Bayer Animal Health Gmbh Feste arzneimittelformulierung mit verzögerter freisetzung
JP2012025683A (ja) * 2010-07-21 2012-02-09 Ohara Yakuhin Kogyo Kk 苦味を有する生理活性物質含有粒子の製造方法
WO2021060304A1 (ja) * 2019-09-25 2021-04-01 ノーベルファーマ株式会社 不快な味がマスクされた顆粒剤及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542419C1 (ru) * 2014-01-20 2015-02-20 Общество С Ограниченной Ответственностью "Валента-Интеллект" Ноотропное средсто "пантокальцин" в жидкой форме
KR20190104590A (ko) * 2017-01-13 2019-09-10 닛뽄세이시가부시끼가이샤 미소구형립

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213201A (ja) * 1985-03-20 1986-09-22 Fuji Paudaru Kk 微結晶セルロ−ス球形顆粒及びその製造法
JPS63301816A (ja) 1987-01-29 1988-12-08 Takeda Chem Ind Ltd 有核顆粒およびその製造法
JPH07173050A (ja) 1990-04-18 1995-07-11 Asahi Chem Ind Co Ltd 球状核、球形顆粒およびその製造方法
JPH09165329A (ja) * 1995-10-12 1997-06-24 Asahi Chem Ind Co Ltd フィルムコーティング顆粒およびその製造方法
JPH10139659A (ja) 1996-09-10 1998-05-26 Freunt Ind Co Ltd 球形粒子群、その製造方法及びそれを用いた球形粒子製剤
JP2000001429A (ja) 1998-04-17 2000-01-07 Taisho Pharmaceut Co Ltd マルチプルユニットタイプ徐放性錠剤
JP2000128777A (ja) * 1998-10-20 2000-05-09 Asahi Chem Ind Co Ltd フィルムコーティング顆粒
WO2002036168A1 (fr) * 2000-11-06 2002-05-10 Asahi Kasei Kabushiki Kaisha Particules cellulosiques destinees a des preparations pharmaceutiques

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026560A (en) * 1987-01-29 1991-06-25 Takeda Chemical Industries, Ltd. Spherical granules having core and their production
EP0452862B1 (en) * 1990-04-18 1995-07-19 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
EP1072257A1 (en) * 1998-04-17 2001-01-31 Taisho Pharmaceutical Co., Ltd Multiple-unit sustained release tablets
PT1121103E (pt) * 1998-05-18 2007-02-28 Takeda Pharmaceutical Comprimidos de desintegração oral compreendendo um benzimidazole
US5997905A (en) * 1998-09-04 1999-12-07 Mcneil-Ppc Preparation of pharmaceutically active particles
ES2260345T3 (es) * 2001-03-07 2006-11-01 Dainippon Sumitomo Pharma Co., Ltd. Metodo para fabricar granulos de farmacos, los granulos de farmaco y preparacion farmaceutica que contiene los granulos de farmaco.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213201A (ja) * 1985-03-20 1986-09-22 Fuji Paudaru Kk 微結晶セルロ−ス球形顆粒及びその製造法
JPS63301816A (ja) 1987-01-29 1988-12-08 Takeda Chem Ind Ltd 有核顆粒およびその製造法
JPH07173050A (ja) 1990-04-18 1995-07-11 Asahi Chem Ind Co Ltd 球状核、球形顆粒およびその製造方法
JPH09165329A (ja) * 1995-10-12 1997-06-24 Asahi Chem Ind Co Ltd フィルムコーティング顆粒およびその製造方法
JPH10139659A (ja) 1996-09-10 1998-05-26 Freunt Ind Co Ltd 球形粒子群、その製造方法及びそれを用いた球形粒子製剤
JP2000001429A (ja) 1998-04-17 2000-01-07 Taisho Pharmaceut Co Ltd マルチプルユニットタイプ徐放性錠剤
JP2000128777A (ja) * 1998-10-20 2000-05-09 Asahi Chem Ind Co Ltd フィルムコーティング顆粒
WO2002036168A1 (fr) * 2000-11-06 2002-05-10 Asahi Kasei Kabushiki Kaisha Particules cellulosiques destinees a des preparations pharmaceutiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2050438A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135593A2 (de) * 2008-05-07 2009-11-12 Bayer Animal Health Gmbh Feste arzneimittelformulierung mit verzögerter freisetzung
WO2009135593A3 (de) * 2008-05-07 2011-01-06 Bayer Animal Health Gmbh Feste arzneimittelformulierung mit verzögerter freisetzung
JP2011519878A (ja) * 2008-05-07 2011-07-14 バイエル・アニマル・ヘルス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 遅延放出の固体医薬製剤
AU2009243759B2 (en) * 2008-05-07 2015-04-16 Bayer Animal Health Gmbh Solid pharmaceutical formulation with delayed release
JP2012025683A (ja) * 2010-07-21 2012-02-09 Ohara Yakuhin Kogyo Kk 苦味を有する生理活性物質含有粒子の製造方法
WO2021060304A1 (ja) * 2019-09-25 2021-04-01 ノーベルファーマ株式会社 不快な味がマスクされた顆粒剤及びその製造方法
JP6905781B1 (ja) * 2019-09-25 2021-07-21 ノーベルファーマ株式会社 不快な味がマスクされた顆粒剤及びその製造方法

Also Published As

Publication number Publication date
CN101495097A (zh) 2009-07-29
JP5271081B2 (ja) 2013-08-21
EP2050438A4 (en) 2013-07-31
US20090196934A1 (en) 2009-08-06
EP2050438B1 (en) 2016-10-19
EP2050438A1 (en) 2009-04-22
JPWO2008013197A1 (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
KR101245627B1 (ko) 산제의 맛 차단
JP4062436B2 (ja) セルロース系製剤用粒子
JP5461179B2 (ja) セルロース系微小核粒子及びその製造方法
WO2000024423A1 (fr) Particules a liberation prolongee
JP2011517654A (ja) 濫用抵抗性製剤
WO1996019200A1 (fr) Preparation granulaire a liberation prolongee et procede de production
JP5956475B2 (ja) 苦味マスク顆粒含有口腔内崩壊錠
JP2002526437A (ja) アジテーション非依存性薬学的マルチプル−ユニット持効性製剤およびその製法
JP3415835B2 (ja) 口腔内速崩壊錠およびその製造法
EP2886109B1 (en) Medicament-containing hollow particle
WO2014181390A1 (ja) 機能性高分子皮膜で被覆された高含量薬物粒子およびそれを含む錠剤ならびにそれらの製造方法
JP3985907B2 (ja) フィルムコーティング粒剤の製造方法
WO2008013197A1 (en) Spherical crude granule and method for production thereof
JPH09165329A (ja) フィルムコーティング顆粒およびその製造方法
JP5160423B2 (ja) 水易溶性薬物含有球状素顆粒の製造方法
JP3221891B2 (ja) 咀嚼可能な製薬錠剤調製のための回転造粒及び味覚遮蔽被覆加工
CN106619520A (zh) 一种右兰索拉唑钠的干混悬剂及其制备方法
JP2001522794A (ja) カルベジロールの新規経口剤形
JP5392892B2 (ja) リン酸水素カルシウムからなる球状粒子
JP2003055199A (ja) 徐放性マイクロペレット
WO2012098499A1 (en) Solid molecular dispersion
JP5242576B2 (ja) 結晶セルロース及び顆粒含有錠の製造方法
JP4711478B2 (ja) 味がマスクされた薬物
JP2000128776A (ja) フィルムコーティング顆粒およびその製造方法
JP2012087073A (ja) コーティング粒子の製造方法、及び該製造方法で製造されたコーティング粒子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780028338.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526791

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12309629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 489/KOLNP/2009

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2007791287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007791287

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU