WO2008007504A1 - Composition de verre pour l'étanchéité et matériau étanche - Google Patents

Composition de verre pour l'étanchéité et matériau étanche Download PDF

Info

Publication number
WO2008007504A1
WO2008007504A1 PCT/JP2007/061265 JP2007061265W WO2008007504A1 WO 2008007504 A1 WO2008007504 A1 WO 2008007504A1 JP 2007061265 W JP2007061265 W JP 2007061265W WO 2008007504 A1 WO2008007504 A1 WO 2008007504A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
glass
glass composition
sealing material
atmosphere
Prior art date
Application number
PCT/JP2007/061265
Other languages
English (en)
French (fr)
Inventor
Takemi Kikutani
Junichi Iseki
Original Assignee
Nippon Electric Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007127853A external-priority patent/JP5703535B2/ja
Application filed by Nippon Electric Glass Co., Ltd. filed Critical Nippon Electric Glass Co., Ltd.
Priority to CN2007800256622A priority Critical patent/CN101484396B/zh
Publication of WO2008007504A1 publication Critical patent/WO2008007504A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2217/00Gas-filled discharge tubes
    • H01J2217/38Cold-cathode tubes
    • H01J2217/49Display panels, e.g. not making use of alternating current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to a glass composition for sealing and a sealing material using the same, a plasma display panel (hereinafter referred to as PDP), a field emission display (hereinafter referred to as FED), a fluorescent display tube.
  • PDP plasma display panel
  • FED field emission display
  • VFD fluorescent display tube
  • sealing of flat display devices sealing of optical components such as lens caps, LD caps, etc., electronic components such as IC packages, piezoelectric resonators such as crystal resonators and surface acoustic wave devices
  • the present invention relates to a sealing glass composition and a sealing material suitable for sealing (including electronic component storage containers).
  • glass has been used as a sealing material for flat display devices and the like.
  • Glass has superior chemical durability and heat resistance compared to resin adhesives, and is suitable for ensuring airtightness of flat display devices.
  • the sealing material used for the PDP undergoes the following heat treatment process.
  • primary firing also referred to as glaze process or temporary firing process
  • the primary firing is performed under a temperature condition in which the resin contained in the vehicle is completely pyrolyzed.
  • secondary firing of the sealing material also referred to as a sealing process or a sealing process
  • the required amount of rare gas is injected and the exhaust pipe is sealed. In this way, the PDP is produced.
  • FED is a display device in which the inside of the device is kept in a high vacuum, and a phosphor is excited by an electron beam generated by applying an electric field in the high vacuum to emit visible light. is there . Even in FED, there is a process of sealing the exhaust pipe after exhausting the inside of the apparatus to a high vacuum through the exhaust pipe in the final manufacturing process after primary firing and secondary firing.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-2229738
  • Patent Document 2 JP-A-7-69672
  • Patent Document 3 Japanese Patent Laid-Open No. 9-227154
  • tin phosphate glass described in Patent Documents 2 and 3 contains 25 mol% or more of PO.
  • the Po content is the main factor that determines the water resistance of the glass.
  • the water resistance can be improved, since the glass constituents are reduced, the thermal stability of the glass tends to be impaired, especially when firing in an air atmosphere, and it should be used as a sealing material. It becomes difficult.
  • the PDP is manufactured through a primary firing process, a secondary firing process, and a vacuum exhaust process.
  • the primary firing process and the secondary firing process are performed in the atmosphere, and the vacuum exhaust process is performed.
  • the process is performed in a high vacuum reduced pressure atmosphere.
  • the evacuation process is a process that requires a high temperature and a long period of time (usually 5 hours or more) to make the inside of the apparatus into a high vacuum, which is a cause of lowering the production efficiency of PDP and the like. Under these circumstances, various attempts have been made to shorten the evacuation process. However, an effective improvement measure has yet to be found.
  • FED also has a process of keeping the inside of the apparatus in a high vacuum, if it can be sealed under reduced pressure as in the case of PDP, the manufacturing efficiency can be dramatically increased and the product cost can be reduced. Can be cheap.
  • FED is required to be sealed at a low temperature of 490 ° C or lower because the heat resistance of phosphors, devices, etc. is poor compared to PDP.
  • the present invention improves the water resistance of tin phosphate glass and at the same time improves the production efficiency of PDP and the like, and can be well sealed in a low oxygen atmosphere, particularly under reduced pressure, and has a low temperature of 490 ° C or lower. It is a technical problem to obtain a sealing glass composition and a sealing material which can be sealed with a good thermal stability.
  • SnO in terms of mol% as follows: SnO 30-80%, PO 10-25% (however, 25% not included), BO 0-20% ZnO 0-20%,
  • the present invention proposes that the present invention can solve the above problems by regulating the glass composition to 0 to 20%. That is, first, book
  • the glass composition for sealing of the invention is a glass composition, expressed in mol% in terms of the following oxides.
  • the “low oxygen atmosphere” in the present invention means an atmosphere having an oxygen concentration of 15% by volume or less (preferably 10% by volume or less, more preferably 5% by volume or less, and further preferably 1% by volume or less).
  • the residual oxygen concentration in the atmosphere can be measured with, for example, LC-750 manufactured by Toray Engineering Co., Ltd.
  • the glass composition for sealing of the present invention can obtain desired characteristics by strictly regulating the glass composition range as described above. Specifically, by regulating the SnO content within a predetermined range, low-temperature sealing properties can be secured, and even when sealed during decompression, the airtight reliability of the flat panel display device is ensured. Can be maintained. P O
  • the water resistance of the glass can be remarkably improved. If the P 2 O content is restricted to less than 25 mol%, the glass is thermally stable.
  • the reliability of the flat display device can be ensured. Therefore, if the glass composition for sealing of the present invention is used as a sealing material, sealing can be performed under reduced pressure, so that the manufacturing cost of a flat display device such as a PDP can be reduced.
  • the glass composition for sealing of the present invention can be satisfactorily sealed in a low oxygen atmosphere (depressurized atmosphere, neutral atmosphere, reducing atmosphere, etc.).
  • a low oxygen atmosphere depressurized atmosphere, neutral atmosphere, reducing atmosphere, etc.
  • the reason is as follows.
  • Sn becomes a stable glass forming component when the valence is divalent.
  • the valence of Sn becomes tetravalent, the glass tends to devitrify and become thermally unstable. Therefore, in a low-oxygen atmosphere, tin phosphate glass is less susceptible to devitrification because SnO in the glass composition is oxidized during firing and the reaction to become SnO hardly proceeds.
  • the sealing of the present invention The glass composition for low-oxygen has a low oxygen content because the PO content is regulated to less than 25 mol%.
  • a sealing glass composition of the present invention in addition to the above glass composition, in mole 0/0 in terms of oxide, MoO, Nb O, TiO, ZrO, CuO, MnO, MgO , CaO, S
  • the glass composition for sealing of the present invention is represented by MoO 0-5%, NbO 0-15%, TiO 0- 15%, ZrO
  • R 3 ⁇ 4Mg refers to at least one of Ca ⁇ Sr ⁇ Ba) 0-15%.
  • the sealing glass composition of the present invention has a glass composition, in molar 0/0 in terms of oxide, SnO 30 ⁇ 80%, PO 10 ⁇ 25% ( however, 25% Not included), BO
  • R O (R is at least l of Li, Na, K, Cs) 0-2
  • R indicates at least one of Mg ⁇ Ca ⁇ Sr ⁇ Ba) 0-15%.
  • the sealing glass composition of the present invention is characterized by containing F in an amount of 0 to 10% in terms of the following oxide% in addition to the above glass composition.
  • the sealing material of the present invention is characterized in that it contains 50 to 100% by volume of a glass powder comprising the above glass composition for sealing and 0 to 50% by volume of a refractory filler powder. It is possible.
  • the sealing material of the present invention is characterized in that when fired in a reduced pressure atmosphere, the surface of the fired body is bright and devitrification is not observed.
  • the suitability is judged by the following procedure. First, dry seal the sealing material to 2cm ⁇ to make a button-shaped sample. Next, after placing the prepared sample on a high strain point glass substrate, 1. OX IOTorrd. 33kPa) under reduced pressure (soft spot of the sealing material + 30 °) Bake for 30 minutes at the temperature of C).
  • the heating / cooling speed is 5 ° CZ
  • Samples are loaded into and removed from the reactor at room temperature.
  • the gloss is evaluated by measuring the average surface roughness Ra of the prepared button-shaped sample surface.
  • the average surface roughness Ra is measured by a method based on JIS-R 3502. When the average surface roughness Ra of the button surface is 100 ⁇ m or less, it is evaluated as “shiny”. Further, the sample after firing was observed, and crystals were deposited on the surface of the button-shaped sample produced, and the product was evaluated as “no devitrification”. Devitrification is evaluated by observing crystals on the button surface using a stereomicroscope.
  • the sealing material of the present invention is characterized in that the surface of the fired body is glossy and devitrification is not observed when fired in a neutral or reducing atmosphere.
  • the suitability is determined by the following procedure. To do. First, dry-press the sealing material to 2cm ⁇ to make a button-shaped sample. Next, after placing the prepared sample on a high strain point glass substrate, using an atmosphere firing furnace, N
  • the temperature raising and lowering speed is 5 ° CZ, and the sample is put into and out of the firing furnace at room temperature.
  • the gloss is evaluated by measuring the average surface roughness Ra of the prepared button-shaped sample surface.
  • the average surface roughness Ra of the button surface is 100 m or less, it is evaluated as “shiny”.
  • the average surface roughness Ra is measured by a method based on JIS-R3502.
  • the fired sample is observed, and if no crystal is deposited on the surface of the button-shaped sample produced, it is evaluated that “devitrification is not observed”. Devitrification is evaluated by observing crystals on the button surface using a stereomicroscope.
  • the refractory filler contains tin oxide, niobium oxide, zirconium phosphate, cordierite, Na Nb Zr (PO 4), KZr (PO 4), Ca N
  • the sealing material of the present invention includes PDP, FED, VFD, CRT (Cathode Ray Tube
  • the sealing tablet of the present invention is a sealing tab in which a sealing material is sintered into a predetermined shape.
  • the sealing material is characterized by the aforementioned sealing material.
  • the sealing paste of the present invention is characterized in that the sealing material is the aforementioned sealing material in the sealing paste in which the sealing material is dispersed in a vehicle.
  • the “vehicle” in the present invention is a constituent material of a sealing paste containing a solvent, a resin binder, and the like, and the solvent is an essential component, but the resin binder is an optional component.
  • the sealing paste of the present invention comprises vehicle toluene, N, N, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, dimethyl carbonate, butyl carbitol acetate, isoamyl acetate, propylene.
  • the sealing paste of the present invention is characterized in that it contains one or more selected from the group consisting of vehicle nitrocellulose, polyethylene glycol derivatives, and polyethylene carbonate.
  • the PDP or FED manufacturing method of the present invention is a PDP or FED manufacturing method including a sealing step using the sealing material, and is a whole or a part of the sealing step. Is characterized in that it is carried out in a reduced pressure atmosphere.
  • the “reduced pressure atmosphere” as used in the present invention refers to the case where the atmospheric pressure is 1. O X IOTorrd.
  • the method for manufacturing an optical component or electronic component according to the present invention is a method for manufacturing an optical component or electronic component having a sealing step using the above-mentioned sealing material. All or part of the process is characterized by being carried out in a neutral or reducing atmosphere.
  • neutral atmosphere refers to a neutral gas atmosphere such as an Ar atmosphere or an N atmosphere.
  • reducing atmosphere refers to an atmosphere in which 11% by volume of 11 gas is mixed in an N atmosphere.
  • the glass composition for sealing of the present invention has significantly improved water resistance, and at the same time, can be sealed well even under reduced pressure, thus greatly improving the production efficiency of flat display devices such as PDPs. Can do. That is, in the case of a flat display device such as a PDP, if it can be sealed in a reduced pressure, it is not necessary to evacuate the inside of the device for a long time of 5 hours or more through the exhaust pipe. The manufacturing efficiency of the display device can be dramatically increased. Furthermore, the sealing glass composition of the present invention has an advantage of good thermal stability even though it can be sealed at a low temperature of 490 ° C. or lower. Generally, low temperature of glass and thermal stability of glass are characteristics that are difficult to achieve at the same time, but the glass composition for sealing of the present invention can achieve both at a high level.
  • FIG. 1 is an explanatory view showing a configuration of an optical cap component.
  • SnO is an essential component that lowers the melting point of glass, and its content is 30 to 80%, preferably 40 to 70%, more preferably 50 to 66%.
  • SnO is 40% or more, the glass has excellent fluidity and high airtightness can be secured. If SnO is less than 30%, the viscosity of the glass becomes too high, and the sealing temperature may be increased. If SnO is more than 80%, vitrification tends to be difficult.
  • tin phosphate glass if SnO exceeds 70%, the ability of the glass to be easily altered when fired in an air atmosphere, and in a low oxygen atmosphere, even if SnO is in the range of 70-80%, Glass is difficult to change during firing.
  • PO is a glass-forming oxide and is an essential component. Its content is 10-25% ( ⁇
  • the thermal stability of the glass will be poor.
  • the glass-forming oxide Po is low.
  • the glass composition for sealing of the present invention regulates the glass composition within a predetermined range, even if PO is less than 25%,
  • B 2 O is a glass-forming oxide and is a component that stabilizes the glass. Its content
  • the glass when performing low-temperature sealing, can be cooled at a low temperature if the content of BO is 1 to 5%.
  • the stability will be poor, but if the firing atmosphere is a low oxygen atmosphere, the content of B 2 O will be low.
  • ZnO is an intermediate oxide and a component that stabilizes the glass.
  • the content is 0 to 20%, preferably 0 to 15%, more preferably 0 to 10%, still more preferably 3 to 10%.
  • the thermal stability of the glass can be improved, and devitrification hardly occurs on the glass surface during sealing.
  • ZnO is more than 20%, the balance of the glass composition is lacking, and conversely, the thermal stability of the glass tends to decrease.
  • SiO is a glass-forming oxide and is a component that stabilizes the glass. Its content
  • a small amount of SiO added for example about 0.5%
  • the thermal stability of the glass is improved, and the glass becomes difficult to devitrify during sealing. If SiO is 5% or less, the soft temperature of the glass will not rise so much, and low-temperature sealing can be performed.
  • Al O is an intermediate oxide, a component that stabilizes the glass, and heat of the glass.
  • the soft temperature of the glass rises, making it difficult to seal at low temperatures and impairing the fluidity of the glass.
  • WO is not an essential component, it has an effect of improving the adhesive force with an object to be sealed.
  • 3 Content is 0 to 20%, preferably 0 to 15%, more preferably 1.2 to 15%, still more preferably 3 to 10%.
  • WO should be 0.1%, especially 3% or less.
  • R 2 O is not an essential component, but at least one of R 2 O is glass.
  • the adhesive strength with a glass substrate or the like can be increased. Its content is
  • R O when considering the thermal stability of the glass, such as surface devitrification at the time of sealing and the fluidity of the glass, R O
  • the total amount of 2 is preferably 10% or less. If the total amount of R 2 O exceeds 20%, the glass tends to devitrify during sealing. In addition,
  • Li O has the highest ability to improve adhesion to glass substrates, etc.
  • the Li O content is 3% or less
  • MoO, NbO, TiO, ZrO, CuO, MnO, MgO, CaO, SrO, BaO are glass
  • MoO is not an essential component, but if it is added in a small amount to the glass composition, it will wet with the material to be sealed.
  • Nb 2 O, TiO and ZrO are components that improve the stability of the glass.
  • the content of these components is 0 to 15%, preferably 0 to 10%. If these components exceed 15%, the glass will melt and the glass tends to become unstable.
  • the CuO content is preferably 0 to 10%, particularly preferably 0 to 5%. If CuO exceeds 10%, the glass tends to become thermally unstable.
  • the MnO content is preferably 0 to 15%, particularly preferably 0 to 8%. If MnO exceeds 15%, the glass tends to become thermally unstable. In addition, it is possible to use both MnO and MnO as the raw material for introducing MnO. When MnO is used as the raw material for introduction, the thermal stability of the glass is improved. preferable.
  • R'O is an alkaline earth oxide, and is a network-modified acid oxide. These components are not essential components, but their total content is preferably 0 to 15%, particularly preferably 0 to 5%. If R'O exceeds 15%, the glass tends to become thermally unstable. In particular, among R'O, MgO and BaO are preferred because they have a high effect of low temperature in addition to stabilizing the glass.
  • O is a component that improves the weather resistance of glass, and its content is preferably 0 to 10%.
  • the In O force is more than 10%.
  • the lanthanoid acid oxide is a network-modified oxide, and is not an essential component in the present invention! / Reinforcement
  • a lanthanoid acid oxide is contained in a glass component in a total amount of 0.1% or more. By doing so, the weather resistance of the glass is improved. On the other hand, if the lanthanoid oxide exceeds 15%, the sealing temperature tends to increase. Therefore, considering the balance between weather resistance and sealing temperature, the content of the lanthanoid compound is 0 to 15% in total, preferably 0.5 to 15%, more preferably 1 to 15%.
  • the lanthanoid oxide La 2 O, CeO, Nd 2 O and the like can be used.
  • the addition of other rare earth oxides such as Yo
  • the weather resistance of the glass can be further improved.
  • the rare earth oxide content excluding the lanthanoid oxide is preferably 0 to 5%.
  • Ta 2 O has an effect of improving weather resistance, and its content is preferably 0 to 10%.
  • TeO is a component that has an effect of lowering the soft saddle point, and its content is preferably 0 to 15%.
  • F may adversely affect the fluorescence characteristics of phosphors included in flat display devices and the like.
  • the content is preferably 0 to 10%, more preferably 0 to 5%, and even more preferably 0 to 3%. If F exceeds 10%, there is a high possibility that the fluorescent properties of the phosphor will be adversely affected.
  • the sealing glass composition of the present invention does not substantially contain PbO.
  • substantially does not contain PbO means that the PbO content contained in the glass composition is 100 Oppm or less. If the glass composition for sealing does not contain PbO, it can accurately meet recent environmental demands.
  • the glass composition for sealing of the present invention may further contain up to 10% of other components in addition to the above components as long as the effects of the present invention are not impaired.
  • composition range it is naturally possible to select a preferred composition range by arbitrarily combining the preferred and range of each component.
  • a more preferable composition range it is expressed in mol% in terms of the following oxides: SnO 30 to 80%, PO 10-25% (however, 25% is not included), BO 0.1 to 10% ( However, 10%
  • R 0 (R indicates at least one of Li ⁇ Na, K, Cs) 0-20%, MoO 0-5%, Nb
  • composition range of the glass composition is regulated as described above, the water resistance of the glass can be greatly improved, and the thermal stability of the glass can be greatly improved.
  • the glass composition is more suitable for sealing in a low oxygen atmosphere than in an atmospheric oxygen atmosphere. However, since the thermal stability of glass is greatly improved, it can be sealed even in an air atmosphere.
  • various raw materials such as oxides, hydroxides, nitrates, and phosphates can be used as glass raw materials.
  • the glass melt during melting can be blown out and foaming of the glass during firing can be suppressed, which is preferable.
  • a sealing glass composition having the above composition has a glass transition point of about 250 to 400 ° C, a softening point of about 360 to 440 ° C, and a temperature range of about 400 to 600 ° C. Good fluidity. In addition, it has a coefficient of thermal expansion of about 80 to 150 X 10 _7 Z ° C in the temperature range of 30 to 250 ° C.
  • the glass composition for sealing of the present invention having such properties can be used alone as a sealing material for a material having a suitable thermal expansion coefficient.
  • the glass composition for sealing of the present invention can be processed into a powder form by a ball mill, a jet mill or the like and used as a sealing material. Moreover, if the glass composition for sealing is made of glass powder, it becomes easy to adjust the mechanical strength and thermal expansion coefficient by mixing with a refractory filler powder, etc., and is mixed with a vehicle etc. It becomes easy to use as a material.
  • the coefficient of thermal expansion does not fit! Encapsulate materials such as alumina (70 X 10 "V ° O, high strain point glass (85 X 10" V ° O or soda flat glass (90 X 10 "V ° O)) In the case of wearing, it can be used appropriately by adding a fireproof filler powder, which is a low expansion material, and combining it.
  • the thermal expansion coefficient of the composite (composite) is 10 ⁇ It is important to design it as low as 30 X 10 _7 Z ° C.
  • the sealing material of the present invention preferably contains 50 to 50% by volume of glass powder and 0 to 50% by volume of refractory filler powder, in particular, FED, PDP, VFD, In the case of CRT sealing, it is preferable to contain 60 to 80% by volume of glass powder and 20 to 40% by volume of refractory filler powder.
  • the thermal expansion coefficient is about 60 to 90 ⁇ 10 _7 Z ° C.
  • the amount of the refractory filler powder is more than 50 volume%, the ratio of the glass powder becomes relatively low, and it becomes difficult to obtain the desired fluidity.
  • the particle size of the glass powder and refractory filler powder is determined by the average particle size D using a laser diffraction particle size distribution analyzer (SALD-2000J, manufactured by Shimadzu Corporation).
  • the average particle size D is less than 1 ⁇ O / z m
  • the fluidity of the material is obstructed and the airtight reliability of the flat display device or the like is obtained.
  • the glass composition for sealing may be formed into a predetermined shape, for example, a ball shape, a rod shape or a plate shape, and used as a sealing material.
  • the sealing material of the present invention When the sealing material of the present invention is fired in a reduced-pressure atmosphere, it is preferable that the surface of the fired body is glossy and devitrification is not observed.
  • the sealing material When sealing in a reduced pressure atmosphere, the sealing material is more easily foamed than in the atmosphere, but the sealing material of the present invention regulates the glass composition of the glass powder to a predetermined range. Therefore, it can be fired well in this atmosphere. As a result, even if the PDP secondary firing process and the vacuum exhaust process are performed simultaneously, the sealing layer is not devitrified, and foaming that impairs the hermeticity of the PDP can be suppressed, improving the production efficiency of the PDP, This can contribute to cost reduction.
  • the atmospheric pressure is preferably 1. OX 10 _1 Torr or less (13.3 Pa or less) as a reduced pressure atmosphere, and 1. OX 10 _3 Torr or less (0.133 Pa or less) is more preferable 1.0 X 10 _5 Torr or less (0. 00133Pa hereinafter) is more preferable.
  • the sealing material of the present invention is fired in a neutral atmosphere or a reducing atmosphere, it is preferable that the surface of the fired body is glossy and devitrification is not observed.
  • the sealing glass composition of the present invention does not impair the fluidity and wettability even when sealed in a reducing atmosphere, but rather when sealed in a reducing atmosphere, the atmosphere contains a certain amount of oxygen. Fluidity and wettability are improved as compared to sealing in an atmosphere. This is because the tin contained as the main component of the glass composition is more divalent (SnO) than tetravalent (SnO).
  • the thermal stability of the glass is maintained. Furthermore, since the sealing material of the present invention regulates the glass composition of the glass powder within a predetermined range, the glass has good thermal stability and low-temperature sealing properties. Can be fired well.
  • refractory filler powder examples thereof include cordierite, zircon (zirconium silicate), tin oxide, niobium oxide, zirconium phosphate, willemite, and mullite. Also, use a fireproof filler with the basic structure of [AB (MO)].
  • elements such as Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, and Mn are suitable for A.
  • B is compatible with elements such as Zr, Ti, Sn, Nb, Al, Sc, and Y.
  • M is compatible with elements such as P, Si, W, and Mo.
  • a refractory white pigment e.g. TiO
  • a refractory black pigment e.g.
  • Fe-Mn, Fe-Co-Cr, and Fe-Mn-Al pigments can be added.
  • the sealing material of the present invention does not substantially contain PbO. If the sealing material does not contain PbO, it can accurately meet recent environmental requirements.
  • the object to be sealed is a metal (for example, stainless steel, Kovar, etc.), that is, It is preferably used for metal sealing.
  • the sealing material of the present invention can be satisfactorily sealed without oxidizing the metal in the sealing step because it can be used favorably in a low oxygen atmosphere.
  • the sealing material of the present invention can be processed into a sealing tablet sintered in a predetermined shape and used.
  • a sealing tablet With a sealing tablet, it is possible to accurately seal desired parts such as optical components, and to reduce the number of manufacturing processes that do not require the application of sealing paste with a dispenser or screen printer. This can contribute to lower product costs.
  • Sealed tablets are manufactured through multiple independent thermal processes as follows. First, a solvent resin binder is added to the glass powder to form a slurry. Then, this slurry is put into a granulator such as a spray dryer to produce glass powder granules. At this time, the glass powder granules are heat-treated at a temperature at which the solvent volatilizes (about 100 to 200 ° C.).
  • the produced glass powder granules are put into a mold designed to have a predetermined size and, for example, dry press-molded into a ring shape to produce a pressed body.
  • the resin binder remaining in the pressed body is decomposed and volatilized in a baking furnace such as a belt furnace and sintered at a temperature of about the soft point of the glass powder to produce a sealed tablet.
  • the firing in the firing furnace may be performed a plurality of times. When the firing is performed a plurality of times, the sintering strength of the glass tablet is improved, and the glass tablet can be prevented from being broken or broken.
  • the shape of the tablet is not particularly limited. For example, ring shapes, plate shapes, columnar shapes, frame shapes, tubular shapes, and the like can be used.
  • the below-mentioned thing can be used for a solvent and a resin binder.
  • the sealing material of the present invention is preferably mixed with a vehicle and used as a sealing paste. If the sealing material is processed into a sealing paste, a sealing pattern can be formed with high accuracy by a coating machine such as a dispenser or a screen printer.
  • a vehicle is a material containing components such as a solvent, a resin binder, a surfactant, a pigment, a thickener, and a plasticizer.
  • the glass powder according to the present invention is a tin phosphate glass mainly containing SnO.
  • tin phosphate glass reacts with the resin binder contained in the vehicle during firing due to its low melting point. Specifically, SnO is oxidized and becomes SnO. ,Liquidity
  • the vehicle according to the present invention is a solvent that volatilizes at a low temperature, a resin fat resin.
  • a binder it is highly necessary to use a solvent and a resin binder that do not alter the tin phosphate glass.
  • the solvent is preferably a solvent that does not denature the tin phosphate glass having a low boiling point and a small amount of residue after firing. That is, it is preferable to use a solvent having a boiling point of 300 ° C. or less.
  • a solvent having a boiling point of 300 ° C. or less Specifically, toluene, N, N, -dimethylformamide (DMF), 1,3 dimethyl-2 imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, propylene carbonate, N-methyl 2-Pyrrolidoneacetonitrile, dimethyl sulfoxide, acetone, methyl ethyl ketone and the like can be preferably used.
  • a higher alcohol as the solvent.
  • Higher alcohols can be used as sealing pastes without adding a resin binder to the vehicle because the solvent itself has viscosity.
  • the vehicle does not contain a resin binder, it is possible to suppress the situation where SnO is oxidized and SnO is formed, and the glass is denatured during sealing.
  • Isoeicosyl alcohol can be used.
  • an appropriate viscosity is secured and it is immediately preferred.
  • pentanediol and its derivatives can also be used as a solvent.
  • jetylpentanediol (C 3 H 2 O 3) has excellent viscosity characteristics.
  • the resin binder in addition to a low decomposition temperature, a resin that does not denature the tin phosphate glass with few residues after firing is preferable.
  • Nitrocellulose, polyethylene glycol derivatives, and polyethylene carbonate are suitable as resin binders because they do not alter the tin phosphate glass, which has low decomposition temperature and little residue after firing. Excellent degradability and viscosity characteristics.
  • dimethyl carbonate, propylene carbonate, and N-methyl-2-pyrrolidone are preferable because they do not dry in a short time and the coating workability is excellent in leveling.
  • polyethylene carbonate When polyethylene carbonate is used by dissolving it in DMF, it must be dissolved at a higher concentration than the polyethylene glycol derivative, and the optimum concentration is 10 to 30% by weight.
  • the optimal concentration when dissolved in dimethyl carbonate is 5 to 10 weight 0/0.
  • propylene carbonate or N-methyl-2-pyrrolidone is used, the content is 10 to 30% by weight.
  • Polyethylene glycol derivatives are HOCH CH 0 ⁇ (CH CH O) NCO [X] —CO
  • Polyethylene render derivatives having the above skeleton structure exhibit excellent viscosity characteristics in a small amount and have low-temperature decomposability characteristics.
  • polyethylene glycol derivatives having a molecular weight of 100,000 to 500,000 have good low-temperature decomposability.
  • polyethylene glycol derivative strength is suitable because of its low cost and availability.
  • Polyethylene glycol derivatives dissolve well in N, N'-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI) and the like. These solvents are preferable because they do not dry in a short time at room temperature.
  • DMF N'-dimethylformamide
  • DMI 1,3-dimethyl-2-imidazolidinone
  • the optimum concentration is 0.5 to 5% by weight. Note that the use of DMI rather than DMF is suitable for cases where volatility is kept low and comparative work time is increased.
  • Nitrocellulose has low-temperature decomposability and can be mixed with isoamyl acetate and used as a vehicle.
  • the vehicle and the sealing material can be kneaded using a kneader such as a three-roll mill.
  • the glass composition for sealing of the present invention can also be used as a binder for conductive powder.
  • the glass powder comprising the glass composition for sealing of the present invention 10 to 60% by weight And a conductive material containing 40 to 90% by weight of metal powder and 0 to 20% by weight of refractory filler powder. This is because if the amount of the metal powder is more than 90% by weight, the ratio of the glass powder becomes relatively low and it becomes difficult to obtain the required fluidity, and if it is less than 40% by weight, the conductivity cannot be secured. Also, if the amount of the refractory filler powder is more than 20% by weight, the ratio of the glass powder becomes relatively low, and the necessary sealing properties can be obtained.
  • examples of the metal powder include Ag, Pd, Al, Ni, Cu, Au, and a mixture thereof.
  • the refractory filler powder the same refractory filler as described above can be used.
  • a refractory white pigment eg TiO
  • a refractory black pigment e.g., TiO
  • the conductive paste thus obtained can be formed into a conductive pattern by baking in a vacuum at 400 to 900 ° C. for about 5 minutes to 1 hour.
  • a method for producing a PDP or FED of the present invention is a method for producing a PDP or FED having a sealing step using the above-mentioned sealing material, wherein a part or all of the sealing step is a reduced-pressure atmosphere. It is executed with care.
  • the sealing process is performed in a reduced pressure atmosphere, as described above, the secondary firing process and the vacuum exhaust process can be performed simultaneously, which contributes to a low product cost.
  • the sealing material of the present invention can be sealed at a low temperature and has good thermal stability, troubles caused by the properties of the sealing material can also be suppressed.
  • VFD and CRT have the same or similar manufacturing processes as PDP and FED, and have the benefit of diverting the above manufacturing method.
  • the optical component or electronic component manufacturing method of the present invention is a method for manufacturing an optical component or an electronic component having a sealing process using the above-described sealing material, wherein all or part of the sealing step is performed. It is carried out in a neutral or reducing atmosphere. If the sealing process is a neutral atmosphere or a reducing atmosphere, the metal members used in the optical component are not oxidized, and the elements such as the electronic component are not easily deteriorated. As a result, the manufacturing cost of the optical component is reduced. The reliability of electronic parts can be improved. In addition to being capable of being sealed at low temperatures, the sealing material of the present invention also has good thermal stability, so that it is due to the thermal characteristics of the sealing material. Rubble can be suppressed.
  • An optical cap component 1 shown in FIG. 1 is a metal having a cylindrical side wall portion 5 and an end wall portion 6 provided at the tip of the side wall portion 5 and having a lens holding hole at the center thereof. It is composed of a shell 2 made of light and a light-transmitting glass member (spherical lens member) 4 fixed to the lens holding hole of the metal shell 2 with a sealing material 3.
  • the light-transmissive glass member and the metal shell are sealed with a sealing material.
  • the sealing process is generally performed at a low temperature for the purpose of maintaining the product characteristics of the optical cap component.
  • the sealing temperature is not higher than the soft melting point of the light-transmitting glass member and not higher than the Curie point of the metal shell, and is normally set to a temperature of 550 ° C. or lower. Therefore, when the sealing material of the present invention is used, it can be satisfactorily sealed at a low temperature even in a reducing atmosphere or a neutral atmosphere, and it can suppress the oxidation of the metal shell, so that a special plating treatment is performed. The cost of the optical cap part which is not necessary can be reduced.
  • sealing glass composition and sealing material of the present invention will be described in detail based on examples.
  • Tables 1 to 3 show examples of the glass composition for sealing of the present invention (samples a to n), and Table 4 shows comparative examples (samples P and q).
  • Each glass sample was prepared as follows. First, the notch raw materials were prepared so as to have the glass compositions shown in Tables 1 to 4, and N gas for a flow rate of 3 LZ was flown into the electric furnace, and then the flow rate was 1 LZ.
  • Tin monoxide was used as a batch raw material of SnO.
  • Orthophosphoric acid as a batch raw material for PO (
  • Strong phosphoric acid (105 wt% phosphoric acid) was used without using (orthophosphoric acid). The reason for this is that strong phosphoric acid has a lower moisture content than normal phosphoric acid, which can be accompanied by a reduction in the moisture content of the glass batch, and glass melt spills during melting. ⁇ N Reagent grade oxides were used as raw materials for the other components.
  • the molten glass was passed through a water-cooled roller, formed into a thin plate shape, pulverized with a ball mill, passed through a sieve with a mesh size of 105 m, and a laser diffraction particle size distribution analyzer (Shimadzu Corporation). Glass powder with an average particle size of about 10 m was obtained at SALD-2000J
  • the glass transition point and the coefficient of thermal expansion were determined after pressing the molten glass into 20 X 5mm ⁇ . It measured with the rod-type thermal expansion meter (TMA) (made by Rigaku Corporation).
  • TMA rod-type thermal expansion meter
  • the softening point was measured by a macro-type differential thermal analysis (DTA) apparatus (manufactured by Rigaku Corporation) while flowing nitrogen gas at a flow rate of lOOccZ during measurement.
  • DTA differential thermal analysis
  • a powder having a weight corresponding to the true specific gravity of the material was dry-pressed into a button shape of ⁇ 2 cm with a mold to obtain a button-shaped powder compact.
  • this compact was placed on a soda glass substrate, and then heated in N to a firing temperature of 450 ° C at a rate of 10 ° CZ and held for 10 minutes. That
  • the surface of the fired body was glossy and observed with a stereomicroscope, and no crystal was observed.
  • a crystal was observed and evaluated as “X”.
  • the diameter of the fired body was measured with a digital caliper to evaluate its fluidity.
  • a button-like powder compact was obtained. Next, after placing this compact on the various substrates in the table, 1. In a reduced pressure of OX 10 _1 Torr, the temperature was raised to a firing temperature of 470 ° C at a rate of 10 ° CZ and held for 10 minutes. did. Thereafter, the surface of the fired body was glossy and observed with a stereomicroscope. The surface of the fired body was not glossy or was observed with a stereomicroscope, and the crystal observed was evaluated as “X”. Further, the diameter of the fired body was measured with a digital caliper, and the fluidity (under reduced pressure) was evaluated.
  • the samples a to n of the examples have a thermal expansion coefficient of 106 to 118 ⁇ 10 ”V ° C glass transition point of 302 to 355 ° C., and have good characteristics as a sealing material.
  • the samples a to n of the examples also had good surface conditions after firing, while the samples p and q of the comparative examples had poor surface conditions after firing (during decompression). Yes, function as a sealing material in a reduced-pressure atmosphere It is thought that it cannot be demonstrated.
  • the samples p and q of the comparative example have poor water resistance, and it is considered that long-term reliability of a flat display device or the like cannot be ensured.
  • Tables 5 and 6 show examples (sample Nos. 1 to 8) of the sealing material of the present invention.
  • NZP listed in the table is NbZr (PO),
  • ZWP3 ⁇ 4Zr WO PO
  • KZP3 ⁇ 4KZr PO
  • KNbZPi KNbZPi or Na Nb Zr (PO)
  • NbZr (PO) filler powder was produced as follows. First, niobium phosphate: NbPO
  • NbZr (PO 4) filler powder having an average particle size of 14 / z m was obtained.
  • KZr (PO 4) filler powder having an average particle size of 14 / z m was obtained.
  • the temperature was raised to the 480 ° C firing temperature at a rate of 10 ° CZ, held at the firing temperature for 10 minutes, and then cooled to room temperature at the rate of 10 ° CZ. Thereafter, the surface of the fired body was glossy and observed with a stereomicroscope, and no crystal was observed. The surface of this fired body When the crystal was not glossy and observed with a Z or a stereomicroscope, crystals were observed and evaluated as “ ⁇ ”. In addition, the diameter of this fired body is measured with a digital caliper.
  • the surface condition after firing was evaluated by the following method. First, a powder having a weight corresponding to the true specific gravity of each sample was dry-pressed into a 2 cm button shape using a die to obtain a button-shaped powder compact. Next, this molded body was placed on the soda glass substrate in the table, 1. In a reduced pressure of OX 10 _1 Torr, the temperature was raised to a 490 ° C firing temperature at a rate of 10 ° C / min, After holding at the firing temperature for 10 minutes, the temperature was lowered to room temperature at a rate of 10 ° CZ. Thereafter, the surface of the fired body was glossy and observed with a stereomicroscope, and no crystal was observed. When the surface of the fired body was not glossy or was observed with a stereomicroscope, crystals that were observed were evaluated as “X”. Further, the diameter of the fired body was measured with a digital caliper, and the fluidity (under reduced pressure) was evaluated.
  • Sample Nos. 1 to 8 in the examples have a thermal expansion coefficient of 68.9 to 77 X 10 _7 Z ° C, and a flow diameter (in N) of 22.8 to 24.2 mm.
  • the flow diameter (under reduced pressure) is 20. 0-21.7 mm
  • the sealing glass composition and sealing material of the present invention have a PDP and various electron-emitting devices. Sealing of flat display devices such as various FEDs and VFDs to be sealed, sealing of optical parts such as lens caps and LD caps, and electronics such as IC packages, piezoelectric vibrators such as crystal resonators and surface acoustic wave elements, etc. It is suitable for sealing parts (including electronic component storage containers).
  • the sealing glass composition and sealing material of the present invention can also be used in display devices such as CRTs and inorganic electoluminescence displays. It can also be used to seal lamps such as flat fluorescent lamps (FFL). Furthermore, it can be used for sealing optical components having optical fibers, ball lenses, and the like as constituent members.
  • display devices such as CRTs and inorganic electoluminescence displays. It can also be used to seal lamps such as flat fluorescent lamps (FFL). Furthermore, it can be used for sealing optical components having optical fibers, ball lenses, and the like as constituent members.
  • FTL flat fluorescent lamps
  • the sealing glass composition and the sealing material of the present invention can also be used in an organic electoluminescence display.
  • the sealing material of the present invention is processed into a sealing paste, a sealing tablet, a frit bar, etc., and the glass substrates are fixed to each other through these, and then a laser beam is applied to the sealing portion. By irradiating, the glass substrates are sealed together.
  • a laser beam an excimer laser, a YAG laser, or the like can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Description

明 細 書
封着用ガラス組成物および封着材料
技術分野
[0001] 本発明は、封着用ガラス組成物およびこれを用いた封着材料に関し、プラズマディ スプレイパネル(以下、 PDPと称する)、フィールドェミッションディスプレイ(以下、 FE Dと称する)、蛍光表示管(以下、 VFDと称する)等の平面表示装置の封着、レンズキ ヤップ、 LDキャップ等の光部品の封着、 ICパッケージ、水晶振動子や弾性表面波素 子等の圧電振動子等の電子部品 (電子部品収納容器を含む)の封着に好適な封着 用ガラス組成物および封着材料に関する。
背景技術
[0002] 従来から平面表示装置等の封着材料としてガラスが用いられている。ガラスは、榭 脂系の接着剤に比べ、化学的耐久性および耐熱性が優れるとともに、平面表示装置 等の気密性を確保するのに適して!/ヽる。
[0003] これらのガラスは、用途によっては機械的強度、流動性、電気絶縁性等様々な特性 が要求されるが、少なくとも平面表示装置等に使用される蛍光体の蛍光特性等を劣 ィ匕させない温度で使用可能であることが要求される。それゆえ、上記特性を満足する ガラスとして、ガラスの融点を下げる効果が極めて大き 、PbOを多量に含有する鉛ホ ゥ酸系ガラス (例えば、特許文献 1参照)が広く用いられてきた。
[0004] ところが、最近、鉛ホウ酸系ガラスに含まれる PbOに対して環境上の問題が指摘さ れており、鉛ホウ酸系ガラス力も PbOを含まないガラスに置き換えることが望まれてい る。そのため、鉛ホウ酸系ガラスの代替品として、様々な低融点ガラスが開発されて いる。その中でも、特許文献 2、 3等に記載されている錫リン酸系ガラス(SnO— P O
2 5 系ガラスとも称される)は、熱膨張係数等の諸特性において、鉛ホウ酸系ガラスと略同 等の特性を有するため、その代替候補として期待されているが、耐水性および熱的 安定性等の特性にぉ 、て、依然として鉛ホウ酸系ガラスの特性に及ばな 、のが実情 である。
[0005] ところで、 PDPに使用される封着材料は、以下のような熱処理工程を経る。まず、 P DPの背面基板の外周辺部に封着ペーストを塗布した後、一次焼成 (グレーズ工程ま たは仮焼成工程とも称される)を行う。一次焼成は、ビークルに含まれる榭脂が完全 に熱分解する温度条件で行われる。次に、封着材料の二次焼成 (封着工程またはシ ール工程とも称される)が行われ、 PDPの前面基板と背面基板を封着する。最後に、 排気管を通して PDP内部を真空排気した後、希ガスを必要量注入して排気管を封 止する。このようにして PDPは作製される。
[0006] また、 FEDは、装置内部が高真空に保たれており、この高真空中で電界を加えて 発生させた電子線で蛍光体を励起し、可視光線を発光させる方式の表示装置である 。 FEDにおいても、一次焼成および二次焼成の後、製造の最終工程で排気管を通 じて、装置内部を高真空に排気した後、排気管を封止する工程が存在する。
特許文献 1:特開平 2— 229738号公報
特許文献 2 :特開平 7— 69672号公報
特許文献 3:特開平 9 - 227154号公報
発明の開示
発明が解決しょうとする課題
[0007] 従来の錫リン酸系ガラスは、ガラス構成成分として P Oを多量に含有しているため
2 5
、鉛ホウ酸系ガラスに比べてガラスの耐水性が十分ではなぐ高耐水性が要求される PDP、 FED等の平面表示装置の長期信頼性を確保することができな力つた。具体 的には、特許文献 2、 3に記載されている錫リン酸系ガラスは、 P Oを 25モル%以上
2 5
含有している。錫リン酸系ガラスでは、 P o含有量がガラスの耐水性を決定づける主
2 5
要因子であり、 P O含有量が 25モル%以上であると、ガラスの耐水性を確保するこ
2 5
とは困難となる。
[0008] 一方、錫リン酸系ガラスにおいて、 P O含有量を 25モル%未満とすれば、ガラスの
2 5
耐水性を向上させることができるが、ガラス構成成分が少なくなるため、特に、大気雰 囲気で焼成を行う場合、ガラスの熱的安定性が損なわれやすくなるとともに、封着材 料として使用することが困難となる。
[0009] また、既述の通り、 PDPは、一次焼成工程、二次焼成工程、真空排気工程を経て、 製造される。通常、一次焼成工程、二次焼成工程は、大気中で行われ、真空排気ェ 程は、高真空の減圧雰囲気で行われる。真空排気工程は、装置内部を高真空にす るために高温且つ長時間(通常、 5時間以上)を要する工程となっており、 PDP等の 製造効率を低下させる一因となっている。このような事情から、真空排気工程を短縮 する試みが各種行われて 、るが、未だ有効な改善策が見出されて 、な 、のが実情 である。
[0010] 現状、二次焼成工程と真空排気工程は、同時に行うことができないが、二次焼成ェ 程と真空排気工程を同時に行うことができれば、飛躍的に PDPの製造工程を高める ことができ、 PDPの製品コストを大幅に下げることが可能となる。二次焼成工程と真空 排気工程を同時に行うためには、二次焼成を減圧 (真空)中で行う必要があるが、従 来の錫リン酸系ガラスは、 P Oの含有量が 25モル%以上であるため、減圧中で封着
2 5
すると封着層に許容できない泡が生じ、 PDPの気密性を担保できなくなると同時に、 封着層の接着強度が著しく低下してしまう。更に、錫リン酸系ガラスを用いて、減圧中 で封着すると、ガラスが失透しやすくなり、所定の封着厚みを形成できなくなると同時 に、 PDPの気密性を担保できないおそれが生じる。
[0011] 一方、 FEDも装置内部を高真空に保持する工程が存在するため、 PDPの場合と 同様に減圧中で封着できれば、製造効率を飛躍的に高めることができると同時に、 製品コストを低廉ィ匕することができる。さらに、 FEDは、 PDPに比べて、蛍光体、素子 等の部材の耐熱性が乏しいため、 490°C以下の低温封着が要求される。
[0012] 本発明は、錫リン酸系ガラスの耐水性を改善すると同時に、 PDP等の製造効率を 高めるベぐ低酸素雰囲気、特に減圧中で良好に封着できるとともに、 490°C以下の 低温で封着可能であり、且つ熱的安定性の良好な封着用ガラス組成物および封着 材料を得ることを技術的課題とする。
課題を解決するための手段
[0013] 本発明者は、鋭意努力の結果、下記酸ィ匕物換算のモル%表示で SnO 30〜80 %、 P O 10〜25% (但し、 25%は含まない)、 B O 0〜20%、 ZnO 0〜20%、
2 5 2 3
SiO 0〜10%、 Al O 0〜10%、 WO 0〜20%、 R O (Rは Liゝ Naゝ K、 Csの
2 2 3 3 2
少なくとも 1つを指す) 0〜20%にガラス組成を規制することによって、上記課題を 解決できることを見出し、本発明として、提案するものである。すなわち、第一に、本 発明の封着用ガラス組成物は、ガラス組成として、下記酸化物換算のモル%表示で
、 SnO 30〜80%、 P O 10〜25% (但し、 25%は含まない)、 B O 0〜20%、
2 5 2 3
ZnO 0〜20%、SiO 0〜10%、Α1 Ο 0〜10%、WO 0〜20%、 R O (Rは Li
2 2 3 3 2
、 Na、 K、 Csの少なくとも 1つを指す) 0〜20%含有し、且つ低酸素雰囲気における 封着に用いることを特徴とする。ここで、本発明でいう「低酸素雰囲気」とは、酸素濃 度が 15体積%以下の雰囲気 (好ましくは 10体積%以下、より好ましくは 5体積%以 下、更に好ましくは 1体積%以下)を指し、例えば高真空雰囲気、 Ar雰囲気、 N雰囲
2 気等の中性ガス雰囲気、および N雰囲気に 1体積%の11ガスを混入した雰囲気等
2 2
の還元性ガス雰囲気が挙げられる。なお、雰囲気中の残存酸素濃度は、例えば、東 レエンジニアリング株式会社製 LC— 750等で測定することができる。
[0014] 本発明の封着用ガラス組成物は、ガラス組成範囲を上記のように厳密に規制するこ とにより、所望の特性を得ることができる。具体的には、 SnOの含有量を所定範囲に 規制することによって、低温封着性を確保することができるとともに、減圧中に封着し た場合であっても、平面表示装置の気密信頼性を維持することができる。また、 P O
2 5 の含有量を 25モル%未満に規制することによって、ガラスの耐水性を顕著に向上さ せることができる。 P Oの含有量を 25モル%未満に規制すれば、ガラスの熱的安定
2 5
性が損なわれるおそれがある力 更に、上記ガラス組成に B O、 SiO等を所定量添
2 3 2
加すれば、ガラスの低温封着性を損なうことなぐガラスの熱的安定性を維持すること ができる。さらに、 P Oの含有量を 25モル%未満に規制すれば、減圧中で封着した
2 5
場合であっても、平面表示装置の信頼性を確保することができる。したがって、本発 明の封着用ガラス組成物を封着材料として使用すれば、減圧中で封着できるため、 PDP等の平面表示装置の製造コストを低廉ィ匕することができる。
[0015] 本発明の封着用ガラス組成物は、低酸素雰囲気 (減圧雰囲気、中性雰囲気、還元 性雰囲気等)で良好に封着することができる。その理由は以下の通りである。ガラス 組成中で Snは、価数が二価の場合に安定なガラス形成成分となる。一方、 Snの価 数が四価になると、ガラスが失透しやすくなり、熱的に不安定な状態となる。したがつ て、低酸素雰囲気の場合、錫リン酸系ガラスは、焼成時にガラス組成中の SnOが酸 化されて、 SnOとなる反応が進行しにくぐ失透が生じにくい。さらに、本発明の封着 用ガラス組成物は、 P Oの含有量を 25モル%未満に規制にしているため、低酸素
2 5
雰囲気で焼成した場合、ガラスが発泡しにく 、と 、う利点も併有して 、る。
[0016] 第二に、本発明の封着用ガラス組成物は、上記ガラス組成に加えて、下記酸化物 換算のモル0 /0表示で、 MoO、 Nb O、 TiO、 ZrO、 CuO、 MnO、 MgO、 CaO、 S
3 2 5 2 2
rO、 BaOを合量で 0〜35%含有することに特徴付けられる。
[0017] 第三に、本発明の封着用ガラス組成物は、上記ガラス組成に加えて、下記酸化物 換算のモル%表示で、 MoO 0〜5%、Nb O 0〜15%、TiO 0〜15%、 ZrO
3 2 5 2 2
0〜15%、 CuO 0〜10%、 MnO 0〜15%、 R,0 (R ¾Mg、 Caゝ Srゝ Baの少 なくとも 1つを指す) 0〜 15%含有することに特徴付けられる。
[0018] 第四に、本発明の封着用ガラス組成物は、ガラス組成として、下記酸化物換算のモ ル0 /0表示で、 SnO 30〜80%、 P O 10〜25% (但し、 25%は含まない)、 B O
2 5 2 3
0. 1〜10% (但し、 10%は含まない)、 ZnO 0〜20%、 SiO 0〜10%、 Al O 0
2 2 3
〜10%、WO 0〜20%、R O (RはLi、Na、K、Csの少なくともlっを指す) 0〜2
3 2
0%, MoO 0〜5%、Nb O 0〜15%、TiO 0〜15%、 ZrO 0〜15%、 CuO
3 2 5 2 2
0〜10%、 MnO 0〜15%、 R,0 (R,は Mgゝ Caゝ Srゝ Baの少なくとも 1つを指す) 0〜 15%含有することに特徴付けられる。
[0019] 第五に、本発明の封着用ガラス組成物は、上記ガラス組成に加えて、下記酸化物 換算のモル%表示で、 Fを 0〜 10%含有することに特徴付けられる。
2
[0020] 第六に、本発明の封着材料は、上記の封着用ガラス組成物からなるガラス粉末 50 〜100体積%と、耐火性フィラー粉末 0〜50体積%とを含有することに特徴付けられ る。
[0021] 第七に、本発明の封着材料は、減圧雰囲気で焼成したときに、焼成体の表面に光 沢があり、且つ失透が認められないことに特徴付けられる。ここで、本発明でいう「減 圧雰囲気で焼成したときに、焼成体の表面に光沢があり、且つ失透が認められない」 については、以下の手順でその適否を判断する。まず封着材料を 2cm φに乾式プレ スし、ボタン状の試料を作製する。次に、作製した試料を高歪点ガラス基板に載置し た上で、減圧焼成炉を用いて、 1. O X IOTorrd. 33kPa)減圧下において、(封着 材料の軟ィ匕点 + 30°C)の温度で 30分間焼成する。昇降温速度は、 5°CZ分とし、焼 成炉への試料の投入、取り出しは室温で行う。光沢は、作製したボタン状の試料表 面の平均表面粗さ Raを測定することで評価する。なお、平均表面粗さ Raは、 JIS— R 3502に準拠した方法により測定する。ボタン表面の平均表面粗さ Raが 100 μ m以 下の場合、「光沢がある」として評価する。さら〖こ、焼成後の試料を観察し、作製した ボタン状の試料表面に結晶が析出して 、な 、ものを「失透が認められな 、」として評 価する。なお、失透の評価は、実体顕微鏡を用いて、ボタン表面上の結晶を観察す ることで行う。
[0022] 第八に、本発明の封着材料は、中性雰囲気または還元性雰囲気で焼成したときに 、焼成体の表面に光沢があり、且つ失透が認められないことに特徴付けられる。ここ で、本発明でいう「中性雰囲気または還元性雰囲気で焼成したときに、焼成体の表 面に光沢があり、且つ失透が認められない」については、以下の手順でその適否を 判断する。まず封着材料を 2cm φに乾式プレスし、ボタン状の試料を作製する。次に 、作製した試料を高歪点ガラス基板に載置した上で、雰囲気焼成炉を用いて、 N
2雰 囲気または N雰囲気に 1%の Hガスを混入した雰囲気下、(封着材料の軟化点 + 3
2 2
0°C)の温度で 30分間焼成する。昇降温速度は、 5°CZ分とし、焼成炉への試料の 投入、取り出しは室温で行う。光沢は、作製したボタン状の試料表面の平均表面粗さ Raを測定することで評価する。ボタン表面の平均表面粗さ Raが 100 m以下の場合 、「光沢がある」として評価する。なお、平均表面粗さ Raは、 JIS— R3502に準拠した 方法により測定する。さらに、焼成後の試料を観察し、作製したボタン状の試料表面 に結晶が析出していないものを「失透が認められない」として評価する。なお、失透の 評価は、実体顕微鏡を用いて、ボタン表面上の結晶を観察することで行う。
[0023] 第九に、本発明の封着材料は、前記耐火性フィラーが、酸化錫、酸化ニオブ、リン 酸ジルコニウム、コーディエライト、 Na Nb Zr (PO ) 、 KZr (PO ) , Ca N
0. 5 0. 5 1. 5 4 3 2 4 3 0. 25 b Zr (PO ) 、 NbZr (PO ) 、 K Nb Zr (PO ) 、 Zr WO (PO ) の群力
0. 5 1. 5 4 3 4 3 0. 5 0. 5 1. 5 4 3 2 4 4 2 ら選択される一種または二種以上を含有することに特徴付けられる。
[0024] 第十に、本発明の封着材料は、 PDP、FED、VFD、CRT(Cathode Ray Tube
)、電子部品、光部品のいずれかの封着に使用することに特徴付けられる。
[0025] 第十一に、本発明の封着タブレットは、封着材料を所定形状に焼結させた封着タブ レットにお ヽて、封着材料が前記の封着材料であることに特徴付けられる。
[0026] 第十二に、本発明の封着ペーストは、封着材料がビークルに分散された封着ぺー ストにおいて、封着材料が前記の封着材料であることに特徴付けられる。ここで、本 発明でいう「ビークル」は、溶剤、榭脂バインダー等を含む封着ペーストの構成材料 であり、溶剤は必須の成分であるが、榭脂バインダーは任意の成分である。
[0027] 第十三に、本発明の封着ペーストは、ビークルカ トルエン、 N, N,ージメチルホル ムアミド、 1, 3—ジメチルー 2—イミダゾリジノン、炭酸ジメチル、ブチルカルビトールァ セテート、酢酸イソァミル、プロピレンカーボネート、 N—メチルー 2—ピロリドンァセト 二トリル、ジメチルスルホキシド、アセトン、メチルェチルケトン、イソドデシルアルコー ル、イソトリデシルアルコール、ペンタンジオール、ペンタンジオール誘導体、 C C n 2n+
OH (n=8〜20)で表される高級アルコールの群から選択される一種または二種以 上を含有することに特徴付けられる。
[0028] 第十四に、本発明の封着ペーストは、ビークルカ ニトロセルロース、ポリエチレング リコール誘導体、ポリエチレンカーボネートの群から選択される一種または二種以上 を含有することに特徴付けられる。
[0029] 第十五に、本発明の PDPまたは FEDの製造方法は、前記の封着材料を用いた封 着工程を有する PDPまたは FEDの製造方法であって、封着工程の全部または一部 が減圧雰囲気で実行されることに特徴付けられる。本発明でいう「減圧雰囲気」とは、 大気圧が 1. O X IOTorrd. 33kPa)以下の場合を指す。
[0030] 第十六に、本発明の光部品または電子部品の製造方法は、前記の封着材料を用 V、た封着工程を有する光部品または電子部品の製造方法であって、封着工程の全 部または一部が中性雰囲気または還元性雰囲気で実行されることに特徴付けられる 。本発明でいう「中性雰囲気」とは、 Ar雰囲気、 N雰囲気等の中性ガス雰囲気を指
2
す。本発明でいう「還元性雰囲気」とは、 N雰囲気に 1体積%の11ガスを混入した雰
2 2
囲気等の還元性ガス雰囲気を指す。
発明の効果
[0031] 本発明の封着用ガラス組成物は、耐水性が大幅に向上していると同時に、減圧中 でも良好に封着できるため、 PDP等の平面表示装置の製造効率を大幅に高めること ができる。すなわち、 PDP等の平面表示装置の場合、減圧中で封着することができ れば、排気管を通じて、 5時間以上の長時間に亘つて装置内部を真空排気する必要 がなくなり、 PDP等の平面表示装置の製造効率を飛躍的に高めることができる。さら に、本発明の封着用ガラス組成物は、 490°C以下の低温で封着可能にもかかわらず 、熱的安定性が良好である利点を有している。一般的に、ガラスの低温化とガラスの 熱的安定性は、両立困難な特性であるが、本発明の封着用ガラス組成物は、両者を 高 、レベルで両立することができる。
図面の簡単な説明
[0032] [図 1]光学用キャップ部品の構成を示す説明図である。
符号の説明
[0033] 1 光学用キャップ部材
2 金属製シェル
3 封着材料
4 光透過性ガラス部材 (球レンズ部材)
発明を実施するための最良の形態
[0034] 本発明の封着用ガラス組成物のガラス組成範囲を上記のように限定した理由を以 下に説明する。なお、以下の%表示は、特に限定がある場合を除き、モル%を指す。
[0035] SnOは、ガラスの融点を低下させる必須成分であり、その含有量は 30〜80%、好 ましくは 40〜70%、より好ましくは 50〜66%である。特に、 SnOが 40%以上であれ ば、ガラスの流動性に優れ、高い気密性を確保することができる。 SnOが 30%より少 ないと、ガラスの粘性が高くなり過ぎ、封着温度が高くなるおそれがある。また、 SnO が 80%より多いと、ガラス化が困難になる傾向がある。なお、錫リン酸系ガラスの場合 、 SnOが 70%を超えると、大気雰囲気で焼成時にガラスが変質しやすくなる力 低 酸素雰囲気であれば、 SnOが 70〜80%の範囲であっても、焼成時にガラスが変質 し難い。
[0036] P Oは、ガラス形成酸ィ匕物であり、必須成分である。その含有量は、 10〜25% (伹
2 5
し、 25%は含まない)、好ましくは 11〜24%、より好ましくは 13〜23%、更に好ましく は 15〜20%である。 P O力 ¾5%以上であると、ガラスの耐水性が低下し、平面表 示装置等の長期信頼性を担保し難くなる。一方、 P o力
2 5 sio%より少ないと、ガラスの 熱的安定性が乏しくなる。また、一般的に、ガラス形成酸ィ匕物である P oが少なくな
2 5 るにつれて、ガラスの熱的安定性が乏しくなる力 本発明の封着用ガラス組成物は、 ガラス組成を所定範囲に規制しているため、 P Oが 25%未満であっても、ガラスの
2 5
熱的安定性が良好である。特に、 P oの含有量が少ないため、焼成雰囲気が減圧
2 5
雰囲気であっても、良好に焼成することができる。
[0037] B Oは、ガラス形成酸ィ匕物であり、ガラスを安定ィ匕させる成分である。その含有量
2 3
は 0〜20%であり、好ましくは 0. 1〜16%、より好ましくは 2〜15%、更に好ましくは 3 〜11. 8%、最も好ましくは 3〜10% (但し、 10%は含まない)である。特に、低温封 着を行う場合、 B Oの含有量を 1〜5%とすれば、ガラスを低温ィ匕することができる。
2 3
また、一般的に、ガラス形成酸ィ匕物である B Oが少なくなるにつれて、ガラスの熱的
2 3
安定性が乏しくなるが、焼成雰囲気を低酸素雰囲気とすれば、 B Oの含有量が少な
2 3
い場合であっても、良好に焼成することができる。 B Oが 20%より多いと、ガラス組
2 3
成のバランスが取れなくなり、ガラス溶融時にガラスが分離し、ガラス融液表面にスカ ムが発生しやすくなる。一方、 B Oを少量添加、例えば 2%程度添加すれば、逆に
2 3
スカムの発生を抑制することができる。更に、 B Oが 20%より多いと、ガラスの粘性
2 3
が高くなりすぎ、ガラスの流動性が悪ィ匕する。
[0038] ZnOは、中間酸化物であり、ガラスを安定ィ匕させる成分である。その含有量は 0〜2 0%、好ましくは 0〜15%、より好ましくは 0〜10%、更に好ましくは 3〜10%である。 特に ZnOの含有量を 3%以上とすれば、ガラスの熱的安定性を向上させることができ 、封着時にガラス表面に失透が生じ難くなる。一方、 ZnOが 20%より多いと、ガラス 組成のバランスを欠き、逆にガラスの熱的安定性が低下しやすくなる。
[0039] SiOは、ガラス形成酸ィ匕物であり、ガラスを安定ィ匕させる成分である。その含有量
2
は 0〜10%、好ましくは 0. 5〜5%である。特に、 SiOを少量添加、例えば 0. 5%程
2
度添加すれば、ガラスの熱的安定性が向上し、封着時にガラスが失透し難くなる。 Si Oを 5%以下とすれば、ガラスの軟ィ匕温度はあまり上昇せず、低温封着を行うことが
2
できる。一方、 SiOが 10%より多いと、ガラスの軟ィ匕温度が上昇し、低温封着が困難
2
になるとともに、ガラスの流動性が損なわれる。 [0040] Al Oは、中間酸化物であり、ガラスを安定ィ匕させる成分であるとともに、ガラスの熱
2 3
膨張係数を低下させる成分である。その含有量は 0〜10%、より好ましくは 0〜5%、 更に好ましくは 0. 1〜5%である。特に、 Al Oの含有量を 0. 5〜5%とすれば、ガラ
2 3
スの熱的安定性や熱膨張係数を調整しやすくなる。一方、 Al Oが 10%より多いと、
2 3
ガラスの軟ィ匕温度が上昇し、低温封着が困難となるとともに、ガラスの流動性が損な われる。
[0041] WOは、必須成分ではないが、被封着物との接着力を向上させる効果がある成分
3
であるとともに、ガラスの耐候性を向上させる成分であり、 WOをガラス組成に適量添
3
加すれば、長期間にわたって信頼性の高い封着層を形成することができる。 WOの
3 含有量は 0〜20%、好ましくは 0〜15%、より好ましくは 1. 2〜15%、更に好ましくは 3〜10%である。上記効果を的確に享受するためには、 WOを 0. 1%、特に 3%以
3
上とすればよい。また、 WOが比較的高価な原料であることおよびガラスの流動性を
3
考慮すると、 WOを 10%以下とするのが好ましい。一方、 WO力 ¾0%より多いと、原
3 3
料コストの高騰を招くことに加えて、ガラスの軟ィ匕点が上昇し、低温封着が困難となる
[0042] 本発明において、 R Oは必須成分ではないが、 R Oの内、少なくとも 1種類をガラス
2 2
組成中に添加すれば、ガラス基板等との接着力を高めることができる。その含有量は
0〜20%、好ましくは 0〜10%である。特に、ガラスの熱的安定性、例えば封着時の 表面失透およびガラスの流動性を考慮した場合、 R O
2 は合量で 10%以下とするのが 好ましい。 R Oの合量が 20%を超えると、封着時にガラスが失透しやすくなる。なお、
2
R Oの内、 Li Oが最もガラス基板等との接着力を向上させる能力が高いが、 Li Oは
2 2 2
、焼成時にガラス基板等の被封着物に含まれるアルカリ元素とイオン交換し、ガラス 基板等にマイクロクラックが発生しやすくなる。したがって、 Li Oの含有量は 3%以下
2
とするのが好ましい。
[0043] MoO、 Nb O、 TiO、 ZrO、 CuO、 MnO、 MgO、 CaO、 SrO、 BaOは、ガラス
3 2 5 2 2
を安定ィ匕させる成分であり、その含有量は合量で 0〜35%、好ましくは 0〜25%であ る。これらの成分が合量で 35%を超えると、ガラスが熱的に不安定になり、ガラスを安 定に製造し難くなる。 [0044] MoOは、必須成分ではないが、ガラス組成に少量添加すると、被封着物との濡れ
3
性を改善できる成分である。その含有量は 0〜5%、より好ましくは 0. 1〜3%である。 MoO力 より多いと、ガラス溶融時の粘度が高くなることにカ卩えて、ガラスが失透し
3
やすくなる。
[0045] Nb O、 TiOおよび ZrOは、ガラスの安定性を向上させる成分であるとともに、ガ
2 5 2 2
ラスの耐候性を向上させる成分である。これらの成分の含有量は何れも 0〜15%、好 ましくは 0〜10%である。これらの成分が 15%より多くなると、ガラスを溶融しに《な るとともに、ガラスが不安定になりやすい。
[0046] CuOの含有量は 0〜10%、特に 0〜5%が好ましい。 CuOが 10%を超えるとガラス が熱的に不安定になりやすい。
[0047] MnOの含有量は 0〜15%、特に 0〜8%が好ましい。 MnOが 15%を超えると、ガ ラスが熱的に不安定になりやすい。なお、 MnOの導入原料として、一酸ィ匕マンガン、 二酸ィ匕マンガンの双方が使用可能である力 一酸ィ匕マンガンを導入原料として使用 すると、ガラスの熱的安定性が向上するため、好ましい。
[0048] R' Oは、アルカリ土類酸ィ匕物であり、網目修飾酸ィ匕物である。これらの成分は必須 成分ではないが、これらの含有量は合量で 0〜15%、特に 0〜5%であることが好ま しい。 R' Oが 15%を超えるとガラスが熱的に不安定になりやすい。特に、 R' Oの内、 MgOや BaOは、ガラスを安定ィ匕させることに加えて、低温ィ匕させる効果が高ぐ好ま しい。
[0049] In Oは、ガラスの耐候性を向上させる成分であり、その含有量は 0〜10%、好まし
2 3
くは 0〜5%である。し力し、 In Oは貴金属酸化物であるため、 In O力 10%より多
2 3 2 3
いと、ガラスの原料コストの上昇を招き、その用途に制限が課させることになる。
[0050] ランタノイド酸ィ匕物は、網目修飾酸化物であり、本発明にお ヽて必須成分ではな!/ヽ 力 ランタノイド酸ィ匕物をガラス成分中に合量で 0. 1%以上含有させることで、ガラス の耐候性が向上する。一方、ランタノイド酸化物が 15%を超えると、封着温度が高く なりやすい。したがって、耐候性と封着温度のバランスを考慮すると、ランタノイド化合 物の含有量は、合量で 0〜15%、好ましくは 0. 5〜15%、より好ましくは 1〜15%で ある。ランタノイド酸ィ匕物としては、 La O、 CeO、 Nd O等が使用可能である。なお 、ランタノイド酸ィ匕物にカ卩えて、他の希土類酸化物、例えば、 Y oを添加すると、ガラ
2 3
スの耐候性を更に向上させることができる。ランタノイド酸化物を除く希土類酸化物の 含有量は 0〜5%であることが好まし 、。
[0051] Ta Oは、耐候性を向上させる効果があり、その含有量は 0〜10%が好ましい。 Ta
2 5
Oが 10%を超えると、ガラスの軟ィ匕点が高くなりすぎる。
2 5
[0052] TeOは、軟ィ匕点を低下させる効果がある成分であり、その含有量は 0〜15%が好
2
ましい。 TeOが 15%を超えると、ガラスの熱的安定ィ匕が損なわれる。
2
[0053] Fは、平面表示装置等に含まれる蛍光体の蛍光特性に悪影響を与える可能性が
2
ある成分であるが、ガラス低温ィ匕ゃ脱泡に効果がある成分である。その含有量は 0〜 10%とするのが好ましぐ 0〜5%とするのがより好ましぐ 0〜3%とするのが更に好ま しい。 Fが 10%を超えると蛍光体の蛍光特性に悪影響を与える可能性が高くなる。
2
[0054] 本発明の封着用ガラス組成物は、実質的に PbOを含有しな 、ことが好ま 、。ここ で、「実質的に PbOを含有しない」とは、ガラス組成中に含まれる PbO含有量が 100 Oppm以下の場合を指す。封着用ガラス組成物において、 PbOを含有しない構成と すれば、近年の環境的要請を的確に満たすことができる。
[0055] また、本発明の封着用ガラス組成物は、本発明の効果を損なわない限り、上記成 分に加えて、更に他の成分を 10%まで添加することができる。
[0056] 上記組成範囲にお!、て、各成分の好ま 、範囲を任意に組み合わせて、好ま ヽ 組成範囲を選択することは当然に可能である力 その中にあって、封着用ガラス組成 物として、より好ましい組成範囲は、下記酸ィ匕物換算のモル%表示で、 SnO 30〜8 0%、 P O 10-25% (但し、 25%は含まない)、 B O 0. 1〜10% (但し、 10%は
2 5 2 3
含まない)、 ZnO 0〜20%、SiO 0〜10%、Α1 Ο 0〜10%、 WO 0〜20%、
2 2 3 3
R 0 (Rは Liゝ Na、K、Csの少なくとも 1つを指す) 0〜20%、 MoO 0〜5%、 Nb
2 3 2
O 0〜15%、TiO 0〜15%、ZrO 0〜15%、 CuO 0〜10%、 MnO 0〜15
5 2 2
%、 R,0 (R,は Mg、 Ca、 Sr、 Baの少なくとも 1つを指す) 0〜15%含有するガラス 組成物が挙げられる。ガラス組成物の組成範囲を上記に規制すれば、ガラスの耐水 性を大幅に改善できるとともに、ガラスの熱的安定性を大幅に改善することができる。 なお、上記ガラス組成は、大気酸素雰囲気よりも、低酸素雰囲気での封着に好適で あるが、ガラスの熱的安定性が大幅に向上しているため、大気雰囲気でも封着するこ とがでさる。
[0057] 本発明に係る錫リン酸系ガラスは、酸化物、水酸化物、硝酸塩、リン酸塩等の種々 の原料をガラス原料として用いることができるが、水分含有量が少ない原料を用いる と、溶融中のガラス融液の吹きこぼれ、焼成中のガラスの発泡等を抑制できるため、 好ましい。さらに、ガラスバッチ中に、 Al、 Si等の金属、またはカーボン等の還元剤を 1種類以上添加するのが好ましい。これらをガラスノツチ中に添加すると、ガラス中の 水分を除去できるだけでなぐ溶融雰囲気を還元雰囲気にすることができ、溶融中に SnOが SnOに酸化される反応を抑制し、その結果、錫リン酸系ガラスを安定に溶融
2
できるとともに、その後に供される焼成工程でも安定に使用することができる。
[0058] 以上の組成を有する封着用ガラス組成物は、約 250〜400°Cのガラス転移点、約 3 60〜440°Cの軟化点を有し、約 400〜600°Cの温度範囲で良好な流動性を示す。 また、 30〜250°Cの温度範囲において約 80〜150 X 10_7Z°Cの熱膨張係数を有 する。このような特性を有する本発明の封着用ガラス組成物は、熱膨張係数が適合 する材料に対しては単独で封着材料として使用できる。
[0059] 本発明の封着用ガラス組成物は、ボールミル、ジェットミル等で粉末状に加工し、こ れを封着材料として使用することができる。また、封着用ガラス組成物をガラス粉末と すれば、耐火性フィラー粉末等と混合し、機械的強度および熱膨張係数を調整する ことが容易になるとともに、ビークル等と混合し、ペースト材料またはシート材料とする ことも容易になる。
[0060] 熱膨張係数が適合しな!、材料、例えばアルミナ(70 X 10"V°O、高歪点ガラス( 85 X 10"V°Oまたはソーダ板ガラス(90 X 10"V°Oを封着する場合には、低膨 張材料である耐火性フィラー粉末を加えて複合ィ匕することにより、適切に使用できる 。複合体 (コンポジット)の熱膨張係数は、被封着物に対して 10〜30 X 10_7Z°C程 度低く設計することが重要である。一般的に、封着材料は、被封着物よりも弱いので 、封着層を構成する封着材料部分に残留する応力はコンプレツシヨン (圧縮)側とす るのが望ましい。このようにすれば、封着界面の破壊に起因して、気密リークや封着 層の剥離等が生じる事態を防止することができる。 [0061] 本発明の封着材料にお!、て、ガラス粉末を 50〜: LOO体積%、耐火性フィラー粉末 を 0〜50体積%含有することが好ましぐ特に、 FED、 PDP、 VFD、 CRTの封着の 場合、ガラス粉末を 60〜80体積%、耐火性フィラー粉末を 20〜40体積%含有する ことが好ましい。また、 FED、 PDP、 VFD、 CRTの封着の場合、熱膨張係数が 60〜 90 X 10_7Z°C程度となるように調整するのが好ましい。耐火性フィラー粉末が 50体 積%より多いと、相対的にガラス粉末の割合が低くなり過ぎ、所望の流動性が得にく くなる。なお、ガラス粉末および耐火性フィラー粉末の粒度は、レーザー回折式粒度 分布測定装置 (株式会社島津製作所製 SALD— 2000J)にお ヽて平均粒子径 D
50 で 1· 0〜15. O /z mが好ましい。平均粒子径 D が 1· O /z mより小さいと、耐火性フィ
50
ラーの低膨張ィ匕の効果が得られに《なり、平均粒子径 D が 15 mを超えると封着
50
材料の流動性を阻害したり、平面表示装置等の気密信頼性が得られに《なる。
[0062] また、封着用ガラス組成物を所定形状、例えばボール状、ロッド状または板状に成 形し、これを封着材料として使用することもできる。
[0063] 本発明の封着材料は、減圧雰囲気で焼成したときに、焼成体の表面に光沢があり 、且つ失透が認められないことが好ましい。減圧雰囲気で封着する場合、大気雰囲 気の場合に比して、封着材料が発泡しやすいが、本発明の封着材料は、ガラス粉末 のガラス組成を所定範囲に規制して 、るため、本雰囲気で良好に焼成することがで きる。その結果、 PDPの二次焼成工程と真空排気工程を同時に行っても、封着層が 失透することもなぐ更に PDPの気密性を損なうような発泡も抑制でき、 PDPの製造 効率の向上、コスト低下に寄与することができる。減圧雰囲気は、大気圧が低下すれ ばするほど、封着材料に失透、泡が生じやすくなるため、大気圧が低いほど、本発明 の利点を的確に享受することができる。具体的には、減圧雰囲気として、大気圧が 1 . O X 10_1Torr以下(13. 3Pa以下)が好ましく、 1. O X 10_3Torr以下(0. 133Pa 以下)がより好ましぐ 1. 0 X 10_5Torr以下(0. 00133Pa以下)が更に好ましい。
[0064] 本発明の封着材料は、中性雰囲気または還元性雰囲気で焼成したときに、焼成体 の表面に光沢があり、且つ失透が認められないことが好ましい。本発明の封着用ガラ ス組成物は、還元性雰囲気による封着であっても流動性および濡れ性を損なうことが ないばかりでなぐむしろ還元性雰囲気で封着すると、酸素が一定量存在する大気 雰囲気で封着する場合に比して流動性および濡れ性が向上する。これは、ガラス組 成の主成分として含有して ヽる錫が四価(SnO )で存在するよりも二価(SnO)で存
2
在する方がガラスとして熱的に安定であることによる。すなわち、還元性雰囲気で封 着する場合、 SnOが SnOに酸化され難ぐ SnOの存在比率が多くなり、結果として
2
ガラスの熱的安定性が損なわれることなぐ維持される。また、 N雰囲気等の中性雰
2
囲気であっても、 SnO力 SnOに酸化され難いことに変わりはなぐ SnOの存在比率
2
が多くなり、結果としてガラスの熱的安定性が維持される。さらに、本発明の封着材料 は、ガラス粉末のガラス組成を所定範囲に規制しているため、ガラスの熱的安定性が 良好であるとともに、低温封着性を有しているため、本雰囲気で良好に焼成すること ができる。
[0065] 耐火性フィラー粉末としては種々の材料が使用でき、例えばコーディエライト、ジル コン (珪酸ジルコニウム)、酸化錫、酸化ニオブ、リン酸ジルコニウム、ウィレマイト、ム ライト等が挙げられる。また、 [AB (MO ) ]の基本構造を有する耐火性フィラーも使
2 4 3
用可能である。ここで、 Aは Li、 Na、 K、 Mg、 Ca、 Sr、 Ba、 Zn、 Cu、 Ni、 Mn等の元 素が適合する。 Bは Zr、 Ti、 Sn、 Nb、 Al、 Sc、 Y等の元素が適合する。 Mは P、 Si、 W、 Mo等の元素が適合する。
[0066] これらの耐火性フィラーの中で、酸化錫、コーディエライト、酸化ニオブ、 Na Nb
0. 5 0.
Zr (PO ) 、 KZr (PO ) , Ca Nb Zr (PO ) 、 NbZr (PO ) 、 Zr WO (
5 1. 5 4 3 2 4 3 0. 25 0. 5 1. 5 4 3 4 3 2 4
PO ) 、 K Nb Zr (PO ) , Ca Nb Zr (PO ) が良く適合する。特に、
4 2 0. 5 0. 5 1. 5 4 3 0. 25 0. 5 1. 5 4 3
Na Nb Zr (PO ) 、 KZr (PO ) , Ca Nb Zr (PO ) 、 Zr WO (PO
0. 5 0. 5 1. 5 4 3 2 4 3 0. 25 0. 5 1. 5 4 3 2 4 4
) 2は、低膨張ィ匕の効果が大きぐ少量の含有量で熱膨張係数を低くすることができる
。また、必要に応じて、耐火性白色顔料 (例えば TiO )、または耐火性黒色顔料 (例
2
えば Fe— Mn系、 Fe— Co— Cr系、 Fe— Mn— Al系の顔料)を添カ卩することもできる
[0067] 本発明の封着材料は、実質的に PbOを含有しな ヽことが好ま ヽ。封着材料にお いて、 PbOを含有しない構成とすれば、近年の環境的要請を的確に満たすことがで きる。
[0068] 本発明の封着材料は、被封着物が金属(例えば、ステンレス、コバール等)、つまり 金属の封着に使用することが好ましい。既述の通り、本発明の封着材料は、低酸素 雰囲気で良好に使用できるため、封着工程で金属を酸化させずに良好に封着するこ とがでさる。
[0069] 本発明の封着材料は、所定形状に焼結した封着タブレットに加工し、使用すること もできる。封着タブレットとすれば、光部品等の所望の部分を的確に封着することが できるとともに、封着ペーストをディスペンサーまたはスクリーン印刷機で塗布する必 要がなぐ製造工程数を少なくすることができ、製品コストの低廉ィ匕に寄与することが できる。封着タブレットは、以下のように、複数回の熱工程を別途独立に経て、製造さ れる。まず、ガラス粉末に溶剤ゃ榭脂バインダーを添加し、スラリーを形成する。その 後、このスラリーをスプレードライヤー等の造粒装置に投入し、ガラス粉末の顆粒を作 製する。その際、ガラス粉末の顆粒は、溶剤が揮発する程度の温度(100〜200°C 程度)で熱処理される。さらに、作製されたガラス粉末の顆粒は、所定の寸法に設計 された金型に投入され、例えば、リング状に乾式プレス成形され、プレス体が作製さ れる。次に、ベルト炉等の焼成炉にて、このプレス体に残存する榭脂バインダーを分 解揮発させるとともに、ガラス粉末の軟ィヒ点程度の温度で焼結され、封着タブレットが 作製される。また、焼成炉における焼成は、複数回行われる場合があり、焼成を複数 回行うと、ガラスタブレットの焼結強度が向上し、ガラスタブレットの欠損、破壊等を防 止することができる。本発明の封着タブレットにおいて、タブレットの形状は、特に限 定されない。例えば、リング状、板状、円柱状、額縁状、管状等の形状が使用可能で ある。なお、溶剤、榭脂バインダーは、後述のものが使用可能である。
[0070] 本発明の封着材料は、ビークルと混合し、封着ペーストとして使用するのが好まし い。封着材料を封着ペーストに加工すれば、ディスペンサー、スクリーン印刷機等の 塗布機で封着パターンを精度良く形成することができる。ビークルは、溶剤、榭脂バ インダー、界面活性剤、顔料、増粘剤、可塑剤等の成分を含有する材料である。
[0071] 本発明に係るガラス粉末は、 SnOを主成分とする錫リン酸系ガラスである。一般的 に、錫リン酸系ガラスは、低融点であることにカ卩えて、焼成時にビークルに含まれる榭 脂バインダーと反応し、具体的には SnOが酸ィ匕し、 SnOとなることによって、流動性
2
が失われる。したがって、本発明に係るビークルは、低温で揮発する溶剤、榭脂バイ ンダーを使用するとともに、錫リン酸系ガラスを変質させない溶剤、榭脂バインダーを 使用する必要性が高い。
[0072] 溶剤は、沸点が低ぐ焼成後の残渣が少なぐ錫リン酸系ガラスを変質させないもの が好ましい。すなわち、溶剤は、沸点が 300°C以下のものを用いることが好ましい。具 体的にはトルエン、 N, N,ージメチルホルムアミド(DMF)、 1, 3 ジメチルー 2 イミ ダゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート(BCA)、酢酸イソ ァミル、プロピレンカーボネート、 N—メチル 2—ピロリドンァセトニトリル、ジメチルス ルホキシド、アセトン、メチルェチルケトン等が好適に使用できる。また、溶剤として、 高級アルコールを使用することが好ましい。高級アルコールは、溶剤自身が粘性を 有しているために、ビークルに榭脂バインダーを添加しなくても、封着ペーストとする ことができる。ビークルが榭脂バインダーを含有していない場合、 SnOが酸ィ匕し、 Sn Oが形成される事態を抑制でき、封着時にガラスが変質しに《なる。代表的な高級
2
アルコールとしては、 c C OH (n=8〜20)で表されるイソへキシルアルコールか n 2n+ l
らイソアイコシルアルコールを用いることができる。特に、溶剤の粘性の観点から見れ ば、イソデシルアルコール (n= 10)以上の分子量を有する高級アルコール力 封着 材料と混合した場合に適度な粘性を確保しやすぐ好ましい。また、焼成後の残渣量 の観点から見れば、イソへキサデシルアルコール (n= 16)以下の分子量を持つもの が好ましい。よって、高級アルコールは、トータルバランス力 イソトリデシルアルコー ルが最も好ましい。さらに、ペンタンジオールとその誘導体も溶剤として使用できる。 具体的にはジェチルペンタンジオール (C H O )が、粘度特性に優れている。
9 20 2
[0073] 榭脂バインダーは、分解温度が低いことに加えて、焼成後の残渣が少なぐ錫リン 酸系ガラスを変質させないものが好ましい。ニトロセルロース、ポリエチレングリコール 誘導体、ポリエチレンカーボネートは、分解温度が低いことに加えて、焼成後の残渣 が少なぐ錫リン酸系ガラスを変質させないため、榭脂バインダーとして、好適である ポリエチレンカーボネートは、低温分解性、粘度特性に優れている。ポリエチレン力 ーボネートは、 N, N,—ジメチルホルムアミド(DMF)、炭酸ジメチル、プロピレンカー ボネート、 N—メチル—2—ピロリドン、ァセトニトリル、ジメチルスルホキシド、アセトン 、メチルェチルケトン等に溶解する。特に炭酸ジメチル、プロピレンカーボネート、 N ーメチルー 2—ピロリドンは、短時間で乾燥せず、塗布作業性ゃレべリング性に優れ るために好ましい。ポリエチレンカーボネートを DMFに溶解させて使用する場合は、 ポリエチレングリコール誘導体と比較して高濃度に溶解させる必要があり、その最適 な濃度は 10〜30重量%である。また炭酸ジメチルに溶解させる場合の最適な濃度 は 5〜10重量0 /0である。プロピレンカーボネート、 N—メチル—2—ピロリドンを使用 する場合は 10〜30重量%である。
[0075] ポリエチレングリコール誘導体は、 HOCH CH 0{ (CH CH O) NCO [X]—CO
2 2 2 2 m
— N}nなる構造を有し、 Xは疎水性の直鎖基である。上記骨格構造を有するポリェチ レンダリコール誘導体は少量で優れた粘度特性を発現し、かつ低温分解性の特性を 有する。特に、分子量 10万〜 50万のポリエチレングリコール誘導体は低温分解性が 良好である。工業的に利用する場合、ポリエチレングリコール誘導体力 Sコスト的にも安 価で入手しやすいので適している。ポリエチレングリコール誘導体は、 N, N'—ジメ チルホルムアミド(DMF)、 1, 3—ジメチルー 2—イミダゾリジノン(DMI)等に良好に 溶解する。これらの溶媒は、室温において短時間で乾燥しないため、好ましい。ポリ エチレングリコール誘導体を DMF、 DMIに溶解させる場合、最適な濃度は 0. 5〜5 重量%である。なお、 DMFよりも DMIを用いた場合、揮発性が低く抑えられ、比較 的作業時間が力かる場合に好適である。
[0076] また、ニトロセルロースは、低温分解性を有しており、酢酸イソァミルと混合し、ビー クルとして使用することができる。
[0077] なお、いずれの場合も、榭脂バインダーが多すぎると、具体的には、榭脂バインダ 一が 35重量%以上であると、粘性が高くなりすぎて、ディスペンサー等で塗布する時 に所定のエアー圧力では押し出せな力つたり、焼成後の残渣が多くなりすぎて焼成 時の変質の原因になり得るので留意すべきである。
[0078] ビークルと封着材料は、三本ロールミル等の混練機を使用し、混練することができる
[0079] 本発明の封着用ガラス組成物は、導電性粉末のバインダーとしても使用することが できる。この場合、本発明の封着用ガラス組成物からなるガラス粉末 10〜60重量% と金属粉末 40〜90重量%と耐火性フィラー粉末 0〜20重量%を含有する導電性材 料とすることが好ましい。金属粉末が 90重量%より多いと、相対的にガラス粉末の割 合が低くなりすぎて、必要な流動性が得にくくなり、 40重量%より少ないと導電性が 確保できないからである。また、耐火性フィラー粉末が 20重量%より多いと、相対的 にガラス粉末の割合が低くなりすぎて必要な封着性が得に《なるからである。ここで 、金属粉末としては Ag、 Pd、 Al、 Ni、 Cu、 Auまたはこれらの混合物等の粉末が挙 げられる。また、耐火性フィラー粉末としては、上記の耐火性フィラーと同様のものが 使用できる。さらに、必要に応じて耐火性白色顔料 (例えば TiO )、耐火性黒色顔料
2
(例えば Fe— Mn系、 Fe— Co— Cr系、 Fe— Mn— Al系の顔料)を添カ卩することもで きる。この導電性粉末を用いて導体パターンを形成するためには、導電性粉末材料 に適宜上述のビークルをカ卩えて、封着ペーストにすることが好ましい。このようにして 得られた導電性ペーストは真空中で 400〜900°C、 5分〜 1時間程度の加熱焼成を することにより、導電パターンを形成することができる。
[0080] 本発明の PDPまたは FEDの製造方法は、上記の封着材料を用いた封着工程を有 する PDPまたは FEDの製造方法であって、封着工程の一部または全部が減圧雰囲 気で実行される。封着工程を減圧雰囲気にすると、上述の通り、二次焼成工程と真 空排気工程を同時に行うことができ、製品コストの低廉ィ匕に資することになる。また、 本発明の封着材料は、低温で封着可能であることに加えて、熱的安定性も良好であ るため、封着材料の特性に起因するトラブルを抑止することもできる。なお、 VFDおよ び CRTは、 PDPおよび FEDと同様または類似の製造工程を有しており、上記の製 造方法を転用する実益がある。
[0081] 本発明の光部品または電子部品の製造方法は、上記の封着材料を用いた封着工 程を有する光部品または電子部品の製造方法であって、封着工程の全部または一 部が中性雰囲気または還元性雰囲気で実行される。封着工程を中性雰囲気または 還元性雰囲気にすると、光部品に使用する金属部材等が酸化されないとともに、電 子部品等の素子が劣化し難くなり、その結果、光部品の製造コストの低下、電子部品 の信頼性の向上を図ることができる。また、本発明の封着材料は、低温で封着可能 であることに加えて、熱的安定性も良好であるため、封着材料の熱特性に起因するト ラブルを抑止することができる。
[0082] 光部品に関し、光学用キャップ部品を例に挙げ、具体的に説明する。図 1に示した 光学用キャップ部品 1は、円筒形状の側壁部 5と、この側壁部 5の先端に設けられ且 つその中心部にレンズ保持孔を有する端壁部 6とから構成された金属製シェル 2と、 この金属製シェル 2のレンズ保持孔に封着材料 3で固着された光透過性ガラス部材( 球レンズ部材) 4とから構成されている。光学用キャップ部品において、光透過性ガラ ス部材と金属製シェルは封着材料により封着される。封着工程は、一般的に光学用 キャップ部品の製品特性を維持する目的のため、低温で行われるのが慣例である。 具体的には、封着温度は、光透過性ガラス部材の軟ィ匕点以下および金属製シェル のキュリー点以下とされ、通常 550°C以下の温度とされる。したがって、本発明の封 着材料を使用すると、還元性雰囲気または中性雰囲気でも良好に低温封着できると ともに、金属製シェルの酸ィ匕を抑制することができることから、特殊なメツキ処理を行う 必要がなぐ光学キャップ部品のコストを下げることができる。
実施例
[0083] 以下、本発明の封着用ガラス組成物および封着材料を実施例に基づいて詳細に 説明する。
[0084] 表 1〜3は、本発明の封着用ガラス組成物の実施例 (試料 a〜n)、表 4は、比較例( 試料 P、 q)を示している。
[0085] [表 1]
実施例
(モル%) a b c d e
S n O 54 6 1 62 52 60 p2o5 20 20 21 19 19
B 2 O a 4. 5 3 10 1 2 14
Z n O 5. 5 7 3. 5 6. 5 5
S i 02 1 2
A 1 ,03 0. 7 1. 5 ― 1 2
WO 10 ― ― 5 ―
Mg O 1 ― ― 0. 5 ―
B a O ― 0. 5 ― ― ―
Mn O ― 2. 5 ― ― ―
M o O a 0. 3 ― ― ― ―
Nb205 ― ― 0. 5 ― ―
L i 20 ― ― ― 0. 2 ―
N a 0 1. 5 2. 5 0. 5 1. 3 ― κ2ο 1. 5 ― 2. 5 2. 5 ― 熱膨張係数 (X 10 7 V) 1 1 2 108 1 16 104 1 10 ガラス転移点 (°c) 322 335 339 355 330 軟化点 (cc) 38 7 395 391 409 397
N2中 25. 2 24. 3 24. 6 22. 7 24. 0 流動径 (mm)
減圧中 24. 5 23. 0 23. 2 2 1. 1 22. 8
N2中 〇 〇 〇 〇 〇 焼成後の表面状態
減圧中 〇 〇 〇 〇 〇 耐水性 〇 〇 〇 〇 〇 2]
実施例
(モル%) f g h 1 j
S n O 56 57 58 60 62 p2o5 20 21 24 13 20
B203 4. 5 7 3 4. 5 16
Z n O 4 8. 5 1 0 7 ―
S i 02 0. 5 0. 5 3
A 1 ,03 1 1 0. 5 1 2
WO 3 10 5 ― 9 ―
Mg O ― 0. 5 1. 5 ― ―
L i 20 3 ― ― ― ―
N a 20 ― ― 2 2 ― κ2ο 1 ― 0. 5 0. 5 ― 熱膨張係数お 1 o— 7Z°c) 110 114 112 109 106 ガラス転移点 (°c) 326 333 325 323 330 軟化点 (°c) 392 41 2 393 39 1 4 1 1
N2中 24. 6 22. 3 24. 5 24. 7 22. 5 流動径 (mm)
減圧中 22. 9 21. 6 23. 4 23. 6 2 1. 1
N2中 〇 〇 〇 〇 〇 焼成後の表面状態
減圧中 〇 〇 〇 〇 〇 耐水性 〇 〇 o 〇 〇 3] 実施例
(モル%) k 1 m n
S n O 65 56 56. 5 58 p2o5 22. 5 20. 5 20 21
B O :i 8. 5 3 ― 5
Z n O 3 4. 5 4 2
S i o2 ― ― 4. 5 ―
A 1203 1 1 1 1. 5
WO a ― 1 0 10 5
Mg O ― 0. 5 ― ―
L i 20 ― 0. 5 0. 5 0. 3
N a 20 ― 1 1. 5 1. 2
K2O ― 1. 5 2 1
F2 ― 1. 5 ― 5 熱膨張係数(X 10 V°c) 1 10 1 1 2 1 1 1 1 1 8
ガラス転移点 (°C) 3 10 322 33 1 302 軟化点 (°C) 385 387 398 368
N2中 25. 4 25. 1 23. 7 26. 5 流動径 (mm)
減圧中 23. 9 23. 7 22. 5 25. 4
N2中 〇 〇 〇 〇 焼成後の表面状態
減圧中 〇 〇 〇 〇 耐水性 〇 〇 〇 〇 [0088] [表 4]
Figure imgf000024_0001
[0089] 各ガラス試料は次のようにして調製した。まず表 1〜4のガラス組成を有するように ノ ツチ原料を調合し、電気炉内に流量 3LZ分の Nガスを流した上で、流量 1LZ分
2
の Nガスでガラス融液内をパブリングしながら、アルミナ坩堝を用いて、電気炉で N
2 2 雰囲気中において 900°Cで 2時間溶融し、その後、電気炉内を 900°Cに保持した状 態で 50Torr(6. 65kPa)に減圧し、減圧状態を 1時間維持することによりガラス融液 内に存在するガス成分を除去した。
[0090] SnOのバッチ原料として一酸化錫を使用した。 P Oのバッチ原料として正リン酸(
2 5
オルトリン酸)を使用せずに、強リン酸(105重量%リン酸)を使用した。その理由は、 強リン酸は、正リン酸に比べて水分含有量が少なぐこれに付随してガラスバッチの 水分含有量を少なくすることができ、溶融時にガラス融液の吹きこぼれが発生しに《 なるカゝらである。その他の成分の導入原料は、試薬グレードの酸化物を使用した。
[0091] 次に、溶融ガラスを水冷ローラー間に通して薄板状に成形し、ボールミルにて粉砕 後、 目開き 105 mの篩を通過させて、レーザー回折式粒度分布測定装置 (株式会 社島津製作所製 SALD— 2000J)において平均粒径約 10 mのガラス粉末を得た
[0092] ガラス転移点および熱膨張係数は、溶融ガラスを 20 X 5mm φに成形した後、押し 棒式の熱膨張計 (TMA) (リガク株式会社製)により測定した。
[0093] 軟化点は、測定時に窒素ガスを lOOccZ分の流量を流しながら、マクロ型示差熱 分析 (DTA)装置 (リガク株式会社製)により測定した。
[0094] 焼成後の表面状態 (N中)は、周知のフローボタンテストを行 、評価した。まず各試
2
料の真比重に相当する重量の粉末を金型により φ 2cmのボタン状に乾式プレスし、 ボタン状の粉末成形体を得た。次にこの成形体をソーダガラス基板の上に乗せた後 、 N中で、焼成温度 450°Cまで 10°CZ分の速度で昇温して 10分間保持した。その
2
後、この焼成体表面に光沢があり、且つ実体顕微鏡で観察し、結晶が認められない ものを「〇」とした。この焼成体表面に光沢がなぐまたは実体顕微鏡で観察し、結晶 が認められたものを「X」として評価した。また、この焼成体の直径をデジタルノギスで 測定し、流動性 中)を評価した。
2
[0095] 焼成後の表面状態 (減圧中)は、周知のフローボタンテストを行い評価した。まず各 試料の真比重に相当する重量の粉末を金型により φ 2cmのボタン状に乾式プレスし
、ボタン状の粉末成形体を得た。次にこの成形体を表中の各種基板の上に乗せた後 、 1. O X 10_1Torrの減圧中で、焼成温度 470°Cまで 10°CZ分の速度で昇温して 1 0分間保持した。その後、この焼成体表面に光沢があり、且つ実体顕微鏡で観察し、 結晶が認められないものを「〇」とした。この焼成体表面に光沢がなぐまたは実体顕 微鏡で観察し、結晶が認められたものを「X」として評価した。また、この焼成体の直 径をデジタルノギスで測定し、流動性 (減圧中)を評価した。
[0096] 耐水性は、焼成後の表面状態 (N中)の評価で作製したボタン状の試料を使用し
2
て、評価し、各試料を 85°C湿度 85%の恒温恒湿槽内に 1000時間保持した後、ボタ ン表面に白色異物が発生していないものを「〇」、白色異物が発生していないが、リ ン酸成分等の染み出しが認められたものを「△」、白色異物が発生し、リン酸成分等 の染み出しが認められたものを「 X」とした。
[0097] その結果、実施例の試料 a〜nは、熱膨張係数が 106〜118 X 10"V°Cガラス転 移点が 302〜355°Cであり、封着材料として良好な特性を有していた。また、実施例 の試料 a〜nは、焼成後の表面状態も良好であった。一方、比較例の試料 p、 qは、焼 成後の表面状態 (減圧中)が不良であり、減圧雰囲気では封着材料としての機能を 発揮できないと考えられる。また、比較例の試料 p、 qは、耐水性が不良であり、平面 表示装置等の長期信頼性を確保することができないと考えられる。
[0098] 表 5、 6は、本発明の封着材料の実施例 (試料 No. 1〜8)を示している。
[0099] [表 5]
Figure imgf000026_0001
[0100] [表 6]
Figure imgf000026_0002
表中に記載のガラス粉末に表中に記載の耐火性フィラー粉末を混合して、被封着 物である基板の熱膨張係数と整合させた。表中に記載された NZPは NbZr (PO ) 、
4 3
ZWP¾Zr WO (PO ) 、 KZP¾KZr (PO ) 、 KNbZPiま Na Nb Zr (PO )
2 4 4 2 2 4 3 0. 5 0. 5 1. 5 4 の略称である。 [0102] 次に、各種フィラー粉末の作製方法を述べる。
[0103] 酸ィ匕ニオブ (Nb O )フイラ一粉末および二酸ィ匕錫 (SnO )フイラ
2 5 2 一粉末は、同様の 方法で作製した。まず原料粉末に焼結助剤として酸化亜鉛を 3wt%添加し混合した 後、アルミナルツボ中、 1400°Cで 16時間焼成した。続いて焼結塊を取り出し、アルミ ナボールミルにて粉砕した後、金属製の 325メッシュの篩を通し、平均粒径 12 /z mの 酸ィ匕ニオブ (Nb O )および二酸化錫(SnO )のフイラ
2 5 2 一粉末を得た。
[0104] Zr WO (PO ) フィラー粉末の作製方法を述べる。原料としてリン酸ジルコニウム:
2 4 4 2
ZrP Oを lmol相当の 265· 2g、水酸化ジルコニウム: Zr (OH) を lmol相当の 159
2 7 4
. 2g、酸ィ匕タングステン: WOを lmol相当の 231. 8gを混合し、結晶化助剤として酸
3
化マグネシウムを総量の 3wt%に相当する 19. 7g添カ卩してアルミナボールミルで 1時 間混合した。次いでこの混合粉末をアルミナルツボ中、 1400°Cで 15時間焼成を行 い、 Zr WO (PO ) を合成した。冷却後、坩堝力 Zr WO (PO ) 焼結物を取り出
2 4 4 2 2 4 4 2 し、アルミナボールミルにて粉砕、分級し、金属製の 325メッシュの篩を通し、平均粒 径が 15 mである Zr WO (PO ) フィラー粉末を得た。
2 4 4 2
[0105] NbZr (PO ) フィラー粉末は、次のようにして作製した。まずリン酸ニオブ: NbPO
4 3 5 を lmol相当量、リン酸ジルコニウム: ZrP O lmol相当量の混合粉末に対し、分子
2 7
量全体に対して 2wt%の酸ィ匕マグネシウムを添カ卩し、原料として用いた。次にこれら 3種類の粉末を混合した後、アルミナルツボ中で、 1400°C15時間の焼成を行った。 冷却後、焼結した NbZr (PO ) をルツボカ 取り出し、アルミナボールミルにて粉砕
4 3
した後、金属製の 325メッシュの篩により分級した。このようにして平均粒径 14 /z mの NbZr(PO ) フィラー粉末を得た。同様の方法にて、平均粒径 13 /z mの KZr (PO
4 3 2 4
) フィラー粉末、 Na Nb Zr (PO ) フィラー粉末を得た。
3 0. 5 0. 5 1. 5 4 3
[0106] 焼成後の表面状態 (N中)は、以下の手法により評価した。まず各試料の真比重に
2
相当する重量の粉末を金型により φ 2cmのボタン状に乾式プレスし、ボタン状の粉 末成形体を得た。次にこの成形体を表中のソーダガラス基板の上に載置した後、 N
2 中で、 480°C焼成温度まで 10°CZ分の速度で昇温して、焼成温度で 10分間保持し た上で 10°CZ分の速度で室温まで降温した。その後、この焼成体表面に光沢があり 、且つ実体顕微鏡で観察し、結晶が認められないものを「〇」とした。この焼成体表面 に光沢がなぐおよび Zまたは実体顕微鏡で観察し、結晶が認められたものを「χ」と して評価した。また、この焼成体の直径をデジタルノギスで測定し、流動性 中)を
2 評価した。
[0107] 焼成後の表面状態 (減圧中)は、以下の手法により評価した。まず各試料の真比重 に相当する重量の粉末を金型により φ 2cmのボタン状に乾式プレスし、ボタン状の 粉末成形体を得た。次にこの成形体を表中のソーダガラス基板の上に載置した後、 1 . O X 10_1Torrの減圧中で、 490°C焼成温度まで 10°C/分の速度で昇温して、焼 成温度で 10分間保持した上で 10°CZ分の速度で室温まで降温した。その後、この 焼成体表面に光沢があり、且つ実体顕微鏡で観察し、結晶が認められないものを「 〇」とした。この焼成体表面に光沢がなぐまたは実体顕微鏡で観察し、結晶が認め られたものを「X」として評価した。また、この焼成体の直径をデジタルノギスで測定し 、流動性 (減圧中)を評価した。
[0108] 封着性 (N中)は、焼成後の表面状態 (N中)の評価後の焼成体を用いて、評価し
2 2
た。基板にクラックがなぐコンクリート板の上方 lmから落下させたときに、ボタン状の 焼成体が基板力も剥離しな力つたものを「〇」とし、基板にクラックがあり、或いはコン クリート板の上方 lm力 落下したときボタン状の焼成体が基板力 剥離したものを「 X」とした。
[0109] 封着性 (減圧中)は、焼成後の表面状態 (減圧中)の評価後の焼成体を用いて、評 価した。基板にクラックがなぐコンクリート板の上方 lmから落下したときに、ボタン状 の焼成体と基板が剥離しな力 たものを「〇」とし、基板にクラックがあり、或いはコン クリート板の上方 lm力 落下したときボタン状の焼成体と基板が剥離したものを「 X」 とした。
[0110] その結果、実施例の試料 No. 1〜8は、熱膨張係数が 68. 9〜77 X 10_7Z°Cであ り、流動径(N中)が 22. 8〜24. 2mm、流動径(減圧中)が 20. 0〜21. 7mmであ
2
り、封着材料として良好な特性を有していた。また、封着性、焼成後の表面状態も良 好であった。
産業上の利用可能性
[0111] 本発明の封着用ガラス組成物および封着材料は、 PDP、各種電子放出素子を有 する各種开式の FED、 VFD等の平面表示装置の封着、レンズキャップ、 LDキャップ 等の光部品の封着および ICパッケージ、水晶振動子や弾性表面波素子等の圧電振 動子等の電子部品(電子部品収納容器を含む)の封着に好適である。
[0112] その他にも、本発明の封着用ガラス組成物および封着材料は、 CRT,無機エレクト 口ルミネッセンスディスプレイ等の表示装置に使用することもできる。また、平面蛍光ラ ンプ (FFL)等のランプの封着にも使用可能である。さらに、光ファイバ、球レンズ等を 構成部材とする光部品の封着にも使用可能である。
[0113] さらに、本発明の封着用ガラス組成物および封着材料は、有機エレクト口ルミネッセ ンスディスプレイに使用することもできる。具体的には、本発明の封着材料を封着ぺ 一スト、封着タブレット、フリットバー等に加工し、これらを介して、ガラス基板同士を固 定した後、封着部位にレーザービームを照射することで、ガラス基板同士を封着する 。レーザービームは、エキシマレーザー、 YAGレーザー等が使用可能である。

Claims

請求の範囲
[1] ガラス組成として、下記酸化物換算のモル0 /0表示で、 SnO 30〜80%、 P O 10
2 5
〜25% (但し、 25%は含まない)、 B O 0〜20%、 ZnO 0〜20%、 SiO 0〜10
2 3 2
%、 Al O 0〜10%、 WO 0〜20%、 R O (Rは Liゝ Naゝ K、 Csの少なくとも 1つを
2 3 3 2
指す) 0〜20%含有し、且つ低酸素雰囲気における封着に用いることを特徴とする 封着用ガラス組成物。
[2] 更に、ガラス組成として、下記酸ィ匕物換算のモル%表示で、 MoO、 Nb O、 TiO
3 2 5 2
、 ZrO、 CuO、 MnO、 MgO、 CaO、 SrO、 BaOを合量で 0〜35%含有することを特
2
徴とする請求項 1に記載の封着用ガラス組成物。
[3] 更に、ガラス組成として、下記酸化物換算のモル%表示で MoO 0〜5%、 Nb O
3 2 5
0〜15%、TiO 0〜15%、ZrO 0〜15%、 CuO 0〜10%、 MnO 0〜15%
2 2
、 R,0 (R,は Mg、 Ca、 Sr、 Baの少なくとも 1つを指す) 0〜15%含有することを特 徴とする請求項 1に記載の封着用ガラス組成物。
[4] ガラス組成として、下記酸化物換算のモル0 /0表示で、 SnO 30〜80%、 P O 10
2 5
〜25% (但し、 25%は含まない)、 B O 0. 1〜10% (但し、 10%は含まない)、 Zn
2 3
O 0〜200/0、 SiO 0〜: L00/o、 Al O 0〜: L00/o、 WO 0〜200/0、 R 0 (R«Li、
2 2 3 3 2
Na、 K、 Csを指す) 0〜20%、 MoO 0〜5%、 Nb O 0〜15%、 TiO 0〜15
3 2 5 2
%、ZrO 0〜15%、CuO 0〜10%、 MnO 0〜15%、 R,0 (R'は Mg、 Ca、 Sr、
2
Baの少なくとも 1つを指す) 0〜15%含有することを特徴とする封着用ガラス組成物 [5] 更に、ガラス組成として、下記酸ィ匕物換算のモル%表示で、 Fを 0〜10%含有する
2
ことを特徴とする請求項 1〜4のいずれか〖こ記載の封着用ガラス組成物。
[6] 請求項 1〜5のいずれかに記載の封着用ガラス組成物力もなるガラス粉末 50〜: L0 0体積%と、耐火性フィラー粉末 0〜50体積%とを含有することを特徴とする封着材 料。
[7] 減圧雰囲気で焼成したときに、焼成体の表面に光沢があり、且つ失透が認められ な 、ことを特徴とする請求項 6に記載の封着材料。
[8] 中性雰囲気または還元性雰囲気で焼成したときに、焼成体の表面に光沢があり、 且つ失透が認められないことを特徴とする請求項 6に記載の封着材料。
[9] 耐火性フイラ一力 酸化錫、酸化ニオブ、リン酸ジルコニウム、コーディエライト、 Na
Nb Zr (PO )、 KZr (PO ) , Ca Nb Zr (PO )、 NbZr(PO )、 K
0. 5 0. 5 1. 5 4 3 2 4 3 0. 25 0. 5 1. 5 4 3 4 3 0
Nb Zr (PO )、 Zr WO (PO ) の群力 選択される一種または二種以上を含
. 5 0. 5 1. 5 4 3 2 4 4 2
有することを特徴とする請求項 6〜8のいずれかに記載の封着材料。
[10] プラズマディスプレイパネル、フィールドェミッションディスプレイ、蛍光表示管、 CR T、電子部品、光部品のいずれかの封着に使用することを特徴とする請求項 6〜9の V、ずれかに記載の封着材料。
[11] 封着材料を所定形状に焼結させた封着タブレットにおいて、封着材料が請求項 6 〜: L0のいずれかに記載の封着材料であることを特徴とする封着タブレット。
[12] 封着材料力 、一クルに分散された封着ペーストにおいて、封着材料が請求項 6〜1 0のいずれか〖こ記載の封着材料であることを特徴とする封着ペースト。
[13] ビークルカ トルエン、 Ν, Ν,—ジメチルホルムアミド、 1, 3 ジメチルー 2—イミダ ゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート、酢酸イソァミル、プ ロピレンカーボネート、 Ν—メチル 2—ピロリドンァセトニトリル、ジメチルスルホキシ ド、アセトン、メチルェチルケトン、イソドデシルアルコール、イソトリデシルアルコール 、ペンタンジオール、ペンタンジオール誘導体、 C C OH (η=8
η 2η+ 1 〜20)で表される 高級アルコールの群力 選択される一種または二種以上を含有することを特徴とす る請求項 12に記載の封着ペースト。
[14] ビークルが、ニトロセルロース、ポリエチレングリコール誘導体、ポリエチレンカーボ ネートの群力 選択される一種または二種以上を含有することを特徴とする請求項 1
2または 13に記載の封着ペースト。
[15] 請求項 6〜10のヽずれかに記載の封着材料を用いた封着工程を有するプラズマ ディスプレイパネルまたはフィールドェミッションディスプレイの製造方法であって、 封着工程の一部または全部が減圧雰囲気で実行されることを特徴とするプラズマ ディスプレイパネルまたはフィールドェミッションディスプレイの製造方法。
[16] 請求項 6〜10のいずれかに記載の封着材料を用いた封着工程を有する光部品ま たは電子部品の製造方法であって、 封着工程の一部または全部が中性雰囲気または還元性雰囲気で実行されることを 特徴とする光部品または電子部品の製造方法。
PCT/JP2007/061265 2006-07-11 2007-06-04 Composition de verre pour l'étanchéité et matériau étanche WO2008007504A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800256622A CN101484396B (zh) 2006-07-11 2007-06-04 密封用玻璃组合物和密封材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006189909 2006-07-11
JP2006-189909 2006-07-11
JP2007-127853 2007-05-14
JP2007127853A JP5703535B2 (ja) 2006-05-23 2007-05-14 無アルカリガラス基板

Publications (1)

Publication Number Publication Date
WO2008007504A1 true WO2008007504A1 (fr) 2008-01-17

Family

ID=38924307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061265 WO2008007504A1 (fr) 2006-07-11 2007-06-04 Composition de verre pour l'étanchéité et matériau étanche

Country Status (3)

Country Link
KR (1) KR101011420B1 (ja)
CN (1) CN101484396B (ja)
WO (1) WO2008007504A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099381A1 (en) * 2009-02-27 2010-09-02 Corning Incorporated Transition metal doped sn phosphate glass
JP2011225404A (ja) * 2010-04-22 2011-11-10 Nippon Electric Glass Co Ltd SnO−P2O5系ガラス、封着材料及び封着ペースト
WO2012043787A1 (ja) * 2010-10-01 2012-04-05 日本電気硝子株式会社 電気素子パッケージ
JP2012113968A (ja) * 2010-11-25 2012-06-14 Nippon Electric Glass Co Ltd 電気素子パッケージ
US9090498B2 (en) 2010-03-29 2015-07-28 Nippon Electric Glass Co., Ltd. Sealing material and paste material using same
CN105364245A (zh) * 2015-12-17 2016-03-02 哈尔滨工业大学 一种蓝宝石低温焊接方法
JP6105140B1 (ja) * 2015-10-07 2017-03-29 日本化学工業株式会社 負熱膨張材及びそれを含む複合材料
WO2017061402A1 (ja) * 2015-10-07 2017-04-13 日本化学工業株式会社 リン酸タングステン酸ジルコニウムの製造方法
WO2017061403A1 (ja) * 2015-10-07 2017-04-13 日本化学工業株式会社 負熱膨張材及びそれを含む複合材料
JP2018118900A (ja) * 2017-01-25 2018-08-02 日本電気硝子株式会社 光学ガラスレンズ
WO2018139167A1 (ja) * 2017-01-25 2018-08-02 日本電気硝子株式会社 光学ガラスレンズ
CN115196890A (zh) * 2022-07-29 2022-10-18 苏州大学 一种玻璃和可伐合金封接体及其激光封接方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071176A1 (ja) * 2008-12-19 2010-06-24 旭硝子株式会社 封着材料層付きガラス部材とその製造方法、および電子デバイスとその製造方法
CN103025677A (zh) * 2010-07-28 2013-04-03 日本电气硝子株式会社 密封用玻璃以及密封用复合材料
WO2012101524A2 (en) 2011-01-28 2012-08-02 Dalhousie University Radiopaque embolic particles
CN103274601B (zh) * 2013-06-07 2016-01-06 福州大学 一种含Nb2O5封接玻璃及其制备和使用方法
CN103449724A (zh) * 2013-08-23 2013-12-18 青岛光路玻璃器件有限公司 无铅低温封接玻璃
CN103894694B (zh) * 2014-04-17 2016-01-20 哈尔滨工业大学 一种复合型绿色低熔玻璃钎料连接碳化硅增强铝基复合材料的方法
US11083806B2 (en) 2014-11-26 2021-08-10 Abk Biomedical Incorporated Radioembolic particles
CN105590663B (zh) * 2016-01-07 2017-09-22 清华大学 无铅无铋导电银浆、银栅线的制备方法及硅太阳能电池
CN108164144A (zh) * 2016-12-07 2018-06-15 辽宁法库陶瓷工程技术研究中心 一种低温高膨胀系数钛合金封接玻璃及其制备方法和应用
CN107057420A (zh) * 2016-12-29 2017-08-18 广州凯耀资产管理有限公司 无机薄型膨胀钢结构防火涂料及其制备方法
CN108002703A (zh) * 2017-11-28 2018-05-08 贵州威顿晶磷电子材料股份有限公司 一种用于非晶磁粉芯绝缘包覆的无铅低熔点玻璃粉及其制备方法
CN111268911B (zh) * 2020-02-21 2022-06-07 Oppo广东移动通信有限公司 焊接组合物、壳体组件及制备方法和电子设备
WO2024071636A1 (ko) * 2022-09-30 2024-04-04 한솔아이원스 주식회사 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024080531A1 (ko) * 2022-10-13 2024-04-18 한솔아이원스 주식회사 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20240051433A (ko) * 2022-10-13 2024-04-22 한솔아이원스 주식회사 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292564A (ja) * 1998-04-06 1999-10-26 Nippon Electric Glass Co Ltd ホウリン酸スズ系ガラス及び封着材料
JP2001106548A (ja) * 1999-10-07 2001-04-17 Nippon Electric Glass Co Ltd 低融点ガラス及び封着用材料
JP2005350314A (ja) * 2004-06-11 2005-12-22 Nippon Electric Glass Co Ltd 封止用ガラスおよび封止方法
JP2006111463A (ja) * 2004-10-12 2006-04-27 Nippon Electric Glass Co Ltd Pdp封着用粉末およびそれを用いてなるpdp封着用ペースト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292564A (ja) * 1998-04-06 1999-10-26 Nippon Electric Glass Co Ltd ホウリン酸スズ系ガラス及び封着材料
JP2001106548A (ja) * 1999-10-07 2001-04-17 Nippon Electric Glass Co Ltd 低融点ガラス及び封着用材料
JP2005350314A (ja) * 2004-06-11 2005-12-22 Nippon Electric Glass Co Ltd 封止用ガラスおよび封止方法
JP2006111463A (ja) * 2004-10-12 2006-04-27 Nippon Electric Glass Co Ltd Pdp封着用粉末およびそれを用いてなるpdp封着用ペースト

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099381A1 (en) * 2009-02-27 2010-09-02 Corning Incorporated Transition metal doped sn phosphate glass
US8084380B2 (en) 2009-02-27 2011-12-27 Corning Incorporated Transition metal doped Sn phosphate glass
CN102414139A (zh) * 2009-02-27 2012-04-11 康宁股份有限公司 过渡金属掺杂的磷酸锡玻璃
CN102414139B (zh) * 2009-02-27 2015-07-22 康宁股份有限公司 过渡金属掺杂的磷酸锡玻璃
US9090498B2 (en) 2010-03-29 2015-07-28 Nippon Electric Glass Co., Ltd. Sealing material and paste material using same
JP2011225404A (ja) * 2010-04-22 2011-11-10 Nippon Electric Glass Co Ltd SnO−P2O5系ガラス、封着材料及び封着ペースト
WO2012043787A1 (ja) * 2010-10-01 2012-04-05 日本電気硝子株式会社 電気素子パッケージ
JP2012113968A (ja) * 2010-11-25 2012-06-14 Nippon Electric Glass Co Ltd 電気素子パッケージ
WO2017061402A1 (ja) * 2015-10-07 2017-04-13 日本化学工業株式会社 リン酸タングステン酸ジルコニウムの製造方法
KR20180059784A (ko) * 2015-10-07 2018-06-05 니폰 가가쿠 고교 가부시키가이샤 인산텅스텐산지르코늄의 제조 방법
KR102611412B1 (ko) 2015-10-07 2023-12-07 니폰 가가쿠 고교 가부시키가이샤 인산텅스텐산지르코늄의 제조 방법
WO2017061403A1 (ja) * 2015-10-07 2017-04-13 日本化学工業株式会社 負熱膨張材及びそれを含む複合材料
JP6190023B1 (ja) * 2015-10-07 2017-08-30 日本化学工業株式会社 リン酸タングステン酸ジルコニウムの製造方法
JP2018002578A (ja) * 2015-10-07 2018-01-11 日本化学工業株式会社 リン酸タングステン酸ジルコニウムの製造方法
JP2018002577A (ja) * 2015-10-07 2018-01-11 日本化学工業株式会社 負熱膨張材及びそれを含む複合材料
JP6105140B1 (ja) * 2015-10-07 2017-03-29 日本化学工業株式会社 負熱膨張材及びそれを含む複合材料
US10280086B2 (en) 2015-10-07 2019-05-07 Nippon Chemical Industrial Co., Ltd. Negative thermal expansion material and composite material comprising same
US10167197B2 (en) 2015-10-07 2019-01-01 Nippon Chemical Industrial Co., Ltd. Method for producing zirconium tungsten phosphate
CN105364245A (zh) * 2015-12-17 2016-03-02 哈尔滨工业大学 一种蓝宝石低温焊接方法
WO2018139167A1 (ja) * 2017-01-25 2018-08-02 日本電気硝子株式会社 光学ガラスレンズ
JP2018118900A (ja) * 2017-01-25 2018-08-02 日本電気硝子株式会社 光学ガラスレンズ
JP7398185B2 (ja) 2017-01-25 2023-12-14 日本電気硝子株式会社 光学ガラスレンズ
CN115196890A (zh) * 2022-07-29 2022-10-18 苏州大学 一种玻璃和可伐合金封接体及其激光封接方法

Also Published As

Publication number Publication date
CN101484396A (zh) 2009-07-15
CN101484396B (zh) 2012-07-25
KR101011420B1 (ko) 2011-01-28
KR20080085087A (ko) 2008-09-22

Similar Documents

Publication Publication Date Title
WO2008007504A1 (fr) Composition de verre pour l'étanchéité et matériau étanche
JP2008037740A (ja) 封着用ガラス組成物および封着材料
JP5041323B2 (ja) 粉末材料及びペースト材料
JP5476850B2 (ja) タブレットおよびタブレット一体型排気管
KR101242636B1 (ko) 바나듐-인산계 유리
JP5354444B2 (ja) 封着材料
JP5013317B2 (ja) 平面表示装置
JP5083706B2 (ja) ビスマス系ガラス組成物およびビスマス系封着材料
JP5190671B2 (ja) バナジウム系ガラス組成物およびバナジウム系材料
JP2011084437A (ja) 封着材料
JP5170817B2 (ja) ガラスの溶融方法
JP5311274B2 (ja) ビスマス系ガラス組成物および封着材料
JP2009001433A (ja) 封着材料
JP2006169018A (ja) ガラスタブレット、その製造方法およびガラスタブレット一体型排気管
JP4941880B2 (ja) ビスマス系ガラス組成物およびビスマス系封着材料
JP5299834B2 (ja) 支持枠形成用ガラス粉末、支持枠形成材料、支持枠および支持枠の製造方法
JP5476691B2 (ja) 封着材料
JP5419249B2 (ja) ビスマス系ガラス組成物およびビスマス系封着材料
JP2011225404A (ja) SnO−P2O5系ガラス、封着材料及び封着ペースト
JP4953169B2 (ja) 支持枠形成材料
JP5669027B2 (ja) 封着用ガラス組成物および封着材料
JP5397583B2 (ja) ビスマス系ガラス組成物および封着材料
JP5152686B2 (ja) 支持枠形成材料
JP5257829B2 (ja) 封着材料
KR101224513B1 (ko) 비스무트계 유리 조성물 및 비스무트계 봉착재료

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025662.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087019373

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07744650

Country of ref document: EP

Kind code of ref document: A1