WO2024071636A1 - 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 - Google Patents

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 Download PDF

Info

Publication number
WO2024071636A1
WO2024071636A1 PCT/KR2023/011266 KR2023011266W WO2024071636A1 WO 2024071636 A1 WO2024071636 A1 WO 2024071636A1 KR 2023011266 W KR2023011266 W KR 2023011266W WO 2024071636 A1 WO2024071636 A1 WO 2024071636A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
resistant glass
less
weight
based oxide
Prior art date
Application number
PCT/KR2023/011266
Other languages
English (en)
French (fr)
Inventor
전서연
이경민
석혜원
김대근
Original Assignee
한솔아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230076783A external-priority patent/KR20240045989A/ko
Application filed by 한솔아이원스 주식회사 filed Critical 한솔아이원스 주식회사
Publication of WO2024071636A1 publication Critical patent/WO2024071636A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Definitions

  • the present invention benefits from the filing date of Korean Patent Application No. 10-2022-0124957 filed with the Korea Intellectual Property Office on September 30, 2022, and Korean Patent Application No. 10-2023-0076783 filed with the Korea Intellectual Property Office on June 15, 2023. All benefits as of the filing date are claimed, and the entire contents thereof are included in the present invention.
  • the present invention relates to plasma-resistant glass, parts for the interior of a chamber for a semiconductor manufacturing process, and their manufacturing method. Specifically, the content of the plasma-resistant glass components is controlled to achieve a low melting temperature, and the thermal expansion coefficient is reduced to reduce the high temperature. Plasma-resistant glass that prevents damage from thermal shock during use, improves light transmittance and durability, has an appropriate dielectric constant, and improves formability by controlling the viscosity of the melt; parts for the interior of the chamber for the semiconductor manufacturing process; and It's about their manufacturing method.
  • Plasma etching processes are applied when manufacturing semiconductors and/or displays. Recently, with the application of nano-processing, the difficulty of etching has increased, and the internal parts of the process chamber exposed to the high-density plasma environment are made of oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
  • oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
  • oxide-based ceramic materials have a problem of low workability due to their high melting temperature.
  • the dielectric constant can be adjusted in an appropriate range by adjusting the dielectric constant depending on the situation, and the desired shape can be easily formed by adjusting the viscosity. There is a need to develop molding technology.
  • the technical problem to be achieved by the present invention is to have excellent resistance due to the plasma inside the chamber used in the semiconductor manufacturing process, and to have excellent heat resistance under high temperature conditions to prevent damage to the components used inside the chamber and to achieve a low melting temperature.
  • the aim is to provide plasma-resistant glass that has a dielectric constant in an appropriate range and can be easily molded into a desired shape by controlling the viscosity, parts for the interior of a chamber for a semiconductor manufacturing process, and methods for manufacturing them.
  • One embodiment of the present invention provides a plasma-resistant glass containing Si-based oxide, Al-based oxide, and Ba-based oxide.
  • the content of the Si-based oxide is 30% by weight to 80% by weight
  • the content of the Al-based oxide is 5% by weight to 25% by weight
  • the content of the Ba-based oxide is It may be 10% by weight or more and 50% by weight or less.
  • it further includes a Ba-based halide, and the content of the Ba-based halide may be 5% by weight or more and 25% by weight or less.
  • the light transmittance may be 80% or more and 100% or less.
  • the Vickers hardness may be 650 HV or more and 1,000 HV or less.
  • the glass transition temperature may be 600°C or more and 850°C or less.
  • the thermal expansion coefficient may be 4.0
  • the etching rate by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 20 nm/min.
  • the melting point may be 1,400°C or more and 1,700°C or less.
  • One embodiment of the present invention provides parts for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
  • the internal parts include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window.
  • electrode view port
  • inner shutter electro static chuck
  • heater chamber liner
  • shower head CVD Boat
  • wall liner shield
  • cold pad cold pad
  • source head outer liner
  • deposition shield for (Chemical Vapor Deposition)
  • it may be any one of an upper liner, an exhaust plate, and a mask frame.
  • One embodiment of the present invention is a composition comprising 30 to 80% by weight of Si-based oxide, 5 to 25% by weight of Al-based oxide, and 10 to 50% by weight of Ba-based oxide. melting; and cooling the molten composition. It provides a method for producing plasma-resistant glass, including a step.
  • the viscosity of the molten composition may be 10 3 poise or more and 10 5 poise or less.
  • the melting temperature in the step of melting the composition may be 1,400°C or more and 1,700°C or less.
  • One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the temperature of the annealing step may be 400°C or more and 900°C or less.
  • the plasma-resistant glass according to an embodiment of the present invention can have a dielectric constant in a specific range, improves processability by implementing a low melting temperature, and can easily manufacture chamber interior parts for the semiconductor manufacturing process. .
  • the plasma-resistant glass according to an exemplary embodiment of the present invention exhibits a low thermal expansion coefficient and can prevent damage due to thermal shock in a high-temperature atmosphere.
  • the plasma-resistant glass according to an exemplary embodiment of the present invention has improved light transmittance and improved mechanical properties by improving hardness, thereby improving durability in a plasma etching environment.
  • Components used inside a chamber for a semiconductor manufacturing process can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere.
  • the method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can improve moldability by controlling the viscosity of the composition.
  • FIG. 1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention.
  • Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention.
  • Figure 3 is a photograph of the plasma-resistant glass of Example 1 according to an exemplary embodiment of the present invention.
  • Figure 4 is a photograph of the plasma-resistant glass of Example 2 according to an exemplary embodiment of the present invention.
  • Figure 5 is a photograph of the plasma-resistant glass of Example 3 according to an exemplary embodiment of the present invention.
  • Figure 6 is a photograph of the plasma-resistant glass of Example 4 according to an exemplary embodiment of the present invention.
  • Figure 7 is a photograph of the plasma-resistant glass of Example 5 according to an exemplary embodiment of the present invention.
  • Figure 8 is a photograph of the plasma-resistant glass of Example 6 according to an exemplary embodiment of the present invention.
  • Figure 9 is a photograph of the plasma-resistant glass of Example 7 according to an exemplary embodiment of the present invention.
  • Figure 10 is a photograph of the plasma-resistant glass of Comparative Example 1.
  • Figure 11 is a photograph of the plasma-resistant glass of Comparative Example 2.
  • Figure 12 is a photograph of the plasma-resistant glass of Comparative Example 3.
  • a and/or B means “A and B, or A or B.”
  • One embodiment of the present invention provides a plasma-resistant glass containing Si-based oxide, Al-based oxide, and Ba-based oxide.
  • the plasma-resistant glass may be formed by melting a composition containing Si-based oxide, Al-based oxide, and Ba-based oxide.
  • the plasma-resistant glass according to an embodiment of the present invention can have a dielectric constant in a specific range, improves processability by implementing a low melting temperature, and can easily manufacture parts for the interior of the chamber for the semiconductor manufacturing process. , it exhibits low thermal expansion coefficient characteristics, so it can prevent damage due to thermal shock in a high temperature atmosphere, improves light transmittance, and improves mechanical properties by improving hardness, improving durability in a plasma etching environment. Furthermore, moldability can be improved by controlling the viscosity of the melt of the composition.
  • the plasma-resistant glass includes Si-based oxide.
  • Si-based oxide the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the production cost of parts can be reduced by facilitating processing of the plasma-resistant glass. You can.
  • the plasma-resistant glass includes Al-based oxide.
  • Al-based oxide As described above, by including the Al-based oxide, outgassing can be prevented, particle generation can be suppressed, and the wear resistance of the internal parts of the chamber for the semiconductor manufacturing process can be improved. there is.
  • the plasma-resistant glass includes Ba-based oxide.
  • the melt viscosity of the composition can be adjusted to improve moldability.
  • the Si-based oxide may contain an O atom with a Si atom as a central atom.
  • the Si-based oxide is preferably SiO 2 .
  • the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the plasma-resistant glass can be improved.
  • the production cost of parts can be reduced.
  • the Al-based oxide may contain an O atom with an Al atom as a central atom.
  • the Al-based oxide is preferably Al 2 O 3 .
  • the Ba-based oxide may contain an O atom with a Ba atom as a central atom.
  • the Ba-based oxide may be one selected from the group consisting of GeO, GeO 2 , Ge 2 O 3 , and combinations thereof.
  • the Ba-based oxide is selected to contain an O atom with a Ba atom as the central atom, thereby realizing a low thermal expansion coefficient and glass transition temperature of glass, minimizing thermal shock at high temperatures, and improving the semiconductor manufacturing process.
  • the durability of the components used inside the chamber can be improved, and the dielectric constant can be implemented in an appropriate range.
  • the content of the Si-based oxide in the plasma-resistant glass is 30% by weight or more and 80% by weight or less, and the content of the Al-based oxide is 5% by weight or more and 25% by weight or less
  • the content of Ba-based oxide may be 10% by weight or more and 50% by weight or less.
  • the plasma-resistant glass includes 30 to 80% by weight of the Si-based oxide, 5 to 25% by weight of the Al-based oxide, and 10 to 50% by weight of the Ba-based oxide. It may be formed by melting a plasma-resistant glass composition containing it. More specifically, in the plasma-resistant glass, a composition comprising SiO 2 of 30% to 80% by weight, Al 2 O 3 of 5% to 25% by weight, and BaO 2 of 10% to 50% by weight. It may be formed by melting.
  • the plasma-resistant glass includes 30% by weight or more and 80% by weight or less of Si-based oxide.
  • the content of the Si-based oxide may be 35 wt% to 75 wt%, 40 wt% to 70 wt%, 45 wt% to 65 wt%, or 50 wt% to 60 wt%.
  • the plasma-resistant glass includes 5% by weight or more and 25% by weight or less of Al-based oxide.
  • the Al-based oxide is 6 wt% to 24 wt%, 7 wt% to 23 wt%, 8 wt% to 22 wt%, 9 wt% to 21 wt%, and 10 wt% to 20 wt%.
  • it may be 11 weight% or more and 19 weight% or less, 12 weight% or more and 18 weight% or less, 13 weight% or more and 17 weight% or less, or 14 weight% or more and 16 weight% or less.
  • the plasma-resistant glass contains 10% by weight or more and 50% by weight or less of Ba-based oxide.
  • the content of the Ba-based oxide is 11 wt% to 49 wt%, 12 wt% to 48 wt%, 13 wt% to 47 wt%, 14 wt% to 46 wt%, 15 wt% to 45 wt%.
  • Weight% or less 16% by weight or more, 44% by weight or less, 17% by weight or more, 43% by weight or less, 18% by weight or more, 42% by weight or less, 19% by weight or more, 41% by weight or less, 20% by weight or more, 40% by weight or less, 21 Weight% or more 39% by weight or less, 22% or more but 38% by weight or less, 23% or more and 37% by weight or less, 24% or more and 36% by weight or less, 25% or more and 35% by weight or less, 26% or more and 34% by weight % or less, 27 weight% or more and 33 weight% or less, 28 weight% or more and 32 weight% or less, or 29 weight% or more and 31 weight% or less.
  • the plasma-resistant glass may further include a Ba-based halide.
  • the plasma-resistant glass further includes a Ba-based halide, thereby improving moldability and plasma resistance by controlling the melt viscosity of the composition.
  • the Ba-based halide may contain a halogen atom with a Ba atom as a central atom.
  • the Ba-based halide is preferably BaF 2 .
  • the Ba-based halide is selected to contain a halogen atom with a Ba atom as the central atom, thereby reducing the viscosity of the melt of the composition and improving the formability of plasma-resistant glass using the composition. .
  • the content of the Ba-based halide may be 5% by weight or more and 25% by weight or less.
  • the melt viscosity of the composition can be adjusted to improve moldability and plasma resistance.
  • the plasma-resistant glass is formed by melting the composition. Specifically, the plasma-resistant glass is obtained by melting and solidifying the plasma-resistant glass composition.
  • the plasma-resistant glass may have a dielectric constant of 6.65 or more and 8.10 or less.
  • the plasma-resistant glass has a dielectric constant of 6.70 to 8.05, 6.75 to 8.00, 6.80 to 7.95, 6.85 to 7.90, 6.90 to 7.85, 6.95 to 7.80, 7.00 to 7.75, 7.05 to 7.70.
  • 7.10 or more and 7.65 or less 7.15 or more and 7.60 or less, 7.20 or more and 7.55 or less, 7.25 or more and 7.50 or less, 7.30 or more and 7.45 or less, or 7.35 or more and 7.40 or less.
  • the plasma resistant glass has a dielectric constant of 6.79 to 6.99, 6.79 to 7.19, 6.79 to 7.39, 6.79 to 7.59, 6.99 to 7.19, 6.99 to 7.39, 6.99 to 7.59, 7.19 to 7.39.
  • Dielectric constant measurement methods include the capacitance method using an LCR meter, the reflection coefficient method using a network analyzer, and the resonant frequency method.
  • the capacitance method using an LCR meter is mainly used to measure low frequency characteristics (kHz, MHz), and the dielectric constant can be determined from the physical size and electrostatic capacity of the capacitor.
  • the dielectric constant was measured in the frequency range of 20 Hz to 100 Hz using the Keysight E4990A Impedence Analyzer.
  • the weight ratio of the content of the Si-based oxide and the Al-based oxide may be 1:1 to 16:1.
  • the wear resistance of the plasma-resistant glass can be improved and processability can be easily achieved.
  • the plasma-resistant glass may be composed only of Si-based oxide, Al-based oxide, Ba-based oxide, and inevitable impurities.
  • the plasma-resistant glass may be composed only of Si-based oxide, Al-based oxide, Ba-based oxide, Ba-based halide, and inevitable impurities.
  • the plasma-resistant glass does not contain other components except SiO 2 , Al 2 O 3 , BaO 2 and inevitable impurities, or SiO 2 , Al 2 O 3 , BaO 2 , it may not contain any other components except BaF 2 and inevitable impurities.
  • the melt has an appropriate viscosity, so that products with complex shapes can be easily formed.
  • the light transmittance of the plasma-resistant glass may be 80% or more and 100% or less. Specifically, the light transmittance of the plasma-resistant glass may be 82% or more and 98% or less, 85% or more and 95% or less, or 87% or more and 92% or less.
  • “light transmittance” may refer to a value measured using a haze meter (JCH-300S, Oceanoptics).
  • the Vickers hardness of the plasma-resistant glass may be 650 HV or more and 1,000 HV or less.
  • the Vickers hardness of the plasma glass is 670 HV or more and 980 HV or less, 650 HV or more and 950 HV or less, 680 HV or more and 930 HV or less, 700 HV and 900 HV or less, 720 HV and 880 HV or less, 750 HV or more and 850 HV or It may be above 780 HV and below 820 HV.
  • “Vickers hardness” may refer to a value measured using a Vickers hardness meter (Helmut Fischer, FISCHERSCOPE HM-2000).
  • the glass transition temperature of the plasma-resistant glass may be 600 °C or more and 850 °C or less. Specifically, the glass transition temperature of the plasma-resistant glass may be 620 °C or higher and 830 °C or lower, 650 °C or higher and 800 °C or lower, 670 °C or higher and 780 °C or lower, or 700 °C or higher and 750 °C or lower.
  • the thermal expansion coefficient of the plasma-resistant glass may be 4.0 Specifically , the thermal expansion coefficient of the plasma-resistant glass is 4.1 X 10 -6 m/(m°C) or less, 4.3 X 10 -6 m/(m°C) or more 5.7 X 10 -6 m/(m°C) or less, 4.5 X 10 -6 m /(m°C) or more 5.5 X 1 -6 m/(m°C) or less, 4.7 It may be below X 10 -6 m/(m°C) or between 4.9
  • durability can be improved by preventing damage to components due to thermal shock.
  • the etching rate of the plasma-resistant glass by a mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 20 nm/min. Specifically, the etching rate of the plasma-resistant glass by mixed plasma of fluorine and argon (Ar) is more than 0 nm/min and less than 18 nm/min, more than 1 nm/min and less than 16 nm/min, and 2 nm/min.
  • etching rate by the mixed plasma of fluorine and argon (Ar) in the above-mentioned range, the parts used inside the chamber for the semiconductor manufacturing process realize a low etching rate for plasma, thereby reducing the usage time in the semiconductor manufacturing process. It can be improved.
  • the melting point of the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,410 °C and 1,690 °C or less, 1,420 °C and 1,680 °C or less, 1,430 °C or more and 1,670 °C or less, 1,440 °C or more and 1,660 °C or less, 1,450 °C or more and 1,650 °C or less, 1,460 °C or more and 1,644 0°C or less, 1,470 °C or more and 1,630 °C or less, 1,480 °C or more but 1,620 °C or less, 1,490 °C or more but 1,610 °C or less, 1,500 °C or more but 1,600 °C or less, 1,510 °C or more but 1,590 °C or less, 1,520 °C or more but 1,580 °C or less,
  • the plasma-resistant glass may be amorphous. As described above, by implementing the structure of the plasma-resistant glass as amorphous, the durability of parts using the plasma-resistant glass can be improved while simultaneously reducing the etching rate by plasma.
  • One embodiment of the present invention provides parts for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
  • Components used inside a chamber for a semiconductor manufacturing process can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
  • the internal parts include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. (window), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD Boat, wall liner, shield, cold pad, source head, outer liner, deposition shield for (Chemical Vapor Deposition) ), it may be any one of an upper liner, an exhaust plate, and a mask frame. From the above, by using the internal components, the resistance to plasma in the semiconductor manufacturing process is improved and the usage time is extended, thereby minimizing the cost required for semiconductor manufacturing.
  • One embodiment of the present invention is a composition comprising 30 to 80% by weight of Si-based oxide, 5 to 25% by weight of Al-based oxide, and 10 to 50% by weight of Ba-based oxide. melting; and cooling the molten composition. It provides a method for producing plasma-resistant glass, including a step.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere, and can produce glass with higher hardness than existing glass, thereby producing mechanical glass. By increasing the characteristics, durability in a plasma etching environment can be improved.
  • FIG. 1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention.
  • a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention which is an exemplary embodiment of the present invention, will be described in detail.
  • the present invention comprising 30 to 80% by weight of Si-based oxide, 5 to 25% by weight of Al-based oxide, and 10 to 50% by weight of Ba-based oxide. It includes a step (S11) of melting the composition. From the above, the components of the plasma-resistant glass are adjusted, and by adjusting the content of the components, the dielectric constant of the plasma-resistant glass is appropriately implemented, and the plasma-resistant glass is damaged by thermal shock in a high temperature atmosphere. can be prevented, the melting temperature can be lowered, light transparency and durability can be improved, and products with complex shapes can be easily manufactured by controlling the viscosity of the melt.
  • the melting step may be melting the platinum crucible.
  • the components eluted from the crucible can be minimized and the physical properties of the plasma-resistant glass can be realized.
  • a step (S13) of cooling the molten glass composition is included.
  • the step of cooling the molten glass composition as described above crystals of the plasma-resistant glass can be controlled and damage due to rapid thermal change can be prevented.
  • the temperature of the cooling step may be room temperature.
  • crystals of the plasma-resistant glass can be controlled, and melting can be easily performed in the process of manufacturing components for the interior of the chamber for the semiconductor manufacturing process.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the melting point of the composition may be 1,400°C or more and 1,700°C or less.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,410 °C or more and 1,690 °C or less, 1,420 °C or more and 1,680 °C or less, 1,430 °C or more and 1,670 °C or less, 1,440 °C or more and 1,660 °C or less, 1,450 °C or more and 1,650 °C or less, 1,460 °C or more and 1,640 °C °C or less, 1,470 °C or more and 1,630 °C or less, 1,480 °C or more but 1,620 °C or less, 1,490 °C or more but 1,610 °C or less, 1,500 °C or more but 1,600 °C or less, 1,510 °C or more but 1,590 °C or less, 1,520 °C or more but 1,580 °C or less, 1,530 °C Above 1,570°C Or it may be 1,540°C or higher and 1,560°C or lower.
  • the viscosity of the molten composition may be 10 3 poise or more and 10 5 poise or less.
  • One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
  • the method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
  • Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention. Referring to FIG. 2, a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention will be described in detail.
  • the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes melting the plasma-resistant glass (S21).
  • the workability of the process of manufacturing parts for the interior of the chamber for the semiconductor manufacturing process is improved, and at the same time, the molten metal in which the plasma-resistant glass is melted is injected into the mold. By doing so, it can be molded into various shapes.
  • the method of manufacturing components for the interior of a chamber for the semiconductor manufacturing process includes the step of injecting the molten plasma-resistant glass into a mold (S23). As described above, parts of various shapes can be manufactured by injecting the molten plasma-resistant glass into a mold.
  • the mold includes a focus ring, an edge ring, a cover ting, a ring shower, an insulator, and an EPD window. ), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD (Chemical Vapor Deposition boat, wall liner, shield, cold pad, source head, outer liner, deposition shield, It may have any one of the following shapes: an upper liner, an exhaust plate, and a mask frame. As described above, by implementing various shapes of the mold, it is possible to easily implement the shape of the part and reduce manufacturing time.
  • the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes the step of annealing the injected plasma-resistant glass (S25).
  • the step of annealing the injected plasma-resistant glass as described above, the stress caused by heat generated in the part manufactured by injecting into the mold can be minimized to improve the durability of the part and minimize thermal shock at high temperatures. there is.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,400 °C or more and 1,700 °C or less.
  • the melting point of the plasma-resistant glass may be 1,400°C or more and 1,700°C or less.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,410 °C or more and 1,690 °C or less, 1,420 °C or more and 1,680 °C or less, 1,430 °C or more and 1,670 °C or less, 1,440 °C or more and 1,660 °C or less, 1,450 °C or more and 1,650 °C or less, 1,460 °C or more and 1,640 °C °C or less, 1,470 °C or more and 1,630 °C or less, 1,480 °C or more but 1,620 °C or less, 1,490 °C or more but 1,610 °C or less, 1,500 °C or more but 1,600 °C or less, 1,510 °C or more but 1,590 °C or less, 1,520 °C or more but 1,580 °C or less, 1,530 °C Above 1,570°C Or it may be 1,540°C or higher and 1,560°C or lower.
  • the melting temperature in the step of melting the plasma-resistant glass is 1,
  • the temperature of the annealing step may be 400°C or more and 900°C or less.
  • the temperature of the annealing step is 430 °C or more and 890 °C or less, 450 °C or more and 880 °C or less, 470 °C or more and 870 °C or less, 500 °C or more and 860 °C or less, 550 °C or more and 850 °C or less, 560 °C or more and 840 °C Below, 570 °C and below 830 °C, 580 °C and below 820 °C, 590 °C and below 810 °C, 600 °C and below 800 °C, 610 °C and below 790 °C, 620 °C and below 780 °C, 630 °C and below 770 °C , 640 °C or more and 760 °C or less, 650 °C or more
  • it may include a step (S27) of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass.
  • S27 a step of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass.
  • sophisticated components can be manufactured by processing precursors for components used inside the chamber for the semiconductor manufacturing process.
  • a composition was prepared by mixing the ingredients and amounts shown in Table 1 below. Afterwards, the composition was melted by heating at 1,650°C for 4 hours and then cooled at room temperature to prepare plasma-resistant glass.
  • Example 1 ingredient SiO 2 (Unit: weight%) Al 2 O 3 (Unit: weight%) BaO (Unit: weight%) BaF 2 (Unit: weight%)
  • Example 1 55 9 36 - Example 2 55 15 30 - Example 3 63 7 30 - Example 4 48 11 41 - Example 5 45 5 50 - Example 6 62 7 24 7 Example 7 61 7 10 22 Comparative Example 1 28 17 50 - Comparative Example 2 40 30 30 - Comparative Example 3 30 28 42 -
  • the weight of the plasma-resistant glass melted and cooled at room temperature was measured relative to the weight of the composition mixed in the manufacturing process of the Examples and Comparative Examples, and the ratio was calculated and summarized in Table 2 below.
  • Example 7 and the Reference Example were etched with a mixed plasma of fluorine and argon (Ar), and the etch step, which is the step between the etched portion and the non-etched portion, was measured using a confocal laser microscope.
  • the etching rate was calculated by measuring with an analyzer (confocal laser microscope, Olympus OLS 5100 equipment, ⁇ 400 magnification) and dividing by the measured time, and is summarized in Table 3 below.
  • Example 1 55.3
  • Example 2 51.1
  • Example 3 20.7
  • Example 4 61.8
  • Example 5 66.4
  • Example 6 71.2 Example 76.1 Comparative Example 1 0 Comparative Example 2 Can't melt Comparative Example 3 Can't melt
  • Figure 3 is a photograph of the plasma-resistant glass of Example 1 according to an exemplary embodiment of the present invention.
  • Figure 4 is a photograph of the plasma-resistant glass of Example 2 according to an exemplary embodiment of the present invention.
  • Figure 5 is a photograph of the plasma-resistant glass of Example 3 according to an exemplary embodiment of the present invention.
  • Figure 6 is a photograph of the plasma-resistant glass of Example 4 according to an exemplary embodiment of the present invention.
  • Figure 7 is a photograph of the plasma-resistant glass of Example 5 according to an exemplary embodiment of the present invention.
  • Figure 8 is a photograph of the plasma-resistant glass of Example 6 according to an exemplary embodiment of the present invention.
  • Figure 9 is a photograph of the plasma-resistant glass of Example 7 according to an exemplary embodiment of the present invention.
  • Examples 1 to 7 all had yields of 20% or more and were melted to form glass. Furthermore, it was confirmed that the yield of plasma-resistant glass containing Ba-based fluoride rapidly increased to over 70%.
  • Figure 10 is a photograph of the plasma-resistant glass of Comparative Example 1.
  • Figure 11 is a photograph of the plasma-resistant glass of Comparative Example 2.
  • Figure 12 is a photograph of the plasma-resistant glass of Comparative Example 3. Referring to 10 to 12 above and Table 2, it was confirmed that plasma-resistant glass was not obtained in Comparative Example 1, and that melting was not possible in Comparative Examples 2 and 3.
  • Example 7 was lower than that of quartz, which was a reference example, and thus had excellent plasma resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시키고, 적절한 유전 상수를 가지며, 용융물의 점도를 조절하여 성형성을 향상시킨 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다.

Description

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
본 발명은 2022년 09월 30일에 한국특허청에 제출된 한국 특허출원 제10-2022-0124957호 출원일의 이익 및 2023년 06월 15일에 한국특허청에 제출된 한국 특허출원 제10-2023-0076783호 출원일의 이익 각각을 모두 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시키고, 적절한 유전 상수를 가지며, 용융물의 점도를 조절하여 성형성을 향상시킨 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다.
반도체 및/또는 디스플레이 제조 시 플라즈마 식각 공정이 적용되고 있다. 최근 나노 공정이 적용되면서, 식각의 난이도가 증가되고 고밀도 플라즈마 환경에 노출되는 공정 챔버의 내부 부품은 내식성을 갖는 알루미나(Al2O3), 이트리아(Y2O3)와 같은 산화물계 세라믹이 주로 사용되고 있다.
다결정 소재가 불소계 가스를 사용하는 고밀도 플라즈마 식각 환경에 장기간 노출될 경우, 국부적인 침식으로 인해 입자가 탈락되고, 이에 따른 오염 입자의 발생 확률이 높아진다. 이는 반도체/디스플레이의 결함을 유발하며 생산 수율에 악영향을 미친다. 또한, 산화물계 세라믹 소재는 용융 온도가 높아 작업성이 낮은 문제점이 있었다.
따라서, 용융 온도가 낮으면서도 기존의 내플라즈마성 유리의 열충격 손상을 방지할 수 있으며, 상황에 따라 유전 상수를 조절하여 적절한 범위에서 유전 상수가 구현될 수 있고, 점도를 조절하여 원하는 형상으로 용이하게 성형할 수 있는 기술개발이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 반도체 제조 공정에서 사용되는 챔버 내부의 플라즈마에 의하여 저항성이 우수하며, 고온조건에서 내열성이 우수하여 챔버 내부에 사용되는 부품의 손상을 방지하고, 용융 온도를 낮게 구현할 수 있으며, 적절한 범위의 유전 상수를 갖고 점도를 조절하여 원하는 형상으로 용이하게 성형할 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 Si계 산화물, Al계 산화물 및 Ba계 산화물을 포함하는 내플라즈마성 유리를 제공한다.
본 발명의 일 실시상태에 따르면, 상기 Si계 산화물의 함량은 30 중량% 이상 80 중량% 이하이고, 상기 Al계 산화물의 함량은 5 중량% 이상 25 중량% 이하이며, 상기 Ba계 산화물의 함량은 10 중량% 이상 50 중량% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, Ba계 할로겐화물을 더 포함하는 것이며, 상기 Ba계 할로겐물의 함량은 5 중량% 이상 25 중량% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 광투과율이 80% 이상 100% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 비커스 경도가 650 HV 이상 1,000 HV 이하일 수 있다.
본 발명의 일 실시상태에 따르면, 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 열팽창계수는 4.0 X 10-6 m/(m℃) 이상 6.0Х10-6 m/(m℃) 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ting), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 Si계 산화물, 5 중량% 이상 25 중량% 이하의 Al계 산화물 및 10 중량% 이상 50 중량% 이하의 Ba계 산화물을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 용융된 조성물의 점도는 103 poise 이상 105 poise 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 특정한 범위의 유전 상수를 가질 수 있고, 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 조성물의 점도를 조절하여 성형성을 향상시킬 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법의 순서도이다.
도 2는 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법의 순서도이다.
도 3은 본 발명의 일 실시상태에 따른 실시예 1의 내플라즈마성 유리의 사진이다.
도 4는 본 발명의 일 실시상태에 따른 실시예 2의 내플라즈마성 유리의 사진이다.
도 5는 본 발명의 일 실시상태에 따른 실시예 3의 내플라즈마성 유리의 사진이다.
도 6은 본 발명의 일 실시상태에 따른 실시예 4의 내플라즈마성 유리의 사진이다.
도 7은 본 발명의 일 실시상태에 따른 실시예 5의 내플라즈마성 유리의 사진이다.
도 8은 본 발명의 일 실시상태에 따른 실시예 6의 내플라즈마성 유리의 사진이다.
도 9는 본 발명의 일 실시상태에 따른 실시예 7의 내플라즈마성 유리의 사진이다.
도 10은 비교예 1의 내플라즈마 유리의 사진이다.
도 11은 비교예 2의 내플라즈마 유리의 사진이다.
도 12는 비교예 3의 내플라즈마 유리의 사진이다.
[부호의 설명]
S 11: 조성물 용융 단계
S 13: 냉각 단계
S 21: 내플라즈마성 유리 용융 단계
S 23: 금형 주입 단계
S 25: 어닐링 단계
S 27: 가공 단계
본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서 전체에서, "A 및/또는 B"는 "A 및 B, 또는 A 또는 B"를 의미한다.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는 Si계 산화물, Al계 산화물 및 Ba계 산화물을 포함하는 내플라즈마성 유리를 제공한다. 구체적으로 상기 내플라즈마성 유리는 Si계 산화물, Al계 산화물 및 Ba계 산화물을 포함하는 조성물의 용용되어 형성된 것일 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 특정한 범위의 유전 상수를 가질 수 있고, 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있으며, 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있고, 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다. 나아가, 상기 조성물의 용융물의 점도를 조절하여 성형성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Si계 산화물을 포함한다. 상술한 것과 같이, 상기 Si계 산화물을 포함함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Al계 산화물을 포함한다. 상술한 것과 같이, 상기 Al계 산화물을 포함함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Ba계 산화물을 포함한다. 상술한 것과 같이 상기 Ba계 산화물을 포함함으로써, 상기 조성물의 용융물 점도를 조절하여 성형성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Si계 산화물은 Si 원자를 중심원자로 하여 O 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Si계 산화물은 SiO2인 것이 바람직하다. 상술한 것과 같이 상기 Si계 산화물이 Si 원자를 중심원자로 하여 O 원자를 포함하고 있는 것을 선택함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Al계 산화물은 Al 원자를 중심원자로 하여 O 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Al계 산화물은 Al2O3인 것이 바람직하다. 상술한 것과 같이 상기 Al계 산화물은 Al 원자를 중심원자로 하여 O 원자를 포함하고 있는 것을 선택함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Ba계 산화물은 Ba 원자를 중심원자로 하여 O 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Ba계 산화물은 GeO, GeO2, Ge2O3 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다. 상술한 것과 같이 상기 Ba계 산화물은 Ba 원자를 중심원자로 하여 O 원자를 포함하고 있는 것을 선택함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현하고, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 유전 상수를 적절한 범위로 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리에서 상기 Si계 산화물의 함량은 30 중량% 이상 80 중량% 이하이고, 상기 Al계 산화물의 함량은 5 중량% 이상 25 중량% 이하이며, 상기 Ba계 산화물의 함량은 10 중량% 이상 50 중량% 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 30 중량% 이상 80 중량% 이하의 상기 Si계 산화물, 5 중량% 이상 25 중량% 이하의 상기 Al계 산화물 및 10 중량% 이상 50 중량% 이하의 상기 Ba계 산화물을 포함하는 내플라즈마성 유리 조성물이 용융되어 형성된 것일 수 있다. 보다 구체적으로 상기 내플라즈마성 유리에서 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 25 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 BaO2를 포함하는 조성물이 용융되어 형성된 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 30 중량% 이상 80 중량% 이하의 Si계 산화물을 포함한다. 구체적으로 상기 Si계 산화물의 함량은 35 중량% 이상 75 중량% 이하, 40 중량% 이상 70 중량% 이하, 45 중량% 이상 65 중량% 이하 또는 50 중량% 이상 60 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 Si계 산화물의 함량을 조절함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 5 중량% 이상 25 중량% 이하의 Al계 산화물을 포함한다. 구체적으로 상기 Al계 산화물은 6 중량% 이상 24 중량% 이하, 7 중량% 이상 23 중량% 이하, 8 중량% 이상 22 중량% 이하, 9 중량% 이상 21 중량% 이하, 10 중량% 이상 20 중량% 이하, 11 중량% 이상 19 중량% 이하, 12 중량% 이상 18 중량% 이하, 13 중량% 이상 17 중량% 이하 또는 14 중량% 이상 16 중량% 이하인 것일 수 있다. 상술한 것과 같이, 상기 Al계 산화물을 포함하며, 상술한 범위에서 상기 Al계 산화물의 함량을 조절함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 10 중량% 이상 50 중량% 이하의 Ba계 산화물을 포함한다. 구체적으로 상기 Ba계 산화물의 함량은 11 중량% 이상 49 중량% 이하, 12 중량% 이상 48 중량% 이하, 13 중량% 이상 47 중량% 이하, 14 중량% 이상 46 중량% 이하, 15 중량% 이상 45 중량% 이하, 16 중량% 이상 44 중량% 이하, 17 중량% 이상 43 중량% 이하, 18 중량% 이상 42 중량% 이하, 19 중량% 이상 41 중량% 이하, 20 중량% 이상 40 중량% 이하, 21 중량% 이상 39 중량% 이하, 22 중량% 이상 38 중량% 이하, 23 중량% 이상 37 중량% 이하, 24 중량% 이상 36 중량% 이하, 25 중량% 이상 35 중량% 이하, 26 중량% 이상 34 중량% 이하, 27 중량% 이상 33 중량% 이하, 28 중량% 이상 32 중량% 이하 또는 29 중량% 이상 31 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 Ba계 산화물의 함량을 조절함으로써, 상기 조성물의 용융물 점도를 조절하여 성형성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Ba계 할로겐화물을 더 포함하는 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리가 Ba계 할로겐화물을 더 포함함으로써, 상기 조성물의 용융물 점도를 조절하여 성형성을 향상시킬 수 있으며, 내플라즈마성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Ba계 할로겐화물은 Ba 원자를 중심원자로 하여 할로겐 원자를 포함하고 있는 것일 수 있다. 구체적으로 상기 Ba계 할로겐화물은 BaF2인 것이 바람직하다. 상술한 것과 같이 상기 Ba계 할로겐화물은 Ba 원자를 중심원자로 하여 할로겐 원자를 포함하고 있는 것으로 선택함으로써, 상기 조성물의 용융물의 점도를 감소시켜 상기 조성물을 이용한 내플라즈마 유리의 성형성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Ba계 할로겐화물의 함량은 5 중량% 이상 25 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 Ba계 할로겐화물의 함량을 조절함으로써, 상기 조성물의 용융물 점도를 조절하여 성형성을 향상시킬 수 있으며, 내플라즈마성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 상기 조성물이 용융되어 형성된 것이다. 구체적으로 상기 내플라즈마성 유리는 상기 내플라즈마성 유리 조성물이 용융되어 응고된 것이다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 유전 상수가 6.65 이상 8.10 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.70 이상 8.05 이하, 6.75 이상 8.00 이하, 6.80 이상 7.95 이하, 6.85 이상 7.90 이하, 6.90 이상 7.85 이하, 6.95 이상 7.80 이하, 7.00 이상 7.75 이하, 7.05 이상 7.70 이하, 7.10 이상 7.65 이하, 7.15 이상 7.60 이하, 7.20 이상 7.55 이하, 7.25 이상 7.50 이하, 7.30 이상 7.45 이하 또는 7.35 이상 7.40 이하일 수 있다. 보다 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.79 이상 6.99 이하, 6.79 이상 7.19 이하, 6.79 이상 7.39 이하, 6.79 이상 7.59 이하, 6.99 이상 7.19 이하, 6.99 이상 7.39 이하, 6.99 이상 7.59 이하, 7.19 이상 7.39 이하, 7.19 이상 7.59 이하, 7.39 이상 7.59 이하인 것일 수 있다. 유전 상수 측정 방법에는 LCR 계측기를 이용한 정전 용량법(capacitance method), 회로망 분석기(network analyzer)를 이용한 반사도법(refletion coefficient method), 공전 주파수법(resonant frequency method)등이 있다. 유전 상수 측정 방법의 일 예로서 LCR 계측기를 이용한 정전용량법은 저주파 특성(kHz, MHz)를 재는데 주로 사용되며, 커패시터의 물리적 크기, 정전 용량으로부터 유전 상수를 결정할 수 있다. 보다 구체적으로 Keysight E4990A Impedence Analyzer를 이용하여 주파수 20 Hz 내지 100 Hz 범위에서 유전 상수를 측정한 것을 의미할 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유전상수를 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 광투과성과 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 Si계 산화물과 상기 Al계 산화물의 함량의 중량비율은 1 : 1 내지 16 : 1 인 것일 수 있다. 상술한 범위에서 상기 Si계 산화물과 상기 Al계 산화물의 함량의 중량비율을 조절함으로써, 상기 내플라즈마성 유리의 내마모성을 향상시키는 동시에 가공성을 용이하게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 Si계 산화물, Al계 산화물, Ba계 산화물 및 불가피한 불순물만으로 구성된 것일 수 있다. 또는 상기 내플라즈마성 유리는 Si계 산화물, Al계 산화물, Ba계 산화물, Ba계 할로겐화물 및 불가피한 불순물만으로 구성된 것일 수 있다. 구체적으로 본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 SiO2, Al2O3, BaO2 및 불가피한 불순물을 제외한 다른 성분을 포함하지 않는 것이거나 SiO2, Al2O3, BaO2, BaF2 및 불가피한 불순물을 제외한 다른 성분을 포함하지 않는 것일 수 있다. 상술한 성분으로 상기 내플라즈마성 유리가 제조됨으로써, 용융물이 적절한 점도를 가져 복잡한 형상을 갖는 제품을 용이하게 형성할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 광투과율이 80% 이상 100% 이하인 것일 수 있다. 구체적으로 상기 내플라즈마 유리의 광투과율이 82% 이상 98% 이하, 85% 이상 95% 이하 또는 87% 이상 92% 이하일 수 있다. 본 명세서에서 "광투과율"은 헤이즈 미터(JCH-300S, Oceanoptics社)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 광투과율을 구현함으로써, 상기 내플라즈마 유리의 용융도를 향상시키는 동시에 유리화를 높게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 비커스 경도가 650 HV 이상 1,000 HV 이하일 수 있다. 상기 내플라즈마 유리의 비커스 경도가 670 HV 이상 980 HV 이하, 650 HV 이상 950 HV 이하, 680 HV 이상 930 HV 이하, 700 HV 이상 900 HV 이하, 720 HV 이상 880 HV 이하, 750 HV 이상 850 HV 이하 또는 780 HV 이상 820 HV 이하일 수 있다. 본 명세서에서 "비커스 경도"는 비커스 경도계 (Helmut Fischer社, FISCHERSCOPE HM-2000)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 비커스 경도를 구현함으로써, 기계적 특성이 증가하고, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마 유리의 유리전이온도는 620 ℃ 이상 830 ℃ 이하, 650 ℃ 이상 800 ℃ 이하, 670 ℃ 이상 780 ℃ 이하 또는 700 ℃ 이상 750 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유리전이온도를 조절함으로써, 반도체 제조 공정을 위한 챔버 내부용 부품의 고온에서의 열 충격을 최소화하며, 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 열팽창계수는 4.0 X 10-6 m/(m℃) 이상 6.0 X 10-6 m/(m℃) 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마성 유리의 열팽창계수는 4.1 X 10-6 m/(m℃) 이상 5.9 X 10-6 m/(m℃) 이하, 4.2 X 10-6 m/(m℃) 이상 5.8 X 10-6 m/(m℃) 이하, 4.3 X 10-6 m/(m℃) 이상 5.7 X 10-6 m/(m℃) 이하, 4.4 X 10-6 m/(m℃) 이상 5.6 X 10-6 m/(m℃) 이하, 4.5 X 10-6 m/(m℃) 이상 5.5 X 10-6 m/(m℃) 이하, 4.6 X 10-6 m/(m℃) 이상 5.4 X 1-6 m/(m℃) 이하, 4.7 X 10 -6 m/(m℃) 이상 5.3 X 10-6 m/(m℃) 이하, 4.8 X 10-6 m/(m℃) 이상 5.2 X 10-6 m/(m℃) 이하 또는 4.9 X 10-6 m/(m℃) 이상 5.1 X 10-6 m/(m℃) 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 열팽창계수를 조절함으로써, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마성 유리의 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 18 nm/min 이하, 1 nm/min 이상 16 nm/min 이하, 2 nm/min 이상 15 nm/min 이하, 3 nm/min 이상 14 nm/min 이하, 4 nm/min 이상 13 nm/min 이하, 5 nm/min 이상 12 nm/min 이하, 6 nm/min 이상 11 nm/min 이하 또는 7 nm/min 이상 10 nm/min 이하일 수 있다. 상술한 범위에서 상기 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률을 구현함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리의 용융점은 1,410 ℃이상 1,690 ℃ 이하, 1,420 ℃ 이상 1,680 ℃ 이하, 1,430 ℃ 이상 1,670 ℃ 이하, 1,440 ℃ 이상 1,660 ℃ 이하, 1,450 ℃ 이상 1,650 ℃ 이하, 1,460 ℃ 이상 1,640 ℃ 이하, 1,470 ℃ 이상 1,630 ℃ 이하, 1,480 ℃ 이상 1,620 ℃ 이하, 1,490 ℃ 이상 1,610 ℃ 이하, 1,500 ℃ 이상 1,600 ℃ 이하, 1,510 ℃ 이상 1,590 ℃ 이하, 1,520 ℃ 이상 1,580 ℃ 이하, 1,530 ℃ 이상 1,570 ℃ 이하 또는 1,540 ℃ 이상 1,560 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 용융점을 조절함으로써, 상기 내플라즈마성 유리의 용융물의 점도를 조절하며, 상기 내플라즈마성 유리를 이용한 공정의 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 비정질인 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리의 조직을 비정질로 구현함으로써, 상기 내플라즈마성 유리를 이용한 부품의 내구성을 향상시키는 동시에 플라즈마에 의한 식각속도를 감소시킬 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ting), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다. 상술한 것으로부터 상기 내부용 부품을 이용함으로써, 상기 반도체 제조 공정에서의 플라즈마에 대한 저항성을 향상시켜 사용시간을 연장함으로써, 반도체 제조에 소요되는 비용을 최소화할 수 있다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 Si계 산화물, 5 중량% 이상 25 중량% 이하의 Al계 산화물 및 10 중량% 이상 50 중량% 이하의 Ba계 산화물을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있으며, 기존의 유리보다 고경도의 유리를 제조함으로 기계적 특성이 증가하여, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법의 순서도이다. 상기 도 1을 참고하여 본 발명의 일 실시상태인 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법을 구체적으로 설명한다.
본 발명의 일 실시상태인 내플라즈마성 유리의 제조방법에서 상기 내플라즈마성 유리와 중복되는 내용은 설명을 생략한다.
본 발명의 일 실시상태에 따르면, 30 중량% 이상 80 중량% 이하의 Si계 산화물, 5 중량% 이상 25 중량% 이하의 Al계 산화물 및 10 중량% 이상 50 중량% 이하의 Ba계 산화물을 포함하는 조성물을 용융시키는 단계(S11)를 포함한다. 상술한 것으로부터 내플라즈마성 유리의 성분을 조절하며, 상기 성분의 함량을 조절함으로써, 상기 상기 내플라즈마성 유리의 유전 상수를 적절하게 구현하며, 상기 내플라즈마성 유리의 고온 분위기에서 열충격에 의한 손상을 방지하며 용융 온도를 낮게 구현할 수 있고, 광투과성과 내구성을 향상시킬 수 있으며, 용융물의 점도를 조절하여 복잡한 형상을 갖는 제품을 용이하게 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 용융시키는 단계는 백금 도가니에 넣어 용융시키는 것일 수 있다. 상술한 것과 같이 상기 조성물을 백금 도가니에 용융시킴으로써, 도가니에서 용출되는 성분을 최소화하고 상기 내플라즈마성 유리의 물성을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 용융된 유리 조성물을 냉각하는 단계(S13)를 포함한다. 상술한 것과 같이 상기 용융된 유리 조성물을 냉각하는 단계를 포함함으로써, 상기 내플라즈마성 유리의 결정을 조절하며, 급격한 열변화에 의하여 파손되는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 냉각단계의 온도는 상온 것일 수 있다. 상술한 범위에서 상기 냉각단계의 온도를 조절함으로써, 상기 내플라즈마 유리의 결정을 조절할 수 있으며, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정에서의 용융을 용이하게 수행할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 구체적으로 상기 조성물을 용융시키는 단계에서 상기 조성물의 용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리의 용융점은 1,410 ℃ 이상 1,690 ℃ 이하, 1,420 ℃ 이상 1,680 ℃ 이하, 1,430 ℃ 이상 1,670 ℃ 이하, 1,440 ℃ 이상 1,660 ℃ 이하, 1,450 ℃ 이상 1,650 ℃ 이하, 1,460 ℃ 이상 1,640 ℃ 이하, 1,470 ℃ 이상 1,630 ℃ 이하, 1,480 ℃ 이상 1,620 ℃ 이하, 1,490 ℃ 이상 1,610 ℃ 이하, 1,500 ℃ 이상 1,600 ℃ 이하, 1,510 ℃ 이상 1,590 ℃ 이하, 1,520 ℃ 이상 1,580 ℃ 이하, 1,530 ℃ 이상 1,570 ℃ 이하 또는 1,540 ℃ 이상 1,560 ℃ 이하일 수 있다. 상술한 범위에서 상기 조성물을 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 조성물의 점도를 조절하여 상기 내플라즈마 유리를 제조하는 과정의 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 용융된 조성물의 점도는 103 poise 이상 105 poise 이하인 것일 수 있다. 상술한 범위에서 용융된 조성물 점도를 조절함으로써, 작업성을 향상시켜 복잡한 형상을 갖는 제품을 용이하게 제조할 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.
도 2는 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법의 순서도이다. 상기 도 2를 참고하여 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 구체적으로 설명한다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 내플라즈마성 유리를 용융시키는 단계를 포함한다(S21). 상술한 것과 같이 상기 내플라즈마성 유리를 용융시키는 단계를 포함함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정의 작업성을 향상시키는 동시에 금형에 상기 내플라즈마 유리를 용융시킨 용탕을 주입함으로써, 다양한 형태로 성형할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계(S23)를 포함한다. 상술한 것과 같이 상기 용융된 내플라즈마성 유리를 금형에 주입함으로써, 다양한 형태의 부품을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 금형은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ting), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나의 형태를 가질 수 있다. 상술한 것과 같이 상기 금형의 형상을 다양하게 구현함으로써, 용이하게 부품의 형상을 구현하여 제조시간을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 주입된 내플라즈마성 유리를 어닐링하는 단계(S25)를 포함한다. 상술한 것과 같이 상기 주입된 내플라즈마 유리를 어닐링하는 단계를 포함함으로써, 상기 금형에 주입되어 제조된 부품에서 발생한 열에 의한 응력을 최소화하여 부품의 내구성을 향상시키며, 고온에서의 열 충격을 최소화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리의 용융점은 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리의 용융점은 1,410 ℃ 이상 1,690 ℃ 이하, 1,420 ℃ 이상 1,680 ℃ 이하, 1,430 ℃ 이상 1,670 ℃ 이하, 1,440 ℃ 이상 1,660 ℃ 이하, 1,450 ℃ 이상 1,650 ℃ 이하, 1,460 ℃ 이상 1,640 ℃ 이하, 1,470 ℃ 이상 1,630 ℃ 이하, 1,480 ℃ 이상 1,620 ℃ 이하, 1,490 ℃ 이상 1,610 ℃ 이하, 1,500 ℃ 이상 1,600 ℃ 이하, 1,510 ℃ 이상 1,590 ℃ 이하, 1,520 ℃ 이상 1,580 ℃ 이하, 1,530 ℃ 이상 1,570 ℃ 이하 또는 1,540 ℃ 이상 1,560 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리를 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 내플라즈마성 유리의 점도를 조절하여 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다. 구체적으로, 상기 어닐링하는 단계의 온도는 430 ℃ 이상 890 ℃ 이하, 450 ℃ 이상 880 ℃ 이하, 470 ℃ 이상 870 ℃ 이하, 500 ℃ 이상 860 ℃ 이하, 550 ℃ 이상 850 ℃ 이하, 560 ℃ 이상 840 ℃ 이하, 570 ℃ 이상 830 ℃ 이하, 580 ℃ 이상 820 ℃ 이하, 590 ℃ 이상 810 ℃ 이하, 600 ℃ 이상 800 ℃ 이하, 610 ℃ 이상 790 ℃ 이하, 620 ℃ 이상 780 ℃ 이하, 630 ℃ 이상 770 ℃ 이하, 640 ℃ 이상 760 ℃ 이하, 650 ℃ 이상 750 ℃ 이하, 660 ℃ 이상 740 ℃ 이하, 670 ℃ 이상 730 ℃ 이하, 680 ℃ 이상 720 ℃ 이하 또는 690 ℃ 이상 710 ℃ 이하일 수 있다. 상술한 범위에서 상기 어닐링하는 단계의 온도를 조절함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품 내에 형성된 열에 의한 응력을 감소시키며, 고온에서 열충격을 최소화하여 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링된 내플라즈마성 유리에 의하여 제조된 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공하는 단계(S27)를 포함할 수 있다. 상술한 것과 같이 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공함으로써, 정교한 부품을 제조할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 및 비교예>
하기의 표 1에 있는 성분 및 함량으로 혼합하여 조성물을 제조하였다. 이후 상기 조성물을 1,650 ℃ 로 4 시간 동안 가열하여 용융시킨 후 상온에서 냉각하여 내플라즈마 유리를 제조하였다.
<참조예>
쿼츠를 준비하였다.
성분 SiO2
(단위: 중량%)
Al2O3
(단위: 중량%)
BaO
(단위: 중량%)
BaF2
(단위: 중량%)
실시예 1 55 9 36 -
실시예 2 55 15 30 -
실시예 3 63 7 30 -
실시예 4 48 11 41 -
실시예 5 45 5 50 -
실시예 6 62 7 24 7
실시예 7 61 7 10 22
비교예 1 28 17 50 -
비교예 2 40 30 30 -
비교예 3 30 28 42 -
<실험예 1: 수득률 측정>
상기 실시예 및 상기 비교예의 제조과정에서 혼합한 조성물의 무게에 대하여 용융시킨 후 상온에서 냉각된 내플라즈마 유리의 무게를 측정하여 비율을 산출하여 하기 표 2에 정리하였다.
<실험예 2: 식각률 측정>
상기 실시예 7 및 상기 참조예의 일부분에 대하여 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마로 식각을 수행하였으며, 식각이 이루어진 부분과 식각이 이루어지지 않은 부분의 단차인 식각단차를 공초점 레이저 현미경 분석기(confocal laser microscope, 올림푸스 社 OLS 5100 장비, X 400 배율)로 측정하고 측정한 시간으로 나누어 식각률을 산출하여 하기 표 3에 정리하였다.
성분 수득률
(단위: %)
실시예 1 55.3
실시예 2 51.1
실시예 3 20.7
실시예 4 61.8
실시예 5 66.4
실시예 6 71.2
실시예 7 76.1
비교예 1 0
비교예 2 용융불가
비교예 3 용융불가
성분 식각률
(단위: nm/min)
실시예 7 5.02
참조예 235.7
도 3은 본 발명의 일 실시상태에 따른 실시예 1의 내플라즈마성 유리의 사진이다. 도 4는 본 발명의 일 실시상태에 따른 실시예 2의 내플라즈마성 유리의 사진이다. 도 5는 본 발명의 일 실시상태에 따른 실시예 3의 내플라즈마성 유리의 사진이다. 도 6은 본 발명의 일 실시상태에 따른 실시예 4의 내플라즈마성 유리의 사진이다. 도 7은 본 발명의 일 실시상태에 따른 실시예 5의 내플라즈마성 유리의 사진이다. 도 8은 본 발명의 일 실시상태에 따른 실시예 6의 내플라즈마성 유리의 사진이다. 도 9는 본 발명의 일 실시상태에 따른 실시예 7의 내플라즈마성 유리의 사진이다.
상기 도 3 내지 9와 상기 표 2를 참고하면, 실시예 1 내지 7은 수득률이 모두 20 %이상인 것을 확인하였으며, 용융되어 유리질을 형성한 것을 확인하였다. 나아가, Ba계 불화물을 포함하는 내플라즈마 유리는 수득률이 70 %이상으로 급격히 증가한 것을 확인하였다.
도 10은 비교예 1의 내플라즈마 유리의 사진이다. 도 11은 비교예 2의 내플라즈마 유리의 사진이다. 도 12는 비교예 3의 내플라즈마 유리의 사진이다. 상기 10 내지 12 및 상기 표 2를 참고하면, 비교예 1은 내플라즈마 유리가 수득되지 않았으며, 비교예 2 및 3은 용융이 불가한 것을 확인하였다.
상기 표 3을 참고하면, 참조예인 쿼츠의 식각률에 비하여 실시예 7의 식각률은 낮게 구현되어 우수한 내플라즈마성을 갖는 것을 확인하였다.
이상에서 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (17)

  1. Si계 산화물, Al계 산화물 및 Ba계 산화물을 포함하는 내플라즈마성 유리.
  2. 청구항 1에 있어서,
    상기 Si계 산화물의 함량은 30 중량% 이상 80 중량% 이하이고,
    상기 Al계 산화물의 함량은 5 중량% 이상 25 중량% 이하이며,
    상기 Ba계 산화물의 함량은 10 중량% 이상 50 중량% 이하인 것인 내플라즈마성 유리.
  3. 청구항 1에 있어서,
    Ba계 할로겐화물을 더 포함하는 것이며,
    상기 Ba계 할로겐화물의 함량은 5 중량% 이상 25 중량% 이하인 것인 내플라즈마성 유리.
  4. 청구항 1에 있어서,
    광투과율이 80% 이상 100% 이하인 것인 내플라즈마성 유리.
  5. 청구항 1에 있어서,
    비커스 경도가 650 HV 이상 1,000 HV 이하인 것인 내플라즈마성 유리.
  6. 청구항 1에 있어서,
    유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것인 내플라즈마성 유리.
  7. 청구항 1에 있어서,
    열팽창계수는 4.0 X 10 -6 m/(m℃) 이상 6.0 X 10-6 m/(m℃) 이하인 것인 내플라즈마성 유리.
  8. 청구항 1에 있어서,
    불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것인 내플라즈마성 유리.
  9. 청구항 1에 있어서,
    용융점이 1,400 ℃ 이상 1,700 ℃ 이하인 것인 내플라즈마성 유리.
  10. 청구항 1 내지 9 중 어느 한 항의 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품.
  11. 청구항 10에 있어서,
    상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ting), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 반도체 제조 공정을 위한 챔버 내부용 부품.
  12. 30 중량% 이상 80 중량% 이하의 Si계 산화물, 5 중량% 이상 25 중량% 이하의 Al계 산화물 및 10 중량% 이상 50 중량% 이하의 Ba계 산화물을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법.
  13. 청구항 12에 있어서,
    상기 용융된 조성물의 점도는 103 poise 이상 105 poise 이하인 것인 내플라즈마성 유리의 제조방법.
  14. 청구항 12에 있어서,
    상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것인 내플라즈마성 유리의 제조방법.
  15. 청구항 1 내지 9 중 어느 한 항의 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
  16. 청구항 15에 있어서,
    상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것인 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
  17. 청구항 15에 있어서,
    상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것인 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
PCT/KR2023/011266 2022-09-30 2023-08-01 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 WO2024071636A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0124957 2022-09-30
KR20220124957 2022-09-30
KR10-2023-0076783 2023-06-15
KR1020230076783A KR20240045989A (ko) 2022-09-30 2023-06-15 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법

Publications (1)

Publication Number Publication Date
WO2024071636A1 true WO2024071636A1 (ko) 2024-04-04

Family

ID=90478311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011266 WO2024071636A1 (ko) 2022-09-30 2023-08-01 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법

Country Status (1)

Country Link
WO (1) WO2024071636A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080085087A (ko) * 2006-07-11 2008-09-22 니폰 덴키 가라스 가부시키가이샤 봉착용 유리조성물 및 봉착재료
KR20110009862A (ko) * 2009-07-23 2011-01-31 인하대학교 산학협력단 할로우 펄라이트를 포함하는 플라즈마 디스플레이 패널의 격벽용 세라믹 복합체 조성물
KR20180080429A (ko) * 2017-01-04 2018-07-12 한국세라믹기술원 세라믹 부재의 재사용을 위한 내플라즈마 하드코팅 조성물 및 이를 이용한 세라믹 부재의 재생방법
KR20220047136A (ko) * 2020-10-08 2022-04-15 아이원스 주식회사 내플라즈마 유리 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080085087A (ko) * 2006-07-11 2008-09-22 니폰 덴키 가라스 가부시키가이샤 봉착용 유리조성물 및 봉착재료
KR20110009862A (ko) * 2009-07-23 2011-01-31 인하대학교 산학협력단 할로우 펄라이트를 포함하는 플라즈마 디스플레이 패널의 격벽용 세라믹 복합체 조성물
KR20180080429A (ko) * 2017-01-04 2018-07-12 한국세라믹기술원 세라믹 부재의 재사용을 위한 내플라즈마 하드코팅 조성물 및 이를 이용한 세라믹 부재의 재생방법
KR20220047136A (ko) * 2020-10-08 2022-04-15 아이원스 주식회사 내플라즈마 유리 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A AHMADI KORDLAR: "Optical Properties and Crystallization Behavior of SiO2-Al2O3-BaO-BaF2 Glasses Containing Different Amounts of Bi2O3", ADVANCED CERAMICS PROGRESS, vol. 7, no. 2, 1 January 2021 (2021-01-01), pages 34 - 43, XP093156485, DOI: 10.30501/ACP.2021.287637.1063 *

Similar Documents

Publication Publication Date Title
US7087541B2 (en) Glass composition for display panels
WO2019098488A1 (ko) 내플라즈마성 코팅막의 제조방법 및 이에 의해 형성된 내플라즈마성 부재
WO2021132893A1 (ko) 내플라즈마 유리 및 그 제조방법
WO2019098665A1 (ko) 고온 내산화성이 향상된 지르코늄 합금 피복관 및 이의 제조방법
WO2024071636A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2023167387A1 (ko) 탄화규소 분말의 합성방법
WO2020226292A1 (ko) 적층 구조체, 이를 포함하는 연성동박적층필름, 및 상기 적층 구조체의 제작방법
KR20220047136A (ko) 내플라즈마 유리 및 그 제조 방법
WO2024085409A2 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024080531A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024080530A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024080532A2 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2023063654A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
WO2019054617A1 (ko) 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
WO2022255686A1 (ko) 내플라즈마 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2022075687A1 (ko) 내플라즈마 유리 및 그 제조 방법
KR20240045989A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20240051815A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2019093781A1 (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스
KR20240055626A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2021006687A1 (en) Coating composition having high light transmittance, coating glass and method for preparation thereof, and cooking appliance using same
WO2021060583A1 (ko) 플라즈마 내식성을 갖는 결정화 유리 및 이를 포함하는 건식식각 공정 부품
WO2022164186A1 (ko) 법랑 조성물 및 그 제조 방법과, 이를 이용한 조리기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872760

Country of ref document: EP

Kind code of ref document: A1