KR20240051815A - 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 - Google Patents

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 Download PDF

Info

Publication number
KR20240051815A
KR20240051815A KR1020230106815A KR20230106815A KR20240051815A KR 20240051815 A KR20240051815 A KR 20240051815A KR 1020230106815 A KR1020230106815 A KR 1020230106815A KR 20230106815 A KR20230106815 A KR 20230106815A KR 20240051815 A KR20240051815 A KR 20240051815A
Authority
KR
South Korea
Prior art keywords
plasma
weight
resistant glass
less
melting
Prior art date
Application number
KR1020230106815A
Other languages
English (en)
Inventor
전서연
이경민
석혜원
김대근
Original Assignee
한솔아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한솔아이원스 주식회사 filed Critical 한솔아이원스 주식회사
Priority to PCT/KR2023/012285 priority Critical patent/WO2024080531A1/ko
Publication of KR20240051815A publication Critical patent/KR20240051815A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Glass Compositions (AREA)

Abstract

본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하고, SrO를 추가로 포함하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시킬 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다.

Description

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법{PLASMA RESISTANT GLASS, PARTS AT CHAMBER INSIDE FOR SEMICONDUCTOR MANUFACTURING PROCESS AND MANUFACTURING METHOD THEREOF}
본 발명은 2022년 10월 13일에 한국특허청에 제출된 한국 특허출원 제10-2022-0131087호 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하고, SrO를 추가로 포함하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시킬 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다.
반도체 및/또는 디스플레이 제조 시 플라즈마 식각 공정이 적용되고 있다. 최근 나노 공정이 적용되면서, 식각의 난이도가 증가되고 고밀도 플라즈마 환경에 노출되는 공정 챔버의 내부 부품은 내식성을 갖는 알루미나(Al2O3), 이트리아(Y2O3)와 같은 산화물계 세라믹이 주로 사용되고 있다.
다결정 소재가 불소계 가스를 사용하는 고밀도 플라즈마 식각 환경에 장기간 노출될 경우, 국부적인 침식으로 인해 입자가 탈락되고, 이에 따른 오염 입자의 발생 확률이 높아진다. 이는 반도체/디스플레이의 결함을 유발하며 생산 수율에 악영향을 미친다. 또한, 산화물계 세라믹 소재는 용융 온도가 높아 작업성이 낮은 문제점이 있었다.
따라서, 용융 온도가 낮으면서도 기존의 내플라즈마성 유리의 열충격 손상을 방지할 수 있는 기술개발이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 반도체 제조 공정에서 사용되는 챔버 내부의 플라즈마에 의하여 저항성이 우수하며, 고온조건에서 내열성이 우수하여 챔버 내부에 사용되는 부품의 손상을 방지하고, 용융 온도를 낮게 구현할 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물이 용융되어 형성된 것인 내플라즈마성 유리를 제공한다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 SiO2, Al2O3, SrO 및 불가피한 불순물만을 포함하며, 상기 SiO2의 함량은 30 중량% 이상 68 중량% 이하이고, 상기 Al2O3의 함량은 5 중량% 이상 25 중량% 이하이며, 상기 SrO의 함량은 15 중량% 이상 50 중량% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 광투과율이 80% 이상 100% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 비커스 경도가 650 HV 이상 1,000 HV 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 열팽창계수는 4.0 X 10-6m/(m℃) 이상 6.0 X 10-6m/(m℃) 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 용융점이 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는 내플라즈마성 유리의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는, 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법의 순서도이다.
도 2는 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법의 순서도이다.
도 3은 본 발명의 일 실시상태인 실시예 1 내지 8과 비교예 1과 2의 내플라즈마성 유리를 촬영한 사진이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"는 "A 및 B, 또는 A 또는 B"를 의미한다.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물이 용융되어 형성된 것인 내플라즈마성 유리를 제공한다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있으며, 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있고, 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 30 중량% 이상 80 중량% 이하의 SiO2을 포함한다. 구체적으로 상기 조성물에서 SiO2의 함량은 31 중량% 이상 79 중량% 이하, 32 중량% 이상 78 중량% 이하, 33 중량% 이상 77 중량% 이하, 34 중량% 이상 76 중량% 이하, 35 중량% 이상 75 중량% 이하, 36 중량% 이상 74 중량% 이하, 37 중량% 이상 73 중량% 이하, 38 중량% 이상 72 중량% 이하, 39 중량% 이상 71 중량% 이하, 40 중량% 이상 70 중량% 이하, 41 중량% 이상 69 중량% 이하, 42 중량% 이상 68 중량% 이하, 43 중량% 이상 67 중량% 이하, 44 중량% 이상 66 중량% 이하, 45 중량% 이상 65 중량% 이하, 46 중량% 이상 64 중량% 이하, 47 중량% 이상 63 중량% 이하, 48 중량% 이상 62 중량% 이하, 49 중량% 이상 61 중량% 이하, 50 중량% 이상 60 중량% 이하, 51 중량% 이상 59 중량% 이하, 52 중량% 이상 58 중량% 이하, 53 중량% 이상 57 중량% 이하 또는 54 중량% 이상 56 중량% 이하일 수 있다. 상술한 것과 같이, 상기 SiO2를 포함하며, 상술한 범위에서 상기 SiO2의 함량을 조절함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 5 중량% 이상 35 중량% 이하의 Al2O3을 포함한다. 구체적으로 상기 조성물에서 Al2O3의 함량은 6 중량% 이상 34 중량% 이하, 7 중량% 이상 33 중량% 이하, 8 중량% 이상 32 중량% 이하, 9 중량% 이상 31 중량% 이하, 10 중량% 이상 30 중량% 이하, 11 중량% 이상 29 중량% 이하, 12 중량% 이상 28 중량% 이하, 13 중량% 이상 27 중량% 이하, 14 중량% 이상 26 중량% 이하, 15 중량% 이상 25 중량% 이하, 16 중량% 이상 24 중량% 이하, 17 중량% 이상 23 중량% 이하, 18 중량% 이상 22 중량% 이하 또는 19 중량% 이상 21 중량% 이하일 수 있다. 상술한 것과 같이, 상기 Al2O3를 포함하며, 상술한 범위에서 상기 Al2O3의 함량을 조절함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있고, 후술할 SrO를 포함하더라도 상기 조성물의 용융온도를 낮추어 용이하게 용융시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 10 중량% 이상 50 중량% 이하의 SrO을 포함한다. 구체적으로 상기 조성물에서 SrO의 함량은 11 중량% 이상 49 중량% 이하, 12 중량% 이상 48 중량% 이하, 13 중량% 이상 47 중량% 이하, 14 중량% 이상 46 중량% 이하, 15 중량% 이상 45 중량% 이하, 16 중량% 이상 44 중량% 이하, 17 중량% 이상 43 중량% 이하, 18 중량% 이상 42 중량% 이하, 19 중량% 이상 41 중량% 이하, 20 중량% 이상 40 중량% 이하, 21 중량% 이상 39 중량% 이하, 22 중량% 이상 38 중량% 이하, 23 중량% 이상 37 중량% 이하, 24 중량% 이상 36 중량% 이하, 25 중량% 이상 35 중량% 이하, 26 중량% 이상 34 중량% 이하, 27 중량% 이상 33 중량% 이하, 28 중량% 이상 32 중량% 이하 또는 29 중량% 이상 31 중량% 이하일 수 있다. 상술한 것과 같이, 상기 SrO를 포함하며, 상술한 범위에서 상기 SrO의 함량을 조절함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 상기 조성물이 용융되어 형성된 것이다. 상술한 것과 같이 상기 조성물을 용융하고 이를 냉각하여 상기 내플라즈마성 유리를 형성함으로써, 비교적 낮은 온도로 상기 조성물을 용융시킬 수 있어 상기 내플라즈마성 유리를 용이하게 형성할 수 있으며, 열충격에 파손되는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 유전 상수가 6.65 이상 8.10 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.70 이상 8.05 이하, 6.75 이상 8.00 이하, 6.80 이상 7.95 이하, 6.85 이상 7.90 이하, 6.90 이상 7.85 이하, 6.95 이상 7.80 이하, 7.00 이상 7.75 이하, 7.05 이상 7.70 이하, 7.10 이상 7.65 이하, 7.15 이상 7.60 이하, 7.20 이상 7.55 이하, 7.25 이상 7.50 이하, 7.30 이상 7.45 이하 또는 7.35 이상 7.40 이하일 수 있다. 보다 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.79 이상 6.99 이하, 6.79 이상 7.19 이하, 6.79 이상 7.39 이하, 6.79 이상 7.59 이하, 6.99 이상 7.19 이하, 6.99 이상 7.39 이하, 6.99 이상 7.59 이하, 7.19 이상 7.39 이하, 7.19 이상 7.59 이하, 7.39 이상 7.59 이하인 것일 수 있다. 유전 상수 측정 방법에는 LCR 계측기를 이용한 정전 용량법(capacitance method), 회로망 분석기(network analyzer)를 이용한 반사도법(refletion coefficient method), 공전 주파수법(resonant frequency method)등이 있다. 유전 상수 측정 방법의 일 예로서 LCR 계측기를 이용한 정전용량법은 저주파 특성(kHZ, MHz)를 재는데 주로 사용되며, 커패시터의 물리적 크기, 정전 용량으로부터 유전 상수를 결정할 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유전상수를 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 광투과성과 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 SiO2, Al2O3, SrO 및 불가피한 불순물만을 포함할 수 있다. 상술한 것과 같이 상기 조성물의 성분을 조절함으로써, 용융온도를 낮게 구현할 수 있으며, 결정화를 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 유기 바인더 및/또는 용제를 포함하지 않는 것일 수 있다. 상술한 것과 같이 상기 조성물이 유기 바인더 및/또는 용제를 포함하지 않음으로써 불순물을 최소화하며, 광투과도를 낮게 확보하고 식각율을 낮게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물에서 상기 SiO2의 함량은 30 중량% 이상 68 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 SiO2의 함량을 조절함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물에서 상기 Al2O3의 함량은 5 중량% 이상 25 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 Al2O3의 함량을 조절함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있고, 후술할 SrO를 포함하더라도 상기 조성물의 용융온도를 낮추어 용이하게 용융시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물에서 상기 SrO의 함량은 15 중량% 이상 50 중량% 이하인 것일 수 있다. 상술한 것과 같이, 상기 SrO를 포함하며, 상술한 범위에서 상기 SrO의 함량을 조절함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 광투과율이 80% 이상 100% 이하인 것일 수 있다. 구체적으로 상기 내플라즈마 유리의 광투과율이 82% 이상 98% 이하, 85% 이상 95% 이하 또는 87% 이상 92% 이하일 수 있다. 본 명세서에서 "광투과율"은 헤이즈 미터(JCH-300S, Oceanoptics社)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 광투과율을 구현함으로써, 상기 내플라즈마 유리의 용융도를 향상시키는 동시에 유리화를 높게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 비커스 경도가 650 HV 이상 1,000 HV 이하일 수 있다. 상기 내플라즈마 유리의 비커스 경도가 670 HV 이상 980 HV 이하, 650 HV 이상 950 HV 이하, 680 HV 이상 930 HV 이하, 700 HV 이상 900 HV 이하, 720 HV 이상 880 HV 이하, 750 HV 이상 850 HV 이하 또는 780 HV 이상 820 HV 이하일 수 있다. 본 명세서에서 "비커스 경도"는 비커스 경도계 (Helmut Fischer사, FISCHERSCOPE HM-2000)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 비커스 경도를 구현함으로써, 기계적 특성이 증가하고, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마 유리의 유리전이온도는 620 ℃ 이상 830 ℃ 이하, 650 ℃ 이상 800 ℃ 이하, 670 ℃ 이상 780 ℃ 이하 또는 700 ℃ 이상 750 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유리전이온도를 조절함으로써, 반도체 제조 공정을 위한 챔버 내부용 부품의 고온에서의 열 충격을 최소화하며, 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 열팽창계수는 4.0 X 10-6m/(m℃) 이상 6.0 X 10-6m/(m℃) 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마성 유리의 열팽창계수는 4.1 X 10-6m/(m℃) 이상 5.9 X 10-6m/(m℃) 이하, 4.2 X 10-6m/(m℃) 이상 5.8 X 10-6m/(m℃) 이하, 4.3 X 10-6m/(m℃) 이상 5.7 X 10-6m/(m℃) 이하, 4.4 X 10-6m/(m℃) 이상 5.6 X 10-6m/(m℃) 이하, 4.5 X 10-6m/(m℃) 이상 5.5 X 10-6m/(m℃) 이하, 4.6 X 10-6m/(m℃) 이상 5.4 X 10-6m/(m℃) 이하, 4.7 X 10-6m/(m℃) 이상 5.3 X 10-6m/(m℃) 이하, 4.8 X 10-6m/(m℃) 이상 5.2 X 10-6m/(m℃) 이하 또는 4.9 X 10-6m/(m℃) 이상 5.1 X 10-6m/(m℃) 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 열팽창계수를 조절함으로써, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것일 수 있다. 구체적으로, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 18 nm/min 이하, 1 nm/min 이상 16 nm/min 이하, 2 nm/min 이상 15 nm/min 이하, 3 nm/min 이상 14 nm/min 이하, 4 nm/min 이상 13 nm/min 이하, 5 nm/min 이상 12 nm/min 이하, 6 nm/min 이상 11 nm/min 이하 또는 7 nm/min 이상 10 nm/min 이하일 수 있다. 상술한 범위에서 상기 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률을 구현함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 식각단차는 150 nm 이상 400 nm 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리의 식각단차는 160 nm 이상 390 nm 이하, 170 nm 이상 380 nm 이하, 180 nm 이상 370 nm 이하 또는 190 nm 이상 360 nm 이하인 것일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 식각단차를 구현함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 용융점이 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,560 ℃ 이상 1,740 ℃ 이하, 1,570 ℃ 이상 1,730 ℃ 이하, 1,580 ℃ 이상 1,720 ℃ 이하, 1,590 ℃ 이상 1,710 ℃ 이하, 1,600 ℃ 이상 1,700 ℃ 이하, 1,610 ℃ 이상 1,690 ℃ 이하, 1,620 ℃ 이상 1,680 ℃ 이하, 1,630 ℃ 이상 1,670 ℃ 이하 또는 1,640 ℃ 이상 1,660 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 용융점을 조절함으로써, 상기 내플라즈마성 유리의 용융물의 점도를 조절하며, 상기 내플라즈마성 유리를 이용한 공정의 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 비정질인 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리의 조직을 비정질로 구현함으로써, 상기 내플라즈마성 유리를 이용한 부품의 내구성을 향상시키는 동시에 플라즈마에 의한 식각속도를 감소시킬 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다. 상술한 것으로부터 상기 내부용 부품을 이용함으로써, 상기 반도체 제조 공정에서의 플라즈마에 대한 저항성을 향상시켜 사용시간을 연장함으로써, 반도체 제조에 소요되는 비용을 최소화할 수 있다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있으며, 기존의 유리보다 고경도의 유리를 제조함으로 기계적 특성이 증가하여, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태인 내플라즈마성 유리의 제조방법에서 상기 내플라즈마성 유리와 중복되는 내용은 설명을 생략한다.
본 발명의 일 실시상태에 따르면, 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계(S11)를 포함한다. 상술한 것으로부터 내플라즈마성 유리의 성분을 조절하며, 상기 성분의 함량을 조절함으로써, 상기 내플라즈마성 유리의 고온 분위기에서 열충격에 의한 손상을 방지하며 용융 온도를 낮게 구현할 수 있고, 광투과성과 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 용융시키는 단계는 백금 도가니에 넣어 용융시키는 것일 수 있다. 상술한 것과 같이 상기 조성물을 백금 도가니에 용융시킴으로써, 도가니에서 용출되는 성분을 최소화하고 상기 내플라즈마성 유리의 물성을 구현할 수 있다.
*본 발명의 일 실시상태에 따르면, 상기 용융된 유리 조성물을 냉각하는 단계(S13)를 포함한다. 상술한 것과 같이 상기 용융된 유리 조성물을 냉각하는 단계를 포함함으로써, 상기 내플라즈마성 유리의 결정을 조절하며, 급격한 열변화에 의하여 파손되는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 냉각단계의 온도는 상온일 수 있다. 상술한 범위에서 상기 냉각단계의 온도를 조절함으로써, 상기 내플라즈마 유리의 결정을 조절할 수 있으며, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정에서의 용융을 용이하게 수행할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 구체적으로 상기 조성물을 용융시키는 단계의 용융 온도는 용융점이 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,560 ℃ 이상 1,740 ℃ 이하, 1,570 ℃ 이상 1,730 ℃ 이하, 1,580 ℃ 이상 1,720 ℃ 이하, 1,590 ℃ 이상 1,710 ℃ 이하, 1,600 ℃ 이상 1,700 ℃ 이하, 1,610 ℃ 이상 1,690 ℃ 이하, 1,620 ℃ 이상 1,680 ℃ 이하, 1,630 ℃ 이상 1,670 ℃ 이하 또는 1,640 ℃ 이상 1,660 ℃ 이하일 수 있다. 상술한 범위에서 상기 조성물을 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 조성물의 점도를 조절하여 상기 내플라즈마 유리를 제조하는 과정의 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 내플라즈마성 유리를 용융시키는 단계를 포함한다(S21). 상술한 것과 같이 상기 내플라즈마성 유리를 용융시키는 단계를 포함함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정의 작업성을 향상시키는 동시에 금형에 상기 내플라즈마 유리를 용융시킨 용탕을 주입함으로써, 다양한 형태로 성형할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계(S23)를 포함한다. 상술한 것과 같이 상기 용융된 내플라즈마성 유리를 금형에 주입함으로써, 다양한 형태의 부품을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 금형은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나의 형태를 가질 수 있다. 상술한 것과 같이 상기 금형의 형상을 다양하게 구현함으로써, 용이하게 부품의 형상을 구현하여 제조시간을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 주입된 내플라즈마성 유리를 어닐링하는 단계(S25)를 포함한다. 상술한 것과 같이 상기 주입된 내플라즈마 유리를 어닐링하는 단계를 포함함으로써, 상기 금형에 주입되어 제조된 부품에서 발생한 열에 의한 응력을 최소화하여 부품의 내구성을 향상시키며, 고온에서의 열 충격을 최소화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,560 ℃ 이상 1,740 ℃ 이하, 1,570 ℃ 이상 1,730 ℃ 이하, 1,580 ℃ 이상 1,720 ℃ 이하, 1,590 ℃ 이상 1,710 ℃ 이하, 1,600 ℃ 이상 1,700 ℃ 이하, 1,610 ℃ 이상 1,690 ℃ 이하, 1,620 ℃ 이상 1,680 ℃ 이하, 1,630 ℃ 이상 1,670 ℃ 이하 또는 1,640 ℃ 이상 1,660 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리를 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 내플라즈마성 유리의 점도를 조절하여 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다. 구체적으로, 상기 어닐링하는 단계의 온도는 430 ℃ 이상 890 ℃ 이하, 450 ℃ 이상 880 ℃ 이하, 470 ℃ 이상 870 ℃ 이하, 500 ℃ 이상 860 ℃ 이하, 550 ℃ 이상 850 ℃ 이하, 560 ℃ 이상 840 ℃ 이하, 570 ℃ 이상 830 ℃ 이하, 580 ℃ 이상 820 ℃ 이하, 590 ℃ 이상 810 ℃ 이하, 600 ℃ 이상 800 ℃ 이하, 610 ℃ 이상 790 ℃ 이하, 620 ℃ 이상 780 ℃ 이하, 630 ℃ 이상 770 ℃ 이하, 640 ℃ 이상 760 ℃ 이하, 650 ℃ 이상 750 ℃ 이하, 660 ℃ 이상 740 ℃ 이하, 670 ℃ 이상 730 ℃ 이하, 680 ℃ 이상 720 ℃ 이하 또는 690 ℃ 이상 710 ℃ 이하일 수 있다. 상술한 범위에서 상기 어닐링하는 단계의 온도를 조절함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품 내에 형성된 열에 의한 응력을 감소시키며, 고온에서 열충격을 최소화하여 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링된 내플라즈마성 유리에 의하여 제조된 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공하는 단계(S27)를 포함할 수 있다. 상술한 것과 같이 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공함으로써, 정교한 부품을 제조할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1>
60 중량%의 SiO2, 20 중량%의 Al2O3 및 20 중량%의 SrO를 포함하는 조성물을 제조하였다. 구체적으로 상기 조성물을 600 g 중량으로 준비하고, 지르코니아 볼 밀링 방식으로 대략 1 시간동안 상기 조성물을 혼합하였다. 즉, 조성물 600 g:지르코니아 볼 1,800 g(중량비 1:3)으로 하여 상기 조성물을 건식 혼합한 후, 24 시간 동안 건조하였다. 이후 상기 건조된 조성물을 슈퍼카탈로를 이용하여 1,650 ℃ 의 온도에 도달할 때까지 10 ℃/min 의 속도로 온도를 증가시켰고, 1,650 ℃ 의 온도에서 대략 2 시간 동안 유지하여 용융된 조성물을 제조하였다.
이후 상기 용융된 조성물을 상온으로 냉각하여 내플라즈마성 유리를 제조하였다.
<실시예 2>
상기 실시예 1에서 상기 조성물이 45 중량%의 SiO2, 15 중량%의 Al2O3 및 40 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 3>
상기 실시예 1에서 상기 조성물이 60 중량%의 SiO2, 15 중량%의 Al2O3 및 25 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 4>
상기 실시예 1에서 상기 조성물이 65 중량%의 SiO2, 15 중량%의 Al2O3 및 20 중량%의 SrO를 포함하도록 제조한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
*<실시예 5>
상기 실시예 1에서 상기 조성물이 30 중량%의 SiO2, 25 중량%의 Al2O3 및 45 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 6>
상기 실시예 1에서 상기 조성물이 50 중량%의 SiO2, 5 중량%의 Al2O3 및 45 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 7>
상기 실시예 1에서 상기 조성물이 30 중량%의 SiO2, 25 중량%의 Al2O3 및 45 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 5 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 8>
상기 실시예 1에서 상기 조성물이 60 중량%의 SiO2, 25 중량%의 Al2O3 및 15 중량%의 SrO를 포함하도록 제조한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<비교예 1>
상기 실시예 1에서 상기 조성물의 함량을 상기 조성물이 40 중량%의 SiO2, 35 중량%의 Al2O3 및 25 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<비교예 2>
상기 실시예 1에서 상기 조성물이 40 중량%의 SiO2, 5 중량%의 Al2O3 및 55 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실험예 1: 내플라즈마성 유리의 용융상태 측정>
상기 실시예 1 내지 8과 비교예 1 및 2를 백금 도가니에 넣은 후 1,650 ℃ 온도, 1 기압의 조건으로 4 시간 동안 가열한 이후 외관을 측정하였다.
도 3은 본 발명의 일 실시상태인 실시예 1 내지 8 및 비교예 1과 2의 내플라즈마성 유리를 촬영한 사진이다. 상기 도 3을 참고하면, 실시예 1 내지 8은 모두 미용융되는 부분없이 용융 및 유리화된 것을 확인하였다. 이에 대하여 비교예 1 및 2는 용융되지 않고 결정화된 것을 확인하였다.
이에 따라 상기 SrO가 조성물에 첨가되는 경우 상기 Al2O3의 함량이 적정범위를 유지하여야만 용융온도가 낮아지며, 결정화되는 것 없이 용융물을 형성할 수 있는 것을 확인하였다.
<실험예 2: 유전 상수 측정>
쿼츠(Quartz) 재질인 참조예 1, 실시예 6 및 8을 측정 주파수 1 MHz로 하고, Keysight E4990A Impedence Analyzer를 이용하여 유전 상수를 측정하여 하기 표 1에 정리하였다.
<실험예 3: 식각 단차 및 식각율 측정>
쿼츠(Quartz) 재질인 참조예 1, 실시예 6 및 8을 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마로 1 시간 동안 일부분을 노출하고, 상기 플라즈마에 의하여 노출된 부분과 노출되지 않은 부분의 차이인 식각 단차를 공초점 레이저 현미경 분석기(confocal laser microscope, 올림푸스 社 OLS 5100 장비, 400 배율)로 측정하고, 상기 식각 단차로부터 식각한 시간을 나누어 식각률을 산출하여 하기 표 1에 정리하였다.
실시예 6 실시예 8 참조예 1
식각단차(nm) 271.8 299.2 14144
식각율(nm/min) 4.5 5.0 235.7
유전 상수 10.92 10.72 4.85
상기 표 1을 참고하면, SiO2, Al2O3 및 SrO를 모두 포함하고, 특정한 함량을 만족한 실시예 6 및 8은 쿼츠(Quartz) 재질의 참조예 1에 비하여 낮은 식각 단차 및 식각율이 구현되며, 높은 유전 상수를 나타내는 것을 확인하였다.따라서, 본 발명의 일 실시상태는 상기 내플라즈마 유리의 SiO2, Al2O3 및 SrO의 함량을 만족함으로써, 식각률 및 유리전이온도를 낮게 구현하는 동시에 열팽창계수를 낮게 구현하여 고온에서 열충격을 방지할 수 있고, 용융 온도를 낮게 구현하며, 광투과율과 고경도를 구현하여 기계적 물성이 향상되어 내구성을 향상시킬 수 있다.
이상에서 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
S 11: 조성물 용융 단계
S 13: 냉각 단계
S 21: 내플라즈마성 유리 용융 단계
S 23: 금형 주입 단계
S 25: 어닐링 단계
S 27: 가공 단계

Claims (15)

  1. 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물이 용융되어 형성된 것인,
    내플라즈마성 유리.
  2. 청구항 1에 있어서,
    상기 조성물은 SiO2, Al2O3, SrO 및 불가피한 불순물만을 포함하며,
    상기 SiO2의 함량은 30 중량% 이상 68 중량% 이하이고,
    상기 Al2O3의 함량은 5 중량% 이상 25 중량% 이하이며,
    상기 SrO의 함량은 15 중량% 이상 50 중량% 이하인 것인,
    내플라즈마성 유리.
  3. 청구항 1에 있어서,
    광투과율이 80% 이상 100% 이하인 것인,
    내플라즈마성 유리.
  4. 청구항 1에 있어서,
    비커스 경도가 650 HV 이상 1,000 HV 이하인,
    내플라즈마 유리.
  5. 청구항 1에 있어서,
    유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것인,
    내플라즈마성 유리.
  6. 청구항 1에 있어서,
    열팽창계수는 4.0 X 10-6m/(m℃) 이상 6.0 X 10-6m/(m℃) 이하인 것인,
    내플라즈마성 유리.
  7. 청구항 1에 있어서,
    불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것인,
    내플라즈마성 유리.
  8. 청구항 1에 있어서,
    용융점이 1,500 ℃ 이상 1,750 ℃ 이하인,
    내플라즈마성 유리.
  9. 청구항 1의 내플라즈마성 유리로 제조된 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품.
  10. 청구항 9에 있어서,
    상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품.
  11. 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계; 및
    상기 용융된 조성물을 냉각하는 단계;를 포함하는,
    내플라즈마성 유리의 제조방법.
  12. 청구항 11에 있어서,
    상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것인,
    내플라즈마성 유리의 제조방법.
  13. 청구항 1 내지 8의 내플라즈마성 유리를 용융시키는 단계;
    상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및
    상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는,
    반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
  14. 청구항 13에 있어서,
    상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
  15. 청구항 13에 있어서,
    상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
KR1020230106815A 2022-10-13 2023-08-16 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 KR20240051815A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/012285 WO2024080531A1 (ko) 2022-10-13 2023-08-18 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220131087 2022-10-13
KR20220131087 2022-10-13

Publications (1)

Publication Number Publication Date
KR20240051815A true KR20240051815A (ko) 2024-04-22

Family

ID=90881469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230106815A KR20240051815A (ko) 2022-10-13 2023-08-16 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법

Country Status (1)

Country Link
KR (1) KR20240051815A (ko)

Similar Documents

Publication Publication Date Title
KR100774606B1 (ko) 실리콘 단결정 인상용 석영유리 도가니 및 그 제조방법
KR101712225B1 (ko) 고성능 유리 세라믹 및 고성능 유리 세라믹의 제조 방법
KR102557847B1 (ko) 내플라즈마 유리 및 그 제조 방법
JP5873478B2 (ja) ニア・ネット・シェイプの溶融シリカ物品およびその製造方法
CN102245540A (zh) 抗反应性等离子体处理的保护涂层
EP1321443A1 (en) Glass composition for display panels
JP2010537928A (ja) 耐熱性ガラスセラミック
CN109518276A (zh) 一种高品质碳化硅晶体的制备方法及其装置
KR20240051815A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
US20240274410A1 (en) Plasma-resistant glass, chamber interior parts for semiconductor manufacturing process, and methods for manufacturing same
KR20240051434A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20240051433A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20240045989A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
US20230406755A1 (en) Plasma-resistant glass and manufacturing method therefor
KR20240055626A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR101842597B1 (ko) 내플라즈마 코팅을 위한 에어로졸 증착용 비정질 코팅소재 및 그의 제조방법
WO2024080531A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20230052339A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20210081771A (ko) 내플라즈마 유리 및 그 제조방법
WO2024085409A2 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024071636A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20220020204A (ko) 내플라즈마 유리 및 그 제조 방법
KR20230022193A (ko) 고주파 유도 가열을 이용한 유리 조성물의 용융 방법
US6200691B1 (en) Oxidation resistance coating system for refractory metals
KR102137875B1 (ko) Las계 결정화 유리 및 그 제조 방법