WO2024080531A1 - 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 - Google Patents

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 Download PDF

Info

Publication number
WO2024080531A1
WO2024080531A1 PCT/KR2023/012285 KR2023012285W WO2024080531A1 WO 2024080531 A1 WO2024080531 A1 WO 2024080531A1 KR 2023012285 W KR2023012285 W KR 2023012285W WO 2024080531 A1 WO2024080531 A1 WO 2024080531A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
weight
resistant glass
less
melting
Prior art date
Application number
PCT/KR2023/012285
Other languages
English (en)
French (fr)
Inventor
전서연
이경민
석혜원
김대근
Original Assignee
한솔아이원스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230106815A external-priority patent/KR20240051815A/ko
Application filed by 한솔아이원스 주식회사 filed Critical 한솔아이원스 주식회사
Publication of WO2024080531A1 publication Critical patent/WO2024080531A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention claims the benefit of Korean Patent Application No. 10-2022-0131087, filed with the Korea Intellectual Property Office on October 13, 2022, the entire contents of which are included in the present invention.
  • the present invention relates to plasma-resistant glass, parts for the interior of a chamber for a semiconductor manufacturing process, and their manufacturing method. Specifically, the content of the plasma-resistant glass components is controlled, SrO is additionally included to achieve a low melting temperature, and It relates to plasma-resistant glass that can prevent damage from thermal shock when used at high temperatures by reducing the coefficient of thermal expansion and improve light transmittance and durability, parts for the interior of the chamber for the semiconductor manufacturing process, and methods of manufacturing them.
  • Plasma etching processes are applied when manufacturing semiconductors and/or displays. Recently, with the application of nano-processing, the difficulty of etching has increased, and the internal parts of the process chamber exposed to the high-density plasma environment are made of oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
  • oxide-based ceramics such as alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ), which have corrosion resistance. It is mainly used.
  • oxide-based ceramic materials have a problem of low workability due to their high melting temperature.
  • the technical problem to be achieved by the present invention is to have excellent resistance due to the plasma inside the chamber used in the semiconductor manufacturing process, and to have excellent heat resistance under high temperature conditions to prevent damage to the components used inside the chamber and to achieve a low melting temperature.
  • the aim is to provide plasma-resistant glass, internal parts for chambers for semiconductor manufacturing processes, and methods for manufacturing them.
  • a composition containing 30 to 80% by weight of SiO 2 , 5 to 35% by weight of Al 2 O 3 , and 10 to 50% by weight of SrO is melted.
  • a formed plasma-resistant glass is provided.
  • the composition contains only SiO 2 , Al 2 O 3 , SrO and inevitable impurities, the content of SiO 2 is 30% by weight or more and 68% by weight or less, and the Al 2 O 3 The content is 5% by weight or more and 25% by weight or less, and the content of SrO may be 15% by weight or more and 50% by weight or less.
  • the light transmittance may be 80% or more and 100% or less.
  • the Vickers hardness may be 650 HV or more and 1,000 HV or less.
  • the glass transition temperature may be 600°C or more and 850°C or less.
  • the thermal expansion coefficient may be 4.0
  • the etching rate by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 20 nm/min.
  • the melting point may be 1,500°C or more and 1,750°C or less.
  • One embodiment of the present invention provides a component for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
  • the internal components include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window.
  • electrode view port
  • inner shutter electro static chuck
  • heater chamber liner
  • shower head CVD Boat
  • wall liner shield
  • cold pad cold pad
  • source head outer liner
  • deposition shield for (Chemical Vapor Deposition)
  • it may be any one of an upper liner, an exhaust plate, and a mask frame.
  • One embodiment of the present invention is to melt a composition containing 30 to 80% by weight of SiO 2 , 5 to 35% by weight of Al 2 O 3 , and 10 to 50% by weight of SrO. step; and cooling the molten composition. It provides a method for manufacturing plasma-resistant glass including a.
  • the melting temperature in the step of melting the composition may be 1,400°C or more and 1,700°C or less.
  • One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,500 °C or more and 1,750 °C or less.
  • the temperature of the annealing step may be 400°C or more and 900°C or less.
  • the plasma-resistant glass according to an exemplary embodiment of the present invention improves processability by implementing a low melting temperature, and can easily manufacture parts for the interior of a chamber for a semiconductor manufacturing process.
  • the plasma-resistant glass according to an exemplary embodiment of the present invention exhibits a low thermal expansion coefficient and can prevent damage due to thermal shock in a high-temperature atmosphere.
  • the plasma-resistant glass according to an exemplary embodiment of the present invention has improved light transmittance and improved mechanical properties by improving hardness, thereby improving durability in a plasma etching environment.
  • Components used inside a chamber for a semiconductor manufacturing process can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere.
  • the method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
  • FIG. 1 is a flowchart of a method for manufacturing plasma-resistant glass according to an exemplary embodiment of the present invention.
  • Figure 2 is a flowchart of a method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process according to an exemplary embodiment of the present invention.
  • Figure 3 is a photograph taken of the plasma-resistant glass of Examples 1 to 8 and Comparative Examples 1 and 2, which are one embodiment of the present invention.
  • a and/or B means “A and B, or A or B.”
  • a composition containing 30 to 80% by weight of SiO 2 , 5 to 35% by weight of Al 2 O 3 , and 10 to 50% by weight of SrO is melted.
  • a formed plasma-resistant glass is provided.
  • the plasma-resistant glass according to an embodiment of the present invention improves processability by implementing a low melting temperature, can easily manufacture parts for the interior of the chamber for the semiconductor manufacturing process, and exhibits low thermal expansion coefficient characteristics in a high temperature atmosphere. Damage caused by thermal shock can be prevented, light transmittance is improved, and mechanical properties are improved by improving hardness, thereby improving durability in a plasma etching environment.
  • the composition includes 30% by weight or more and 80% by weight or less of SiO 2 .
  • the content of SiO 2 in the composition is 31% by weight or more and 79% by weight or less, 32% or more and 78% by weight or less, 33% by weight or more and 77% by weight or less, 34% by weight or more and 76% by weight or less, and 35% by weight or more.
  • the SiO 2 and controlling the content of the SiO 2 in the above-described range the basic physical properties of the plasma-resistant glass can be secured, durability and reliability can be improved, and the plasma-resistant glass can be improved. By facilitating processing, the production cost of parts can be reduced.
  • the composition includes 5% by weight or more and 35% by weight or less of Al 2 O 3 .
  • the content of Al 2 O 3 in the composition is 6 wt% to 34 wt%, 7 wt% to 33 wt%, 8 wt% to 32 wt%, 9 wt% to 31 wt%, and 10 wt.
  • % or more 30% by weight or less 11% or more and 29% by weight or less, 12% or more and 28% by weight or less, 13% or more and 27% by weight or less, 14% or more and 26% by weight or less, 15% or more and 25% by weight
  • it may be 16 wt% or more and 24 wt% or less, 17 wt% or more and 23 wt% or less, 18 wt% or more and 22 wt% or less, or 19 wt% or more and 21 wt% or less.
  • it contains Al 2 O 3 and by adjusting the content of Al 2 O 3 in the above-mentioned range, outgassing can be prevented and the generation of particles can be suppressed. , the wear resistance of the internal parts of the chamber for the semiconductor manufacturing process can be improved, and the composition can be easily melted by lowering the melting temperature even if it contains SrO, which will be described later.
  • the composition includes 10% by weight or more and 50% by weight or less of SrO.
  • the content of SrO in the composition is 11 wt% to 49 wt%, 12 wt% to 48 wt%, 13 wt% to 47 wt%, 14 wt% to 46 wt%, 15 wt% to 45 wt%.
  • Weight% or less 16% by weight or more, 44% by weight or less, 17% by weight or more, 43% by weight or less, 18% by weight or more, 42% by weight or less, 19% by weight or more, 41% by weight or less, 20% by weight or more, 40% by weight or less, 21 Weight% or more 39% by weight or less, 22% or more but 38% by weight or less, 23% or more and 37% by weight or less, 24% or more and 36% by weight or less, 25% or more and 35% by weight or less, 26% or more and 34% by weight % or less, 27% by weight or more and 33% by weight or less, 28% by weight or more and 32% by weight or less, or 29% by weight or more and 31% by weight or less.
  • the plasma-resistant glass is formed by melting the composition. As described above, by melting the composition and cooling it to form the plasma-resistant glass, the composition can be melted at a relatively low temperature and the plasma-resistant glass can be easily formed, preventing damage from thermal shock. It can be prevented.
  • the plasma-resistant glass may have a dielectric constant of 6.65 or more and 8.10 or less.
  • the plasma-resistant glass has a dielectric constant of 6.70 to 8.05, 6.75 to 8.00, 6.80 to 7.95, 6.85 to 7.90, 6.90 to 7.85, 6.95 to 7.80, 7.00 to 7.75, 7.05 to 7.70.
  • 7.10 or more and 7.65 or less 7.15 or more and 7.60 or less, 7.20 or more and 7.55 or less, 7.25 or more and 7.50 or less, 7.30 or more and 7.45 or less, or 7.35 or more and 7.40 or less.
  • the plasma resistant glass has a dielectric constant of 6.79 to 6.99, 6.79 to 7.19, 6.79 to 7.39, 6.79 to 7.59, 6.99 to 7.19, 6.99 to 7.39, 6.99 to 7.59, 7.19 to 7.39.
  • Dielectric constant measurement methods include the capacitance method using an LCR meter, the reflection coefficient method using a network analyzer, and the resonant frequency method.
  • the capacitance method using an LCR meter is mainly used to measure low frequency characteristics (kHZ, MHz), and the dielectric constant can be determined from the physical size and electrostatic capacity of the capacitor.
  • the composition may include only SiO 2 , Al 2 O 3 , SrO and inevitable impurities.
  • the melting temperature can be lowered and crystallization can be prevented.
  • the composition may not contain an organic binder and/or solvent. As described above, by not containing an organic binder and/or solvent, the composition can minimize impurities, ensure low light transmittance, and achieve a low etch rate.
  • the content of SiO 2 in the composition may be 30% by weight or more and 68% by weight or less.
  • the content of Al 2 O 3 in the composition may be 5% by weight or more and 25% by weight or less.
  • the content of Al 2 O 3 in the composition may be 5% by weight or more and 25% by weight or less.
  • the content of SrO in the composition may be 15% by weight or more and 50% by weight or less. As described above, it contains SrO, and by adjusting the content of SrO within the above-mentioned range, the thermal expansion coefficient and glass transition temperature of the glass are realized to be low, thereby minimizing thermal shock at high temperatures and forming a chamber interior for the semiconductor manufacturing process. The durability of parts can be improved.
  • the light transmittance may be 80% or more and 100% or less.
  • the light transmittance of the plasma-resistant glass may be 82% or more and 98% or less, 85% or more and 95% or less, or 87% or more and 92% or less.
  • “light transmittance” may refer to a value measured using a haze meter (JCH-300S, Oceanoptics).
  • the Vickers hardness may be 650 HV or more and 1,000 HV or less.
  • the Vickers hardness of the plasma glass is 670 HV or more and 980 HV or less, 650 HV or more and 950 HV or less, 680 HV or more and 930 HV or less, 700 HV and 900 HV or less, 720 HV and 880 HV or less, 750 HV or more and 850 HV or It may be above 780 HV and below 820 HV.
  • “Vickers hardness” may refer to a value measured using a Vickers hardness meter (Helmut Fischer, FISCHERSCOPE HM-2000).
  • the glass transition temperature may be 600°C or more and 850°C or less.
  • the glass transition temperature of the plasma-resistant glass may be 620 °C or higher and 830 °C or lower, 650 °C or higher and 800 °C or lower, 670 °C or higher and 780 °C or lower, or 700 °C or higher and 750 °C or lower.
  • the thermal expansion coefficient may be 4.0 Specifically , the thermal expansion coefficient of the plasma-resistant glass is 4.1 X 10 -6 m/(m°C) or less, 4.3 X 10 -6 m/(m°C) or more 5.7 X 10 -6 m/(m°C) or less, 4.5 X 10 -6 m/(m°C) or less, 4.7 X 10 -6 m/(m°C) or more 5.3 It may be below X 10 -6 m/(m°C) or between 4.9
  • durability can be improved by preventing damage to components due to thermal shock.
  • the etching rate by mixed plasma of fluorine and argon (Ar) may be greater than 0 nm/min and less than or equal to 20 nm/min.
  • the etching rate by mixed plasma of fluorine and argon is more than 0 nm/min but less than 18 nm/min, more than 1 nm/min but less than 16 nm/min, and more than 2 nm/min and less than 15 nm/min.
  • nm/min or less 3 nm/min or more but 14 nm/min or less, 4 nm/min or more but 13 nm/min or less, 5 nm/min or more but 12 nm/min or less, 6 nm/min or more and 11 nm/min or less or 7 nm/min It may be more than 10 nm/min or less.
  • the etch step of the plasma-resistant glass may be 150 nm or more and 400 nm or less.
  • the etch step of the plasma-resistant glass may be 160 nm or more and 390 nm or less, 170 nm or more and 380 nm or less, 180 nm or more and 370 nm or less, or 190 nm or more and 360 nm or less.
  • the melting point may be 1,500°C or more and 1,750°C or less.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,560 °C or higher and 1,740 °C or lower, 1,570 °C or higher and 1,730 °C or lower, 1,580 °C or higher and 1,720 °C or lower, 1,590 °C or higher and 1,710 °C or lower, 1,600 °C or higher and 1,700 °C or lower, 1,690 °C or higher.
  • 0°C hereinafter, it may be 1,620 °C or higher and 1,680 °C or lower, 1,630 °C or higher and 1,670 °C or lower, or 1,640 °C or higher and 1,660 °C or lower.
  • the plasma-resistant glass may be amorphous. As described above, by implementing the structure of the plasma-resistant glass as amorphous, it is possible to improve the durability of parts using the plasma-resistant glass and at the same time reduce the etching rate by plasma.
  • One embodiment of the present invention provides a component for the interior of a chamber for a semiconductor manufacturing process made of the plasma-resistant glass.
  • Components used inside a chamber for a semiconductor manufacturing process can improve usage time in the semiconductor manufacturing process by implementing a low etch rate for plasma, and can improve durability by preventing damage to components due to thermal shock. You can.
  • the internal components include a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. (window), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD Boat, wall liner, shield, cold pad, source head, outer liner, deposition shield for (Chemical Vapor Deposition) ), it may be any one of an upper liner, an exhaust plate, and a mask frame. From the above, by using the internal components, the resistance to plasma in the semiconductor manufacturing process is improved and the usage time is extended, thereby minimizing the cost required for semiconductor manufacturing.
  • One embodiment of the present invention is to melt a composition containing 30 to 80% by weight of SiO 2 , 5 to 35% by weight of Al 2 O 3 , and 10 to 50% by weight of SrO. step; and cooling the molten composition. It provides a method for producing plasma-resistant glass, including a step of cooling the molten composition.
  • the method for manufacturing plasma-resistant glass according to an embodiment of the present invention can easily manufacture plasma-resistant glass and prevent damage due to thermal shock in a high-temperature atmosphere, and can produce glass with higher hardness than existing glass, thereby producing mechanical glass. By increasing the characteristics, durability in a plasma etching environment can be improved.
  • a composition comprising 30 to 80% by weight of SiO 2 , 5 to 35% by weight of Al 2 O 3 , and 10 to 50% by weight of SrO. It includes a melting step (S11). From the above, by controlling the components of the plasma-resistant glass and controlling the content of the components, it is possible to prevent damage due to thermal shock in a high-temperature atmosphere of the plasma-resistant glass, achieve a low melting temperature, and achieve light transparency and durability. can be improved.
  • the melting step may be melting the platinum crucible.
  • the components eluted from the crucible can be minimized and the physical properties of the plasma-resistant glass can be realized.
  • a step (S13) of cooling the molten glass composition is included.
  • the step of cooling the molten glass composition as described above the crystals of the plasma-resistant glass can be controlled and damage due to rapid thermal change can be prevented.
  • the temperature of the cooling step may be room temperature.
  • crystals of the plasma-resistant glass can be controlled, and melting can be easily performed in the process of manufacturing components for the interior of the chamber for the semiconductor manufacturing process.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,500 °C or more and 1,750 °C or less.
  • the melting temperature in the step of melting the composition may be a melting point of 1,500°C or more and 1,750°C or less.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,560 °C or higher and 1,740 °C or lower, 1,570 °C or higher and 1,730 °C or lower, 1,580 °C or higher and 1,720 °C or lower, 1,590 °C or higher and 1,710 °C or lower, 1,600 °C or higher and 1,700 °C or lower, 1,690 °C or higher.
  • 0°C hereinafter, it may be 1,620 °C or higher and 1,680 °C or lower, 1,630 °C or higher and 1,670 °C or lower, or 1,640 °C or higher and 1,660 °C or lower.
  • One embodiment of the present invention includes melting the plasma-resistant glass; Injecting the molten plasma-resistant glass into a mold; and annealing the injected plasma-resistant glass.
  • the method of manufacturing components for the interior of a chamber for a semiconductor manufacturing process can manufacture components with various shapes, prevent damage due to thermal shock in a high temperature atmosphere, and easily manufacture the components.
  • the method of manufacturing components for the interior of the chamber for the semiconductor manufacturing process includes melting the plasma-resistant glass (S21).
  • the workability of the process of manufacturing parts for the interior of the chamber for the semiconductor manufacturing process is improved, and at the same time, the molten metal in which the plasma-resistant glass is melted is injected into the mold. By doing so, it can be molded into various shapes.
  • the method of manufacturing components for the interior of a chamber for the semiconductor manufacturing process includes the step of injecting the molten plasma-resistant glass into a mold (S23). As described above, parts of various shapes can be manufactured by injecting the molten plasma-resistant glass into a mold.
  • the mold includes a focus ring, an edge ring, a cover ring, a ring shower, an insulator, and an EPD window. ), electrode, view port, inner shutter, electro static chuck, heater, chamber liner, shower head, CVD (Chemical Vapor Deposition boat, wall liner, shield, cold pad, source head, outer liner, deposition shield, It may have any one of the following shapes: an upper liner, an exhaust plate, and a mask frame. As described above, by implementing various shapes of the mold, it is possible to easily implement the shape of the part and reduce manufacturing time.
  • CVD Chemical Vapor Deposition boat, wall liner, shield, cold pad, source head, outer liner, deposition shield
  • the method of manufacturing components for the interior of a chamber for the semiconductor manufacturing process includes the step of annealing the injected plasma-resistant glass (S25).
  • the step of annealing the injected plasma-resistant glass as described above, the stress caused by heat generated in the part manufactured by injecting into the mold can be minimized to improve the durability of the part and minimize thermal shock at high temperatures. there is.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,500 °C or more and 1,750 °C or less.
  • the melting temperature in the step of melting the plasma-resistant glass may be 1,500°C or more and 1,750°C or less.
  • the melting point may mean melting temperature.
  • the melting point of the plasma-resistant glass is 1,560 °C or higher and 1,740 °C or lower, 1,570 °C or higher and 1,730 °C or lower, 1,580 °C or higher and 1,720 °C or lower, 1,590 °C or higher and 1,710 °C or lower, 1,600 °C or higher and 1,700 °C or lower, 1,690 °C or higher.
  • 0°C hereinafter, it may be 1,620 °C or higher and 1,680 °C or lower, 1,630 °C or higher and 1,670 °C or lower, or 1,640 °C or higher and 1,660 °C or lower.
  • the temperature of the annealing step may be 400°C or more and 900°C or less.
  • the temperature of the annealing step is 430 °C or more and 890 °C or less, 450 °C or more and 880 °C or less, 470 °C or more and 870 °C or less, 500 °C or more and 860 °C or less, 550 °C or more and 850 °C or less, 560 °C or more and 840 °C Below, 570 °C and below 830 °C, 580 °C and below 820 °C, 590 °C and below 810 °C, 600 °C and below 800 °C, 610 °C and below 790 °C, 620 °C and below 780 °C, 630 °C and below 770 °C , 640 °C or more and 760 °C or less, 650 °C or more
  • it may include a step (S27) of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass.
  • S27 a step of processing a precursor of a component for the interior of a chamber for a semiconductor manufacturing process manufactured by the annealed plasma-resistant glass.
  • sophisticated components can be manufactured by processing precursors for components used inside the chamber for the semiconductor manufacturing process.
  • a composition was prepared comprising 60% by weight SiO 2 , 20% by weight Al 2 O 3 and 20% by weight SrO. Specifically, the composition was prepared in a weight of 600 g, and the composition was mixed for approximately 1 hour using a zirconia ball milling method. That is, 600 g of the composition: 1,800 g of zirconia balls (weight ratio 1:3) were mixed in a dry manner and then dried for 24 hours. Thereafter, the temperature of the dried composition was increased at a rate of 10 °C/min until it reached a temperature of 1,650 °C using a supercatalyst, and the temperature was maintained at 1,650 °C for approximately 2 hours to prepare a molten composition.
  • the molten composition was cooled to room temperature to prepare plasma-resistant glass.
  • Example 1 Except that in Example 1, the composition was prepared to include 45% by weight of SiO 2 , 15% by weight of Al 2 O 3 and 40% by weight of SrO and maintained at a temperature of 1,650° C. for approximately 4 hours. Plasma-resistant glass was manufactured in the same manner as Example 1.
  • Example 1 Except that in Example 1, the composition was prepared to include 60% by weight of SiO 2 , 15% by weight of Al 2 O 3 and 25% by weight of SrO and maintained at a temperature of 1,650° C. for approximately 4 hours. Plasma-resistant glass was manufactured in the same manner as Example 1.
  • Plasma-resistant glass was prepared in the same manner as in Example 1, except that the composition was prepared to include 65% by weight of SiO 2 , 15% by weight of Al 2 O 3 and 20% by weight of SrO. .
  • Example 1 Except that in Example 1, the composition was prepared to include 30% by weight of SiO 2 , 25% by weight of Al 2 O 3 and 45% by weight of SrO and maintained at a temperature of 1,650° C. for approximately 4 hours. Plasma-resistant glass was manufactured in the same manner as Example 1.
  • Example 1 Except that in Example 1, the composition was prepared to include 50% by weight of SiO 2 , 5% by weight of Al 2 O 3 and 45% by weight of SrO and maintained at a temperature of 1,650° C. for approximately 4 hours. Plasma-resistant glass was manufactured in the same manner as Example 1.
  • Example 1 Except that in Example 1, the composition was prepared to include 30% by weight of SiO 2 , 25% by weight of Al 2 O 3 and 45% by weight of SrO and maintained at a temperature of 1,650° C. for approximately 5 hours. Plasma-resistant glass was manufactured in the same manner as Example 1.
  • Plasma-resistant glass was prepared in the same manner as in Example 1, except that the composition was prepared to include 60% by weight of SiO 2 , 25% by weight of Al 2 O 3 , and 15% by weight of SrO. .
  • Example 1 the composition was prepared to include 40% by weight of SiO 2 , 35% by weight of Al 2 O 3 and 25% by weight of SrO, and incubated at a temperature of 1,650° C. for approximately 4 hours.
  • Plasma-resistant glass was manufactured in the same manner as in Example 1, except that it was maintained.
  • Example 1 Except that in Example 1, the composition was prepared to include 40% by weight of SiO 2 , 5% by weight of Al 2 O 3 and 55% by weight of SrO and maintained at a temperature of 1,650° C. for approximately 4 hours. Plasma-resistant glass was manufactured in the same manner as Example 1.
  • Examples 1 to 8 and Comparative Examples 1 and 2 were placed in a platinum crucible, heated at 1,650°C and 1 atm for 4 hours, and then their appearance was measured.
  • Figure 3 is a photograph taken of the plasma-resistant glass of Examples 1 to 8 and Comparative Examples 1 and 2, which are one embodiment of the present invention. Referring to FIG. 3, it was confirmed that Examples 1 to 8 were all melted and vitrified without any unmelted portions. In contrast, it was confirmed that Comparative Examples 1 and 2 were crystallized rather than melted.
  • the difference in etch step was measured using a confocal laser microscope (Olympus OLS 5100 equipment, 400 magnification), and the etching rate was calculated by dividing the etching time from the etch step and summarized in Table 1 below.
  • Example 6 Reference example 1 Etching step (nm) 271.8 299.2 14144 Etch rate (nm/min) 4.5 5.0 235.7 dielectric constant 10.92 10.72 4.85
  • Examples 6 and 8 which contained all of SiO2, Al2O3, and SrO and satisfied a specific content, had lower etch steps and etch rates compared to Reference Example 1 made of quartz, and had a high It was confirmed that it represents the dielectric constant.
  • one embodiment of the present invention satisfies the contents of SiO2, Al2O3, and SrO of the plasma-resistant glass, thereby realizing a low etch rate and glass transition temperature and at the same time implementing a low thermal expansion coefficient to prevent thermal shock at high temperatures, By realizing a low melting temperature and realizing light transmittance and high hardness, mechanical properties can be improved and durability can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

[요약] 본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하고, SrO를 추가로 포함하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시킬 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다. [대표도] 도 1

Description

내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
본 발명은 2022년 10월 13일에 한국특허청에 제출된 한국 특허출원 제10-2022-0131087호 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조방법에 관한 것으로, 구체적으로 내플라즈마성 유리 성분들의 함량을 조절하고, SrO를 추가로 포함하여 용융 온도를 낮게 구현하고, 열팽창계수를 감소시켜 고온 사용시 열충격에 손상을 방지할 수 있으며, 광투과율 및 내구성을 향상시킬 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법에 관한 것이다.
반도체 및/또는 디스플레이 제조 시 플라즈마 식각 공정이 적용되고 있다. 최근 나노 공정이 적용되면서, 식각의 난이도가 증가되고 고밀도 플라즈마 환경에 노출되는 공정 챔버의 내부 부품은 내식성을 갖는 알루미나(Al2O3), 이트리아(Y2O3)와 같은 산화물계 세라믹이 주로 사용되고 있다.
다결정 소재가 불소계 가스를 사용하는 고밀도 플라즈마 식각 환경에 장기간 노출될 경우, 국부적인 침식으로 인해 입자가 탈락되고, 이에 따른 오염 입자의 발생 확률이 높아진다. 이는 반도체/디스플레이의 결함을 유발하며 생산 수율에 악영향을 미친다. 또한, 산화물계 세라믹 소재는 용융 온도가 높아 작업성이 낮은 문제점이 있었다.
따라서, 용융 온도가 낮으면서도 기존의 내플라즈마성 유리의 열충격 손상을 방지할 수 있는 기술개발이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 반도체 제조 공정에서 사용되는 챔버 내부의 플라즈마에 의하여 저항성이 우수하며, 고온조건에서 내열성이 우수하여 챔버 내부에 사용되는 부품의 손상을 방지하고, 용융 온도를 낮게 구현할 수 있는 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물이 용융되어 형성된 것인 내플라즈마성 유리를 제공한다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 SiO2, Al2O3, SrO 및 불가피한 불순물만을 포함하며, 상기 SiO2의 함량은 30 중량% 이상 68 중량% 이하이고, 상기 Al2O3의 함량은 5 중량% 이상 25 중량% 이하이며, 상기 SrO의 함량은 15 중량% 이상 50 중량% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 광투과율이 80% 이상 100% 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 비커스 경도가 650 HV 이상 1,000 HV 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 열팽창계수는 4.0 X 10-6 m/(m℃) 이상 6.0 X 10-6 m/(m℃) 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 용융점이 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는 내플라즈마성 유리의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는, 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법의 순서도이다.
도 2는 본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법의 순서도이다.
도 3은 본 발명의 일 실시상태인 실시예 1 내지 8과 비교예 1과 2의 내플라즈마성 유리를 촬영한 사진이다.
[부호의 설명]
S 11: 조성물 용융 단계
S 13: 냉각 단계
S 21: 내플라즈마성 유리 용융 단계
S 23: 금형 주입 단계
S 25: 어닐링 단계
S 27: 가공 단계
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"는 "A 및 B, 또는 A 또는 B"를 의미한다.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물이 용융되어 형성된 것인 내플라즈마성 유리를 제공한다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리는 용융 온도를 낮게 구현하여 가공성을 향상시키며, 반도체 제조 공정을 위한 챔버 내부용 부품을 용이하게 제조할 수 있으며, 낮은 열팽창계수 특성을 발현하므로 고온 분위기에서 열충격에 의한 손상을 방지할 수 있고, 광투과율이 향상되며, 경도를 향상시켜 기계적 특성이 향상되므로 플라즈마 식각환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 30 중량% 이상 80 중량% 이하의 SiO2을 포함한다. 구체적으로 상기 조성물에서 SiO2의 함량은 31 중량% 이상 79 중량% 이하, 32 중량% 이상 78 중량% 이하, 33 중량% 이상 77 중량% 이하, 34 중량% 이상 76 중량% 이하, 35 중량% 이상 75 중량% 이하, 36 중량% 이상 74 중량% 이하, 37 중량% 이상 73 중량% 이하, 38 중량% 이상 72 중량% 이하, 39 중량% 이상 71 중량% 이하, 40 중량% 이상 70 중량% 이하, 41 중량% 이상 69 중량% 이하, 42 중량% 이상 68 중량% 이하, 43 중량% 이상 67 중량% 이하, 44 중량% 이상 66 중량% 이하, 45 중량% 이상 65 중량% 이하, 46 중량% 이상 64 중량% 이하, 47 중량% 이상 63 중량% 이하, 48 중량% 이상 62 중량% 이하, 49 중량% 이상 61 중량% 이하, 50 중량% 이상 60 중량% 이하, 51 중량% 이상 59 중량% 이하, 52 중량% 이상 58 중량% 이하, 53 중량% 이상 57 중량% 이하 또는 54 중량% 이상 56 중량% 이하일 수 있다. 상술한 것과 같이, 상기 SiO2를 포함하며, 상술한 범위에서 상기 SiO2의 함량을 조절함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 5 중량% 이상 35 중량% 이하의 Al2O3을 포함한다. 구체적으로 상기 조성물에서 Al2O3의 함량은 6 중량% 이상 34 중량% 이하, 7 중량% 이상 33 중량% 이하, 8 중량% 이상 32 중량% 이하, 9 중량% 이상 31 중량% 이하, 10 중량% 이상 30 중량% 이하, 11 중량% 이상 29 중량% 이하, 12 중량% 이상 28 중량% 이하, 13 중량% 이상 27 중량% 이하, 14 중량% 이상 26 중량% 이하, 15 중량% 이상 25 중량% 이하, 16 중량% 이상 24 중량% 이하, 17 중량% 이상 23 중량% 이하, 18 중량% 이상 22 중량% 이하 또는 19 중량% 이상 21 중량% 이하일 수 있다. 상술한 것과 같이, 상기 Al2O3를 포함하며, 상술한 범위에서 상기 Al2O3의 함량을 조절함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있고, 후술할 SrO를 포함하더라도 상기 조성물의 용융온도를 낮추어 용이하게 용융시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 10 중량% 이상 50 중량% 이하의 SrO을 포함한다. 구체적으로 상기 조성물에서 SrO의 함량은 11 중량% 이상 49 중량% 이하, 12 중량% 이상 48 중량% 이하, 13 중량% 이상 47 중량% 이하, 14 중량% 이상 46 중량% 이하, 15 중량% 이상 45 중량% 이하, 16 중량% 이상 44 중량% 이하, 17 중량% 이상 43 중량% 이하, 18 중량% 이상 42 중량% 이하, 19 중량% 이상 41 중량% 이하, 20 중량% 이상 40 중량% 이하, 21 중량% 이상 39 중량% 이하, 22 중량% 이상 38 중량% 이하, 23 중량% 이상 37 중량% 이하, 24 중량% 이상 36 중량% 이하, 25 중량% 이상 35 중량% 이하, 26 중량% 이상 34 중량% 이하, 27 중량% 이상 33 중량% 이하, 28 중량% 이상 32 중량% 이하 또는 29 중량% 이상 31 중량% 이하일 수 있다. 상술한 것과 같이, 상기 SrO를 포함하며, 상술한 범위에서 상기 SrO의 함량을 조절함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 상기 조성물이 용융되어 형성된 것이다. 상술한 것과 같이 상기 조성물을 용융하고 이를 냉각하여 상기 내플라즈마성 유리를 형성함으로써, 비교적 낮은 온도로 상기 조성물을 용융시킬 수 있어 상기 내플라즈마성 유리를 용이하게 형성할 수 있으며, 열충격에 파손되는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 유전 상수가 6.65 이상 8.10 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.70 이상 8.05 이하, 6.75 이상 8.00 이하, 6.80 이상 7.95 이하, 6.85 이상 7.90 이하, 6.90 이상 7.85 이하, 6.95 이상 7.80 이하, 7.00 이상 7.75 이하, 7.05 이상 7.70 이하, 7.10 이상 7.65 이하, 7.15 이상 7.60 이하, 7.20 이상 7.55 이하, 7.25 이상 7.50 이하, 7.30 이상 7.45 이하 또는 7.35 이상 7.40 이하일 수 있다. 보다 구체적으로 상기 내플라즈마성 유리는 유전 상수가 6.79 이상 6.99 이하, 6.79 이상 7.19 이하, 6.79 이상 7.39 이하, 6.79 이상 7.59 이하, 6.99 이상 7.19 이하, 6.99 이상 7.39 이하, 6.99 이상 7.59 이하, 7.19 이상 7.39 이하, 7.19 이상 7.59 이하, 7.39 이상 7.59 이하인 것일 수 있다. 유전 상수 측정 방법에는 LCR 계측기를 이용한 정전 용량법(capacitance method), 회로망 분석기(network analyzer)를 이용한 반사도법(refletion coefficient method), 공전 주파수법(resonant frequency method)등이 있다. 유전 상수 측정 방법의 일 예로서 LCR 계측기를 이용한 정전용량법은 저주파 특성(kHZ, MHz)를 재는데 주로 사용되며, 커패시터의 물리적 크기, 정전 용량으로부터 유전 상수를 결정할 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유전상수를 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있으며, 광투과성과 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 SiO2, Al2O3, SrO 및 불가피한 불순물만을 포함할 수 있다. 상술한 것과 같이 상기 조성물의 성분을 조절함으로써, 용융온도를 낮게 구현할 수 있으며, 결정화를 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물은 유기 바인더 및/또는 용제를 포함하지 않는 것일 수 있다. 상술한 것과 같이 상기 조성물이 유기 바인더 및/또는 용제를 포함하지 않음으로써 불순물을 최소화하며, 광투과도를 낮게 확보하고 식각율을 낮게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물에서 상기 SiO2의 함량은 30 중량% 이상 68 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 SiO2의 함량을 조절함으로써, 상기 내플라즈마성 유리의 기본 물성을 확보하며, 내구성과 신뢰성을 향상시킬 수 있으며, 상기 내플라즈마의 가공을 용이하게 하여 부품의 생산비용을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물에서 상기 Al2O3의 함량은 5 중량% 이상 25 중량% 이하인 것일 수 있다. 상술한 범위에서 상기 Al2O3의 함량을 조절함으로써, 아웃개싱(outgasing)을 방지할 수 있고 파티클(particle)의 발생도 억제할 수 있으며, 반도체 제조 공정을 위한 챔버 내부용 부품의 내마모성을 향상시킬 수 있고, 후술할 SrO를 포함하더라도 상기 조성물의 용융온도를 낮추어 용이하게 용융시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 조성물에서 상기 SrO의 함량은 15 중량% 이상 50 중량% 이하인 것일 수 있다. 상술한 것과 같이, 상기 SrO를 포함하며, 상술한 범위에서 상기 SrO의 함량을 조절함으로써, 유리의 열팽창계수 및 유리전이온도를 낮게 구현함으로써, 고온에서의 열충격을 최소화하고 반도체 제조 공정을 위한 챔버 내부용 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 광투과율이 80% 이상 100% 이하인 것일 수 있다. 구체적으로 상기 내플라즈마 유리의 광투과율이 82% 이상 98% 이하, 85% 이상 95% 이하 또는 87% 이상 92% 이하일 수 있다. 본 명세서에서 "광투과율"은 헤이즈 미터(JCH-300S, Oceanoptics 社)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 광투과율을 구현함으로써, 상기 내플라즈마 유리의 용융도를 향상시키는 동시에 유리화를 높게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 비커스 경도가 650 HV 이상 1,000 HV 이하일 수 있다. 상기 내플라즈마 유리의 비커스 경도가 670 HV 이상 980 HV 이하, 650 HV 이상 950 HV 이하, 680 HV 이상 930 HV 이하, 700 HV 이상 900 HV 이하, 720 HV 이상 880 HV 이하, 750 HV 이상 850 HV 이하 또는 780 HV 이상 820 HV 이하일 수 있다. 본 명세서에서 "비커스 경도"는 비커스 경도계 (Helmut Fischer사, FISCHERSCOPE HM-2000)를 이용하여 측정한 수치를 의미하는 것일 수 있다. 상술한 범위에서 상기 내플라즈마 유리의 비커스 경도를 구현함으로써, 기계적 특성이 증가하고, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마 유리의 유리전이온도는 620 ℃ 이상 830 ℃ 이하, 650 ℃ 이상 800 ℃ 이하, 670 ℃ 이상 780 ℃ 이하 또는 700 ℃ 이상 750 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 유리전이온도를 조절함으로써, 반도체 제조 공정을 위한 챔버 내부용 부품의 고온에서의 열 충격을 최소화하며, 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 열팽창계수는 4.0 X 10-6 m/(m℃) 이상 6.0 X 10-6 m/(m℃) 이하인 것일 수 있다. 구체적으로, 상기 내플라즈마성 유리의 열팽창계수는 4.1 X 10-6 m/(m℃) 이상 5.9 X 10-6 m/(m℃) 이하, 4.2 X 10-6 m/(m℃) 이상 5.8 X 10-6 m/(m℃) 이하, 4.3 X 10-6 m/(m℃) 이상 5.7 X 10-6 m/(m℃) 이하, 4.4 X 10-6 m/(m℃) 이상 5.6 X 10-6 m/(m℃) 이하, 4.5 X 10-6 m/(m℃) 이상 5.5 X 10-6 m/(m℃) 이하, 4.6 X 10-6 m/(m℃) 이상 5.4 X 10-6 m/(m℃) 이하, 4.7 X 10-6 m/(m℃) 이상 5.3 X 10-6 m/(m℃) 이하, 4.8 X 10-6 m/(m℃) 이상 5.2 X 10-6 m/(m℃) 이하 또는 4.9 X 10-6 m/(m℃) 이상 5.1 X 10-6 m/(m℃) 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 열팽창계수를 조절함으로써, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것일 수 있다. 구체적으로, 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 18 nm/min 이하, 1 nm/min 이상 16 nm/min 이하, 2 nm/min 이상 15 nm/min 이하, 3 nm/min 이상 14 nm/min 이하, 4 nm/min 이상 13 nm/min 이하, 5 nm/min 이상 12 nm/min 이하, 6 nm/min 이상 11 nm/min 이하 또는 7 nm/min 이상 10 nm/min 이하일 수 있다. 상술한 범위에서 상기 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률을 구현함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리의 식각단차는 150 nm 이상 400 nm 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리의 식각단차는 160 nm 이상 390 nm 이하, 170 nm 이상 380 nm 이하, 180 nm 이상 370 nm 이하 또는 190 nm 이상 360 nm 이하인 것일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 식각단차를 구현함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 용융점이 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,560 ℃ 이상 1,740 ℃ 이하, 1,570 ℃ 이상 1,730 ℃ 이하, 1,580 ℃ 이상 1,720 ℃ 이하, 1,590 ℃ 이상 1,710 ℃ 이하, 1,600 ℃ 이상 1,700 ℃ 이하, 1,610 ℃ 이상 1,690 ℃ 이하, 1,620 ℃ 이상 1,680 ℃ 이하, 1,630 ℃ 이상 1,670 ℃ 이하 또는 1,640 ℃ 이상 1,660 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리의 용융점을 조절함으로써, 상기 내플라즈마성 유리의 용융물의 점도를 조절하며, 상기 내플라즈마성 유리를 이용한 공정의 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리는 비정질인 것일 수 있다. 상술한 것과 같이 상기 내플라즈마성 유리의 조직을 비정질로 구현함으로써, 상기 내플라즈마성 유리를 이용한 부품의 내구성을 향상시키는 동시에 플라즈마에 의한 식각속도를 감소시킬 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리로 제조된 것인 반도체 제조 공정을 위한 챔버 내부용 부품을 제공한다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품은 플라즈마에 대한 식각률을 낮게 구현하여 반도체 제조 공정에서 사용시간을 향상시킬 수 있으며, 열충격에 대한 부품 손상을 방지하여 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것일 수 있다. 상술한 것으로부터 상기 내부용 부품을 이용함으로써, 상기 반도체 제조 공정에서의 플라즈마에 대한 저항성을 향상시켜 사용시간을 연장함으로써, 반도체 제조에 소요되는 비용을 최소화할 수 있다.
본 발명의 일 실시상태는 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계; 및 상기 용융된 조성물을 냉각하는 단계;를 포함하는, 내플라즈마성 유리의 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 내플라즈마성 유리의 제조방법은 용이하게 내플라즈마성 유리를 제조하며 고온 분위기에서 열충격에 의한 손상을 방지할 수 있으며, 기존의 유리보다 고경도의 유리를 제조함으로 기계적 특성이 증가하여, 플라즈마 식각 환경에서의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태인 내플라즈마성 유리의 제조방법에서 상기 내플라즈마성 유리와 중복되는 내용은 설명을 생략한다.
본 발명의 일 실시상태에 따르면, 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계(S11)를 포함한다. 상술한 것으로부터 내플라즈마성 유리의 성분을 조절하며, 상기 성분의 함량을 조절함으로써, 상기 내플라즈마성 유리의 고온 분위기에서 열충격에 의한 손상을 방지하며 용융 온도를 낮게 구현할 수 있고, 광투과성과 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 용융시키는 단계는 백금 도가니에 넣어 용융시키는 것일 수 있다. 상술한 것과 같이 상기 조성물을 백금 도가니에 용융시킴으로써, 도가니에서 용출되는 성분을 최소화하고 상기 내플라즈마성 유리의 물성을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 용융된 유리 조성물을 냉각하는 단계(S13)를 포함한다. 상술한 것과 같이 상기 용융된 유리 조성물을 냉각하는 단계를 포함함으로써, 상기 내플라즈마성 유리의 결정을 조절하며, 급격한 열변화에 의하여 파손되는 것을 방지할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 냉각단계의 온도는 상온일 수 있다. 상술한 범위에서 상기 냉각단계의 온도를 조절함으로써, 상기 내플라즈마 유리의 결정을 조절할 수 있으며, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정에서의 용융을 용이하게 수행할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 구체적으로 상기 조성물을 용융시키는 단계의 용융 온도는 용융점이 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,560 ℃ 이상 1,740 ℃ 이하, 1,570 ℃ 이상 1,730 ℃ 이하, 1,580 ℃ 이상 1,720 ℃ 이하, 1,590 ℃ 이상 1,710 ℃ 이하, 1,600 ℃ 이상 1,700 ℃ 이하, 1,610 ℃ 이상 1,690 ℃ 이하, 1,620 ℃ 이상 1,680 ℃ 이하, 1,630 ℃ 이상 1,670 ℃ 이하 또는 1,640 ℃ 이상 1,660 ℃ 이하일 수 있다. 상술한 범위에서 상기 조성물을 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 조성물의 점도를 조절하여 상기 내플라즈마 유리를 제조하는 과정의 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태는 상기 내플라즈마성 유리를 용융시키는 단계; 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및 상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 다양한 형상을 갖는 부품을 제조할 수 있으며 고온 분위기에서 열충격에 의한 손상을 방지하고 용이하게 부품을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 내플라즈마성 유리를 용융시키는 단계를 포함한다(S21). 상술한 것과 같이 상기 내플라즈마성 유리를 용융시키는 단계를 포함함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품을 제조하는 과정의 작업성을 향상시키는 동시에 금형에 상기 내플라즈마 유리를 용융시킨 용탕을 주입함으로써, 다양한 형태로 성형할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계(S23)를 포함한다. 상술한 것과 같이 상기 용융된 내플라즈마성 유리를 금형에 주입함으로써, 다양한 형태의 부품을 제조할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 금형은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나의 형태를 가질 수 있다. 상술한 것과 같이 상기 금형의 형상을 다양하게 구현함으로써, 용이하게 부품의 형상을 구현하여 제조시간을 절감시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법은 상기 주입된 내플라즈마성 유리를 어닐링하는 단계(S25)를 포함한다. 상술한 것과 같이 상기 주입된 내플라즈마 유리를 어닐링하는 단계를 포함함으로써, 상기 금형에 주입되어 제조된 부품에서 발생한 열에 의한 응력을 최소화하여 부품의 내구성을 향상시키며, 고온에서의 열 충격을 최소화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 구체적으로 상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것일 수 있다. 본 명세서에서 상기 용융점은 용융 온도를 의미하는 것일 수 있다. 구체적으로 상기 내플라즈마성 유리는 용융점은 1,560 ℃ 이상 1,740 ℃ 이하, 1,570 ℃ 이상 1,730 ℃ 이하, 1,580 ℃ 이상 1,720 ℃ 이하, 1,590 ℃ 이상 1,710 ℃ 이하, 1,600 ℃ 이상 1,700 ℃ 이하, 1,610 ℃ 이상 1,690 ℃ 이하, 1,620 ℃ 이상 1,680 ℃ 이하, 1,630 ℃ 이상 1,670 ℃ 이하 또는 1,640 ℃ 이상 1,660 ℃ 이하일 수 있다. 상술한 범위에서 상기 내플라즈마성 유리를 용융시키는 단계의 용융시키는 온도를 조절함으로써, 상기 용융된 내플라즈마성 유리의 점도를 조절하여 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것일 수 있다. 구체적으로, 상기 어닐링하는 단계의 온도는 430 ℃ 이상 890 ℃ 이하, 450 ℃ 이상 880 ℃ 이하, 470 ℃ 이상 870 ℃ 이하, 500 ℃ 이상 860 ℃ 이하, 550 ℃ 이상 850 ℃ 이하, 560 ℃ 이상 840 ℃ 이하, 570 ℃ 이상 830 ℃ 이하, 580 ℃ 이상 820 ℃ 이하, 590 ℃ 이상 810 ℃ 이하, 600 ℃ 이상 800 ℃ 이하, 610 ℃ 이상 790 ℃ 이하, 620 ℃ 이상 780 ℃ 이하, 630 ℃ 이상 770 ℃ 이하, 640 ℃ 이상 760 ℃ 이하, 650 ℃ 이상 750 ℃ 이하, 660 ℃ 이상 740 ℃ 이하, 670 ℃ 이상 730 ℃ 이하, 680 ℃ 이상 720 ℃ 이하 또는 690 ℃ 이상 710 ℃ 이하일 수 있다. 상술한 범위에서 상기 어닐링하는 단계의 온도를 조절함으로써, 상기 반도체 제조 공정을 위한 챔버 내부용 부품 내에 형성된 열에 의한 응력을 감소시키며, 고온에서 열충격을 최소화하여 부품의 내구성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 어닐링된 내플라즈마성 유리에 의하여 제조된 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공하는 단계(S27)를 포함할 수 있다. 상술한 것과 같이 상기 반도체 제조 공정을 위한 챔버 내부용 부품의 전구체를 가공함으로써, 정교한 부품을 제조할 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실시예 1>
60 중량%의 SiO2, 20 중량%의 Al2O3 및 20 중량%의 SrO를 포함하는 조성물을 제조하였다. 구체적으로 상기 조성물을 600 g 중량으로 준비하고, 지르코니아 볼 밀링 방식으로 대략 1 시간동안 상기 조성물을 혼합하였다. 즉, 조성물 600 g:지르코니아 볼 1,800 g(중량비 1:3)으로 하여 상기 조성물을 건식 혼합한 후, 24 시간 동안 건조하였다. 이후 상기 건조된 조성물을 슈퍼카탈로를 이용하여 1,650 ℃ 의 온도에 도달할 때까지 10 ℃/min 의 속도로 온도를 증가시켰고, 1,650 ℃ 의 온도에서 대략 2 시간 동안 유지하여 용융된 조성물을 제조하였다.
이후 상기 용융된 조성물을 상온으로 냉각하여 내플라즈마성 유리를 제조하였다.
<실시예 2>
상기 실시예 1에서 상기 조성물이 45 중량%의 SiO2, 15 중량%의 Al2O3 및 40 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 3>
상기 실시예 1에서 상기 조성물이 60 중량%의 SiO2, 15 중량%의 Al2O3 및 25 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 4>
상기 실시예 1에서 상기 조성물이 65 중량%의 SiO2, 15 중량%의 Al2O3 및 20 중량%의 SrO를 포함하도록 제조한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 5>
상기 실시예 1에서 상기 조성물이 30 중량%의 SiO2, 25 중량%의 Al2O3 및 45 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 6>
상기 실시예 1에서 상기 조성물이 50 중량%의 SiO2, 5 중량%의 Al2O3 및 45 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 7>
상기 실시예 1에서 상기 조성물이 30 중량%의 SiO2, 25 중량%의 Al2O3 및 45 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 5 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실시예 8>
상기 실시예 1에서 상기 조성물이 60 중량%의 SiO2, 25 중량%의 Al2O3 및 15 중량%의 SrO를 포함하도록 제조한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<비교예 1>
상기 실시예 1에서 상기 조성물의 함량을 상기 조성물이 40 중량%의 SiO2, 35 중량%의 Al2O3 및 25 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<비교예 2>
상기 실시예 1에서 상기 조성물이 40 중량%의 SiO2, 5 중량%의 Al2O3 및 55 중량%의 SrO를 포함하도록 제조한 것 및 1,650 ℃ 의 온도에서 대략 4 시간 동안 유지한 것을 제외하고 실시예 1과 동일하게 내플라즈마성 유리를 제조하였다.
<실험예 1: 내플라즈마성 유리의 용융상태 측정>
상기 실시예 1 내지 8과 비교예 1 및 2를 백금 도가니에 넣은 후 1,650 ℃ 온도, 1 기압의 조건으로 4 시간 동안 가열한 이후 외관을 측정하였다.
도 3은 본 발명의 일 실시상태인 실시예 1 내지 8 및 비교예 1과 2의 내플라즈마성 유리를 촬영한 사진이다. 상기 도 3을 참고하면, 실시예 1 내지 8은 모두 미용융되는 부분없이 용융 및 유리화된 것을 확인하였다. 이에 대하여 비교예 1 및 2는 용융되지 않고 결정화된 것을 확인하였다.
이에 따라 상기 SrO가 조성물에 첨가되는 경우 상기 Al2O3의 함량이 적정범위를 유지하여야만 용융온도가 낮아지며, 결정화되는 것 없이 용융물을 형성할 수 있는 것을 확인하였다.
<실험예 2: 유전 상수 측정>
쿼츠(Quartz) 재질인 참조예 1, 실시예 6 및 8을 측정 주파수 1 MHz로 하고, Keysight E4990A Impedence Analyzer를 이용하여 유전 상수를 측정하여 하기 표 1에 정리하였다.
<실험예 3: 식각 단차 및 식각율 측정>
쿼츠(Quartz) 재질인 참조예 1, 실시예 6 및 8을 불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마로 1 시간 동안 일부분을 노출하고, 상기 플라즈마에 의하여 노출된 부분과 노출되지 않은 부분의 차이인 식각 단차를 공초점 레이저 현미경 분석기(confocal laser microscope, 올림푸스 社 OLS 5100 장비, 400 배율)로 측정하고, 상기 식각 단차로부터 식각한 시간을 나누어 식각률을 산출하여 하기 표 1에 정리하였다.
실시예 6 실시예 8 참조예 1
식각단차(nm) 271.8 299.2 14144
식각율(nm/min) 4.5 5.0 235.7
유전 상수 10.92 10.72 4.85
상기 표 1을 참고하면, SiO2, Al2O3 및 SrO를 모두 포함하고, 특정한 함량을 만족한 실시예 6 및 8은 쿼츠(Quartz) 재질의 참조예 1에 비하여 낮은 식각 단차 및 식각율이 구현되며, 높은 유전 상수를 나타내는 것을 확인하였다.
따라서, 본 발명의 일 실시상태는 상기 내플라즈마 유리의 SiO2, Al2O3 및 SrO의 함량을 만족함으로써, 식각률 및 유리전이온도를 낮게 구현하는 동시에 열팽창계수를 낮게 구현하여 고온에서 열충격을 방지할 수 있고, 용융 온도를 낮게 구현하며, 광투과율과 고경도를 구현하여 기계적 물성이 향상되어 내구성을 향상시킬 수 있다.
이상에서 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (15)

  1. 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3 및 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물이 용융되어 형성된 것인,
    내플라즈마성 유리.
  2. 청구항 1에 있어서,
    상기 조성물은 SiO2, Al2O3, SrO 및 불가피한 불순물만을 포함하며,
    상기 SiO2의 함량은 30 중량% 이상 68 중량% 이하이고,
    상기 Al2O3의 함량은 5 중량% 이상 25 중량% 이하이며,
    상기 SrO의 함량은 15 중량% 이상 50 중량% 이하인 것인,
    내플라즈마성 유리.
  3. 청구항 1에 있어서,
    광투과율이 80% 이상 100% 이하인 것인,
    내플라즈마성 유리.
  4. 청구항 1에 있어서,
    비커스 경도가 650 HV 이상 1,000 HV 이하인,
    내플라즈마 유리.
  5. 청구항 1에 있어서,
    유리전이온도는 600 ℃ 이상 850 ℃ 이하인 것인,
    내플라즈마성 유리.
  6. 청구항 1에 있어서,
    열팽창계수는 4.0 X 10 -6 m/(m℃) 이상 6.0 X 10-6 m/(m℃) 이하인 것인,
    내플라즈마성 유리.
  7. 청구항 1에 있어서,
    불소(fluorine)와 아르곤(Ar)의 혼합 플라즈마에 의한 식각률이 0 nm/min 초과 20 nm/min 이하인 것인,
    내플라즈마성 유리.
  8. 청구항 1에 있어서,
    용융점이 1,500 ℃ 이상 1,750 ℃ 이하인,
    내플라즈마성 유리.
  9. 청구항 1의 내플라즈마성 유리로 제조된 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품.
  10. 청구항 9에 있어서,
    상기 내부용 부품은 포커스링(focus ring), 엣지링(edge ring), 커버링(cover ring), 링 샤워(ring shower), 인슐레이텨(insulator), EPD 윈도우(window), 전극(electrode), 뷰포트(view port), 인너셔터(inner shutter), 정전척(electro static chuck), 히터(heater), 챔버 라이너(chamber liner), 샤워 헤드(shower head), CVD(Chemical Vapor Deposition)용 보트(boat), 월 라이너(wall liner), 쉴드(shield), 콜드 패드(cold pad), 소스 헤드(source head), 아우터 라이너(outer liner), 디포지션 쉴드(deposition shield), 어퍼 라이너(upper liner), 배출 플레이트(exhaust plate) 및 마스크 프레임(mask frame) 중에서 어느 하나인 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품.
  11. 30 중량% 이상 80 중량% 이하의 SiO2, 5 중량% 이상 35 중량% 이하의 Al2O3, 10 중량% 이상 50 중량% 이하의 SrO을 포함하는 조성물을 용융시키는 단계; 및
    상기 용융된 조성물을 냉각하는 단계;를 포함하는,
    내플라즈마성 유리의 제조방법.
  12. 청구항 11에 있어서,
    상기 조성물을 용융시키는 단계의 용융 온도는 1,400 ℃ 이상 1,700 ℃ 이하인 것인,
    내플라즈마성 유리의 제조방법.
  13. 청구항 1 내지 8의 내플라즈마성 유리를 용융시키는 단계;
    상기 용융된 내플라즈마성 유리를 금형에 주입하는 단계; 및
    상기 주입된 내플라즈마성 유리를 어닐링하는 단계를 포함하는,
    반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
  14. 청구항 13에 있어서,
    상기 내플라즈마성 유리를 용융시키는 단계의 용융 온도는 1,500 ℃ 이상 1,750 ℃ 이하인 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
  15. 청구항 13에 있어서,
    상기 어닐링하는 단계의 온도는 400 ℃ 이상 900 ℃ 이하인 것인,
    반도체 제조 공정을 위한 챔버 내부용 부품의 제조방법.
PCT/KR2023/012285 2022-10-13 2023-08-18 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법 WO2024080531A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0131087 2022-10-13
KR20220131087 2022-10-13
KR1020230106815A KR20240051815A (ko) 2022-10-13 2023-08-16 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR10-2023-0106815 2023-08-16

Publications (1)

Publication Number Publication Date
WO2024080531A1 true WO2024080531A1 (ko) 2024-04-18

Family

ID=90669427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012285 WO2024080531A1 (ko) 2022-10-13 2023-08-18 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법

Country Status (1)

Country Link
WO (1) WO2024080531A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180835A2 (en) * 2000-08-10 2002-02-20 Asahi Glass Company Ltd. Optical amplifying glass
KR20080085087A (ko) * 2006-07-11 2008-09-22 니폰 덴키 가라스 가부시키가이샤 봉착용 유리조성물 및 봉착재료
KR20110009862A (ko) * 2009-07-23 2011-01-31 인하대학교 산학협력단 할로우 펄라이트를 포함하는 플라즈마 디스플레이 패널의 격벽용 세라믹 복합체 조성물
KR20180080429A (ko) * 2017-01-04 2018-07-12 한국세라믹기술원 세라믹 부재의 재사용을 위한 내플라즈마 하드코팅 조성물 및 이를 이용한 세라믹 부재의 재생방법
KR20220047136A (ko) * 2020-10-08 2022-04-15 아이원스 주식회사 내플라즈마 유리 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180835A2 (en) * 2000-08-10 2002-02-20 Asahi Glass Company Ltd. Optical amplifying glass
KR20080085087A (ko) * 2006-07-11 2008-09-22 니폰 덴키 가라스 가부시키가이샤 봉착용 유리조성물 및 봉착재료
KR20110009862A (ko) * 2009-07-23 2011-01-31 인하대학교 산학협력단 할로우 펄라이트를 포함하는 플라즈마 디스플레이 패널의 격벽용 세라믹 복합체 조성물
KR20180080429A (ko) * 2017-01-04 2018-07-12 한국세라믹기술원 세라믹 부재의 재사용을 위한 내플라즈마 하드코팅 조성물 및 이를 이용한 세라믹 부재의 재생방법
KR20220047136A (ko) * 2020-10-08 2022-04-15 아이원스 주식회사 내플라즈마 유리 및 그 제조 방법

Similar Documents

Publication Publication Date Title
WO2019098488A1 (ko) 내플라즈마성 코팅막의 제조방법 및 이에 의해 형성된 내플라즈마성 부재
WO2024080531A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2023167387A1 (ko) 탄화규소 분말의 합성방법
WO2024080530A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024080532A2 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20220047136A (ko) 내플라즈마 유리 및 그 제조 방법
WO2024071636A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2024085409A2 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2012083562A1 (zh) 一种导电膜及其制备方法和应用
WO2023063654A1 (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2012108618A2 (ko) 마이크로 웨이브를 이용한 단결정 성장장치 및 그 성장방법
WO2022035111A1 (ko) 내플라즈마 유리 및 그 제조 방법
WO2019054617A1 (ko) 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2022255686A1 (ko) 내플라즈마 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2022075687A1 (ko) 내플라즈마 유리 및 그 제조 방법
KR20240051815A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2019093781A1 (ko) 고열전도성 마그네시아 조성물 및 마그네시아 세라믹스
KR20240045989A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
KR20240055626A (ko) 내플라즈마성 유리, 반도체 제조 공정을 위한 챔버 내부용 부품 및 그들의 제조 방법
WO2022010105A1 (ko) 증착 장치
WO2021006687A1 (en) Coating composition having high light transmittance, coating glass and method for preparation thereof, and cooking appliance using same
WO2021095917A1 (ko) 통신용 복합 유리 및 이의 제조 방법
WO2021060583A1 (ko) 플라즈마 내식성을 갖는 결정화 유리 및 이를 포함하는 건식식각 공정 부품
WO2018043803A1 (ko) 인공치아용 미저라이트계 결정화 유리 및 이의 착색 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877461

Country of ref document: EP

Kind code of ref document: A1