WO2007145315A1 - 基板処理システムおよび基板搬送方法 - Google Patents

基板処理システムおよび基板搬送方法 Download PDF

Info

Publication number
WO2007145315A1
WO2007145315A1 PCT/JP2007/062101 JP2007062101W WO2007145315A1 WO 2007145315 A1 WO2007145315 A1 WO 2007145315A1 JP 2007062101 W JP2007062101 W JP 2007062101W WO 2007145315 A1 WO2007145315 A1 WO 2007145315A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
processed
exposure
processing apparatus
Prior art date
Application number
PCT/JP2007/062101
Other languages
English (en)
French (fr)
Inventor
Yuichi Yamamoto
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020087030311A priority Critical patent/KR101087463B1/ko
Priority to US12/302,857 priority patent/US8046095B2/en
Priority to CN2007800223262A priority patent/CN101473416B/zh
Publication of WO2007145315A1 publication Critical patent/WO2007145315A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber

Definitions

  • the present invention relates to a substrate processing system and a substrate transfer method for performing processing including a photolithography process on a substrate to be processed such as a semiconductor wafer.
  • a photolithography process is repeatedly performed in which a pattern is formed on a semiconductor wafer (hereinafter sometimes referred to as "wafer").
  • a resist coating process for forming a resist film on the surface of a semiconductor wafer
  • an exposure process for exposing the wafer after resist coating using an exposure mask
  • developing the exposed wafer Development processing is performed.
  • a pre-exposure beta (PAB) process is performed before the exposure process
  • a post-exposure beta (post-exposure beta (PEB) process is performed after the exposure process.
  • a photolithography process is performed in a photolithography processing unit connected to an automated material handling system (AMHS) in a factory.
  • AMHS automated material handling system
  • the photolithographic processing unit has a resist coating / development processing device and an exposure processing device that are arranged in series due to process restrictions, so that the wafer W can be transferred to and from the AMHS as a unit.
  • a plurality of wafers that have been cassette-transferred by AMHS are delivered in units of cassettes to a resist coating and developing processing apparatus of a single photolithography processing unit. Then, the wafers W were taken out from the cassette one by one by the transfer mechanism of the resist coating and developing processing apparatus, and a series of processes such as resist coating, exposure, and development were performed.
  • An object of the present invention is to provide a substrate processing system and a substrate transport method that can obtain high reliability even when each processing in a photolithography process is performed with high throughput.
  • a first aspect of the present invention is a substrate processing system for performing processing including a photolithography process on a substrate to be processed
  • a first automatic substrate transfer line for transferring a substrate to be processed between a plurality of processing units that individually process the substrate to be processed
  • a substrate to be processed can be delivered to and from the first automatic substrate transfer line, and a photolithography processing unit that performs a series of processes in the photolithography process, and each processing apparatus of the photolithography processing unit A second automatic substrate transfer line for transferring the substrate to be processed at
  • the photolithography processing unit includes:
  • a resist coating processing apparatus for coating a resist on the surface of the substrate to be processed
  • An exposure processing apparatus that performs an exposure process on the resist applied to the substrate to be processed; a post-exposure beta processing apparatus that heat-processes the resist after the exposure process;
  • the resist coating processing device, the post-exposure beta processing device, and the development processing device are separately disposed so as to be able to deliver a substrate to be processed between the second automatic substrate transfer line,
  • the exposure processing apparatus is disposed adjacent to the post-exposure beta processing apparatus so as to deliver the substrate to be processed to / from the second automatic substrate transfer line via the post-exposure beta processing apparatus.
  • a featured substrate processing system is provided. In this case, before The resist coating processing apparatus, the post-exposure beta processing apparatus, and the development processing apparatus
  • each of the second automatic substrate transfer lines includes a separate substrate transfer port for transferring a substrate to be processed.
  • a second aspect of the present invention is a substrate processing system for performing processing including a photolithography process on a substrate to be processed
  • a first automatic substrate transfer line for transferring a substrate to be processed between a plurality of processing units that individually process the substrate to be processed
  • a substrate to be processed can be delivered to and from the first automatic substrate transfer line, and a photolithography processing unit that performs a series of processes in the photolithography process, and each processing apparatus of the photolithography processing unit A second automatic substrate transfer line for transferring the substrate to be processed at
  • the photolithography processing unit includes:
  • a resist coating processing apparatus for coating a resist on the surface of the substrate to be processed
  • An exposure processing apparatus that performs an exposure process on the resist applied to the substrate to be processed; a post-exposure beta processing apparatus that heat-processes the resist after the exposure process;
  • a development processing device that is disposed adjacent to the post-exposure beta processing device and that develops the resist after the heat treatment;
  • the resist coating processing device and the development processing device are separately disposed so as to be able to deliver a substrate to be processed between the second automatic substrate transfer line, and the exposure processing device is configured to perform the post-exposure beta processing. And a post-exposure bake processing device so as to deliver the substrate to be processed to and from the second automatic substrate transfer line through the apparatus and the development processing device.
  • a substrate processing system is provided. In this case, it is preferable that each of the resist coating apparatus and the development processing apparatus includes an individual substrate transfer port for transferring a substrate to be processed to / from the second automatic substrate transfer line.
  • the second The automatic substrate transfer line is preferably an independent circulation substrate transfer line such as the first automatic substrate transfer line.
  • a first automatic substrate transfer apparatus that moves the first automatic substrate transfer line and delivers a substrate to be processed to and from each of the processing units;
  • a second automatic substrate transfer device that moves the second automatic substrate transfer line to deliver the substrate to be processed between the processing devices of the photolithography processing section.
  • the first automatic substrate transfer device and the second automatic substrate transfer device may be a container transfer device that accommodates and transfers a plurality of substrates to be processed in a container.
  • the first automatic substrate transport device is a container transport device that accommodates and transports a plurality of substrates to be processed in a container
  • the second automatic substrate transport device is a substrate to be processed one by one. It may be a single wafer transfer device.
  • a first control unit that controls the transfer of the substrate to be processed in the first automatic substrate transfer line
  • a second control unit for controlling the transfer of the substrate to be processed in the second automatic substrate transfer line
  • the exposure coating apparatus is installed so as to have a ratio S 1: 2 to the number of the resist coating processing apparatuses installed.
  • the photolithography processing unit is preferably a processing unit that forms a pattern by a double exposure technique.
  • a third aspect of the present invention is a substrate transport method for transporting a substrate to be processed in a substrate processing system that performs processing including a photolithography process on the substrate to be processed, the substrate processing system including: Delivering the substrate to be processed between the first automatic substrate transfer line for transferring the substrate to be processed between a plurality of processing units that individually process the substrate and the first automatic substrate transfer line A circulatory second automatic substrate transfer line dedicated to a photolithography processing unit configured to perform a series of processing in the photolithography process,
  • the photolithography processing unit includes: A resist coating processing apparatus for coating a resist on the surface of the substrate to be processed;
  • An exposure processing apparatus that performs an exposure process on the resist applied to the substrate to be processed; a post-exposure beta processing apparatus that heat-processes the resist after the exposure process;
  • the substrate to be processed is transferred between the processing apparatuses by the second automatic substrate transfer line, and the resist coating processing apparatus, the post-exposure beta processing apparatus, and the development processing apparatus are Each of the substrates to be processed is directly transferred to and from the second automatic substrate transfer line, and the exposure processing apparatus is connected to the second automatic substrate transfer line via the post-exposure beta processing apparatus disposed adjacently.
  • a substrate transport method is provided that delivers a substrate to be processed between the two.
  • a substrate transfer method for transferring a substrate to be processed in a substrate processing system that performs a process including a photolithography process on the substrate to be processed.
  • the substrate to be processed can be delivered between the first automatic substrate transfer line that transfers the substrate to be processed between multiple processing units that perform individual processing and the first automatic substrate transfer line.
  • a circulatory second automatic substrate transfer line dedicated to a photolithography processing unit for performing a series of processes in the photolithography process
  • the photolithography processing unit includes:
  • a resist coating processing apparatus for coating a resist on the surface of the substrate to be processed
  • An exposure processing apparatus that performs an exposure process on the resist applied to the substrate to be processed; a post-exposure beta processing apparatus that heat-processes the resist after the exposure process;
  • the substrate to be processed is transferred between the processing apparatuses by the second automatic substrate transfer line, and the resist coating processing apparatus and the current image processing apparatus are respectively in the second automatic processing unit.
  • the substrate to be processed is directly transferred to and from the substrate transfer line, and the exposure processing apparatus includes the post-exposure beta processing apparatus and the adjacent exposure apparatus.
  • a substrate transport method in which a substrate to be processed is delivered to and from the second automatic substrate transport line via the development processing apparatus.
  • the photolithography processing unit carries in the second automatic substrate transfer line force target substrate in accordance with an operating state of each processing apparatus. It is preferable to select the destination.
  • first automatic substrate transfer line and the second automatic substrate transfer line a plurality of substrates to be processed are accommodated in a container and transferred.
  • the substrate to be processed may be delivered to and from each processing apparatus of the photolithography processing unit while being accommodated in the container.
  • the substrates to be processed are accommodated in a container and transferred, and in the second automatic substrate transfer line, the substrates to be processed are transferred one by one.
  • the substrate to be processed may be delivered one by one between the second automatic substrate transfer line and each processing apparatus of the photolithography processing unit.
  • a fifth aspect of the present invention operates on a computer and controls the substrate processing system so that the substrate transport method of the third aspect or the fourth aspect is performed at the time of execution.
  • a sixth aspect of the present invention is a computer-readable storage medium storing a control program that operates on a computer
  • the control program provides a computer-readable storage medium for controlling the substrate processing system so that the substrate transport method according to the third aspect or the fourth aspect is performed at the time of execution.
  • FIG. 1 is a drawing showing an apparatus layout of a photolithography processing unit in the substrate processing system of the first embodiment.
  • FIG. 2 is a plan view of the resist coating apparatus.
  • FIG. 3 is a front view of the resist coating apparatus shown in FIG. 2.
  • FIG. 4 is a rear view of the resist coating apparatus shown in FIG.
  • FIG. 5 is a plan view of a PEB processing apparatus.
  • FIG. 6 is a front view of the PEB processing apparatus shown in FIG.
  • FIG. 7 is a rear view of the PEB processing apparatus shown in FIG.
  • FIG. 8 is a plan view of the development processing apparatus.
  • FIG. 9 is a front view of the development processing apparatus shown in FIG.
  • FIG. 10 is a rear view of the development processing apparatus shown in FIG.
  • FIG. 11 is a block diagram showing the configuration of the first MES.
  • FIG. 12 is a drawing showing an apparatus layout of a photolithography processing unit in the substrate processing system of the second embodiment.
  • FIG. 13 is a drawing showing an apparatus layout of a photolithography processing unit in the substrate processing system of the third embodiment.
  • FIG. 14 is a drawing showing an apparatus layout of a photolithography processing unit in the substrate processing system of the fourth embodiment.
  • the inventor has studied the problems that occur in a conventional substrate processing system that performs processing including a photolithography process on a target substrate such as a semiconductor wafer in the course of development of the present invention. As a result, the present inventors have obtained the following knowledge.
  • FIG. 1 is a diagram showing an outline of a transfer apparatus centering on a photolithography processing unit la for performing a photolithography process in the substrate processing system 100 according to the first embodiment of the present invention.
  • the substrate processing system 100 includes a main transfer line 20 that is a first automatic substrate transfer line that transfers the Ueno and W, and delivers a substrate to each processing unit (for example, the processing units Al and A2) throughout the system. And a sub-transfer line 30 that is a second automatic substrate transfer line for transferring the wafer W in the photolithography processing section la.
  • a main transport line 20 configured as AMHS (Automated Material Handling Systems) is provided with a plurality of OHT (Overhead Hoist Transport) 21, for example.
  • OHT 21 moves the main transfer line 20 in a state where the wafer W is accommodated in a cassette (not shown), and the wafer W is transferred to each processing unit (for example, processing units A1 and A2) including the photolithography processing unit la. It is comprised so that conveyance can be performed.
  • the sub-transport line 30 is provided as an AMHS independent of the main transport line 20, and includes an OHT 31.
  • the OHT 31 moves around the circulating sub-transport line 30 formed in a loop shape, transports the wafer W to each processing apparatus in the photolithography processing unit la, and transfers the wafer W to and from each processing apparatus. Delivery of. Note that the force OHT31 is not shown in the figure, and is higher than the OHT21.
  • the photolithography processing unit la includes a resist coating processing apparatus 2 that coats a predetermined resist on the surface of the wafer W, a first exposure processing apparatus 3a that performs an exposure process on the wafer W coated with the resist, and an exposure.
  • the first PEB processing apparatus 4a that heat-processes the processed resist
  • the second exposure processing apparatus 3b that performs the exposure processing on wafer W
  • the resist after the exposure processing A second PEB processing apparatus 4b for performing heat treatment and an image processing apparatus 5 for developing the wafer W subjected to the exposure processing are provided.
  • the photolithography processing unit la employs an apparatus layout suitable for double exposure processing in which a fine pattern is formed by repeating the exposure processing for the wafer W twice.
  • the resist coating processing device 2 In the photolithography processing unit la, the resist coating processing device 2, the first exposure processing device 3a, the second exposure processing device 3b, and the development processing device 5 are separately arranged, and the first exposure processing device 3a and The first PEB processing apparatus 4a, the second exposure processing apparatus 3b, and the second PEB processing apparatus 4b are arranged adjacent to each other.
  • the first exposure processing apparatus 3a is arranged adjacent to the first PEB processing apparatus 4a, and is configured so that the wafer W can be delivered to and from the OHT31 of the sub-transfer line 30 via the first PEB processing apparatus 4a.
  • the second exposure processing apparatus 3b is disposed adjacent to the second PEB processing apparatus 4b, and can transfer the wafer W to and from the OHT31 of the sub-transfer line 30 via the second PEB processing apparatus 4b. It is configured to function.
  • the photolithography processing unit la includes a resist coating processing device 2, first and second exposure processing devices 3a and 3b, and first and second PEBs.
  • a plurality of groups are provided with the processing devices 4a and 4b and the development processing device 5 as one group. In other words, an integer multiple of processing devices are deployed while maintaining the installation ratio of each processing device in each group! Speak.
  • the wafer W coated with the resist by the resist coating processing apparatus 2 is transported to either the first exposure processing apparatus 3a or the second exposure processing apparatus 3b. May be. That is, the wafer W can be carried in by selecting the first exposure processing apparatus 3a or the second exposure processing apparatus 3b having a larger processing capacity, that is, an empty exposure processing apparatus! RU
  • the resist coating apparatus 2 is configured as shown in FIGS. 2 to 4, for example. 2 is a schematic plan view showing the resist coating treatment apparatus 2, FIG. 3 is a front view thereof, and FIG. 4 is a rear view thereof.
  • the resist coating apparatus 2 includes a cassette station 210 which is a transfer station, and a processing station 211 having a plurality of processing units.
  • the cassette station 210 performs resist coating processing from the sub-conveying line 30 in a state where a plurality of wafers W as processing objects, for example, 25 wafers are mounted on the wafer cassette CR.
  • This is a delivery port for carrying in / out wafer W between wafer cassette CR and processing station 211 such as carrying in apparatus 2 or carrying out from resist coating processing apparatus 2 to sub-transfer line 30.
  • a plurality (four in the figure) of positioning protrusions 220a are formed on the cassette mounting table 220 along the X direction in the figure.
  • the wafer cassette CR can be placed in one row with the wafer entrances facing the processing station 211 side.
  • wafers W are arranged in the vertical direction (Z direction).
  • the cassette station 210 includes a wafer transfer mechanism 221 positioned between the cassette mounting table 220 and the processing station 211.
  • the wafer transfer mechanism 221 has a wafer transfer arm 221a that is movable in the cassette arrangement direction (X direction) and the wafer W arrangement direction (Z direction) therein.
  • One of the wafer cassettes CR can be selectively accessed by the arm 221a.
  • the wafer transfer arm 221a is configured to be rotatable in the ⁇ direction shown in FIG. 2, and a third processing group G on the processing station 211 side to be described later.
  • ALIM alignment unit
  • EXT extension unit
  • the processing station 211 includes a plurality of processing units for performing a series of steps when coating the wafer W, and these are arranged in multiple stages at predetermined positions. Wafers W are processed one by one. As shown in FIG. 2, this processing station 211 has a wafer transfer path 222a in the center, and a main wafer transfer mechanism 222 is provided therein, and all the processing around the wafer transfer path 222a is performed. The unit is arranged.
  • the plurality of processing units are divided into a plurality of processing groups. In each processing group, a plurality of processing units are arranged in multiple stages along the vertical direction (Z direction).
  • the main wafer transfer mechanism 222 is equipped with a wafer transfer device 246 that can move up and down in the vertical direction (Z direction) inside a cylindrical support 249.
  • the cylindrical support 249 can be rotated by a rotational driving force of a motor (not shown), and accordingly the wafer is transferred.
  • the device 246 can also be rotated integrally.
  • the wafer transfer device 246 includes a plurality of holding members 248 that are movable in the front-rear direction of the transfer base 247, and these holding members 248 realize the transfer of the wafer W between the processing units.
  • the second processing group G-G is arranged in parallel on the front side of the resist coating processing apparatus 2.
  • the third processing group G is located adjacent to the cassette station 210 and
  • the fourth processing group G is opposite to the third processing group G across the wafer transfer path 222a.
  • the fifth processing group G is arranged on the back side.
  • the wafer W is not shown in the coater cup (CP).
  • COT resist coating processing units
  • the wafer W is mounted on the mounting table SP.
  • Oven-type processing units that perform predetermined processing are stacked in multiple stages. That is, an adhesion unit (so-called hydrophobizing treatment for improving the fixability of the resist)
  • a cooling unit (COL) may be provided instead of the alignment unit (ALIM), and the cooling unit (COL) may have a alignment function.
  • oven-type processing units are stacked in multiple stages.
  • the cooling unit (COL), the extension 'cooling unit (EXTCOL), the extension unit (EXT), the cooling unit (COL), and the four hot plate units (HP), which are the wafer loading / unloading section equipped with the cooling plate, are located below. They are stacked in 8 steps in order.
  • the fifth processing group G is provided on the back side of the main wafer transfer mechanism 222, The fifth processing group G is viewed from the main wafer transfer mechanism 222 along the guide rail 225.
  • the first PEB processing apparatus 4a disposed adjacent to the first exposure processing apparatus 3a is configured as shown in FIGS. 5 to 7, for example. Since the second PEB processing device 4b has the same configuration as the first PEB processing device 4a, the first PEB processing device 4a will be described below as an example, and the second PEB processing device 4b will be described. The description of 4b is omitted.
  • FIG. 5 is a schematic plan view showing the first PEB processing apparatus 4a
  • FIG. 6 is a front view thereof
  • FIG. 7 is a rear view thereof.
  • the first PEB processing apparatus 4a includes a wafer between a cassette station 310 as a transfer station, a processing station 311 having a plurality of processing units, and an exposure processing apparatus (not shown) provided adjacent to the processing station 311. And an interface unit 312 for delivering W.
  • the cassette station 310 transfers a plurality of, for example, 25 wafers W as processing objects to the first PEB processing apparatus 4a from the sub-transport line 30 in a state where the wafer W is mounted on the wafer cassette CR.
  • This is a delivery port for carrying in and out the wafer W between the wafer cassette CR and the processing station 311 such as carrying in or carrying out from the first PEB processing apparatus 4a to the sub transfer line 30.
  • a plurality (four in the figure) of positioning protrusions 320a are formed on the cassette mounting table 320 along the X direction in the figure.
  • the wafer cassette CR can be placed in one row with the respective wafer entrances facing the processing station 311 side.
  • wafers W are arranged in the vertical direction (Z direction).
  • the cassette station 310 has a wafer transfer mechanism 321 positioned between the cassette mounting table 320 and the processing station 311.
  • the wafer transfer mechanism 321 has a wafer transfer arm 321a that can move in the cassette arrangement direction (X direction) and the arrangement direction (Z direction) of the wafer W therein, and this wafer transfer mechanism.
  • One of the wafer cassettes CR can be selectively accessed by the arm 321a.
  • the wafer transfer arm 321a is configured to be rotatable in the ⁇ direction shown in FIG. 5, and a third processing group G on the processing station 311 side to be described later. Access to the alignment unit (ALIM) and extension unit (EXT) belonging to
  • the processing station 311 includes a plurality of processing units for performing a series of steps when performing PEB processing on the wafer W, and these are arranged in multiple stages at predetermined positions. Wafers W are processed one by one. As shown in FIG. 5, the processing station 311 has a wafer transfer path 322a at the center thereof, in which a main wafer transfer mechanism 322 is provided, and all processing units are provided around the wafer transfer path 322a. Is arranged. The plurality of processing units are divided into a plurality of processing groups. In each processing group, a plurality of processing units are arranged in multiple stages along the vertical direction (Z direction).
  • the main wafer transfer mechanism 322 is equipped with a wafer transfer device 346 that can move up and down in the vertical direction (Z direction) inside a cylindrical support 349.
  • the cylindrical support 349 can be rotated by a rotational driving force of a motor (not shown), and accordingly, the wafer transfer device 346 can also rotate integrally.
  • the wafer transfer device 346 includes a plurality of holding members 348 movable in the front-rear direction of the transfer base 347, and the holding members 348 realize the transfer of the wafer W between the processing units.
  • the first and second processing groups G-G are parallel to the front side of the first PEB processing unit 4a.
  • the third processing group G is located adjacent to the cassette station 310.
  • the fourth processing group G is arranged adjacent to the interface unit 312. Also
  • the fifth processing group G is arranged on the back side.
  • oven-type processing units that perform predetermined processing by placing the wafer W on the mounting table SP are stacked in multiple stages.
  • the lower force is also piled up in 8 steps in order.
  • oven-type processing units that perform predetermined processing by placing the wafer W on the mounting table SP are stacked in multiple stages.
  • an adhesion unit (AD) that performs so-called hydrophobization processing to improve the fixability of the resist
  • an alignment unit (ALIM) that performs alignment
  • an extension unit (EXT) that carries in and out the wafer W
  • cooling processing A cooling unit (COL) that performs heat treatment, and four hot plate units (HP) that heat-treat the wafer W after exposure processing are stacked in 8 stages in order.
  • a cooling unit (COL) may be provided instead of the alignment unit (ALIM), and the cooling unit (COL) may have an alignment function.
  • Processing group G is sideways as viewed from main wafer transfer mechanism 322 along guide rail 325.
  • the interface unit 312 has the same length as the processing station 311 in the depth direction (X direction). As shown in FIGS. 5 and 6, a portable pickup cassette CR and a stationary buffer cassette BR are arranged in two stages on the front surface of the interface unit 312, and a peripheral exposure processing device 323 is disposed on the rear surface. A wafer transfer mechanism 324 is provided at the center. The wafer transfer mechanism 324 has a wafer transfer arm 324a, and the wafer transfer arm 324a moves in the X direction and the Z direction to access both cassettes CR'BR and the peripheral exposure processing apparatus 323. ing.
  • the wafer transfer arm 324a is rotatable in the ⁇ direction, and the extension unit (EXT) belonging to the fourth processing group G of the processing station 311, and further adjacent thereto.
  • the development processing apparatus 5 is configured as shown in FIGS. 8 to 10, for example.
  • FIG. 8 is a schematic plan view showing the development processing apparatus 5
  • FIG. 9 is a front view thereof
  • FIG. 10 is a rear view thereof.
  • the development processing apparatus 5 includes the first processing group G and the second processing group of the processing station 21 la.
  • step G the resist coating process at the processing station 21 la of the resist coating unit 2 is performed.
  • a development unit that develops resist patterns
  • the configuration is the same as that of the resist coating unit (COT) shown in FIGS. 2 to 4 except that they are arranged in two stages.
  • the OHT21 of the main transfer line 20 and the OHT31 of the sub-transfer line 30 are configured so that the wafer W can be transferred by a plurality of wafer transfer units 40 including the wafer handling robot 41. It has been.
  • the main transfer line 20 is connected to a first manufacturing management system (MES) 50 as an overall control unit that manages the entire substrate processing system 100.
  • MES manufacturing management system
  • This first MES50 is fed back to the core business system (not shown) with real-time information about each process in the factory in cooperation with individual processing units and control units (for example, MES60 described later) provided individually.
  • the process will be judged in consideration of the load of the entire factory.
  • the first MES 50 grasps the load of each OHT 21 in the main transport line 20 while moving, stopping, waiting, and each processing unit (for example, processing unit Al, A2). It manages the delivery of wafers W and optimizes the transfer state.
  • the sub-transport line 30 is connected to a second manufacturing management system (MES) 60.
  • the second MES 60 functions as an individual control unit in the photolithography processing unit la, and the transport state of the photolithography processing unit la in the sub-transport line 30 and each processing device such as the resist coating processing device 2, the first
  • the respective processing conditions in the second exposure processing apparatuses 3a and 3b, the first and second PEB processing apparatuses 4a and 4b, and the development processing apparatus 5 are controlled. More specifically, the second MES 60, for example, knows the load of each OHT 31 in the sub-transport line 30 and moves, stops, stands by, and transfers wafers W to and from each processing apparatus. Manage and optimize transport conditions.
  • FIG. 11 is a diagram showing a configuration of the first MES 50.
  • the first MES 50 includes a controller 51 including a host computer, a user interface 52, and a storage unit 53.
  • the user interface 52 connected to the controller 51 is a keyboard for the process manager to input commands to manage the substrate processing system 100, and a display that visualizes and displays the operating status of the substrate processing system 100. Consists of etc.
  • the storage unit 53 connected to the controller 51 is a wafer executed by the substrate processing system 100.
  • C) Stores a control program (software) for realizing transport and various processes under the control of the controller 51, and recipes that record transport condition data, process condition data, etc.
  • the substrate processing system 100 is controlled under the control of the controller 51 by calling an arbitrary recipe from the storage unit 53 according to an instruction from the user interface 52 and causing the controller 51 to execute it.
  • the desired processing at is performed.
  • recipes such as the control program processing condition data may be stored in a computer-readable storage medium such as a CD-ROM, a hard disk, a flexible disk, a flash memory, or the like. For example, it is possible to transmit the data from time to time via a dedicated line and use it online.
  • the basic configuration of the second MES 60 is the same as that of the first MES except that the target of control is limited to the photolithography processing unit la, and thus the description and illustration thereof are omitted.
  • a wafer W having another processing unit (not shown) force transferred to the OHT 21 of the main transfer line 20 is a misaligned wafer transfer unit 40.
  • the wafer handling robot 41 passes the wafer to the OHT 31 on the sub-transport line 30 of the photolithography processing unit la.
  • the OHT 31 on the sub-transport line 30 delivers the wafer to and from each processing apparatus in the photolithography processing unit la.
  • the wafer transfer arm 221a of the wafer transfer mechanism 221 stores an unprocessed wafer W on the cassette mounting table 220.
  • Access cassette CR take out one wafer W, and transfer it to the extension unit (EXT) of the third processing group G.
  • the wafer W is transferred from the extension unit (EXT) to the processing station 211 by the wafer transfer device 246 of the main wafer transfer mechanism 222. Then, after alignment by the alignment unit (ALIM) of the third processing group G, the adhesion processing is performed.
  • ALIM alignment unit
  • the wafer W is then transferred to a cooling unit (COL) by the wafer transfer device 246 and cooled.
  • a cooling unit COL
  • Wafer W that has been processed in the Adhesion Processing Unit (AD) and cooled in the Cooling Unit (COL), or the Adhesion Processing Unit (AD) is not processed! /, UENO, W
  • the wafer is transferred to the resist coating unit (COT) by the wafer transfer device 246, where the resist is applied and a coating film is formed.
  • the wafer W is transferred to one of the hot plate units (H
  • the cooled wafer W is transferred to the alignment unit (ALIM) of the third processing group G.
  • ALIM alignment unit
  • the wafer W coated with the resist in the resist coating processing apparatus 2 is delivered to the OHT 31 of the auxiliary transport line 30 through the cassette station 210.
  • the OHT 31 that has received the wafer W transports the wafer W to the cassette station 310 of the PEB processing apparatus 4a and transfers it to the PEB processing apparatus 4a.
  • the wafer transfer arm 321a of the wafer transfer mechanism 321 accesses the wafer cassette CR containing the resist-coated wafer W on the cassette mounting table 320. Take out one wafer W and add it to the third processing group G extension
  • the wafer W is transferred from the extension unit (EXT) to the processing station 311 by the wafer transfer device 346 of the main wafer transfer mechanism 322. Then, after alignment by the alignment unit (ALIM) of the third processing group G, the fourth processing dull is performed.
  • the wafer W is exposed to the peripheral exposure by the peripheral exposure processing device 323 in the interface unit 312 to remove excess resist, and then transferred to the first exposure processing device 3a provided adjacent to the interface unit 312. Then, an exposure process is performed on the resist film on the wafer W according to a predetermined pattern.
  • the exposed wafer W is returned again to the interface unit 312 of the first PEB processing apparatus 4a, and the fourth processing group is transferred by the wafer transfer mechanism 324. It is transferred to the extension unit (EXT) belonging to loop G.
  • wafer W is transferred to the extension unit (EXT) belonging to loop G.
  • the wafer is transferred to one of the hot plate units (HP) by the wafer transfer device 346, subjected to PEB treatment, and then cooled by the cooling unit (COL).
  • the PEB processing apparatus (4a, 4b) is disposed adjacent to the exposure processing apparatus (3a, 3b), the time management from the exposure processing to the PEB processing can be accurately performed. After that, Wheha W passes through the third processing group G extension unit (EXT).
  • the wafer W exposed in the first exposure processing apparatus 3a is again delivered to the OHT 31 of the sub-transport line 30 via the cassette station 310 of the first PEB processing apparatus 4a.
  • the OHT 31 that has received the wafer W then transports the wafer W to the cassette station 310 of the second PEB processing apparatus 4b and transfers it to the second PEB processing apparatus 4b.
  • the second exposure processing is performed in the same procedure as that described for the first PEB processing apparatus 4a and the first exposure processing apparatus 3a.
  • the second PEB process is performed.
  • the wafer W that has been subjected to the two exposure processes is delivered again to the OHT 31 of the sub-transfer line 30 via the cassette station 310 of the second PEB processing apparatus 4b.
  • the OHT 31 that has received the wafer W conveys the wafer W to the cassette station 210 of the development processing apparatus 5 and delivers it to the development processing apparatus 5.
  • the wafer transfer arm 221 a of the wafer transfer mechanism 221 is stored in the wafer cassette CR containing the double-exposed wafer W on the force set mounting table 220. To remove one wafer W and add it to the third processing group G's extension queue.
  • the wafer W is transferred from the extension unit (EXT) to the processing station 21 la by the wafer transfer device 246 of the main wafer transfer mechanism 222.
  • the development unit (ALIM) of the third processing group G After alignment by the alignment unit (ALIM) of the third processing group G, the development unit (ALIM) (
  • the wafer W that has been subjected to development processing is delivered again to the OHT 31 of the sub-transfer line 30 via the cassette station 210 of the development processing apparatus 5.
  • a series of steps in the photolithography processing unit la is completed, and the wafer W on which a predetermined pattern is formed is transferred from the OHT 31 on the sub-transport line 30 of the photolithography processing unit la in any of the wafer delivery units 40.
  • Delivered to OHT21 on main transfer line 20 is transported to another processing unit, for example, an etching processing unit (not shown) by the OHT 21 of the main transport line 20, and etching is performed based on the pattern.
  • the wafer W that has been subjected to the etching process may be subjected to other processes as necessary, and then transferred again to the photolithographic process section la by the OHT 21 of the main transfer line 20, and the photolithography process may be repeated again. It is possible.
  • the sub-transport line 30 is provided in the photolithography processing unit la as a transport mechanism independent of the main transport line 20, and thus the photolithography processing unit.
  • the degree of freedom of transfer to each processing apparatus within la can be increased, and the processing speed in the photolithography process and the wafer transfer speed can be controlled separately from other processing units in the substrate processing system 100. Therefore, it is possible to process the photolithography process with high throughput, and it is possible to cope with a process in which a large load is applied to the photolithography process, such as a double exposure process.
  • the sub-transport line 30 itself equipped with multiple OHT31 itself has the S buffer function, so that the number of in-process lots stocked on the main transport line 20 can be reduced and the load on the main transport line 20 is reduced. Can be suppressed.
  • the resist coating apparatus 2, the exposure processing apparatus (the first exposure processing apparatus 3a and the second exposure processing apparatus 3b), and the development processing apparatus 5 are connected to the sub-transport line 30.
  • the wafer W is arranged in parallel so that it can be delivered, even if a failure occurs in any of the devices, the wafer W is flexibly transferred to another device of the same type for processing. It is possible. Therefore, it is possible to improve the reliability of the substrate processing system 100 including the photolithography processing unit la.
  • the first exposure processing device 3a and the first PEB processing device 4a that heat-treats the resist after the exposure processing, the second exposure processing device 3b, and the second heat-processing the resist after the exposure processing.
  • PEB processing equipment 4b Since the PEB processing equipment 4b is arranged adjacent to each other, the time management from the exposure processing to the PEB processing can be accurately performed. Therefore, PEB processing can be performed with high reproducibility. For example, when a chemically amplified resist typified by ArF resist is used, the elimination reaction of the dissolution inhibitor in the resist proceeds by PEB treatment, and alkali solubility is determined. For this reason, chemical amplification resists require very strict time and temperature control from the exposure process to the PEB process. If the processing time from the exposure process to the PEB process is not constant and the temperature in the wafer surface or between the wafers is uneven in the PEB process, the line width will vary and the etching accuracy will be adversely affected.
  • the exposure processing device and the PEB processing device are installed adjacent to each other, the time management after exposure enables PEB processing with a high accuracy of blocking. Therefore, chemical amplification typified by ArF registers is used. This is particularly advantageous for photolithography processes that use mold resists.
  • FIG. 12 is a diagram showing an outline of a transfer device centered on a photolithography processing unit lb for performing a photolithography process in the substrate processing system 101 according to the second embodiment of the present invention.
  • a conveyor 70 for carrying wafers W is transported as the second automatic substrate transfer line.
  • the photolithography processing unit lb performs exposure processing on the resist coating processing apparatus 2 that coats a predetermined resist on the surface of the wafer W and the wafer W coated with the resist.
  • 1 exposure processing apparatus 3a first PE B processing apparatus 4a that heat-treats the resist after exposure processing
  • second exposure processing apparatus 3b that performs exposure processing on wafer W
  • exposure processing A second PEB processing apparatus 4b for heat-treating the resist after the treatment and a development processing apparatus 5 for developing the exposed wafer W are provided.
  • the resist coating processing device 2 In the photolithography processing unit lb, the resist coating processing device 2, the first exposure processing device 3a, the second exposure processing device 3b, and the development processing device 5 are arranged separately, and the first exposure processing device 3a and the first exposure processing device 3a are arranged separately.
  • the first PEB processing apparatus 4a, the second exposure processing apparatus 3b, and the second PEB processing apparatus 4b are arranged adjacent to each other.
  • the first exposure processing apparatus 3a is arranged adjacent to the first PEB processing apparatus 4a, and is configured to be able to deliver the wafer W to and from the conveyor 70 via the first PEB processing apparatus 4a. .
  • the second exposure processing apparatus 3b is arranged adjacent to the second PEB processing apparatus 4b, and is configured to be able to deliver the wafer W to and from the conveyor 70 via the second PEB processing apparatus 4b.
  • the basic configuration and arrangement of each processing apparatus are the same as those in the embodiment shown in FIG.
  • the force not shown in FIG. 12 includes the resist coating processing unit 2, the first and second exposure processing units 3a and 3b, the first and second PEB processings in the photolithography processing unit lb.
  • a plurality of groups are provided with the processing devices 4a and 4b and the development processing device 5 as one group. In other words, an integer multiple of processing devices are deployed while maintaining the installation ratio of each processing device in each group! Speak.
  • the main transfer line 20 which is the first automatic substrate transfer line, transfers the wafer W over the entire substrate processing system 101 and delivers the substrate to each processing unit (for example, processing unit Al, A2).
  • the main transport line 20 is provided with, for example, an OHT 21.
  • Each OHT 21 moves along the main transfer line 20 with the wafer W contained in a cassette (not shown), and transfers the wafer W to each processing unit (for example, processing units A1 and A2) including the photolithography processing unit lb. It is comprised so that it can perform.
  • the conveyor 70 is a single wafer transfer line that transfers wafers W one by one.
  • the conveyor 70 is configured so that substrates can be transferred to and from the cassette station, which is a transfer port of each processing device, via wafer handling robots 71 arranged at a plurality of locations (four locations in FIG. 12). Being! RU
  • the OHT 21 of the main transfer line 20 delivers a cassette containing a plurality of wafers W to the force setting station 210 of the resist coating apparatus 2.
  • the cassette station 210 is provided with a single wafer loading / unloading port P, for example, a resist coating process.
  • the wafer W that has been processed in the apparatus 2 is temporarily placed in the single wafer loading / unloading port P.
  • the wafer handling robot 71 sequentially transfers the wafers W temporarily placed on the single wafer carry-in / out port P to the conveyor 70. Since the conveyor 70 is configured in a loop shape, the wafers W are moved one by one in a circulating manner.
  • the next transfer destination and transfer time in the conveyor 70 are managed by the ID number.
  • the resist coating processing in the resist coating processing apparatus 2 is completed, and the wafer W supplied to the conveyor 70 is managed by the ID number, and the next transfer destination is the first exposure processing apparatus 3a or the second exposure. It is selected from the processing device 3b.
  • the wafer W that has been subjected to the exposure process and the PEB process is transferred from the single wafer loading / unloading port P provided in the cassette station 310 of the first PEB processing apparatus 4a or the second PEB processing apparatus 4b to the wafer handling robot 71. Then, it is conveyed again to the conveyor 70.
  • the wafer W is delivered from the conveyor 70 to the single wafer carry-in / out port P provided in the cassette station 210 of the development processing apparatus 5 by the wafer handling robot 71. Then, after development processing is performed in the development processing apparatus 5, the wafer W is transferred to the cassette station 210 of the development processing apparatus 5 and accommodated in the cassette CR. In this way, a series of steps in the photolithography processing unit lb is completed, and the wafer W on which a predetermined pattern is formed is delivered to the OHT 21 of the main transfer line 20. Then, it is transported to another processing unit, for example, an etching processing unit (not shown) by the OHT 21 of the main transport line 20, and etching is performed based on the pattern.
  • an etching processing unit not shown
  • the wafer W that has been transported in the cassette by the OHT 21 in the main transport line 20 is the cassette in the resist coating processing apparatus 2, the first PEB processing apparatus 4a, the second PEB processing apparatus 4b, or the development processing apparatus 5. You may bring it into the station.
  • each cassette station can perform a delivery operation of extracting the wafer W from the cassette and temporarily placing the wafer directly into the single wafer carry-in / out port P.
  • the wafer W that has been transferred by the OHT21 in the main transfer line 20 is transferred to the conveyor 70 once before being processed in each device.
  • the conveyor 70 can be used as a buffer in the photolithography processing unit lb, and flexible transfer is performed under the control of the second MES 60 according to the operation status of each apparatus in the photolithography processing unit lb. be able to.
  • the conveyor 70 is used in the photolithography processing unit lb as a transport mechanism independent of the main transport line 20, so that the transport to each processing apparatus in the photolithography processing unit lb is performed.
  • the degree of freedom can be increased.
  • Ueno and W processed by each processing device in the photolithographic processing unit lb can be transported to a processing device that sequentially processes the next process by the conveyor 70, so that, for example, to the next processing device in units of force sets. Compared to transport, throughput can be improved with less waiting time.
  • the processing speed in the photolithography process and the wafer conveyance speed can be controlled separately from the other processing units in the substrate processing system 101. Therefore, it is possible to process the photolithography process with a high throughput, and it is possible to cope with a process in which a large load S is applied to the photolithography process, such as a double exposure process. Further, since the conveyor 70 has a buffer function, the number of in-process lots stocked on the main transfer line 20 can be reduced, and the load on the main transfer line 20 can be suppressed.
  • the substrate processing system 101 of the second embodiment also includes the resist coating processing apparatus 2 and the exposure processing apparatus (the first exposure processing apparatus 3a and the second exposure apparatus 2). Since the exposure processing device 3b) and the development processing device 5 are arranged in parallel so that the wafer W can be delivered to the conveyor 70, even if a failure such as failure occurs in any of the devices, it is flexible. It is also possible to carry Ueno and W to the same type of equipment for processing. Accordingly, the reliability of the substrate processing system 101 including the photolithography processing unit lb can be improved.
  • the first exposure processing device 3a and the first PEB processing device 4a that heat-treats the resist after the exposure processing, the second exposure processing device 3b, and the second heat-processing the resist after the exposure processing Since the PEB processing equipment 4b is arranged adjacent to each other, PEB processing can be performed with high reliability. In other words, the time management after exposure is highly accurate. Realize. Further, the risk of lowering the operating rate of the exposure processing apparatus due to troubles of apparatuses other than the exposure processing apparatus is reduced, and the reliability in the photolithography processing unit lb can be improved.
  • FIG. 13 is a diagram showing an outline of a transfer apparatus centered on a photolithography processing unit lc for performing a photolithography process in the substrate processing system 102 according to the third embodiment of the present invention.
  • a sub-transfer line 30 is provided as a second automatic substrate transfer line, and a first resist coating processing apparatus 2a and a second resist-coating apparatus 2a for applying a predetermined resist to the surface of the wafer W are applied to the sub-transfer line 30.
  • the resist coating processing apparatus 2b, and the first developing processing apparatus 5a and the second developing processing apparatus 5b that develop the exposed wafer W are separated in parallel so that the wafer W can be directly delivered. Arranged.
  • the first development processing apparatus 5a includes a first exposure processing apparatus 3a that performs an exposure process on the wafer W via a first PEB processing apparatus 4a that heat-treats the resist after the exposure process. They are arranged in series. In the second development processing apparatus 5b, the second exposure processing apparatus 3b is arranged in series via the second PEB processing apparatus 4b.
  • the first exposure processing apparatus 3a is configured to be able to deliver the wafer W to / from the OHT 31 of the sub-transfer line 30 via the first PEB processing apparatus 4a and the first development processing apparatus 5a.
  • the second exposure processing apparatus 3b is configured to be able to deliver weno and W to and from the OHT31 of the sub-transport line 30 via the second PEB processing apparatus 4b and the second development processing apparatus 5b.
  • the present embodiment is the same as the substrate processing system 100 of the first embodiment shown in FIG. 1 except that the apparatus layout configuration of the photolithography processing unit lc is different.
  • the force photolithography processing unit lc not shown in FIG. 13 includes the first and second resist coating processing apparatuses 2a and 2b, the first and second exposure processing apparatuses 3a and 3b, and the first A plurality of groups are provided, with the second PEB processing apparatuses 4a and 4b and the first and second development processing apparatuses 5a and 5b as one group.
  • an integer multiple of processing devices can be deployed while maintaining the installation ratio of each processing device in each group.
  • the substrate processing system 102 for example, a main transfer line from another processing unit (not shown).
  • the wafer W transferred by the 20 OHTs 21 is transferred to the OHT 31 on the auxiliary transfer line 30 of the photolithographic processing unit lc in any of the wafer transfer units 40.
  • the OHT 31 on the sub-transport line 30 delivers the wafer W to and from each processing apparatus in the photolithography processing unit lc.
  • the wafer W that has been transferred to the photolithography processing unit 1c is shifted between the first resist coating processing apparatus 2a and the second resist coating processing apparatus 2b by the OHT31 of the sub-transfer line 30. It is conveyed to.
  • the distribution of whether to be loaded into the first resist coating apparatus 2a or the second resist coating apparatus 2b is performed. Accordingly, flexible wafer transfer is possible according to the operating state of the resist coating processing apparatus, and the throughput of the photolithography process can be improved.
  • the wafer W on which the resist coating process has been performed by either the first resist coating processing apparatus 2a or the second resist coating processing apparatus 2b passes through the sub-transport line 30 for the exposure process. Then, it is conveyed to either the first development processing apparatus 5a or the second development processing apparatus 5b. Also in this case, under the control of the second MES 60, the distribution of whether to carry into the first development processing apparatus 5a or the second development processing apparatus 5b is performed. Therefore, flexible wafer transfer is possible according to the operating state of the development processing apparatus and the exposure processing apparatus, and the throughput of the photolithography process can be improved. Then, the wafer W coated with the resist is processed in the order of exposure, PEB, and development.
  • the development processing device (5a, 5b), the PEB processing device (4a, 4b), and the exposure processing device (3a, 3b) are arranged in series, so that the exposure processing, PEB processing, and development processing are performed.
  • a series of processes can be performed with high throughput.
  • the sub-transport line 30 has a buffer function, the number of in-process lots stocked on the main transport line 20 can be reduced, and the load on the main transport line 20 can be suppressed. .
  • the photolithography processing unit is provided by providing the sub-transport line 30 in the photolithography processing unit lc as a transport mechanism independent of the main transport line 20.
  • the processing speed in the photolithography process and The wafer transfer speed can be controlled separately from other processing units in the substrate processing system 102. Therefore, it is possible to process the photolithography process with a high throughput, and it is possible to cope with a process that places a heavy load on the photolithography process, such as a double exposure process.
  • the two resist coating processing apparatuses (2a, 2b) and the development processing apparatuses (5a, 5b) are arranged in parallel so that the wafer W can be directly delivered to the sub-transport line 30. Therefore, even if a failure such as a failure occurs in any of the devices, the wafer W can be transferred to another device flexibly and processed. Accordingly, it is possible to improve the reliability of the entire substrate processing system 102 including the photolithography processing unit lc.
  • the first exposure processing device 3a and the first PEB processing device 4a, the second exposure processing device 3b and the second PEB processing device 4b are arranged adjacent to each other, PEB processing with high accuracy is possible.
  • FIG. 14 is a diagram showing an outline of a transfer device centered on a photolithography processing section Id for performing a photolithography process in a substrate processing system 103 according to the fourth embodiment of the present invention.
  • a conveyor 70 that conveys wafers W one by one is provided as the second automatic substrate transfer line, and a first resist is applied to the surface of the wafer W on the conveyor 70.
  • the resist coating apparatus 2a and the second resist coating apparatus 2b, and the first developing apparatus 5a and the second developing apparatus 5b that develop the exposed wafer W are directly applied to the wafer W, respectively. They were separated and placed in parallel so that they could be delivered.
  • the first development processing apparatus 5a includes a first exposure processing apparatus 3a that performs an exposure process on the wafer W via a first PEB processing apparatus 4a that heat-treats the resist after the exposure process. They are arranged in series.
  • the second exposure processing apparatus 3b is arranged in series via the second PEB processing apparatus 4b.
  • the first exposure processing apparatus 3a is configured to be able to deliver Ueno and W to and from the conveyor 70 via the first PEB processing apparatus 4a and the first development processing apparatus 5a.
  • the second exposure processing apparatus 3b uses the second P
  • the wafer W can be delivered to and from the conveyor 70 via the EB processing device 4b and the second development processing device 5b.
  • this embodiment is the same as the substrate processing system 101 of the second embodiment shown in FIG. 12 except that the apparatus layout configuration of the photolithography processing unit Id is different.
  • the force photolithography processing unit Id not shown in FIG. 14 includes first and second resist coating processing apparatuses 2a and 2b, and first and second exposure processing apparatuses 3a and 3b.
  • the first and second PEB processing apparatuses 4a and 4b and the first and second development processing apparatuses 5a and 5b are grouped into a plurality of groups. In other words, an integer multiple of processing devices can be deployed while maintaining the installation ratio of each processing device in each group.
  • the wafer W that has been transported in the cassette by the OHT 21 of the main transport line 20 from another processing unit (not shown) is, for example, the first resist coating apparatus 2a or the second resist coating processing apparatus 2a.
  • the whole cassette is delivered to one of the cassette stations 210 of the resist coating apparatus 2b.
  • the cassette station 210 is provided with a single wafer loading / unloading port P.
  • the wafer W for which the resist coating processing has been completed in the first resist coating processing apparatus 2a or the second resist coating processing apparatus 2b is the single wafer. Temporarily placed at loading / unloading port P.
  • the wafer handling robot 71 sequentially transfers the wafers W temporarily placed on the single wafer carry-in / out port P to the conveyor 70. Since the conveyor 70 is configured in a loop shape, the wafers W are moved one by one in a circulating manner.
  • the wafer W that has been transported in the cassette by the OHT 21 in the main transport line 20 is transferred to the first resist coating processing apparatus 2a, the second resist coating processing apparatus 2b, the first development processing apparatus 5a, or the second developing process apparatus 5a. It may be carried into any cassette station 210 of the development processing apparatus 5b. In this case, each cassette station 210 can perform a delivery operation of extracting the wafer W from the cassette and temporarily placing the wafer directly into the single wafer loading / unloading port P. In other words, the wafer W that has been transported in the cassette by the OHT 21 of the main transport line 20 is transferred to the conveyor 70 once before processing in each apparatus, so that the conveyor 70 can be used as a buffer in the photolithography processing unit Id.
  • flexible transfer can be performed under the control of the second MES 60 according to the operating status of each apparatus in the photolithography processing unit Id.
  • Wafer W that is moving on conveyor 70 is managed by the ID number for the next transfer destination and transfer time.
  • the wafer W transported on the loop-shaped conveyor 70 is loaded with power to either the first resist coating apparatus 2a or the second resist coating apparatus 2b under the control of the second MES60. Is distributed. Accordingly, flexible wafer transfer can be performed according to the operating state of the resist coating apparatus, and throughput in the photolithography process can be improved.
  • the wafer W after the resist coating process is completed in either the first resist coating processing apparatus 2a or the second resist coating processing apparatus 2b is subjected to the first development via the conveyor 70 in order to perform the exposure process. It is conveyed to either the processing device 5a or the second development processing device 5b. At this time, the force to be carried into either the first development processing apparatus 5a or the second development processing apparatus 5b is distributed under the control of the second MES 60. Therefore, flexible wafer transfer is possible according to the operating state of the development processing apparatus and the exposure processing apparatus, and the throughput of the photolithography process can be improved. Then, the wafer W coated with the resist is processed in the order of exposure, PEB, and development.
  • the development processing device (5a, 5b), the PEB processing device (4a, 4b), and the exposure processing device (3a, 3b) are arranged in series, so that the exposure processing, A series of PEB processing and development processing can be performed at high throughput.
  • the conveyor 70 is used in the photolithography processing unit Id as a transport mechanism independent of the main transport line 20, so that the transport to each processing device in the photolithography processing unit Id is performed.
  • the degree of freedom can be increased.
  • Ueno and W processed by each processing device in the photolithography processing unit Id can be conveyed to a processing device that sequentially processes the next process on the conveyor 70, so that, for example, to the next processing device in units of force sets. Compared to transport, throughput can be improved with less waiting time.
  • the processing speed and the wafer conveyance speed in the photolithography process can be controlled separately from other processing units in the substrate processing system 103.
  • the two resist coating processing apparatuses (2a, 2b) and the development processing apparatuses (5a, 5b) are arranged in parallel so that weno and W can be directly delivered to the conveyor 70. Therefore, even when a failure such as a failure occurs in any of the apparatuses, it is possible to flexibly carry the wafer W to another apparatus of the same type for processing. Accordingly, it is possible to improve the reliability of the entire substrate processing system 103 including the photolithography processing unit Id.
  • the first automatic substrate that transports the substrate to be processed among the plurality of processing units that individually process the substrate to be processed.
  • the substrate can be transferred between the transfer line and the first automatic substrate transfer line, and the substrate to be processed is transferred between the processing apparatuses that perform a series of processes in the photolithographic process.
  • a second automatic substrate transfer line is provided separately, and at least the resist coating processing device and the development processing device are separated in parallel so that the substrate to be processed can be transferred to and from the second automatic substrate transfer line.
  • the exposure processing apparatus and the post-exposure beta processing apparatus are arranged adjacent to each other, the time management from the exposure process to the post-exposure beta process can be accurately performed.
  • the present invention has been described with reference to some embodiments.
  • the present invention is not limited to these, and various modifications are possible.
  • the number of installed resist coating processing apparatuses, PEB processing apparatuses, exposure processing apparatuses, and development processing apparatuses is further increased.
  • the substrate processing system of the above-described embodiment the case where a series of photolithography steps of resist coating-exposure / development is performed on a semiconductor wafer has been described.
  • the substrate to be processed other than the semiconductor wafer the present invention can also be applied to a substrate processing system that performs processing including a photolithography process on a glass substrate for FPD (flat panel display).
  • the present invention is applicable to substrate processing for performing processing including a photolithography process on a target substrate such as a semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 基板処理システム(100)は、システムの全体にわたってウエハ(W)の搬送を行なう主搬送ライン(20)と、フォトリソグラフィー処理部(1a)内でのウエハ(W)の搬送を行なう副搬送ライン(30)とを備えている。フォトリソグラフィー処理部(1a)では、レジスト塗布処理装置(2)と現像処理装置(5)とが分離して配置され、第1の露光処理装置(3a)と第1のPEB処理装置(4a)、第2の露光処理装置(3b)と第2のPEB処理装置(4b)は隣接配置されている。

Description

明 細 書
基板処理システムおよび基板搬送方法
技術分野
[0001] 本発明は、半導体ウェハ等の被処理基板に対し、フォトリソグラフィー工程を含む 処理を行なう基板処理システムおよび基板搬送方法に関する。
背景技術
[0002] 半導体デバイスの製造プロセスにお 、ては、半導体ウェハ(以下、「ウェハ」と記す ことがある)にパターン形成を行なうベぐフォトリソグラフィー工程が繰り返し行なわれ る。フォトリソグラフィー工程においては、半導体ウェハの表面にレジスト膜を形成す るレジスド塗布処理と、レジスト塗布後のウェハに対して露光マスクを使用して露光を 行なう露光処理と、露光後のウェハを現像する現像処理とが行われる。また、露光処 理の前には露光前ベータ(PAB)処理、露光処理の後には露光後ベータ(ポストエタ スポージャーベータ; PEB)処理が行なわれる。
[0003] 半導体製造プロセスにおいてフォトリソグラフィー工程は、工場内の自動搬送システ ム(AMHS ; Automated Material Handling Systems)に接続されたフォトリソグラフィー 処理部において行なわれる。従来、フォトリソグラフィー処理部は、プロセス上の制約 により、レジスト塗布'現像処理装置と露光処理装置とを直列的に配置し、これを一単 位として前記 AMHSとの間でウェハ Wを受渡しできるよう構成されてきた(例えば、 特開 2000— 124124号公報(段落 0027、図 2など))。このような従来の装置レイァ ゥトでは、 AMHSによりカセット搬送されてきた複数枚のウェハは、フォトリソグラフィ 一処理部のレジスト塗布'現像処理装置にカセット単位で受渡される。そして、レジス ト塗布 '現像処理装置の搬送機構によりカセットからウェハ Wがー枚ずつ取出され、 レジスト塗布、露光、現像などの一連の処理が行なわれる構成になっていた。
ところで、半導体装置における技術ノードの進行、すなわち微細化の進展に対応す るため、最近では、二重露光などの新技術が開発されつつある。二重露光は、レジス ト塗布後のウェハに対して例えば所定の線幅で露光処理した後、マスクの位置をず らして 2回目の露光処理を行なうことにより線幅を微細化し、解像度を高める技術であ る。しかし、二重露光技術では、文字通り露光処理が 2回行なわれることから、フォトリ ソグラフィー工程に要する時間が単純計算で 2倍になり、半導体装置製造のスルー プットを大幅に低下させてしまうことが懸念されている。
発明の開示
[0004] 本発明は、フォトリソグラフィー工程における各処理を高スループットで実施した場 合でも、高 ヽ信頼性が得られる基板処理システムおよび基板搬送方法を提供するこ とを目的とする。
[0005] 本発明の第 1の観点は、被処理基板に対しフォトリソグラフィー工程を含む処理を 行なう基板処理システムであって、
被処理基板に対して個別に処理を行なう複数の処理部の間で被処理基板の搬送 を行なう第 1の自動基板搬送ラインと、
前記第 1の自動基板搬送ラインとの間で被処理基板を受渡し可能に構成され、前 記フォトリソグラフィー工程における一連の処理を行なうフォトリソグラフィー処理部と、 前記フォトリソグラフィー処理部の各処理装置の間で被処理基板の搬送を行なう第 2の自動基板搬送ラインと、
を備え、
前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
加熱処理後のレジストを現像処理する現像処理装置と、
を備えており、
前記レジスト塗布処理装置と前記露光後ベータ処理装置と前記現像処理装置は、 それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を受渡し可能に分離し て配置され、
前記露光処理装置は、前記露光後ベータ処理装置を介して前記第 2の自動基板 搬送ラインとの間で被処理基板の受渡しを行うように前記露光後ベータ処理装置に 隣接配置されていることを特徴とする、基板処理システムを提供する。この場合、前 記レジスト塗布処理装置、前記露光後ベータ処理装置および前記現像処理装置は
、それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を受渡すための個別 の基板受渡しポートを備えて 、ることが好ま 、。
[0006] 本発明の第 2の観点は、被処理基板に対しフォトリソグラフィー工程を含む処理を 行なう基板処理システムであって、
被処理基板に対して個別に処理を行なう複数の処理部の間で被処理基板の搬送 を行なう第 1の自動基板搬送ラインと、
前記第 1の自動基板搬送ラインとの間で被処理基板を受渡し可能に構成され、前 記フォトリソグラフィー工程における一連の処理を行なうフォトリソグラフィー処理部と、 前記フォトリソグラフィー処理部の各処理装置の間で被処理基板の搬送を行なう第 2の自動基板搬送ラインと、
を備え、
前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
前記露光後ベータ処理装置に隣接配置され、加熱処理後のレジストを現像処理す る現像処理装置と、
を備えており、
前記レジスト塗布処理装置と前記現像処理装置は、それぞれ前記第 2の自動基板 搬送ラインとの間で被処理基板を受渡し可能に分離して配置され、前記露光処理装 置は、前記露光後ベータ処理装置および前記現像処理装置を介して前記第 2の自 動基板搬送ラインとの間で被処理基板の受渡しを行なうように前記露光後べーク処 理装置に隣接配置されていることを特徴とする、基板処理システムを提供する。この 場合、前記レジスト塗布処理装置および前記現像処理装置は、それぞれ前記第 2の 自動基板搬送ラインとの間で被処理基板を受渡すための個別の基板受渡しポートを 備えていることが好ましい。
[0007] 上記第 1の観点および第 2の観点の前記基板処理システムにおいて、前記第 2の 自動基板搬送ラインは、前記第 1の自動基板搬送ラインカゝら独立した循環式の基板 搬送ラインであることが好まし 、。
[0008] また、前記第 1の自動基板搬送ラインを移動して前記各処理部との間で被処理基 板の受渡しを行なう第 1の自動基板搬送装置と、
前記第 2の自動基板搬送ラインを移動して前記フォトリソグラフィー処理部の各処理 装置の間で被処理基板の受渡しを行なう第 2の自動基板搬送装置と、を備えている ことが好ましい。
[0009] この場合、前記第 1の自動基板搬送装置および前記第 2の自動基板搬送装置は、 複数枚の被処理基板を容器に収容して搬送する容器搬送装置であってもよぐある いは、前記第 1の自動基板搬送装置は、複数枚の被処理基板を容器に収容して搬 送する容器搬送装置であり、前記第 2の自動基板搬送装置は、被処理基板を一枚 ずつ搬送する枚葉搬送装置であってもよ ヽ。
[0010] また、前記第 1の自動基板搬送ラインにおける被処理基板の搬送を制御する第 1の 制御部と、
前記第 2の自動基板搬送ラインにおける被処理基板の搬送を制御する第 2の制御 部と、
を備えていることが好ましい。
[0011] また、前記レジスト塗布処理装置の設置数に対して、前記露光処理装置の設置数 力 S 1 : 2の比率となるように配備することが好ましい。この場合、前記フォトリソグラフィー 処理部は、二重露光技術によりパターン形成を行なう処理部であることが好ましい。
[0012] 本発明の第 3の観点は、被処理基板に対しフォトリソグラフィー工程を含む処理を 行なう基板処理システムにおいて被処理基板を搬送する基板搬送方法であって、 前記基板処理システムは、被処理基板に対して個別に処理を行なう複数の処理部 の間で被処理基板の搬送を行なう第 1の自動基板搬送ラインと、前記第 1の自動基 板搬送ラインとの間で被処理基板を受渡し可能に構成され、前記フォトリソグラフィー 工程における一連の処理を行なうフォトリソグラフィー処理部に専用の循環式の第 2 の自動基板搬送ラインと、を備え、
前記フォトリソグラフィー処理部は、 被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
加熱処理後のレジストを現像処理する現像処理装置と、
を備えており、
前記フォトリソグラフィー処理部では、前記第 2の自動基板搬送ラインにより各処理 装置の間で被処理基板の搬送を行なうとともに、前記レジスド塗布処理装置と前記露 光後ベータ処理装置と前記現像処理装置は、それぞれ前記第 2の自動基板搬送ラ インとの間で被処理基板を直接受渡し、前記露光処理装置は、隣接配置された前記 露光後ベータ処理装置を介して前記第 2の自動基板搬送ラインとの間で被処理基板 の受渡しを行うようにした、基板搬送方法を提供する。
本発明の第 4の観点は、被処理基板に対しフォトリソグラフィー工程を含む処理を 行なう基板処理システムにおいて被処理基板を搬送する基板搬送方法であって、 前記基板処理システムは、被処理基板に対して個別に処理を行なう複数の処理部 の間で被処理基板の搬送を行なう第 1の自動基板搬送ラインと、前記第 1の自動基 板搬送ラインとの間で被処理基板を受渡し可能に構成され、前記フォトリソグラフィー 工程における一連の処理を行なうフォトリソグラフィー処理部に専用の循環式の第 2 の自動基板搬送ラインと、を備え、
前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
加熱処理後のレジストを現像処理する現像処理装置と、
を備えており、
前記フォトリソグラフィー処理部では、前記第 2の自動基板搬送ラインにより各処理 装置の間で被処理基板の搬送を行なうとともに、前記レジスド塗布処理装置と前記現 像処理装置は、それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を直接 受渡し、前記露光処理装置は、隣接配置された前記露光後ベータ処理装置および 前記現像処理装置を介して前記第 2の自動基板搬送ラインとの間で被処理基板の 受渡しを行なうようにした、基板搬送方法を提供する。
[0014] 上記第 3の観点および第 4の観点において、前記フォトリソグラフィー処理部におい ては、前記各処理装置の稼働状態に応じて前記第 2の自動基板搬送ライン力 被処 理基板を搬入する搬入先を選択することが好まし ヽ。
[0015] また、前記第 1の自動基板搬送ラインおよび前記第 2の自動基板搬送ラインでは、 複数枚の被処理基板を容器に収容して搬送し、前記第 2の自動基板搬送ラインと前 記フォトリソグラフィー処理部の各処理装置との間では前記容器に収容した状態で被 処理基板の受渡しを行なってもよ ヽ。
[0016] また、前記第 1の自動基板搬送ラインでは、複数枚の被処理基板を容器に収容し て搬送し、前記第 2の自動基板搬送ラインでは被処理基板を一枚ずつ搬送するとと もに、前記第 2の自動基板搬送ラインと前記フォトリソグラフィー処理部の各処理装置 との間では一枚ずつ被処理基板の受渡しを行なってもよい。
[0017] 本発明の第 5の観点は、コンピュータ上で動作し、実行時に、上記第 3の観点また は第 4の観点の基板搬送方法が行なわれるように前記基板処理システムを制御する
、制御プログラムを提供する。
[0018] 本発明の第 6の観点は、コンピュータ上で動作する制御プログラムが記憶されたコ ンピュータ読取り可能な記憶媒体であって、
前記制御プログラムは、実行時に、上記第 3の観点または第 4の観点の基板搬送方 法が行なわれるように前記基板処理システムを制御するものである、コンピュータ読 取り可能な記憶媒体を提供する。
図面の簡単な説明
[0019] [図 1]図 1は、第 1実施形態の基板処理システムにおけるフォトリソグラフィー処理部の 装置レイアウトを示す図面。
[図 2]図 2は、レジスト塗布処理装置の平面図。
[図 3]図 3は、図 2に示したレジスド塗布処理装置の正面図。
[図 4]図 4は、図 2に示したレジスト塗布処理装置の背面図。
[図 5]図 5は、 PEB処理装置の平面図。 [図 6]図 6は、図 5に示した PEB処理装置の正面図。
[図 7]図 7は、図 5に示した PEB処理装置の背面図。
[図 8]図 8は、現像処理装置の平面図。
[図 9]図 9は、図 8に示した現像処理装置の正面図。
[図 10]図 10は、図 8に示した現像処理装置の背面図。
[図 11]図 11は、第 1の MESの構成を示すブロック図。
[図 12]図 12は、第 2実施形態の基板処理システムにおけるフォトリソグラフィー処理 部の装置レイアウトを示す図面。
[図 13]図 13は、第 3実施形態の基板処理システムにおけるフォトリソグラフィー処理 部の装置レイアウトを示す図面。
[図 14]図 14は、第 4実施形態の基板処理システムにおけるフォトリソグラフィー処理 部の装置レイアウトを示す図面。
発明を実施するための最良の形態
[0020] 本発明者は、本発明の開発の過程で、半導体ウェハ等の被処理基板に対し、フォ トリソグラフィー工程を含む処理を行なう従来の基板処理システムにおいて発生する 問題点について研究した。その結果、本発明者等は、以下に述べるような知見を得 た。
[0021] 即ち、前述のように、微細化が進行する半導体装置製造の生産性を向上させるた め、将来的にリソグラフィー工程におけるスループット向上が重要な課題となっている 。具体的には、例えば上記二重露光技術を採用する場合には、フォトリソグラフィー 工程の処理能力を現在の時間あたり 100〜150枚(ウェハ)力ら 200〜300枚(ゥェ ノ、)へ、約 2倍に増加させなければ現在と同じレベルの生産性を維持できない計算に なる。
[0022] しかし、フォトリソグラフィー工程での生産性を向上させるベぐレジスト塗布 ·現像処 理装置におけるウェハの処理枚数を増加させた場合、各装置の故障などのトラブル が増加して信頼性が低下することが予想される。二重露光プロセスにおいて、これら の装置に故障が生じた場合には、生産に与える影響は多大なものとなる。特に従来 のフォトリソグラフィー処理部における装置レイアウトでは、レジスド塗布'現像処理装 置と露光処理装置が一セットで隣接配置されていることから、レジスド塗布'現像処理 装置に不具合が生じると高価な露光処理装置の稼働まで停止させてしまうことになり 、生産コストを大幅に増大させてしまう要因になる。
[0023] 以下に、このような知見に基づいて構成された本発明の実施形態について図面を 参照して説明する。なお、以下の説明において、略同一の機能及び構成を有する構 成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
[0024] <第 1実施形態 >
図 1は、本発明の第 1実施形態に係る基板処理システム 100において、フォトリソグ ラフィー工程を実施するためのフォトリソグラフィー処理部 laを中心とした搬送装置の 概要を示す図面である。この基板処理システム 100は、システムの全体にわたってゥ エノ、 Wの搬送および各処理部(例えば処理部 Al、 A2)との基板の受渡しを行なう第 1の自動基板搬送ラインである主搬送ライン 20と、フォトリソグラフィー処理部 la内で のウェハ Wの搬送を行なう第 2の自動基板搬送ラインである副搬送ライン 30とを備え ている。
[0025] AMHS (Automated Material Handling Systems)として構成された主搬送 ライン 20には、例えば複数の OHT (Overhead Hoist Transport) 21が設けられ ている。各 OHT21は、図示しないカセット内にウェハ Wを収容した状態で主搬送ラ イン 20を移動し、フォトリソグラフィー処理部 laをはじめとする各処理部(例えば処理 部 A1、A2)へのウェハ Wの搬送を行なえるように構成されている。
[0026] また、副搬送ライン 30は、主搬送ライン 20とは独立した AMHSとして設けられてお り、 OHT31を備えている。この OHT31は、ループ状に形成された循環式の副搬送 ライン 30を周回して移動し、フォトリソグラフィー処理部 la内の各処理装置にウェハ Wを搬送し、各処理装置との間でウェハ Wの受渡しを行なう。なお、図示は省略する 力 OHT31は OHT21に比べて高!、位置の軌道を移動するように構成されて 、る。
[0027] フォトリソグラフィー処理部 laは、ウェハ W表面に所定のレジストを塗布するレジスト 塗布処理装置 2、レジストが塗布されたウェハ Wに対して露光処理を行なう第 1の露 光処理装置 3a、露光処理後のレジストを加熱処理する第 1の PEB処理装置 4a、ゥェ ハ Wに対して露光処理を行なう第 2の露光処理装置 3b、露光処理後のレジストをカロ 熱処理する第 2の PEB処理装置 4b、および露光処理されたウェハ Wを現像する現 像処理装置 5を備えている。このように、フォトリソグラフィー処理部 laは、ウェハ Wに 対して露光処理を 2回繰り返すことにより微細なパターンを形成する二重露光処理に 適した装置レイアウトを採用している。フォトリソグラフィー処理部 laでは、レジスト塗 布処理装置 2、第 1の露光処理装置 3a、第 2の露光処理装置 3bおよび現像処理装 置 5が分離して配置され、第 1の露光処理装置 3aと第 1の PEB処理装置 4a、第 2の 露光処理装置 3bと第 2の PEB処理装置 4bは隣接配置されて 、る。第 1の露光処理 装置 3aは、第 1の PEB処理装置 4aに隣接して配置され、第 1の PEB処理装置 4aを 介して副搬送ライン 30の OHT31との間でウェハ Wを受渡し可能に構成されて!、る。 同様に第 2の露光処理装置 3bは、第 2の PEB処理装置 4bに隣接して配置され、第 2 の PEB処理装置 4bを介して副搬送ライン 30の OHT31との間でウェハ Wを受渡し可 能に構成されている。
[0028] また、図 1では図示を省略しているが、フォトリソグラフィー処理部 laには、レジスト 塗布処理装置 2、第 1および第 2の露光処理装置 3a, 3b、第 1および第 2の PEB処 理装置 4a, 4b、現像処理装置 5を一つのグループとして、複数グループが設けられ ている。つまり、各グループ内で上記各処理装置の設置比率を維持したまま、整数 倍の処理装置が配備されて!ヽる。
[0029] 本実施形態の基板処理システム 100においては、レジスト塗布処理装置 2でレジス トが塗布されたウェハ Wは、第 1の露光処理装置 3aまたは第 2の露光処理装置 3bの いずれに搬送してもよい。つまり、第 1の露光処理装置 3aまたは第 2の露光処理装置 3bのうち、処理の余力が大きい方、つまり空いている露光処理装置を選択してウェハ Wを搬入できるように構成されて!、る。
[0030] レジスト塗布処理装置 2は、例えば図 2〜図 4に示すように構成される。図 2は、レジ スト塗布処理装置 2を示す概略平面図、図 3その正面図、図 4はその背面図である。 レジスト塗布処理装置 2は、搬送ステーションであるカセットステーション 210と、複数 の処理ユニットを有する処理ステーション 211と、を具備している。
[0031] カセットステーション 210は、被処理体としてのウェハ Wを複数枚、例えば 25枚単 位でウェハカセット CRに搭載された状態で、副搬送ライン 30からレジスト塗布処理 装置 2へ搬入し、またはレジスト塗布処理装置 2から副搬送ライン 30へ搬出する等、 ウェハカセット CRと処理ステーション 211との間でウェハ Wの搬入出を行なう受渡し ポートである。
[0032] カセットステーション 210においては、図 2に示すように、カセット載置台 220上に図 中 X方向に沿って複数(図では 4個)の位置決め突起 220aが形成されており、この突 起 220aの位置にウェハカセット CRがそれぞれのウェハ出入口を処理ステーション 2 11側に向けて 1列に載置可能となっている。ウェハカセット CRにおいてはウェハ W が垂直方向(Z方向)に配列されている。また、カセットステーション 210は、カセット載 置台 220と処理ステーション 211との間に位置するウェハ搬送機構 221を有して 、る
[0033] ウェハ搬送機構 221は、カセット配列方向(X方向)およびその中のウェハ Wの配 列方向(Z方向)に移動可能なウェハ搬送用アーム 221aを有しており、このウェハ搬 送用アーム 221aにより、いずれかのウェハカセット CRに対して選択的にアクセス可 能となっている。また、ウェハ搬送用アーム 221aは、図 2中に示される Θ方向に回転 可能に構成されており、後述する処理ステーション 211側の第 3の処理グループ G
23 に属するァライメントユニット(ALIM)およびエクステンションユニット(EXT)にもァク セスできるようになって 、る。
[0034] 一方、処理ステーション 211は、ウェハ Wへ対して塗布を行う際の一連の工程を実 施するための複数の処理ユニットを備え、これらが所定位置に多段に配置されており 、これらによりウェハ Wが 1枚ずつ処理される。この処理ステーション 211は、図 2に示 すように、中心部にウェハ搬送路 222aを有しており、この中に主ウェハ搬送機構 22 2が設けられ、ウェハ搬送路 222aの周りに全ての処理ユニットが配置された構成とな つている。これら複数の処理ユニットは、複数の処理グループに分かれており、各処 理グループにおいては複数の処理ユニットが垂直方向(Z方向)に沿って多段に配 置されている。
[0035] 主ウェハ搬送機構 222は、図 4に示すように、筒状支持体 249の内側にウェハ搬送 装置 246を上下方向(Z方向)に昇降自在に装備している。筒状支持体 249は図示 しないモータの回転駆動力によって回転可能となっており、それに伴ってウェハ搬送 装置 246も一体的に回転可能となっている。ウェハ搬送装置 246は、搬送基台 247 の前後方向に移動自在な複数本の保持部材 248を備え、これらの保持部材 248に よって各処理ユニット間でのウェハ Wの受け渡しを実現している。
[0036] 図 2に示すように、レジスト塗布処理装置 2においては、 5個の処理グループ G -G
21
•G -G -G 力ウェハ搬送路 222aの周囲に配置されている。これらのうち、第 1
22 23 24 25
および第 2の処理グループ G -G はレジスト塗布処理装置 2の正面側に並列に配
21 22
置され、第 3の処理グループ G はカセットステーション 210に隣接して配置され、第
23
4の処理グループ G はウェハ搬送路 222aを挟んで第 3の処理グループ G とは反
24 23 対側に配置されている。また、第 5の処理グループ G は背面部に配置されている。
25
[0037] 第 1の処理グループ G では、コータカップ(CP)内でウェハ Wを図示しないスピン
21
チャックに乗せて所定の処理を行う 2台のスピナ型処理ユニットであるレジスト塗布処 理ユニット (COT)が 2段に重ねられている。また、第 2の処理グループ G も同様に、
22
2台のスピナ型処理ユニットであるレジスト塗布処理ユニット(COT)が 2段に重ねられ ている。
[0038] 第 3の処理グループ G においては、図 4に示すように、ウェハ Wを載置台 SPに載
23
せて所定の処理を行うオーブン型の処理ユニットが多段に重ねられて 、る。すなわち 、レジストの定着性を高めるためのいわゆる疎水化処理を行うアドヒージョンユニット(
AD)、位置合わせを行うァライメントユニット(ALIM)、ウェハ Wの搬入出を行うエタ ステンションユニット(EXT)、冷却処理を行うクーリングユニット(COL)、露光処理前 にウェハ Wに対して加熱処理を行う 4つのホットプレートユニット(HP)が下から順に 8 段に重ねられている。なお、ァライメントユニット (ALIM)の代わりにクーリングユニット (COL)を設け、クーリングユニット (COL)にァライメント機能を持たせてもよい。
[0039] 第 4の処理グループ G においても、オーブン型の処理ユニットが多段に重ねられ
24
ている。すなわち、クーリングユニット (COL)、クーリングプレートを備えたウェハ搬入 出部であるエクステンション 'クーリングユニット(EXTCOL)、エクステンションユニット (EXT)、クーリングユニット(COL)、および 4つのホットプレートユニット (HP)が下か ら順に 8段に重ねられて 、る。
[0040] なお、主ウェハ搬送機構 222の背部側に第 5の処理グループ G を設ける場合に、 第 5の処理グループ G は、案内レール 225に沿って主ウェハ搬送機構 222から見
25
て側方へ移動できるようになって 、る。
[0041] 第 1の露光処理装置 3aに隣接配備された第 1の PEB処理装置 4aは、例えば図 5か ら図 7に示すように構成されている。なお、第 2の PEB処理装置 4bは、第 1の PEB処 理装置 4aと同様の構成であるため、以下では第 1の PEB処理装置 4aを例に挙げて 説明し、第 2の PEB処理装置 4bの説明を省略する。
[0042] 図 5は、第 1の PEB処理装置 4aを示す概略平面図、図 6はその正面図、図 7はその 背面図である。第 1の PEB処理装置 4aは、搬送ステーションであるカセットステーショ ン 310と、複数の処理ユニットを有する処理ステーション 311と、処理ステーション 31 1に隣接して設けられる図示しない露光処理装置との間でウェハ Wを受け渡すため のインターフェイス部 312と、を具備している。
[0043] カセットステーション 310は、被処理体としてのウェハ Wを複数枚、例えば 25枚単 位でウェハカセット CRに搭載された状態で、副搬送ライン 30からこの第 1の PEB処 理装置 4aへ搬入し、またはこの第 1の PEB処理装置 4aから副搬送ライン 30へ搬出 する等、ウェハカセット CRと処理ステーション 311との間でウェハ Wの搬入出を行な う受渡しポートである。
[0044] カセットステーション 310においては、図 5に示すように、カセット載置台 320上に図 中 X方向に沿って複数(図では 4個)の位置決め突起 320aが形成されており、この突 起 320aの位置にウェハカセット CRがそれぞれのウェハ出入口を処理ステーション 3 11側に向けて 1列に載置可能となっている。ウェハカセット CRにおいてはウェハ W が垂直方向(Z方向)に配列されている。また、カセットステーション 310は、カセット載 置台 320と処理ステーション 311との間に位置するウェハ搬送機構 321を有している
[0045] ウェハ搬送機構 321は、カセット配列方向(X方向)およびその中のウェハ Wの配 列方向(Z方向)に移動可能なウェハ搬送用アーム 321aを有しており、このウェハ搬 送用アーム 321aにより、いずれかのウェハカセット CRに対して選択的にアクセス可 能となっている。また、ウェハ搬送用アーム 321aは、図 5中に示される Θ方向に回転 可能に構成されており、後述する処理ステーション 311側の第 3の処理グループ G に属するァライメントユニット(ALIM)およびエクステンションユニット(EXT)にもァク セスできるようになって 、る。
[0046] 一方、処理ステーション 311は、ウェハ Wへ対して PEB処理を行う際の一連の工程 を実施するための複数の処理ユニットを備え、これらが所定位置に多段に配置され ており、これらによりウェハ Wが 1枚ずつ処理される。この処理ステーション 311は、図 5に示すように、中心部にウェハ搬送路 322aを有しており、この中に主ウェハ搬送機 構 322が設けられ、ウェハ搬送路 322aの周りに全ての処理ユニットが配置された構 成となっている。これら複数の処理ユニットは、複数の処理グループに分かれており、 各処理グループでは複数の処理ユニットが垂直方向(Z方向)に沿って多段に配置さ れている。
[0047] 主ウェハ搬送機構 322は、図 7に示すように、筒状支持体 349の内側にウェハ搬送 装置 346を上下方向(Z方向)に昇降自在に装備している。筒状支持体 349は図示 しないモータの回転駆動力によって回転可能となっており、それに伴ってウェハ搬送 装置 346も一体的に回転可能となっている。ウェハ搬送装置 346は、搬送基台 347 の前後方向に移動自在な複数本の保持部材 348を備え、これらの保持部材 348に よって各処理ユニット間でのウェハ Wの受け渡しを実現している。
[0048] 図 5に示すように、第 1の PEB処理装置 4aにおいては、 5個の処理グループ G -G
31
•G -G -G 力ウェハ搬送路 322aの周囲に実際に配置されている。これらのうち
32 33 34 35
、第 1および第 2の処理グループ G -G は第 1の PEB処理装置 4aの正面側に並列
31 32
に配置され、第 3の処理グループ G はカセットステーション 310に隣接して配置され
33
、第 4の処理グループ G はインターフェイス部 312に隣接して配置されている。また
34
、第 5の処理グループ G は背面部に配置されて 、る。
35
[0049] 第 1の処理グループ G および第 4の処理グループ G では、図 6および図 7に示す
31 34
ように、ウェハ Wを載置台 SPに載せて所定の処理を行うオーブン型の処理ユニット が多段に重ねられている。すなわち、クーリングユニット (COL)、クーリングプレートを 備えたウェハ搬入出部であるエクステンション 'クーリングユニット (EXTCOL)、エタ ステンションユニット(EXT)、クーリングユニット(COL)、および 4つのホットプレート ユニット (HP)が下力も順に 8段に重ねられて 、る。 [0050] 第 2の処理グループ G および第 3の処理グループ G においては、図 6および図 7
32 33
に示すように、ウェハ Wを載置台 SPに載せて所定の処理を行うオーブン型の処理ュ ニットが多段に重ねられている。すなわち、レジストの定着性を高めるためのいわゆる 疎水化処理を行うアドヒージョンユニット(AD)、位置合わせを行うァライメントユニット (ALIM)、ウェハ Wの搬入出を行うエクステンションユニット(EXT)、冷却処理を行う クーリングユニット(COL)、露光処理後のウェハ Wに対して加熱処理を行う 4つのホ ットプレートユニット(HP)が下力も順に 8段に重ねられている。なお、ァライメントュ- ット(ALIM)の代わりにクーリングユニット(COL)を設け、クーリングユニット(COL) にァライメント機能を持たせてもよ 、。
[0051] 主ウェハ搬送機構 322の背部側に第 5の処理グループ G を設ける場合に、第 5の
35
処理グループ G は、案内レール 325に沿って主ウェハ搬送機構 322から見て側方
35
へ移動できるようになって 、る。
[0052] インターフェイス部 312は、奥行方向(X方向)については、処理ステーション 311と 同じ長さを有している。図 5、図 6に示すように、このインターフェイス部 312の正面部 には、可搬性のピックアップカセット CRと定置型のバッファカセット BRが 2段に配置さ れ、背面部には周辺露光処理装置 323が配設され、中央部にはウェハ搬送機構 32 4が配設されて 、る。このウェハ搬送機構 324はウェハ搬送用アーム 324aを有して おり、このウェハ搬送用アーム 324aは、 X方向、 Z方向に移動して両カセット CR'BR および周辺露光処理装置 323にアクセス可能となっている。
[0053] なお、ウェハ搬送用アーム 324aは Θ方向に回転可能であり、処理ステーション 31 1の第 4の処理グループ G に属するエクステンションユニット(EXT)や、さらには隣
34
接する露光処理装置 3a側の図示しないウェハ受け渡し台にもアクセス可能となって いる。
[0054] 現像処理装置 5は、例えば図 8〜図 10に示すように構成される。図 8は、現像処理 装置 5を示す概略平面図、図 9はその正面図、図 10はその背面図である。現像処理 装置 5は、処理ステーション 21 laの第 1の処理グループ G および第 2の処理グルー
21
プ G に、レジスト塗布処理装置 2の処理ステーション 21 laにおけるレジスト塗布処
22
理ユニット(COT)に代えて、レジストのパターンを現像する現像ユニット(DEV)がそ れぞれ 2段に重ねられて配置されていること以外は、図 2〜図 4に示したレジスト塗布 処理ユニット (COT)と同様の構成である。
[0055] 再び図 1を参照するに、主搬送ライン 20の OHT21と副搬送ライン 30の OHT31は 、ウェハハンドリングロボット 41を備えた複数のウェハ受け渡し部 40においてウェハ Wを受渡すことが可能に構成されて 、る。
[0056] 主搬送ライン 20は、基板処理システム 100全体を管理する統括制御部としての第 1 の製造管理システム(MES; Manufacturing Execution System) 50に接続さ れている。この第 1の MES50は、個々の処理部や搬送系に個別に設けられた制御 部(例えば、後述する MES60)と連携して工場における各工程に関するリアルタイム 情報を基幹業務システム(図示省略)にフィードバックすると共に、工場全体の負荷 等を考慮して工程に関する判断を行う。具体的には、第 1の MES50は、例えば主搬 送ライン 20における各 OHT21の負荷を把握しながら、 OHT21の移動、停止、待機 、各処理部(例えば処理部 Al、 A2)との間でウェハ Wの受渡しなどを管理し、搬送 状態を最適化する。
[0057] また、副搬送ライン 30は、第 2の製造管理システム (MES) 60に接続されて 、る。こ の第 2の MES60は、フォトリソグラフィー処理部 laにおける個別の制御部として機能 し、フォトリソグラフィー処理部 laの副搬送ライン 30における搬送状態や、各処理装 置例えばレジスト塗布処理装置 2、第 1および第 2の露光処理装置 3a, 3b、第 1およ び第 2の PEB処理装置 4a, 4bおよび現像処理装置 5におけるそれぞれの処理条件 等の制御を行なう。より具体的には、第 2の MES60は、例えば副搬送ライン 30にお ける各 OHT31の負荷を把握しながら、 OHT31の移動、停止、待機、各処理装置と の間でウェハ Wの受渡しなどを管理し、搬送状態を最適化する。
[0058] 図 11は、第 1の MES50の構成を示す図である。第 1の MES50は、ホストコンビュ ータを備えたコントローラ 51と、ユーザーインターフェース 52と、記憶部 53とを備えて いる。コントローラ 51に接続されたユーザーインターフェース 52は、工程管理者が基 板処理システム 100を管理するためにコマンドの入力操作等を行うキーボードや、基 板処理システム 100の稼働状況を可視化して表示するディスプレイ等から構成される 。コントローラ 51に接続された記憶部 53は、基板処理システム 100で実行されるゥェ ハ搬送や各種処理をコントローラ 51の制御にて実現するための制御プログラム (ソフ トウエア)や搬送条件データ、処理条件データ等が記録されたレシピを格納して ヽる
[0059] そして、必要に応じて、ユーザーインターフェース 52からの指示等にて任意のレシ ピを記憶部 53から呼び出してコントローラ 51に実行させることで、コントローラ 51の制 御下で、基板処理システム 100での所望の処理が行われる。また、前記制御プロダラ ムゃ処理条件データ等のレシピは、コンピュータ読み取り可能な記憶媒体、例えば C D— ROM、ハードディスク、フレキシブルディスク、フラッシュメモリなどに格納された 状態のものを利用したり、あるいは、他の装置から、例えば専用回線を介して随時伝 送させてオンラインで利用したりすることも可能である。
[0060] なお、第 2の MES60の基本構成は、制御の対象がフォトリソグラフィー処理部 laに 限定されている点を除き、第 1の MESと同様であるため、説明および図示を省略する
[0061] 以上のように構成される基板処理システム 100において、例えば他の処理部(図示 せず)力も主搬送ライン 20の OHT21に受渡されたウェハ Wは、 、ずれかのウェハ受 渡し部 40において、ウェハハンドリングロボット 41によりフォトリソグラフィー処理部 la の副搬送ライン 30上の OHT31に受渡される。そして、副搬送ライン 30上の OHT31 は、フォトリソグラフィー処理部 la内の各処理装置との間でウェハの受渡しを行なう。
[0062] 上述したレジスト塗布処理装置 2においては、先ず、カセットステーション 210にお いて、ウェハ搬送機構 221のウェハ搬送用アーム 221aがカセット載置台 220上の未 処理のウェハ Wを収容しているウェハカセット CRにアクセスして 1枚のウェハ Wを取 り出し、第 3の処理グループ G のエクステンションユニット(EXT)に搬送する。
23
[0063] ウェハ Wは、このエクステンションユニット(EXT)から、主ウェハ搬送機構 222のゥ ェハ搬送装置 246により、処理ステーション 211に搬入される。そして、第 3の処理グ ループ G のァライメントユニット (ALIM)によりァライメントされた後、アドヒージョン処
23
理ユニット (AD)に搬送され、そこでレジストの定着性を高めるための疎水化処理 (H MDS処理)が施される。この処理は加熱を伴うため、その後ウェハ Wは、ウェハ搬送 装置 246により、クーリングユニット (COL)に搬送されて冷却される。 [0064] アドヒージョン処理ユニット(AD)での処理が終了してクーリングユニット(COL)で 冷却されたウェハ W、またはアドヒージョン処理ユニット (AD)での処理を行わな!/、ゥ エノ、 Wは、引き続きウェハ搬送装置 246によりレジスト塗布処理ユニット(COT)に搬 送され、そこでレジストが塗布され、塗布膜が形成される。塗布処理終了後、ウェハ Wは、第 3または第 4の処理グループ G -G のいずれかのホットプレートユニット(H
23 24
P)内でプリベータ処理され、その後いずれかのクーリングユニット(COL)にて冷却さ れる。
[0065] 冷却されたウェハ Wは、第 3の処理グループ G のァライメントユニット(ALIM)に
23
搬送され、第 3の処理グループ G のエクステンションユニット(EXT)を介してカセット
23
ステーション 210に戻され、 、ずれかのウェハカセット CRに収容される。
[0066] レジスト塗布処理装置 2においてレジストが塗布されたウェハ Wは、ー且カセットス テーシヨン 210を介して副搬送ライン 30の OHT31に受渡される。そして、ウェハ Wを 受け取った OHT31は、 PEB処理装置 4aのカセットステーション 310までウェハ Wを 搬送し、 PEB処理装置 4aに受け渡す。 PEB処理装置 4aにおいては、先ず、カセット ステーション 310において、ウェハ搬送機構 321のウェハ搬送用アーム 321aがカセ ット載置台 320上のレジスト塗布済みのウェハ Wを収容しているウェハカセット CRに アクセスして 1枚のウェハ Wを取り出し、第 3の処理グループ G のエクステンションュ
33
ニット (EXT)に搬送する。
[0067] ウェハ Wは、このエクステンションユニット(EXT)から、主ウェハ搬送機構 322のゥ ェハ搬送装置 346により、処理ステーション 311に搬入される。そして、第 3の処理グ ループ G のァライメントユニット (ALIM)によりァライメントされた後、第 4の処理ダル
33
ープ G のエクステンションユニット(EXT)を介してインターフェイス部 312に搬送さ
34
れる。
[0068] ウェハ Wは、インターフェイス部 312において周辺露光処理装置 323により周辺露 光されて余分なレジストが除去された後、インターフェイス部 312に隣接して設けられ た第 1の露光処理装置 3aに搬送され、そこで所定のパターンにしたがってウェハ W のレジスト膜に露光処理が施される。露光後のウェハ Wは、再び第 1の PEB処理装 置 4aのインターフェイス部 312に戻され、ウェハ搬送機構 324により、第 4の処理グ ループ G に属するエクステンションユニット(EXT)に搬送される。そして、ウェハ W
34
は、ウェハ搬送装置 346により、いずれかのホットプレートユニット(HP)に搬送されて 、 PEB処理が施され、次いで、クーリングユニット(COL)により冷却される。本実施形 態では、露光処理装置(3a, 3b)に隣接して PEB処理装置 (4a, 4b)を配置したので 、露光処理後、 PEB処理までの時間管理を正確に行なうことができる。その後、ゥェ ハ Wは第 3の処理グループ G のエクステンションユニット(EXT)を介してカセットス
33
テーシヨン 310に戻され、いずれかのウェハカセット CRに収容される。
[0069] 第 1の露光処理装置 3aにおいて露光されたウェハ Wは、第 1の PEB処理装置 4aの カセットステーション 310を介して再び副搬送ライン 30の OHT31に受渡される。そし て、ウェハ Wを受け取った OHT31は、次に第 2の PEB処理装置 4bのカセットステー シヨン 310までウェハ Wを搬送し、第 2の PEB処理装置 4bに受け渡す。その後は、第 2の露光処理装置 3b並びに第 2の PEB処理装置 4bにおいて、第 1の PEB処理装置 4aおよび第 1の露光処理装置 3aについて説明した手順と同様の手順で 2回目の露 光処理および 2回目の PEB処理が行なわれる。その後、 2回の露光処理が施された ウェハ Wは、第 2の PEB処理装置 4bのカセットステーション 310を介して再び副搬送 ライン 30の OHT31に受渡される。
[0070] ウェハ Wを受け取った OHT31は、現像処理装置 5のカセットステーション 210まで ウエノヽ Wを搬送し、現像処理装置 5に受け渡す。現像処理装置 5では、先ず、カセッ トステーション 210において、ウェハ搬送機構 221のウェハ搬送用アーム 221aが力 セット載置台 220上の二重露光後のウェハ Wを収容しているウェハカセット CRにァク セスして 1枚のウェハ Wを取り出し、第 3の処理グループ G のエクステンションュ-ッ
23
HEXT)に搬送する。
[0071] ウェハ Wは、このエクステンションユニット(EXT)から、主ウェハ搬送機構 222のゥ ェハ搬送装置 246により、処理ステーション 21 laに搬入される。そして、第 3の処理 グループ G のァライメントユニット (ALIM)によりァライメントされた後、現像ユニット(
23
DEV)に搬送され、そこで露光パターンの現像が行われる。現像終了後、ウェハ W はいずれかのホットプレートユニット(HP)に搬送されて PEB処理が施され、次いで、 クーリングユニット (COL)により冷却される。このような一連の処理が終了した後、第 3の処理グループ G のエクステンションユニット(EXT)を介してカセットステーション
23
210に戻され、いずれかのウェハカセット CRに収容される。その後、現像処理が施さ れたウェハ Wは、現像処理装置 5のカセットステーション 210を介して再び副搬送ライ ン 30の OHT31に受渡される。このようにフォトリソグラフィー処理部 laにおける一連 の工程が終了し、所定のパターンが形成されたウェハ Wは、いずれかのウェハ受渡 し部 40においてフォトリソグラフィー処理部 laの副搬送ライン 30上の OHT31から主 搬送ライン 20の OHT21に受渡される。そして、主搬送ライン 20の OHT21により他 の処理部例えばエッチング処理部(図示せず)へ搬送され、前記パターンに基づ ヽ てエッチングが行なわれる。エッチング処理が終了したウェハ Wについては、必要に 応じて他の処理が施された後、再び主搬送ライン 20の OHT21によってフォトリソダラ フィー処理部 laに搬送され、再度フォトリソグラフィー処理を繰り返し行なうことも可能 である。
[0072] このように、本実施形態に係る基板処理システム 100では、主搬送ライン 20とは独 立した搬送機構としてフォトリソグラフィー処理部 laにおいて副搬送ライン 30を設け たことにより、フォトリソグラフィー処理部 la内における各処理装置への搬送の自由度 を大きくすることができるとともに、フォトリソグラフィー工程での処理速度およびウェハ 搬送速度を基板処理システム 100における他の処理部と切り離して制御できる。従つ て、フォトリソグラフィー工程を高いスループットで処理することが可能であり、例えば 二重露光プロセスのように、フォトリソグラフィー工程に大きな負荷が力かるような処理 にも対応を図ることができる。また、複数の OHT31を配備した副搬送ライン 30自体 力 Sバッファ機能を有することにより、主搬送ライン 20上にストックされる仕掛力りロット 数を減少させることができ、主搬送ライン 20への負荷を抑制できる。
[0073] また、上記構成では、レジスド塗布処理装置 2と、露光処理装置 (第 1の露光処理装 置 3a,第 2の露光処理装置 3b)と、現像処理装置 5とを副搬送ライン 30に対してゥェ ハ Wを受渡し可能に並列的に配置したので、いずれかの装置に故障などの不具合 が発生した場合においても、フレキシブルに同種の他の装置へウェハ Wを搬送して 処理を行なうことが可能である。従って、フォトリソグラフィー処理部 laを含む基板処 理システム 100の信頼性を向上させることが可能である。 [0074] また、第 1の露光処理装置 3aと露光処理後のレジストを加熱処理する第 1の PEB処 理装置 4a、第 2の露光処理装置 3bと露光処理後のレジストを加熱処理する第 2の P EB処理装置 4bとを、それぞれ隣接して配置したので、露光処理から PEB処理まで の時間管理を正確に行なうことが可能になる。従って、高い再現性の下で PEB処理 を行なうことができる。例えば、 ArFレジストに代表される化学増幅型レジストを使用 する場合には、 PEB処理によってレジスト中の溶解抑制剤の脱離反応が進行し、ァ ルカリ可溶性が決定される。このため、化学増幅型レジストでは露光処理後 PEB処 理までは非常に厳密な時間管理と温度管理が求められる。露光処理から PEB処理 までの処理時間が一定せず、 PEB処理でウェハ面内もしくはウェハ間の温度に不均 一が生じると、線幅がばらつき、エッチング精度を低下させるなどの悪影響が生じる。 本実施形態では、露光処理装置と PEB処理装置が隣接配備されていることにより、 露光後の時間管理がしゃすぐ精度の高い PEB処理が可能であることから、 ArFレ ジストに代表される化学増幅型レジストを使用するフォトリソグラフィープロセスに特に 有利に利用できる。
[0075] また、フォトリソグラフィー処理部 laの生産性向上にとって露光処理装置の稼働率 を高めることが重要であるため、露光処理装置に付帯する必要最小限の設備として P EB処理装置のみを隣接配備しておくことにより、露光処理装置以外の装置のトラブ ルによって露光処理装置の稼働率を低下させるリスクが低減され、フォトリソグラフィ 一処理部 laにおける信頼性を向上させることができる。
[0076] <第 2実施形態 >
図 12は、本発明の第 2実施形態に係る基板処理システム 101において、フォトリソ グラフィー工程を実施するためのフォトリソグラフィー処理部 lbを中心とした搬送装置 の概要を示す図面である。本実施形態では、第 2の自動基板搬送ラインとして、ゥェ ハ Wの枚葉搬送を行なうコンベア 70を配備した。
[0077] 図 12に示すように、フォトリソグラフィー処理部 lbは、ウェハ W表面に所定のレジス トを塗布するレジスト塗布処理装置 2、レジストが塗布されたウェハ Wに対して露光処 理を行なう第 1の露光処理装置 3a、露光処理後のレジストを加熱処理する第 1の PE B処理装置 4a、ウェハ Wに対して露光処理を行なう第 2の露光処理装置 3b、露光処 理後のレジストを加熱処理する第 2の PEB処理装置 4b、および露光処理されたゥェ ハ Wを現像する現像処理装置 5を備えている。フォトリソグラフィー処理部 lbでは、レ ジスト塗布処理装置 2、第 1の露光処理装置 3a、第 2の露光処理装置 3bおよび現像 処理装置 5が分離して配置され、第 1の露光処理装置 3aと第 1の PEB処理装置 4a、 第 2の露光処理装置 3bと第 2の PEB処理装置 4bは隣接配置されて 、る。第 1の露光 処理装置 3aは、第 1の PEB処理装置 4aに隣接して配置され、第 1の PEB処理装置 4 aを介してコンベア 70との間でウェハ Wを受渡し可能に構成されている。同様に第 2 の露光処理装置 3bは、第 2の PEB処理装置 4bに隣接して配置され、第 2の PEB処 理装置 4bを介してコンベア 70との間でウェハ Wを受渡し可能に構成されて!、る。な お、各処理装置の基本的構成と配置は、図 1に示した実施形態と同様である。
[0078] また、図 12では図示を省略している力 フォトリソグラフィー処理部 lbには、レジスト 塗布処理装置 2、第 1および第 2の露光処理装置 3a, 3b、第 1および第 2の PEB処 理装置 4a, 4b、現像処理装置 5を一つのグループとして、複数グループが設けられ ている。つまり、各グループ内で上記各処理装置の設置比率を維持したまま、整数 倍の処理装置が配備されて!ヽる。
[0079] 第 1の自動基板搬送ラインである主搬送ライン 20は、基板処理システム 101の全体 にわたつてウェハ Wの搬送および各処理部(例えば処理部 Al、 A2)との基板の受 渡しを行なう。第 1実施形態(図 1)と同様に、主搬送ライン 20には、例えば OHT21 が設けられている。各 OHT21は、図示しないカセット内にウェハ Wを収容した状態 で主搬送ライン 20を移動し、フォトリソグラフィー処理部 lbをはじめとする各処理部( 例えば処理部 A1、A2)へのウェハ Wの搬送を行なえるように構成されている。
[0080] コンベア 70は、ウェハ Wを 1枚ずつ搬送する枚葉搬送ラインである。コンベア 70は 、複数箇所(図 12では 4箇所)に配備されたウェハハンドリングロボット 71を介して、 各処理装置の受渡しポートであるカセットステーションとの間で基板の受渡しを行なう ことができるように構成されて!、る。
[0081] 本実施形態において、主搬送ライン 20の OHT21は、レジスド塗布処理装置 2の力 セットステーション 210に複数枚のウェハ Wを収容したカセットを受け渡す。カセットス テーシヨン 210には、枚葉搬入出ポート Pが設けられており、例えばレジスト塗布処理 装置 2における処理が終了したウェハ Wは、この枚葉搬入出ポート Pに仮置きされる 。そして、ウェハハンドリングロボット 71は、前記枚葉搬入出ポート Pに仮置きされたゥ ェハ Wをコンベア 70に次々に受け渡す。コンベア 70はループ状に構成されているた め、循環式に 1枚ずつウェハ Wを移動させる。
[0082] このコンベア 70上を移動中のウェハ Wは、 ID番号によりコンベア 70内での次の搬 送先や搬送時間などが管理される。例えば、レジスド塗布処理装置 2でのレジスト塗 布処理が終了し、コンベア 70に供給されたウェハ Wは、 ID番号により管理されて次 の搬送先が第 1の露光処理装置 3aまたは第 2の露光処理装置 3bから選択される。そ して、ウェハハンドリングロボット 71により、第 1の露光処理装置 3aまたは第 2の露光 処理装置 3bでの露光処理を行なうベぐ第 1の PEB処理装置 4aまたは第 2の PEB 処理装置 4bのカセットステーション 310に設けられた枚葉搬入出ポート Pへ受渡され る。そして、露光処理および PEB処理が終了したウェハ Wは、第 1の PEB処理装置 4 aまたは第 2の PEB処理装置 4bのカセットステーション 310に設けられた枚葉搬入出 ポート Pから、ウェハハンドリングロボット 71を介して再びコンベア 70へ搬送される。
[0083] その後、ウェハ Wは、コンベア 70からウェハハンドリングロボット 71により現像処理 装置 5のカセットステーション 210に設けられた枚葉搬入出ポート Pへ受渡される。そ して、現像処理装置 5において現像処理が行なわれた後、ウェハ Wは、現像処理装 置 5のカセットステーション 210に搬送され、カセット CR内に収容される。このようにフ オトリソグラフィー処理部 lbにおける一連の工程が終了し、所定のパターンが形成さ れたウェハ Wは、主搬送ライン 20の OHT21に受渡される。そして、主搬送ライン 20 の OHT21により他の処理部例えばエッチング処理部(図示せず)へ搬送され、前記 パターンに基づ 、てエッチングが行なわれる。
[0084] なお、主搬送ライン 20の OHT21によりカセット搬送されてきたウェハ Wは、レジスト 塗布処理装置 2、第 1の PEB処理装置 4a、第 2の PEB処理装置 4bまたは現像処理 装置 5のどのカセットステーションに搬入してもよい。この場合、各カセットステーション では、カセットからウェハ Wを抜き出して直接枚葉搬入出ポート Pへウェハを仮置き する受渡し動作を行なうことができる。つまり、主搬送ライン 20の OHT21によりカセッ ト搬送されてきたウェハ Wを、各装置での処理前に一且コンベア 70に受渡すことによ り、コンベア 70をフォトリソグラフィー処理部 lb内でのバッファとして活用できるととも に、フォトリソグラフィー処理部 lbにおける各装置の稼働状況に応じて第 2の MES6 0の制御の下でフレキシブルな搬送を行なうことができる。
[0085] 本実施形態の基板処理システム 101では、主搬送ライン 20とは独立した搬送機構 としてフォトリソグラフィー処理部 lbにおいてコンベア 70を用いることにより、フォトリソ グラフィー処理部 lb内における各処理装置への搬送の自由度を大きくすることがで きる。また、フォトリソグラフィー処理部 lb内の各処理装置で処理されたウエノ、 Wを、 順次コンベア 70で次工程の処理を行なう処理装置へ枚葉搬送できるので、例えば力 セット単位で次の処理装置へ搬送する場合に比べて待ち時間が少なぐスループット を向上させることができる。
[0086] また、コンベア 70を設けたことにより、フォトリソグラフィー工程での処理速度および ウェハ搬送速度を基板処理システム 101における他の処理部と切り離して制御でき る。従って、フォトリソグラフィー工程を高いスループットで処理することが可能であり、 二重露光プロセスのようにフォトリソグラフィー工程に大きな負荷力 Sかかるような処理 にも対応を図ることができる。また、コンベア 70がバッファ機能を有することにより、主 搬送ライン 20上にストックされる仕掛力りロット数を減少させることができ、主搬送ライ ン 20への負荷を抑制できる。
また、第 1実施形態の基板処理システム 100と同様に、第 2実施形態の基板処理シ ステム 101においても、レジスド塗布処理装置 2と、露光処理装置 (第 1の露光処理装 置 3a,第 2の露光処理装置 3b)と、現像処理装置 5とをコンベア 70に対してウェハ W を受渡し可能に並列的に配置したので、いずれかの装置に故障などの不具合が発 生した場合においても、フレキシブルに同種の装置へウエノ、 Wを搬送して処理を行 なうことが可能である。従って、フォトリソグラフィー処理部 lbを含む基板処理システム 101の信頼性を向上させることが可能である。
[0087] また、第 1の露光処理装置 3aと露光処理後のレジストを加熱処理する第 1の PEB処 理装置 4a、第 2の露光処理装置 3bと露光処理後のレジストを加熱処理する第 2の P EB処理装置 4bとを、それぞれ隣接して配置したので、高い信頼性の下で PEB処理 を行なうことができる。すなわち、露光後の時間管理がしゃすぐ精度の高い PEB処 理が実現する。また、露光処理装置以外の装置のトラブルによって露光処理装置の 稼働率を低下させるリスクが低減され、フォトリソグラフィー処理部 lbにおける信頼性 を向上させることができる。
[0088] <第 3実施形態 >
図 13は、本発明の第 3実施形態に力かる基板処理システム 102において、フォトリ ソグラフィー工程を実施するためのフォトリソグラフィー処理部 lcを中心とした搬送装 置の概要を示す図面である。本実施形態では、第 2の自動基板搬送ラインとして副 搬送ライン 30を配備し、この副搬送ライン 30に対し、ウェハ W表面に所定のレジスト を塗布する第 1のレジスト塗布処理装置 2aおよび第 2のレジスト塗布処理装置 2b、並 びに、露光処理されたウェハ Wを現像する第 1の現像処理装置 5aおよび第 2の現像 処理装置 5bを、それぞれウェハ Wを直接受渡しできるように分離して並列的に配置 した。
[0089] 第 1の現像処理装置 5aには、露光処理後のレジストを加熱処理する第 1の PEB処 理装置 4aを介してウェハ Wに対して露光処理を行なう第 1の露光処理装置 3aが直 列的に配置されている。第 2の現像処理装置 5bには、第 2の PEB処理装置 4bを介し て第 2の露光処理装置 3bが直列的に配置されている。第 1の露光処理装置 3aは、 第 1の PEB処理装置 4aおよび第 1の現像処理装置 5aを介して副搬送ライン 30の O HT31との間でウェハ Wを受渡し可能に構成されている。同様に第 2の露光処理装 置 3bは、第 2の PEB処理装置 4bおよび第 2の現像処理装置 5bを介して副搬送ライ ン 30の OHT31との間でウエノ、 Wを受渡し可能に構成されている。なお、本実施形 態では、フォトリソグラフィー処理部 lcの装置レイアウト構成が異なる点以外は、図 1 に示した第 1実施形態の基板処理システム 100と同様である
また、図 13では図示を省略している力 フォトリソグラフィー処理部 lcには、第 1お よび第 2のレジスド塗布処理装置 2a, 2b、第 1および第 2の露光処理装置 3a, 3b、第 1および第 2の PEB処理装置 4a, 4b、第 1および第 2の現像処理装置 5a, 5bを一つ のグループとして、複数グループが設けられている。つまり、各グループ内で上記各 処理装置の設置比率を維持したまま、整数倍の処理装置が配備されて!ヽる。
[0090] 基板処理システム 102において、例えば他の処理部(図示せず)から主搬送ライン 20の OHT21により搬送されてきたウェハ Wは、 、ずれかのウェハ受渡し部 40にお いてフォトリソグラフィー処理部 lcの副搬送ライン 30上の OHT31に受渡される。そし て、副搬送ライン 30上の OHT31は、フォトリソグラフィー処理部 lc内の各処理装置 との間でウェハ Wの受渡しを行なう。具体的には、例えばフォトリソグラフィー処理部 1 cに搬送されてきたウェハ Wは、副搬送ライン 30の OHT31によって第 1のレジスト塗 布処理装置 2aまたは第 2のレジスト塗布処理装置 2bの 、ずれかに搬送される。この 際、第 2の MES60の制御の下で第 1のレジスト塗布処理装置 2aまたは第 2のレジス ト塗布処理装置 2bのどちらに搬入するか、の振り分けが行われる。従って、レジスト 塗布処理装置の稼働状態に応じてフレキシブルなウェハ搬送が可能になり、フォトリ ソグラフィー工程のスループットを向上させることが可能になる。
[0091] 次に、第 1のレジスト塗布処理装置 2aまたは第 2のレジスト塗布処理装置 2bのいず れかでレジスト塗布処理がなされたウェハ Wは、露光処理のため、副搬送ライン 30を 介して第 1の現像処理装置 5aおよび第 2の現像処理装置 5bのいずれかに搬送され る。この際も、第 2の MES60の制御の下で第 1の現像処理装置 5aまたは第 2の現像 処理装置 5bのどちらに搬入するか、の振り分けが行われる。従って、現像処理装置 および露光処理装置の稼働状態に応じてフレキシブルなウェハ搬送が可能になり、 フォトリソグラフィー工程のスループットを向上させることが可能になる。そして、レジス トが塗布されたウェハ Wは、露光、 PEB、現像の順に処理される。本実施形態では、 現像処理装置(5a, 5b)と PEB処理装置 (4a, 4b)と露光処理装置(3a, 3b)が直列 的に配置されていることにより、露光処理、 PEB処理および現像処理の一連の処理 を高スループットで行うことができる。
[0092] また、副搬送ライン 30がバッファ機能を有することにより、主搬送ライン 20上にストッ クされる仕掛力りロット数を減少させることができ、主搬送ライン 20への負荷を抑制で きる。
[0093] このように、本実施形態に係る基板処理システム 102においては、主搬送ライン 20 とは独立した搬送機構としてフォトリソグラフィー処理部 lcにおいて副搬送ライン 30を 設けたことにより、フォトリソグラフィー処理部 lc内における各処理装置への搬送の自 由度を大きくすることができるとともに、フォトリソグラフィー工程での処理速度および ウェハ搬送速度を基板処理システム 102における他の処理部と切り離して制御でき る。従って、フォトリソグラフィー工程を高いスループットで処理することが可能であり、 例えば二重露光プロセスのように、フォトリソグラフィー工程に大きな負荷が力かるよう な処理にも対応を図ることができる。
[0094] また、上記構成では、二つのレジスト塗布処理装置(2a, 2b)と、現像処理装置(5a , 5b)とを副搬送ライン 30に対してウェハ Wを直接受渡し可能に並列的に配置した ので、いずれかの装置に故障などの不具合が発生した場合においても、フレキシブ ルに他の装置へウェハ Wを搬送して処理を行なうことが可能である。従って、フォトリ ソグラフィー処理部 lcを含む基板処理システム 102全体の信頼性を向上させること が可能である。
[0095] また、第 1の露光処理装置 3aと第 1の PEB処理装置 4a、第 2の露光処理装置 3bと 第 2の PEB処理装置 4bとを、それぞれ隣接して配置したので、露光後の時間管理が しゃすぐ精度の高い PEB処理が可能である。
[0096] <第 4実施形態 >
図 14は、本発明の第 4実施形態に係る基板処理システム 103において、フォトリソ グラフィー工程を実施するためのフォトリソグラフィー処理部 Idを中心とした搬送装置 の概要を示す図面である。本実施形態では、第 2の自動基板搬送ラインとして、ゥェ ハ Wを 1枚ずつ搬送するコンベア 70を配備し、このコンベア 70に対して、ウェハ W表 面に所定のレジストを塗布する第 1のレジスト塗布処理装置 2aおよび第 2のレジスト 塗布処理装置 2b、並びに、露光処理されたウェハ Wを現像する第 1の現像処理装 置 5aおよび第 2の現像処理装置 5bを、それぞれウェハ Wを直接受渡しできるように 分離して並列的に配置した。
[0097] 第 1の現像処理装置 5aには、露光処理後のレジストを加熱処理する第 1の PEB処 理装置 4aを介してウェハ Wに対して露光処理を行なう第 1の露光処理装置 3aが直 列的に配置されている。第 2の現像処理装置 5bには、第 2の PEB処理装置 4bを介し て第 2の露光処理装置 3bが直列的に配置されている。第 1の露光処理装置 3aは、 第 1の PEB処理装置 4aおよび第 1の現像処理装置 5aを介してコンベア 70との間で ウエノ、 Wを受渡し可能に構成されている。同様に第 2の露光処理装置 3bは、第 2の P EB処理装置 4bおよび第 2の現像処理装置 5bを介してコンベア 70との間でウェハ W を受渡し可能に構成されている。なお、本実施形態では、フォトリソグラフィー処理部 Idの装置レイアウト構成が異なる点以外は、図 12に示した第 2実施形態の基板処理 システム 101と同様である。
[0098] また、図 14では図示を省略している力 フォトリソグラフィー処理部 Idには、第 1お よび第 2のレジスド塗布処理装置 2a, 2b、第 1および第 2の露光処理装置 3a, 3b、第 1および第 2の PEB処理装置 4a, 4b、第 1および第 2の現像処理装置 5a, 5bを一つ のグループとして、複数グループが設けられている。つまり、各グループ内で上記各 処理装置の設置比率を維持したまま、整数倍の処理装置が配備されて!ヽる。
[0099] 基板処理システム 103において、例えば他の処理部(図示せず)から主搬送ライン 20の OHT21によりカセット搬送されてきたウェハ Wは、例えば、第 1のレジスト塗布 処理装置 2aまたは第 2のレジスト塗布処理装置 2bのいずれかのカセットステーション 210にカセットごと受け渡される。カセットステーション 210には、枚葉搬入出ポート P が設けられており、例えば第 1のレジスト塗布処理装置 2aまたは第 2のレジスト塗布 処理装置 2bでレジスト塗布処理が終了したウェハ Wは、この枚葉搬入出ポート Pに 仮置きされる。そして、ウェハハンドリングロボット 71は、前記枚葉搬入出ポート Pに仮 置きされたウェハ Wをコンベア 70に次々に受け渡す。コンベア 70はループ状に構成 されているため、循環式に 1枚ずつウェハ Wを移動させる。
[0100] なお、主搬送ライン 20の OHT21によりカセット搬送されてきたウェハ Wは、第 1の レジスト塗布処理装置 2a、第 2のレジスト塗布処理装置 2b、第 1の現像処理装置 5a または第 2の現像処理装置 5bのどのカセットステーション 210に搬入してもよい。この 場合、各カセットステーション 210では、カセットからウェハ Wを抜き出して直接枚葉 搬入出ポート Pへウェハを仮置きする受渡し動作を行なうことができる。つまり、主搬 送ライン 20の OHT21によりカセット搬送されてきたウェハ Wを、各装置での処理前 に一且コンベア 70に受渡すことにより、コンベア 70をフォトリソグラフィー処理部 Id内 でのバッファとして活用できるとともに、フォトリソグラフィー処理部 Idにおける各装置 の稼働状況に応じて第 2の MES60の制御の下でフレキシブルな搬送を行なうことが できる。 [0101] コンベア 70上を移動中のウェハ Wは、 ID番号により次の搬送先や搬送時間などが 管理される。例えば、ループ状のコンベア 70上を搬送されるウェハ Wは、第 2の ME S60の制御の下で第 1のレジスト塗布処理装置 2aまたは第 2のレジスト塗布処理装 置 2bのどちらに搬入する力 の振り分けが行われる。従って、レジスド塗布処理装置 の稼働状態に応じてフレキシブルなウェハ搬送が可能になり、フォトリソグラフィーェ 程のスループットを向上させることが可能になる。また、第 1のレジスト塗布処理装置 2 aまたは第 2のレジスト塗布処理装置 2bのいずれかでレジスト塗布処理が終了した後 のウェハ Wは、露光処理を行なうためコンベア 70を介して第 1の現像処理装置 5aお よび第 2の現像処理装置 5bのいずれかに搬送される。この際も、第 2の MES60の制 御の下で第 1の現像処理装置 5aまたは第 2の現像処理装置 5bのどちらに搬入する 力 の振り分けが行われる。従って、現像処理装置および露光処理装置の稼働状態 に応じてフレキシブルなウェハ搬送が可能になり、フォトリソグラフィー工程のスルー プットを向上させることが可能になる。そして、レジストが塗布されたウェハ Wは、露光 、 PEB、現像の順に処理される。また、本実施形態では、現像処理装置(5a, 5b)と P EB処理装置 (4a, 4b)と露光処理装置(3a, 3b)が直列的に配置されていることによ り、露光処理、 PEB処理および現像処理の一連の処理を高スループットで行うことが できる。
[0102] 本実施形態の基板処理システム 103では、主搬送ライン 20とは独立した搬送機構 としてフォトリソグラフィー処理部 Idにおいてコンベア 70を用いることにより、フォトリソ グラフィー処理部 Id内における各処理装置への搬送の自由度を大きくすることがで きる。また、フォトリソグラフィー処理部 Id内の各処理装置で処理されたウエノ、 Wを、 順次コンベア 70で次工程の処理を行なう処理装置へ枚葉搬送できるので、例えば力 セット単位で次の処理装置へ搬送する場合に比べて待ち時間が少なぐスループット を向上させることができる。また、コンベア 70を設けたことにより、フォトリソグラフィー 工程での処理速度およびウェハ搬送速度を基板処理システム 103における他の処 理部と切り離して制御できる。従って、フォトリソグラフィー工程を高いスループットで 処理することが可能であり、二重露光プロセスのようにフォトリソグラフィー工程に大き な負荷力かかるような処理にも対応を図ることができる。 [0103] また、コンベア 70がバッファ機能を有することにより、主搬送ライン 20上にストックさ れる仕掛力りロット数を減少させることができ、主搬送ライン 20への負荷を抑制できる
[0104] また、上記構成では、二つのレジスト塗布処理装置(2a, 2b)と、現像処理装置(5a , 5b)とを、コンベア 70に対してウエノ、 Wを直接受渡し可能に並列的に配置したので 、いずれかの装置に故障などの不具合が発生した場合においても、フレキシブルに 同種の他の装置へウェハ Wを搬送して処理を行なうことが可能である。従って、フォト リソグラフィー処理部 Idを含む基板処理システム 103全体の信頼性を向上させること が可能である。
[0105] また、第 1の露光処理装置 3aと第 1の PEB処理装置 4a、第 2の露光処理装置 3bと 第 2の PEB処理装置 4bとを、それぞれ隣接して配置したので、露光後の時間管理が しゃすぐ精度の高い PEB処理が可能である。
[0106] 本発明の第 1〜第 4の実施形態によれば、被処理基板に対して個別に処理を行な う複数の処理部の間で被処理基板の搬送を行なう第 1の自動基板搬送ラインと、この 第 1の自動基板搬送ラインとの間で基板を受渡し可能に構成され、前記フォトリソダラ フィー工程における一連の処理を行なう各処理装置の間で被処理基板の搬送を行 なう第 2の自動基板搬送ラインと、を別々に設け、少なくともレジスト塗布処理装置と 現像処理装置を、それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を受 渡し可能に並列的に分離配置した基板処理システムにお 、て、露光処理装置と露 光後ベータ処理装置を隣接配置したので、露光処理から露光後ベータ処理までの 時間管理を正確に行なうことが可能になる。
[0107] 従って、高い再現性の下で露光後ベータ処理を行なうことが可能であり、例えば、 A rFレジストに代表される化学増幅型レジストを用いるフォトリソグラフィープロセスに特 に有利に利用できる。
[0108] また、露光処理装置に付帯する必要最小限の設備として露光後ベータ処理装置の みを隣接配備しておくことにより、露光処理装置以外の装置のトラブルによって露光 処理装置の稼働率を低下させるリスクが低減され、フォトリソグラフィー処理部におけ る信頼性を向上させることができる。 [0109] 以上、いくつかの実施形態を挙げて本発明を説明した力 本発明はこれらに限定さ れるものではなぐ種々の変形が可能である。例えば第 1〜第 4の実施形態(図 1、図 12、図 13および図 14)の装置レイアウト構成において、レジスド塗布処理装置、 PEB 処理装置、露光処理装置および現像処理装置の設置個数をさらに増加させる場合 には、前記のとおり図 1、図 12、図 13および図 14に示した各装置の設置比率を維持 したまま全体の設置数を増やすことが好ま 、が、例えばレジスト塗布処理装置のみ の設置数を増やすなど特定の装置にっ 、てのみ増加させてもょ 、。
[0110] さらに、上記実施形態の基板処理システムでは、半導体ウェハにレジスト塗布-露 光 ·現像の一連のフォトリソグラフィー工程を行う場合について説明したが、半導体ゥ ェハ以外の他の被処理基板、例えば FPD (フラットパネルディスプレイ)用のガラス基 板にフォトリソグラフィー工程を含む処理を行う基板処理システムにも本発明を適用 することができる。
産業上の利用可能性
[0111] 本発明は、半導体ウェハ等の被処理基板に対し、フォトリソグラフィー工程を含む 処理を行なう基板処理に適用可能である。

Claims

請求の範囲
[1] 被処理基板に対しフォトリソグラフィー工程を含む処理を行なう基板処理システムで あって、
被処理基板に対して個別に処理を行なう複数の処理部の間で被処理基板の搬送 を行なう第 1の自動基板搬送ラインと、
前記第 1の自動基板搬送ラインとの間で被処理基板を受渡し可能に構成され、前 記フォトリソグラフィー工程における一連の処理を行なうフォトリソグラフィー処理部と、 前記フォトリソグラフィー処理部の各処理装置の間で被処理基板の搬送を行なう第
2の自動基板搬送ラインと、
を備え、
前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
加熱処理後のレジストを現像処理する現像処理装置と、
を備えており、
前記レジスト塗布処理装置と前記露光後ベータ処理装置と前記現像処理装置は、 それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を受渡し可能に分離し て配置され、
前記露光処理装置は、前記露光後ベータ処理装置を介して前記第 2の自動基板 搬送ラインとの間で被処理基板の受渡しを行うように前記露光後ベータ処理装置に 隣接配置されていることを特徴とする、基板処理システム。
[2] 前記レジスト塗布処理装置、前記露光後ベータ処理装置および前記現像処理装 置は、それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を受渡すための 個別の基板受渡しポートを備えて 、る、請求項 1に記載の基板処理システム。
[3] 前記第 2の自動基板搬送ラインは、前記第 1の自動基板搬送ラインから独立した循 環式の基板搬送ラインである、請求項 1に記載の基板処理システム。
[4] 前記第 1の自動基板搬送ラインを移動して前記各処理部との間で被処理基板の受 渡しを行なう第 1の自動基板搬送装置と、
前記第 2の自動基板搬送ラインを移動して前記フォトリソグラフィー処理部の各処理 装置の間で被処理基板の受渡しを行なう第 2の自動基板搬送装置と、
を備えた、請求項 1に記載の基板処理システム。
[5] 前記第 1の自動基板搬送装置および前記第 2の自動基板搬送装置は、複数枚の 被処理基板を容器に収容して搬送する容器搬送装置である、請求項 4に記載の基 板処理システム。
[6] 前記第 1の自動基板搬送装置は、複数枚の被処理基板を容器に収容して搬送す る容器搬送装置であり、前記第 2の自動基板搬送装置は、被処理基板を一枚ずつ 搬送する枚葉搬送装置である、請求項 4に記載の基板処理システム。
[7] 前記第 1の自動基板搬送ラインにおける被処理基板の搬送を制御する第 1の制御 部と、
前記第 2の自動基板搬送ラインにおける被処理基板の搬送を制御する第 2の制御 部と、
を備えた、請求項 1に記載の基板処理システム。
[8] 前記レジスト塗布処理装置の設置数に対して、前記露光処理装置の設置数が 1: 2 の比率となるように配備した、請求項 1に記載の基板処理システム。
[9] 前記フォトリソグラフィー処理部は、二重露光技術によりパターン形成を行なう処理 部である、請求項 1に記載の基板処理システム。
[10] 被処理基板に対しフォトリソグラフィー工程を含む処理を行なう基板処理システムで あって、
被処理基板に対して個別に処理を行なう複数の処理部の間で被処理基板の搬送 を行なう第 1の自動基板搬送ラインと、
前記第 1の自動基板搬送ラインとの間で被処理基板を受渡し可能に構成され、前 記フォトリソグラフィー工程における一連の処理を行なうフォトリソグラフィー処理部と、 前記フォトリソグラフィー処理部の各処理装置の間で被処理基板の搬送を行なう第 2の自動基板搬送ラインと、
を備え、 前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
前記露光後ベータ処理装置に隣接配置され、加熱処理後のレジストを現像処理す る現像処理装置と、
を備えており、
前記レジスト塗布処理装置と前記現像処理装置は、それぞれ前記第 2の自動基板 搬送ラインとの間で被処理基板を受渡し可能に分離して配置され、前記露光処理装 置は、前記露光後ベータ処理装置および前記現像処理装置を介して前記第 2の自 動基板搬送ラインとの間で被処理基板の受渡しを行なうように前記露光後べーク処 理装置に隣接配置されて ヽることを特徴とする、基板処理システム。
[11] 前記レジスト塗布処理装置および前記現像処理装置は、それぞれ前記第 2の自動 基板搬送ラインとの間で被処理基板を受渡すための個別の基板受渡しポートを備え ている、請求項 10に記載の基板処理システム。
[12] 前記第 2の自動基板搬送ラインは、前記第 1の自動基板搬送ラインから独立した循 環式の基板搬送ラインである、請求項 10に記載の基板処理システム。
[13] 前記第 1の自動基板搬送ラインを移動して前記各処理部との間で被処理基板の受 渡しを行なう第 1の自動基板搬送装置と、
前記第 2の自動基板搬送ラインを移動して前記フォトリソグラフィー処理部の各処理 装置の間で被処理基板の受渡しを行なう第 2の自動基板搬送装置と、
を備えた、請求項 10に記載の基板処理システム。
[14] 被処理基板に対しフォトリソグラフィー工程を含む処理を行なう基板処理システムに ぉ ヽて被処理基板を搬送する基板搬送方法であって、
前記基板処理システムは、被処理基板に対して個別に処理を行なう複数の処理部 の間で被処理基板の搬送を行なう第 1の自動基板搬送ラインと、前記第 1の自動基 板搬送ラインとの間で被処理基板を受渡し可能に構成され、前記フォトリソグラフィー 工程における一連の処理を行なうフォトリソグラフィー処理部に専用の循環式の第 2 の自動基板搬送ラインと、を備え、
前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
加熱処理後のレジストを現像処理する現像処理装置と、
を備えており、
前記フォトリソグラフィー処理部では、前記第 2の自動基板搬送ラインにより各処理 装置の間で被処理基板の搬送を行なうとともに、前記レジスド塗布処理装置と前記露 光後ベータ処理装置と前記現像処理装置は、それぞれ前記第 2の自動基板搬送ラ インとの間で被処理基板を直接受渡し、前記露光処理装置は、隣接配置された前記 露光後ベータ処理装置を介して前記第 2の自動基板搬送ラインとの間で被処理基板 の受渡しを行うようにした、基板搬送方法。
[15] 前記フォトリソグラフィー処理部においては、前記各処理装置の稼働状態に応じて 前記第 2の自動基板搬送ラインから被処理基板を搬入する搬入先を選択する、請求 項 14に記載の基板搬送方法。
[16] 前記第 1の自動基板搬送ラインおよび前記第 2の自動基板搬送ラインでは、複数 枚の被処理基板を容器に収容して搬送し、前記第 2の自動基板搬送ラインと前記フ オトリソグラフィー処理部の各処理装置との間では前記容器に収容した状態で被処 理基板の受渡しを行なう、請求項 14に記載の基板搬送方法。
[17] 前記第 1の自動基板搬送ラインでは、複数枚の被処理基板を容器に収容して搬送 し、前記第 2の自動基板搬送ラインでは被処理基板を一枚ずつ搬送するとともに、前 記第 2の自動基板搬送ラインと前記フォトリソグラフィー処理部の各処理装置との間 では一枚ずつ被処理基板の受渡しを行なう、請求項 14に記載の基板搬送方法。
[18] 被処理基板に対しフォトリソグラフィー工程を含む処理を行なう基板処理システムに ぉ ヽて被処理基板を搬送する基板搬送方法であって、
前記基板処理システムは、被処理基板に対して個別に処理を行なう複数の処理部 の間で被処理基板の搬送を行なう第 1の自動基板搬送ラインと、前記第 1の自動基 板搬送ラインとの間で被処理基板を受渡し可能に構成され、前記フォトリソグラフィー 工程における一連の処理を行なうフォトリソグラフィー処理部に専用の循環式の第 2 の自動基板搬送ラインと、を備え、
前記フォトリソグラフィー処理部は、
被処理基板表面にレジストを塗布するレジスト塗布処理装置と、
被処理基板に塗布されたレジストに対し露光処理を行なう露光処理装置と、 露光処理後のレジストを加熱処理する露光後ベータ処理装置と、
加熱処理後のレジストを現像処理する現像処理装置と、
を備えており、
前記フォトリソグラフィー処理部では、前記第 2の自動基板搬送ラインにより各処理 装置の間で被処理基板の搬送を行なうとともに、前記レジスド塗布処理装置と前記現 像処理装置は、それぞれ前記第 2の自動基板搬送ラインとの間で被処理基板を直接 受渡し、前記露光処理装置は、隣接配置された前記露光後ベータ処理装置および 前記現像処理装置を介して前記第 2の自動基板搬送ラインとの間で被処理基板の 受渡しを行なうようにした、基板搬送方法。
[19] コンピュータ上で動作し、実行時に、請求項 14に記載の基板搬送方法が行なわれ るように前記基板処理システムを制御する、制御プログラム。
[20] コンピュータ上で動作する制御プログラムが記憶されたコンピュータ読取り可能な記 憶媒体であって、
前記制御プログラムは、実行時に、請求項 14に記載の基板搬送方法が行なわれる ように前記基板処理システムを制御するものである、コンピュータ読取り可能な記憶 媒体。
PCT/JP2007/062101 2006-06-15 2007-06-15 基板処理システムおよび基板搬送方法 WO2007145315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087030311A KR101087463B1 (ko) 2006-06-15 2007-06-15 기판 처리 시스템, 기판 반송 방법, 및 컴퓨터 판독 가능한 기억 매체
US12/302,857 US8046095B2 (en) 2006-06-15 2007-06-15 Substrate processing system and substrate transfer method
CN2007800223262A CN101473416B (zh) 2006-06-15 2007-06-15 衬底处理系统以及衬底搬送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-165621 2006-06-15
JP2006165621A JP4584872B2 (ja) 2006-06-15 2006-06-15 基板処理システムおよび基板搬送方法

Publications (1)

Publication Number Publication Date
WO2007145315A1 true WO2007145315A1 (ja) 2007-12-21

Family

ID=38831828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062101 WO2007145315A1 (ja) 2006-06-15 2007-06-15 基板処理システムおよび基板搬送方法

Country Status (6)

Country Link
US (1) US8046095B2 (ja)
JP (1) JP4584872B2 (ja)
KR (1) KR101087463B1 (ja)
CN (1) CN101473416B (ja)
TW (1) TW200810005A (ja)
WO (1) WO2007145315A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457722B (zh) * 2012-03-26 2014-10-21 Taiwan Semiconductor Mfg 微影設備配置及提升半導體工件製程生產率的方法
US9196515B2 (en) 2012-03-26 2015-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Litho cluster and modulization to enhance productivity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849969B2 (ja) * 2006-06-15 2012-01-11 東京エレクトロン株式会社 基板処理システムおよび基板搬送方法
CN103794466A (zh) * 2012-10-30 2014-05-14 沈阳芯源微电子设备有限公司 保持接口单元内部洁净度装置
CN108511361A (zh) * 2017-02-24 2018-09-07 中芯国际集成电路制造(上海)有限公司 晶圆转移装置及其应用方法
JP7232593B2 (ja) * 2018-08-30 2023-03-03 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP7213056B2 (ja) * 2018-10-18 2023-01-26 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122622A (ja) * 1993-07-15 1995-05-12 Hitachi Ltd 製造システムおよび製造方法
JPH11214476A (ja) * 1998-01-20 1999-08-06 Ishikawa Seisakusho Ltd 半導体製造装置におけるポッド供給装置
JP2000082733A (ja) * 1998-01-13 2000-03-21 Toshiba Corp 処理装置、製造装置、および平面表示装置の基板製造装置
JP2000236008A (ja) * 1999-02-15 2000-08-29 Mitsubishi Electric Corp ウエハ自動搬送システムにおける搬送制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW444275B (en) * 1998-01-13 2001-07-01 Toshiba Corp Processing device, laser annealing device, laser annealing method, manufacturing device and substrate manufacturing device for panel display
JP3442669B2 (ja) 1998-10-20 2003-09-02 東京エレクトロン株式会社 基板処理装置
KR100686228B1 (ko) * 2000-03-13 2007-02-22 삼성전자주식회사 사진 식각용 장치 및 방법, 그리고 이를 이용한 액정 표시장치용 박막 트랜지스터 기판의 제조 방법
JP3966211B2 (ja) * 2002-05-08 2007-08-29 株式会社ニコン 露光方法、露光装置及びデバイス製造方法
KR100545297B1 (ko) * 2002-06-12 2006-01-24 에이에스엠엘 네델란즈 비.브이. 리소그래피장치 및 디바이스 제조방법
JP2004356606A (ja) * 2003-04-03 2004-12-16 Seiko Epson Corp 製造装置及び製造方法
JP5183861B2 (ja) * 2004-06-10 2013-04-17 アプライド マテリアルズ インコーポレイテッド 小ロットサイズ基板キャリアを使用する方法および半導体デバイス製造施設

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122622A (ja) * 1993-07-15 1995-05-12 Hitachi Ltd 製造システムおよび製造方法
JP2000082733A (ja) * 1998-01-13 2000-03-21 Toshiba Corp 処理装置、製造装置、および平面表示装置の基板製造装置
JPH11214476A (ja) * 1998-01-20 1999-08-06 Ishikawa Seisakusho Ltd 半導体製造装置におけるポッド供給装置
JP2000236008A (ja) * 1999-02-15 2000-08-29 Mitsubishi Electric Corp ウエハ自動搬送システムにおける搬送制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457722B (zh) * 2012-03-26 2014-10-21 Taiwan Semiconductor Mfg 微影設備配置及提升半導體工件製程生產率的方法
US8903532B2 (en) 2012-03-26 2014-12-02 Taiwan Semiconductor Manufacturing Co., Ltd. Litho cluster and modulization to enhance productivity
US9196515B2 (en) 2012-03-26 2015-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Litho cluster and modulization to enhance productivity

Also Published As

Publication number Publication date
TWI349323B (ja) 2011-09-21
CN101473416B (zh) 2011-04-20
US20090248192A1 (en) 2009-10-01
KR20090033179A (ko) 2009-04-01
KR101087463B1 (ko) 2011-11-25
TW200810005A (en) 2008-02-16
JP2007335627A (ja) 2007-12-27
JP4584872B2 (ja) 2010-11-24
CN101473416A (zh) 2009-07-01
US8046095B2 (en) 2011-10-25

Similar Documents

Publication Publication Date Title
JP4849969B2 (ja) 基板処理システムおよび基板搬送方法
JP3202929B2 (ja) 処理システム
JP4464993B2 (ja) 基板の処理システム
JP3779393B2 (ja) 処理システム
JP4908304B2 (ja) 基板の処理方法、基板の処理システム及びコンピュータ読み取り可能な記憶媒体
US20070186850A1 (en) Substrate processing apparatus and substrate processing method
JP4584872B2 (ja) 基板処理システムおよび基板搬送方法
JP2009021275A (ja) 基板処理装置
JP5223778B2 (ja) 基板処理装置、基板処理方法及び記憶媒体
JPH10150089A (ja) 処理システム
JP2006332558A (ja) 基板の処理システム
JP2013118303A (ja) 基板処理装置および基板処理方法
JP4492875B2 (ja) 基板処理システム及び基板処理方法
JP4496073B2 (ja) 基板処理装置及び基板処理方法
JP2012209591A (ja) 基板処理装置、基板処理方法及び記憶媒体
JP2010192559A (ja) 基板処理システム
JP2010192688A (ja) 基板処理システム、基板処理方法、プログラム及びコンピュータ記憶媒体
KR20090067236A (ko) 반도체 제조설비 및 그의 카세트 이송방법
JP2006339449A (ja) 基板の処理システム
JP2008034824A (ja) 基板処理方法および装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022326.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12302857

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087030311

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745356

Country of ref document: EP

Kind code of ref document: A1