WO2007134569A2 - Keramisches material, gesinterte keramik und bauelement daraus, verfahren zur herstellung und verwendung der keramik - Google Patents

Keramisches material, gesinterte keramik und bauelement daraus, verfahren zur herstellung und verwendung der keramik Download PDF

Info

Publication number
WO2007134569A2
WO2007134569A2 PCT/DE2007/000847 DE2007000847W WO2007134569A2 WO 2007134569 A2 WO2007134569 A2 WO 2007134569A2 DE 2007000847 W DE2007000847 W DE 2007000847W WO 2007134569 A2 WO2007134569 A2 WO 2007134569A2
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
phase
phases
sub
pure
Prior art date
Application number
PCT/DE2007/000847
Other languages
English (en)
French (fr)
Other versions
WO2007134569A3 (de
Inventor
Pavol Dudesek
Christian Hoffmann
Matjaz Valant
Danilo Suvorov
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to KR1020087031126A priority Critical patent/KR101339090B1/ko
Priority to JP2009511329A priority patent/JP5647412B2/ja
Priority to CN200780018655XA priority patent/CN101448759B/zh
Publication of WO2007134569A2 publication Critical patent/WO2007134569A2/de
Publication of WO2007134569A3 publication Critical patent/WO2007134569A3/de
Priority to US12/275,645 priority patent/US7816293B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • H01G4/1263Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates containing also zirconium oxides or zirconates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Definitions

  • Ceramic material sintered ceramic and component thereof, method of making and using the ceramic
  • LTCC Low Temperature Cofired Ceramic
  • LTCC Low Temperature Cofired Ceramic
  • too high a dielectric constant is disadvantageous for the integration of the inductors, so that an optimization of the ceramic selection has to be made with regard to its dielectric constant.
  • Further requirements for the ceramic material are a sufficiently low sintering temperature to allow the use of inexpensive electrode materials, for example of silver.
  • the ceramic material should have only a slight temperature coefficient of its dielectric and other properties, so that the device produced in LTCC technology can be used in a wide temperature range, without changing the properties impermissibly.
  • Object of the present invention is therefore to provide a ceramic material from which can be realized components of the type mentioned without taking the disadvantages mentioned in purchasing.
  • phase A is a cubic to tetragonal modification of Bi 3 NbO 7 .
  • Phase B is based on a monoclinic pyrochlorine modification of the system Bi 2 (Zn 2/3 Nb 4/3 ) O 7 .
  • the two phases A and B respectively form pure-phase domains.
  • each of the two phases can be varied so that the elements Bi, Zn and Nb are replaced in the total material in each case up to a proportion of 30 mole percent by other metals.
  • niobium may be completely replaced by "tantalum.”
  • the other substitutably present metals are preferably selected to have the same or similar valence at comparable atomic diameters so that they have the same Can replace output elements at their lattice sites without problems or without too large lattice distortions of the respective crystalline phase.
  • bismuth may be replaced by up to 30 mole percent by one or more of the elements selected from Ca, Sr, Ba, Pb, Cd, Y, La, and a rare earth element having atomic numbers of 58 to 71.
  • a corresponding element replacement does not lead to a change in the crystal modification in either of the two crystallographic phases A and B. , ⁇
  • phase B zinc ' can be replaced to a proportion of 30 mole percent by one or more of the ' elements selected from Mg, Ca, Co, Mn, Ni / Fe, Cr and, Cu. Again, the crystal modification is not affected by the corresponding exchange.
  • the element niobium may be replaced in each of the two pure phases up to a proportion of 30 mole percent by one or more of the elements selected from Sn, Ti, Hf, Sb, Ta, V, W and Mo. These substitutions also lead not to a variation of the crystal modification. Furthermore, Nb can be completely exchanged for Sb without changing the phase of the pure phase or the mixed phase.
  • compositions of the proposed ceramic material can be defined in the phase diagram of the three elements, Zn-Nb-Bi, by the four square-forming points A, B, C, and D.
  • this quadrilateral compositions are well suited for the purposes of the invention and in particular have suitable low sintering temperatures .Sufficiently high dielectric constants and a high dielectric quality.
  • the four points A to D are defined as follows by their proportions in the ceramic material given in molar percentages:
  • ceramic bodies can be sintered at a sintering temperature of below 960 degrees Celsius and advantageously in some cases even below 900 degrees. Ceramics can be obtained whose dielectric constant is between 65 and 95. Such ceramics can simultaneously have dielectric grades of more than 800, each determined at a measurement frequency of one gigahertz.
  • the molar fraction x of the phase A in the ceramic material is between 0.1 and 0.8.
  • a 1: 1 mixture of the two phases A and B is well suited.
  • a significant advantage of a ceramic composition having approximately equal proportions of the pure phases A and B is that in this way the temperature constants of the material and in particular the temperature coefficients of the dielectric constants of the two pure phases, and so can be minimized in the 'ceramic material as a whole. This is due to the fact that the pure phase B has a negative temperature coefficient of the dielectric constant, while the pure phase B has a positive.
  • a temperature coefficient is, for example, the dielectric constant (determined by the resonance frequency of a dielectric resonator made therefrom) of only between -44 and +155 0 C - 5 ppm received.
  • the ceramic material according to the invention has the further advantage that it behaves inertly with respect to silver-containing electrode materials at temperatures _50 above the sintering temperature. This allows the green body from the ⁇ ceramic material with silver-containing electrodes. bedruk- ken and sinter to manufacture components together without the 's thereby changes the PhaqenZusammen arrangement by exchanging individual elements for silver, or by additional incorporation of silver. Therefore, the ceramic material and from 1 Ceramic Excellent 1 is prepared for ceramic components, and in particular for ceramic multilayer bauelernente is using inexpensive silver electrodes.
  • phase A and B are present in the stated starting composition.
  • the properties of the ceramic thereby change substantially, with the partial replacement of the individual or. of several elements by the said substitution atoms , the properties are changed so that only a replacement up to said proportion of about 30 mole percent still leads to ceramics which are useful for the said use.
  • Restrictions may arise, for example, due to an inappropriate phase mixing ratio 'and ' in addition to high substitution of bismuth ', the proportion of bismuth in the entire ceramic decreases too much.
  • a declining stability of the ceramic material observed with respect to silver-containing electrode materials, leading to a modification of the phases' leads towards undefined compositions optionally having poor properties suitable leads, which also may be poorly controlled.
  • a secure stability is obtained when the bismuth portion in the total ceramic material is more than 50 mole percent.
  • ceramic compositions with mild 'erem Wismu' can still be obtained tanteil which are stable during the sintering respect to silver-containing materials.
  • a component produced from the ceramic material or from a ceramic sintered therefrom can advantageously be designed with a multilayer structure, with a multiplicity of ceramic layers alternating with metallization levels 1 arranged therebetween in a monolithic ceramic body.
  • the ceramic layers are sintered together in the stack, with passive components or an interconnection of passive components resulting from the structured metalization layers, which are connected to one another via plated-through holes.
  • the interconnection of the passive components can result in a total of a complete independent component, which at- ' .
  • a complete independent component which at- ' .
  • a multilayer ceramic from the said ceramic material having an 'integrated' is realized passive components as a substrate for electrical components and more particularly as a substrate for modules with different electrical components.
  • Such a substrate may have the required interconnection as well as the required matching elements for the individual components or ICs integrated on the module.
  • phase A is described, for example, in the article "Solid Solutions Bi 2 O 3 -Nb 2 Os” by M. Valant and D. Suvrov in J. Am. Ger. Soc. 86 [6] 939-944 (2003)
  • B is described, for example, in the article "Structures, phase transformations and dielectric properties of pyrochloride containing Bi” by X. VWang in J. Am. Soc. 80 [10] 2745-2748 (1997).
  • These pure phases are prepared separately from one another, wherein the so-called mixed oxide method is advantageously used.
  • the individual elements are mixed together in the form of oxides in a desired molar ratio, the powder mixture is ground and homogenized and then subjected to a suitable temperature program, which leads to the desired crystal modification of phases A and B, respectively.
  • the pure phases are prepared in two-stage calcination and sintering processes, wherein a first stage is carried out at low temperature in order to avoid excessive evaporation of volatile phases from bismuth oxide and thus a depletion of the material to bismuth.
  • a ceramic material according to the invention may also have a B-phase, which has not completely transitioned into the tetragonal phase and yet has the desired properties.
  • these are each ground to a particle size of less than 2 microns.
  • the powders with the pure phases are mixed in a given mixing ratio for the two-phase mixture, homogenized and produced therefrom green sheets. The grinding to the said particle size can also be done after mixing the pure phases.
  • vias are produced, for example by punching and filled with conductive material, such as a paste containing metal particles. Subsequently, the metallization structures are swaged in the form of metal-containing sinterable pastes.
  • Dicing process for example, be separated by cutting. Subsequently, the laminated green sheets are sintered.
  • FIG. 1 shows, in sections, a three-phase diagram of the system Nb, Bi and Zn in which advantageous compositions are registered.
  • FIG. 2 indicates a process flow diagram for producing a component
  • FIG. 3 shows a component produced according to the invention in schematic cross section
  • FIG. 4 shows the ceramic structure of a ceramic having a composition according to the invention on the basis of a photograph.
  • Figure 1 shows a section of the three-phase diagram ZnO - BiOi, 5 - NbO 2 , 5 .
  • a quadrangle is spanned by the four points A to D, in which each point of the surface enclosed by it represents a composition of a ceramic according to the invention with advantageous properties.
  • phasendi.agrai ⁇ m three designated X and lying on a line compositions are located.
  • the two outer points are formed by the two pure phases A and B, respectively.
  • the point on the middle of the line corresponds to a 1: 1 composition of the two pure phase.
  • This embodiment has almost optimal Eigen, - I shafts which make the sintered ceramic well suited for use in such a 'electrical components suitable in which a capacitance and / or inductance are realized and for use in the, high-frequency technology and, particularly suitable for devices for use in wireless communication systems Video-
  • This said l: l composition has as already mentioned: a Dielektri- zticiansko'nstante ⁇ of 81, a quality factor Q of 1000 (determined at one gigahertz), a temperature coefficient of resonance frequency, determined on a dielectric resonator made of this ceramic of -5 ppm and a product ' times frequency of 1000 gigahertz. ⁇
  • the high dielectric constant which allows a miniaturization of the corresponding components, "and the only low temperature coefficient, which in the inventive manner from the mutually opposite set ⁇ Tempeetzurkostoryen of the two pure phases A. and B, which balance in the ceramic mixture according to the invention.
  • Those sintering temperature of the mixed phase is than that of the, pure phase B, which is much lower at about 950 degrees.
  • Similar positive features as the said one-to-one mixed phase have such mixed phases whose composition is close to the 1: 1 composition. It is generally true that for compositions close to the pure phases A and B, the properties for the mentioned or desired application are the most unfavorable.
  • FIG. 2 shows a process flow diagram for the production of a multi-layered electrical multilayer component of ceramic of the composition according to the invention.
  • the pure phases A and B are prepared separately, preferably according to the mixed oxide method.
  • metal oxides are combined in electronic grade quality in a ratio required for the pure phase ] , ground and homogenized and then calcined and sintered.
  • the calcination is preferably carried out in two stages, wherein the first stage is carried out at a relatively low temperature in order to avoid excessive evaporation of volatile bismuth phases.
  • component A at 800 degrees Celsius, a longer hold time is maintained at which there is at least a partial transition from the initially formed cubic phase to the tetragonal phase.
  • tetragonal phase which, however, may still contain portions of the cubic phase, without this having the properties of inventive ceramic compositions in their electrical properties adversely affect.
  • the pure phase B is formed as a monoclinic pyrochlore phase.
  • the pure phases A and B are combined in a desired ratio, mixed and finely ground until a particle diameter of 1 2 microns and less' is reached.
  • Pure phases also result in a homogeneous mixture of finely ground particles with phase-pure domains.
  • green films are produced from the homogenized, mixed phases.
  • the finely ground powder is slurried with a solvent, which may optionally contain portions of a viscous binder, and from this green sheets are produced, for example by film drawing or film casting.
  • the vias required for a desired device are produced, for example by punching. These vias are then filled with a conductive, metal particle-containing mass, which can be done for example with a squeegee.
  • metallization structures are printed on the green films, for example using a screen printing process.
  • a metallization structure produced on a green sheet corresponds to a metallization level in the later multilayer ceramic.
  • the printed green sheets are stacked in the correct order for the component above the other ⁇ and laminated to form a compact body.
  • the separated film stacks are sintered.
  • a monolithic ceramic multi-layer component is obtained, in which different passive component functions are realized, for example, by the interaction of 1 metallization structures in different metallization levels, which are interconnected by through-clocking. Capacities and inductances.
  • On the monolithic ceramic component can. ' in a last step yet ' outer electrodes are applied 1 , if they are not already integrated integrated before sintering on the green sheets. '
  • FIG. 4 shows, on the basis of a polished section through a solid ceramic body according to the invention, its ceramic structure.
  • the photograph shows "that the mixed phase is formed from a continuous phase which can predominantly be assigned to pure phase A. " In this form the bright spots inclusions that can "be attributed to the pure phase B '. The black dots or areas go on remaining pores or impurities _ this test samples back. From the picture can also read that! Taken place during sintering, grain growth It can be read off typically up to 5 ⁇ m and partly up to 10 ⁇ m 'from KKoorrnndduurrchicken.
  • FIG. 3 shows a possible component as it can be obtained or realized with the mixed ceramic according to the invention consisting of two phases.
  • the component shown here has, for example, six stacked and. Sintered ceramic layers. Kl up to K6. Between each two ceramic layers K, a metallization level is provided in the metallization structures M are structured ⁇ . The required electrical connections between the metallization structures M of different metallization levels' is made by the aforementioned plated-through holes DK. 1
  • FIG. 3 diagrammatically indicates two component components, namely a capacitance C, which is formed by two metal surfaces arranged in adjacent metallization planes.
  • a capacitance C which is formed by two metal surfaces arranged in adjacent metallization planes.
  • an inductance L is indicated,
  • AK a component that can be designed, for example, as an LC filter, in which a suitable interconnection of L and C elements realizes a bandpass, as can be found in mobile communication terminals. , ' ⁇
  • the multi-layer ceramic according to the invention as a substrate for other components.
  • the multilayer ceramic in addition to the external contacts on the underside additionally on the top surfaces (not shown in the figure) on which a 'discrete ⁇ or integrated device, or any Bauelernent- chip, for example, provided with metallization structures piezoelectric crystal of a working surface acoustic wave device.
  • the metallization of ceramic devices with. the ceramic of the invention are realized, 'may be made from silver or any other, stable at the sintering temperature metals.
  • the vias can be filled also with silver-containing material or with silver-palladium alloys.
  • the ceramic may be formed of Al (s compact body with a multilayer structure. It is also possible, correspondingly structured green films are realized in a multilayer stack to connect and to sinter, in which three-dimensional structures. Thus -a in the multilayer stack cavity 'is it possible for example to which can be open or closed .. For example, a discrete component can be arranged in an open cavity and connected to the metallization structures, thus allowing the realization of a particularly compact component.
  • the invention is not limited to the 'embodiments shown in detail.
  • the metallic components of the pure phases are exchanged in said amount to a maximum of 30 mole percent by said replacement atoms.
  • Decisive for the exchange and the properties of the ceramic achieved thereby is the maintenance of the respective crystal structure of the pure phases. Therefore, metals can usually be replaced without any problems, which are similar in terms of valence and atomic diameter.
  • Inventive mixtures of the two pure phases A and B are also those compositions which are only small proportions contain one of the two phases and therefore consist predominantly of the other pure phase.
  • Each of the mixed phases has, compared to the pure phases, an improved characteristic with regard to the desired property spectrum.
  • the components made of ceramic are not limited to the aforementioned embodiments. In principle, it is possible to produce a large number of different electroceramic components from the ceramic, the ceramic, however, being particularly suitable for those components in which different passive components are integrated. Such components can preferably be used where the components are not subjected to maximum power, as is the case in particular in signal- or data-processing components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Filters And Equalizers (AREA)

Abstract

Es wird ein keramisches Mischsystem vorgeschlagen, bestehend aus einem Zwei-Phasengemisch der Reinkomponenten A und B, wobei die Phase A auf der kubischen bis tetragonalen Modifikation von Bi<SUB>3</SUB>NbO<SUB>7</SUB> und die Phase B auf der monoklinen Pyrochlormodifikation von Bi<SUB>2</SUB>(Zn<SUB>2</SUB>/<SUB>3</SUB>Nb<SUB>4</SUB>/<SUB>3</SUB>)O<SUB>7</SUB> beruht. Die elektrischen Eigenschaften daraus hergestellter keramischer Körper machen das Material für Bauelemente geeignet, die Mehrschichtstruktur aufweisen, in die Kapazitäten und Induktivitäten integriert sind und die in der Datenverarbeitung oder Signalverarbeitung eingesetzt werden können.

Description

Beschreibung
Keramisches Material, gesinterte Keramik und Bauelement daraus, Verfahren zur Herstellung und Verwendung der Keramik
Die LTCC-Technologie (Low Temperature Cofired Ceramic) erlaubt es, keramische Mehrschichtbauelemente mit mehreren Metallisierungsebenen zu realisieren, in die sich eine Vielzahl passiver Komponenten wie Leiterbahnen, Widerstände, Kapazitäten und Induktivitäten integrierten lassen. So lassen sich in LTCC-Keramiksubstraten Schaltungen und Bauelemente realisieren, die diese Schaltungen umfassen.
Die LTCC-Technologie erlaubt eine um so stärkere Integration der Kapazitäten, je höher die dielektrische Konstante des verwendeten Keramikmaterials ist. Auf der anderen Seite ist eine zu hohe dielektrische Konstante für die Integration der Induktivitäten nachteilig, so eine Optimierung der Keramik- Auswahl bezüglich dessen dielektrischer Konstante erfolgen muss. Weitere Anforderungen an das keramische Material bestehen in einer ausreichend niedrigen Sintertemperatur, um die Verwendung kostengünstiger Elektrodenmaterialien, beispielsweise aus Silber zu ermöglichen. Darüber hinaus soll das Keramikmaterial einen nur geringen Temperaturgang seiner dielektrischen und sonstiger Eigenschaften aufweisen, damit das in LTCC-Technologie hergestellte Bauelement in einem breiten Temperaturintervall eingesetzt werden kann, ohne dass sich dabei die Eigenschaften unzulässig ändern.
Es konnte bislang noch kein keramisches Material gefunden werden, das eine dielektrische Konstante größer zwanzig bei ausreichend niedriger Sintertemperatur aufweist, oder dessen dielektrische Konstanten die nötige Temperaturstabilität aufweisen und das mit LTCC Technologie verarbeitet werden kann.
Aufgabe der vorliegenden Erfindung ist es daher, ein keramisches Material anzugeben, aus dem sich Bauelemente der genannten Art realisieren lassen, ohne die genannten Nachteile in Kauf zu nehmen.
Diese Aufgabe wird durch ein keramisches Material mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung, eine aus dem Material gesinterte Keramik, ein Bauelement aus der Keramik, sowie ein Verfahren zur Herstellung und eine bevorzugte Verwendung sind weiteren Ansprüchen zu entnehmen .
Es wird ein keramisches Material vorgeschlagen, das aus einer Mischung zweier reiner Phasen A und B besteht. Das Phasenge- misch weist eine Zusammensetzung xA + (1 - x)B auf, wobei 0 kleiner x kleiner 1. Die Phase A ist eine kubische bis tetragonale Modifikation von Bi3NbO7. Die Phase B beruht auf einer monoklinen Pyrochlormodifikation des Systems Bi2 (Zn2/3Nb4/3) O7. In der Mischung bilden die beiden Phasen A und B jeweils reinphasige Domänen aus.
Ausgehend von der genannten Grundzusammensetzung, die die Kristallstruktur der Reinphasen bestimmt, kann jede der beiden Phasen so variiert sein, dass die Elemente Bi, Zn und Nb im gesamten Material jeweils bis zu einem Anteil von 30 Molprozent durch andere Metalle ersetzt sind. Niob kann darüber hinaus vollständig durch" Tantal ersetzt sein. Die anderen ersatzweise anteilig vorhandenen Metalle sind vorzugsweise so ausgewählt, dass sie gleiche oder ähnliche Wertigkeit bei vergleichbaren Atomdurchmessern aufweisen, so dass sie die Ausgangselernente an ihren Gitterplätzen ohne Probleme beziehungsweise ohne zu große Gitterverzerrungen der jeweiligen kristallinen Phase ersetzen können.
Insbesondere kann Wismut bis zu einem Anteil von 30 Molprozent durch eines oder- mehrere der Elemente, ersetzt sein, die ausgewählt sind aus Ca, Sr, Ba, Pb, Cd, Y, La- und einem Seltenerdenelement mit einer Ordnungszahlen von 58 bis 71. Ein entsprechender Elementersatz' führt in keiner der beiden kristallographischen Phasen A und B zu einer Veränderung der Kristallmodifikation. .
In der Phase B kann Zink' bis zu einem Anteil von 30 Molpro- zent durch eines oder mehrere der' Elemente ersetzt sein, die ausgewählt sind' aus Mg, Ca, Co, Mn, Ni/ Fe, Cr und, Cu. Auch hier wird die Kristallmodifikation durch den entsprechenden Austausch nicht beeinflusst.
Das Element Niob kann in jeder der beiden Reinphasen bis, zu einem Anteil von 30 Molprozent durch eines oder mehrere der Elemente ersetzt sein, die ausgewählt sind aus Sn, Ti, Hf, Sb, Ta, V, W und Mo. Auch diese Ersetzungen führen nicht zu einer Variation der Kristallmodifikation. Weiterhin kann Nb vollständig gegen Sb ausgetauscht sein, ohne dass sich die Phase der Reinphase oder der Mischphase dadurch ändert.
Vorteilhafte Zusammensetzungen des vorgeschlagenen keramischen Materials können im Phasendiagramm der drei Elemente, Zn-Nb-Bi durch de vier ein Viereck bildenden Punkte A, B, C und D definiert werden. Innerhalb dieses Vierecks liegende Zusammensetzungen sind im Sinne der Erfindung gut geeignet und weisen insbesondere geeignete niedrige Sintertemperaturen, .ausreichend hohe dielektrische Konstanten und eine hohe dielektrische Güte auf. Die vier Punkte A bis D sind wie folgt durch ihre in Molprozenten angegebenen Anteile im keramischen Material definiert:
A: Zn = 4,0; Nb = 30,0; Bi = 66,0
B : Zn = 7,8; Nb = 25,0; Bi = 67,2
C: Zn = 16,0; Nb = 30,0; Bi = 54,0
D: Zn = 15,0; Nb = 35,0; Bi = 50,0.
Aus, dem genannten Material lassen sich keramische Körper bei einer Sintertemperatur von unter 960 Grad Celsius und vorteilhaft teilweise sogar unter 900 Grad sintern. Es können Keramiken erhalten werden, deren dielektrische Konstante zwischen 65 und 95 liegt. Solche Keramiken können gleichzeitig dielektrische Güten von mehr als 800 aufweisen, jeweils bestimmt bei einer Messfrequenz von einem Gigahertz.
In einer vorteilhaften Keramik liegt der molare Anteil x der Phase A im Keramikmaterial zwischen 0,1 und 0,8. Gut geeignet ist beispielsweise eine 1:1 Mischung der beiden Phasen A und B. Ein wesentlicher Vorteil einer keramischen Zusammensetzung mit annähernd gleichen Anteilen der Reinphasen A und B liegt darin, dass sich auf diese Weise die Temperaturkonstanten des Materials und insbesondere die Temperaturkoeffizienten der dielektrischen Konstanten der beiden Reinphasen ausgleichen, und so im 'keramischen Material insgesamt minimiert werden können. Dies liegt darin begründet, dass die Reinphase B einen negativen Temperaturkoeffizienten der dielektrischen Konstanten aufweist, die Reinphase B dagegen einen positiven. Mit einer 1:1 Phasenmischung der Phasen A und B wird zwischen -44 und +155 0C beispielsweise ein Temperaturkoeffizient der dielektrischen Konstante (bestimmt über die Resonanzfrequenz eines daraus gefertigten dielektrischen Resonators) von nur - 5 ppm erhalten. Eine solche Keramik weist ein ε von 81, eine dielektrische Güte Q von 1000 (gemessen bei ein Gigahertz) beziehungsweise ein Produkt Q x f = 1000 Gigahertz auf.
Das erfindungsgemäße keramische Material hat darüber hinaus den weiteren Vorteil, dass es sich bei Temperaturen _ois über die Sintertemperätur inert gegenüber silberhaltigen Elektrodenmaterialien verhält. Dies erlaubt es, Grünkörper aus dem keramischen Material mit silberhaltigen Elektroden zu. bedruk- ken und zu fertigen Bauelementen zusammen zu sintern, ohne das's sich dabei die PhaqenZusammensetzung durch Austausch einzelner Elemente gegen Silber oder durch zusätzlichen Einbau von Silber ändert. Daher ist das keramische Material und daraus1 hergestellte Keramik hervorragend1 für keramische Bauelemente und insbesondere für keramische Mehrschicht- bauelernente unter Verwendung von kostengünstigen Silberelektroden eignet.
Die genannten guten Eigenschaften werden sicher erhalten, wenn die Phasen A und B in der angegebenen AusgangsZusammensetzung- vorliegen. Mit Ausnahme der Ersetzung des Niobs durch Tantal, die bis zu 100 Prozent erfolgen kann, ohne dass sich. die Eigenschaften der Keramik dadurch wesentlich ändern, werden mit der teilweisen Ersetzung der einzelner oder . mehrerer Elemente durch die genannten Ersatzatome ' die Eigenschaften doch so verändert, dass nur ein Ersatz bis zum' genannten Anteil von cirka 30 Molprozent noch zu Keramiken führt, die für den genannten Εinsatzzweck brauchbar sind.
Einschränkungen können sich zum Beispiel dadurch ergeben, dass aufgrund eines ungeeigneten Phasenmischungsverhaltnis 'und' zusätzlich zu hohem Ersatz des Wismuts' der Anteil von Wismut in der gesamten Keramik zu stark absinkt. In diesen Fällen kann eine nachlassende Stabilität des keramischen Materials gegenüber silberhaltigen Elektrodenmaterialien beobachtet werden, die zu einer Modifikation der Phasen führt hin ' zu Undefinierten Zusammensetzungen mit gegebenenfalls schlechter geeigneten Eigenschaften führt, die zudem schlecht kontrolliert werden können. Eine sichere Stabilität wird erhalten, wenn der Wismutahteil in dem gesamten keramischen Material mehr als 50 Molprozent beträgt. In Einzelfällen können aber dennoch keramische Zusammensetzungen mit gering- 'erem Wismu'tanteil erhalten werden, die beim Sintern gegenüber silberhaltigen Materialien stabil sind. ι
Ein aus dem keramischen Material, beziehungsweise aus einer daraus gesinterten Keramik hergestelltes Bauelement kann vorteilhaft mit' einer Mehrlagenstruktur ausgebildet sein, wobei sich in einem monolithischen keramischen Körper eine Vielzahl keramischer Lagen mit, dazwischen angeordneten Metallisierungsebenen1 abwechselt. Die keramischen Lagen sind 'im Stapel zusammen gesintert, wobei sich aus den strukturierten Metal- , lisierungsebeneri, die über Durchkontaktierungen miteinander verbunden sind, passive Komponenten beziehungsweise eine Verschaltung passiver Komponenten ergeben.
Die Verschaltung der passiven Komponenten kann insgesamt ein komplettes eigenständiges Bauelement ergeben, welches bei- ' . spielsweise als LC-Filter für Mobilfunkanwendungen ausgebildet ist. Möglich ist es auch, eine Mehrschichtkeramik aus dem genannten keramischen Material mit einer darin 'integriert 'realisierten passiven Komponenten als Substrat für elektrische Bauelemente und insbesondere als Substrat für Module mit unterschiedlichen elektrischen Bauelementen zu verwenden. Ein solches Substrat kann die erforderliche Verschaltung sowie dafür erforderliche Anpasselemente für die auf dem Modul integrierten Einzelkomponenten oder ICs darstellen.
Zur Herstellung des erfindungsgemäßen keramischen Materials wird von den als solche bekannten Reinphasen A und B ausgegangen. Die Phase A wird z.B. im Artikel „Solid Solutions Bi2O3-Nb2Os" von M. Valant und D. Suvrov in J. Am. Ger . Soc . 86 [6] 939 - 944 (2003) beschrieben. Die Phase B wird z.B. im Artikel „Structures, phase transformations and dielectric properties of pyrochlores containing Bi" von X. VWang in J.Am.Cer . Soc . 80 [10] 2745 - 2748 (1997) beschrieben. Diese Reinphasen werden getrennt voneinander hergestellt, wobei vorteilhaft das sogenannte Mixed Oxide- Verfahren eingesetzt wird. Dazu werden die einzelnen Elemente in Form von Oxiden in einem gewünschten molaren Verhältnis miteinander gemischt, die Pulvermischung gemahlen und homogenisiert und anschließend einem geeigneten Temperaturprogramm unterworfen, das zu der gewünschten Kristallmodifikation der Phasen A beziehungsweise B führt. Vorteilhaft werden die Reinphasen in zweistufigen Calcinierungs- und Sinterverfahren hergestellt, wobei eine erste Stufe bei niedriger Temperatur durchgeführt wird, um ein zu starkes Abdampfen flüchtiger Phasen aus Wismutoxid und damit eine Verarmung des Materials an Wismut zu vermeiden.
Bei der Herstellung der Reinphase B wird vorteilhaft eine längere Haltephase bei circa 800 Grad Celsius eingehalten, um einen zumindest teilweisen Phasenübergang von der kubischen zur bevorzugten tetragonalen Phase zu ermöglichen. Ein erfindungsgemäßes keramisches Material kann jedoch auch eine B-Phase aufweisen, die nicht vollständig in die tetragonale Phase übergegangen ist und dennoch die gewünschten Eigenschaften aufweist. Nach der Herstellung der Reinphasen werden diese jeweils bis auf eine Partikelgröße von weniger als 2 μm vermählen. Die Pulver mit den Reinphasen werden in einem gegebenen Mischungsverhältnis für das Zweiphasengemisch vermischt, homogenisiert und daraus Grünfolien hergestellt. Das Vermählen auf die genannte Partikelgröße kann aber auch nach dem Vermischen der Reinphasen erfolgen.
In den Grünfolien werden anschließend Durchkontaktierungen beispielsweise durch Stanzen erzeugt und mit leitfähigem Material, beispielsweise einer Metallpartikel enthaltenden Paste verfüllt. Anschließend werden die Metallisierungs- strukturen in Form metallhaltiger sinterfähiger Pasten aufgeduckt .
Anschließend werden mehrere dieser Folien so gestapelt, dass sich über die Durchkontaktierungen eine geeignete Verschal- tung der Metallisierungsstrukturen ergibt, die dann die gewünschten Bauelementfunktionen im Zusammenwirken mit der dazwischen angeordneten Keramik ergeben.
Die gestapelten Folien werden anschließend durch Laminieren fixiert. Nach diesem Verfahrensschritt können ursprünglich großflächig hergestellte Mehrschichtkeramiken, die eine Vielzahl von einzelnen Bauelementen beziehungsweise von Einzelsubstraten für Bauelemente beinhalten, durch einen l
Zerteilungspro'zess, beispielsweise durch Schneiden vereinzelt werden. Anschließend werden die laminierten Grünfolien gesintert .
Es stellt sich heraus, dass die einmal hergestellten Reinphasen auch in der homogenen Vermischung des Zweiphasenge- misches bis über die Sintertemperatur thermodynamisch. stabil sind, so dass auch in der Mischung keine Phasenumwandlungen zu befürchten sind. Beim Sintervorgang wird also lediglich eine Verdichtung der Grünfolien durchgeführt, wobei der gesamte Sinterprozess schnell durchgeführt werden kann. Es wird schnell auf die Sintertemperatur von beispielsweise 900 Grad Celsius aufgeheizt, kurz dort gehalten und anschließend schnell abgekühlt.
Im Folgenden wird die Erfindung anhand von Ausführungsbei- spielen und der dazugehörigen Figuren näher erläutert.
Figur 1 zeigt , ausschnittsweise ein Drei-Phasendiagramm des Systems Nb, Bi und Zn, in das vorteilhafte Zusammensetzungen eingetragen sind,
Figur 2 gibt ein ProzessablaufSchema zum Herstellen eines Bauelements an,
Figur 3 zeigt ein erfindungsgemäß hergestelltes Bauelement im schematischen Querschnitt, und
Figur 4 , zeigt die keramische Struktur einer Keramik mit erfindungsgemäßer Zusammensetzung anhand eines Photos.
!
Figur 1 zeigt einen Ausschnitt des Drei-Phasendiagramms ZnO - BiOi,5 - NbO2, 5. In dem Phasendiagramm ist durch die vier Punkte A bis D ein Viereck aufgespannt, bei dem jeder Punkt der davon eingeschlossenen Fläche eine Zusammensetzung einer erfindungsgemäßen Keramik mit vorteilhaften Eigenschaften darstellt. Die in Molprozent angegebenen Koordinaten für die verschiedenen Punkte A, B, C und D liegen wie folgt: A: Zn = 4,0; NbO2, 5 = 30,0; BiOi, 5 = 66,0 B: Zn = 7,8; Nb = 25,0; Bi = 67,2 C: Zn = 16,0; Nb = 30,0; Bi = 54,0 D: Zn = 15,0; Nb = 35,0; Bi = 50,0.
Weiterhin sind in das Phasendi.agraiπm drei mit X bezeichnete und auf einer Linie liegende Zusammensetzungen eingezeichnet. Die beiden äußeren Punkte, werden von den beiden reinen 'Phasen A beziehungsweise B gebildet. Der Punkt auf der Mitte der Geraden entspricht einer 1:1 Zusammensetzung der beiden Reinphaseη. Diese Ausführung hat annähernd, optimale Eigen,- I Schäften, die die gesinterte Keramik gut für die Verwendung in solchen ' elektrischen Bauelementen geeignet machen, in denen eine Kapazität und/oder eine Induktivität realisiert sind und die für den Einsatz in der ,Hochfrequenztechnik und ,insbesondere für Bauelemente zur Verwendung in drahtlosen KommunikationsSystemen geeignet sind- Diese genannte l':l Zusammensetzung weist wie bereits erwähnt: eine Dielektri- zitätsko'nstante ε von 81, einen Gütefaktor Q von 1000 (bestimmt bei ein Gigahertz), einen Temperaturkoeffizienten der Resonanzfrequenz, bestimmt an einem aus dieser Keramik gefertigten dielektrischen Resonator von -5 ppm und ein Produkt'' Güte mal Frequenz von 1000 Gigahertz auf.
Besonders vorteilhaft ist die hohe Dielektrizitätskonstante, die eine Miniaturisierung entsprechender Bauelemente ermöglicht, ' und der nur geringe Temperaturkoeffizient, der sich in erfindungsgemäßer Weise aus den einander entgegen gesetzten Temperäturkoeffizienten der beiden Reinphasen A. und B ergibt, die sich in der erfindungsgemäßen keramischen Mischung ausgleichen. Die ,Sintertemperatur der Mischphase ist dabei wesentlich niedriger als der der, Reinphase B, der bei über 950 Grad liegt. Ähnlich positive Eigenschaften wie die genannte eins zu eins Mischphase weisen solche Mischphasen auf, deren Zusammensetzung in der Nähe der 1:1 Zusammensetzung liegt. Dabei gilt allgemein, dass für Zusammensetzungen nahe der Reinphasen A und B die Eigenschaften für den genannten bzw. gewünschten Anwendungszweck am relativ ungün tigsten sind. Es gilt jedoch für alle erfindungsgemäßen Mischphasen, dass sie gegenüber den Reinphasen verbesserte Eigenschaften und insbesondere einen verbesserten Temperaturkoeffizienten aufweisen. Gut geeignete Eigenschaften weisen zum Beispiel Mischungsverhältnisse A zu B von eins zu neun bis neun zu eins. Allgemein gilt, dass in der Nähe der Reinphase B günstigere Eigenschaften erhalten werden als in der Nähe der Reinphase A.
Figur 2 gibt ein Verfahrensablaufdiagramm zur Herstellung eines elektrischen Mehrschichtbauelements mit mehreren Lagen von Keramik der erfindungsgemäßen Zusammensetzung an. Im ersten Schritt werden die reinen Phasen A und B getrennt voneinander hergestellt, vorzugsweise nach dem Mixed Oxide- Verfahren. Dabei werden Metalloxide in Electronic-Grade- Qualität in für die Reinphase erforderlichen Verhältnis ] zusammengegeben, gemahlen und homogenisiert und anschließend kalziniert und gesintert. Die Calcinierung erfolgt vorzugsweise in zwei Stufen, wobei die erste Stufe bei relativ niedriger Temperatur durchgeführt wird, um ein zu starkes Abdampfen flüchtiger Wismut-Phasen zu vermeiden. Für die Komponente A wird bei 800 Grad Celsius eine längere Haltezeit eingehalten, bei der ein zumindest teilweiser Übergang von der ursprünglich entstehenden kubischen Phase zur tetragonalen Phase stattfindet. Erfindungsgemäß geeignet ist insbesondere die tetragonale Phase, die jedoch noch Anteile der kubischen Phase enthalten kann, ohne dass dies die Eigenschaften erfindungsgemäßer Keramikzusammensetzungen in ihren elektrischen Eigenschaften ungünstig beeinflu-sst . Die Reinphase B entsteht als monokline Pyrochlorphase .
Im nächsten Schritt werden die Reinphasen A und B in einem gewünschten Verhältnis zusammengegeben, vermischt und fein gemahlen, bis ein Partikeldurchmesser von12 μm und weniger ' erreicht ist. Durch das gemeinsame Mahlen der beiden ' . Reinphasen entsteht auch eine homogene Mischung fein gemahlener Partikel mit phasenreinen Domänen. ι
Im nächsten Schritt wird aus den homogenisierten, vermischten Phasen Grünfolie hergestellt. Dazu wird das fein gemahlene Pulver mit einem Lösemittel, welches gegebenenfalls Anteile eines viskosen Binders enthalten kann, aufgeschlemmt und daraus Grünfolien hergestellt, beispielsweise durch Folien- ziehen oder Foliengießen. Im nächsten Schritt werden nach dem Trocknen und idamit dem 'Entfernen des Lösemittels von, der Grünfolie die für ein gewünschtes Bauelement erforderlichen Durchkontaktierungen- erzeugt, beispielsweise durch Stanzen. Diese Durchkontaktierungen .werden anschließend mit einer leitfähigen, Metallpartikel enthaltenden Masse gefüllt, was beispielsweise mit einer- Rakel erfolgen kann. Schließlich werden auf die .Grünfolien Metallisierungsstrukturen, aufge- • druckt, beispielsweise mit einem Siebdruckverfahren. Auf einer auf .einer Grünfolie erzeugte Metallisierungsstruktur entspricht /einer Metallisierungsebene in der späteren Mehrlagenkeramik.
Im nächsten Schritt werden die bedruckten Grünfolien in der für das Bauelement richtigen Reihenfolge übereinander gestapelt und zu einem kompakten Körper laminiert. Dieser weist bereits einige mechanische Festigkeit auf und kann als vorteilhaft- bereits auf dieser Stufe durch Schneiden oder Stanzen vereinzelt werden. Dies ist erforderlich, da die Grünfolien üblicherweise mit großer Grundfläche hergestellt werden, auf- der die Metallisierungsstrukturen für eine Vielzahl gleicher oder unterschiedlicher Bauelemente nebeneinander, hergestellt werden können. Durch das Zerteilen werden diese Bauelemente vereinzelt:
Im nächsten Schritt werden die vereinzelten Folienstapel gesintert. Es wird ein monolithisches keramisches- Mehr- Schichtbauelement erhalten, in dem durch das Zusammenwirken von1 Metallisierungsstrukturen in unterschiedlichen Metallisierungsebenen,, die durch Durchkόntaktierungen miteinander verbunden sind, unterschiedliche passive Bauelementfunktionen realisiert sind, beispielsweise. Kapazitäten und Induktivi-- täten. Auf dem monolithischen keramischen Bauelement können.' in einem letzten Schritt noch' Außenelektroden aufgebracht1 werden, sofern diese nicht bereits integriert vor dem Sintern auf den Grünfolien aufgebracht sind. '
Figur 4 , zeigt anhand eines polierten Schnittes durch einen massiven erfindungsgemäßen keramischen Körper dessen keramische Struktur .- Die Aufnahme zeigt,, dass die Mischphase aus einer kontinuierlichen Phase' gebildet wird, die überwiegend der Reinphase A zugeordnet werden' kann. Darin bilden die hellen Punkte Einschlüsse, die der Reinphase B zugeordnet" werden' können. Die schwarzen Punkte bzw. Gebiete gehen auf verbliebene Poren bzw. Verunreinigungen _ dieses Testsamples zurück. Aus dem Bild lässt sich auch ablesen, dass! beim Sintern ein Kornwachstum stattgefunden hat. Es llaasssseenn ssiicchh KKoorrnndduurrcchhimesser von typisch .bis 5 μm und teils bis ca. lOμm ' ablesen. Figur 3 zeigt ein mögliches Bauelement, wie es mit der erfindungsgemäßen aus zwei Phasen bestehenden Mischkeramik erhalten beziehungsweise realisiert werden kann. Das hier dargestellte Bauelement weist beispielsweise sechs übereinander gestapelte und . zusammengesinterte Keramiklagen. Kl bis K6 auf. Zwischen je zwei Keramiklagen K ist eine Metallisierungsebene vorgesehen, in der Metallisierungsstrukturen M strukturiert ι sind. Die erforderlichen elektrischen Verbindungen zwischen den Metallisierungsstrukturen M unterschiedlicher Metallisierungsebenen' ist durch die genannten Durchkontaktierungen DK vorgenommen.1
' In Figur 3 sind schematisch zwei Bauelementkomponenten angedeutet, nämlich eine Kapazität C, die durch zwei in > benachbarten Metallisierungsebenen angeordnete Metallflächen ausgebildet ist. Daneben ist eine Induktivität L angedeutet,
, die beispielsweise als helixartige Struktur aus mehreren durch Durchkontaktierungen miteinander verbundenen Halbschleifen besteht. An der Unterseite des keramischen Körpers sind Außenkontakte AK, AK' vorgesehen, mit denen das Bauelement mit einer äußeren Schältungsumgebung kontaktiert werden kann. , Ein solches Bauelement kann beispielsweise als LC-Filter ausgebildet sein, bei dem eine geeignete Verschal- tung von L- und C-Gliedern einen Bandpass verwirklicht, wie es- in Endgeräten der mobilen Kommunikation Verwendung finden kann . , '■
Möglich ist es auch, die erfindungsgemäße Mehrschichfkeramik als Substrat für andere Bauelemente zu verwenden. Dazu weist die Mehrschichtkeramik neben den Außenkontakten auf der Unterseite zusätzlich noch Anschlussflächen auf der Oberseite (in der Figur nicht dargestellt) auf, über die ein 'diskretes ■ oder integriertes Bauelement, oder ein beliebiger Bauelernent- chip, beispielsweise ein mit Metallisierungsstrukturen versehener piezoelektrischer Kristall eines mit akustischen Oberflächenwellen arbeitenden Bauelements.
Die Metallisierungsstrukturen von keramischen Bauelementen, die mit. der erfindungsgemäßen Keramik realisiert sind,' können aus Silber oder beliebigen anderen, bei der Sintertemperatur beständigen Metallen bestehen. ' Die Durchkontaktierungen können ebenfalls mit silberhaltigem Material oder mit Silber- Palladium-Legierungen befüllt sein. Das keramische kann al(s kompakter Körper mit MehrSchichtaufbau ausgebildet sein. Möglich ist es auch, entsprechend strukturierte Grünfolien zu einem MehrSchichtStapel zu verbinden und zu sintern, in dem dreidimensionale Strukturen realisiert sind. So ist' es beispielsweise möglich, im Mehrschichtstapel -einen Hohlraum zu realisieren, der offen oder geschlossen sein kann. In einem offenen Hohlraum kann beispielsweise ein diskretes Bauelement angeordnet und mit den Metallisierüngsstrukturen verbunden werden. Dies erlaubt die Realisierung eine's besonders kompakten Bauelements.
Die Erfindung ist nicht auf die im Einzelnen dargestellten' Ausführungsbeispiele beschränkt. Im Rahmen der Erfindung liegen weitere Zusammensetzungen, bei der die metallischen Komponenten der Reinphasen im genannten Umfang bis maximal 30 Molprozent durch die genannten Ersatzatome ausgetauscht sind. Entscheidend für den Austausch und die dadurch erreichten Eigenschaften der Keramik ist das Aufrechterhalten der jeweiligen Kristallstruktur der Reinphasen. Problemlos können daher in der Regel Metalle gegeneinander ausgetauscht werden, die sich bezüglich Wertigkeit, und Atomdurchmesser ähnlich sind. Erfiήdungsgemäße Mischungen der beiden Reinphasen A und B sind auch solche Zusammensetzungen, die nur geringe Anteile einer der beiden Phasen enthalten und daher überwiegend aus der anderen Reinphase bestehen . Jede der Mischphasen weist gegenüber den Reinphasen eine im Hinblick auf das gewünschte Eigenschaftsspektrum verbesserte Charakteristik auf .
Auch die aus der Keramik hergestellten Bauelemente sind nicht auf die genannten Ausführungen beschränkt . Prinzipiell lassen sich aus der Keramik eine Vielzahl unterschiedlicher elektrokeramischer Bauelemente herstellen, wobei die Keramik j edoch besonders für solche Bauelemente geeignet sind, in die unterschiedliche passive Komponenten integriert sind . Solche Bauelemente können bevorzugt da eingesetzt werden, wo die Bauelemente nicht mit maximaler Leistung beaufschlagt werden, wie dies insbesondere in signal- oder datenverarbeitenden Bauelementen der Fall ist .

Claims

Patentansprüche
1. Keramisches Material, bestehend aus einem Zwei- phasengemisch xA + . (l-x)B, wobei 0 < x < 1
- wobei die Phase A auf der kubischen bis tetragonalen Modifikation von Bi3NbO7 beruht , wobei die Phase B auf der monoklinen Pyrochlormodifikation von Bi2 ( Zn2/3Nb4/3 ) O7 beruht, wobei die beiden Phasen so- variiert sein können, dass Bi, Zn und Nb im gesamten Material jeweils bis zu ' einem Anteil von ,30 Molprozent durch andere Metalle ersetzt sind,. Nb jedoch bis zu 100% durch Ta 'ersetzt sein kann.
2. Material nach Anspruch 1, bei dem Bi bis zu ieinem Anteil von ,30 Molprozent, dur.ch eines oder mehrere der Elemente ersetzt ist, die ausgewählt sind aus Ca, Sr, Ba, Pb, Cd, Y, La und einem Seltenerdenelement der Ordnungszahlen von 58 bis 71.- ' ■
3. Material nach Anspruch, 1 oder .2 , bei dem Zn bis zu einem Anteil von 30 Molprozent durch eines oder mehrere der Elemente 'ersetzt ist, die ausgewählt sind [ aus ,Mg, Ca, Co, Mn, Ni, Fe, Cr, und Cu. .
4. Material nach einem der Ansprüche 1 - 3, bei dem Nb bis. zu 'einem Anteil von 30 Molprozent durch eines oder mehrere der Elemente ersetzt ist, die ausgewählt sind aus Sn, Ti, Hf, -Sb, Ta, V, W und Mo. ,
5. Material nach einem der . Ansprüche 1 - 4/ definiert im Phasendiagramm der Elemente Zn-Nb-Bi durch die vier Punkte A, B, C und D mit A: Zn= 4,0; Nb=30,0; Bi=66,0 B: Zn= 7,8; Nb=25,0; Bi=67,2 C: Zn=lβ,O; Nb=30,0; Bi=54,0 D: Zn=15,0; Nb=35,0; Bi=50,0
6. Gesinterte Keramik aus einem Material nach einem der
Ansprüche 1 - 5 , mit einer Sintertemperatur unter 9600C.
7. Keramik nach Anspruch 6 , mit einer dielektrischen Konstante von 65 - 95.
8. Keramik nach Anspruch 6 oder 7 , mit einer dielektrischen Güte von mehr als 800 bei einer Messfrequenz von 1 GHz .
9. Keramik nach einem der Ansprüche 6 - 8 , bei dem der relative molare Anteil x der Phase A im Keramikmaterial von 0,10 bis 0,80 beträgt.
10. Keramik nach einem der Ansprüche 6 - 8, bei dem die Phasen in der Mischung als Reinphasen der genannten Hauptbestandteile vorliegen.
11. Keramik nach einem der Ansprüche 6 - 10, bei dem die Durchmesser der Domänen der reinen Phasen A und B kleiner gleich 10 μm betragen.
12. Elektrisches Bauelement, umfassend eine Keramik nach einem der Ansprüche 6 - 11.
13. Bauelement, nach Anspruch 12,
umfassend eine Verschaltung von passiven Komponenten, die in einer Mehrlagenstruktur ausgebildet sind, bei der eine Vielzahl keramischer Lagen aus der genannten Keramik alternierend mit strukturierten Metallisierungsebenen . angeordnet und zu einem monolithischen Stapel gesintert ist, bei dem, die strukturierten Metallisierungsebenen über' Durchkontaktierungen miteinander verbunden sind und so die Verschaltung der passiven Komponenten ergeben. ■ •
14. Bauelement, nach Anspruch 13, ausgebildet als LC Filter.
15. Bauelement, nach Anspruch- 12 oder 13, ausgebildet als Substrat für elektrische Bauelemente.
16. Verfahren' zur Herstellung eines keramischen Materials nach einem der Ansprüche 1 - 5 , bei dem zunächst die ■ Reinphasen A und B getrennt voneinander hergestellt werden, bei dem die Reinphasen zu einem Pulver vermählen werden bei dem Pulver mit den beiden Reinphasen in einem vorgegebenen Verhältnis gemischt werden.
17-. . Verfahren nach Anspruch 16/ bei dem die Mischung ■ zu einem Grünkörper verarbeitet und' gesintert wird.
18. Verfahren nach Anspruch 16, bei dem die die Reinphasen jeweils nach dem Mixe'd -Oxide Verfahren hergestellt werden.
19. Verfahren nach einem der Ansprüche 16 - 18, bei dem die Sinterung bei einer Temperatur von weniger als 960 0C durchgeführt wird. .
20. Verfahren nach einem der Ansprüche 16 - 19, bei dem als Grünkörper Folien hergestellt werden, -' bei dem in die Folien Durchkontaktierungen gestanzt und mit einem leitfähigen Material gefüllt werden, i - bei dem die Folien mit einer
Metallisierungsstfuktur aus einem ' Elektrodenmaterial bedruckt werden, bei dem eine Mehrzahl unterschiedlicher Folien übereinander gestapelt., laminiert und gesintert ' werden.
21. Verwendung eines Bauelements nach einem der Ansprüche 12 - 15 zur Herstellung eines LC Filters für Mobilfunkanwendungen in LTCC Technologie für den Frequenzbereich von 1, - 5 GHz .
PCT/DE2007/000847 2006-05-23 2007-05-09 Keramisches material, gesinterte keramik und bauelement daraus, verfahren zur herstellung und verwendung der keramik WO2007134569A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020087031126A KR101339090B1 (ko) 2006-05-23 2007-05-09 세라믹 재료, 소결 세라믹, 이로부터 제조된 부품, 세라믹의 제조 방법 및 용도
JP2009511329A JP5647412B2 (ja) 2006-05-23 2007-05-09 セラミック材料、焼結セラミック、電気部品、セラミック材料の製造方法、及び電気部品の使用法
CN200780018655XA CN101448759B (zh) 2006-05-23 2007-05-09 陶瓷材料、烧结陶瓷和由其制成的元件、制造方法和陶瓷的应用
US12/275,645 US7816293B2 (en) 2006-05-23 2008-11-21 Ceramic material, sintered ceramic and component made therefrom, production method and use of the ceramic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006024231.9 2006-05-23
DE102006024231A DE102006024231B4 (de) 2006-05-23 2006-05-23 Keramisches Material, gesinterte Keramik, Verfahren zur Herstellung und Verwendung der Keramik

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/275,645 Continuation US7816293B2 (en) 2006-05-23 2008-11-21 Ceramic material, sintered ceramic and component made therefrom, production method and use of the ceramic

Publications (2)

Publication Number Publication Date
WO2007134569A2 true WO2007134569A2 (de) 2007-11-29
WO2007134569A3 WO2007134569A3 (de) 2008-03-06

Family

ID=38622130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/000847 WO2007134569A2 (de) 2006-05-23 2007-05-09 Keramisches material, gesinterte keramik und bauelement daraus, verfahren zur herstellung und verwendung der keramik

Country Status (7)

Country Link
US (1) US7816293B2 (de)
JP (1) JP5647412B2 (de)
KR (1) KR101339090B1 (de)
CN (1) CN101448759B (de)
DE (1) DE102006024231B4 (de)
TW (1) TWI400214B (de)
WO (1) WO2007134569A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362084B (zh) * 2008-09-18 2010-10-13 武汉理工大学 可见光响应纳米Bi3NbO7光催化剂的制备方法及其应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990328B1 (de) * 2007-05-07 2011-10-26 Siemens Aktiengesellschaft Keramisches Pulver, keramische Schicht sowie Schichtsystem aus zwei Pyrochlorphasen und Oxiden
US7939941B2 (en) 2007-06-27 2011-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of through via before contact processing
NO20080452L (no) * 2008-01-24 2009-07-27 Well Technology As A method and an apparatus for controlling a well barrier
US8853830B2 (en) 2008-05-14 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. System, structure, and method of manufacturing a semiconductor substrate stack
DE102009014542B3 (de) * 2009-02-12 2010-12-02 Epcos Ag Mehrschichtbauelement und Verfahren zur Herstellung
US8691664B2 (en) * 2009-04-20 2014-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Backside process for a substrate
DE102009041952B4 (de) * 2009-09-17 2017-03-30 Airbus Defence and Space GmbH Verfahren zur Herstellung eines mehrlagigen Keramiksubstrats und mehrlagiges Keramiksubstrat und dessen Verwendung
CN102389825B (zh) * 2011-09-02 2013-10-02 武汉理工大学 一种具有可见光响应的纳米复合光催化剂的制备方法
JP5812035B2 (ja) * 2013-04-04 2015-11-11 Tdk株式会社 誘電体磁器組成物、誘電体磁器および電子部品
CN107004596A (zh) * 2014-12-24 2017-08-01 国立大学法人北陆先端科学技术大学院大学 氧化物介电体及其制造方法、氧化物介电体的前体以及固体电子装置及其制造方法
DE102015120640A1 (de) 2015-11-27 2017-06-01 Epcos Ag Vielschichtbauelement und Verfahren zur Herstellung eines Vielschichtbauelements
CN111902883B (zh) 2018-03-28 2022-04-08 Tdk株式会社 电介质组合物及电子部件
JP7211182B2 (ja) * 2019-03-15 2023-01-24 Tdk株式会社 誘電体組成物および電子部品
CN111689776B (zh) 2019-03-15 2022-07-01 Tdk株式会社 电介质组合物和电子部件
JP7363535B2 (ja) 2019-03-15 2023-10-18 Tdk株式会社 誘電体組成物および電子部品
CN110171965B (zh) * 2019-04-26 2021-07-06 武汉理工大学 一种npo电容器介质材料及其制备方法
CN110372377A (zh) * 2019-07-24 2019-10-25 天津大学 一种巨介电常数电介质材料的制备方法
CN111540604B (zh) * 2020-05-07 2022-05-31 无锡太湖学院 一种多层片状陶瓷电子元器件的制备方法
CN114956816B (zh) * 2022-06-07 2023-03-24 清华大学 一种高性能烧绿石储能陶瓷材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449652A (en) * 1993-06-04 1995-09-12 Battelle Memorial Institute Ceramic compositions for BZN dielectric resonators
US6395663B1 (en) * 2000-06-16 2002-05-28 National Science Council Low temperature sintered BI2O3-ZNO-NB2O5 ceramics and method for its formation
FR2845685A1 (fr) * 2002-10-15 2004-04-16 Thales Sa Materiau ceramique a forte permittivite, procede de fabrication du materiau et application a des structures multicouches ceramique

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024070B2 (ja) 1978-04-19 1985-06-11 株式会社村田製作所 マイクロ波用誘電体磁器組成物
JPH04285046A (ja) * 1991-03-12 1992-10-09 Matsushita Electric Ind Co Ltd 誘電体磁器組成物
JP3329014B2 (ja) * 1992-09-08 2002-09-30 松下電器産業株式会社 誘電体磁器組成物
JPH07165466A (ja) * 1993-12-10 1995-06-27 Ngk Spark Plug Co Ltd マイクロ波誘電体磁器組成物の製造方法
US6680269B2 (en) * 2000-06-29 2004-01-20 The Penn State Research Foundation Bismuth pyrochlore microwave dielectric materials
JP4494881B2 (ja) * 2004-06-29 2010-06-30 日本特殊陶業株式会社 低温焼成誘電体磁器組成物及び誘電体部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449652A (en) * 1993-06-04 1995-09-12 Battelle Memorial Institute Ceramic compositions for BZN dielectric resonators
WO1997010189A1 (en) * 1993-06-04 1997-03-20 Swartz Scott L Bismuth-based dielectric ceramic compositions
US6395663B1 (en) * 2000-06-16 2002-05-28 National Science Council Low temperature sintered BI2O3-ZNO-NB2O5 ceramics and method for its formation
FR2845685A1 (fr) * 2002-10-15 2004-04-16 Thales Sa Materiau ceramique a forte permittivite, procede de fabrication du materiau et application a des structures multicouches ceramique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362084B (zh) * 2008-09-18 2010-10-13 武汉理工大学 可见光响应纳米Bi3NbO7光催化剂的制备方法及其应用

Also Published As

Publication number Publication date
JP2009537444A (ja) 2009-10-29
DE102006024231A1 (de) 2007-11-29
KR20090015130A (ko) 2009-02-11
DE102006024231B4 (de) 2010-01-28
JP5647412B2 (ja) 2014-12-24
TW200804227A (en) 2008-01-16
US20090155624A1 (en) 2009-06-18
WO2007134569A3 (de) 2008-03-06
US7816293B2 (en) 2010-10-19
KR101339090B1 (ko) 2013-12-09
TWI400214B (zh) 2013-07-01
CN101448759B (zh) 2013-06-19
CN101448759A (zh) 2009-06-03

Similar Documents

Publication Publication Date Title
DE102006024231B4 (de) Keramisches Material, gesinterte Keramik, Verfahren zur Herstellung und Verwendung der Keramik
DE10002812C2 (de) Verfahren zur Herstellung eines dielektrischen Glas-Keramikkörpers, der bei niedrigen Temperaturen sinterfähig ist
DE60101771T2 (de) Keramischer Körper für Hochfrequenzanwendungen, Verwendung des Körpers und Verfahren zu dessen Herstellung
DE60121386T2 (de) Dielektrische Keramikzusammensetzung sowie Verfahren zu ihrer Herstellung und Vorrichtung für Kommunikationsgerät
DE112006000710B4 (de) Mehrschicht-Keramikkondensator und Verfahren zu dessen Herstellung
DE10024236B4 (de) Keramisches Dielektrikum und Verfahren zu seiner Herstellung
EP0647602B1 (de) Substituierter Barium-Neodym-Titan-Perowskit, dielektrische, keramische Zusammensetzung, Kondensator und Mikrowellenkomponente
DE602005003250T2 (de) Dielektrische keramische Zusammensetzung und mehrschichtiges keramisches Bauteil enthaltend diese Zusammensetzung
DE19906582B4 (de) Dielektrische keramische Zusammensetzung, laminierter Keramikkondensator und Verfahren zur Herstellung des laminierten Keramikkondensators
DE102006000935A1 (de) Monolithisches keramisches Bauelement und Verfahren zur Herstellung
DE102004001241B4 (de) Dielektrische Keramiken und deren Verwendung in einem Monolithischen Kramikkondensator
DE112005002067T5 (de) Piezoelektrische Keramik und piezoelektrisches Keramikelement
EP1099246A1 (de) Verfahren zur herstellung eines keramischen körpers mit einem integrierten passiven elektronischen bauelement, derartiger körper und verwendung des körpers
DE102009014542B3 (de) Mehrschichtbauelement und Verfahren zur Herstellung
EP1263691B1 (de) Keramikmasse, verfahren zur herstellung der keramikmasse und verwendung der keramikmasse
DE60126242T2 (de) Dielektrische zusammensetzung, herstellungsverfahren von einem keramikbauteil, und elektronisches bauteil
DE102004010163A1 (de) Dielektrische Zusammensetzung zum Brennen bei niedrigen Temperaturen und elektronische Teile
DE69728639T2 (de) Mehrschichtiges keramikteil hergestellt mit dickfilmpaste
DE102020108369A1 (de) Dielektrischer film und elektronische komponente
DE112005002093T5 (de) Herstellverfahren für eine piezoelektrische Keramik, Herstellverfahren für ein piezoelektrisches Element und piezoelektrisches Element
DE102006013200A1 (de) Piezoelektrisches Material und Herstellungsverfahren für ein mehrschichtiges piezoelektrisches Element
DE10042360C1 (de) Mikrowellen-Bauelement
DE10049596A1 (de) Dielektrische Keramikzusammensetzung und keramisches Elektronikbauteil
DE10042350C1 (de) Keramikmaterial
EP1497838A1 (de) Ptc-bauelement und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018655.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009511329

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087031126

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07764326

Country of ref document: EP

Kind code of ref document: A2