CN110171965B - 一种npo电容器介质材料及其制备方法 - Google Patents

一种npo电容器介质材料及其制备方法 Download PDF

Info

Publication number
CN110171965B
CN110171965B CN201910342316.1A CN201910342316A CN110171965B CN 110171965 B CN110171965 B CN 110171965B CN 201910342316 A CN201910342316 A CN 201910342316A CN 110171965 B CN110171965 B CN 110171965B
Authority
CN
China
Prior art keywords
srtio
dielectric material
capacitor dielectric
component
npo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910342316.1A
Other languages
English (en)
Other versions
CN110171965A (zh
Inventor
郝华
杜攀飞
刘韩星
曹明贺
余志勇
尧中华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910342316.1A priority Critical patent/CN110171965B/zh
Publication of CN110171965A publication Critical patent/CN110171965A/zh
Application granted granted Critical
Publication of CN110171965B publication Critical patent/CN110171965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种NPO电容器介质材料及其制备方法,所述电容器介质材料组成包含基质成分和掺杂成分,基质成分为(Bi3xZn2‑3x)(ZnxNb2‑x)O7,x=1/2~2/3;掺杂的SrTiO3占基质成分质量分数的1%~10%。本发明所述的电容器介质材料烧结温度不超过1000℃,宽温稳定性能好,介电损耗低,且成本相当低廉。

Description

一种NPO电容器介质材料及其制备方法
技术领域
本发明涉及一种介电常数高、温度稳定性能优异且介电损耗较低的NPO电容器介质材料的制备方法,属于陶瓷电容器领域。
背景技术
电容器是一类重要的无源电子元器件,是电子、通信及信息产业中不可或缺的元器件,可以起到储存电荷、隔断直流、交流滤波、提供调谐及震荡等作用。Ⅰ类陶瓷电容器具有稳定性高、介电常数低且工作范围较窄等特性。随着电子信息技术的飞速发展,电子器件的前进方向是规格越来越小、稳定性和集成化程度更高、多功能化,因此人们对新型电子材料与器件的性能提出了更高的要求。作为电子设备中应用最广泛的电容器,人们对Ⅰ类陶瓷电容的性能提出了更高的要求。介电常数较高、损耗小、温度稳定性高的电介质陶瓷成为目前研究的重点方向之一。
Ⅰ类电容器由于受到高的温度稳定性和温度范围等因素的限制,使得介电常数不可能很高。与Ⅱ类电容器相比,Ⅰ类电容器陶瓷介质的介电常数要小得多。Ⅰ类电容器的介质陶瓷的介电常数通常都小于900。例如,微波陶瓷的介电常数普遍保持在几~几十之间,而NPO陶瓷的介质则在普遍保持几十的介电常数。而随着电子设备的不断小型化,使得电容器不断小型化。为了保持足够大的介电常数,提高介质的介电常数成为一种趋势。
现有研究中,同时保持高的介电常数、低的介电损耗以及超高温度稳定性是NPO电容器介质陶瓷的难点。Ag2O-Ta2O5-Nb2O5系统介电常数极高,在400以上,温度稳定性连续可调,但Ag属于挥发分,在烧结过程中挥发会产生空位,使得该体系的介质损耗极大,在0.01以上;MgO-TiO2-ZnO系统存在一个零温度系数区,因而该体系可以得到符合NPO使用标准的材料,有学者在该体系中掺入CaTiO3,制备出的CaTiO3-(Mg2/3Zn1/3)TiO3陶瓷材料烧结温度为1260℃,介电常数为25.1,介电损耗为0.003,容温变化率满足NPO陶瓷的使用要求,但是该体系的介电常数非常低,为20左右,且很难得到提高;BaTiO3体系介电常数高(εr=2000)、介电损耗低,但是温度稳定性极差,有学者在该体系中掺入Ba(Zn1/3Nb2/3)O3和MnCO3,制得的陶瓷电容温度系数TCC≤±150ppm/℃,介电常数ε=494,介电损耗tanδ=0.0019,仍未满足NPO陶瓷对于温度稳定性方面的要求。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供一种NPO电容器介质材料及其制备方法,介电常数高、宽温稳定性好、介电损耗低,且烧结温度低。
本发明为解决上述提出的问题所采用的技术方案为:
一种NPO电容器介质材料,其特征在于:该电容器介质材料组成包含基质成分和掺杂成分,基质成分为(Bi3xZn2-3x)(ZnxNb2-x)O7,x=1/2~2/3;掺杂成分为SrTiO3,掺杂组分SrTiO3占基质成分的质量分数z%为1%~10%。优选地,x=0.6,掺杂组分SrTiO3占基质成分质量分数的1~5%。
本发明所述NPO电容器介质材料的宽温性能较优,在应用温度范围内(-55℃~125℃)的容温变化率均小于±30ppm/℃,介电常数在90-120之间,介电损耗tanα均小于0.001,满足NPO级陶瓷电容器的使用要求。
按上述方案,所述掺杂成分SrTiO3的制备方法如下:将纳米SrTiO3(市售,粒径为100nm,纯度在99.5%以上)放于卧式球磨机上球磨20~30h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至900~1100℃保温2~4h,以除去纳米SrTiO3中的SrCO3等杂质。自然冷却至常温后,得到掺杂成分SrTiO3粉体。
本发明还提供一种NPO电容器介质材料的制备方法,主要步骤如下:
(1)将基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7与掺杂成分SrTiO3按前述比例混合后,湿法球磨20~30h,烘干后过40目筛,得到混合物料;
(2)将步骤(1)所得混合物料置于马弗炉中以2min/℃的升温速率升温至800~900℃保温2~4h,并自然冷却降至室温,得到熔块;
(3)将步骤(2)所得熔块用研钵磨碎成粉体,置于球磨罐中采用湿法球磨20~30h,然后加入粘结剂造粒并干压成型,于600℃保温2h排胶后,再于900~1000℃的温度下保温2~4h,得到NPO电容器介质材料。
进一步地,本发明提供一种更为具体的NPO电容器介质材料的制备方法,包括如下步骤:
步骤一、将纳米SrTiO3放于卧式球磨机上球磨20~30h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至900~1100℃保温2~4h,自然冷却至常温后,得到掺杂成分SrTiO3粉体,备用;
步骤二、将基质原料ZnO、Bi2O3和Nb2O5按照4-4x:3x:2-x的摩尔比进行配料,球磨、烘干,然后升温至800~900℃预烧2~4h,得到基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7粉体,x=1/2~2/3,过筛备用;
步骤三、(1)将基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7与掺杂成分SrTiO3按比例混合后,湿法球磨20~30h,烘干后过40目筛,得到(z wt%SrTiO3)-(Bi3xZn2-3x)(ZnxNb2-x)O7混合物料;(2)将步骤(1)所得混合物料置于马弗炉中以2min/℃的升温速率升温至800~900℃保温2~4h,并自然冷却降至室温,得到熔块;(3)将步骤(2)所得熔块用研钵磨碎成粉体,置于球磨罐中采用湿法球磨20~30h,然后加入粘结剂造粒并干压成型,以2min/℃的升温速率升温至600℃,并保温2h进行排胶,再于900~1000℃的温度下保温2~4h,得到NPO电容器介质材料。
与现有技术相比,本发明的有益效果是:
在现有研究中,同时保持高的介电常数以及超高温度稳定性是NPO电容器介质陶瓷的难点。本发明提供的高介电常数NPO电容器介质陶瓷,基质成分为Bi2O3-ZnO-Nb2O5,根据(Bi3xZn2-3x)(ZnxNb2-x)O7陶瓷的介电可调性,通过调节化学组成中系数x的变化,可以得到性能介于立方相和单斜相之间、介电常数较高、温度稳定性更加优异的组分,并通过掺杂SrTiO3对Bi2O3-ZnO-Nb2O5的正温度系数进行补偿,进一步提高了介电常数和温度稳定性,满足了NPO电容器使用要求。从而,本发明得到的NPO电容器介质材料相比普通的NPO陶瓷,具有更高的介电常数(在90-110之间)和更低的介电损耗(tanα均小于0.001)。本发明所提供的化学组成体系在具有优异性能的同时,采用的原料成本较低,相比于其他含稀土类的体系,其成本已经相当低廉。此外,本发明采用固相法制备陶瓷,工艺简单,且材料具有环保性(不含有毒的铅元素),同时烧结温度较低,有利于节约能源。
附图说明
图1是x=0.5~2/3的(Bi3xZn2-3x)(ZnxNb2-x)O7陶瓷在25℃下的介电性能图;
图2表示x=0.5,0.55,0.6,0.6,2/3的(Bi3xZn2-3x)(ZnxNb2-x)O7在1kHz下的容温变化率图;
图3是对比例、实施例1-5制备的(z wt%SrTiO3)-(Bi3xZn2-3x)(ZnxNb2-x)O7电容器介质材料在最佳烧结温度下的XRD图,其中,x=0.6,z=0~5,z为0时代表对比例;
图4是对比例、实施例1-5制备的(z wt%SrTiO3)-(Bi3xZn2-3x)(ZnxNb2-x)O7电容器介质材料在在25℃下介电性能图,其中,x=0.6,z=0~5,z为0时代表对比例。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
下述实施例或对比例中,原料Bi2O3、ZnO、Nb2O5、SrTiO3的纯度均大于99%;
下述实施例或对比例中,排胶后再于950~1000℃的温度下保温2~4h得到的陶瓷原片,需要进行打磨、抛光,并在陶瓷片的上下表面均匀涂覆银浆,经580℃烧银制备电极,以进行介电常数、电容温度系数等介电性能的测试。
下述实施例中,所述的粘合剂为质量分数为5wt%的聚乙烯醇溶液。
对比例
一种电容器介质陶瓷材料,其化学组成可表达为(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7,即x为0.6,z为0。其制备工艺,具体如下:
步骤一、将基质原料ZnO、Bi2O3和Nb2O5按照4-4x:3x:2-x的摩尔比进行配料,球磨、烘干,然后以2min/℃的升温速率升温至800℃预烧2h,得到基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7粉体,x=0.6;
步骤二、将步骤一所得粉体置于球磨罐中采用湿法球磨24h,然后加入粘结剂造粒并干压成型,以2min/℃的升温速率升温至600℃,并保温2h进行排胶再于900℃~1000℃之间进行烧结并保温2h,得到电容器介质陶瓷材料对比样品。
所得电容器介质材料样品结合体积密度进行分析,最佳烧结温度为950℃。测试其性能为:介电常数εr=93,介电损耗tanδ=0.0008,-55℃~125℃温度范围内对应的TCC≤±100ppm/℃。
实施例1
一种NPO电容器介质材料,其化学组成可表达为(1wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7,即x为0.6,z为1。其制备工艺,具体如下:
步骤一、将纳米SrTiO3放于卧式球磨机上球磨24h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至1000℃保温2h,自然冷却至常温后,得到掺杂成分SrTiO3粉体,备用;
步骤二、将基质原料ZnO、Bi2O3和Nb2O5按照4-4x:3x:2-x的摩尔比进行配料,球磨、烘干,然后以2min/℃的升温速率升温至800℃预烧2h,得到基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7粉体,x=0.6,备用;
步骤三、(1)将基质成分(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7与掺杂成分SrTiO3按质量比1:1%混合后,湿法球磨24h,烘干后过40目筛,得到混合物料;(2)将步骤(1)所得混合物料置于马弗炉中以2min/℃的升温速率升温至800℃保温2h,并自然冷却降至室温,得到熔块;(3)将步骤(2)所得熔块用研钵磨碎成粉体,置于球磨罐中采用湿法球磨24h,然后加入粘结剂(可采用:烘干后的1g粉体中加入2滴粘合剂)造粒并干压成型,于600℃保温2h排胶后,再于900~1000℃的温度下保温2h,得到NPO电容器介质材料。
实施例1所得NPO电容器介质材料结合体积密度进行分析,最佳烧结温度为950℃;测试其性能为:介电常数εr=97,介电损耗tanδ=0.0006,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
实施例2
一种NPO电容器介质材料,其化学组成可表达为(2wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7,即x为0.6,z为2。其制备工艺与实施例1的主要区别在于z的取值不同。
实施例2所得NPO电容器介质材料结合体积密度进行分析,最佳烧结温度为950℃;测试其性能为:介电常数εr=103,介电损耗tanδ=0.0001,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
实施例3
一种NPO电容器介质材料,其化学组成可表达为(3wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7,即x为0.6,z为3。其制备工艺与实施例1的主要区别在于z的取值不同。
实施例3所得NPO电容器介质材料结合体积密度进行分析,最佳烧结温度为950℃;测试其性能为:介电常数εr=106,介电损耗tanδ=0.0009,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
实施例4
一种NPO电容器介质材料,其化学组成可表达为(4wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7,即x为0.6,z为4。其制备工艺与实施例1的主要区别在于z的取值不同。
实施例4所得NPO电容器介质材料结合体积密度进行分析,最佳烧结温度为950℃;测试其性能为:介电常数εr=110,介电损耗tanδ=0.001,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
实施例5
一种NPO电容器介质材料,其化学组成可表达为(5wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7,即x为0.6,z为5。其制备工艺与实施例1的主要区别在于z的取值不同。
实施例5所得NPO电容器介质材料结合体积密度进行分析,最佳烧结温度为950℃;测试其性能为:介电常数εr=114,介电损耗tanδ=0.0008,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
实施例6
一种NPO电容器介质材料,其化学组成可表达为(3wt%SrTiO3)-Bi1.5ZnNb1.5O7,即x为0.5,z为3。其制备工艺与实施例1的主要区别在于x、z的取值不同。
实施例6所得NPO电容器介质材料结合体积密度进行分析,最佳烧结温度为1000℃;测试其性能为:介电常数εr=119,介电损耗tanδ=0.0003,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
实施例7
一种NPO电容器介质材料,其化学组成可表达为(2wt%SrTiO3)-Bi2Zn2/3Nb4/3O7,即x为2/3,z为2。其制备工艺与实施例1的主要区别在于x、z的取值不同。
实施例7所得NPO电容器介质材料,结合体积密度进行分析,最佳烧结温度为950℃;测试其性能为:介电常数εr=100,介电损耗tanδ=0.0005,-55℃~125℃温度范围内对应的TCC≤±30ppm/℃。
表1是实施例1-5及对比例分别添加质量百分比z%(分别为0wt%、1wt%、2wt%、3wt%、4wt%、5wt%)的SrTiO3的(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7电容器介质材料在1kHz下的容温变化率。
表1(z wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7在1kHz下的容温变化率
Figure BDA0002041139520000061
图1是对比例、实施例1-5制备的(z wt%SrTiO3)-(Bi3xZn2-3x)(ZnxNb2-x)O7电容器介质材料在最佳烧结温度下的XRD图,其中,x=0.6,z=0~5。由图1可知,对比例中,即x=0.6,z=0时,所得电容器介质材料的主晶相为焦绿石单斜相;而实施例1-5中,随着SrTiO3掺量的增大,没有出现SrTiO3的杂相峰,说明SrTiO3与(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7形成了固溶体;此固溶体决定了陶瓷的介电性能,其性能以(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7为基础,受SrTiO3掺量的影响。负容温系数的SrTiO3掺量增大,(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7的容温系数下降,体系的介电常数增大。z取4、5时,出现第二相Zn2Ti3O8,这表明SrTiO3已不能完全固溶于(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7之中。
由图4、表1可知,随着z的增大,所得电容器介质材料的介电常数逐渐上升,介电损耗也逐渐上升,容温系数逐渐下降,说明对于正容温系数的(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7而言,SrTiO3的负容温系数补偿作用明显,且提高了(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7基体的介电常数。z=1~5的电容器介质材料(z wt%SrTiO3)-(Bi1.8Zn0.2)(Zn0.6Nb1.4)O7的介电常数均在90-110之间,介电损耗tanα均小于0.001,在应用温度范围内(-55℃~125℃)的容温变化率均小于±30ppm/℃,介电常数满足NPO级陶瓷电容器的使用要求。由此可见,本发明以(Bi3xZn2-3x)(ZnxNb2-x)O7为基质成分,掺入少量的SrTiO3可明显改善BZN基陶瓷的宽温稳定性。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (6)

1.一种NPO电容器介质材料,其特征在于,该电容器介质材料组成包含基质成分和掺杂成分,基质成分为(Bi3xZn2-3x)(ZnxNb2-x)O7,x=1/2~2/3;掺杂成分为SrTiO3,掺杂组分SrTiO3占基质成分的质量分数z%为1%~10%。
2.根据权利要求1所述的一种NPO电容器介质材料,其特征在于,x=0.6,掺杂组分SrTiO3占基质成分质量分数的1~5%。
3.根据权利要求1所述的一种NPO电容器介质材料,其特征在于,在应用温度-55℃~125℃范围内的容温变化率均小于±30ppm/℃,介电常数在90-120之间,介电损耗tanα均小于0.001。
4.根据权利要求1所述的一种NPO电容器介质材料,其特征在于,所述掺杂成分SrTiO3的制备方法如下:将纳米SrTiO3球磨20~30h,烘干后过筛,然后升温至900~1100℃保温2~4h,自然冷却至常温后,得到掺杂成分SrTiO3粉体。
5.权利要求1所述的NPO电容器介质材料的制备方法,其特征在于,主要步骤如下:
(1)将基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7与掺杂成分SrTiO3按权利要求1所述比例混合后,湿法球磨20~30h,烘干后过筛,得到混合物料;
(2)将步骤(1)所得混合物料升温至800~900℃保温2~4h,并自然冷却降至室温,得到熔块;
(3)将步骤(2)所得熔块用研钵磨碎成粉体,置于球磨罐中采用湿法球磨20~30h,然后加入粘结剂造粒并干压成型,排胶后,再于900~1000℃的温度下保温2~4h,得到NPO电容器介质材料。
6.权利要求1所述的NPO电容器介质材料的制备方法,其特征在于,主要步骤如下:
步骤一、将纳米SrTiO3放于卧式球磨机上球磨20~30h,烘干后过筛,然后置于马弗炉中升温至900~1100℃保温2~4h,自然冷却至常温后,得到掺杂成分SrTiO3粉体,备用;
步骤二、将基质原料ZnO、Bi2O3和Nb2O5按照4-4x:3x:2-x的摩尔比进行配料,球磨、烘干,然后升温至800~900℃预烧2~4h,得到基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7粉体,x=1/2~2/3,备用;
步骤三、(1)将基质成分(Bi3xZn2-3x)(ZnxNb2-x)O7与掺杂成分SrTiO3按权利要求1所述比例混合后,湿法球磨20~30h,烘干后过筛,得到(z wt%SrTiO3)-(Bi3xZn2-3x) (ZnxNb2-x)O7混合物料;(2)将步骤(1)所得混合物料置于马弗炉中升温至800~900℃保温2~4h,并自然冷却降至室温,得到熔块;(3)将步骤(2)所得熔块用研钵磨碎成粉体,置于球磨罐中采用湿法球磨20~30h,然后加入粘结剂造粒并干压成型,排胶后,再升温至900~1000℃的温度下保温2~4h,得到NPO电容器介质材料。
CN201910342316.1A 2019-04-26 2019-04-26 一种npo电容器介质材料及其制备方法 Active CN110171965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910342316.1A CN110171965B (zh) 2019-04-26 2019-04-26 一种npo电容器介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910342316.1A CN110171965B (zh) 2019-04-26 2019-04-26 一种npo电容器介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110171965A CN110171965A (zh) 2019-08-27
CN110171965B true CN110171965B (zh) 2021-07-06

Family

ID=67690169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910342316.1A Active CN110171965B (zh) 2019-04-26 2019-04-26 一种npo电容器介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110171965B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345795C (zh) * 2005-11-10 2007-10-31 西安交通大学 一种低温烧结焦绿石高频/微波介质陶瓷及其制备
DE102006024231B4 (de) * 2006-05-23 2010-01-28 Epcos Ag Keramisches Material, gesinterte Keramik, Verfahren zur Herstellung und Verwendung der Keramik
CN103601495B (zh) * 2013-11-14 2014-12-31 天津大学 一种np0型低温烧结陶瓷电容器介质材料及其制备方法
CN103964842B (zh) * 2014-04-29 2015-05-27 武汉理工大学 一种电容器陶瓷介质材料及其制备方法
US9520207B2 (en) * 2014-05-09 2016-12-13 The Penn State University Single phase lead-free cubic pyrochlore bismuth zinc niobate-based dielectric materials and processes for manufacture
CN104311010B (zh) * 2014-10-09 2016-04-20 天津大学 一种低损耗温度稳定型高频陶瓷电容器介质及其制备方法

Also Published As

Publication number Publication date
CN110171965A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN106927804A (zh) 一种微波介质陶瓷温频特性调控剂及其ltcc材料
CN113582683B (zh) 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
TWI573775B (zh) Ceramic capacitor dielectric material
CN105084892B (zh) 高介单层微型陶瓷电容器基片材料及其制备方法
KR20100133905A (ko) 유전물질용 소결체 및 이의 제조 방법
CN103508730A (zh) 一种低温烧结的巨介陶瓷电容器介质及其制备方法
CN111410530B (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
CN109516799B (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
KR101732422B1 (ko) 유전체 제조용 소결 전구체 분말 및 이의 제조 방법
CN114773060A (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
CN112979314B (zh) 一种中等介电常数高q微波介质陶瓷材料及其制备方法
CN113666738A (zh) 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法
CN103553610B (zh) 低温烧结微波介质陶瓷材料、制备方法及微波器件
CN110171965B (zh) 一种npo电容器介质材料及其制备方法
CN102167580A (zh) 一种用于高频段的介质陶瓷及其制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN106866144B (zh) 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法
CN110451951A (zh) 中温烧结微波mlcc陶瓷材料及其制备方法
CN109180177A (zh) 一种x9r型多层陶瓷电容器介质材料及其制备方法和应用
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
CN105294101A (zh) 一种高温度稳定型陶瓷电容器用介质材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant