CN106866144B - 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法 - Google Patents

一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法 Download PDF

Info

Publication number
CN106866144B
CN106866144B CN201710110281.XA CN201710110281A CN106866144B CN 106866144 B CN106866144 B CN 106866144B CN 201710110281 A CN201710110281 A CN 201710110281A CN 106866144 B CN106866144 B CN 106866144B
Authority
CN
China
Prior art keywords
temperature
powder
ball milling
equal
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710110281.XA
Other languages
English (en)
Other versions
CN106866144A (zh
Inventor
李海娟
庄建
张楠
张洁
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710110281.XA priority Critical patent/CN106866144B/zh
Publication of CN106866144A publication Critical patent/CN106866144A/zh
Application granted granted Critical
Publication of CN106866144B publication Critical patent/CN106866144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法,本发明根据化学式0.8Pb[(Fe2/3W1/3)1‑xTix]O3‑0.2BiFeO3称取Fe2WO6粉体与PbO、Bi2O3、Fe2O3和TiO2作为起始原料,将起始材料通过球磨、预烧、研碎后加入聚乙烯醇水溶液造粒,造粒后在保温排胶,最后保温后随炉自然冷却至室温,本介质采用常规的固相法陶瓷电容器介质制备工艺即可进行制备,操作方法简单,容易实施。

Description

一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法
技术领域
本发明属于陶瓷制备领域,具体涉及一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法。
背景技术
陶瓷电容器是电子信息技术装备的重要基础元器件,在电子线路中发挥着重要作用。近年来,随着电子信息技术的飞速发展,对陶瓷电容器工作温度范围的要求也越来越高,尤其是沙漠石油钻井、混合动力车辆、航空器,航天探测设备及特种军用机器人等工作在极端温度环境下的各种电子设备,这就要求作为重要组装元器件之一的陶瓷电容器能够在极端的环境下长时间稳定运行不失效,因而研究宽温高稳定的陶瓷介电材料具有极为重要的现实意义。
目前X7R是应用最为广泛的一种温度稳定型材料,根据EIA的电容器分类规格,它的温度从-55~125℃,其介电变化率在±15%以内。X8R和X9R是正在被很多的研究人员研究的温度稳定型材料,其温度稳定范围分别在-55~150℃和-55~175℃内,介电变化率在±15%以内。目前研究的系统配方仍然以钛酸钡为主,但是其烧结温度都相对比较高,如US.Pat.4816430和4882305所公布,烧结温度都超过了1250℃;中国专利CN1011570434中,公布了对系统添加、和玻璃助烧剂等,在1280℃烧结制得X8R陶瓷材料;天津大学采用传统固相法,制备了BaTiO3基X9R介质材料,其室温介电常数约为1300,该瓷料采用BaTiO3-Nb2O5-MgO-BaCO3体系,使用玻璃料降低烧结温度,但其烧结温度仍然在1130~1220℃。
从目前的研究现状中我们可以看到,温度稳定型材料仍然存在烧结温度低,成本高,温度稳定范围有待进一步提高等缺点。因此,研究一种烧结温度低,可大量降低成本的、在比较宽的温度范围内保持优异温度稳定性的陶瓷介质材料来满足更加宽广的工作温度范围要求,适应不同环境的变化是非常必要的。
发明内容
本发明的目的在于克服上述不足,提供一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法,在超低温度和超宽的温度范围内(-102~192℃)保持优异温度稳定性(-15%≤ΔC/C≤+15%),该介质材料能够在非常低的温度下烧结,可匹配廉价合金Ag/Pd(Ag≥70%)作为内电极制成多层陶瓷电容器,并且其在非常低的温度下温度稳定性良好,可以满足更加宽广的工作温度范围要求,适应不同环境的变化。
为了达到上述目的,一种低温烧结超低温宽温稳定性电容器陶瓷的化学组成为0.8Pb[(Fe2/3W1/3)1-xTix]O3-0.2BiFeO3,其中0≤x≤0.04。
烧结温度≤850℃,介电常数在-102~192℃时温度稳定性为-15%≤ΔC/C≤+15%,室温下介电损耗tanδ≤1%。
一种低温烧结超低温宽温稳定性电容器陶瓷的制备方法,包括以下步骤:
步骤一,准备前驱体Fe2WO6粉体;
步骤二,根据化学式0.8Pb[(Fe2/3W1/3)1-xTix]O3-0.2BiFeO3,0≤x≤0.04中的金属元素的化学计量比称取步骤一中合成的Fe2WO6粉体与PbO、Bi2O3、Fe2O3和TiO2为起始原料;
步骤三,将称取好的PbO、Fe2WO6、Bi2O3、Fe2O3和TiO2混合球磨后烘干,然后升温至800℃预烧3小时,最后将预烧后的粉体研碎,于100℃下烘干后再研磨成粉状;
步骤四,把步骤三中的粉体用质量分数5%的聚乙烯醇水溶液作为粘结剂造粒,然后将其压制成圆片,于550℃下保温以排出胶体,再在850℃下保温4小时后随炉自然冷却至室温,即完成电容器陶瓷的制备。
所述步骤一中,前驱体Fe2WO6粉体的制备方法如下,根据化学计量比将称量的Fe2O3和WO3放入球磨罐,以无水乙醇为球磨介质,球磨12小时混合均匀,烘干,然后升温至1000℃煅烧3小时合成前驱体Fe2WO6粉体。
所述步骤二中,为补偿制备过程中PbO和Bi2O3的挥发,PbO和Bi2O3的化学计量比均多加2mol%。
所述步骤三中,球磨采用球磨罐,以无水乙醇为球磨介质,球磨12小时。
所述步骤四中,圆片的直径为8mm,550℃下保温时间为30分钟。
与现有技术相比,本发明具有以下有益效果:
本发明的电容器陶瓷介质的烧结温度非常低为850℃,可匹配廉价合金Ag/Pd(Ag≥70%)作为内电极制成多层陶瓷电容器,这样能大大降低陶瓷电容器的成本,本介质在超低温度和超宽的温度范围内(-102~192℃)保持优异温度稳定性(-15%≤ΔC/C≤+15%),性能优于X7R,X8R和X9R,可以满足更加宽广的工作温度范围要求,适应不同环境的变化。
本发明根据化学式0.8Pb[(Fe2/3W1/3)1-xTix]O3-0.2BiFeO3称取Fe2WO6粉体与PbO、Bi2O3、Fe2O3和TiO2作为起始原料,将起始材料通过球磨、预烧、研碎后加入聚乙烯醇水溶液造粒,造粒后在保温排胶,最后保温后随炉自然冷却至室温,本介质采用常规的固相法陶瓷电容器介质制备工艺即可进行制备,操作方法简单,容易实施。
附图说明
图1为对比实施例1和实施例2制备的陶瓷介电材料的XRD图谱;
图2为对比实施例1制备的陶瓷介电材料在不同频率下介电常数与温度的关系曲线;
图3为对比实施例1制备的陶瓷介电材料容温变化率与温度的关系曲线;
图4为对比实施例2制备的不同组分的陶瓷介电材料在不同频率下介电常数与温度的关系曲线;其中,A为x=0.005时,B为x=0.01时,C为x=0.02时,D为x=0.04时;
图5为对比实施例2制备的不同组分的陶瓷介电材料容温变化率与温度的关系曲线;其中,A为x=0.005时,B为x=0.01时,C为x=0.02时,D为x=0.04时;
图6为对比实施例1和实施例2陶瓷介电材料在316kHz的容温变化率与温度的关系曲线。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
实施例1
(1)根据表达式0.8Pb(Fe2/3W1/3)O3-0.2BiFeO3,按照表达式中金属原子的化学计量比称取PbO、Fe2WO6、Bi2O3和Fe2O3作为基质原料;
(2)将称量好的PbO、Fe2WO6、Bi2O3和Fe2O3用无水乙醇为介质混合球磨12小时,再烘干,然后在800℃预烧3小时,最后将预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干后研磨成粉状;
(3)将步骤(2)中的粉末用5wt%的聚乙烯醇水溶液作为粘结剂造粒,然后将其压制成直径为8mm的圆片,于550℃下保温30分钟以排出胶体,再在850℃下保温4小时后随炉自然冷却至室温,得到一种低温烧结的超低温度,宽温高稳定性的致密电容器陶瓷介质材料。
由图1可知由PbO、Fe2WO6、Bi2O3和Fe2O3合成的0.8Pb(Fe2/3W1/3)O3-0.2BiFeO3为纯钙钛矿结构,没有杂相生成。
由图2和图3可知0.8Pb(Fe2/3W1/3)O3-0.2BiFeO3介电材料在宽的温度范围内具有良好的温度稳定性,电容量的变化率满足-15%≤ΔC/C≤+15%。
实施例2
由上面实施例1中的结果可知0.8Pb(Fe2/3W1/3)O3-0.2BiFeO3介电材料在宽的温度范围内具有良好的温度稳定性,这里通过Ti离子的掺杂可以进一步改性陶瓷的介电性能,下面我们通过Ti离子的掺杂对0.8Pb(Fe2/3W1/3)O3-0.2BiFeO3陶瓷介电性能进行改善。具体的实施内容如下:
(1)根据表达式0.8Pb[(Fe2/3W1/3)1-xTix]O3-0.2BiFeO3(x=0.005,0.01,0.02和0.04),按照表达式中金属原子的化学计量比称取PbO、Fe2WO6、Bi2O3、Fe2O3和TiO2作为基质原料;
(2)将称量好的PbO、Fe2WO6、Bi2O3、Fe2O3和TiO2用无水乙醇为介质混合球磨12小时,再烘干,然后在800℃预烧3小时,最后将预烧后的制得的粉体研碎,再球磨12小时混合均匀,于100℃下烘干后研磨成粉状;
(3)将步骤(2)中的粉末用5wt%的聚乙烯醇水溶液作为粘结剂造粒,然后将其压制成直径为8mm的圆片,于550℃下保温30分钟以排出胶体,再在850℃下保温4小时后随炉自然冷却至室温,得到一种低温烧结的超低温度,宽温高稳定性的致密电容器陶瓷介质材料。
另外,所有实施例样品的烧结条件及介电性能结果见表1。
表1所有实施例样品的烧结条件和性能参数
Figure BDA0001234041730000051
表1中各参数代表的意义如下:
ΔC/C=±15%:容温变化率在±15%以内,tanδ(RT):室温下的介电损耗。
上述实验例说明,通过掺杂Ti离子,0.8Pb(Fe2/3W1/3)O3-0.2BiFeO3陶瓷的介电性能得到了明显的改善。在烧结温度仍然为850℃时,0.8Pb[(Fe2/3W1/3)0.995Ti0.005]O3-0.2BiFeO3陶瓷介质在超低温度和超宽的温度范围内(-102~192℃)具有优异的温度稳定性(-15%≤ΔC/C≤+15%),并且其室温下的tanδ≤1%,可以满足更加宽广的工作温度范围要求,适应不同环境的变化。利用本发明的配方和工艺,可获得烧结温度低,在超低温度和超宽的温度范围内具有优异的温度稳定性的陶瓷介质材料。

Claims (4)

1.一种低温烧结超低温宽温稳定性电容器陶瓷的制备方法,其特征在于,电容器陶瓷的化学组成为0.8Pb[(Fe2/3W1/3)1-x Ti x ]O3-0.2BiFeO3,其中0≤x≤0.04;
烧结温度≤850℃,介电常数在-102~192℃时温度稳定性为-15%≤ΔC/C≤+15%,室温下介电损耗tand≤1%;
制备方法包括以下步骤:
步骤一,准备前驱体Fe2WO6粉体;
步骤二,根据化学式0.8Pb[(Fe2/3W1/3)1-x Ti x ]O3-0.2BiFeO3,0≤x≤0.04中的金属元素的化学计量比称取步骤一中合成的Fe2WO6粉体与PbO、Bi2O3、Fe2O3和 TiO2为起始原料;
步骤三,将称取好的PbO、Fe2WO6、Bi2O3、Fe2O3和 TiO2混合球磨后烘干,然后升温至800℃预烧3小时,最后将预烧后的粉体研碎,于100℃下烘干后再研磨成粉状;
步骤四,把步骤三中的粉体用质量分数5%的聚乙烯醇水溶液作为粘结剂造粒,然后将其压制成圆片,于550 ℃下保温以排出胶体,再在850 ℃下保温4小时后随炉自然冷却至室温,即完成电容器陶瓷的制备。
2.根据权利要求1所述的一种低温烧结超低温宽温稳定性电容器陶瓷的制备方法,其特征在于,所述步骤一中,前驱体Fe2WO6粉体的制备方法如下,根据化学计量比将称量的Fe2O3和WO3放入球磨罐,以无水乙醇为球磨介质,球磨12小时混合均匀,烘干,然后升温至1000 ℃煅烧3小时合成前驱体Fe2WO6粉体。
3.根据权利要求1所述的一种低温烧结超低温宽温稳定性电容器陶瓷的制备方法,其特征在于,所述步骤三中,球磨采用球磨罐,以无水乙醇为球磨介质,球磨12小时。
4.根据权利要求1所述的一种低温烧结超低温宽温稳定性电容器陶瓷的制备方法,其特征在于,所述步骤四中,圆片的直径为8mm,550℃下保温时间为30分钟。
CN201710110281.XA 2017-02-27 2017-02-27 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法 Active CN106866144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710110281.XA CN106866144B (zh) 2017-02-27 2017-02-27 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710110281.XA CN106866144B (zh) 2017-02-27 2017-02-27 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法

Publications (2)

Publication Number Publication Date
CN106866144A CN106866144A (zh) 2017-06-20
CN106866144B true CN106866144B (zh) 2020-03-17

Family

ID=59169014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710110281.XA Active CN106866144B (zh) 2017-02-27 2017-02-27 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法

Country Status (1)

Country Link
CN (1) CN106866144B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908918A (zh) * 2020-06-23 2020-11-10 太原理工大学 一种负温度系数陶瓷介质材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165380A (zh) * 1996-03-13 1997-11-19 株式会社日立制作所 铁电元件及其制备方法
CN1276089A (zh) * 1997-11-10 2000-12-06 株式会社日立制作所 介电元件的制造方法
JP2011003354A (ja) * 2009-06-17 2011-01-06 Sony Corp 正極活物質、正極活物質の製造方法および非水電解質電池
CN105753467A (zh) * 2016-03-07 2016-07-13 中国科学院福建物质结构研究所 一种三元材料、其制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1165380A (zh) * 1996-03-13 1997-11-19 株式会社日立制作所 铁电元件及其制备方法
CN1276089A (zh) * 1997-11-10 2000-12-06 株式会社日立制作所 介电元件的制造方法
JP2011003354A (ja) * 2009-06-17 2011-01-06 Sony Corp 正極活物質、正極活物質の製造方法および非水電解質電池
CN105753467A (zh) * 2016-03-07 2016-07-13 中国科学院福建物质结构研究所 一种三元材料、其制备方法及应用

Also Published As

Publication number Publication date
CN106866144A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN113582683B (zh) 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
CN105732020B (zh) 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN105084892B (zh) 高介单层微型陶瓷电容器基片材料及其制备方法
CN110015894B (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN101386534A (zh) 一种高性能中低温烧结高压陶瓷电容器介质
CN111410530B (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN114773060A (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN113045307B (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
CN106866144B (zh) 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN105399405A (zh) 一种低介微波铁电陶瓷及其制备方法
CN102963928A (zh) 锆钛酸钡基 y5v粉体材料及其制备方法
CN110903085B (zh) TiO2基微波陶瓷基板材料及制备方法和应用
CN110423116B (zh) 一种x7r型陶瓷电容器介质材料及其制备方法
CN110078495B (zh) 介电常数可调的宽温域介质陶瓷材料
CN108083795B (zh) 低温烧结的温度稳定x8r型mlcc介质材料
CN110304916B (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法
CN114093668A (zh) 一种中介电常数低温共烧多层陶瓷电容器用介质陶瓷及制备方法
CN110511026B (zh) 一种x8r型陶瓷电容器介质材料及其制备方法
CN110171965B (zh) 一种npo电容器介质材料及其制备方法
CN103146345B (zh) 可与铜电极共烧的微波介质材料、制备方法及其应用
CN102557672B (zh) 一种添加物及其降低钛酸钡锶电容器陶瓷烧结温度的用途
CN101740219B (zh) 一种制备银内电极多层陶瓷电容器的方法
CN100453504C (zh) 一种温度稳定的电容陶瓷及其制备方法
CN109180177A (zh) 一种x9r型多层陶瓷电容器介质材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant