WO2007129465A1 - 補酵素合成強化によるヒドロキシカルボン酸類の生産方法 - Google Patents

補酵素合成強化によるヒドロキシカルボン酸類の生産方法 Download PDF

Info

Publication number
WO2007129465A1
WO2007129465A1 PCT/JP2007/000470 JP2007000470W WO2007129465A1 WO 2007129465 A1 WO2007129465 A1 WO 2007129465A1 JP 2007000470 W JP2007000470 W JP 2007000470W WO 2007129465 A1 WO2007129465 A1 WO 2007129465A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
gene
strain
nad
production method
Prior art date
Application number
PCT/JP2007/000470
Other languages
English (en)
French (fr)
Inventor
Takashi Morishige
Mitsufumi Wada
Hitoshi Takahashi
Daisuke Mochizuki
Junko Tokuda
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US12/299,646 priority Critical patent/US20090221045A1/en
Priority to EP07737126.8A priority patent/EP2025759B1/en
Priority to KR1020087029543A priority patent/KR101183001B1/ko
Priority to CN200780016224.XA priority patent/CN101535489B/zh
Priority to JP2008514387A priority patent/JP4954985B2/ja
Publication of WO2007129465A1 publication Critical patent/WO2007129465A1/ja
Priority to US13/618,898 priority patent/US9133444B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02011Nicotinate phosphoribosyltransferase (2.4.2.11)

Definitions

  • the present invention relates to a microorganism that produces hydroxycarboxylic acid including glycolic acid, and a method for producing hydroxycarboxylic acid including glycolic acid using a microorganism.
  • Hydroxycarboxylic acids are useful as polymer raw materials and pharmaceutical intermediates, and their efficient production methods are required.
  • glycolic acid hyhydroxyacetic acid
  • Glycolic acid has been used as a raw material for detergents and cosmetics, but has recently attracted attention as a raw material for polyglycolic acid useful as a gas barrier polymer and a medical polymer.
  • the reason for attracting attention as a gas barrier material is that the polyglycolic acid layer has a high oxygen gas barrier property, and it has the performance as a material for packaging altered foods and carbonated drinks in the presence of oxygen. Because it is.
  • Glycolic acid in chemical synthesis products currently on the market contains a considerable amount of impurities, and there is a problem in purity as a polymer raw material. This is because these contaminants not only inhibit the dehydration condensation reaction of glycolic acid, but methoxyacetic acid, one of the contaminants, is a suspected carcinogenic compound and is contained in food and beverage packaging materials. This is because it is not desirable. Of course, it is technically possible to remove impurities by refining, but in fact such a refined product is expensive and is not practical as an inexpensive packaging material.
  • Patent Document 1 an ethylene glycol-containing medium is added with a pipe.
  • the genus Shia P ichia
  • the genus Rhodotoru Ia the genus S porobo I omy ces
  • the Kriveromyces the Kriveromyces
  • the one having the highest glycolic acid accumulation concentration is a method using Pichianaganishii, which has a 30 hour duration.
  • the reaction yielded 35.3 gZL of glycolic acid.
  • Non-patent document 1 reports that for glycolic acid production using Pichia Naganishi, the reaction conditions were further improved, and 105 gZL of glycolic acid was obtained in 120 hours of reaction. .
  • Patent Document 3 by introducing a gene encoding lactaldehyde reductase and a gene encoding lactaldehyde dehydrogenase in the form of a plasmid, by using a microorganism to which these enzyme activities are imparted or enhanced, It is possible to produce glycolic acid and other hydroxycarboxylic acids using aliphatic polyhydric alcohols having hydroxyl groups at the terminals such as ethylene glycol as raw materials. It is disclosed that the productivity of liglycolic acid is improved by destroying the gene encoding acid oxidase and inactivating the enzyme activity.
  • the biosynthetic pathway of nicotinamide adenine dinucleotide in microorganisms consists of the pathway biosynthesized from aspartic acid via quinolinic acid (deno V o pathway) and the nicotine amide produced by metabolism of nicotinamide adenine dinucleotide and the like.
  • pnc B nicotinic acid phospholiposyltransferase gene
  • N a d R is a multifunctional protein and has the following functions important for nicotinamide adenine nucleotide biosynthesis. That is, transport of nicotinamide mononucleotide, which is a precursor of nicotinamide adenine dinucleotide, and further, production of deamidonicotine adenine dinucleotide, a precursor of nicotinamide adenine dinucleotide, from ATP and nicotinic acid liponucleotide. It has also been revealed that it has a function as an enzyme that catalyzes the reaction, nicotinamide mononucleotide adenyltransferase.
  • Non-Patent Document 2 Microorganisms that have disrupted the gene na d R have already been reported in Non-Patent Document 2, but the production of hydroxycarboxylic acids by such microorganisms has not been reported.
  • Non-Patent Document 3 reports that the content of nicotinamide adenine dinucleotide is improved by introducing a pnc B expression vector into Escherichia coli.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-174593
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-174594
  • Patent Document 3 International Publication No. 2005 1 06005 Pamphlet
  • Non-Patent Document 1 Bio s c i. B i o te c h n o l. B i o c h e m., V o l. 65 (1 0), p p. 2265-2270, (200 1)
  • Non-Patent Document 2 J. B a c t e r i o, V o l. 1 87 (8), p p.
  • the problem to be solved by the present invention is to provide a method for producing hydroxycarboxylic acids by a microorganism, which can efficiently produce hydroxycarboxylic acids with a small amount of cells, and a microorganism suitable for the production method. That is.
  • a microorganism having enhanced ability to produce nicotinamide adenine nucleotides is used. Carbonic acid production method.
  • microorganism is a microorganism in which the ability to produce nicotinamide adenine dinucleotide is enhanced by performing at least one genetic manipulation of (1) and (2) below.
  • microorganism is a microorganism in which at least one enzyme activity of lactaldehyde reductase and lactaldehyde dehydrogenase is enhanced.
  • microorganism is a microorganism in which at least one enzyme activity of lactaldehyde reductase and lactaldehyde dehydrogenase is enhanced.
  • the microorganism is an inactivated or reduced microorganism acid activity of glycolate oxidase [1], [3],
  • Nicotinamide adenine dinucleotide production ability is enhanced by enhancing at least one enzyme activity of lactaldehyde reductase and lactaldehyde dehydrogenase and performing at least one genetic manipulation of (1) and (2) below. Enhanced microorganisms.
  • microorganism according to any one of [9], [10], [12], wherein the microorganism is any of the genus Escherichia, Shigella, Salmonella, Ervinia, Yersinia, and Photora Grapes .
  • microorganism according to [11] or [13], wherein the microorganism is any one of Escherichia, Shigella, Salmonella, Ervinia, Yersinia, and Photora grapes.
  • hydroxycarboxylic acids can be efficiently produced with a small amount of cells.
  • a microorganism suitable for production of hydroxycarboxylic acids can be provided.
  • FIG. 1 is a graph showing time-dependent changes in intracellular NAD HZN AD ratio (01 to 1 content, 80 content) in Reference Example 3.
  • the mouth in the figure shows the NADHNAD ratio of An ad RAg Ic DE F / pGAP fuc O-a Id A-ndh strain.
  • the circles in the figure indicate the NADH / NAD ratio of An ad RAg Ic DE F / pGAP fuc O-a I d A strain.
  • FIG. 2 is a graph showing the change over time in the amount of glycolic acid accumulated in Example 9.
  • the circles in the figure indicate the reaction results at 30 ° C.
  • the mouth in the figure shows the reaction results at 35 ° C.
  • ⁇ in the figure indicates the reaction results at 37 ° C.
  • X in the figure indicates the reaction result at 40 ° C.
  • FIG. 3 is a graph showing the change over time in the amount of glycolic acid accumulated in Example 10.
  • ⁇ in the figure indicates the reaction result at pH 7.7.
  • ⁇ in the figure indicates the reaction result at pH 7.2.
  • B shows the reaction results at pH 6.5.
  • X indicates the reaction result at pH 6.0.
  • ⁇ in the figure shows the reaction results at pH 4.3.
  • the present embodiment is a method for producing a hydroxycarboxylic acid.
  • This method uses a microorganism having enhanced ability to produce nicotinamide adenine dinucleotide in a method for producing hydroxycarboxylic acid from an aliphatic polyhydric alcohol having a terminal hydroxyl group using a microorganism.
  • a microorganism is an aliphatic polyvalent having a hydroxyl group at its terminal by using any means regardless of whether or not it originally has the ability to produce a hydroxycarboxylic acid from an aliphatic polyhydric alcohol having a hydroxyl group at its terminal. Any microorganism can be used as long as it is capable of producing hydroxycarboxylic acid from alcohol.
  • the genus Escherichia, the genus Shige II a, the genus Salmonella, the genus Erwinia, the genus Y ersinia, the Photorhabdus examples include microorganisms belonging to the genus, more preferably Escherichiaco Ii Is exemplified.
  • the aliphatic polyhydric alcohol having a hydroxyl group at the end is particularly limited to the structure of an aliphatic compound having a hydroxyl group at the end of the carbon chain and having two or more hydroxyl groups in the molecule.
  • There are no such compounds as ethylene glycol, diethylene glycol, glycerol, 1,3_propanediol, 12_butanediol, 1,3_butanediol, 1,4_butanediol, 1, 2, 4_ Examples include butanetriol.
  • the hydroxycarboxylic acid is one in which one of the terminal carbons having a hydroxyl group in the aliphatic polyhydric alcohol molecule having a hydroxyl group at the terminal is oxidized to form a carboxylic acid.
  • examples of such compounds include glycolic acid, hydroxyethoxyacetic acid, glyceric acid, 3-hydroxypropanoic acid, 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, and 2,4-dihydroxybutanoic acid. it can.
  • ethylene glycol can be suitably used as the aliphatic polyhydric alcohol having a hydroxyl group at the terminal.
  • glycolic acid can be suitably used as the hydroxycarboxylic acid.
  • the microorganism according to the present embodiment has the ability to produce nicotine adenine dinucleotide by performing at least one genetic manipulation of (1) and (2) below.
  • nicotinamide adenine dinucleotide refers to both oxidized and reduced forms unless otherwise specified.
  • NAD oxidized nicotine amide adenine dinucleotide
  • NADH reduced nicotinamide adenine dinucleotide
  • the total content of NAD and NADH is preferably 1.2 times to 10 times that of the microorganism before strengthening.
  • the nad R gene is, for example, Escherichia coli MG 1 655 strain.
  • Escherichia coli MG 1 655 strain For example, the complete nucleotide sequence of genomic DNA of Escherichia coli UMG 1 655 strain (Gen B ankaccession num ber U 00096) Among them, nad R gene is coded from 4 6253 1 7th base to 4626570th base.
  • Salmonella typhimurium nad R is identified by (Jen Bankionionum umb er M 85 ⁇ 8 1.
  • a microorganism in which the nad R gene has been deleted or mutated or substituted can be obtained by an ordinary method well known to those skilled in the art.
  • An example of a microorganism in which the nad R gene has been deleted, mutated, or replaced is Escherichia coli 1 ⁇ 1- 1_1 032 strain.
  • 1 1 032 strains can be used.
  • Escherichia coli MT-1 110 32 the nad R gene has been replaced by a kanamycin resistance gene, and g I c DEF, a gene encoding glycolate oxidase described later, has been replaced by a ⁇ tracycline resistance gene. The substitution results in inactivation of liglycolyl oxidase activity.
  • This strain has a deposit number of FE RM BP- 1 077 3 and has been registered in the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology, National Institute of Advanced Industrial Science and Technology (AIST). Deposits are based on the Budapest Treaty on International Approval of Deposits. This deposit was made on the FE RM P- deposited on February 14th, 2006. It was transferred from 20797.
  • nicotinic acid phospholiposyltransferase is classified into enzyme number 2.4.2.11 according to the International Biochemical Union (hereinafter referred to as "1. UB") enzyme report.
  • a microorganism into which a plasmid incorporating a nicotinic acid phosphoribosyl transferase gene (hereinafter sometimes abbreviated as pnc B) is introduced, an aliphatic polyhydric alcohol having a hydroxyl group at its end is converted to a hydroxycarboxylic acid.
  • pnc B nicotinic acid phosphoribosyl transferase gene
  • the microorganism according to the present embodiment has enhanced ability to regenerate oxidized nicotine amino adenine nucleotides.
  • enhancing the ability to regenerate NAD means that the activity of an enzyme that catalyzes the reaction of converting NADH generated in the production of hydroxycarboxylic acid to NAD by the oxidation reaction of an aliphatic polyhydric alcohol having a hydroxyl group at the end. It means a state that is significantly improved compared to before strengthening.
  • Examples of such enzymes include glutamate dehydrogenase, glucose dehydrogenase, NA DH oxidase, and NADH dehydrogenase.
  • NADH dehydrogenase is preferred as the enzyme that catalyzes the reaction of converting NADH to NAD.
  • Change NADH to NAD For example, when the enzyme that catalyzes the reaction to be converted is Escherichia coli-derived NAD H dehydrogenase, it is preferable that the activity is improved by at least 2 times compared to the wild strain (or microorganism before recombination). .
  • Such microorganisms with improved enzyme activity include, for example, a method of introducing a gene encoding the enzyme into a wild-type microorganism (or a microorganism before recombination) using a gene recombination technique, It can be produced using a method such as introducing a mutation into the promoter of the gene encoding the enzyme.
  • An example of a method for introducing the gene into a wild-type microorganism (or microorganism before recombination) is to introduce the gene into a microorganism in the form of a plasmid.
  • the microorganism according to the present embodiment has enhanced ability to regenerate oxidized nicotine adenine dinucleotide by introducing a plasmid into which a gene of NADH dehydrogenase has been introduced.
  • NADH dehydrogenase is classified into enzyme numbers 1. 6. 5. 3, 1. 6. 99. 3, or 1. 6. 99.5 according to I. UB enzyme committee report, ubiquinone, A generic term for enzymes that reversibly catalyze the reaction of producing NAD from NADH using quinones such as dimethylmenaquinone and menaquinone as electron acceptors.
  • it is an NADH dehydrogenase classified in enzyme number 1. 6. 99. 3 according to the report of I. UB enzyme committee, and Escherichia coli is an example according to Gen B ankaccessionn umb er V0030 o.
  • the NADH dehydrogenase encoded by the well-known ndh gene is shown.
  • an aliphatic polyvalent alkyl having a hydroxyl group at its terminal is used, using a microorganism into which a plasmid incorporating a NADH dehydrogenase gene has been introduced.
  • Hydroxycarboxylic acid can be produced from rucol. Construction of required plasmids and introduction into microorganisms can be performed by conventional methods well known to those skilled in the art.
  • lactaldehyde reductase is classified into enzyme number 1.1. 1. 77 according to the report of I. UB Enzyme Committee, and from 1.2 _propanediol to lactate in the presence of coenzyme NAD.
  • lactaldehyde dehydrogenase is classified into enzyme number 1.2.22 according to the report of I. UB Enzyme Committee.
  • Lactic acid is used in lactate in the presence of NAD, which is a coenzyme. It refers to the generic name of enzymes that catalyze the reaction to be produced, and is classified as enzyme number 1.2.2.21 according to the report of I. UB Enzyme Committee.
  • NAD which is a coenzyme
  • From glycol aldehyde, in the presence of NAD which is a coenzyme It also refers to the generic name of the enzyme glycol aldehyde dehydrogenase that catalyzes the reaction to produce glycolic acid.
  • lactaldehyde aldehyde dehydrogenase and glycolaldehyde dehydrogenase are reported to be the same enzyme in previous literature using Escherichia coli (C aba I lero, t., Et. A I., J. B iol. C he m., V ol. 258, pp. 7788—7792 (1 983)).
  • At least one enzyme activity of lactaldehyde reductase and lactaldehyde dehydrogenase is enhanced. It is preferably 20 times or more, more preferably 100 times or more of the above-mentioned microorganism.
  • Such microorganisms with improved enzyme activity include, for example, a method of introducing a gene encoding the enzyme into a wild-type microorganism (or a microorganism before recombination) using a gene recombination technique, It can be produced by using a method such as introducing a mutation into the promoter of the gene coding for.
  • An example of a method for introducing the gene into a microorganism is to introduce the gene into the microorganism in the form of a plasmid.
  • Methods for preparing genomic DNA used to introduce genes into microorganisms, preparing plasmids, cleaving and ligating DNA, transformation, PCR, designing oligonucleotides as primers, synthesis, etc. are well known to those skilled in the art. It can be done in the usual way known. These methods are described in Sambrook, J. et al.
  • Escherichia coli having improved enzyme activities of lactaldehyde reductase and lactaldehyde dehydrogenase can be prepared as follows.
  • Escherichia coli genomic DNA is used as a template, amplified by PCR using a primer oligonucleotide, and the resulting DNA fragment is digested with a restriction enzyme. Get the fuc O fragment.
  • Escherichia coli genomic DNA was used as a template, amplified by the PCR method using a primer oligonucleotide, and the resulting DNA fragment was restricted to a restriction enzyme. Digest with to get a I d A fragment.
  • GAP DH glyceraldehyde 3_phosphate dehydrogenase
  • the microorganism according to this embodiment inactivates the glycolate oxidase activity or reduces the activity compared to the original activity of the microorganism.
  • glycolate oxidase is classified as enzyme number 1.1.3.5 according to the I.U.B.Enzyme Committee report, and the reaction to produce glyoxylate from glycolic acid is reversible. This is a general term for enzymes that catalyze.
  • Inactivation of glycolate oxidase activity means that the enzyme activity is completely lost.
  • reduction of glycolate oxidase activity means that a part of the enzyme activity disappears, and compared with the original glycolate oxidase activity of microorganisms possessed by wild strains (or microorganisms before recombination). It is preferably 1/2 or less, more preferably 10/10 or less.
  • To inactivate or reduce the activity of glycoxide oxidase introduce or delete a mutation in the gene encoding the protein (hereinafter sometimes abbreviated as g I c DEF gene), or There are methods such as adding an agent that specifically inactivates the protein, or irradiating with ultraviolet rays.
  • the Escherichia coli UMT — 110 3 2 strain can be exemplified as a microorganism in which its glycolate oxidase activity has been inactivated by replacing the gICDF gene with a tetracycline resistance gene.
  • a gene encoding a target enzyme is introduced into a microorganism.
  • the expression “in the form of a plasmid” means that the gene is linked to a vector to produce a recombinant plasmid, which is introduced into the microorganism by a method such as transformation.
  • the number of copies per microbial cell is generally due to the nature of the levicon contained in the plasmid.
  • the object of the present invention can also be achieved by using a plasmid said to be very small. Examples of the plasmid having such a levicon include pACYC 184 (GenBanka cce ssion numbber X06403).
  • microorganisms are cultured and grown using a medium to obtain a necessary amount of microbial cells.
  • the medium used for the culture is not particularly limited as long as it contains a carbon source, a nitrogen source, inorganic ions, and other organic trace components as required.
  • a carbon source glucose, fructose, sugars such as molasses, organic acids such as fumaric acid, succinic acid and succinic acid, alcohols such as methanol, ethanol and glycerol, etc. are used as appropriate.
  • organic and inorganic nitrogen sources such as organic ammonium salts, inorganic ammonium salts, ammonia gas, aqueous ammonia, and protein hydrolysates are used as appropriate.
  • inorganic ions magnesium ions, phosphate ions, potassium ions, iron ions, mangan ions, sulfate ions, and others are appropriately used as necessary.
  • organic trace components vitamins, amino acids and the like and yeast extracts containing these, peptone, corn steep liquor, casein degradation products, and others are used as appropriate.
  • the medium used for the culture is preferably a liquid medium in consideration of the point of being used for industrial production.
  • the culture medium composition is polypeptone 0.5 gZL or more and 10 gZL or less, Fe 2 SO 4 0.02 gZL or more and 0.3 gZL or less, K 2 H PO 4 0.5 gZL or more and 5 gZL or less, KH 2 PO 4 0.5 gZL or more, 5 gZL or less, Mg S0 4 ⁇ 7
  • H 2 O 0.5 gZL or more and 5 gZL or less
  • the culture conditions are not particularly limited,
  • the aeration rate is preferably 0.2 L / min to 3 L / min, and more preferably 0.5 L / min to 2 LZmin, per liter of medium.
  • the stirring speed is preferably 200 rpm or more and 1 000 rpm or less, and more preferably 500 rpm or more and 800 rpm or less. By doing so, it is possible to obtain a microbial cell having a large production amount of hydroxycarboxylic acid per microbial cell weight.
  • the culture can also be performed using a bubble column or the like that can realize the above-described aeration and stirring conditions and supply of dissolved oxygen.
  • the pH is preferably 5 or more and 8 or less, more preferably pH 7.0 or more and 7.4 or less, and most preferably pH 7.2. By doing so, it is possible to obtain bacterial cells having a large amount of hydroxycarboxylic acid production per bacterial cell weight.
  • the temperature is preferably 25 ° C or more and 40 ° C or less, more preferably 33 ° C or more and 37 ° C or less, and most preferably 35 ° C. By doing so, it is possible to obtain bacterial cells having a large production amount of hydroxycarboxylic acid per cell weight.
  • the time required for cultivation should be 12 to 50 hours. Thereby, a microbial cell with much production amount of hydroxycarboxylic acid per microbial cell weight can be obtained.
  • Examples of the solvent used in the production method of the present embodiment include a buffer solution such as a potassium phosphate buffer, a medium used for culturing the above-described microorganism, and pure water. Further, the reaction can be carried out by bringing the microbial cells previously obtained by culturing into contact with a mixed liquid of a raw material aliphatic polyhydric alcohol and a solvent. Examples of the microbial cells include a method of using the culture solution itself after culturing, and a method of collecting and using only the microbial cells from the culture solution. [0053] During the reaction in the production method of the present embodiment, the reaction conditions are not particularly limited, and the reaction is carried out while appropriately controlling pH and temperature.
  • pH is preferably 6 or more and 9 or less, more preferably pH 7.0 or more and 8.0 or less, and most preferably pH 7.2.
  • the temperature is preferably in the range of 20 ° C to 45 ° C, particularly preferably 30 ° C to 40 ° C, and most preferably 35 ° C.
  • the reaction is preferably aerobic.
  • the aeration rate is preferably 0.1 LZmin or more and 2.0 L / min or less per 1 liter of the reaction solution, and more preferably 0.2 Lmin or more and 1. OLzmin or less.
  • the stirring speed is preferably 200 rpm or more and 1 000 rpm or less, and more preferably 400 rpm or more and 800 rpm or less. By doing so, the effect of increasing the amount of hydroxycarboxylic acid produced per amount of cells added to the reaction solution can be obtained.
  • the reaction can also be achieved by using a bubble column or the like that can realize the above-described aeration and stirring conditions and supply of dissolved oxygen.
  • hydroxycarboxylic acid can be obtained with a yield of 80% or more.
  • a method for recovering hydroxycarboxylic acid, which is a product accumulated in the reaction solution obtained as described above, is not particularly limited, but for example, cells are removed from the reaction solution by centrifugation or the like. After that, a method using a synthetic adsorption resin, a method using a precipitating agent, or a method of separating by a normal collection and separation method can be adopted.
  • Escherichia um UMG 1 655 genome DN A has the entire nucleotide sequence of Gen B nkaccession num ber U 0009, which is known as 4626571 from the 7th base in the base sequence 462657 The 0th base encodes the nad R gene.
  • This DNA fragment was cloned into a temperature-sensitive cloning vector p TH 1 8 cs ⁇ (en B ankaccession num ber ABO, 9 6 1 0) (Hashi mo to—Gotoh, T., Gene, 24 1, 1 85- 1 9 1 (2000)) is mixed with Ndel, K pnl, and digested with Ndel and K pnl. After binding with ligase, Escherichia coli DH5 strain (Toyobo Co., Ltd.) To obtain a transformant that grows at 30 ° C. on an LB agar plate containing chloramphenicol 1 O gZm I. The obtained colonies were cultured at 30 ° C.
  • the plasmid thus obtained was transformed into Escherichia coli UMG 1 655 strain at 30 ° C, and placed on an LB agar plate containing chloramphenicol 1 On gXm I and kanamycin 50 U g / m I at 30 ° C.
  • the transformant was obtained by culturing for a while.
  • the obtained transformant was LB liquid medium containing kanamycin 5 OjU g / m I. And inoculated at 30 ° C.
  • it was applied to LB agar plates containing kanamycin 50 / m I so that these cultured cells were obtained, and colonies that grew at 42 ° C were obtained.
  • the obtained colonies were cultured in an LB liquid medium containing kanamycin 50 / m I at 30 ° C, and then applied to LB agar plates containing kanamycin 50 gZm I to obtain colonies that grew at 42 ° C. It was.
  • the kanamycin resistance gene is treated with the restriction enzyme Hind III in which the recognition sequence is present, so that a strain in which the nad R gene is replaced with the kanamycin resistance gene is selected.
  • the obtained strain was named MG 1 655 nad R gene deletion strain (hereinafter sometimes abbreviated as ⁇ nad R strain).
  • Escherichia coli MG 1 655 strain can be obtained from the American Type Culture Collection.
  • SEQ ID NO: 5 T TGG TACCG TT CTGCCAGCAACTGACG
  • SEQ ID NO: 6 TG T CTAGA
  • G TACCT CTG TGCG T CACTGG SEQ ID NO: 7
  • GCT C TAGACGCT T TG T TG TG T TG TGG SEQ ID NO: 8
  • the obtained DNA fragments were digested with restriction enzymes Kpnl and Xbal, Xbal and PstI, respectively, to obtain fragments of about 670 bp and 790 bp, respectively.
  • This DNA fragment was transformed into a temperature-sensitive cloning vector p TH 1 8 cs 1 (Gen B ank accession n umb ABO n 9 ⁇ 1 0) (Hashi mo to—Gotoh, T., Gene, 24 1, 1 85 — 1 9 1 (2000)) was mixed with fragments obtained by digestion with K pnl and P st I, ligated with ligase, transformed into DH 5 strain at 30 ° C, chloramphenicol Transformants were obtained that grew on LB agar plates containing 10 gXm I.
  • the obtained colonies were cultured at 30 ° C for a while in an LB liquid medium containing 10 gZmI of chloramphenicol, and the plasmids were collected from the obtained bacterial cells.
  • the collected plasmid was quenched with XbaI and subjected to a blunt end treatment with T4 DNA polymerase.
  • Transposon T n 10 (G en Bankaccession umb ber J 0 1 830) is used as a template, and oligonucleotides of SEQ ID NO: 9 (CAGCTGACT CGACAT CT TGG T TACCG) and SEQ ID NO: 10 (CAGCTGCAAGAGGG T CAT TATAT TT CG) are used.
  • PCR was performed to obtain a tetracycline resistance gene, and this DNA fragment was treated with T 4 DNA polynucleotide kinase and ligated with the previously blunt-ended plasmid.
  • the resulting plasmid was transformed into Escherichia coli UMG 1 655 strain at 30 ° C and placed on an LB agar plate containing chloramphenicol 10 g / m I and ⁇ tracycline 30 ⁇ gm I at 30 ° Cultivated for a while in C to obtain a transformant.
  • the obtained transformant was inoculated into LB liquid medium containing rabbit tracycline 3 OjU g / m I and cultured at 30 ° C. for 1 hour. Next, to obtain these cultured cells This was applied to LB agar plates containing tetracycline 30 U g / m I to obtain colonies that grew at 42 ° C.
  • the obtained colonies were cultured in an LB liquid medium containing 30 gm I of tetracycline at 30 ° C, applied to an LB agar plate containing 30 U gm I of tetracycline, and grown at 42 ° C. Got.
  • This PCR amplifies an approximately 4.0 kbp fragment in the wild-type strain MG 1 655 and other strains in which g I c DEF has not been replaced by a tetracycline resistance gene, whereas the g I c DEF region In a strain in which a tetracycline resistance gene is substituted, an approximately 2.2 kbp fragment is amplified.
  • a strain in which about 2.2 kbp fragment was amplified by PCR was selected and named MG 1 655 glc DEF deleted strain (hereinafter sometimes abbreviated as I c DEF strain).
  • g I c D E F was deleted from the Ana d R strain obtained in Production Example 1.
  • the obtained strain was named MG 1 655 nad R & g IcD E F deficient strain (hereinafter sometimes abbreviated as ⁇ ad RAg Ic D E F strain).
  • the base sequence of the gene for Escherichia coli lactaldehyde aldehyde reductase (hereinafter sometimes abbreviated as fuc O) has already been reported (G en Bank accessionnumber M 3 1 059).
  • Koenje Richia ⁇ Lactic acid dehydrogenase gene of E. coli (hereinafter a I d A base sequence (which may be abbreviated as “A”) has already been reported (Gen Bankaccession num ber Mo 4 o 41).
  • PCR using the oligonucleotides shown in SEQ ID NO: 1 (GCTCTAGACGGAG AAAGTCTTATGATGGCTAACAGAATGATTCTG) and SEQ ID NO: 1 2 (GTGAAGCTTGCATTTACCAGGCGGTAT GG) using genomic DNA of Escherichia coli MG 1 655 strain as a template.
  • the resulting DNA fragment was digested with restriction enzymes XbaI and HindIII to obtain a fuc O fragment of about 1.2 kbp.
  • I d A the genomic DNA of Escherichia coli UMG 1 655 strain was used as a template, and the oligonucleotides shown in SEQ ID NO: 13 (CGAATTCCGGAGA AAGTCTTATGTCAGTACCCGTTCAACATCC) and SEQ ID NO: 14 (GCTCTAGACTCTTTCACTCATTAAGACTG) were used.
  • SEQ ID NO: 13 CGAATTCCGGAGA AAGTCTTATGTCAGTACCCGTTCAACATCC
  • GCTCTAGACTCTTTCACTCATTAAGACTG GCTCTAGACTCTTTCACTCATTAAGACTG
  • GAPDH glyceraldehyde 3_phosphate dehydrogenase
  • Example 1 Construction of transformant of An ad RAg Ic DE F strain using a lactaldehyde reductase and lactaldehyde dehydrogenase co-expression vector
  • the plasmid p GAP fu cO_a I d A obtained in Production Example 4 was transformed into the ⁇ ad RAg I c DE F strain obtained in Production Example 3, and the LB agar plate containing 50 ⁇ g ampicillin was used. Then, ⁇ ad RAg I c DE F / pGAP fu cO-a I d A strain was obtained by culturing at 37 ° C. for 1 hour.
  • the plasmid p GAP fu cO_a I d A obtained in Production Example 4 was transformed into the I c DE F strain obtained in Production Example 2, and the LB agar plate containing ampicillin 5 O gZmL was incubated at 37 ° C.
  • Ic DE FZ pGAP fu cO-a ld A strain was obtained by culturing for 1 hour.
  • Example 1 LBB roth, Mi II er culture medium (Difco 244620) 25 ml L.
  • a strain obtained in Example 1 was placed in an Erlenmeyer flask as a preculture. Inoculated and cultured at 35 ° C and 120 rpm for 1 hour. The total amount of the pre-cultured solution was transferred to a 1 L culture tank containing 475 g of a medium having the composition shown below (Cultivation device MJ-01, manufactured by Hashishoshi Co., Ltd.) and cultured.
  • Cultivation was performed under atmospheric pressure with an aeration rate of 0.5 LZmin, a stirring speed of 800 rpm, a culture temperature of 35 ° C, and a pH of 7.2 (adjusted with an aqueous NH 3 solution). After the initial glucose is completely depleted under the above conditions, the remaining time is adjusted at a variable rate so that the glucose concentration in the medium is less than 0.1 gZL. A total of 40 g glucose was supplied.
  • the dry cell weight of the cells used in the reaction was determined from the dry weight after a part of the wet cells was dried at 50 ° C.
  • the amount of glycolic acid produced per 1 g of dried cells of the ⁇ adRAgIcDEF / pGAPfucO-aIdA strain was 27.1 g.
  • the IcDEF / pGAPfucO-aIdA strain obtained in Production Example 5 was cultured and glycolic acid produced in the same manner as in Example 2.
  • the amount of glycolic acid produced per 1 g of dried cells of the I c DE F / pGAP f u cO-al d strain was 20.2 g.
  • the ⁇ nadRA IcDEF / pGAPfuucO—aIdA strain and the ⁇ IcDEF / pGAPfuucO-alda strain were cultured in the same manner as in Example 2.
  • the sample for NAD measurement was suspended by adding 400 L of 0.04 mo IL hydrochloric acid aqueous solution per 1.5 mg of the collected wet cells. The suspension was heated at 90 ° C for 3 minutes and then rapidly cooled on ice. Using the supernatant of this treatment solution, a reaction solution having the following composition was prepared. Note that 1 mo I ZLT ri s_HC I with pH 9.0 was used. Alcohol dehydrogenase (A 3263) manufactured by SI GMA as alcohol dehydrogenase is dissolved in TrisH CI (pH 8. 8) of 1 Ommo IL, and 400 units mL (however, 1 unit is pH 8.8, 25).
  • the amount of enzyme required to convert 1 ⁇ mo I ethanol to acetate aldehyde per minute under the condition of ° C was used.
  • 4 of reaction mixture Absorbance at 5 O nm was measured according to the protocol of Tetra Color One (Seikagaku Corporation).
  • a calibration curve was created by measuring a solution of NAD manufactured by SIGM A that had been processed in the same way, and the NAD concentration of the sample was determined.
  • the sample for NADH measurement is 400 mg per 1.5 mg of wet cells collected.
  • a 0.04 mo I ZL aqueous potassium hydroxide solution of L was added and suspended. The suspension was heated at 90 ° C for 3 minutes and then rapidly cooled on ice. Using the supernatant of this treatment solution, a reaction solution having the following composition was prepared. Note that 1 mo ⁇ XL Tris _H C I with pH 8.8 was used. Alcohol dehydrogenase (A 3263) manufactured by SIG MA was dissolved in Tris-HCI (pH 8. 8) of 1 Ommo IL as an alcohol dehydrogenase, and 400 units mL (however, 1 unit was pH 8.8, 25). The amount of enzyme required to convert 1 ⁇ mo I ethanol to petaldehyde per minute under the condition of ° C was used
  • the absorbance at 45 O nm of the reaction solution was measured according to the protocol of Tetra Color One (Seikagaku Corporation).
  • a calibration curve was prepared by measuring a solution of NAD H manufactured by SIGMA and subjected to the same treatment, and the NADH concentration of the sample was determined.
  • n d h The base sequence of the gene for NAD H dehydrogenase in Escherichia coli (hereinafter sometimes abbreviated as n d h) has already been reported (G e n Ba n c a c c es s si o n n umb e r V0030 o).
  • the plasmid pGAP fu cO_a I dA_n dh obtained in Production Example 6 was transformed into the ⁇ ad RAg I c DE F strain obtained in Production Example 3, and ampicillin A nad RAg I c DEF / p GAP fuc O—a I d A—ndh strain was obtained by culturing at 37 ° C. for 1 hour on an LB agar plate containing 50 U gZm L.
  • Example 2 cultivation and glycolic acid production were performed on the ⁇ adRAgIcDEF / pGAPufucO-aIdA-ndh strain obtained in Example 3. For this strain, no growth delay due to the enhancement of n d h was observed compared to the result of culturing in Example 2.
  • a nad RAg I c DEF / p GA P fuc O- a I d A- ndh strain is shown in Table 1 together with the results of Comparative Example 1 and Example 2 together with the results of Comparative Example 1 and Example 2. Indicated.
  • pnc B using the genomic DNA of Escherichia coli MG 1 655 strain as a template, SEQ ID NO: 19 (CG TGCAAT TGCC GGAGAAAG T CT TATGACACAAT T CGCT T CT C) and SEQ ID NO: 20 ( The pnc B fragment of about 1.2 kbp was obtained by amplification by PCR using the oligonucleotide shown in CGCT CTAGAT TAACTGGCT TTTT TAAT ATGCG). Further, the obtained pnc B fragment was treated with T 4 DNA polynucleotide kinase.
  • This DN A fragment was mixed with the pGAP fuc Oa I d A plasmid prepared in Production Example 4 with Hind III, and then blunt-ended and dephosphorylated. After binding using ligase, it was transformed into Escherichia coli DH5 strain (manufactured by Toyobo Co., Ltd.) to obtain a transformant that grew on LB agar plate containing 50 gZmL of ampicillin. The obtained colonies were cultured in an LB liquid medium containing 50 g L of ampicillin at 37 ° C. The plasmids were recovered from the obtained cells, and the plasmids were pGAP fuc O-ald A -Named pnc B.
  • the plasmid pGA P fuc O_a I d A_pnc B obtained in Production Example 7 was transformed into the I c DEF strain obtained in Production Example 2, and the LB agar plate containing 50 g mL of ampicillin was incubated at 37 ° C.
  • the strain IcDEFZpGAPfucO—aIdA—pncB was obtained by culturing for 1 hour.
  • the I c DEF / pGA P fuc Oa I d A-pnc B strain obtained in Example 5 was cultured and glycolic acid produced in the same manner as in Example 2.
  • ⁇ g I c DEF / p GA P fuc Oa I d A-pnc B The amount of glycolic acid produced per unit was 26.7 g.
  • ⁇ g I c DE F / pGAP fu cO-a ld A of Comparative Example 1 Productivity by strengthening pnc B compared to the amount of glycolic acid per 1 g of dried cells (20.2 g) 1. It has improved 3 times.
  • the I c DE F / pGAP fu cO-a I d A-pnc B strain obtained in Example 5 and the control I c DE F / pGAP fu cO-a ld A were the same as in Reference Example 1. Culture and intracellular NAD and NADH levels were measured. As a result, the amount of NAD and NADH in the I c DE F / pGAP fu cO-a I d A-pnc B strain was 2.6 times that of the ⁇ g I c DE F / pGAP fuc 0_ a I d A strain, respectively. 2.1.
  • ⁇ nad RA I c DE F / pGAP fu cO—a I dA_n dh strain and ⁇ ad RAg I c DE FZpGAP fu cO—a I d A strain were cultured and produced in the same manner as in Example 2. .
  • Figure 1 shows the NA D HZNA D ratio (NADH content, NAD content) at this time.
  • the horizontal axis shows the reaction time (hr), and the vertical axis shows the ratio of 01 to 10 (NADH content NAD content).
  • NADH / NAD ratio was always small, indicating that NAD was regenerated from NADH.
  • ndh The base sequence of the gene for NAD H dehydrogenase in Escherichia coli (hereinafter sometimes abbreviated as ndh) has already been reported (Gen Bankaccessionum umb er V00306).
  • ndh 3 ⁇ 4 To obtain Escherichia coli UMG 1655 strain using genomic DNA as template, amplified by PCR using the oligonucleotides shown in SEQ ID NO: 17 and SEQ ID NO: 21 (AAAATAAGCTTCGATTA ATGCAACTTCAAACG) The obtained DNA fragment was digested with restriction enzymes Eco RI and Hind III to obtain an ndh fragment of about 1.3 kbp.
  • the GAPDH promoter in order to obtain the GAPDH promoter, it was obtained by amplifying by PCR using the oligonucleotides shown in SEQ ID NO: 15 and SEQ ID NO: 16 using genomic DNA of Escherichia coli MG 1655 strain as a template.
  • the DNA fragment was digested with the restriction enzyme Eco RI to obtain a DNA fragment encoding the GAPD H promoter of about 1 OO bp.
  • This DNA fragment was ligated with the above-mentioned Eco RI-treated and dephosphorylated plasmid using ligase, then transformed into Escherichia] ⁇ 5 strain (manufactured by Toyobo Co., Ltd.), and ampicillin 50 ⁇ Grows on LB agar plates containing gZmL A transformant was obtained. The obtained colonies were cultured at 37 ° C. in an LB liquid medium containing ampicillin 50 gZmL. The plasmid was recovered from the obtained cells, and it was confirmed that the fragment of the GAP DH promoter was correctly inserted. This plasmid was named pGAP ndh.
  • ⁇ nad R strain obtained in Production Example 1 and ⁇ nadg I c DE F obtained in Production Example 3 were transformed with the plasmid pGAP ndh obtained in Production Example 8 and contained ampicillin 50 ⁇ gZm L.
  • An ad RZpGAP ndh strain and ⁇ ad RAg Ic DE F / pGAP ndh strain were obtained by culturing at 37 ° C. on an LB agar plate.
  • E. coli wild strain MG 1 655 was transformed with the plasmid pGAP ndh obtained in Production Example 8, and cultured at 37 ° C for 1 mg in 1_ agar plate containing ampicillin 50 ⁇ 1_. 1 655 pGAP ndh strain was obtained.
  • ⁇ ad RZpGAP ndh strain obtained in Example 7 in a test tube in which 5 mL of a medium in which glucose was added to a final concentration of 0.2% in LB Broth, Miller culture medium (Difco 244620), An ad RAg I c DE F / pGAP ndh strain and ⁇ ad R strain, MG 1 655 / p GAP ndh strain, wild strain MG 1 655 strain as the control were inoculated, respectively, and cultured at 37 ° C, 200 r Stirring culture was performed at pm.
  • Table 2 shows the amount of glycolic acid produced per gram of wet cells of each strain.
  • Example 3 The ⁇ adRAgIcDEF / pGAPfuucO-aIdA_ndh strain obtained in Example 3 was cultured in the same manner as in Example 2. However, the concentration of polypeptone in the medium was 1 gZL. The resulting bacterial cells were subjected to glycolic acid production reaction in the same manner as in Example 2. However, the amount of wet cells added to the reaction is 7 g, the stirring speed is 750 rpm, the reaction time is 24 hours, and the reaction temperature is 30 ° C, 35 ° C, 37 ° C, and 40 ° C. Carried out.
  • Figure 2 shows the amount of glycolic acid accumulated at this time. The horizontal axis shows the reaction time (hr), and the vertical axis shows glycolic acid accumulation (gZL).
  • Example 3 The ⁇ adRAgIcDEF / pGAPfuucO_aIdA_ndh strain obtained in Example 3 was cultured in the same manner as in Example 2. However, the concentration of polypeptone in the medium was 1 gZL. The resulting bacterial cells were subjected to glycolic acid production reaction in the same manner as in Example 2. However, the pH of the reaction solution was controlled under the conditions of pH 7.7, pH 7.2, pH 6.5, pH 6.0, and pH 4.3. Figure 3 shows the amount of glycolic acid accumulated at this time. The horizontal axis represents the reaction time (hr), and the vertical axis represents glycolic acid accumulation concentration (g / l).
  • glycolic acid production by ⁇ nadRAgIcDEF / pGAPfuucO-aIdA-ndh strain is possible at pH 6.0 or higher.
  • the method for producing hydroxycarboxylic acid and the microorganism of the present invention can be used for the production of hydroxycarboxylic acids such as glycolic acid useful as polymer raw materials and pharmaceutical intermediates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 微生物内のnadR遺伝子を欠失、変異、若しくは置換させる、または、ニコチン酸ホスホリボシルトランスフェラーゼをコードする遺伝子を導入することにより、ニコチンアミドアデニンジヌクレオチド生産能を向上させた微生物を用いてヒドロキシカルボン酸を生産する。

Description

明 細 書
補酵素合成強化によるヒドロキシカルボン酸類の生産方法 技術分野
[0001 ] 本発明は、 グリコール酸を始めとするヒドロキシカルボン酸を生産する微 生物と、 微生物を用いたグリコール酸を始めとするヒドロキシカルボン酸の 生産方法に関するものである。
背景技術
[0002] ヒドロキシカルボン酸類はポリマー原料や医薬中間体として有用で、 その 効率的な生産方法が求められている。
その一例としてグリコール酸 (ひーヒドロキシ酢酸) が挙げられる。 グリ コール酸は、 洗浄剤や化粧品原料として利用されてきたが、 近年、 ガスバリ ァ性ポリマーや医療用ポリマーとして有用なポリグリコール酸の原料として 注目されている。 ガスバリァ性材料として注目されている理由はポリグリコ ール酸層が高い酸素ガスバリァ性を有しており、 酸素の存在下で変質しゃす い食品や炭酸飲料を包装するための材料としての性能を備えているからであ る。
[0003] 現行市販されている化学合成品のグリコール酸は少なからず夾雑物を含ん でおり、 ポリマー原料としては純度的に問題がある。 なぜならこれらの夾雑 物はグリコール酸の脱水縮合反応を阻害するのみならず、 夾雑物の一つであ るメ トキシ酢酸が発癌性の疑いのある化合物であり、 食品や飲料の包材中に 含まれることが望ましくないからである。 無論、 精製によって夾雑物を除く ことは技術的には可能であるが、 実際にそのような精製品は価格が高くなり 、 安価な包材原料としては現実的でない。
[0004] 化学合成品のグリコール酸に見られる上記の問題点を回避するため、 ェチ レングリコールを原料としたバイォ法によるグリコール酸製造の試みが行わ れている。
特許文献 1及び特許文献 2において、 エチレングリコール含有培地に、 ピ シァ (P i c h i a) 属、 ロードトリレラ (R h o d o t o r u I a) 属、 ス ポロポロマイセス (S p o r o b o I omy c e s) 属、 クリベロマイセス
( I u y v e r omy c e s) f禹、 卜ノレロノンス (T o r u I o p s ι s ) 属に属する酵母、 ノカルディア (N o c a r d i a) 属に属する菌株、 口 ドコッカス (R h o d o c o c c u s) 属に属する菌株、 またはェシェリヒ ァ - コリ B (E s c h e r i c h i a c o l i B) 株を培養し、 ±咅養液 中からグリコ一ル酸を分離■採取することを特徴とする微生物によるグリコ ール酸の生産方法が開示されている。
特許文献 1及び特許文献 2の実施例に記載されているグリコール酸生産方 法の中でグリコール酸蓄積濃度が最も高いものは、 ピシァ■ナガニシィ (P i c h i a n a g a n i s h i i ) を用いた方法であり、 30時間の反応 で 35. 3 gZLのグリコール酸が得られている。 ピシァ■ナガ二シィを用 いたグリコール酸生産については更に、 反応条件の改善がなされ、 1 20時 間の反応で 1 05 gZLのグリコール酸が得られることが非特許文献 1で報 告されている。
[0005] 特許文献 3においてはラクトアルデヒドレダクターゼをコードする遺伝子 とラクトアルデヒドデヒドロゲナーゼをコードする遺伝子をプラスミ ドの形 態で導入することでこれらの酵素活性が付与又は強化された微生物を用いる ことにより、 エチレングリコールをはじめとする末端に水酸基を有する脂肪 族多価アルコールを原料として、 グリコール酸をはじめとするヒドロキシカ ルボン酸を生産することが可能であること、 さらには微生物が有しているグ リコール酸ォキシダーゼをコードする遺伝子を破壊し該酵素活性を不活性化 させることによリグリコール酸の生産性が向上することが開示されている。
[0006] 上記した従来の方法によるグリコール酸をはじめとするヒドロキシカルボ ン酸の生産反応においては反応に供する菌体量が多いがために、 それに伴う 製造コストの上昇ゃ菌体に由来する不純物の夾雑、 さらにはヒドロキシカル ボン酸類の製造後に菌体を廃棄するのに多大な労力とコス卜がかかるという 問題点があげられる。 微生物におけるニコチンアミ ドアデニンジヌクレオチドの生合成経路は、 ァスパラギン酸からキノリン酸を経由して生合成される経路 (d e n o V o経路) と、 ニコチンアミ ドアデニンジヌクレオチド等の代謝により生じる ニコチンアミ ドをリサイクルする経路 (リサイクル経路) とが存在し、 ェシ エリヒア (E s c h e r i c h i a) 属、 ン 7"ラ (S h i g e I I a ) J禹、 サルモネラ (S a I m o n e I I a) 属、 エルビニァ ( E r w i n i a ) 属 、 エルシニア (Y e r s i n i a) 属、 フォ トラブドウス (P h o t o r h a b d u s) 属をはじめとする腸内細菌科におけるこれらの生合成経路は、 n a d R (文献によっては n a d I と呼ばれることもある) 遺伝子がコード するタンパク質 (以降 N a d Rと記す) により制御されていることが知られ ている。 すなわち、 N a d Rはァスパラギン酸からの d e n o v o経路上 の L—ァスパラギン酸ォキシダーゼ遺伝子とキノリン酸シンターゼ遺伝子、 およびリサイクル経路上のニコチン酸ホスホリポシルトランスフエラーゼ遺 伝子 (以下 p n c Bという) の発現を抑制することが知られている。
[0007] —方、 N a d Rは多機能タンパク質であり、 ニコチンアミ ドアデニンジヌ クレオチド生合成にとって重要な以下の機能をも有している。 すなわち、 二 コチンアミ ドアデニンジヌクレオチドの前駆体となるニコチンアミ ドモノヌ クレオチドの輸送、 さらには AT Pとニコチン酸リポヌクレオチドからニコ チンアミ ドアデニンジヌクレオチドの前駆体であるデアミ ドニコチンアミ ド アデニンジヌクレオチドを生成する反応を触媒する酵素、 ニコチンアミ ドモ ノヌクレオチドアデニルトランスフェラーゼとしての機能も有していること が明らかとなっている。
遺伝子 n a d Rを破壊した微生物は、 非特許文献 2において既に報告され ているが、 こうした微生物によるヒドロキシカルボン酸の生産は報告されて いない。
[0008] 非特許文献 3においては、 ェシエリヒア■ コリに p n c Bの発現ベクター を導入することでニコチンアミ ドアデニンジヌクレオチドの含量が向上する ことが報告されている。 特許文献 1 :特開平 1 0— 1 74593号公報
特許文献 2:特開平 1 0— 1 74594号公報
特許文献 3:国際公開第 2005 1 06005号パンフレツ ト
非特許文献 1 : B i o s c i . B i o t e c h n o l . B i o c h e m. , V o l . 65 ( 1 0) , p p. 2265-2270, (200 1 )
非特許文献 2: J. B a c t e r i o に , V o l . 1 87 (8) , p p.
2774-2784, (2005)
非特許文!^: M e t a b o l i c E n g i n e e r i n g, V o l . 4 , p p. 238-247, (2002)
発明の開示
[0009] 本発明が解決しょうとする課題は、 ヒドロキシカルボン酸類を少ない菌体 量で効率よく生産することができる、 微生物によるヒドロキシカルボン酸類 の生産方法、 および該生産方法に適した微生物を提供することである。
[0010] 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、 微生物を 用いて末端に水酸基を有する脂肪族多価アルコールからヒドロキシカルボン 酸を生産する方法において、 ニコチンアミ ドアデニンジヌクレオチド生産能 を強化した微生物を用いることによりヒドロキシカルボン酸類を効率よく生 産できることを見出した。
即ち、 本発明は以下の 〔1〕 から 〔1 9〕 に記載のとおりである。
[0011] 〔1〕 微生物を用いて末端に水酸基を有する脂肪族多価アルコールからヒ ドロキシカルボン酸を製造する方法において、 ニコチンアミ ドアデニンジヌ クレオチド生産能を強化した微生物を用いることを特徴とするヒドロキシカ ルボン酸の生産方法。
〔2〕 微生物が、 下記 (1 ) および (2) の少なくとも一つの遺伝子操作 を行うことによりニコチンアミ ドアデニンジヌクレオチド生産能を強化した 微生物であることを特徴とする 〔1〕 の生産方法。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリポシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
[0012] 〔3〕 微生物が、 酸化型ニコチンアミ ドアデニンジヌクレオチド再生能を 強化した微生物であることを特徴とする 〔1〕 記載の生産方法。
〔4〕 微生物が、 N A D Hデヒドロゲナーゼの遺伝子を組み込んだプラス ミ ドを導入することにより酸化型ニコチンアミ ドアデニンジヌクレオチド再 生能を強化した微生物であることを特徴とする 〔3〕 の生産方法。
〔5〕 微生物が、 ラクトアルデヒドレダクターゼおよびラクトアルデヒド デヒドロゲナーゼの少なくとも 1つの酵素活性を強化した微生物であること を特徴とする 〔1〕 記載の生産方法。
〔6〕 微生物が、 ラクトアルデヒドレダクターゼおよびラクトアルデヒド デヒドロゲナーゼの少なくとも 1つの酵素活性を強化した微生物であること を特徴とする 〔3〕 記載の生産方法。
[0013] 〔7〕 微生物が、 グリコール酸ォキシダーゼ活性を不活性化または微生物 本来の活性よりも低減した微生物であることを特徴とする 〔1〕 、 〔3〕 、
〔5〕 又は 〔6〕 記載の生産方法。
〔8〕 末端に水酸基を有する脂肪族多価アルコールがエチレングリコール であり、 ヒドロキシカルボン酸がグリコール酸であることを特徴とする 〔1 ] - C 7 ] のいずれかに記載の生産方法。
〔9〕 ラクトアルデヒドレダクターゼおよびラクトアルデヒドデヒドロゲ ナーゼの少なくとも 1つの酵素活性を強化し、 かつ、 下記 (1 ) および (2 ) の少なくとも一つの遺伝子操作を行うことによりニコチンアミ ドアデニン ジヌクレオチド生産能を強化した微生物。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリボシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
[0014] 〔1 0〕 酸化型ニコチンアミ ドアデニンジヌクレオチド再生能を強化した ことを特徴とする 〔9〕 記載の微生物。
〔1 1〕 N A D Hデヒドロゲナーゼの活性を強化し、 かつ、 下記 (1 ) お よび (2 ) の少なくとも一つの遺伝子操作を行うことによりニコチンアミ ド アデニンジヌクレオチド生産能を強化した微生物。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリポシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
〔1 2〕 グリコール酸ォキシダーゼ活性を不活性化または微生物本来の活 性よりも低減したことを特徴とする 〔9〕 または 〔1 0〕 に記載の微生物。
〔1 3〕 グリコール酸ォキシダーゼ活性を不活性化または微生物本来の活 性よりも低減したことを特徴とする 〔1 1〕 に記載の微生物。
〔1 4〕 微生物がェシヱリヒア属、 シゲラ属、 サルモネラ属、 エルビニァ 属、 エルシニア属、 フォトラブドウス属のいずれかである 〔1〕 〜 〔8〕 の いずれかに記載の生産方法。
〔1 5〕 微生物がェシエリヒア■ コリである 〔1 4〕 に記載の生産方法。
〔1 6〕 微生物がェシヱリヒア属、 シゲラ属、 サルモネラ属、 エルビニァ 属、 エルシニア属、 フォトラブドウス属のいずれかである 〔9〕 、 〔1 0〕 、 〔1 2〕 のいずれかに記載の微生物。
〔1 7〕 微生物がェシヱリヒア属、 シゲラ属、 サルモネラ属、 エルビニァ 属、 エルシニア属、 フォトラブドウス属のいずれかである 〔1 1〕 または 〔 1 3〕 に記載の微生物。
〔1 8〕 微生物がェシェリヒア■ コリである 〔 1 6〕 に記載の微生物。 〔1 9〕 微生物がェシエリヒア■ コリである 〔1 7〕 に記載の微生物。
[0015] 本発明によりヒドロキシカルボン酸類を少ない菌体量で効率よく生産する ことができる。 また、 本発明によればヒドロキシカルボン酸類の生産に適し た微生物を提供することができる。
図面の簡単な説明
[001 6] 上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好 適な実施の形態、 およびそれに付随する以下の図面によってさらに明らかに なる。 [0017] [図 1]参考例 3における細胞内の NAD HZN AD比 ( 01~1含量 八0 含量) の経時変化を示したグラフである。 図中の口は、 An a d RAg I c DE F/pGAP f u c O- a I d A- n d h株の N A D H N A D比を 示す。 図中の〇は、 An a d RAg I c DE F/pGAP f u c O- a I d A株の N A D H/N A D比を示す。
[図 2]実施例 9におけるグリコール酸蓄積量の経時変化を示したグラフである 。 図中の〇は 30°Cでの反応結果を示す。 図中の口は 35°Cでの反応結 果を示す。 図中の△は 37 °Cでの反応結果を示す。 図中の Xは 40°Cで の反応結果を示す。
[図 3]実施例 1 0におけるグリコール酸蓄積量の経時変化を示したグラフであ る。 図中〇は pH7. 7での反応結果を示す。 図中△は pH7. 2での反 応結果を示す。 図中ロは pH6. 5での反応結果を示す。 図中 Xは pH6 . 0での反応結果を示す。 図中◊は pH4. 3での反応結果を示す。
発明を実施するための最良の形態
[0018] 以下に本発明を詳しく説明する。
[0019] 本実施形態は、 ヒドロキシカルボン酸の生産方法である。 この方法は、 微 生物を用いて末端に水酸基を有する脂肪族多価アルコールからヒドロキシカ ルボン酸を製造する方法において、 ニコチンアミ ドアデニンジヌクレオチド 生産能を強化した微生物を用いるものである。
[0020] 微生物とは、 末端に水酸基を有する脂肪族多価アルコールからヒドロキシ カルボン酸を生産する能力を本来有するか否かに関わらず、 何らかの手段を 用いることにより末端に水酸基を有する脂肪族多価アルコールからヒドロキ シカルボン酸を生産する能力を有し得る微生物であればいずれの微生物であ つてよい。 好ましくはェシェリヒア (E s c h e r i c h i a) 属、 シゲラ (S h i g e I I a ) 属、 サルモネラ (S a I mo n e I I a) 属、 ェルビ ニァ (E r w i n i a) 属、 エノレシニァ (Y e r s i n i a) 属、 フォトラ ブドウス (P h o t o r h a b d u s) 属に属する微生物などが例示され、 より好ましくはェシエリヒア ' コリ (E s c h e r i c h i a c o I i ) が例示される。
[0021 ] また、 末端に水酸基を有する脂肪族多価アルコールとは、 炭素鎖の末端に 水酸基を有し、 かつ分子内に 2つ以上の水酸基を有する脂肪族化合物であれ ばその構造に特に制限はないが、 そのような化合物としてエチレングリコー ル、 ジエチレングリコール、 グリセロール、 1 , 3 _プロパンジオール、 1 2 _ブタンジオール、 1 , 3 _ブタンジオール、 1 , 4 _ブタンジオール , 1 , 2 , 4 _ブタントリオールなどが例示できる。
[0022] また、 ヒドロキシカルボン酸とは、 上記した末端に水酸基を有する脂肪族 多価アルコール分子内の水酸基を有する末端炭素の一つが酸化されてカルボ ン酸になっているものである。 そのような化合物としてグリコール酸、 ヒド ロキシエトキシ酢酸、 グリセリン酸、 3—ヒドロキシプロパン酸、 2—ヒド ロキシブタン酸、 3—ヒドロキシブタン酸、 4—ヒドロキシブタン酸、 2, 4—ジヒドロキシブタン酸などが例示できる。
[0023] 本実施形態では、 末端に水酸基を有する脂肪族多価アルコールとして、 ェ チレングリコールを好適に用いることができる。 また、 ヒドロキシカルボン 酸として、 グリコール酸を好適に用いることができる。
[0024] 本実施形態に係る微生物は、 下記 (1 ) および (2 ) の少なくとも一つの 遺伝子操作を行うことによりニコチンアミ ドアデニンジヌクレオチド生産能 を強化される。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリポシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
[0025] ここで、 ニコチンアミ ドアデニンジヌクレオチドとは、 酸化型および還元 型の明記がない限りそのどちらをも指す。
ニコチンアミ ドアデニンジヌクレオチド生産能が強化されたとは、 微生物 内の酸化型ニコチンアミ ドアデニンジヌクレオチド (以降 N A Dと略するこ とがある) および還元型ニコチンアミ ドアデニンジヌクレオチド (以降 N A D Hと略することがある) の含量の合計が、 微生物の野生株 (又は組換え前 の微生物) に対して有意に向上している状態を指し、 好ましくは NAD、 N A D Hの合計含量が、 強化前の微生物の 1. 2倍乃至 1 0倍である。
[0026] また、 n a d R遺伝子とは、 ェシェリヒア■ コ MG 1 655株を例とす ると、 ェシエリヒア■ コ UMG 1 655株のゲノム DN Aの全塩基配列 (G e n B a n k a c c e s s i o n n umb e r U 00096) 中、 4 6253 1 7番目の塩基から 4626570番目の塩基において n a d R遺 伝子がコードされている。 またサルモネラ■ティフィムリウムの n a d R遺 125十は、 (j e n B a n k a c c e s s i o n n umb e r M 85 Π 8 1により明らかとされている。 上記微生物以外にもシゲラ属、 エルビニァ属 、 エルシニア属、 フォトラブドウス属をはじめとする腸内細菌科において η a d R遺伝子が存在していること力《示されている (G e r a s i mo v a, AV. , e t . a l . , J o u r n a l o r B i o i n f o r ma t ι c s a n d C omp u t a t i o n a l B i o l o g y, V o l . 3 , p p. 1 007— 1 0 1 9 (2005) ) 。
[0027] n a d R遺伝子について欠失若しくは変異させ、 又は置換させた微生物は 、 当業者によく知られている通常の方法で得ることができる。 n a d R遺伝 子について欠失若しくは変異させ、 又は置換させた微生物の一例としてェシ エリヒア ' コリ1\1丁_ 1 1 032株が例示できる。
[0028] ヒドロキシカルボン酸の生産方法においては、 ェシェリヒア■ コ MT—
1 1 032株を用いることが可能である。 ェシェリヒア■ コ MT— 1 1 0 32株は、 n a d R遺伝子がカナマイシン耐性遺伝子に置換されており、 か つ、 後述するグリコール酸ォキシダーゼをコードする遺伝子である g I c D E Fが亍トラサイクリン耐性遺伝子に置換されることによリグリコ一ル酸ォ キシダーゼ活性が不活性化している。 本菌株は、 F E RM B P— 1 077 3の寄託番号で、 茨城県つくば市東 1丁目 1番 1号中央第 6の独立行政法人 産業技術総合研究所特許生物寄託センターに、 特許手続き上の微生物の寄託 等の国際承認に関するブタペスト条約に基づいて寄託されている。 なお、 本 寄託は、 平成 1 8年 (2006年) 2月 1 4日に寄託された F E RM P- 20797より移管されたものである。
[0029] ここで、 ニコチン酸ホスホリポシルトランスフェラーゼとは、 国際生化学 連合 (以下、 「 1. U. B. 」 という) 酵素委員会報告に準拠した酵素番号 2. 4. 2. 1 1に分類され、 ニコチン酸と 5_ホスホリボシル _ 1 一二 リン酸から、 ニコチン酸モノヌクレオチドを生成する反応を可逆的に触媒す る酵素の総称を指す。
[0030] ニコチン酸ホスホリボシルトランスフエラーゼの遺伝子 (以下、 p n c B と略することがある) を組み込んだプラスミ ドを導入した微生物を用いて、 末端に水酸基を有する脂肪族多価アルコールからヒドロキシカルボン酸を生 産することができる。 微生物への遺伝子の導入に用いられるゲノム DNAの 調製、 プラスミ ドの調製、 DNAの切断および連結、 形質転換、 PCR (P o I y m e r a s e C h a ι n Re a c t ι o n 、 プフイマ一として 用いるオリゴヌクレオチドの設計、 合成等の方法は、 当業者によく知られて いる通常の方法で行うことができる。 これらの方法は、 S amb r o o k,
J . , e t . a I . , Mo l e c u l a r C l o n i n A L a b o r a t o r y Ma n u a l , S e c o n d E d i t i o n , Co l d
S p r i n g H a r b o r L a b o r a t o r y P r e s s, ( 1 989) 等に記載されている。
[0031] また、 本実施形態に係る微生物は、 酸化型ニコチンアミ ドアデニンジヌク レオチド再生能を強化される。 ここで、 NAD再生能を強化するとは、 末端 に水酸基を有する脂肪族多価アルコールの酸化反応によりヒドロキシカルボ ン酸を生産する際に生じた NADHを NADに変換する反応を触媒する酵素 の活性が、 強化前に比べ有意に向上している状態を意味する。 そのような酵 素としてグルタミン酸デヒドロゲナーゼ、 グルコースデヒドロゲナーゼ、 N A DHォキシダーゼ、 NADHデヒドロゲナーゼが例示される。 NAD再生 能を強化する場合、 その後の精製等の工程において負荷となるような化合物 が増加しないことが好ましい。 N A D Hを N A Dに変換する反応を触媒する 酵素として、 N A D Hデヒドロゲナーゼが好ましい。 NADHを NADに変 換する反応を触媒する酵素がェシエリヒア■ コリ由来 NAD Hデヒドロゲナ ーゼである場合を例とすると、 その活性が野生株 (又は組換え前の微生物) に比べ 2倍以上向上していることが好ましい。
[0032] こうした酵素活性が向上した微生物は、 例えば、 該酵素をコードする遺伝 子を遺伝子組換え技術を用いて野生型の微生物 (又は組換え前の微生物) に 導入する方法や、 ゲノム内において該酵素をコードする遺伝子のプロモータ 一に変異を導入するなどの方法を用いて作出することができる。 野生型の微 生物 (又は組換え前の微生物) に該遺伝子を導入する方法としては、 該遺伝 子をプラスミ ドの形態で微生物に導入することが例示できる。 微生物への遺 伝子の導入に用いられるゲノム DN Aの調製、 プラスミ ドの調製、 DNAの 切断および連結、 形質転換、 P CR、 プライマーとして用いるオリゴヌクレ ォチドの設計、 合成等の方法は、 当業者によく知られている通常の方法で行 うことができる。 これらの方法は、 前記 S a m b r o o J. らの文献に 記載されている。
[0033] また、 本実施形態に係る微生物は、 NADHデヒドロゲナーゼの遺伝子を 組み込んだプラスミ ドを導入されることにより酸化型ニコチンアミ ドアデニ ンジヌクレオチド再生能を強化される。 ここで、 NADHデヒドロゲナーゼ とは、 I . U. B. 酵素委員会報告に準拠した酵素番号 1. 6. 5. 3、 1 . 6. 99. 3、 または 1. 6. 99. 5に分類され、 ュビキノン、 ジメチ ルメナキノン、 メナキノン等のキノン類を電子受容体として NADHから N A Dを生成する反応を可逆的に触媒する酵素の総称を指す。 好ましくは I . U. B. 酵素委員会報告に準拠した酵素番号 1. 6. 99. 3に分類される NADHデヒドロゲナーゼであり、 ェシェリヒア . コリを例とすると G e n B a n k a c c e s s i o n n umb e r V0030 oによつ" L幸艮告 されている n d h遺伝子にコードされている NADHデヒドロゲナーゼが例 示される。
[0034] 本実施形態においては、 NADHデヒドロゲナーゼの遺伝子を組み込んだ プラスミ ドを導入した微生物を用いて、 末端に水酸基を有する脂肪族多価ァ ルコールからヒドロキシカルボン酸を生産することができる。 必要となるプ ラスミ ドの構築や微生物への導入は当業者によく知られている通常の方法で 行うことができる。
[0035] また、 本実施形態に係る微生物は、 ラクトアルデヒドレダクターゼおよび ラクトアルデヒドデヒドロゲナーゼの少なくとも 1つの酵素活性が強化され る。 ここで、 ラクトアルデヒドレダクターゼとは、 I . U. B. 酵素委員会 報告に準拠した酵素番号 1. 1. 1. 77に分類され、 1. 2 _プロパンジ オールから、 補酵素である NADの存在下でラクトアルデヒドを生成する反 応を可逆的に触媒する酵素の総称を指す。
[0036] また、 ラクトアルデヒドデヒドロゲナーゼとは、 I . U. B. 酵素委員会 報告に準拠した酵素番号 1. 2. 1. 22に分類され、 ラクトアルデヒドか ら、 補酵素である N A Dの存在下で乳酸を生成する反応を触媒する酵素の総 称を指し、 且つ I . U. B. 酵素委員会報告に準拠した酵素番号 1. 2. 1 . 2 1に分類され、 グリコールアルデヒドから、 補酵素である NADの存在 下でグリコール酸を生成する反応を触媒する酵素グリコールアルデヒドデヒ ドロゲナーゼの総称も併せて指すものである。 なぜならば大腸菌を用いた先 行文献で、 ラクトアルデヒドデヒドロゲナーゼとグリコールアルデヒドデヒ ドロゲナーゼは同一の酵素であることが報告されているからである (C a b a I l e r o, t . , e t . a I . , J. B i o l . C h e m. , V o l . 258, p p. 7788— 7792 ( 1 983) ) 。
[0037] また、 ラクトアルデヒドレダクターゼおよびラクトアルデヒドデヒドロゲ ナーゼの少なくとも 1つの酵素活性を強化したとは、 大腸菌を例にすると、 これらの酵素の少なくとも 1つの酵素活性が、 野生株 (又は組換え前の微生 物) の 20倍以上であることが好ましく、 より好ましくは 1 00倍以上であ る。 こうした酵素活性が向上した微生物は、 例えば、 該酵素をコードする遺 伝子を遺伝子組換え技術を用いて野生型の微生物 (又は組換え前の微生物) に導入する方法や、 ゲノム内において該酵素をコードする遺伝子のプロモー ターに変異を導入するなどの方法を用いて作出することができる。 野生型の 微生物 (又は組換え前の微生物) に該遺伝子を導入する方法としては、 該遺 伝子をプラスミ ドの形態で微生物に導入することが例示できる。 微生物への 遺伝子の導入に用いられるゲノム DN Aの調製、 プラスミ ドの調製、 DNA の切断および連結、 形質転換、 P CR、 プライマーとして用いるオリゴヌク レオチドの設計、 合成等の方法は、 当業者によく知られている通常の方法で 行うことができる。 これらの方法は、 前記 S a m b r o o k, J . らの文献 に記載されている。
[0038] たとえば、 ラクトアルデヒドレダクターゼおよびラクトアルデヒドデヒド ロゲナーゼの酵素活性が向上したェシェリヒア■ コリは、 以下のように作製 することができる。
[0039] ェシェリヒア■ コリのラクトアルデヒドレダクターゼの遺伝子 (以下、 f u c Oと略することがある) の塩基配列はすでに報告されている (G e n B a n k a c c e s s i o n n umb e r M3 1 059) 。 ま 7:ェンェ リヒア■ コリのラクトアルデヒドデヒドロゲナーゼの遺伝子 (以下、 a I d Aと略することがある) の塩基配列もすでに報告されている (G e n B a n k a c c e s s i o n n umb e r Mo 4 o 4 1 ) 。
[0040] f u c Oを取得するためにェシェリヒア■ コリのゲノム DN Aをテンプレ ートとし、 プライマーとなるオリゴヌクレオチドを用いて P C R法で増幅し 、 得られた D N Aフラグメントを制限酵素で消化することで f u c Oフラグ メントを得る。
[0041] また、 a I d Aを取得するためにェシエリヒア■ コリのゲノム DN Aをテ ンプレートとし、 プライマーとなるオリゴヌクレオチドを用いて P CR法で 増幅し、 得られた DNAフラグメントを制限酵素で消化することで a I d A フラグメントを得る。
[0042] さらに、 グリセルアルデヒド 3 _リン酸脱水素酵素 (GA P DH) プロモ 一ターを取得するためェシェリヒア■ コリのゲノム DN Aをテンプレートと し、 プライマーとなるオリゴヌクレオチドを用いて P C R法で増幅し、 得ら れた D N Aフラグメントを制限酵素で消化することで GA P DHプロモータ 一をコードする D N Aフラグメントを得る。
[0043] 上記の 3つの D N Aフラグメントと、 プラスミ ドを制限酵素で消化するこ とで得られるフラグメントを結合した後、 ェシェリヒア■ コリに形質転換し 、 L B寒天プレートに生育する形質転換体を得る。 得られたコロニーを L B 液体培地で培養し、 得られた菌体からプラスミ ドを回収する。 本プラスミ ド を任意の宿主ェシェリヒア■ コリに導入することでラクトアルデヒドレダク ターゼおよびラクトアルデヒドデヒドロゲナーゼの酵素活性が向上したェシ エリヒア■ コリを作製できる。
[0044] 本実施形態に係る微生物は、 グリコール酸ォキシダーゼ活性を不活性化ま たは微生物本来の活性よりも低減される。
ここで、 グリコール酸ォキシダーゼとは、 I . U . B . 酵素委員会報告に 準拠した酵素番号 1 . 1 . 3 . 1 5に分類され、 グリコール酸からグリオキ シル酸を生成する反応を可逆的に触媒する酵素の総称を指す。
[0045] グリコール酸ォキシダーゼ活性の不活性化とは、 その酵素活性が完全に消 失することを意味する。 また、 グリコール酸ォキシダーゼ活性の低減とは、 その酵素活性の一部が消失することを意味し、 野生株 (又は組換え前の微生 物) が有する微生物本来のグリコール酸ォキシダーゼ活性に対して、 2分の 1以下であることが好ましく、 より好ましくは 1 0分の 1以下である。 グリ コール酸ォキシダーゼ活性を不活性化、 或いは低減するには、 そのタンパク 質をコードする遺伝子 (以降 g I c D E F遺伝子と略することがある) に変 異を導入するか、 欠失させる、 あるいはそのタンパク質を特異的に不活性化 する薬剤を添加する、 紫外線を照射する、 などの方法がある。 遺伝子への変 異導入や欠失といった遺伝子操作については、 当業者によく知られている通 常の方法で行うことができる。 具体的には、 ェシエリヒア■ コ U M T _ 1 1 0 3 2株が、 g I c D E F遺伝子をテトラサイクリン耐性遺伝子に置換する ことで、 そのグリコール酸ォキシダーゼ活性が不活性化した微生物として例 示できる。
[0046] 本実施形態において、 ある標的酵素をコードする遺伝子を微生物に導入す るにあたっての 「プラスミ ドの形態で」 とは、 該遺伝子をベクターに連結し 組換えプラスミ ドを作成し、 これを形質転換等の方法で該微生物に導入する 事を意味する。
[0047] また、 恒常的に微生物内で機能する強力なプロモーターと目的遺伝子を機 能的に連結した際には、 プラスミ ドが有するレブリコンの性質により、 微生 物細胞当たりのコピー数が一般的に少ないといわれるプラスミ ドを利用する ことでも本発明の目的を達し得る。 そのようなレブリコンを有するプラスミ ドとして pACYC 1 84 (G e n Ba n k a c c e s s i o n n u m b e r X 06403) などが例示できる。
[0048] 本実施形態の生産方法を実施するに際しては、 通常、 培地を用いて微生物 を培養して増殖させて必要量の微生物菌体を得る。
[0049] 培養に使用される培地は、 炭素源、 窒素源、 無機イオンおよび必要に応じ てその他の有機微量成分を含有する培地であれば特に制限は無い。 炭素源と しては、 グルコース、 フルク I ^一ス、 糖蜜などの糖類、 フマル酸、 クェン酸 、 コハク酸などの有機酸、 メタノール、 エタノール、 グリセロールなどのァ ルコール類、 その他が適宜使用される。 窒素源としては、 有機アンモニゥ厶 塩、 無機アンモニゥ厶塩、 アンモニアガス、 アンモニア水、 蛋白質加水分解 物等の無機及び有機の窒素源、 その他が適宜使用される。 無機イオンとして は、 マグネシウムイオン、 リン酸イオン、 カリウムイオン、 鉄イオン、 マン ガンイオン、 硫酸イオン、 その他が必要に応じて適宜使用される。 有機微量 成分としては、 ビタミン、 アミノ酸等及びこれらを含有する酵母エキス、 ぺ プトン、 コーンスティープリカ一、 カゼイン分解物、 その他が適宜使用され る。
[0050] 培養に使用される培地としては、 工業的生産に供する点を考慮すれば液体 培地が好ましい。
また、 培地組成は、 ポリペプトン 0. 5 gZL以上 1 0 gZL以下、 F e2SO40. 02 gZL以上 0. 3 gZL以下、 K2H PO40. 5 gZL以 上 5 gZL以下、 KH2PO40. 5 gZL以上 5 gZL以下、 Mg S04■ 7 H2O0. 5 gZL以上 5 gZL以下、 (NH4) 2SO40. 3 gZL以上 1 5 gZ以下 (溶媒は水) とすると好ましい。
[0051] 本実施形態に係る微生物の培養に際して、 培養条件は特別の制限はなく、
P Hと温度を適切に制御しながら培養する。 好気条件であっても、 嫌気条件 であってもよいが、 好ましくは、 好気条件とする。 通気量は、 培地 1 Lあたり 0. 2 L/m i n以上 3 L/m i n以下とすると好ましく、 0. 5 L/m i n以上 2 LZm i n以下とするとより好ましい。 また、 攪拌速度は、 200 r p m以上 1 000 r p m以下とすると好ましく、 500 r p m以上 800 r pm以下とするとより好ましい。 こうすることにより、 菌体重量あたりの ヒドロキシカルボン酸生産量が多い菌体を得ることができる。 また、 上記の 通気、 攪拌条件と相当する溶存酸素供給を実現できる気泡塔などを用いるこ とでも培養が可能である。
p Hは 5以上 8以下とすることが好ましく、 p H 7. 0以上 7. 4以下と するとより好ましく、 p H 7. 2とすると最も好ましい。 こうすることによ り、 菌体重量あたりのヒドロキシカルボン酸生産量が多い菌体を得ることが できる。
また、 温度は、 25°C以上 40°C以下とすることが好ましく、 33°C以上 37°C以下とするとより好ましく、 35°Cとすると最も好ましい。 こうする ことにより、 菌体重量あたりのヒドロキシカルボン酸生産量が多い菌体を得 ることができる。
培養に必要な時間は 1 2時間以上 50時間以下とする。 これにより、 菌体 重量あたりのヒドロキシカルボン酸生産量が多い菌体を得ることができる。
[0052] 本実施形態の生産方法に使用される溶媒としては、 リン酸カリウム緩衝液 などの緩衝液や、 前述の微生物の培養に用いた培地、 及び純水を例示するこ とができる。 また、 原料の脂肪族多価アルコールと溶媒との混合液に、 先に 培養により得られた微生物菌体を接触させて反応を行うことができる。 微生 物菌体は、 培養が終わった培養液そのものを使用する方法や、 培養液から菌 体のみを回収して使用する方法が例示できる。 [0053] 本実施形態の生産方法における反応に際して、 反応条件は特別の制限はな く、 p Hと温度を適切に制御しながら反応する。
例えば、 p Hは 6以上 9以下とすると好ましく、 p H 7. 0以上 8. 0以 下とするとより好ましく、 p H 7. 2とすると最も好ましい。 こうすること により、 反応液に添加した菌体量あたりのヒドロキシカルボン酸生産量を高 められるという効果が得られる。
また、 温度は、 20°C以上 45°C以下の範囲内が好ましく、 30°C以上 4 0°C以下とすると特に好ましく、 35°Cが最も好ましい。 こうすることによ り、 反応液に添加した菌体量あたりのヒドロキシカルボン酸生産量を高めら れるという効果が得られる。
また、 反応は、 好ましくは、 好気条件とする。 通気量は、 反応液 1 Lあた り 0. 1 LZm i n以上 2. 0 L/m i n以下とすると好ましく、 0. 2 L m i n以上 1. O LZm i n以下とするとより好ましい。 また、 攪拌速度 は、 200 r p m以上 1 000 r p m以下とすると好ましく、 400 r pm 以上 800 r pm以下とするとより好ましい。 こうすることにより、 反応液 に添加した菌体量あたりのヒドロキシカルボン酸生産量を高められるという 効果が得られる。 また、 上記の通気、 攪拌条件と相当する溶存酸素供給を実 現できる気泡塔などを用いることでも反応が可能である。
また、 反応時間は 1 2時間以上 96時間以下とすることにより、 収率 80 %以上でヒドロキシカルボン酸を得ることができる。
[0054] 以上のようにして得られた反応液中に蓄積した生産物であるヒドロキシカ ルボン酸を回収する方法としては、 特に制限はないが、 例えば反応液から菌 体を遠心分離などで除去した後、 合成吸着樹脂を用いる方法や沈殿剤を用い る方法、 その他通常の採取分離方法で分離する方法が採用できる。
[0055] (製造例 1 ) ェシェリヒア ' コリ1\101 655门 3 01 R欠失株の作製
ェシェリヒア■ コ UMG 1 655株のゲノム DN Aの全塩基配列は、 G e n Ba n k a c c e s s i o n n umb e r U 0009 Όにおしゝ-し公 知であり、 該塩基配列において 462531 7番目の塩基から 462657 0番目の塩基に n a d R遺伝子がコードされている。 ェシヱリヒア■ コリ1\1 G 1 655株のゲノム D N Aの n a d R遺伝子近傍領域の遺伝子情報に基づ いて作成された、 配列番号 1 (AGGAAG TGCCAT T CTGAT TG G ) 及び配列番号 2 (GGAAT T CG TATAT CT CAT TATAAG T CG T CG) 並びに配列番号 3 (GGAAT T CG TGATGAAACT GCT CAAAGG) 及び配列番号 4 (T TGG TACCTGATGACC TGAGCT T CT CG) に示すオリゴヌクレオチドを用いて、 ェシエリヒ ァ■ コリ MG 1 655株のゲノム DN Aをテンプレー卜として P C Rを行つ た。 得られた D N Aフラグメントをそれぞれ、 制限酵素 N d e I と E c o R I、 E c o R I と K p n lで消化することにより、 それぞれ約 850 b ρ、 970 b pのフラグメントを得た。
[0056] この DN Aフラグメントを、 温度感受性クローニングベクター p T H 1 8 c s Π ( e n B a n k a c c e s s i o n n umb e r ABO, 9 6 1 0) (H a s h i mo t o— G o t o h, T. , G e n e, 24 1, 1 85- 1 9 1 (2000) ) を N d e l、 K p n lで消化して得られるフラ グメン卜と混合し、 リガーゼを用いて結合した後、 ェシエリヒア■ コリ D H 5ひ株 (東洋紡績社製) に形質転換し、 クロラムフヱニコール 1 O gZm I を含む L B寒天プレートに 30°Cで生育する形質転換体を得た。 得られた コロニーをクロラムフエ二コール 1 0 g/m I を含む L B液体培地で、 3 0°Cで一晚培養し、 得られた菌体からプラスミ ドを回収した。 回収したブラ スミ ドを E c o R Iで消化し、 p U C 4 Kプラスミ ド (G e n B a n k a c c e s s i o n n umb e r X 06404 ) (P h a r ma c i a) を E c o R Iで消化することで得られるカナマイシン耐性遺伝子とリガーゼ を用いて連結した。
[0057] こうして得られたプラスミ ドをェシェリヒア■ コ UMG 1 655株に 30 °Cで形質転換し、 クロラムフエ二コール 1 On gXm I とカナマイシン 50 U g/m I を含む L B寒天プレートに 30°Cで一晚培養し、 形質転換体を得 た。 得られた形質転換体をカナマイシン 5 OjU g/m I を含む L B液体培地 に接種し、 30°Cで一晚培養した。 次にこれらの培養菌体が得られるように カナマイシン 50 /m I を含む L B寒天プレー卜に塗布し、 42°Cで生 育するコロニーを得た。 得られたコロニーをカナマイシン 50 /m I を 含む L B液体培地で、 30°Cで一晚培養し、 更にカナマイシン 50 gZm I を含む L B寒天プレー卜に塗布して 42 °Cで生育するコロニーを得た。
[0058] 出現したコロニーの中から無作為に 1 00コロニーをピックアップして、 それぞれをカナマイシン 50〃 g/m I を含む L B寒天プレートと、 クロラ ムフエ二コール 1 0 gZm I を含む L B寒天プレー卜に生育させ、 カナマ イシンを含む L B寒天プレー卜にのみ生育するクロラムフエ二コール感受性 のクローンを選んだ。 更にこれらの目的クローンの染色体 D N Aから P C R により、 野生株 MG 1 655においては n a d R遺伝子を含む n a d R遺伝 子近傍領域の約 3. 3 k b p断片を増幅させ、 増幅した断片について、 n a d R遺伝子にはその認識配列が存在せず、 カナマイシン耐性遺伝子にはその 認識配列が存在する制限酵素 H i n d I I Iで処理することで、 n a d R遺 伝子がカナマイシン耐性遺伝子に置換されている株を選抜し、 得られた株を MG 1 655 n a d R遺伝子欠失株 (以下△ n a d R株と略することがある ) と命名した。
[0059] なおェシェリヒア■ コ MG 1 655株はァメリカンタイプカルチャーコ レクシヨンより入手することができる。
[0060] (製造例 2) ェシェリヒア■ コ MG 1 655 g I c D E F欠失株の作製 ェシェリヒア■ コリのゲノム DN Aの全塩基配列は公知であり (G e n B a n a k a c c e s s i o n n umb e r U 0009 o) 、 ェンエリ ヒア■ コリのグリコール酸ォキシダーゼの遺伝子 (以下、 g I c D E Fと略 することがある) の塩基配列もすでに報告されている (G e n B a n k a c c e s s i o n n umb e r l_ 43490) 。
[0061] ェシェリヒア■ コ UMG 1 655株のゲノム DNAの g I c D E F近傍領 域の遺伝子情報に基づいて作成された、 配列番号 5 (T TGG TACCG T T CTGCCAGCAACTGACG) 及び配列番号 6 (TG T CTAGA G TACCT CTG TGCG T CACTGG) 並びに配列番号 7 (GCT C TAGACGCT T TG T TG TG T TG TG TGG) 及び配列番号 8 (A ACTGCAGGAT CGG T CAATGAT TGCAGC) のォリゴヌク レオチドを用いて P C Rを行った。 得られた DN Aフラグメントをそれぞれ 、 制限酵素 K p n l と X b a l、 X b a l と P s t Iで消化することにより 、 それぞれ約 670 b p、 790 b pのフラグメントを得た。 この DNAフ ラグメントを、 温度感受性クローニングベクター p T H 1 8 c s 1 (G e n B a n k a c c e s s i o n n umb e r ABO n 9 Ό 1 0) (H a s h i mo t o— G o t o h, T . , G e n e, 24 1, 1 85— 1 9 1 ( 2000) ) を K p n l、 P s t Iで消化して得られるフラグメントと混合 し、 リガーゼを用いて結合した後、 DH 5 株に 30°Cで形質転換し、 クロ ラムフエ二コール 1 0 gXm I を含む L B寒天プレー卜に生育する形質転 換体を得た。
[0062] 得られたコロニーを、 クロラムフエ二コール 1 0 gZm I を含む L B液 体培地で、 30°Cで一晚培養し、 得られた菌体からプラスミ ドを回収した。 回収したプラスミ ドを X b a Iで消ィ匕し、 T 4 DNAポリメラーゼで平滑末 端処理を行った。 トランスポゾン T n 1 0 (G e n B a n k a c c e s s i o n n umb e r J 0 1 830) をテンプレー卜として、 配列番号 9 (CAGCTGACT CGACAT CT TGG T TACCG) と配列番号 1 0 (CAGCTGCAAGAGGG T CAT TATAT T T CG) のオリゴ ヌクレオチドを用いて P C Rを行いテトラサイクリン耐性遺伝子を得、 この DN A断片を T 4 DN Aポリヌクレオチドキナーゼ処理し、 先の平滑末端処 理したプラスミ ドと連結した。
[0063] 得られたプラスミ ドをェシェリヒア■ コ UMG 1 655株に 30°Cで形質 転換し、 クロラムフエ二コール 1 0 g/m I と亍トラサイクリン 30〃 g m I を含む L B寒天プレートに 30°Cで一晚培養し、 形質転換体を得た。 得られた形質転換体を亍トラサイクリン 3 OjU g/m I を含む L B液体培地 に接種し、 30°Cで一晚培養した。 次にこれらの培養菌体が得られるように テトラサイクリン 30 U g/m I を含む L B寒天プレー卜に塗布し、 4 2°C で生育するコロニーを得た。 得られたコロニーをテトラサイクリン 30 g m I を含む L B液体培地で、 30°Cで一晚培養し、 更にテトラサイクリン 30 U g m I を含む L B寒天プレー卜に塗布して 4 2 °Cで生育するコロニ 一を得た。
[0064] 出現したコロニーの中から無作為に 1 00コロニーをピックアップして、 それぞれをテトラサイクリン 3 O jU gXm I を含む L B寒天プレートと、 ク 口ラムフエ二コール 1 0 g/m I を含む L B寒天プレー卜に生育させ、 亍 トラサイクリンを含む L B寒天プレー卜にのみ生育するクロラムフエニコー ル感受性のクローンを選んだ。 更にこれらの目的クローンの染色体 D N Aか ら P C Rにより、 g I 00巳「を含む§ I c D E F近傍領域を増幅させた。
[0065] この P C Rによって、 野生株 MG 1 655株をはじめとする g I c D E F がテトラサイクリン耐性遺伝子に置換されていない株においては約 4. 0 k b p断片が増幅される一方、 g I c D E F領域がテトラサイクリン耐性遺伝 子に置換された株においては約 2. 2 k b p断片が増幅される。 P C Rによ つて約 2. 2 k b p断片が増幅された株を選抜し MG 1 655 g l c D E F 欠失株 (以下 I c D E F株と略することがある) と命名した。
[0066] (製造例 3) ェシェリヒア ' 〕 MG 1 655 n a d R&g I c D E F欠失 株の作製
製造例 1で得られた A n a d R株に対して、 製造例 2と同様にして g I c D E Fを欠失させた。 得られた株を MG 1 655 n a d R&g I c D E F欠 失株 (以下 Δ η a d RAg I c D E F株と略することがある) と命名した。
[0067] (製造例 4) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ同時発現ベクターの構築
ェシエリヒア■ コリのラクトアルデヒドレダクターゼの遺伝子 (以下、 f u c Oと略することがある) の塩基配列はすでに報告されている (G e n B a n k a c c e s s i o n n u m b e r M 3 1 059) 。 こェンェ リヒア■ コリのラクトアルデヒドデヒドロゲナーゼの遺伝子 (以下、 a I d Aと略することがある) の塩基配列もすでに報告されている (G e n Ba n k a c c e s s i o n n umb e r Mo 4 o 41 ) 。
f u c Oを取得するために、 ェシェリヒア■ コ MG 1 655株のゲノム D N Aをテンプレートに用いて、 配列番号 1 1 (GCTCTAGACGGAG AAAGTCTTATGATGGCTAACAGAATGATTCTG) と 配列番号 1 2 (GTGAAGCTTGCATTTACCAGGCGGTAT GG) に示すオリゴヌクレオチドを用いて PCR法で増幅し、 得られた DN Aフラグメントを制限酵素 X b a I及び H i n d I I Iで消化することで約 1. 2 k b pの f u c Oフラグメントを得た。
[0068] a I d Aを取得するためにェシェリヒア■ コ UMG 1 655株のゲノム D N Aをテンプレートに用いて、 配列番号 1 3 (CGAATTCCGGAGA AAGTCTTATGTCAGTACCCGTTCAACATCC) と配列 番号 1 4 (GCTCTAGACTCTTTCACTCATTAAGACTG ) に示すオリゴヌクレオチドを用いて PCR法で増幅し、 得られた DNAフ ラグメントを制限酵素 E c o R I及び X b a Iで消化することで約 1. 5 k b pの a I d Aフラグメントを得た。
[0069] さらに、 グリセルアルデヒド 3 _リン酸脱水素酵素 (GAPDH) プロモ 一ターを取得するためェシェリヒア■ コ MG 1 655株のゲノム DNAを テンプレートに用いて、 配列番号 1 5 (AACGAATTCTCGCAAT GATTGACACGATTC) と配列番号 1 6 (ACAGAATTCGC TATTTGTTAGTGAATAAAAGG) に示すオリゴヌクレオチド を用いて P C R法で増幅し、 得られた D N Aフラグメントを制限酵素 E c o R Iで消化することで約 1 OO b pの GAPDHプロモーターをコードする DN Aフラグメントを得た。
[0070] 上記の 3つの DNAフラグメントと、 プラスミ ド p UC 1 8 (東洋紡績社 製) を制限酵素 E c o R I及び H i n d I I Iで消化することで得られるフ ラグメントを、 リガーゼを用いて結合した後、 ェシエリヒア■ コリ DH 5 株 (東洋紡績社製) に形質転換し、 アンピシリン 50 gZmLを含む LB 寒天プレー卜に生育する形質転換体を得た。 得られたコロニーをアンピシリ ン 5 O gZmLを含む LB液体培地で、 37 °Cで一晚培養した。 得られた 菌体からプラスミ ドを回収し、 このプラスミ ドを p G A P f u c 0_ a I d Aと命名した。
[0071] (実施例 1 ) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ同時発現ベクターによる An a d RAg I c D E F株形質転換体の構 築
製造例 4で得られたプラスミ ド p GAP f u cO_ a I d Aを製造例 3で 得られた Δη a d RAg I c DE F株に形質転換し、 アンピシリン 50〃 g mLを含む LB寒天プレー卜で、 37 °Cで一晚培養することにより Δη a d RAg I c DE F/pGAP f u cO-a I d A株を得た。
[0072] (製造例 5) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ同時発現ベクターによる I c DE F株形質転換体の構築
製造例 4で得られたプラスミ ド p GAP f u cO_ a I d Aを製造例 2で 得られた I c DE F株に形質転換し、 アンピシリン 5 O gZmLを含 む LB寒天プレートで、 37 °Cで一晚培養することにより I c DE FZ pGAP f u cO-a l d A株を得た。
[0073] (実施例 2) Δη a d RAg I c DE F/pGAP f u cO-a I d A株に よるグリコール酸生産
実施例 1において得られた An a d RAg I c DE F/pGAP f u cO _ a I d A株を前培養として三角フラスコに入れた L B B r o t h, M i I I e r培養液 (D i f c o 244620) 25 m Lに植菌し、 一晚、 培 養温度 35°C、 1 20 r pmで攪拌培養を行った。 前培養液全量を、 以下に 示す組成の培地 475 gの入った 1 L容の培養槽 ( 曰し曰社製培養装置曰 MJ -01 ) に移し、 培養を行った。 培養は大気圧下、 通気量 0. 5 LZm i n、 撹拌速度 800 r p m、 培養温度 35°C、 p H 7. 2 (N H 3水溶液で 調整) で行った。 前記の条件で最初のグルコースが完全に枯渴した後、 残り の時間を培地中のグルコース濃度 0. 1 gZL未満となるような可変速度で グルコースを全量で 40 g供給した。
[0074] ぐ培地組成 >
ポリペプトン: 7 gZL
グルコース: 30 gZL
F e 2S04: 0. 09 gZI_
K2H P04: 2 g/L
KH2P04: 2 g/L
M g S 04■ 7 H20 : 2 gZL
(N H4) 2S04 : 5 g/L
溶媒:水
[0075] 培養開始後 24時間の菌体を遠心分離 ( 8000 r p m、 20分間) によ リ集菌した。 集菌後の湿菌体を 4. 5 g秤量し、 エチレングリコール 65 g と共に蒸留水に懸濁し最終液量を 500m I とした。 懸濁液を AB LE社製 培養装置 BM J_01の培養槽に移し 70時間反応を行った。 反応は大気圧 下、 通気量 0. 25 L/m i n、 撹拌速度 550 r p m、 反応温度 35°C、 P H 7. 2 (NH3水溶液で調整) で行った。 得られた反応液中のグリコール 酸蓄積量を、 日立製作所製高速液体クロマトグラフィーを用い、 以下の設定 にて定量した。
[0076] カラム: U LTRON PS— 80H (信和化工社製)
溶離液:過塩素酸水溶液 ( p H 2. 1 )
流 is: 1. 0 m LZm i n
検出器: U V検出器
測定波長: 280 n m
[0077] また、 湿菌体の一部を 50°Cで乾燥させた後の乾燥重量から、 反応に使用 した菌体の乾燥菌体重量を求めた。
Δη a d RAg I c DE F/pGAP f u cO-a I d A株の乾燥菌体 1 gあたりのグリコール酸生産量は 27. 1 gであった。
[0078] また、 An a d RAg I c DE F/pGAP f u c O- a I d A株の生育 速度は、 比較例 1における I c DE F/pGAP f u cO-a I dA株 と同様のものであり、 n a d R遺伝子の破壊による生育の遅延が起きていな いことが確認された。
[0079] (比較例 1 ) I c DE F/pGAP f u cO-a I d A株によるグリコ ール酸生産
製造例 5で得られた I c DE F/pGAP f u cO-a I d A株につ いて実施例 2と同様に培養およびグリコール酸生産を行った。 I c DE F/pGAP f u cO-a l d株の乾燥菌体 1 gあたりのグリコール酸生産 量は 20. 2 gであった。
[0080] (参考例 1 ) An a d RAg I c DE F/pGAP f u c O- a I d A株、 △g I c DE F/pGAP f u cO-a I d A株における細胞内ニコチンァ ミ ドアデニンジヌクレオチド含量の測定
Δ n a d RA I c DE F/pGAP f u cO— a I dA株、 および△ I c DE F/pGAP f u cO-a l d A株を実施例 2と同様に培養した。
[0081] 培養開始後 24時間の△ n a d RAg I c DE F/pGAP f u cO-a
I d A株および I c DE F/pGAP f u c O- a I d A株それぞれを 2本の微量遠沈管に 1 mLずつサンプリングし、 4°Cで遠心、 集菌した。 2 本の遠沈管のうち 1本を NAD測定、 1本を NAD H測定に使用し、 それぞ れ以下の処理を行った。
NAD測定用のサンプルには、 集菌した湿菌体 1. 5mgあたり 400 Lの 0. 04 m o I Lの塩酸水溶液を加え懸濁した。 懸濁液を 90°Cで 3 分加熱の後、 氷上で急冷した。 この処理液の上清を用い、 以下に示す組成の 反応液を作成した。 なお 1 mo I ZLT r i s_HC I として p H 9. 0の ものを用いた。 またアルコールデヒドロゲナーゼとして S I GMA社製アル コールデヒドロゲナーゼ (A 3263) を 1 Ommo I Lの T r i s-H C I (p H 8. 8) で溶解し、 400ユニット mL (ただし 1ユニットは p H 8. 8、 25°Cの条件下、 1分間に 1 〃 mo Iのエタノールをァセトァ ルデヒドに変換するのに必要な酵素量) としたものを使用した。 反応液の 4 5 O nmにおける吸光度をテトラカラーワン (生化学工業社製) のプロトコ ールに従って測定した。 なお S I GM A社製 NADの溶液について同様の処 理を施したものを測定することにより検量線を作成し、 サンプルの NAD濃 度を求めた。
[0082] N ADH測定用のサンプルには、 集菌した湿菌体 1. 5 m gあたり 400
Lの 0. 04mo I ZLの水酸化カリウム水溶液を加え懸濁した。 懸濁液 を 90°Cで 3分加熱の後、 氷上で急冷した。 この処理液の上清を用い、 以下 に示す組成の反応液を作成した。 なお 1 mo \ XL T r i s _H C I として p H 8. 8のものを用いた。 またアルコールデヒドロゲナーゼとして S I G MA社製アルコールデヒドロゲナーゼ (A 3263) を 1 Ommo I Lの T r i s -H C I (p H 8. 8 ) で溶解し、 400ユニット m L (ただし 1ユニットは p H 8. 8、 25°Cの条件下、 1分間に 1 〃mo Iのエタノー ルをァセトアルデヒドに変換するのに必要な酵素量) としたものを使用した
[0083] 反応液の 45 O nmにおける吸光度をテトラカラーワン (生化学工業社製 ) のプロトコールに従って測定した。 なお S I GM A社製 NAD Hの溶液に ついて、 同様の処理を施したものを測定することにより検量線を作成し、 サ ンプルの N A D H濃度を求めた。
[0084] その結果、 An a d RAg I c D E F/p GA P f u c O-a I d A株の NAD量、 N ADH量は、 I c D E F/p GA P f u c O- a I d A株 と比較して、 それぞれ 1. 7倍、 1. 6倍増加していた。 これにより n a d R遺伝子を欠失させた An a d RAg I c D E F/p GA P f u c O-a I d A株では、 NADおよび NADH、 すなわちニコチンアミ ドアデニンジヌ クレオチドの生産能が強化されていることが確認された。
[0085] <反応液組成 >
サンプル上清: 25〃 L
1 m o I ZL T r i s— H C I : 25 β L
25%エタノール: 1 O L 純水: 20 L
テトラカラーワン (生化学工業社製) : 1 0 L
アルコールデヒドロゲナーゼ: 1 0 L
[0086] (製造例 6) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ、 NADHデヒドロゲナーゼ同時発現ベクターの構築
ェシエリヒア■ コリの NAD Hデヒドロゲナーゼの遺伝子 (以下、 n d h と略することがある) の塩基配列はすでに報告されている (G e n Ba n k a c c e s s i o n n umb e r V0030 o) 。
[0087] n d hを取得するためにェシェリヒア■ コ UMG 1 655株のゲノム DN Aをテンプレートに用いて、 配列番号 1 7 (CGAATTCCGGAGAA AGTCTTATGACTACGGCATTGAAAAAGATTGTG) と配列番号 1 8 (GGTCTAGACGATTAATGCAACTTCAA ACG) に示すオリゴヌクレオチドを用いて PC R法で増幅することで約 1 . 3 k b pの n d hフラグメントを得た。 得られた n d hフラグメントを T 4 DN Aポリヌクレオチドキナーゼ処理した。 この DN Aフラグメン卜と、 製造例 4で作成した pGAP f u c 0- a I dAプラスミ ドを H i n d I I Iで消化し平滑末端処理、 脱リン酸化処理を行ったフラグメントを混合し、 リガーゼを用いて結合した後、 ェシヱリヒア ' 〕 DH 5ひ株 (東洋紡績社 製) に形質転換し、 アンピシリン 50 gZmLを含む LB寒天プレートに 生育する形質転換体を得た。 得られたコロニーをアンピシリン 50 g/m Lを含む LB液体培地で、 37°Cで一晚培養し、 得られた菌体からプラスミ ドを回収し、 得られたプラスミ ドを pGAP f u cO_a I dA_n d hと 命名した。
[0088] (実施例 3) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ、 N ADHデヒドロゲナーゼ同時発現ベクターによる Δη a d RAg I c DE F株形質転換体の構築
製造例 6で得られたプラスミ ド pGAP f u cO_a I dA_n d hを製 造例 3で得られた Δη a d RAg I c DE F株に形質転換し、 アンピシリン 50 U gZm Lを含む L B寒天プレー卜で、 3 7 °Cで一晚培養することによ リ A n a d RAg I c D E F/p GA P f u c O— a I d A— n d h株を得 た。
[0089] (実施例 4) Δ η a d RAg I c D E F/p GA P f u c O- a I d A- n d h株によるグリコール酸生産
実施例 3で得られた Δ η a d RAg I c D E F/p GA P f u c O- a I d A- n d h株について実施例 2と同様に培養およびグリコール酸生産を行 つた。 なお、 この菌株について、 実施例 2で培養した結果と比較して n d h を強化することによる生育の遅延は観察されなかった。 A n a d RAg I c D E F/p GA P f u c O- a I d A- n d h株の乾燥菌体 1 gあたりのグ リコール酸生産量を、 比較例 1および実施例 2の結果とあわせて表 1に示し た。
[0090] 比較例 1 と実施例 2の比較から、 ニコチンアミ ドアデニンジヌクレオチド 生産能の強化により、 グリコール酸の生産性は 1 . 3倍に向上した。
[0091] また、 比較例 1 と実施例 4の比較から、 ニコチンアミ ドアデニンジヌクレ ォチド生産能の強化および酸化型ニコチンアミ ドアデニンジヌクレオチド再 生能の強化によりグリコール酸の生産性は 3. 6倍に向上した。
[0092] ほ 1]
Figure imgf000029_0001
(製造例 7) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ、 ニコチン酸ホスホリポシルトランスフェラーゼ同時発現ベクターの 構築
ェシエリヒア■ コリのニコチン酸ホスホリポシルトランスフエラーゼの遺 伝子 (p n c B) の塩基配列はすでに報告されている (G e n B a n k a c c e s s i o n n umb e r J 05568) 。
[0094] p n c Bを取得するために、 ェシエリヒア■ コリ MG 1 655株のゲノム D N Aをテンプレートに用いて、 配列番号 1 9 (CG TGCAAT TGCC GGAGAAAG T CT TATGACACAAT T CGCT T CT C) 及び 配列番号 20 (CGCT CTAGAT TAACTGGCT T T T T TAAT ATGCG) に示すオリゴヌクレオチドを用いて P C R法で增幅することで 約 1. 2 k b pの p n c Bフラグメントを得た。 さらに得られた p n c Bフ ラグメントを T 4 DN Aポリヌクレオチドキナーゼ処理した。 この DN Aフ ラグメントと、 製造例 4で作成した p GA P f u c O-a I d Aプラスミ ド を H i n d I I Iで消ィヒし、 平滑末端処理、 脱リン酸化処理を行ったフラグ メントを混合し、 リガーゼを用いて結合した後、 ェシエリヒア■ コリ D H 5 株 (東洋紡績社製) に形質転換し、 アンピシリン 50 gZmLを含む L B寒天プレー卜に生育する形質転換体を得た。 得られたコロニーをアンピシ リン 50 g Lを含む L B液体培地で、 37 °Cで一晚培養し、 得られた 菌体からプラスミ ドを回収し、 該プラスミ ドを p GA P f u c O—a l d A - p n c Bと命名した。
[0095] (実施例 5) ラクトアルデヒドレダクターゼ、 ラクトアルデヒドデヒドロゲ ナーゼ、 ニコチン酸ホスホリポシルトランスフエラーゼ同時発現べクターに よる I c D E F形質転換体の構築
製造例 7で得られたプラスミ ド p GA P f u c O_a I d A_ p n c Bを 製造例 2で得られた I c D E F株に形質転換し、 アンピシリン 50 g mLを含む L B寒天プレートで、 37 °Cで一晚培養することにより I c D E FZ p GA P f u c O— a I d A— p n c B株を得た。
[0096] (実施例 6) Ag I c D E F/p GA P f u c O-a I d A- p n c B株に よるグリコール酸生産
実施例 5で得られた I c D E F/p GA P f u c O-a I d A- p n c B株について実施例 2と同様に培養およびグリコール酸生産を行った。 △ g I c D E F/p GA P f u c O-a I d A- p n c B株における乾燥菌体 1 あたりのグリコール酸生産量は 26. 7 gであった。 比較例 1の△ g I c DE F/pGAP f u cO-a l d A株における乾燥菌体 1 gあたりのグ リコール酸量 (20. 2 g) と比較して、 p n c Bの強化により、 生産性が 1. 3倍に向上していた。
[0097] (参考例 2) Ag I c DE F/pGAP f u cO-a I d A- p n c B株に おける細胞内ニコチンアミ ドアデニンジヌクレオチド含量の測定
実施例 5で得られた I c DE F/pGAP f u cO-a I d A- p n c B株および対照となる I c DE F/pGAP f u cO-a l d Aにつ いて、 参考例 1 と同様に培養および細胞内 NAD量、 NADH量の測定を行 つた。 その結果、 I c DE F/pGAP f u cO-a I d A- p n c B 株において、 NAD量、 NADH量は、 それぞれ△ g I c DE F/pGAP f u c 0_ a I d A株の 2. 6倍、 2. 1倍であった。 これにより p n c B を強化した I c DE F/pGAP f u c O- a I d A- p n c B株では 、 八0ぉょび 八01~1、 すなわちニコチンアミ ドアデニンジヌクレオチド の生産能が強化されていることが確認された。
[0098] (参考例 3) Δη a d RAg I c DE F/pGAP f u cO-a I d A- n d h株、 An a d RAg I c DE F/pGAP f u c O- a I d A株におけ る細胞内 NADおよび NADH含量測定
Δ n a d RA I c DE F/pGAP f u cO— a I dA_n d h株、 お よび Δη a d RAg I c DE FZpGAP f u cO— a I d A株について、 実施例 2と同様に培養およびグリコール生産を行った。 グリコール酸生産時 の△ n a d RA g I c DE F/pGAP f u cO— a I dA_n d h株、 お よび Δη a d RAg I c DE FZpGAP f u cO— a I d A株について一 定時間においてサンプリングを行い、 参考例 1 と同様に細胞内 NAD量、 N A DH量を測定した。 図 1は、 この時の N A D HZN A D比 (NADH含量 NAD含量) を示す。 横軸は反応時間 (h r) 、 縦軸は 01~1 0 比 (NADH含量 NAD含量) を示している。
Δ n a d RA g I c DE F/pGAP f u cO— a I d A— n d h株にお いて常に N A D H/N A D比の値が小さく、 N A D Hから N A Dを再生して いることが示された。
(製造例 8) NADHデヒドロゲナーゼ発現ベクターの構築
ェシエリヒア■ コリの NAD Hデヒドロゲナーゼの遺伝子 (以下、 n d h と略することがある) の塩基配列はすでに報告されている (G e n Ba n k a c c e s s i o n n umb e r V00306) 。 n d h ¾:取得す ためにェシェリヒア■ コ UMG 1 655株のゲノム DN Aをテンプレー卜に 用いて配列番号 1 7と配列番号 21 (AAAATAAGCTTCGATTA ATGCAACTTCAAACG) に示すオリゴヌクレオチドを用いて P C R法で増幅し、 得られた DN Aフラグメントを制限酵素 E c o R I及び H i n d I I Iで消化することで約 1. 3 k b pの n d hフラグメントを得た。 上記の DNAフラグメントと、 プラスミ ド P UC 1 8 (東洋紡績社製) を 制限酵素 E c o R I及び H i n d I I Iで消化することで得られるフラグメ ントを、 リガーゼを用いて結合した後、 ェシエリヒア■ コリ DH 5ひ株 (東 洋紡績社製) に形質転換し、 アンピシリン 50 gZmLを含む LB寒天プ レー卜に生育する形質転換体を得た。 得られたコロニーをアンピシリン 50 gZmLを含む LB液体培地で、 37°Cで一晚培養した。 得られた菌体か らプラスミ ドを回収し、 n d hの DNAフラグメン卜が正しく挿入されてい ることを確認したのち、 制限酵素 E c o R Iで処理し、 さらに脱リン酸化処 理した。
また、 G A P D Hプロモーターを取得するためェシェリヒア■ コリ MG 1 655株のゲノム DN Aをテンプレー卜に用いて配列番号 1 5と配列番号 1 6に示すオリゴヌクレオチドを用いて PCR法で増幅し、 得られた DNAフ ラグメントを制限酵素 E c o R Iで消化することで約 1 OO b pの GAPD Hプロモーターをコードする DN Aフラグメントを得た。 この DNAフラグ メントを先述の E c o R I処理、 脱リン酸化処理したプラスミ ドと、 リガ一 ゼを用いて結合した後、 ェシヱリヒア · 〕υθΗ5 株 (東洋紡績社製) に 形質転換し、 アンピシリン 50〃 gZmLを含む LB寒天プレートに生育す る形質転換体を得た。 得られたコロニーをアンピシリン 50 gZmLを含 む LB液体培地で、 37°Cで一晚培養した。 得られた菌体からプラスミ ドを 回収し、 GAP DHプロモーターのフラグメン卜が正しく挿入されているこ とを確認し、 このプラスミ ドを p G A P n d hと命名した。
[0100] (実施例 7) N ADHデヒドロゲナーゼ発現ベクターによる a d R株形 質転換体および△ n a d RAg I c DE F株形質転換体の構築
製造例 1で得られた△ n a d R株および製造例 3で得られた△ n a d g I c DE Fを製造例 8で得られたプラスミ ド p GAP n d hで形質転換し 、 アンピシリン 50〃 gZm Lを含む L B寒天プレートで、 37°Cで一晚培 養することにより An a d RZpGAP n d h株および Δη a d RAg I c DE F/pGAP n d h株を得た。
[0101] (製造例 9) NADHデヒドロゲナーゼ発現ベクターによる MG 1 655株 形質転換体の構築
製造例 8で得られたプラスミ ド pGAP n d hにより大腸菌野生株 MG 1 655株を形質転換し、 アンピシリン 50 § 1_を含む1_巳寒天プレー 卜で、 37 °Cで一晚培養することにより MG 1 655 pGAP n d h株を 得た。
[0102] (実施例 8) An a d RZpGAP n d h株、 An a d RAg I c DE FZ p G A P n d h株によるグリコール酸生産
LB B r o t h, M i l l e r培養液 (D i f c o 244620) に 終濃度 0. 2 %となるようグルコースを添加した培地 5 m Lを入れた試験管 に実施例 7で得られた Δη a d RZpGAP n d h株、 An a d RAg I c DE F/pGAP n d h株および対照として Δη a d R株、 MG 1 655/ p G A P n d h、 野生株 MG 1 655株をそれぞれ植菌し、 一晚、 培養温度 37°C、 200 r pmで攪拌培養を行った。 培養液全量を遠心分離し、 得ら れた湿菌体の重量を測定したのち、 以下に示す反応液 1 m I を作成し、 試験 管を用いて 30°C、 200 r pmで攪拌し、 48時間グリコール酸生産を行 つた。 [0103] ぐ反応液組成 >
1 mo I L燐酸力リゥ厶緩衝液 (p H 8. 0) : 250 L エチレングリコール: 5 O L
菌体:培養液より回収した全菌体
純水で 1 m Iに調整
[0104] 菌株それぞれの湿菌体 1 gあたりのグリコール酸生産量を表 2に示した。
△ n a d RZpGAP n d h株、 Δ n a d RA g I c DE FZpGAP n d h株において顕著にグリコール酸の生産性が向上していることが示された。
[0105] [表 2]
Figure imgf000034_0001
[0106] (実施例 9) Δη a d RAg I c DE F/pGAP f u c O- a I d A- n d h株によるグリコール酸生産反応の温度条件検討
実施例 3で得られた Δη a d RAg I c DE F/pGAP f u cO-a I d A_n d h株について実施例 2と同様に培養を行った。 ただし、 培地中ポ リペプトンの濃度を 1 gZLとした。 得られた菌体について、 実施例 2と同 様にグリコール酸生産反応を実施した。 ただし反応に加える湿菌体量を 7 g 、 攪拌速度を 750 r pm、 反応時間を 24時間とし、 反応温度は 30°C、 35°C、 37°C、 および 40°Cのそれぞれの条件で実施した。 図 2はこの時 のグリコール酸蓄積量を示す。 横軸は反応時間 (h r) 、 縦軸はグリコール 酸蓄積量 (gZL) を示している。
Δ n a d RA g I c DE F/pGAP f u cO— a I d A— n d h株によ り上記条件においても十分量のグリコール酸を生産できることが示された。
[0107] (実施例 1 0) An a d RAg I c DE F/pGAP f u cO-a I d A- n d h株によるグリコール酸生産反応の p H条件検討
実施例 3で得られた Δη a d RAg I c DE F/pGAP f u cO_a I d A_n d h株について実施例 2と同様に培養を行った。 ただし、 培地中ポ リペプトンの濃度を 1 gZLとした。 得られた菌体について、 実施例 2と同 様にグリコール酸生産反応を実施した。 ただし、 反応液の p Hを p H 7. 7 、 p H 7. 2、 p H 6. 5、 p H 6. 0、 p H 4. 3のそれぞれの条件で制 御し実施した。 図 3はこの時のグリコール酸蓄積量を示す。 横軸は反応時間 (h r ) 、 縦軸はグリコール酸蓄積濃度 (g/l) を示している。
Δ n a d RA g I c DE F/pGAP f u cO— a I d A— n d h株によ るグリコール酸生産は p H 6. 0以上で可能であることが示された。
産業上の利用可能性
本発明のヒドロキシカルボン酸の生産方法および微生物は、 ポリマー原料 や医薬中間体として有用なグリコール酸等のヒドロキシカルボン酸類の製造 に用いることができる。

Claims

請求の範囲
[1 ] 微生物を用いて末端に水酸基を有する脂肪族多価アルコールからヒドロキ シカルボン酸を生産する方法において、 ニコチンアミ ドアデニンジヌクレオ チド生産能を強化した微生物を用いることを特徴とするヒドロキシカルボン 酸の生産方法。
[2] 微生物が、 下記 (1 ) および (2 ) の少なくとも一つの遺伝子操作を行う ことによりニコチンアミ ドアデニンジヌクレオチド生産能を強化した微生物 であることを特徴とする請求項 1記載の生産方法。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリポシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
[3] 微生物が、 酸化型ニコチンアミ ドアデニンジヌクレオチド再生能を強化し た微生物であることを特徴とする請求項 1記載の生産方法。
[4] 微生物が、 N A D Hデヒドロゲナーゼの遺伝子を組み込んだプラスミ ドを 導入することにより酸化型ニコチンアミ ドアデニンジヌクレオチド再生能を 強化した微生物であることを特徴とする請求項 3記載の生産方法。
[5] 微生物が、 ラクトアルデヒドレダクターゼおよびラクトアルデヒドデヒド ロゲナーゼの少なくとも 1つの酵素活性を強化した微生物であることを特徴 とする請求項 1記載の生産方法。
[6] 微生物が、 ラクトアルデヒドレダクターゼおよびラクトアルデヒドデヒド ロゲナーゼの少なくとも 1つの酵素活性を強化した微生物であることを特徴 とする請求項 3記載の生産方法。
[7] 微生物が、 グリコール酸ォキシダーゼ活性を不活性化または微生物本来の 活性よりも低減した微生物であることを特徴とする請求項 1、 3、 5又は 6 記載の生産方法。
[8] 末端に水酸基を有する脂肪族多価アルコールがエチレングリコールであり 、 ヒドロキシカルボン酸がグリコール酸であることを特徴とする請求項 1 ~ 7のいずれか 1項に記載の生産方法。 ラクトアルデヒドレダクターゼおよびラクトアルデヒドデヒドロゲナーゼ の少なくとも 1つの酵素活性を強化し、 かつ、 下記 (1 ) および (2 ) の少 なくとも一つの遺伝子操作を行うことによりニコチンアミ ドアデニンジヌク レオチド生産能を強化した微生物。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリボシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
酸化型ニコチンアミ ドアデニンジヌクレオチド再生能を強化したことを特 徵とする請求項 9記載の微生物。
N A D Hデヒドロゲナーゼの活性を強化し、 かつ、 下記 (1 ) および (2 ) の少なくとも一つの遺伝子操作を行うことによりニコチンアミ ドアデニン ジヌクレオチド生産能を強化した微生物。
( 1 ) 微生物内の n a d R遺伝子を欠失、 変異、 又は置換させること。
( 2 ) 微生物内のニコチン酸ホスホリポシルトランスフエラーゼの遺伝子 を組み込んだプラスミ ドを微生物に導入すること。
グリコール酸ォキシダーゼ活性を不活性化または微生物本来の活性よりも 低減したことを特徴とする請求項 9または 1 0に記載の微生物。
グリコール酸ォキシダーゼ活性を不活性化または微生物本来の活性よりも 低減したことを特徴とする請求項 1 1に記載の微生物。
微生物がェシヱリヒア属、 シゲラ属、 サルモネラ属、 エルビニァ属、 エル シニア属、 フォトラブドウス属のいずれかである請求項 1 ~ 8のいずれか 1 項に記載の生産方法。
微生物がェシヱリヒア■ コリである請求項 1 4に記載の生産方法。
微生物がェシヱリヒア属、 シゲラ属、 サルモネラ属、 エルビニァ属、 エル シニア属、 フォトラブドウス属のいずれかである請求項 9、 1 0、 1 2のい ずれか 1項に記載の微生物。
微生物がェシヱリヒア属、 シゲラ属、 サルモネラ属、 エルビニァ属、 エル シニア属、 フォトラブドウス属のいずれかである請求項 1 1または 1 3に記 載の微生物。
[18] 微生物がェシェリヒア■ コリである請求項 1 6に記載の微生物。
[19] 微生物がェシェリヒア■ コリである請求項 1 7に記載の微生物。
PCT/JP2007/000470 2006-05-09 2007-04-27 補酵素合成強化によるヒドロキシカルボン酸類の生産方法 WO2007129465A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/299,646 US20090221045A1 (en) 2006-05-09 2007-04-27 Method for producing hydroxycarboxylic acid by enhancing synthesis of coenzyme
EP07737126.8A EP2025759B1 (en) 2006-05-09 2007-04-27 Method for production of glycolic acid by enhancing the synthesis of coenzyme
KR1020087029543A KR101183001B1 (ko) 2006-05-09 2007-04-27 보효소 합성 강화에 의한 히드록시카르복실산류의 생산방법
CN200780016224.XA CN101535489B (zh) 2006-05-09 2007-04-27 利用辅酶合成强化进行的羟基羧酸类的生产方法
JP2008514387A JP4954985B2 (ja) 2006-05-09 2007-04-27 補酵素合成強化によるグリコール酸の生産方法
US13/618,898 US9133444B2 (en) 2006-05-09 2012-09-14 Method for producing hydroxycarboxylic acid by enhancing synthesis of coenzyme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-129984 2006-05-09
JP2006129984 2006-05-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/299,646 A-371-Of-International US20090221045A1 (en) 2006-05-09 2007-04-27 Method for producing hydroxycarboxylic acid by enhancing synthesis of coenzyme
US13/618,898 Division US9133444B2 (en) 2006-05-09 2012-09-14 Method for producing hydroxycarboxylic acid by enhancing synthesis of coenzyme

Publications (1)

Publication Number Publication Date
WO2007129465A1 true WO2007129465A1 (ja) 2007-11-15

Family

ID=38667577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000470 WO2007129465A1 (ja) 2006-05-09 2007-04-27 補酵素合成強化によるヒドロキシカルボン酸類の生産方法

Country Status (6)

Country Link
US (2) US20090221045A1 (ja)
EP (1) EP2025759B1 (ja)
JP (1) JP4954985B2 (ja)
KR (1) KR101183001B1 (ja)
CN (2) CN103397055A (ja)
WO (1) WO2007129465A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178136A1 (en) 2009-09-25 2012-07-12 Roquette Freres Fermentation process for producing glycolic acid
CA2801823C (en) 2010-06-15 2019-07-30 Metabolic Explorer Use of inducible promoters in the production of glycolic acid
BR112013004379A2 (pt) 2010-08-27 2016-05-17 Metabolic Explorer Sa produção fermentativa de ácido glicólico com um microorganismo modificado
DE102010040440B4 (de) * 2010-09-08 2013-02-28 Karlsruher Institut für Technologie Verfahren und Vorrichtung zur Herstellung von Methan in einem Photobioreaktor
AU2011300418B2 (en) * 2010-09-10 2016-05-12 Glaxosmithkline Biologicals Sa Meningococcus overexpressing NadA and/or NHBA and outer membrane vesicles derived therefrom
CN102154339A (zh) * 2011-02-16 2011-08-17 南京工业大学 一种产丁二酸大肠杆菌基因工程菌株的构建方法
EP2714889A1 (en) * 2011-05-27 2014-04-09 Novozymes A/S MICROORGANISMS FOR n-PROPANOL PRODUCTION
FR3028529B1 (fr) 2014-11-19 2016-12-30 Inst Nat De La Rech Agronomique Inra Procede de production d'au moins un metabolite d'interet par transformation d'un pentose dans un microorganisme
US20190071680A1 (en) * 2016-03-16 2019-03-07 Dsm Ip Assets B.V. Microbial production of nicotinic acid riboside
EP3354742A1 (en) 2017-01-26 2018-08-01 Metabolic Explorer Methods and microorganisms for the production of glycolic acid and/or glyoxylic acid
CN111909907B (zh) * 2020-07-08 2022-05-24 浙江工业大学 天冬氨酸氧化酶突变体、工程菌及其在氧化-还原偶联制备精草铵膦中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106005A1 (ja) 2004-04-27 2005-11-10 Mitsui Chemicals, Inc. ヒドロキシカルボン酸類の生産方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843781A (en) * 1971-06-21 1974-10-22 Kao Corp Smell-sweetening and deodorizing maleimides
US5602183A (en) * 1991-03-01 1997-02-11 Warner-Lambert Company Dermatological wound healing compositions and methods for preparing and using same
US5602941A (en) 1993-05-21 1997-02-11 Digital Equipment Corporation Input modification system for multilevel dithering
JPH10174594A (ja) 1996-12-17 1998-06-30 Ngk Insulators Ltd 微生物によるグリコール酸の生産方法
JPH10174593A (ja) 1996-12-17 1998-06-30 Ngk Insulators Ltd 酵母によるグリコール酸の生産方法
US6087140A (en) * 1997-02-19 2000-07-11 Wisconsin Alumni Research Foundation Microbial production of 1,2-propanediol from sugar
JP3435475B2 (ja) * 1997-05-19 2003-08-11 ダイソー株式会社 1,2−プロパンジオールの製法
JP4380029B2 (ja) * 2000-07-05 2009-12-09 味の素株式会社 微生物を利用した物質の製造法
JP4630486B2 (ja) 2001-05-28 2011-02-09 ダイセル化学工業株式会社 新規な(r)−2,3−ブタンジオール脱水素酵素、その製造方法、及びこれを利用した光学活性アルコールの製造方法
JP4372408B2 (ja) * 2002-11-14 2009-11-25 三菱レイヨン株式会社 ロドコッカス(Rhodococcus)属細菌組換え体、及びそれを用いた光学活性体の製造方法
JP4396972B2 (ja) * 2004-02-05 2010-01-13 ダイセル化学工業株式会社 新規r体特異的アルコール脱水素酵素をコードする遺伝子、及び、これを利用した光学活性アルコールの製造方法
KR100537343B1 (ko) 2004-10-01 2005-12-19 주식회사 듀플로젠 관절염 치료용 초음파 장치
CN101437949B (zh) * 2006-05-09 2012-08-22 三井化学株式会社 利用辅酶再生进行的羟基羧酸类的生产方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106005A1 (ja) 2004-04-27 2005-11-10 Mitsui Chemicals, Inc. ヒドロキシカルボン酸類の生産方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BALDOMA L. ET AL.: "Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12", J. BIOL. CHEM., vol. 262, no. 29, 1987, pages 13991 - 13996, XP003016933 *
BERRIOS-RIVERA S.J. ET AL.: "The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli", METAB. ENG., vol. 4, no. 3, 2002, pages 238 - 247, XP003016934 *
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, no. 10, 2001, pages 2265 - 2270
CABALLERO, E. ET AL., J. BIOL. CHEM., vol. 258, no. 12, 1983, pages 7788 - 7792
GERASIMOVA A.V. ET AL.: "Evolution of the NadR regulon in Enterobacteriaceae", J. BIOINFORM. COMPUT. BIOL., vol. 3, no. 4, 2005, pages 1007 - 1019, XP003016935 *
GERASIMOVA, AV., JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, vol. 3, 2005, pages 1007 - 1019
HASHIMOTO-GOTOH, T., GENE, vol. 241, 2000, pages 185 - 191
J. BACTERIOL., vol. 187, no. 8, 2005, pages 2774 - 2784
LU Z. ET AL.: "Evolution of an Escherichia coli protein with increased resistance to oxidative stress", J. BIOL. CHEM., vol. 273, no. 14, 1998, pages 8308 - 8316, XP003016930 *
METABOLIC ENGINEERING, vol. 4, 2002, pages 238 - 247
RAFFAELLI N. ET AL.: "The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity", J. BACTERIOL., vol. 181, no. 17, 1999, pages 5509 - 5511, XP003016931 *
SAMBROOK, J. ET AL.: "Molecular Cloning A Laboratory Manual, Second Edition", 1989, COLDSPRING HARBOR LABORATORY PRESS
See also references of EP2025759A4 *
WUBBOLTS M.G. ET AL.: "Variation of cofactor levels in Escherichia coli. Sequence analysis and expression of the pncB gene encoding nicotinic acid phopshoribosyltransferase", J. BIOL. CHEM., vol. 265, no. 29, 1990, pages 17665 - 17672, XP003016932 *

Also Published As

Publication number Publication date
US9133444B2 (en) 2015-09-15
CN101535489A (zh) 2009-09-16
CN101535489B (zh) 2014-06-11
EP2025759A4 (en) 2011-12-07
JPWO2007129465A1 (ja) 2009-09-17
EP2025759A1 (en) 2009-02-18
CN103397055A (zh) 2013-11-20
KR20090010094A (ko) 2009-01-28
KR101183001B1 (ko) 2012-09-18
US20130029392A1 (en) 2013-01-31
EP2025759B1 (en) 2017-06-07
US20090221045A1 (en) 2009-09-03
JP4954985B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4886775B2 (ja) 補酵素再生によるグリコール酸の生産方法
WO2007129465A1 (ja) 補酵素合成強化によるヒドロキシカルボン酸類の生産方法
JP4523939B2 (ja) ヒドロキシカルボン酸類の生産方法
CA2737428C (en) Bacterium capable of producing lactic acid, and method for producing lactic acid
EP2582828B1 (en) Use of inducible promoters in the production of glycolic acid
JP7067706B2 (ja) 形質転換微生物及びその利用
JP5243546B2 (ja) 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
EP1669460B1 (en) Biocatalyst for producing d-lactic acid
KR102149044B1 (ko) 2-히드록시 감마 부티로락톤 또는 2,4-디히드록시-부티레이트 의 제조 방법
JPWO2010032698A6 (ja) 植物由来原料から乳酸を生産する方法及び乳酸生産細菌
CN111315888A (zh) 有机化合物的制造方法及棒状细菌
JP2011067139A (ja) 組換えベクター、形質転換体、及び2h−ピラン−2−オン−4,6−ジカルボン酸の製造方法
JP2005102625A (ja) D−乳酸製造法
JP2004344107A (ja) エタノールの新規製造方法
KR101533290B1 (ko) D―갈락토네이트 고생산 대장균 균주 및 이의 용도
JP2006246701A (ja) 中央代謝系の酵素活性が増強された酢酸菌、及び該酢酸菌を用いた食酢の製造方法
CN116218802A (zh) 一种l-泛解酸内酯脱氢酶及其突变体、编码基因及应用
JPWO2012081084A1 (ja) 新規微生物、ならびにそれを用いる2,3−ジヒドロキシ安息香酸およびサリチル酸の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780016224.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514387

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12299646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007737126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007737126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087029543

Country of ref document: KR