WO2007126077A1 - 多能性幹細胞から心筋細胞を分化誘導する方法 - Google Patents

多能性幹細胞から心筋細胞を分化誘導する方法 Download PDF

Info

Publication number
WO2007126077A1
WO2007126077A1 PCT/JP2007/059242 JP2007059242W WO2007126077A1 WO 2007126077 A1 WO2007126077 A1 WO 2007126077A1 JP 2007059242 W JP2007059242 W JP 2007059242W WO 2007126077 A1 WO2007126077 A1 WO 2007126077A1
Authority
WO
WIPO (PCT)
Prior art keywords
wnt
cells
cell
pluripotent stem
cardiomyocytes
Prior art date
Application number
PCT/JP2007/059242
Other languages
English (en)
French (fr)
Inventor
Uichi Koshimizu
Tomofumi Tanaka
Kayoko Kawashima
Michinori Kadokura
Original Assignee
Asubio Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asubio Pharma Co., Ltd. filed Critical Asubio Pharma Co., Ltd.
Priority to KR1020087029035A priority Critical patent/KR101234544B1/ko
Priority to AU2007244226A priority patent/AU2007244226B2/en
Priority to CA2650685A priority patent/CA2650685C/en
Priority to CN2007800146073A priority patent/CN101426902B/zh
Priority to JP2008513304A priority patent/JP5149791B2/ja
Priority to KR1020127032143A priority patent/KR101346047B1/ko
Priority to US12/298,565 priority patent/US8293529B2/en
Priority to EP07742677A priority patent/EP2014766A4/en
Priority to BRPI0710949-0A priority patent/BRPI0710949A2/pt
Publication of WO2007126077A1 publication Critical patent/WO2007126077A1/ja
Priority to IL194970A priority patent/IL194970A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Definitions

  • the present invention relates to a method for selectively and efficiently producing cardiomyocytes from pluripotent stem cells such as ES cells.
  • cardiomyocytes actively divide while pulsing before birth, lose their ability to divide immediately after birth, and there are very few undifferentiated stem cells and progenitor cells.
  • its proliferative ability and differentiation ability are also extremely low, so if cardiomyocytes are killed by exposure to various stresses such as myocardial infarction and myocarditis, the lost cardiomyocytes are not replenished. Yes.
  • the remaining cardiomyocytes try to maintain cardiac function by compensatory hypertrophy, but if various stresses persist and exceed the permissible range, the myocardial function is further deteriorated by inducing further exhaustion and death of the cardiomyocytes. It begins to show a decline (ie heart failure).
  • Heart disease including heart failure
  • the 5-year survival rate of patients with heart disease whose prognosis is extremely poor, is about 50%.
  • cardiotonic drugs such as digitalis and xanthine, which increase the contractility of the myocardium, have been used as therapeutic agents for heart failure, but long-term administration of these drugs worsens the pathology due to excessive consumption of myocardial energy.
  • Non-patent Document 1 Non-patent Document 1
  • Pluripotent stem cells are capable of almost permanent or long-term cell growth in an undifferentiated state by in vitro culture and exhibit a normal nuclear (chromosomal) type. It is defined as a cell that has the ability to differentiate into cells of all lineages under the appropriate conditions, the three germ layers (ectoderm, mesoderm, and endoderm). Pluripotent stem cells include embryonic stem cells (embryonic stem cells: ES cells) isolated from early embryos, embryonic germ cells (embryonic germ cells: EG cells) isolated from embryonic primordial germ cells, immediately after birth Germline stem cells (GS cells) isolated from human testis are the best known.
  • ES cells embryonic stem cells
  • EG cells embryonic germ cells isolated from embryonic primordial germ cells
  • GS cells immediately after birth Germline stem cells
  • ES cells can be induced to differentiate into cardiomyocytes by in vitro culture.
  • Most of the early studies were conducted using mouse-derived ES cells.
  • ES cells When ES cells are in a single cell state (individual cells that are not adhered to each other by dispersing them with an enzyme treatment), differentiation inhibitors such as leukemia inhibitory factor (UF) are present. If suspension culture is performed without this, ES cells adhere and aggregate together, forming a structure similar to the early embryo called the embryoid body (EB).
  • EB embryoid body
  • cardiomyocytes having autonomous pulsatility appear by culturing EBs in a floating state or an adhesive state.
  • ES cell-derived cardiomyocytes prepared as described above are immature myocardial cells derived from fetal heart. It is very similar to a cell (see Non-Patent Documents 2 and 3).
  • animal experiments in which ES cell-derived cardiomyocytes were actually transplanted into adult heart tissue have been confirmed to exhibit extremely high efficacy, which is almost the same as in cases in which fetal myocardium was transplanted (Patent Document 1, Non-patent Document 1). See permit 4).
  • EBs formed from ES cells or EG cells by conventional methods are used.
  • other cells such as blood cells, vascular cells, nervous cells, intestinal cells, bone and chondrocytes, etc. may be mixed.
  • the proportion of cardiomyocytes among these differentiated cells is only about 20% to 20% of the total.
  • 5-azacitidine a demethylating agent
  • 5-azacitidine is a drug that changes the expression state of a gene by releasing the methyl group bound to DNA. It is not suitable as a drug to be prepared.
  • Non-Patent Document 10 retinoic acid
  • Ascorbic acid see Non-Patent Document 11
  • TGF tumor necrosis factor
  • ⁇ , ⁇ -2 see Non-Patent Document 12
  • PDGF see Non-Patent Document 13
  • Dynorphin B see Non-Patent Document 14
  • ROS intracellular reactive oxygen species
  • Non-patent Document 17 discloses that when ES cells were transiently treated with a BMP antagonist, cardiomyocytes could be induced to differentiate at a higher rate and selectively than the conventional method.
  • Wnt protein A secreted protein, Wnt protein, is a group of protein families that are widely recognized not only in vertebrates but also in invertebrates such as nematodes and insects. Many gene species are known for the gene family. (Non-patent documents 18, 19). For example, there are currently 19 known types of humans and mice (Wnt-1, 2, 2b / 13, 3, 3a, 4, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9a, 9b, 10a, 10b, 11, 16). The Wnt protein groups encoded by these Wnt genes are similar in structure to each other, although their tissue specificities are different.
  • Wnt protein strength When contributing to an intracellular signal transduction system as an S ligand, it binds to a seven-transmembrane Frizzled (Fzd) family receptor existing on the cell membrane. Multiple pathways acting downstream of the Fzd receptor The most important pathway is the inhibition of phosphorylation of ⁇ -catenin via Glycogen Synthase Kinase (GSK) -3 ⁇ .
  • GSK Glycogen Synthase Kinase
  • / 3 catenin is captured on the APC (Adenomatous polyposis coli) protein by Axin along with GSK-3 j3 and phosphorylated by GSK-3 j3. .
  • Phosphorylated j3 catenin undergoes ubiquitination and is degraded by the proteasome.
  • Wnt protein binds to the Fzd receptor, intracellular factor Dishvelled is activated and GSK-3 ⁇ is captured, and / 3catenin is not phosphorylated, It remains as a free form in the material and moves into the nucleus.
  • ⁇ -catenin that translocates into the nucleus binds to lymphocyte activation factor-1 / T cell factor (LEF-1 / TCF) in the nucleus and activates transcription Forms a complex and induces transcription of the target gene.
  • LEF-1 / T cell factor lymphocyte activation factor-1 / T cell factor
  • Such signal transduction pathways involving ⁇ -catenin accumulation and nuclear translocation are called “classical” Wnt pathways, or canonical Wnt signaling pathways that can activate these pathways.
  • One molecular species in the family such as 3a and Wnt-8a is called Kanoniki Nore Wnt. It is well known that the activation of the Wan signaling pathway can be similarly caused by treatment with various GSK-3
  • Wnt ligand is known to activate signal transduction pathways other than ⁇ -catenin pathway via Fzd receptor, and activates JNK (Jun N-terminal kinase), a kind of MAP kinase. Increase in intracellular Ca 2+ concentration through the planar cell polarity (PCP) pathway, the activation of trimeric G protein, and the subsequent activation of phospholipase C Examples include the Ca 2+ pathway that activates protein kinase C (Non-patent Documents 19 and 20). These pathways are referred to as “non-classical” Wnt pathways, or non-canonical Wnt signaling pathways, relative to the canonical Wnt signaling pathway. It is reported that Wnt-4 and Wnt-11 are Wnt family molecules that can activate the pathway. These Wnt ligands have been shown to act inhibitory on the canonical Wnt signaling pathway.
  • Wnt-5a is known to act as a non-canonical Wnt in general Atsusei systems such as secondary axis formation in Xenopus embryos and canceration of mammary epithelial cells.
  • Atsusei systems such as secondary axis formation in Xenopus embryos and canceration of mammary epithelial cells.
  • j3 catenin and induction of transcriptional activity that is, activation of the canonical Wnt signaling pathway
  • the Wnt protein is known to be involved in various biological functions in the development, proliferation and differentiation processes of various cells, tissues and cancers. Cardiomyocytes appear from a part of the lateral plate mesoderm in the early stage of development, and then proliferate while repeating cell division to form the heart. It is clear from some cases that the presence or absence of Wnt signal plays an important role in the process. For example, ectopic and / or forced expression of the Wnt-3a or Wnt-8a genes that activate the canonical Wnt signaling pathway during early development of chickens and Xenopus laevis Is significantly inhibited (Non-patent Documents 22 and 23).
  • Wnt antagonists such as Frzb and Dkk-1 that bind to Wnt-3a and Wnt-8a and inhibit their signal transduction promote cardiac formation. It was suggested that the signal has an inhibitory effect on myocardial development.
  • Non-patent Document 24 revealed that Wnt-11, which does not activate the canonical pathway but activates the canonical pathway, is an essential factor in Xenopus laevis heart development. did. Subsequently, the Wnt_ll promoting effect was also confirmed in the myocardial differentiation induction system of mouse ES cells (Non-patent Document 25) and human vascular endothelial progenitor cells (Non-patent Document 26).
  • Non-canonical Wnt signaling pathway it is known that cardiomyocytes can be induced to differentiate from the tongue tissue (Patent Document 6).
  • the canonical Wnt signaling pathway has an activating ability to promote the myocardial differentiation of embryonic carcinoma cells (EC cells).
  • EC cells embryonic carcinoma cells
  • P19 cell sub-strain, P19CL6 cell, which is one of EC cells has the property of differentiating into cardiomyocytes under the stimulation of dimethyl sulfoxide (DMSO), but when Wnt_3a or Wnt_8 is added to the medium, Differentiation into cardiomyocytes was promoted with stabilization of ⁇ -catenin (Non-patent Document 27). In this system, it has also been shown that 4 days from the time immediately after induction of differentiation is sufficient for the addition of Wnt protein (Non-patent Document 28).
  • DMSO dimethyl sulfoxide
  • the P19 cell line partially exhibits traits similar to ES cells in that it can be induced to differentiate into cardiomyocytes and neurons.
  • the P19 cell line does not have a variety of differentiation ability and chimera formation ability like ES cells, and there are also significant differences in cell surface markers and expressed genes.
  • the P19 cell line can be used as a model system for ES cells in certain experiments, but it is not necessarily a cell with the same traits as ES cells. Whether these findings can be extrapolated directly to the myocardial differentiation induction system of pluripotent stem cells such as ES cells could not be predicted based on scientific evidence.
  • Non-patent document 25 has no induction effect (Non-patent document 25) or has an inhibitory effect (Non-patent document 29). That is, the effect of activation of the canonical Wnt signaling pathway on myocardial differentiation of ES cells and other pluripotent stem cells is not clear, and an optimal culture method has been established to induce myocardial differentiation. It is a situation that cannot be said to be.
  • Patent Document 1 US Pat. No. 6,015,671
  • Patent Document 2 US Pat. No. 5,843,780
  • Patent Document 3 US Patent No. 6,090,622
  • Patent Document 6 JP-A-2005-224155
  • Non-patent literature l Soonpaa MH et al, Science, 264: 98, 1994
  • Non-Patent Document 2 Maltsev VA et al., Mechanism of Developement, 44:41, 1993
  • Non-Patent Document 3 Maltsev VA et al., Circulation Research, 75: 233, 1994
  • Non-patent literature 4 Klug MG et al, Journal of Clinical Investigation, 98: 216, 1996
  • Non-patent literature 5 Thomson JA et al, Proceedings of the National Academy of Sciences of the United States of America, 92: 7844, 1995
  • Non-Patent Document 6 Thomson JA et al, Science, 282: 114, 1998
  • Non-Patent Document 7 Shamblott MJ et al., Proceedings of the National Academy of Sciences of the United States of America, 95: 13726, 1998
  • Non-patent document 8 Kehat I et al., Journal of Clinical Investigation, 108: 407, 2001
  • Non-patent document 9 Xu C et al., Circulation Research, 91: 501, 2002
  • Non-Patent Document 10 Wobus AM et al., Journal of Molecular and cellular Cardiology, 29: 1
  • Non-patent literature ll Takahashi T et al., Circulation, 107: 1912, 2003
  • Non-Patent Document 12 Behfar A et al., FASEB Journal, 16: 1558, 2002
  • Non-Patent Document 13 Sachinidis et al., Cardiovascular Research, 58: 278, 2003
  • Non-Patent Document 14 Ventura C et al., Circulation Research, 92: 623, 2003
  • Non-Patent Document 15 Sauer H et al., FEBS Letters, 476: 218, 2000
  • Non-Patent Document 16 Li J et al "Journal of Cell Biology, 158: 103, 2002
  • Non-Patent Document 17 Yuasa S et al., Nature Biotechnology, 23: 607, 2005
  • Non-Patent Document 18 Nusse R, Cell Research, 15:28, 2005
  • Non-Patent Document 19 Widelitz R, Growth Factors, 23: 111, 2005
  • Non-Patent Document 20 Luhl M et al., Trends in Genetics, 16: 279, 2000
  • Non-Patent Document 21 Hao J et al "Developemental Biology, 290: 81, 2006
  • Non-Patent Document 22 Schneider VA & Mercola M, Genes and developement, 15: 304, 200 1
  • Non-patent literature 23 Marvin MJ et al., Genes and Developement, 15: 316, 2001
  • Non-patent literature 24 Pandur P et al., Nature, 418: 636, 2002
  • Non-Patent Document 25 Teramiri et al., Biochemical and Biophysical Research Communicati on, 325: 968, 2004
  • Non-Patent Document 26 Koyanagi M et al., Journal of Biologycal Chemistry, 260: 16838, 200 5
  • Non-Patent Document 27 Nakamura T et al, Proceedings of the National Academy or sciences of the United States of America, 100: 5834, 2003
  • Non-Patent Document 28 Naito AT et al "Circulation Research, 97: 144, 2005
  • Non-Patent Document 29 Yamashita JK et al., FASEB Journal, 19: 1534, 2002
  • Non-Patent Document 30 Naito AT et al., Proceedings of the National Academy of Sciences of the United States of America, 103: 19812, 2006
  • An object of the present invention is to activate a canonical Wnt signaling pathway to induce differentiation of undifferentiated pluripotent stem cells into cardiomyocytes selectively at a high rate; myocardium obtained by the method A cell; and a method of using the cell for cell transplantation, injection, and other treatments targeting heart disease.
  • the present inventors have used pluripotent stem cells, particularly ES cells, which are the most frequently used cells, as a stem cell source for producing cardiomyocytes, and variously examined conditions for inducing differentiation into cardiomyocytes or their progenitor cells.
  • the substance has pulsatile activity by adding a substance that promotes activation of the canonical Wnt signal pathway (hereinafter referred to as Wnt signal activator) in the medium for a certain period of time during culture.
  • Wnt signal activator a substance that promotes activation of the canonical Wnt signal pathway
  • the pluripotent stem cells used in the present invention include ES cells derived from mammals such as mice, monkeys and humans, EG cells, GS cells, and pluripotency having similar traits as all ES cells.
  • stem Cell ES cell-like traits refer to ES cell-specific surface (antigen) markers, ES cell-specific gene expression, teratoma formation ability, and chimeric mouse formation ability. It can be defined as a cell biological property specific to the cell.
  • specific examples of the substance that promotes activation of the canonical Wnt signaling pathway include various canonical force Wnt proteins, GSK-3 ⁇ inhibitors, and other canonical Wnt signals. And low molecular weight compounds that can activate the pathway.
  • genes that can activate the canonical Wnt signal pathway such as various canonical Wnt genes, ⁇ -catenin gene, or the heel end thereof, or non-phosphorylation sites by GSK-3 ⁇ A ⁇ -catenin gene active mutant substituted with phosphorylated amino acid can also be used.
  • the cannini force Wnt protein refers to catenin by binding to the Fzd family receptor in the Wnt family protein group and suppressing phosphorylation of ⁇ -catenin by GSK-3 ⁇ . It is defined as a substance that promotes the stabilization of transcription and the ability to activate transcription.
  • suitable Wano protein of the present invention include Wnt-1, Wnt-3a, Wnt_5a, Wnt-8a, and more preferably 80% or more in terms of the protein and amino acid sequence.
  • those having 90% or more homology and having ⁇ -catenin activation ability can be cited.
  • the present invention is characterized in that pluripotent stem cells such as ES cells are transiently stimulated with a Wnt signal activator, and the stimulation method is particularly limited.
  • a method of culturing in a medium containing a canonical Wnt protein for example, a recombinant protein obtained by expressing a purified canonical Wnt gene (hereinafter referred to as a recombinant Wnt protein) is preferable.
  • the canonical Wnt protein used and the gene encoding it are preferably derived from the same species of animal as the species from which the pluripotent stem cells are derived, but those derived from other species can also be used.
  • the old medium is removed aseptically, and then 0.1 ng / mL to 500 ng / mL, preferably 1 ng / mL to 200 ng / mL, more preferably 10 ng / mL to 100 Incubate in medium containing recombinant Wnt protein at a concentration of ng / mL.
  • the GSK-3 ⁇ inhibitor according to the present invention is a kinase activity of GSK-3 / 3 protein (for example, j3 force)
  • GSK-3 / 3 protein for example, j3 force
  • BIO also known as GSK-3 ⁇ inhibitor IX; 6- Bromoindirubin (3'-oxime), a maleimide derivative, SB216 763 (3- (2,4-dichlorophenyl) -4- (1-methyl-1H-indole-3-yl) -1 ⁇ -pyrrole-2, 5 -Dione), GSK-3 ⁇ inhibitor VII (4-dib mouth moacetophenone), a phenomethyl bromomethyl ketone compound, L803_mts (also known as G SK-3 ⁇ peptide inhibitor; Myr -N-GKEAPPAPPQSpP-NH) and the like.
  • BIO or SB216763 is preferably replaced with a medium containing a GSK-3 inhibitor at a concentration of 10 nmol / L to l ⁇ mol / L, more preferably 50 nmol / L to 200 nmol / L, and the culture is performed. continue.
  • concentration of GSK-3 ⁇ inhibitor VII added is preferably 2 ⁇ mol / L to 100 ⁇ mol / L, more preferably 5 ⁇ mol to 20 ⁇ mol / L.
  • the addition concentration of L803_mts is preferably 5 ⁇ mol / L to 500 ⁇ mol / L, more preferably 20 ⁇ mol / L to 200 ⁇ mol / L, and even more preferably 25 ⁇ mol / L to 200 ⁇ mol. / L.
  • the drug used in the practice of the present invention may be a low-molecular substance that promotes activation of the canonical Wnt signal pathway (hereinafter, Wnt agonist).
  • Wnt agonist a low-molecular substance that promotes activation of the canonical Wnt signal pathway
  • an aminobrimidine derivative (2-amino-4- [3,4- (methylenedioxy) benzil-amino] -6- (3-methoxyphenyl) -pyrimidine; Calbiochem) (Liu et al., Angew. Chem. Int. Ed. Engl. 44: 1987, 2005).
  • the Wnt agonist When using the Wnt agonist, it contains Wnt agonist at a concentration of 1 nmol / L to 1000 nmol / L, preferably 10 nmol / L to 500 nmol / L, more preferably 50 nmol / L to 200 nmol / L. Replace with medium and continue culture.
  • the time when the Wnt signal activator is allowed to act can be determined by using as an index the expression pattern of various canonical Wnt genes in the process of inducing differentiation of the pluripotent stem cells used in the practice of the present invention.
  • pluripotent stem cells are induced to differentiate based on conventional methods, MRNA was extracted from the collected samples, and the expression levels of various canonical Wnt genes were examined using a general method such as RT-PCR, and after expression of differentiation, the expression level of canonical Wnt genes was The time point at which the level significantly increased compared to undifferentiated pluripotent stem cells before differentiation induction is defined as the “Wnt gene expression increasing period”.
  • the number of canonical Wnt genes to be analyzed may be one, but preferably two or more, more preferably three or more.
  • the pluripotent stem cell is a period from immediately after the start of culture for myocardial differentiation induction to 24 hours before the Wnt gene expression increase period determined by the above method, Incubate in medium without signal activator.
  • the pluripotent stem cell is 24 hours to 0 hours before, preferably 24 hours before, preferably 24 hours to 96 hours, more preferably more than the Wnt gene expression rising stage determined by the above method. Is cultured in a medium containing a Wnt signal activator for 48 to 72 hours. Note that the period for which the Wnt SIGNALE activator is allowed to act depends on the conditions such as the animal species from which the cells are used, the cell line used, the use, and the type of Wnt signal activator. It can be used by changing.
  • the myocardial cells induced to differentiate from pluripotent stem cells such as ES cells by the above-mentioned method are subsequently used for high-purity myocardium by using cell recovery, separation and purification methods by known methods. Cells can be obtained efficiently and in large quantities.
  • the myocardial cells thus obtained are hereinafter referred to as cardiomyocytes prepared according to the present invention.
  • Cardiomyocytes prepared according to the present invention are cells exhibiting morphological, physiological and / or immunological characteristics of cardiomyocytes. Physiological and / or immunological characteristics are not particularly limited, but the cardiomyocytes prepared according to the present invention express one or more markers specific for cardiomyocytes that are recognized as cardiomyocytes. If you do.
  • the cardiomyocytes prepared according to the present invention are used in a screening method for identifying novel factors or potential chemotherapeutic agents that promote cardiomyocyte development, differentiation induction, regeneration, survival, and the like. be able to.
  • cardiomyocytes prepared according to the present invention can be used in a method for treating a heart in a heart disease state.
  • a method for inducing differentiation of cardiomyocytes from pluripotent stem cells comprising: i) pluripotent stem cells from the start of differentiation induction to a period of 24 hours before the canonical Wnt gene expression, Culturing in a culture medium that does not contain a substance that promotes activation of the cal Wnt signaling pathway;
  • the pluripotent stem cell is cultured in a culture medium containing a substance that promotes activation of the canonical Wnt signaling pathway from 24 hours before the canonical Wnt gene expression is elevated, the method of.
  • the GSK3 ⁇ inhibitor is at least one inhibitor selected from the group consisting of GSK3 ⁇ inhibitor VII, L803-mts, SB216763, and GSK3 ⁇ inhibitor IX ( ⁇ ). Method.
  • GSK3 ⁇ inhibitor concentration in culture medium GSK3 ⁇ inhibitor VII 2 ⁇ mol / L to 100 ⁇ mol / L, L803-mts 5 ⁇ mol / L to 500 ⁇ mol / L, SB216763 In case of 10 nmol / L ⁇ l / i mol / L, or 10 nmol / L ⁇ l / i mol / L in the case of ⁇ 3! ⁇ 3 inhibitor 1 ⁇ (810), (8) or (9) .
  • the pluripotent stem cell is an embryonic stem cell, an embryonic germ cell, or a germline stem cell.
  • myocardial progenitor cells and cardiomyocytes can be produced very efficiently and selectively from pluripotent stem cells such as ES cells.
  • the myocardial (precursor) cells produced by the method according to the present invention can be used for the search and development of drugs effective for the treatment of heart diseases, and may be applicable for the treatment of myocardial transplantation for severe heart diseases.
  • FIG. 1A shows changes in the expression of Wnt genes and the like during the process of induction of ES cell differentiation.
  • the meanings of the symbols in the figure are as follows.
  • Untreated group, country: Chodin treated group, ⁇ : Dunn treated group.
  • the vertical axis represents the relative ratio of the Wnt gene expression level to the GAPDH gene expression level used as an internal standard.
  • * indicates the time when the expression level of the Wnt gene was significantly higher than that of undifferentiated ES cells before induction of differentiation.
  • FIG. 1B shows changes in the expression of Wnt genes and the like during the process of induction of ES cell differentiation.
  • the meanings of the symbols in the figure are as follows.
  • the vertical axis represents the relative ratio of the Wnt gene expression level to the GAPDH gene expression level used as an internal standard. * Indicates the time when the expression level of the Wnt gene was significantly higher than that of undifferentiated ES cells before induction of differentiation.
  • Fig. 1C shows changes in the expression of Wnt genes, etc. during the process of induction of ES cell differentiation. The meanings of the symbols in the figure are as follows.
  • Untreated group, country: Chodin treated group, ⁇ : Dunn treated group.
  • the vertical axis represents the relative ratio of the Wnt gene expression level to the GAPDH gene expression level used as an internal standard.
  • * indicates the time when the expression level of the Wnt gene was significantly higher than that of undifferentiated ES cells before differentiation induction.
  • FIG. 2A shows the effect on the appearance of pulsatile EB due to the difference in the addition time of recombinant Wnt protein to the culture medium.
  • FIG. 2B shows the effect on the appearance of pulsatile EB due to the difference in the addition time of recombinant Wnt protein into the culture medium.
  • Fig. 3A shows the expression of cardiomyocyte-specific marker genes in pulsatile EBs that emerged by induction of ES cell differentiation.
  • the vertical axis represents the relative ratio when the gene expression level in the untreated group (None) is 1.
  • FIG. 3B shows the expression of a cardiomyocyte-specific marker gene in pulsatile EBs that emerged by induction of ES cell differentiation.
  • the vertical axis represents the relative ratio when the gene expression level in the untreated group (None) is 1.
  • Fig. 3C shows the expression of cardiomyocyte-specific marker genes in pulsatile EBs that emerged by induction of ES cell differentiation.
  • the vertical axis represents the relative ratio when the gene expression level in the untreated group (None) is 1.
  • Fig. 3D shows the expression of cardiomyocyte-specific marker genes in pulsatile EBs that emerged by induction of ES cell differentiation.
  • the vertical axis represents the relative ratio when the gene expression level in the untreated group (None) is 1.
  • FIG. 4 shows immunohistochemical staining of a cardiomyocyte-specific marker protein in pulsatile EBs that emerged by induction of ES cell differentiation.
  • Fig. 5A shows the effect of the appearance of pulsatile EB by a GSK3 ⁇ inhibitor.
  • FIG. 5B shows the effect of the appearance of pulsatile EB by GSK3 j3 inhibitor.
  • Fig. 5C shows the effect of the appearance of pulsatile EB by GSK3 j3 inhibitor.
  • FIG. 5D shows the effect of the appearance of pulsatile EB by GSK3 / 3 inhibitor.
  • FIG. 5E shows the effect of the appearance of pulsatile EB by GSK3 j3 inhibitor.
  • FIG. 6 shows changes in expression of the Wnt-3 gene during the differentiation induction process of common marmoset (monkey) ES cells.
  • FIG. 7 shows the expression of a cardiomyocyte-specific marker gene in pulsatile EBs that emerged by induction of cmES cell differentiation.
  • FIG. 8 shows immunohistochemical staining of a cardiomyocyte-specific marker protein in pulsatile EBs that emerged by induction of differentiation of cmES cells.
  • pluripotent stem cells can be used by referring to a plurality of references.
  • references include the following: Matsui et al., Cell 70: 841, 1992; Thomson et al., US Pat. No. 5,843,780; Thomson et al, Science 282: 114, 1998; Shamblott et al "Pro Natl. Acad. Sci. USA 95: 13726, 1998; Shamblott et al., US Patent No. 6,090, 622; Reubinoff et al., Nat. Biotech.
  • the method of establishing ES cells or ES cell-like cells is known. According to the method of mounting, the ES cells used in the present invention produced 'can be used.
  • cardiomyocytes refers to myocardial progenitor cells, fetal cardiomyocytes, and cells in all differentiation stages of adult cardiomyocytes that have the potential to become functional cardiomyocytes in the future. And a cell in which at least one, preferably a plurality of markers and criteria can be confirmed by at least one, preferably a plurality of methods described below.
  • Expression of various markers specific for cardiomyocytes is detected by conventional biochemical or immunochemical techniques.
  • the method is not particularly limited, but preferably an immunochemical technique such as immunohistochemical staining or immunoelectrophoresis is used.
  • marker-specific polyclonal antibodies or monoclonal antibodies that bind to myocardial progenitor cells or cardiomyocytes can be used.
  • Antibodies that target individual specific markers are commercially available and can be readily used.
  • Specific markers for myocardial progenitor cells or myocardial cells include, for example, myosin heavy chain Z light chain, hi-actinin, Ponin I, ANP, GATA-4, Nkx2.5, MEF-2c etc. are mentioned.
  • the expression of myocardial progenitor cells or cardiomyocyte-specific markers is not particularly limited, but any marker protein such as reverse transcriptase-mediated polymerase chain reaction (RT-PCR) or hybridization analysis can be used. It can be confirmed by a conventional molecular biological method for amplifying, detecting, and analyzing the encoded mRNA.
  • RT-PCR reverse transcriptase-mediated polymerase chain reaction
  • Nucleic acids encoding markers specific to cardiac myocyte or cardiomyocytes eg, myosin heavy / light chain, hi-actinin, troponin I, ANP, GATA-4, Nkx2.5, MEF_2c
  • NCBI National Center for Biotechnology Information
  • pluripotent cell-derived cells have autonomous pulsatility, express various ion channels, and can respond to electrophysiological stimulation, and other useful indicators.
  • the method of the present invention can be applied to pluripotent stem cells derived from any mammal.
  • examples of pluripotent stem cells used in the present invention include ES cells derived from mammals such as mice, monkeys and humans that are already widely used as cultured cells.
  • mouse-derived ES cells include EB3 cells, E14 cells, D3 cells, CCE cells, R1 cells, 129SV cells, J1 cells and the like.
  • the mouse-derived ES cells according to the present invention can be obtained from, for example, American Type Culture Collection (ATCC Lyapon Chemicon soil, Cell & Molecular Technologies, etc.).
  • Monkey-derived ES cells include rhesus monkey (Macaca mulatta) (Thomson et al, Proc. Natl. Acad. Sci. USA 92: 7844, 1995) and cynomolgus monk ey (Macaca fascicularis). (Suemori et al., Dev. Dyn. 222: 273, 2001), common marmoses The common marmoset (Callithrix jacchus) (Sasaki et al., Stem Cells. 23: 1304, 2005) has been reported and can be used. For example, marmoset ES cells can also be obtained from the Institute for Experimental Animal Research.
  • ES cells are generally established by culturing early embryos, ES embryos can also be produced by early embryos that have been transplanted with somatic cell nuclei (Munsie et al., Curr). Biol. 10:98 9, 2000; Wakayama et al "Science 292: 740, 2001; Hwang et al., Science 303: 1669, 2004). In addition, parthenogenetic embryos have reached the same stage as the blastocyst stage. Attempts to generate ES cells from them (US Patent Publication No. 02/168763; Vrana K et al., Proc. Natl. Acad. Sci.
  • ES cells and somatic cells A method for producing ES cells having genetic information of somatic cell nuclei by fusing these cells has also been reported (International Publication No. 00/49137; Ta da et al., Curr. Biol. 11: 1553, 2001)
  • ES cells used in the present invention include ES cells prepared by such a method or those obtained by modifying genes on chromosomes of ES cells by genetic engineering techniques.
  • the pluripotent stem cells that can be used in the method according to the present invention are not limited to ES cells, but include mammalian adult organ and tissue cells, bone marrow cells, blood cells, and embryonic fetal cells. All pluripotent stem cells having traits similar to ES cells derived from the above are included. In this case, traits similar to ES cells are the presence of surface (antigen) markers specific to ES cells, the expression of ES cell-specific genes, or the ability to form teratoma or chimeric mice. It can be defined with cell biology properties specific to ES cells, such as ability to form. Specific examples include EG cells produced from primordial germ cells, GS cells produced from testicular germ cells, and induced pluripotent stem cells produced from somatic cells such as fibroblasts by special genetic manipulation ( induced pluripotent stem cells: iPS cells).
  • iPS cells induced pluripotent stem cells
  • any method suitable for inducing differentiation of cardiomyocytes can be used.
  • suspension culture Method hanging drop culture method, co-culture method with feeder cells, swirl culture method, soft agar culture method, microcarrier culture method and the like.
  • an ES cell in a single cell state (a state in which individual cells that do not adhere to each other by enzyme digestion or the like are dispersed in a liquid phase) is preferable.
  • the above cell suspension can be used for a 96-well culture plate (for example, Sumilon senoletite 'spheroid; Sumitomo Bakelite Co., Ltd.) or a non-cell-adhesive culture plate (for example, Coaster ultra-low adhesion plate (Corning), or seeded on untreated polystyrene plate.
  • the suspension containing ES cells is cultured under CO conditions in which 5% carbon dioxide is aerated at 37 ° C., whereby EBs are formed, and differentiation induction of cardiomyocytes and the like takes place therein.
  • activation of the canniform force Wnt signaling pathway means that catenin is GSK-3
  • a method for examining whether or not the canonical Wnt signaling pathway is activated is not particularly limited, but it can be determined in the cytoplasm and by immunohistochemical staining using a ⁇ -catenin specific antibody or Western 'plot analysis. A method of measuring the amount of / 3 catenin in the nucleus can be used.
  • a monoclonal antibody that specifically recognizes non-phosphorylated ⁇ -catenin, that is, active ⁇ -catenin is also commercially available and is particularly useful.
  • a reporter assay that links a reporter gene downstream of the LEF-1 / TCF binding sequence and uses the production ability of the reporter gene product as an index is also effective.
  • LEF-1 / TCF binding sequence and reporter gene used in the method Plasmids containing can be purchased from Upstate under the trade name TOPflash.
  • Wnt signal activator examples include various canonical Wnt proteins, GSK-3 ⁇ inhibitors, Wntagonists and the like.
  • genes that can activate the canonical Wnt signaling pathway such as various canonical Wnt genes, the / 3 catenin gene, or the N-terminus thereof are deleted, or the phosphorylation site by GSK-3 is not phosphorylated.
  • a / 3 catenin gene active mutant substituted with an amino acid can also be used.
  • genes such as axin and APC that suppressively control the force non-Wnt signaling pathway is suppressed or inhibited by specific antisense DNA, ribozyme, antisense RNA for RNA interference, low molecular weight compounds, etc.
  • a method of stopping can also be used.
  • the nucleotide sequences of genes encoding these molecules can be used in public DNA databases such as NCBI. Those skilled in the art can obtain and prepare cDNA, siRNA, and antisense DNA of the gene. Can be used.
  • the canonical Wnt protein that can be used in the present invention is a member of the Wnt family protein group that binds to an Fzd family receptor and suppresses phosphorylation of ⁇ -catenin by GSK-3 ⁇ . , Defined as a substance that promotes ⁇ -catenin stabilization and transcriptional activity.
  • Preferred canonical Wnt proteins according to the present invention include, for example, Wnt-1 (SEQ ID NO: 1), Wnt-3a (SEQ ID NO: 2), Wnt_5a (SEQ ID NO: 3), Wnt_8a (SEQ ID NO: 4), etc. Further, those having a homology of 80% or more, more preferably 90% or more in the protein and amino acid sequence, and having ⁇ -catenin activation ability can also be mentioned.
  • the present invention is characterized in that pluripotent stem cells such as ES cells are transiently stimulated with a Wnt signal activator, and the stimulation method is particularly limited. However, it is preferable to add a canonical Wnt protein, for example, a recombinant Wnt protein, to the medium and culture in that medium. In addition, any method that exhibits the same effect can be used.
  • a canonical Wnt protein for example, a recombinant Wnt protein
  • a method in which a cannini strength Wnt protein extracted and purified from a living tissue is added and cultured therein A method of introducing an expression vector of a gene encoding a Wnt protein into a pluripotent stem cell itself, a method of introducing the expression vector into a support cell and using the introduced cell as a co-culture cell, or a method of introducing the introduced cell Examples include methods using cell products such as culture supernatant, and the like.
  • the canonical Wnt protein is included in the medium as an embodiment.
  • the canonical Wnt protein used and the gene encoding the same are preferably derived from animals of the same species as the species from which the pluripotent stem cells are derived, but derived from other species of animals. Can also be used.
  • human WNT-1 protein when using mouse ES cells or monkey ES cells, human WNT-1 protein can be used.
  • recombinant Wnt proteins mouse-derived Wnt-3a and Wnt-5a, human-derived WNT-7A are commercially available from R & D Systems, and human-derived WNT-1 is commercially available from P-mark rotech, and is easily used. it can.
  • the old medium is removed aseptically, and then 0.1 ng / mL to 500 ng / mL, preferably 1 ng / mL to 200 ng / mL, more preferably 10 ng / mL to 100 Continue culture in medium containing Wnt protein at a concentration of ng AnL.
  • the Wnt protein does not exhibit biological activity unless it is modified with palmitic acid.
  • the ability to purify recombinant proteins secreted into the culture supernatant after being introduced into and expressed in animal-derived cells such as the specific method is already known (Wille rt et al., Nature 423: 448, 2003; Kishida et al., Mol. Cell. Biol. 24: 4487; http: // www. Stanford.edu/ ⁇ rnusse/wntwindow.html).
  • the base sequences of genes encoding these factors can be used in public DNA databases such as NCBI, and those skilled in the art can obtain and use cDNA of the genes. Is possible.
  • the Wnt-3a and Wnt-8a genes have already been identified in human mice, human WNT-3A (SEQ ID NO: 5), mouse Wnt_3a (SEQ ID NO: 2), human WNT-8A (sequence No. 6) and the nucleotide sequence of mouse Wnt_8a (SEQ ID NO: 4) are registered as access numbers: NM_033131, NM_009522, NM_031933, and NM_009290, respectively.
  • the GSK-3 ⁇ inhibitor according to the present invention is defined as a substance that inhibits the kinase activity of the GSK-3 ⁇ protein, for example, the phosphorylating ability for ⁇ force tenin, and there are already several tens or more types of inhibitors.
  • the GSK-3 ⁇ inhibitor according to the present invention is defined as a substance that inhibits the kinase activity of the GSK-3 ⁇ protein, for example, the phosphorylating ability for ⁇ force tenin, and there are already several tens or more types of inhibitors.
  • BIO or SB216763 it is preferably cultured in a medium containing a concentration of 10 nmol / L to 1 ⁇ mol, more preferably 50 nmol / L to 200 nmol / L.
  • GSK-3 inhibitor 1 VII it is preferably 2 ⁇ mol / L to 100 ⁇ mol / L, more preferably 5 ⁇ mol / L to 20 ⁇ mol / L.
  • L803_mts preferably 5 ⁇ mol to 500 ⁇ mol / L, more preferably 20 ⁇ mol / L to 200 ⁇ mol / L, and even more preferably 25 ⁇ mol / L to 200 ⁇ mol / L. L.
  • the drugs used in the practice of the present invention include low molecular weight substances (Wnt agonists) that promote activation of the canonical Wnt signaling pathway, such as organic or inorganic compounds. Or a peptide fragment.
  • Wnt agonists low molecular weight substances
  • organic or inorganic compounds such as organic or inorganic compounds.
  • a peptide fragment such as an aminopyrimidine derivative (2-amino-4- [3,4- (methylenedioxy) benzyl-amino] -6- (3_methoxyphenyl) pyrimidine; Calbiochem) (Liu et al., Angew. Chem. Int. Ed. Engl. 44: 1987, 2005).
  • nmol / L When using the Wnt agonist, 1 nmol / L to 1000 nmol / L, preferably Mashiku the N 10 nmol / L ⁇ 500 nmol, more preferably cultured in medium containing W n t Agonisuto concentration of ⁇ 200 nmol / L N 50 nmol.
  • Determining when the Wnt signal activator acts on pluripotent stem cells is a very important requirement in the practice of the present invention. That is, when a Wnt signal activator is allowed to act at an inappropriate time, it not only shows a promoting effect on the myocardial differentiation ability of pluripotent stem cells, but may also show a suppressive effect. For example, immediately after inducing differentiation of pluripotent stem cells, if cultured for about one week with a Wnt signal activator added to the culture solution, the myocardium is higher than the group without any addition to the culture solution (untreated group). Differentiation may be reduced.
  • the expression pattern of various canonical Wnt genes in the differentiation induction process of pluripotent stem cells used in the practice of the present invention can be used as an index. . Specifically, pluripotent stem cells are induced to differentiate based on a conventional method, mRNA is extracted from a sample collected over time, and the expression level of various canonical Wnt genes is measured using a general method such as RT-PCR. What is necessary is just to investigate using a method. Sample collection is from the start of culture for differentiation induction until the appearance of (pulsatile) cardiomyocytes, eg 6 for mouse ES, monkey ES and human ES cells. ⁇ : About 14 days, preferably every 24 hours, more preferably every 12 hours. The number of canonical Wnt genes to be analyzed may be one, but preferably two or more, more preferably three or more.
  • a pluripotent stem cell such as an ES cell
  • the expression of various cannibal force Wnt genes increases rapidly several days after differentiation induction, which is generally low in the undifferentiated state or immediately after differentiation induction (Example 1).
  • Wnt gene expression increase period the time point when the expression level of canonical Wnt gene is significantly higher than that of undifferentiated pluripotent stem cells before differentiation induction.
  • a significant increase in expression can be judged by a statistical test (risk rate: 5%) such as the commonly used Student's t-test.
  • the risk factor used as a criterion for judgment is preferably 5%, more preferably 1%.
  • the measured canonical Wnt gene expression rises rapidly in the days after differentiation induction, and then disappears within a few days, that is, the canonical Wnt gene is expressed only in a short period. If it shows a rise, The time point at which the maximum expression level is exhibited may be the Wnt gene expression increasing period.
  • BMP antagonists refer to substances that bind to BMP molecules (eg, BMP-2, BMP-4, BMP-7, etc.) and suppress BMP signaling, such as Noggin, Chordin, Dan ( DAN) and the like, and these substances that can be used for supplementing the medium can be purchased from, for example, R & D systems.
  • the pluripotent stem cells are in the period from immediately after the start of culture for inducing myocardial differentiation until 24 hours before the Wnt gene expression increase period determined by the above method. Incubate in medium without Wnt signal activator. Subsequently, the Wnt signal activator is added for a period of 24 to 96 hours, preferably 48 to 72 hours, from 24 to 0 hours before, preferably 24 hours before, the Wnt gene expression increase period determined by the above method. Incubate in medium containing.
  • Wnt-3, Wnt-3a, and Wnt-8a which are typical canonini force Wnt genes.
  • the expression is very low when undifferentiated or immediately after differentiation induction, but shows strong expression at 72 hours and 96 hours after differentiation induction (Example 1). Therefore, when the cells are used in the method of the present invention, the canonical Wnt gene expression increase period is 72 hours after differentiation induction, and the differentiation induction initiation force up to 48 hours includes a Wnt signal activator. Incubate in no medium.
  • the cells are cultured for 24 hours to 96 hours, preferably 48 hours to 72 hours, in a medium containing a Wnt signal activator from 48 hours after the initiation of differentiation induction.
  • the period (time) during which the Wnt signal activator is allowed to act is appropriately determined depending on the conditions such as the animal species from which the cell to be used is derived, the cell line to be used, the use, and the type of the Wnt signal activator.
  • the appropriate period (time) should be set.
  • the (time) can be set based on the period of increased expression of the canonical Wnt gene obtained by the method for determining the time when the Wnt signal activator is applied.
  • the expression of the Wnt-3 gene is strong over 72 to 120 hours after differentiation induction (Example 5), and in the case of human ES cells, the Wnt_3a gene is also induced after differentiation induction. It exhibits expression peaking at around 72 hours (Beqqali et al., Stem Cells 24: 1956, 2006).
  • the myocardial cells induced to differentiate from pluripotent stem cells such as ES cells by the above-described method are subsequently subjected to high-purity myocardium by using cell recovery, separation and purification methods by known methods.
  • Cells (cardiomyocytes prepared according to the present invention) can be obtained efficiently and in large quantities.
  • the cardiomyocyte purification method may be any known cell separation and purification method. Specific examples thereof include antigen antibodies such as flow cytometers, magnetic beads, and panning methods. Methods according to the reaction (“Monoclonal Antibodies: principles and practice, Third Edition J (Acad. Press, 1993);“ Antibody Engineering: A Practical Approachj (IRL Press at Oxford University Press, 1996) ”, sucrose, perconole, etc. Examples of cell fractionation by density gradient centrifugation using a carrier, and another cardiomyocyte sorting method include artificial modification of the pluripotent stem cell gene such as the original ES cell in advance.
  • the method of recovering cells with traits as cardiomyocytes by conferring drug resistance or the ability to express ectopic proteins, such as Field and collaborators When a gene cassette capable of expressing a neomycin (G418) resistance gene under the control of the oscine heavy chain promoter is introduced into mouse ES cells, the ES cells differentiate into cardiomyocytes, and the myosin heavy chain gene A cell that can survive in a medium supplemented with G418 only when it was expressed, and cells selected as G418-resistant cells by this method were confirmed to be cardiomyocytes with a probability of 99% or more.
  • G418 neomycin
  • cardiomyocytes have a mitochondrial content compared to other cells.
  • a method that specifically recovers a cell population rich in mitochondria that is, cardiomyocytes using a mitochondrial selective fluorescent dye or a mitochondrial membrane potential sensitive reagent (WO 2006/022377) is also effective.
  • a method of specifically purifying cardiomyocytes by adding amino acids such as lactic acid aspartate under low sugar conditions using the specific metabolic characteristics of cardiomyocytes is also suitable ( Japanese Patent Application 2006-23770).
  • Cardiomyocytes prepared according to the present invention are useful for pharmacological evaluation and activity evaluation of various physiologically active substances (for example, drugs) and novel gene products whose functions are unknown.
  • substances and drugs related to differentiation control from pluripotent stem cells such as ES Itoda cells to cardiomyocytes, substances and drugs related to cardiomyocyte function regulation, and substances and drugs that are toxic or damaging to cardiomyocytes
  • ES Itoda cells to cardiomyocytes substances and drugs related to cardiomyocyte function regulation, and substances and drugs that are toxic or damaging to cardiomyocytes
  • the cardiomyocytes prepared according to the present invention are useful cell sources for carrying out the screening method.
  • an evaluation kit comprising cardiomyocytes prepared according to the present invention is useful for the above screening.
  • the test substance to be used for screening is not particularly limited as long as it can be added to the culture system.
  • a low molecular compound, a high molecular compound, an organic compound, an inorganic compound, a protein, a peptide, a gene examples include viruses, cells, cell culture media, and microbial culture media.
  • the gene can be efficiently introduced into the culture system by adding it to the culture system using a viral vector such as a retrovirus or adenovirus, or by enclosing it in an artificial structure such as a ribosome. The method of adding etc. is mentioned.
  • Evaluation of a test substance can be performed by measuring differentiation induction efficiency from pluripotent stem cells such as ES cells to cardiomyocytes and qualitative or quantitative changes in cardiomyocyte function.
  • the myocardial differentiation induction efficiency of the test substance can be determined by measuring the pluripotent stem cells cultured using the method described in the present invention at 5 to 15 days, preferably 7 to 12 days after the start of culture.
  • the expression of various cell-specific markers can be measured by detecting the biochemical or immunochemical technique.
  • the biochemical or immunochemical technique is not particularly limited, but preferably an immunochemical technique such as immunohistochemical staining or immunoelectrophoresis can be used.
  • marker-specific polyclonal antibodies or monoclonal antibodies that bind to cardiomyocytes can be used.
  • Antibodies targeting individual specific markers are commercially available and can be used easily.
  • Specific for cardiomyocytes Examples of the marker include myosin heavy / light chain, ⁇ -actinin, troponin I, ANP, GAT A-4, Nkx2.5, MEF-2c and the like.
  • cardiomyocytes As an example of the cardiomyocyte function as an index for evaluating the test substance, the viability of the cardiomyocytes can be mentioned. Specifically, cardiomyocytes prepared by the method of the present invention are seeded on a culture plate so as to have an appropriate cell density, and cell death (apoptosis) is induced when cultured in a medium not containing serum. However, at that time, an appropriate amount of the test substance may be added to the medium, and the survival rate or mortality of the cardiomyocytes may be measured.
  • a method for measuring the survival rate or mortality of cardiomyocytes macroscopic observation using the incorporation of a dye such as trypan blue as an index may be used, and the dehydrogenase activity (reduction activity) may be used as an index.
  • a method using caspase activity specific to apoptotic cells and expression of annexin V as an index may be used. Kits using this mechanism are commercially available from many manufacturers such as Sigma, Clontech, and Promega, and can be used easily.
  • Substances and drugs obtained by such screening methods have cardiomyocyte differentiation-inducing action and function-regulating action.
  • myocardial infarction ischemic heart disease
  • congestive heart failure hypertrophic cardiomyopathy
  • hypertrophic cardiomyopathy dilated cardiomyopathy
  • It can be used as a prophylactic or therapeutic agent for heart diseases such as heart disease, myocarditis, and chronic heart failure.
  • heart diseases such as heart disease, myocarditis, and chronic heart failure.
  • These compounds may be novel compounds or known compounds.
  • the cardiomyocytes prepared according to the present invention can be used as a cardiomyocyte regenerative drug or a cardiac disease therapeutic drug.
  • heart diseases include myocardial infarction, ischemic heart disease, congestive heart failure, hypertrophic cardiomyopathy, dilated cardiomyopathy, myocarditis, and chronic heart failure.
  • a cardiomyocyte regenerative drug or a cardiac disease therapeutic drug if the cardiomyocytes prepared according to the present invention are contained with high purity, the cells are suspended in an aqueous carrier such as a medium, and the cells are biodegradable substrates. Any shape can be used, such as those encapsulated in a support such as, or processed into a single-layer or multi-layer cardiomyocyte sheet (Shimizu et al, Circ. Res. 90: e40, 2002). it can.
  • the above-mentioned therapeutic agents can be transported to the site of injury by opening the chest and injecting it directly into the heart using a syringe, by surgically incising and transplanting a part of the heart, and further by using a catheter. Transplantation by transvascular method using one tell (Murry et al., Cold Spring Harb. Symp. Quant. Biol. 67: 519, 2002; Menasche, Ann. Thorac. Surg. 75: S20, 2003 Dowell et al., Cardiovasc. Res. 58: 336, 2003), but not particularly limited.
  • Row 1 Species W in the presentation of ES parcels
  • Mouse ES cells are 100 U / mL in Knockout _DMEM (Invitrogen) medium (hereinafter referred to as ESM) containing 20% fetal calf serum, 2 mmol / L L-gnoretamine, and 0.1 mmol / L 2_mercaptoethanol.
  • ESM Knockout _DMEM
  • ES cells subcultured under normal culture conditions were washed twice with phosphate-buffered saline (hereinafter PBS) and then treated with 0.25% trypsin solution containing 1 mmol / L EDTA. Then, it was made into a single cell state and suspended in ESM.
  • PBS phosphate-buffered saline
  • trypsin solution containing 1 mmol / L EDTA.
  • BMP antagonist treatment adding BMP antagonists such as cordin protein and dang protein to the medium and causing them to act on ES cells.
  • RNA was prepared using RNeasy mini kit (manufactured by Qiagen) and subjected to DNase treatment.
  • CDNA was synthesized from DNase-treated total RNA (1 ⁇ g) using the SuperScript TM First-Strand Synthesis System for RT_PCR (Invitrogen).
  • Gene expression analysis is performed using ABI PRISM 7700 (PE Applied Biosystems), Lux flyer is used, and 7 linoletime polymerase chain reaction (PCR) quantification system is used to express various genes. The amount was examined.
  • the real-time PCR quantitative reaction was performed according to the method described in the attached instruction using Platinum Quantitative PCR SuperMix-UDG (Invitrogen) with the above cDNA as a saddle type.
  • Lux primers for detecting various Wnt genes etc. are primer design software (D- LUX 1M Designer (Invitrogen) was used and designed based on the base sequence information of various genes.
  • the base sequences of Lux primers used to detect each transcript of various Wnt genes are as follows.
  • Figure 1 shows one of the experimental examples based on the above method.
  • Induction of ES cell differentiation The Wnt gene expression from 24 hours (1st day) to 168 hours (7th day) was examined. Significant expression of Wnt-3, Wnt-3a and Wnt_8a genes An increase was observed. These Wnt genes exhibited strong expression peaks at 72 hours after differentiation induction at 96 hours, and then decreased significantly after 120 hours. Therefore, in the case of the ES cells, it can be determined that the Wnt gene expression increase period is 72 hours after differentiation induction.
  • BMP antagonist treatment is a method that can more clearly determine when Wnt gene expression is elevated during ES cell differentiation.
  • Row 2 Recombinant Wnt3 ⁇ 4 0 Ran Koyoru ES Summary o, fe 4, Summary Summary,
  • ES cell differentiation induction is the same as in Example 1.
  • the cells were cultured in a medium containing commercially available recombinant WNT-1 protein (Peprot ech), Wnt_3a protein (R & D systems), or Wnt_5a protein (R & D systems). did.
  • Wnt treatment adding Wnt recombinant protein such as WNT-1 to a medium and acting on ES cells is referred to as “Wnt treatment”.
  • the first 48, 72, 96, or 120 hours (2, 3, 4, or 5 days) after differentiation induction were subjected to Wnt treatment (Wnt ⁇ 48h , Wnt ⁇ 72h , Wnt ⁇ 96h , Wnt ⁇ 12Qh ) and differentiation induction 120 hours or 144 hours (5th or 6th day) and after Wnt treatment (Wnt 12 ° h ⁇ , Wnt 1 44 ⁇ etc. have pulsatile capacity EB appeared only to the same extent as the untreated group, and the pulsating area was limited to a part of the EB in the EB of the untreated group and other groups with a low proportion of pulsatile EB.
  • the ES cells were transformed into recombinant Wnt from 48 hours (2 days) or 72 hours (3 days) from 24 hours before the time when increased expression of Wnt gene was observed (72 hours after the start of differentiation induction).
  • a significant effect of promoting myocardial differentiation was obtained.
  • Wnt treatment significantly induces myocardial differentiation of ES cells, but the effect can be obtained only in a very limited period of the differentiation induction process.
  • Wnt treatment means 48 hours (2 days) from 48 hours to 96 hours after the start of differentiation induction, or 48 hours after the start of differentiation induction: 120 72 hours (3 days) ) Shows Wnt processing.
  • Example 2 by performing Wnt treatment, the pulsatility of EB produced from ES cells was significantly increased.
  • the pulsatile cells were cardiomyocytes.
  • gene expression and protein production of various myocardial specific marker molecules were examined.
  • ES cell differentiation was induced in the same manner as in Example 2, and EBs were collected 10 days after differentiation to prepare cDNA.
  • Real-time PCR quantitative reaction was performed by TaqMan probe method. That is, the above cDNA (l ⁇ L) was used as a saddle, and TaqMan Universal PCR Master Mix (PE Applied Biosystems) was used according to the method described in the attached instructions.
  • TaqMan probes for detecting various genes were designed based on the base sequence information of various genes using primer design software (ABI PRI SM Primer Express).
  • the base sequences of the primers and TaqMan probe used for the detection of each transcription product of GATA-4, Nkx-2.5, MLC_2a, MLC_2v, and GAPDH are as follows.
  • Drugs that promote ⁇ -catenin stabilization and transcriptional activity include BIO (Calbiochem), a commercially available GSK3 ⁇ inhibitor, GSK3 ⁇ inhibitor VII (Calbiochem), cell membrane permeation type GSK3 ⁇ peptide inhibitor (L803_mts; Calbiochem), SB216763 (Biomol), and Wnt agonist (Calbiochem) that promotes the transcriptional activity of ⁇ -catenin without GSK3 ⁇ inhibition were used.
  • Induction of differentiation of ES cells was carried out in the same manner as in the above example, and the above compound contained the above compound for a period from 48 hours to 120 hours (3 to 5 days) after induction of differentiation, as in the case of the recombinant Wnt protein. It was cultured in the medium.
  • cmES cells ES cells derived from a monkey, common marmoset (hereinafter referred to as cmES cells)
  • cmES medium DMEM medium containing 20% Knockout Serum Replacement (Invitrogen), 0.1 mmol / L MEM non-essential amino acid solution, 1 mmol / L L-gnoretamine, 0.1 mmol / L 2_mercaptoethanol ( Invitrogen) (hereinafter referred to as cmES medium) was supplemented with a medium supplemented with 10 ng / mL recombinant LIF (alomone labs) and 10 ng / mL recombinant basic fibroblast growth factor (Invitrogen).
  • cmES medium a medium supplemented with 10 ng / mL recombinant LIF (alomone labs) and 10 ng / mL recombinant basic fibroblast growth factor (Invitrogen).
  • the non-passing fraction containing the cmES cell mass was seeded on a commercially available culture plate (primary: Betaton Dickinson) exhibiting high cell adhesion ability, and after culturing for 30 minutes, it did not adhere to the plate.
  • Cell clumps floating in the medium were collected.
  • the thus obtained cmES cell clumps are cultured in a state where the cell clumps are not in contact with each other on a commercially available cell non-adhesive culture plate (Hydrocell; manufactured by CellSeed) filled with cmES medium. EBs were formed and differentiation was induced.
  • the primers used for detection are as follows.
  • Figure 6 shows one of the experimental examples based on the above method.
  • Wnt-3 gene showed a strong expression peak from 72 hours to 120 hours after differentiation induction. After that, the expression disappeared (Fig. 6). Therefore, in the case of the ES cells, the Wnt_3 gene expression increase period could be determined as 72 hours after differentiation induction, and almost the same results as mouse ES cells were obtained.
  • EBs were collected on the 10th day after differentiation induction, and the expression of various marker genes was detected in the same manner as in the method of Example 5.
  • the primers used to detect the common marmoset Nestin, AN P, MLC-2a, and MLC-2v transcripts (hereinafter, cmNestin, cmANP, cmMLC_2a, and cmMLC-2v) are as follows.
  • cmNestin known as a neuronal marker

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 幹細胞から高率かつ選択的に心筋細胞を分化誘導する方法を提供すること。  多能性幹細胞から心筋細胞を分化誘導する方法であって、多能性幹細胞を、(i)分化誘導開始からカノニカルWnt遺伝子の発現上昇期の24時間前までの期間、カノニカルWntシグナル経路の活性化を促す物質を含まない培養液中で培養すること;次いで、(ii)カノニカルWnt遺伝子の発現上昇期の24~0時間前から24~96時間の期間、カノニカルWntシグナル経路の活性化を促す物質を含む培養液中で培養することを含む、多能性幹細胞から心筋細胞を分化誘導する方法。                                                                           

Description

明 細 書
多能性幹細胞から心筋細胞を分化誘導する方法
技術分野
[0001] 本発明は、 ES細胞等の多能性幹細胞から、選択的かつ高率に心筋細胞を作製す る方法に関する。
背景技術
[0002] (1)多能 '卜牛 細朐を用いた心筋細朐の作製
一般的に、心筋細胞は、出生前は自律拍動しながら活発に細胞分裂を行っている 、出生直後よりその分裂能を喪失し、また未分化な幹細胞や前駆細胞が極少数し か存在しておらず、その増殖能及び分化能も極めて低いため、心筋梗塞や心筋炎 等の各種ストレスに曝されることにより心筋細胞が死滅すると、喪失した心筋細胞は 補充されることがないとされている。その結果、残存心筋細胞は代償性肥大により心 機能を保とうとするが、各種ストレスが持続し、その許容範囲を超えてしまうと、さらな る心筋細胞の疲弊、死滅を誘起して心筋機能の低下 (即ち心不全)を呈するようにな る。
[0003] 心不全をはじめとする心臓病は、 日本国の死亡原因の第 2位となっており、その予 後もきわめて悪ぐ心疾患患者の 5年生存率は 50%程度である。そのため、治療効果 の高い心不全治療法の開発は、医療福祉の大きな前進ならびに医療経済の改善に つな力 ものと考えられる。心不全治療薬としては、従来、心筋の収縮力を増加させ るジギタリス製剤ゃキサンチン製剤等の強心剤が使用されてきたが、これらの薬剤の 長期投与は、心筋エネルギーの過剰消費のため、病態を悪化させることが知られて いる。また、最近では、交感神経系ゃレニン—アンジォテンシン系の亢進による過剰 な心臓負荷を軽減する β遮断薬や ACE阻害薬による治療が主流になってきている 力 これらは対症的治療法に過ぎず、傷害を受けた心組織そのものを回復させるもの ではない。これに対し、心臓移植は重症心不全に対する根本的な治療法であるが、 臓器提供者の不足や医療倫理、患者の肉体的'経済的負担の重さ等の問題力 本 法を一般的な治療法として頻用することは困難である。 [0004] そのため、衰弱又は失われた心筋細胞を補充的に移植する方法は、心不全の治 療に極めて有用であると考えられる。事実、動物を用いた実験では、胎児から未成熟 な心筋細胞を取得し、それを成体心組織に移植すると、移植細胞は心筋細胞として 有効に機能することが知られている(非特許文献 1参照)。し力、しながら、この方法で 大量の心筋細胞を取得することは困難であり、倫理的観点からも臨床医療への応用 は難しい。
[0005] そこで、心筋細胞を未分化な幹細胞から分化誘導し、これを移植用細胞として利用 する方法が近年、特に注目されている。現在のところ、成体心組織中に心筋細胞を 産生し得る前駆細胞もしくは幹細胞として明らかに同定できる細胞集団は見出されて いないため、上記の方法を実施するためには、より未分化で多彩な分化能を有して レ、る多能性幹細胞の使用が考えられる。
[0006] 多能性幹細胞(pluripotent stem cells)とは、試験管内培養により未分化状態を保 つたまま、ほぼ永続的又は長期間の細胞増殖が可能であり、正常な核 (染色体)型を 呈し、適当な条件下において三胚葉 (外胚葉、中胚葉、および内胚葉)すべての系 譜の細胞に分化する能力をもった細胞と定義される。多能性幹細胞としては、初期 胚より単離される胚性幹細胞(embryonic stem cells: ES細胞)や胎児期の始原生殖 細胞から単離される胚性生殖細胞(embryonic germ cells : EG細胞)、出生直後の精 巣から単離される生殖細胞系列幹細胞(germline stem cells: GS細胞)等が最もよく知 られている。
[0007] 特に ES細胞は、試験管内培養により、心筋細胞に分化誘導できることが以前から 知られている。初期の研究はその殆どがマウス由来の ES細胞を用いて行われている 。 ES細胞を単一細胞状態(酵素処理等を施すことで細胞同士の接着がない個々の 細胞が分散した状態)下で、白血病阻害因子(leukemia inhibitory factor : UF)等の 分化抑制因子を存在させずに浮遊培養を行うと、 ES細胞同士が接着、凝集し、胚様 体(embryoid body : EB)とよばれる初期胚類似の構造体を形成する。その後、 EBを浮 遊状態もしくは接着状態で培養することにより、 自律拍動性を有した心筋細胞が出現 することが知られている。
[0008] 上記の様に作製された ES細胞由来心筋細胞は、胎児心臓由来の未成熟な心筋細 胞ときわめてよく似た形質を呈している(非特許文献 2、 3参照)。また、実際に ES細胞 由来心筋細胞を成体心組織に移植した動物実験例では、胎児心筋を移植した例と ほぼ変わらない、極めて高い有効性を示すことも確認されている(特許文献 1、非特 許文献 4参照)。
[0009] 1995年、 Thomsonらが初めて霊長類から ES細胞を樹立したことにより、多能性幹細 胞に由来する心筋細胞を用いた心筋再生治療法の実用化が現実味を帯びてきた( 特許文献 2、非特許文献 5参照)。引き続き彼らは、ヒト初期胚からヒト ES細胞株の単 離-樹立にも成功した(非特許文献 6参照)。また、 Gearhartらは、ヒト始原生殖細胞か ら hEG細胞株を樹立した (非特許文献 7、特許文献 3参照)。
[0010] マウス ES細胞と同様、ヒト ES細胞力、らも心筋細胞が分化誘導できることは、 Kehatら( 非特許文献 8参照)および Xuら (特許文献 4、非特許文献 9参照)により報告されてい る。これらの報告によると、ヒト ES細胞から分化誘導した心筋細胞は、 自律拍動能を 有することはもちろん、ミオシン重鎖/軽鎖や α _ァクチニン、トロポニン I、心房性利 尿ペプチド(atrial natriuretic p印 tide ; ANP)等の心筋特異的蛋白質や、 GATA-4や Nkx2.5、 MEF-2c等の心筋特異的転写因子を発現.産生しているとともに、微細解剖 学的観察および電気生理学的解析からも、胎生期の未成熟な心筋細胞の形質を保 持しており、再生医療への利用が期待される。
[0011] 一方、多能性幹細胞に由来する心筋細胞を、細胞移植治療やその他の目的のた めに使用する際の重要な問題として、従来の方法により ES細胞又は EG細胞より形成 された EBからは、心筋細胞以外にも血球系細胞や、血管系細胞、神経系細胞、腸管 系細胞、骨 ·軟骨細胞等の別種細胞が混在して発生してくることが挙げられる。更に 、これらの分化した細胞の中で心筋細胞が占める割合はあまり高くなぐ全体の 5〜2 0%程度に過ぎない。
[0012] 別種の細胞が混在している中から、心筋細胞のみを選択的に選別する方法として は、 ES細胞の遺伝子に人為的な修飾を加え、薬剤耐性もしくは異所性発現能を付与 することにより、心筋細胞又はその前駆細胞としての形質を有する細胞を回収する方 法が挙げられる。例えば、 Fieldおよび共同研究者らは、 ひ型ミオシン重鎖プロモータ 一の制御下でネオマイシン (G418)耐性遺伝子を発現し得る遺伝子カセットを、マウ ス ES細胞に導入することにより、その ES細胞が心筋細胞に分化し、それに伴い α型ミ オシン重鎖遺伝子を発現した時のみ、 G418を添加した培地中で生存し得る系を構 築した (特許文献 1、非特許文献 4参照)。この方法により G418耐性細胞として選別さ れた細胞は、 99%以上の確率で心筋細胞であることが確認されている。し力し、この方 法では、心筋細胞の純度はきわめて高くなるものの、最終的に得られる心筋細胞数 は、全細胞数の数パーセント程度に過ぎず、移植治療に必要な心筋細胞を得るのは 容易なことではない。
[0013] また、 Xuらは、ヒト ES細胞を 5 -ァザシチジンで処理することにより、 EB中のトロポニン I陽性(心筋)細胞が 15%から 44%に増加することを報告している(非特許文献 9参照) 。し力、し、この方法においても、心筋細胞の占める割合が EB中の 50%を越えることはな レ、。また、脱メチルイ匕剤である 5-ァザシチジンは、 DNAに結合したメチル基を離脱さ せることにより遺伝子の発現状態を変化させる薬剤であり、薬剤が直接染色体に作 用するため、移植用細胞を作製する薬剤としては適当ではない。
[0014] その他、 ES細胞から心筋細胞をより高率に発生させる方法としては、例えば、マウス ES細胞では、レチノイン酸 (非特許文献 10参照)ゃァスコルビン酸 (非特許文献 11参 照)、 TGF β、 ΒΜΡ-2 (非特許文献 12参照)、 PDGF (非特許文献 13参照)、 Dynorphin B (非特許文献 14参照)の添加、又は細胞内の活性酸素種(reactive oxygen species : ROS) (非特許文献 15参照)や Ca2+ (非特許文献 16参照)を増加させる処理が、心筋 細胞の分化誘導に促進的に働くことが知られている力 これらのいかなる方法におい ても、心筋細胞特異的又は選択的な分化誘導は成し得なかった。最近、発明者らを 含む研究グノレープにより、 ES細胞を BMPアンタゴニストで一過的に処理すると、従来 法よりも高率かつ選択的に心筋細胞を分化誘導し得ることが示された(特許文献 5、 非特許文献 17)。
[0015] (2)心筋細包の イ '発牛 禾呈における Wnt S ¥の H 白 1
分泌性蛋白質である Wnt蛋白質は、脊椎動物のみならず線虫や昆虫等の無脊椎 動物にも広くその存在が認められる蛋白ファミリ一群であり、その遺伝子ファミリーに は多数の分子種が知られている(非特許文献 18、 19)。例えば、ヒトゃマウスに関して 現在判明しているものは 19種類(Wnt-1、 2、 2b/13、 3、 3a、 4、 5a、 5b、 6、 7a、 7b、 8a、 8b、 9a、 9b、 10a、 10b、 11、 16)である。これらの Wnt遺伝子によりコードされる Wnt蛋 白質群は、その組織特異性は各々異なるものの、構造は互いに類似している。
[0016] Wnt蛋白質力 Sリガンドとして細胞内シグナル伝達系に寄与する際には、細胞膜上に 存在する 7回膜貫通型のフリズルド(Frizzled ;以下、 Fzd)ファミリー受容体に結合する 。 Fzd受容体の下流で作用する経路には複数ある力 最も主要な経路としては、ダリ コーゲン合成酵素キナーゼ(Glycogen Synthase Kinase : GSK) -3 βを介した βカテニ ンのリン酸化抑制が挙げられる。 Wntシグナルが存在しない場合、 /3カテニンは APC (Adenomatous polyposis coli)蛋白上でアキシン (Axin)により GSK-3 j3と共に補足さ れ、 GSK- 3 j3により速や力、にリン酸ィ匕される。リン酸化された j3カテニンは、ュビキチ ン化を受けてプロテアソームで分解される。
[0017] 一方、 Wnt蛋白質が Fzd受容体に結合すると、細胞内因子であるデイシュベルド(Di shevelled)が活性化されて GSK-3 βが補足され、 /3カテニンはリン酸化を受けず、細 胞質内に遊離型として残存するとともに核内に移行する。核内移行した βカテニンは 、核内に存在するリンパ球活性化因子- 1/T細胞因子(Lymphoid enhancer factor- 1 /T cell factor ;以下、 LEF-1/TCF)と結合して転写活性化複合体を形成し、標的遺 伝子の転写を誘導する。この様な βカテニンの蓄積と核内移行を伴うシグナル伝達 経路を「古典的な」 Wnt経路、又はカノ二カル(canonical) Wntシグナル経路と呼び、 当該経路を活性化し得る Wnt-1や Wnt-3a、 Wnt-8a等のファミリ一分子種はカノ二力 ノレ Wntと称される。カノ二力ノレ Wntシグナル経路の活性化は、各種 GSK-3 i3阻害剤に よる処理でも同様に起こることが公知である。
[0018] Wntリガンドは、 Fzd受容体を介して βカテニン経路以外のシグナル伝達経路も活 性化することが知られており、 MAPキナーゼの 1種である JNK (Jun N-terminal kinase) を活性化する平面内細胞極性(Planar cell polarity : PCP)経路や、三量体型 G蛋白 質の活性化とそれに続くフォスフォリパーゼ(Phospholipase) Cの活性化を介して細胞 内 Ca2+濃度の上昇並びにプロテインキナーゼ Cを活性化させる Ca2+経路が挙げられ る(非特許文献 19、 20)。これらの経路はカノ二カル Wntシグナル経路に対して「非古 典的な」 Wnt経路、又は非(ノン)カノ二カル(non-canonical) Wntシグナル経路と呼ば れる。 Wnt-4や Wnt-11が当該経路を活性化し得る Wntファミリー分子であることが報 告されており、これらの Wntリガンドはカノ二カル Wntシグナル経路に対して抑制的に 作用する。
[0019] なお、 Wnt蛋白質の分子種の中には、作用する細胞種やその分化段階、当該細胞 に発現する Fzd受容体の違いにより、カノ二カル経路及び非カノ二カル経路の両者を 活性化することができるものもある。例えば、 Wnt-5aは、アフリカッメガエル胚の 2次 軸形成や乳腺上皮細胞の癌化等の一般的なアツセィ系では非カノ二カル Wntとして 作用することが知られている力 一方、 ES細胞に対しては、 j3カテニンの安定化並び に転写活性を誘導すること、即ちカノ二カル Wntシグナル経路を活性化させることが 報告されてレ、る (非特許文献 21)。
[0020] Wnt蛋白質は様々な細胞 ·組織や癌の発生 ·増殖 ·分化過程において、多種多様 な生物学的機能に関与することが知られている。心筋細胞は、発生初期過程におい て側板中胚葉の一部から出現し、その後、細胞分裂を繰り返しながら増殖し、心臓を 形成していく。その過程において Wntシグナルの有無が重要な役割を担っていること 、幾つかの事例より明らかである。例えば、ニヮトリやアフリカッメガエルの発生初期 過程にぉレ、て、カノ二カル Wntシグナル経路を活性化させる Wnt-3aや Wnt-8a遺伝 子の異所的及び/又は強制的な発現は心臓の形成を著しく阻害する(非特許文献 2 2、 23)。
[0021] 一方、 Wnt-3aや Wnt-8aと結合し、そのシグナル伝達を阻害する働きを有する Frzb や Dkk-1等のいわゆる Wntアンタゴニストは心形成を促進することから、カノ二力ノレ Wn tシグナルは心筋発生に対して阻害的に作用することが示唆された。
[0022] これとは逆に、カノ二カル Wntシグナルに対して拮抗的に作用する非カノ二力ノレ Wnt シグナル経路の活性化は、心筋細胞の発生 ·分化を促進的に誘導することが知られ ている。 Pandurら(非特許文献 24)は、カノ二カル経路を活性化させず非カノ二カル経 路を活性化させる Wnt-11がアフリカッメガエルの心臓発生に必須の因子であることを 明らかにした。その後、マウス ES細胞(非特許文献 25)及びヒトの血管内皮前駆細胞( 非特許文献 26)の心筋分化誘導系においても Wnt_llの促進効果が同様に確認され た。また、非カノ二カル Wntシグナル経路の活性化に関しては、舌組織から心筋細胞 を分化誘導することができることが知られている(特許文献 6)。 [0023] 一方、上記の事例とは異なり、カノ二カル Wntシグナル経路の活性化力 胚性癌腫 細胞(Embryonic carcinoma cells : EC細胞)の心筋分化に対し促進的に働くことが知 られている。 EC細胞の 1種である P19細胞の亜株、 P19CL6細胞はジメチルスルホキシ ド(Dimethyl sulfoxide: DMSO)刺激下で心筋細胞へ分化する性質を有するが、 Wnt_ 3aや Wnt_8を培地中に添加すると、 βカテニンの安定化に伴い心筋細胞への分化が 促進された (非特許文献 27)。また、本系では、 Wnt蛋白質を添加する時期は、分化 誘導の直後から 4日間で十分であることも示されてレ、る(非特許文献 28)。
[0024] P19細胞系は、心筋細胞及び神経細胞に分化誘導できる点において、一部、 ES細 胞に似た形質を呈する。し力、しながら、 P19細胞系は、 ES細胞の様な多様な分化能 やキメラ形成能を有しておらず、また、細胞表面マーカーや発現遺伝子等に関しても 大きな差異が認められる。即ち、 P19細胞系は、ある種の実験では ES細胞のモデル 系として使用される場合もあるものの、必ずしも ES細胞と同様の形質を持つ細胞であ るとは言い難ぐ本実験系で得られた知見が、そのまま ES細胞等の多能性幹細胞の 心筋分化誘導系に外挿できるかに関しては、科学的根拠に基づいて予測することは できなかった。
[0025] 最近、マウス ES細胞を用いた実験系において、カノ二力ノレ Wntである Wnt-3a蛋白を 分化誘導開始時から 3日間添加することにより、 ES細胞の心筋分化が促進されると報 告された(Naito Aら、第 28回日本分子生物学会年会、 2005.12.7〜10、博多、 日本; 非特許文献 30)。しかし、我々の同様の検討では、有意な分化促進効果は認められ ず(実施例 2)、また、他の研究グループからも、マウス ES細胞を Wnt-3a処理しても特 に有意な心筋分化誘導効果をもたらさない (非特許文献 25)、若しくは阻害効果があ る(非特許文献 29)との報告がなされている。即ち、カノ二カル Wntシグナル経路の活 性化が ES細胞をはじめとする多能性幹細胞の心筋分化に及ぼす効果は明確ではな ぐ心筋分化を誘導するための、至適な培養法が確立されているとは言えない状況 である。
特許文献 1:米国特許第 6,015,671号
特許文献 2:米国特許第 5,843,780号
特許文献 3:米国特許第 6,090,622号 特許文献 6:特開 2005-224155
非特許文献 l:Soonpaa MH et al, Science, 264:98, 1994
非特許文献 2 : Maltsev VA et al., Mechanism of Developement, 44:41, 1993 非特許文献 3 : Maltsev VA et al., Circulation Research, 75:233, 1994
非特許文献 4:Klug MG et al, Journal of Clinical Investigation, 98:216, 1996 非特許文献 5: Thomson JA et al, Proceedings of the National Academy of Sciences of the United States of America, 92:7844, 1995
非特許文献 6: Thomson JA et al, Science, 282:114, 1998
非特許文献 7 : Shamblott MJ et al., Proceedings of the National Academy of Sciences of the United States of America, 95:13726, 1998
非特許文献 8:Kehat I et al., Journal of Clinical Investigation, 108:407, 2001 非特許文献 9: Xu C et al., Circulation Research, 91:501, 2002
非特許文献 10:Wobus AM et al., Journal of Molecular and cellular Cardiology, 29:1
525, 1997
非特許文献 ll:Takahashi T et al., Circulation, 107:1912, 2003
非特許文献 12:Behfar A et al., FASEB Journal, 16:1558, 2002
非特許文献 13:Sachinidis et al., Cardiovascular Research, 58:278, 2003
非特許文献 14: Ventura C et al., Circulation Research, 92:623, 2003
非特許文献 15:Sauer H et al., FEBS Letters, 476:218, 2000
非特許文献 16: Li J et al" Journal of Cell Biology, 158:103, 2002
非特許文献 17:Yuasa S et al., Nature Biotechnology, 23:607, 2005
非特許文献 18:Nusse R, Cell Research, 15:28, 2005
非特許文献 19:Widelitz R, Growth Factors, 23:111, 2005
非特許文献 20:Luhl M et al., Trends in Genetics, 16:279, 2000
非特許文献 21:Hao J et al" Developemental Biology, 290:81, 2006
非特許文献 22 : Schneider VA & Mercola M、 Genes and developement, 15:304, 200 1
非特許文献 23 : Marvin MJ et al., Genes and Developement, 15:316, 2001 非特許文献 24 : Pandur P et al., Nature, 418:636, 2002
非特許文献 25 : Terami ri et al., Biochemical and Biophysical Research Communicati on, 325:968, 2004
非特許文献 26 : Koyanagi M et al., Journal of Biologycal Chemistry, 260: 16838, 200 5
非特許文献 27 : Nakamura T et al, Proceedings of the National Academy or sciences of the United States of America, 100:5834, 2003
非特許文献 28 : Naito AT et al" Circulation Research, 97: 144, 2005
非特許文献 29 : Yamashita JK et al., FASEB Journal, 19: 1534, 2002
非特許文献 30 : Naito AT et al., Proceedings of the National Academy of Sciences of the United States of America, 103: 19812, 2006
発明の開示
発明が解決しょうとする課題
[0026] 本発明の課題は、カノ二カル Wntシグナル経路を活性化することにより、未分化な 多能性幹細胞を高率且つ選択的に心筋細胞に分化誘導する方法;当該方法により 得られる心筋細胞;及び、当該細胞を、心臓病をターゲットとした細胞移植、注入、そ の他の治療に用いる方法等を提供することである。
課題を解決するための手段
[0027] 本発明者らは、心筋細胞を作製する幹細胞ソースとして多能性幹細胞、特に最も 頻用される細胞である ES細胞を用い、心筋細胞又はその前駆細胞への分化誘導条 件について種々検討を重ねた結果、培養時のある一定期間、培地中にカノ二カル W ntシグナル経路の活性化を促進する物質(以下、 Wntシグナル活性化物質)を添カロ することにより、拍動能を有し心筋細胞と認められる細胞力 通常の方法よりも極めて 選択的且つ高率に産生されることを見出し、本発明を完成させるに至った。
[0028] 本発明に用いられる多能性幹細胞としては、マウス、サル、ヒト等の哺乳動物由来 E S細胞、 EG細胞、 GS細胞、更には、すべての ES細胞と類似の形質を有する多能性幹 細胞が挙げられる。この場合、 ES細胞と類似の形質とは、 ES細胞に特異的な表面( 抗原)マーカーの存在や ES細胞特異的な遺伝子の発現、又はテラトーマ (teratoma) 形成能やキメラマウス形成能といった、 ES細胞に特異的な細胞生物学的性質をもつ て定義することができる。
[0029] 本発明において、カノ二カル Wntシグナル経路の活性化を促す物質の具体例とし ては、各種カノ二力ノレ Wnt蛋白質や、 GSK-3 β阻害剤、その他のカノ二カル Wntシグ ナル経路を活性化し得る低分子化合物等が挙げられる。また、カノ二カル Wntシグナ ル経路を活性化し得る遺伝子、例えば各種カノ二カル Wnt遺伝子や、 βカテニン遺 伝子、又はその Ν末端を欠失させたり、 GSK-3 βによるリン酸化部位を非リン酸化アミ ノ酸に置換した βカテニン遺伝子活性型変異体なども使用可能である。
[0030] 本発明において、カノ二力ノレ Wnt蛋白質とは、 Wntファミリー蛋白質群の中、 Fzdファ ミリ一受容体に結合し、 GSK-3 βによる βカテニンのリン酸化を抑制することにより、 カテニンの安定化並びに転写活性能を促す物質として定義される。本発明に係る 好適なカノ二力ノレ Wnt蛋白質としては、例えば、 Wnt-1や Wnt-3a、 Wnt_5a、 Wnt-8a 等を挙げることができ、更に当該蛋白質とアミノ酸配列において 80%以上、更に好ま しくは 90%以上のホモロジ一を有し、且つ βカテニン活性化能を有するものも挙げる こと力 Sできる。
[0031] 本発明は、 ES細胞等の多能性幹細胞を、 Wntシグナル活性化物質で一過性に刺 激することを特徴の 1つとしており、その刺激の方法としては、特にこれを限定しない 、好ましくは、カノ二カル Wnt蛋白質、例えば、精製したカノ二カル Wnt遺伝子を発 現させて得られたリコンビナント蛋白質(以下、リコンビナント Wnt蛋白質)を含む培地 中で培養する方法が挙げられる。使用するカノ二カル Wnt蛋白質及びそれをコード する遺伝子は、多能性幹細胞が由来する種と同種の動物由来のものが好ましいが、 他種動物由来のものも使用可能である。リコンビナント Wnt蛋白質を用いる場合、古 い培地を無菌的に除去した上で、 0.1 ng/mL〜500 ng/mL、好ましくは 1 ng/mL〜200 ng/mL、より好ましくは 10 ng/mL〜100 ng/mLの濃度のリコンビナント Wnt蛋白質を 含有する培地中で培養する。
[0032] 本発明に係る GSK-3 β阻害剤とは、 GSK-3 /3蛋白質のキナーゼ活性(例えば j3力 テニンに対するリン酸化能)を阻害する物質として定義され、既に数十種以上のもの が知られている力 その具体例としては、インジルビン誘導体である BIO (別名、 GSK- 3 βインヒビター IX ; 6-ブロモインジルビン 3'-ォキシム)、マレイミド誘導体である SB216 763 (3-(2,4-ジクロロフヱニル) -4-(1-メチル - 1H -インドール- 3-ィル) -1Η-ピロール- 2, 5-ジオン)、フエ二ノレひブロモメチルケトン化合物である GSK-3 βインヒビター VII (4- ジブ口モアセトフヱノン)、細胞膜透過型のリン酸化ペプチドである L803_mts (別名、 G SK-3 βペプチドインヒビター; Myr-N-GKEAPPAPPQSpP-NH )などが挙げられる。こ
2
れらの化合物は Calbiochem社や Biomol社等から市販されており、容易に使用するこ とが可能である力 特にこれを限定しない。
[0033] これらの GSK-3 阻害剤を用いる場合、その物質特性の違いにより、その至適濃度 は大きく異なってくる。そのため、使用する化合物の種類に応じて、至適濃度を変え る必要がある。例えば、 BIOや SB216763は好ましくは 10 nmol/L〜l μ mol/L、より好ま しくは 50 nmol/L〜200 nmol/Lの濃度の GSK-3 阻害剤を含有する培地で置換し、 培養を継続する。 GSK-3 βインヒビター VIIの添加濃度は、好ましくは 2 μ mol/L〜100 μ mol/L、より好ましくは 5 μ molん〜 20 μ mol/Lである。 L803_mtsの添加濃度は、好 ましくは 5 μ mol/L〜500 μ mol/L,より好ましくは 20 μ mol/L〜200 μ mol/L,更に好ま しくは 25 β mol/L〜200 μ mol/Lである。
[0034] また、本発明の実施に用いる薬剤としては、 GSK-3 β阻害剤以外にも、カノ二カル Wntシグナル経路の活性化を促す低分子物質 (以下、 Wntァゴニスト)であってもよく 、その好適な例として、アミノビリミジン誘導体(2 -ァミノ- 4-[3,4- (メチレンジォキシ)ベ ンジル-ァミノ] -6-(3-メトキシフエニル) -ピリミジン; Calbiochem社)(Liu et al., Angew. Chem. Int. Ed. Engl. 44: 1987, 2005)を挙げることができる。当該 Wntァゴニストを用 いる場合、 1 nmol/L〜1000 nmol/L、好ましくは 10 nmol/L〜500 nmol/L、より好ましく は 50 nmol/L〜200 nmol/Lの濃度の Wntァゴニストを含有する培地で置換し、培養を 継続する。
[0035] Wntシグナル活性化物質を作用させる時期は、本発明の実施に用いる多能性幹細 胞の分化誘導過程における各種カノ二カル Wnt遺伝子の発現パターンを指標として 決定すること力 Sできる。具体的には、多能性幹細胞を常法に基き分化誘導し、経時 的に回収したサンプルから mRNAを抽出し、各種カノ二カル Wnt遺伝子の発現量を、 RT-PCR法等の一般的な方法を用いて調べ、分化誘導後にカノ二カル Wnt遺伝子の 発現量が、分化誘導前の未分化な多能性幹細胞よりも有意に上昇した時点を「Wnt 遺伝子の発現上昇期」とする。解析の対象とするカノ二カル Wnt遺伝子は、 1種類で も良いが、好ましくは 2種類以上、さらに好ましくは 3種類以上が望ましい。
[0036] 本発明の実施において、多能性幹細胞は、心筋分化誘導のための培養を開始し た直後から、上記方法により決定された Wnt遺伝子の発現上昇期の 24時間前までの 期間、 Wntシグナル活性化物質を含まない培地中で培養する。また、多能性幹細胞 は、上記方法により決定された Wnt遺伝子の発現上昇期の 24時間前〜 0時間前、好 ましくは 24時間前の時点から、好ましくは 24時間〜 96時間、より好ましくは 48時間 〜72時間、 Wntシグナル活性化物質を含む培地中で培養する。なお、 Wntシグナノレ 活性化物質を作用させる期間は、用いる細胞が由来する動物種、用いる細胞株、用 レ、る Wntシグナル活性化物質の種類等の条件の違いにより、至適期間(時間)を変え て用いることができる。
[0037] 上記の方法により、 ES細胞をはじめとする多能性幹細胞から分化誘導した心筋細 胞は、引き続き、公知の方法による細胞回収、分離、精製法を用いることにより、高純 度の心筋細胞を効率的かつ多量に得ることができる。この様にして得られた心筋細 胞を以下、本発明により調製された心筋細胞と称する。
[0038] 本発明により調製された心筋細胞は、心筋細胞の形態学的、生理学的及び/又は 免疫学的特徴を示す細胞である。生理学的及び/又は免疫学的特徴は、特にこれ を限定しないが、本発明により調製された心筋細胞が、心筋細胞として認識される、 心筋細胞に特異的な 1つ又はそれ以上のマーカーを発現していればよい。
[0039] また、本発明により調製された心筋細胞は、心筋細胞の発生や分化誘導、再生、 生存等を促進する新規因子又は可能性ある化学療法剤を同定するためのスクリー二 ング方法に用いることができる。
[0040] 更に、本発明により調製された心筋細胞は、心疾患状態にある心臓を治療する方 法に用いることができる。
[0041] 即ち、これらに限定されるものではなレ、が、本発明は以下の事項に関する。 (1)多能性幹細胞から心筋細胞を分化誘導する方法であって、多能性幹細胞を、 i)分化誘導開始からカノ二カル Wnt遺伝子の発現上昇期の 24時間前までの期間、 カノ二カル Wntシグナル経路の活性化を促す物質を含まない培養液中で培養するこ と;次いで、
ii)カノ二カル Wnt遺伝子の発現上昇期の 24〜0時間前から 24〜96時間の期間、力 ノニカル Wntシグナル経路の活性化を促す物質を含む培養液中で培養すること を含む、多能性幹細胞から心筋細胞を分化誘導する方法。
(2)多能性幹細胞を、カノ二カル Wnt遺伝子の発現上昇期の 24時間前から、カノ二 カル Wntシグナル経路の活性化を促す物質を含む培養液中で培養する、 (1)に記載 の方法。
(3)多能性幹細胞を、カノ二カル Wntシグナル経路の活性化を促す物質を含む培養 液中で培養する期間が、 48〜72時間である、(1)又は(2)に記載の方法。
(4)カノ二力ノレ Wntシグナル経路の活性化を促す物質力 カノ二力ノレ Wnt蛋白質、 GS K3 j3阻害剤、 Wntァゴニストからなる群から選択される物質である、(1)〜(3)のいず れか 1項に記載の方法。
(5)カノ二力ノレ Wntシグナル経路の活性化を促す物質がカノ二力ノレ Wnt蛋白質である 、(4)に記載の方法。
(6)カノ二力ノレ Wnt蛋白質力 Wnt-1、 Wnt_3a及び Wnt_5aからなる群力ら選択される 少なくとも 1つの Wnt蛋白質である、 (5)に記載の方法。
(7)カノ二力ノレ Wnt蛋白質の培養液中の濃度が 0.1 ng/mL〜500 ng/mLである、(5) 又は(6)に記載の方法。
(8)カノ二カル Wntシグナル経路の活性化を促す物質が GSK3 j3阻害剤である、(4) に記載の方法。
(9) GSK3 β阻害剤が、 GSK3 βインヒビター VII、 L803- mts、 SB216763、及び GSK3 β インヒビター IX (ΒΙ〇)からなる群から選択される少なくとも 1つの阻害剤である、 (8)に 記載の方法。
(10) GSK3 β阻害剤の培養液中の濃度力 GSK3 βインヒビター VIIの場合 2 μ mol/L 〜100 μ mol/L, L803-mtsの場合 5 μ mol/L〜500 μ mol/L, SB216763の場合 10 nmol /L〜l /i mol/L、又は、〇3!<3 ィンヒビター1乂(810)の場合10 nmol/L〜l /i mol/Lで ある、 (8)又は(9)に記載の方法。
(11)カノ二カル Wntシグナル経路の活性化を促す物質が Wntァゴニストである、 (4) に記載の方法。
(12) Wntァゴニストがアミノピリミジン誘導体である、 (11)に記載の方法。
(13) Wntァゴニストの培養液中の濃度が 1 nmol/L〜1000 nmol/Lである、(11)又は (12)に記載の方法。
(14)多能性幹細胞が、胚性幹細胞、胚性生殖細胞、又は生殖細胞系列幹細胞で ある、 (1)〜(: 13)に記載の方法。
(15)多能性幹細胞が胚性幹細胞である、 (14)に記載の方法。
(16)多能性幹細胞がヒト由来である、(14)又は(15)に記載の方法。
発明の効果
[0042] 本発明に係る方法を用いることにより、 ES細胞等の多能性幹細胞より心筋前駆細 胞及び心筋細胞を極めて効率的且つ選択的に生産することができる。本発明に係る 方法により作製された心筋 (前駆)細胞は、心疾患治療に有効な薬剤の探索'開発に 利用できるとともに,重篤な心疾患に対する心筋移植治療に適用できる可能性があ る。
図面の簡単な説明
[0043] [図 1A]図 1Aは、 ES細胞の分化誘導時の過程における Wnt遺伝子等の発現変動を 示す。図中の記号に意味は以下の通りである。〇:未処理群、國:コーディン処理群 、▲:ダン処理群。縦軸は、内部標準として使用した GAPDH遺伝子の発現量に対す る当該 Wnt遺伝子発現量の相対比。また、※は、当該 Wnt遺伝子の発現量力 分化 誘導前の未分化の ES細胞よりも有意に上昇した時点を示す。
[図 1B]図 1Bは、 ES細胞の分化誘導時の過程における Wnt遺伝子等の発現変動を示 す。図中の記号に意味は以下の通りである。〇:未処理群、國:コーディン処理群、 ▲:ダン処理群。縦軸は、内部標準として使用した GAPDH遺伝子の発現量に対する 当該 Wnt遺伝子発現量の相対比。また、※は、当該 Wnt遺伝子の発現量が、分化誘 導前の未分化の ES細胞よりも有意に上昇した時点を示す。 園 1C]図 1Cは、 ES細胞の分化誘導時の過程における Wnt遺伝子等の発現変動を 示す。図中の記号に意味は以下の通りである。〇:未処理群、國:コーディン処理群 、▲:ダン処理群。縦軸は、内部標準として使用した GAPDH遺伝子の発現量に対す る当該 Wnt遺伝子発現量の相対比。また、※は、当該 Wnt遺伝子の発現量が、分化 誘導前の未分化の ES細胞よりも有意に上昇した時点を示す。
[図 2A]図 2Aは、培養液中へのリコンビナント Wnt蛋白質の添加時期の違いによる拍 動性 EBの出現への影響を示す。
[図 2B]図 2Bは、培養液中へのリコンビナント Wnt蛋白質の添加時期の違いによる拍 動性 EBの出現への影響を示す。
園 3A]図 3Aは、 ES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異 的マーカー遺伝子の発現を示す。縦軸は、未処理群 (None)における遺伝子発現量 を 1とした時の相対比。
[図 3B]図 3Bは、 ES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異 的マーカー遺伝子の発現を示す。縦軸は、未処理群 (None)における遺伝子発現量 を 1とした時の相対比。
園 3C]図 3Cは、 ES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異 的マーカー遺伝子の発現を示す。縦軸は、未処理群 (None)における遺伝子発現量 を 1とした時の相対比。
園 3D]図 3Dは、 ES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異 的マーカー遺伝子の発現を示す。縦軸は、未処理群 (None)における遺伝子発現量 を 1とした時の相対比。
[図 4]図 4は、 ES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異的 マーカー蛋白質の免疫組織化学的染色を示す。
園 5A]図 5Aは、 GSK3 β阻害剤による拍動性 EBの出現の効果を示す。
[図 5B]図 5Bは、 GSK3 j3阻害剤による拍動性 EBの出現の効果を示す。
園 5C]図 5Cは、 GSK3 j3阻害剤による拍動性 EBの出現の効果を示す。
園 5D]図 5Dは、 GSK3 /3阻害剤による拍動性 EBの出現の効果を示す。
[図 5E]図 5Eは、 GSK3 j3阻害剤による拍動性 EBの出現の効果を示す。 [図 6]図 6は、コモンマーモセット(サル) ES細胞の分化誘導過程における Wnt-3遺伝 子の発現変動を示す。
[図 7]図 7は、 cmES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異 的マーカー遺伝子の発現を示す。
[図 8]図 8は、 cmES細胞の分化誘導により出現した拍動性 EBにおける心筋細胞特異 的マーカー蛋白質の免疫組織化学的染色を示す。
発明を実施するための形態
[0044] 以下に本発明の上記効果や他の利点及び特徴を含め発明を実施するための形態 について述べる。
[0045] 本発明の実施において、分子生物学や組換え DNA技術等の遺伝子工学の方法及 び一般的な細胞生物学の方法及び従来技術について、実施者は、特に示されなけ れば、当該分野の標準的な書籍を参照し得る。このような書籍としては、例えば、「M olecular Cloning : A Laboratory Manual弟 3片 jx」 (Sambrook & Russell、 し old Spring Har bor Laboratory Press ^ 2001);「Current Protocols in Molecular DiologyJ (Ausubel et al.鳊、 John Wiley & Sons、 1987);「Methods in Enzymologyシリーズ」 (Academic Pres s);「PCR Protocols: Methods in Molecular BiologyJ (Bartlett & Striling編、 Humana Press Λ 2003);「Animal Cell Culture: A Practical Approach第 3片及」 (Masters編、 Oxfo rd University Press、 2000);「Antibodies : A Laboratory Manual] (Harlow et al. & La ne編、 Cold Spring Harbor Laboratory Press, 1987)等が挙げられる。また、本明細書 におレ、て参照される細胞培養、細胞生物学実験のための試薬及びキット類は Sigma 社や Aldrich社、 Invitrogen/GIBCO社、 Clontech社、 Stratagene社等の巿販業者から 入手可能である。
[0046] また、多能性幹細胞を用いた細胞培養、及び発生 ·細胞生物学実験の一般的方法 について、実施者は、当該分野の標準的な書籍を参照し得る。これらには、 Γ Guide t o echmques m Mouse DeveiopmentJ (Wasserman et al.編、 Academic Press, 1993) ;「Embryonic Stem Cell Differentiation in vitro」 (M.V. Wiles ^ Meth. Enzymol. 225:9 00, 1993);「Manipulating the Mouse Embryo: A laboratory manualj (Hogan et al.編 、 Cold Spring Harbor Laboratory Press, 1994);「Embryonic Stem CellsJ (Turksen鳊 、 Humana Press, 2002)が含まれる。本明細書において参照される細胞培養、発生. 細胞生物学実験のための試薬及びキット類は Invitrogen/GIBCO社や Sigma社等の 市販業者から入手可能である。
[0047] マウスやヒトの多能性幹細胞の作製、継代、保存法にっレ、ては、すでに標準的なプ ロトコールが確立されており、実施者は、前項で挙げた参考書籍に加えて、複数の参 考文献等を参照することにより、これらの多能性幹細胞を使用し得る。そのような文献 としては、以下の文献が挙げられる: Matsui et al., Cell 70:841, 1992 ; Thomson et al. ,米国特許第 5, 843, 780号; Thomson et al, Science 282 : 114, 1998 ; Shamblott et al" Pro Natl. Acad. Sci. USA 95: 13726, 1998 ; Shamblott et al. ,米国特許第 6,090,62 2号; Reubinoff et al. , Nat. Biotech. 18:399, 2000 ;国際公開番号第 00/27995号。ま た、その他の動物種に関しても、例えばサル(Thomson et al.,米国特許第 5,843,780 号; Pro Natl. Acad. Sci. USA, 92, 7844, 1996)やラット(Iannaccone et al., Dev. Biol . 163:288, 1994 ; Loring et al.,国際公開番号第 99/27076号)、ニヮトリ(Pain et al., De velopment 122:2339, 1996 ;米国特許第 5, 340, 740号;米国特許第 5,656,479号)、ブ タ(Wheeler et al. , R印 rod. Fertil. Dev. 6:563, 1994 ; Shim et al., Biol. R印 rod. 57: 10 89, 1997)等に関して ES細胞又は ES細胞様細胞の樹立方法が知られており、各記載 の方法に従って、本発明に用いられる ES細胞を作製 '使用することができる。
[0048] 本開示において、「心筋細胞」とは、将来、機能的な心筋細胞となり得る能力を有し た心筋前駆細胞や、胎児型心筋細胞、成体型心筋細胞のすべての分化段階の細 胞を含み、以下に記載する少なくとも 1つ、好ましくは複数の方法により、少なくとも 1 つ、好ましくは複数のマーカーや基準が確認できる細胞と定義する。
[0049] 心筋細胞に特異的な種々のマーカーの発現は、従来の生化学的又は免疫化学的 手法により検出される。その方法は特に限定されないが、好ましくは、免疫組織化学 的染色法や免疫電気泳動法の様な、免疫化学的手法が使用される。これらの方法 では、心筋前駆細胞又は心筋細胞に結合する、マーカー特異的ポリクローナル抗体 又はモノクローナル抗体を使用することができる。個々の特異的マーカーを標的とす る抗体は市販されており、容易に使用することができる。心筋前駆細胞又は心筋細 胞に特異的なマーカーとしては、例えば、ミオシン重鎖 Z軽鎖やひ -ァクチニン、トロ ポニン I、 ANP、 GATA- 4、 Nkx2.5、 MEF- 2c等が挙げられる。
[0050] あるいは、心筋前駆細胞又は心筋細胞特異的マーカーの発現は、特にその手法 は問わないが、逆転写酵素介在性ポリメラーゼ連鎖反応(RT-PCR)やハイブリダィゼ ーシヨン解析といった、任意のマーカー蛋白質をコードする mRNAを増幅、検出、解 析するための従来から頻用される分子生物学的方法により確認することができる。心 筋前駆細胞又は心筋細胞に特異的なマーカー(例えば、ミオシン重鎖/軽鎖やひ - ァクチニン、トロポニン I、 ANP、 GATA- 4、 Nkx2.5、 MEF_2c)蛋白質をコードする核酸 酉己列は既知であり、 National Center for Biotechnology Information (NCBI)のジェン バンク(GenBank)の様な公共データベースにおいて利用可能であり、プライマー又 はプローブとして使用するために必要とされるマーカー特異的配列を容易に決定す ること力 Sできる。
[0051] 更に、多能性細胞の心筋細胞への分化を確認するために、生理学的基準も追加 的に使用される。即ち、多能性細胞由来の細胞が、 自律的拍動性を有することや、 各種イオンチャンネルを発現しており電気生理的刺激に反応し得ること等も、その有 用な指標となる。
[0052] 本発明の方法は、いずれの哺乳動物由来の多能性幹細胞に対しても適用すること ができる。例えば、マウス、ゥシ、ャギ、ィヌ、ネコ、マーモセット、ァカゲザル、ヒト由来 の多能性幹細胞に対して使用することができる力 これらの動物種由来の多能性幹 細胞だけには限定されない。例えば、本発明に用いられる多能性幹細胞としては、 既に培養細胞として広く使用されているマウス、サル、ヒト等の哺乳動物由来 ES細胞 を挙げることができる。
[0053] マウス由来 ES細胞の具体例としては、 EB3細胞、 E14細胞、 D3細胞、 CCE細胞、 R1 細胞、 129SV細胞、 J1細胞等が挙げられる。本願発明に係るマウス由来 ES細胞は、 例 ば American Type Culture Collection (ATCCリゃ Chemicon土、 Cell & Molecular Technologies社等力、ら入手することができる。
[0054] サル由来 ES細胞としては、ァカゲザル(rhesus monkey: Macaca mulatta) (Thomson et al, Proc. Natl. Acad. Sci. USA 92:7844, 1995)や力二クイザル(cynomolgus monk ey : Macaca fascicularis) (Suemori et al., Dev. Dyn. 222:273, 2001)、コモンマーモセ ット (common marmoset: Callithrix jacchus) (Sasaki et al., Stem Cells. 23: 1304, 2005 )からの樹立が報告されており、使用可能である。例えば、マーモセット ES細胞は、財 団法人 ·実験動物中央研究所からも入手することができる。
[0055] ヒト由来 ES細胞は、現在、全世界で数 10種以上が樹立されており、例えば、米国- 国立衛生研究所のリスト(http:〃 stemcells.nih.gov /registry/ index.asp)には多数の 株が登録されて使用可能であるとともに、 Cellartis社や ES Cell International社、 Wise onsin Alumni Research Foundation等から購入することも可能である。また、 日本の場 合、国立大学法人 '京都大学再生医科学研究所附属幹細胞医学研究センターから も入手することができる(Suemori et al., Biochem. Biophys. Res. Commun., 345:926, 2006)
[0056] 更に、ゥシ (Mitalipova et al" Cloning 3:59, 2001)、トリ (Petitte et al" Mech. Dev.
121 : 1159, 2004)、ゼブラフィッシュ(Fishman, Science 294: 1290, 2001)についても ES 細胞の樹立が報告されてレ、る。
[0057] 一般に ES細胞は初期胚を培養することにより樹立されるが、体細胞の核を核移植し た初期胚カらも ES細胞を作製することが可能である(Munsie et al., Curr. Biol. 10:98 9, 2000 ;Wakayama et al" Science 292:740, 2001; Hwang et al., Science 303: 1669 , 2004)。また、単為発生胚を胚盤胞期と同等の段階まで発生させ、そこから ES細胞 を作製する試み(米国特許公開第 02/168763号; Vrana K et al., Proc. Natl. Acad. S ci. USA 100: 11911-6)や、 ES細胞と体細胞を融合させることにより、体細胞核の遺伝 情報を有した ES細胞を作る方法も報告されている(国際公開番号第 00/49137号; Ta da et al., Curr. Biol. 11 : 1553, 2001)。本発明で使用される ES細胞は、この様な方法 により作製された ES細胞又は ES細胞の染色体上の遺伝子を遺伝子工学的手法によ り改変したものも含まれる。
[0058] また、本発明に係る方法に使用できる多能性幹細胞は、 ES細胞のみに限らず、哺 乳動物の成体臓器や組織の細胞、骨髄細胞、血液細胞、更には胚ゃ胎児の細胞等 に由来する、 ES細胞に類似した形質を有するすべての多能性幹細胞が含まれる。こ の場合、 ES細胞と類似の形質とは、 ES細胞に特異的な表面 (抗原)マーカーの存在 や ES細胞特異的な遺伝子の発現、又はテラトーマ (teratoma)形成能やキメラマウス 形成能といった、 ES細胞に特異的な細胞生物学的性質をもって定義することができ る。その具体例としては、始原生殖細胞より作製される EG細胞、精巣の生殖細胞より 作製される GS細胞、及び線維芽細胞等の体細胞から特殊な遺伝子操作により作製 される誘導多能性幹細胞(induced pluripotent stem cells : iPS細胞)等が挙げられる。
[0059] 本発明において、 ES細胞等の多能性幹細胞から心筋細胞を作製する培養法として は、心筋細胞の分化誘導に適した方法であれば、いずれも用いることができ、例えば 、浮遊培養法、懸滴 (hanging drop)培養法、支持細胞との共培養法、旋回培養法、 軟寒天培養法、マイクロキャリア培養法等を挙げることができる。具体的な方法の例と しては、単一細胞状態(酵素消化等を施すことで細胞同士の接着がない個々の細胞 が液相中で分散した状態)とした ES細胞を、好ましくは、培地に 1 X 103〜1 X 105細胞 /mLの細胞密度になるように懸濁し、その液滴 10〜100 μ Lを培養プレートの上皿に 付着させて懸滴培養とする方法を挙げることができる。また、上記細胞懸濁液を、巿 販の細胞集塊 (スフヱロイド)形成用の 96穴培養プレート(例えば、スミロンセノレタイト' スフエロイド;住友ベークライト社)や、細胞非接着性の培養プレート(例えば、コース ター超低接着プレート; Corning社)、無処理ポリスチレン製プレートに播種しても良い 。その後、 ES細胞を含む懸濁液を、 37°Cで 5%の二酸化炭素を通気した CO条件下 にて培養することにより、 EBが形成され、その中で心筋細胞等の分化誘導が起こる。
[0060] 本発明において、カノ二力ノレ Wntシグナル経路の活性化とは、 カテニンが GSK-3
βのリン酸化を受けず、細胞質内及び/又は核内で安定した状態で存在しているこ と、及び/又は、核内で LEF-1/TCFと結合して転写活性化複合体を形成し、標的遺 伝子の転写誘導活性能を有している状態を意味する。カノ二カル Wntシグナル経路 が活性化されているか否力、を調べる方法としては、特にこれを限定しないが、 βカテ ニン特異抗体を用いた免疫組織染色やウェスタン'プロット解析等により、細胞質内 及び/又は核内における /3カテニン量を測定する方法が使用できる。また、非リン酸 化型 βカテニン、即ち活性型 βカテニンを特異的に認識するモノクローナル抗体も 市販されており、特に有用である。更には、 LEF-1/TCF結合配列の下流にレポータ 一遺伝子を繋ぎ、当該レポーター遺伝子産物の産生能を指標とするレポーター 'アツ セィも有効である。当該法に使用する、 LEF-1/TCF結合配列及びレポーター遺伝子 を含むプラスミドは、 Upstate社から TOPflashという商品名で購入することができる。
[0061] Wntシグナル活性化物質の具体例としては、各種カノ二カル Wnt蛋白質、 GSK-3 β 阻害剤及び Wntァゴニスト等が挙げられる。また、カノ二カル Wntシグナル経路を活 性化し得る遺伝子、例えば各種カノ二カル Wnt遺伝子や、 /3カテニン遺伝子、又は その N末端を欠失させたり、 GSK-3 によるリン酸化部位を非リン酸化アミノ酸に置換 した /3カテニン遺伝子活性型変異体なども使用可能である。更に別の方法として、力 ノニカル Wntシグナル経路を抑制的に制御するアキシンや APC等の遺伝子の発現を 、特異的アンチセンス DNAやリボザィム、 RNA干渉用アンチセンス RNA、低分子化合 物等により抑制又は停止する方法も使用可能である。なお、これらの分子をコードす る遺伝子の塩基配列は、 NCBI等の公的な DNAデータベースにおいて利用可能であ り、当業者であれば、当該遺伝子の cDNAや siRNA、アンチセンス DNAを取得、作製 、使用することが可能である。
[0062] 本発明において用いることができるカノ二カル Wnt蛋白質とは、 Wntファミリー蛋白 質群の中、 Fzdファミリー受容体に結合し、 GSK-3 βによる βカテニンのリン酸化を抑 制することにより、 βカテニンの安定化並びに転写活性能を促す物質として定義され る。本発明に係る好適なカノ二カル Wnt蛋白質としては、例えば、 Wnt-1 (配列番号 1 )や Wnt-3a (配列番号 2)、 Wnt_5a (配列番号 3)、 Wnt_8a (配列番号 4)等を挙げるこ とができ、更に当該蛋白質とアミノ酸配列において 80%以上、更に好ましくは 90%以 上のホモロジ一を有し、且つ βカテニン活性化能を有するものも挙げることができる。
[0063] 本発明は、 ES細胞等の多能性幹細胞を、 Wntシグナル活性化物質で一過性に刺 激することを特徴の 1つとしており、その刺激の方法としては、特にこれを限定しない が、好ましくは、カノ二カル Wnt蛋白質、例えば、リコンビナント Wnt蛋白質を培地中に 添加し、その中で培養する方法が挙げられる。その他にも、同様の効果を示す方法 であれば、いずれも用いることができ、例えば、生体組織から抽出、精製したカノ二力 ノレ Wnt蛋白質を添加しその中で培養する方法、カノ二力ノレ Wnt蛋白質をコードする遺 伝子の発現ベクターを多能性幹細胞自身に導入する方法や、当該発現ベクターを 支持細胞に導入し、その導入細胞を共培養細胞として用いる方法、又はその導入細 胞の培養上清等の細胞産生物を用いる方法、等が挙げられ、本発明に係る方法に おいては、何れもカノ二カル Wnt蛋白質を培地中に添加する実施形態として含まれる
[0064] 本発明の実施において、使用するカノ二カル Wnt蛋白質及びそれをコードする遺 伝子は、多能性幹細胞が由来する種と同種の動物由来のものが好ましいが、他種動 物由来のものも使用可能である。例えば、本発明において、マウス ES細胞ゃサル ES 細胞を使用する場合、ヒト WNT-1蛋白を使用することができる。リコンビナント Wnt蛋 白質として、マウス由来の Wnt-3aや Wnt-5a、ヒト由来の WNT- 7Aが R&D Systems社よ り、ヒト由来の WNT-1が P印 rotech社より市販されており、容易に使用できる。これらの リコンビナント蛋白質を用いる場合、古い培地を無菌的に除去した上で、 0.1 ng/mL 〜 500 ng/mL,好ましくは 1 ng/mL〜 200 ng/mL,より好ましくは 10 ng/mL〜 100 ng AnLの濃度の Wnt蛋白質を含有する培地中で培養を継続する。
[0065] 目的とする Wnt蛋白質を自ら作製する場合、 Wnt蛋白質はパルミチン酸修飾を受け ていないと生物学的活性を呈しないことが知られているため、当該遺伝子の発現べク ターを L細胞等の動物由来細胞に導入'発現させ、その培養上清中に分泌されたリコ ンビナント蛋白を精製する必要がある力 その具体的な方法は既に公知である (Wille rt et al. , Nature 423:448, 2003 ; Kishida et al., Mol. Cell. Biol. 24:4487 ; http://www. stanford.edu/~rnusse/ wntwindow.html)。
[0066] なお、これらの因子をコードする遺伝子の塩基配列は、 NCBI等の公的な DNAデー タベースにおいて利用可能であり、当業者であれば、当該遺伝子の cDNAを取得 ·使 用することが可能である。例えば、 Wnt-3aや Wnt-8a遺伝子は既にヒトゃマウスで同 定されており、ヒトの WNT-3A (配列番号 5)、マウスの Wnt_3a (配列番号 2)、ヒトの WN T-8A (配列番号 6)、マウスの Wnt_8a (配列番号 4)の塩基配列は、それぞれアクセス 番号: NM_033131、 NM_009522、 NM_031933、 NM_009290として登録されている。
[0067] 本発明に係る GSK-3 β阻害剤とは、 GSK-3 β蛋白質のキナーゼ活性、例えば β力 テニンに対するリン酸化能、を阻害する物質として定義され、既に数十種以上のもの が知られている(Martinez et al" Med. Res. Rev. 22:373, 2002 ; Meijer L et al., Tren ds Pharmacol. Sci. 25:471, 2004) 0その具体例としては、リチウムや、バルプロ酸、ベ ンズァゼピノン(benzaz印 inone)ファミリーのケンパゥロン(Kenpaullone; 9_ブロモ - 7, 1 2-ジヒドロインドロ [3,2-d][l]ベンズァセピン- 6(5H)_オン)やアルスターパゥロン (Alste 卬&11110!½ ; 9-ニトロ-7,12-ジヒドロィンドロ[3,2-01][1]べンズァセピン-6(5 -ォン)、ィン ジルビン誘導体である 5-クロ口-インジルビン、インジルビン- 3,-モノォキシムゃ BIO ( 別名、 GSK-3 βインヒビター IX; 6-ブロモインジルビン- 3' -ォキシム)、マレイミド誘導 体である SB216763 (3-(2,4-ジクロロフヱニル)-4-(l-メチル-lH_ィンドール_3-ィル)-l Η-ピロール- 2, 5-ジオン)や SB415286 (3_[(3_クロ口 -4-ヒドロキシフエニル)ァミノ] _4_( 2-ニトロフエ二ノレ) -1Η-ピロール- 2, 5-ジオン)、チアジアゾリジノン(TDZD :thiadiazolid inone)類似体である TDZD-8 (別名、 GSK-3 /3インヒビター 1 ; 4_ベンジル -2-メチル -1, 2,4-チアジアゾリジン- 3,5-ジオン)や OTDZT (別名、 GSK-3 βインヒビター III; 2,4_ジ ベンジル -5-ォキソチアジアゾリジン- 3-チオン)、フエニル αブロモメチルケトン化合 物である GSK-3 βインヒビター VII (4-ジブ口モアセトフヱノン)、細胞膜透過型のリン酸 化ペプチドである L803- mts (別名、 GSK-3 βペプチドインヒビター; Myr- N-GKEAPP APPQSpP-NH )などが挙げられる。これらの化合物は Calbiochem社や Biomol社等か ら市販されており、容易に使用することが可能であるが、特にこれを限定しない。
[0068] なお、これらの GSK-3 β阻害剤を用いる場合、その物質特性の違いにより、その至 適濃度が異なる。そのため使用する化合物の種類に応じて、至適濃度を変える必要 があり、当該濃度の GSK-3 i3阻害剤を含有する培地中で培養する。
[0069] 例えば、 BIOや SB216763の場合、好ましくは 10 nmol/L〜l μ molん、より好ましくは 50 nmol/L〜200 nmol/Lの濃度を含有する培地中で培養する。 GSK-3 インヒビタ 一 VIIの場合は、好ましくは 2 μ mol/L〜100 μ mol/L、より好ましくは 5 μ mol/L〜20 μ mol/Lである。また、 L803_mtsの場合は、好ましくは 5 μ molん〜 500 μ mol/L、より好 ましくは 20 μ mol/L〜200 μ mol/L,更に好ましくは 25 μ mol/L〜200 μ mol/Lである。
[0070] また、本発明の実施に用いる薬剤としては、 GSK-3 β阻害剤以外にも、カノ二カル Wntシグナル経路の活性化を促す低分子物質 (Wntァゴニスト)、例えば、有機又は 無機化合物やペプチド断片等であってもよい。その好適な例として、アミノビリミジン 誘導体(2-ァミノ- 4-[3,4 -(メチレンジォキシ)ベンジル -アミノ] -6-(3_メトキシフヱニル) ピリミジン; Calbiochem社) (Liu et al., Angew. Chem. Int. Ed. Engl. 44: 1987, 2005)を 挙げること力 Sできる。当該 Wntァゴニストを用いる場合、 1 nmol/L〜1000 nmol/L,好 ましくは 10 nmol/L〜500 nmolん、より好ましくは 50 nmolん〜 200 nmol/Lの濃度の W ntァゴニストを含有する培地中で培養する。
[0071] 多能性幹細胞に対して Wntシグナル活性化物質を作用させる時期の決定は、本発 明の実施において、きわめて重要な要件となる。即ち、不適当な時期に、 Wntシグナ ル活性化物質を作用させた場合、多能性幹細胞の心筋分化能に促進効果を示さな くなるのみならず、むしろ抑制効果を呈することもある。例えば、多能性幹細胞を分化 誘導した直後から、 Wntシグナル活性化物質を培養液に添加した状態で 1週間程度 培養を行うと、培養液に何も添加しない群 (未処理群)よりも心筋分化能が低くなるこ とがある。
[0072] Wntシグナル活性化物質を作用させる時期を決定する場合、本発明の実施に用い る多能性幹細胞の分化誘導過程における各種カノ二カル Wnt遺伝子の発現パター ンを指標とすることができる。具体的には、多能性幹細胞を常法に基き分化誘導し、 経時的に回収したサンプルから mRNAを抽出し、各種カノ二カル Wnt遺伝子の発現 量を、 RT-PCR法等の一般的な方法を用いて調べれば良い。サンプルの回収は、分 化誘導のための培養を開始してから(拍動性)心筋細胞の出現を認めるまでの間、例 えば、マウス ES細胞、サル ES細胞及びヒト ES細胞の場合は 6〜: 14日間程度、好ましく は 24時間毎、より好ましくは 12時間毎に行う。解析の対象とするカノ二カル Wnt遺伝 子は、 1種類でも良いが、好ましくは 2種類以上、さらに好ましくは 3種類以上が望まし レ、。
[0073] ES細胞等の多能性幹細胞において、各種カノ二力ノレ Wnt遺伝子の発現は、未分化 状態や分化誘導直後では一般的に低ぐ分化誘導の数日後に急激に高まる (実施 例 1)。この様に、分化誘導後にカノ二カル Wnt遺伝子の発現量が、分化誘導前の未 分化な多能性幹細胞よりも有意に上昇した時点を「Wnt遺伝子の発現上昇期」とする 。有意な発現上昇は、一般的に使用される Student's t-テストの様な統計的検定 (危 険率: 5%)により判断することが可能である。その際に判断の基準とする危険率は、好 ましくは 5%、より好ましくは 1%である。また、計測したカノ二カル Wnt遺伝子の発現が 分化誘導後の数日間に急激に上昇し、その後、数日間以内にその発現が消失する 場合、すなわち、カノ二カル Wnt遺伝子が短期間のみの発現上昇を示す場合には、 最大発現量を呈した時点を Wnt遺伝子の発現上昇期としてもよい。
[0074] 多能性幹細胞を、分化誘導を行う 2, 3日前から、及び/又は分化誘導直後に、 BM Pアンタゴニストを含む培地中で培養すると、有意にその心筋分化能が高まることが 知られている(W〇2005/033298 ;Yuasa et al, Nat. Biotechnol. 23:607, 2005)が、当 該培養時に、上記の各種カノ二カル Wnt遺伝子の発現上昇が認められることを見出 した。当該知見は、本願発明におけるカノ二カル Wnt遺伝子の発現上昇期を決定す る際に有用であり、当該発現上昇期を決定する際は、 BMPアンタゴニストを含む培地 中で培養することが望ましレ、。 BMPアンタゴニストとしては、 BMP分子(例えば、 BMP- 2、 BMP-4、 BMP-7等)に結合して、 BMPシグナル伝達を抑制する物質を指し、ノギン (Noggin)ゃコーディン(Chordin)、ダン(DAN)等を挙げることができ、培地への添カロ に用いることができるこれらの物質は、例えば R&D systems社から購入することができ る。
[0075] 本願発明において、多能性幹細胞は、心筋分化誘導のための培養を開始した直 後から、上記方法により決定された Wnt遺伝子の発現上昇期の 24時間前までの期 間内は、 Wntシグナル活性化物質を含まない培地中で培養する。次いで、上記方法 により決定された Wnt遺伝子の発現上昇期の 24〜0時間前、好ましくは 24時間前の 時点から、 24〜96時間、好ましくは 48〜72時間の期間、 Wntシグナル活性化物質 を含む培地中で培養する。例えば、マウス ES細胞の 1つの事例では、当該細胞の心 筋分化誘導のための培養を行うと、代表的なカノ二力ノレ Wnt遺伝子である Wnt-3や W nt-3a、 Wnt-8aの発現は、未分化時や分化誘導直後では極めて低いが、分化誘導 後 72時間目力 96時間目にかけて強い発現を呈する(実施例 1)。そのため、当該 細胞を本願発明の方法に使用する場合、カノ二カル Wnt遺伝子の発現上昇期は分 化誘導の 72時間後となり、分化誘導開始力 48時間目までは、 Wntシグナル活性化 物質を含まない培地中で培養する。その後、当該細胞は、分化誘導開始後 48時間 目から、 Wntシグナル活性化物質を含む培地中で 24時間〜 96時間、好ましくは 48 時間〜 72時間の培養を行う。なお、 Wntシグナル活性化物質を作用させる期間(時 間)は、用いる細胞が由来する動物種、用いる細胞株、用レ、る Wntシグナル活性化物 質の種類等の条件の違いにより、適宜、至適期間(時間)設定すればよぐ当該期間 (時間)は上記の Wntシグナル活性化物質を作用させる時期を決定する方法により得 られたカノ二カル Wnt遺伝子の発現上昇期に基づいて設定することができる。例えば 、サル (コモンマーモセット) ES細胞の場合、 Wnt-3遺伝子の発現は分化誘導後 72〜 120時間にかけて強い発現がみられ (実施例 5)、ヒト ES細胞の場合も Wnt_3a遺伝子 は分化誘導後 72時間前後をピークとした発現を呈する(Beqqali et al., Stem Cells 24 : 1956, 2006)。
[0076] 上記の方法により、 ES細胞をはじめとする多能性幹細胞から分化誘導した心筋細 胞は、引き続き、公知の方法による細胞回収、分離、精製法を用いることにより、高純 度の心筋細胞(本発明により調製された心筋細胞)を効率的かつ多量に得ることがで きる。
[0077] 心筋細胞の精製方法は、公知となっている細胞分離精製の方法であればいずれも 用いることができる力 その具体的例として、フローサイトメーターや磁気ビーズ、パン ニング法等の抗原 抗体反応に準じた方法(「Monoclonal Antibodies: principles and practice, Third EditionJ (Acad. Press, 1993);「Antibody Engineering: A Practical A pproachj (IRL Press at Oxford University Press, 1996)や、ショ糖、パーコーノレ等の 担体を用いた密度勾配遠心による細胞分画法を挙げることができる。また、別の心筋 細胞選別法としては、元となる ES細胞等の多能性幹細胞の遺伝子に前もって人為的 な修飾を加え、薬剤耐性もしくは異所性蛋白質の発現能を付与することにより、心筋 細胞としての形質を有する細胞を回収する方法が挙げられる。例えば、 Fieldおよび 共同研究者らは、 型ミオシン重鎖プロモーターの制御下でネオマイシン(G418)耐 性遺伝子を発現し得る遺伝子カセットを、マウス ES細胞に導入することにより、その ES 細胞が心筋細胞に分化し、それに伴いひ型ミオシン重鎖遺伝子を発現した時のみ、 G418を添加した培地中で生存し得る系を構築し、この方法により G418耐性細胞とし て選別された細胞は、 99%以上の確率で心筋細胞であることが確認されている(米国 特許第 6,015,671号; Klug et al., J. Clin. Invest. 98:216, 1996)。また別の例としては 、心筋細胞が他の細胞と比較してミトコンドリア含量が高いことを利用し、ミトコンドリア 選択的蛍光色素やミトコンドリア膜電位感受性試薬を用いてミトコンドリアを多く含む 細胞集団、即ち心筋細胞を特異的に回収する方法 (WO 2006/022377)も有効であ る。さらに別の例としては、心筋細胞の特異的な代謝特性を利用し、低糖条件下に 乳酸ゃァスパラギン酸等のアミノ酸を添加することにより、心筋細胞を特異的に精製 する方法も好適である(特願 2006-23770)。
[0078] 本発明により調製された心筋細胞は、各種生理活性物質 (例えば、薬物)や機能未 知の新規遺伝子産物などの薬理評価および活性評価に有用である。例えば、 ES糸田 胞等の多能性幹細胞から心筋細胞への分化制御に関する物質や薬剤、又は心筋 細胞の機能調節に関する物質や薬剤、さらには心筋細胞に対して毒性や障害性を 有する物質や薬剤のスクリーニングに利用することができる。特に現状では、ヒト心筋 細胞を用いたスクリーニング法はほとんど存在しておらず、本発明により調製された 心筋細胞は、当該スクリーニング法を実施するための有用な細胞ソースとなる。さらな る態様では、本発明により調製された心筋細胞を含む評価キットは、上記スクリー二 ングのために有用である。
[0079] スクリーニングに供する被験物質としては、培養系に添カ卩できるものであれば種類 を問わず、例えば、低分子化合物、高分子化合物、有機化合物、無機化合物、蛋白 質、ペプチド、遺伝子、ウィルス、細胞、細胞培養液、微生物培養液などが挙げられ る。遺伝子を効率的に培養系に導入する方法としては、レトロウイルス、アデノウイノレ ス等のウィルスベクターを用いて培養系に添カ卩する方法、又はリボソームなどの人工 的構造物に封入して培養系に添加する方法などが挙げられる。
[0080] 被験物質の評価は、 ES細胞等の多能性幹細胞から心筋細胞への分化誘導効率や 、心筋細胞機能の質的又は量的な変化を測定することで行なうことができる。例えば 、被験物質の心筋分化誘導効率は、本発明記載の方法を用いて培養している多能 性幹細胞を、培養開始後 5〜15日目、好ましくは 7〜12日目の時点において、心筋細 胞に特異的な種々のマーカーの発現を、生化学的又は免疫化学的手法で検出する ことにより測定できる。生化学的又は免疫化学的手法としては特に限定されないが、 好ましくは、免疫組織化学的染色法や免疫電気泳動法の様な、免疫化学的手法が 使用できる。これらの方法では、心筋細胞に結合する、マーカー特異的ポリクローナ ル抗体又はモノクローナル抗体を使用することができる。個々の特異的マーカーを標 的とする抗体は市販されており、容易に使用することができる。心筋細胞に特異的な マーカーは、例えば、ミオシン重鎖/軽鎖や α -ァクチニン、トロポニン I、 ANP、 GAT A- 4、 Nkx2.5、 MEF-2c等が挙げられる。
[0081] また、被験物質を評価する指標としての心筋細胞機能としては、心筋細胞の生存 性を一例として挙げることができる。具体的には、本発明記載の方法によって調製さ れた心筋細胞を、適切な細胞密度になるように培養プレートに播種し、血清を含まな い培地で培養すると細胞死(アポトーシス)を誘導することができるが、その際、適当 量の被験物質を培地中に添加し、心筋細胞の生存率又は死亡率を測定すれば良い 。心筋細胞の生存率又は死亡率の測定方法としては、トリパンブルー等の色素の取 り込みを指標とした肉眼的な観察によるものでも良いし、脱水素酵素の活性 (還元活 性)を指標とした方法、さらにはアポトーシス細胞に特異的なカスパーゼ活性ゃァネ キシン Vの発現を指標とした方法を用いても良い。当該メカニズムを利用したキットは 、 Sigma社や Clontech社、 Promega社等、多くのメーカーより当該メカニズムを利用した キットが市販されており、容易に使用することができる。
[0082] かかるスクリーニング方法により得られた物質や薬剤は、心筋細胞の分化誘導作用 や機能調節作用を有するため、例えば心筋梗塞、虚血性心疾患、うつ血性心不全、 肥大型心筋症、拡張型心筋症、心筋炎、慢性心不全などの心疾患予防薬又は治療 薬として用いることができる。これら化合物は新規な化合物であってもよいし、公知の 化合物であってもよい。
[0083] また、本発明により調製された心筋細胞は、心筋再生薬又は心臓疾患治療薬とし て用いることができる。心臓疾患としては、心筋梗塞、虚血性心疾患、うつ血性心不 全、肥大型心筋症、拡張型心筋症、心筋炎、慢性心不全などを挙げることができる。 心筋再生薬又は心臓疾患治療薬としては、本発明により調製された心筋細胞を高純 度で含むものであれば、細胞を培地等の水性担体に浮遊させたもの、細胞を生体分 解性基質等の支持体に包坦したもの、あるいは単層もしくは多層の心筋細胞シート( Shimizu et al, Circ. Res. 90:e40, 2002)に加工したもの等、どの様な形状のものでも 用いることができる。
[0084] 上記の治療薬を障害部位に輸送する方法としては、開胸し、注射器を用いて直接 心臓に注入する方法、心臓の一部を外科的に切開して移植する方法、さらにはカテ 一テルを用いた経血管的方法により移植する方法等(Murry et al., Cold Spring Har b. Symp. Quant. Biol. 67:519, 2002 ; Menasche、 Ann. Thorac. Surg. 75:S20, 2003 ; D owell et al., Cardiovasc. Res. 58:336, 2003)が挙げられるが、特にこれを限定しなレヽ 。この様な方法により、胎児心臓から回収した心筋細胞を心傷害動物の心臓に移植 すると、きわめて良い治療効果を示すことが報告されている(Menasche、 Ann. Thorac • Surg. 75:S20, 2003 ; Reffelmann et al" Heart Fail. Rev. 8:201, 2003)。 ES細胞由来 の心筋細胞は、胎児心臓由来の心筋細胞ときわめてよく似た形質を呈している(Malt sev et al., Mech. Dev. 44:41, 1993 ; Circ. Res. 75:233, 1994 ; Doevendans et al., J. Mol. Cell. Cardiol. 32:839, 2000)。また、実際に ES細胞由来の心筋細胞を成体心臓 に移植した動物実験例では、胎児心筋を移植した例とほぼ変わらない、極めて高い 生着性を示すことも確認されている(Klug et al., J. Clin. Invest. 98:216, 1996 ; Laflam me et al, Am. J. Pathol. 167:663)。そのため、心筋細胞の疲弊および脱落に起因す る上記の心疾患において、本発明記載の方法により調製した心筋細胞を、病的心臓 組織に補充的に移植することにより、心機能の改善を促すことが期待できる。
実施例
[0085] 次に実施例を挙げて本発明をより具体的に説明する。
[0086] 窗列 1 : ES細包の ィ 禾呈における 種 Wnt ィ云 現藤 の f计 (1)
マウス ES細胞の分化誘導過程における各種 Wnt遺伝子の発現を検討した。マウス E S細胞は、 20%仔牛胎児血清、 2 mmol/L L-グノレタミン、及び 0.1 mmol/L 2_メルカプト エタノールを含む Knockout _DMEM (Invitrogen社)培地(以下、 ESMと称する)に 100 0 U/mLの LIF (ESGRO; Chemicon社)を添加したものを用い、「Manipulating the Mou se Embryo: A Laboratory Manual] (Hogan et al.編、 Cold Spring Harbor Laboratory Press, 1994)、「Embryonic Stem Cells: Methods and ProtocolsJ (Turksen編、 Humana Press, 2002)等に記載の方法に従い、未分化な形質を保ちながら継代培養したもの を実験に供した。この条件で継代培養した ES細胞を、以下、通常の培養条件下で継 代培養した ES細胞と称する。また、以下の実験には、マウス ES細胞として、 D3細胞、 R1細胞、及び 129SV細胞(大日本製薬株式会社より購入)を用いたが、総じて ES細 胞株の違いによる実験結果の相違はみられなかった。以下、特に断りがない場合、 D 3細胞株を用いた実施例データを示す。なお、実施例 4までの実施例においてはマウ ス ES細胞を用いて実験を行なった。
[0087] 通常の培養条件下で継代培養した ES細胞をリン酸緩衝液(phosphate-buffered sali ne ;以下、 PBS)で 2回洗浄後、 1 mmol/L EDTAを含む 0.25%トリプシン溶液で処理し て単一細胞状態にし、 ESMに懸濁した。以下、特に明示しない限り、 ES細胞をプレー トから剥離し、分化誘導やその他の実験に使用する際は、当該条件を用いた。
[0088] ES細胞から心筋細胞や神経細胞等への分化を誘導するための培養は、常法に基 き、以下の様にして行った。 ES細胞を LIF不含培地に懸濁し、その懸濁液を市販の細 胞集塊 (スフヱロイド)形成用の 96穴培養プレート (スミロンセルタイト'スフヱロイド;住 友ベークライト社)の 1穴中に 500細胞 /50 x Lずつ播種した。本実験条件では、浮遊 培養直後から ES細胞が凝集して EBの形成が認められ、浮遊凝集培養(分化誘導)後 7〜8日目ごろから一部の EBで自律拍動性が観察されるようになり、 EB中の少なくとも 一部の細胞は心筋細胞に分化誘導していることがわかる。
[0089] その際、一部の実験群では、分化誘導の 3日前および分化誘導直後に市販のリコ ンビナント'コーディン蛋白又はダン蛋白(15 ng/mL ;ともに R&D systems社)を培地 中に添カ卩した。この様に ES細胞を BMPアンタゴニストで一過的に処理することにより、 その心筋分化能が著しく高まることが公知である(WO2005-033298 ;Yuasa et al., Na t. Biotechnol. 23:607, 2005)。以下、コーディン蛋白やダン蛋白等の BMPアンタゴニ ストを培地中に添加し ES細胞に作用させることを「BMPアンタゴニスト処理」と称する。
[0090] この様にして作製した EBを経時的に回収し、 RNeasy mini kit (Qiagen社製)を用い て全 RNAを調製し、 DNase処理を行った。 DNase処理した全 RNA (1 β g)より SuperScri pt™ First-Strand Synthesis System for RT_PCR (Invitrogen社)を用いて cDNAを合 成した。遺伝子の発現解析は ABI PRISM 7700 (PE Applied Biosystems社)により、 Lu xフライマーを用レ、 7こリアノレタイムポリメラーセ連鎖反 、 (polymerase chain reaction; P CR)定量システムにより、各種遺伝子の発現量を調べた。リアルタイム PCR定量反応 は、上記 cDNAを錡型として、 Platinum Quantitative PCR SuperMix-UDG (Invitrogen 社)を用いて添付の説明書に記載の方法に従って行った。
[0091] 各種 Wnt遺伝子等を検出するための Luxプライマーは、プライマー設計用ソフト(D- LUX1M Designer ; Invitrogen社)を用レ、、各種遺伝子の塩基配列情報を基に設計した 。各種 Wnt遺伝子の各転写産物の検出に用いた Luxプライマーの塩基配列は以下の 通りである。
Wnt-3
(順方向) 5,-CAACAGTAGCAAGGAGCATGGACTGTTG-3,(配列番号 7)
(逆方向) 5,-GGCTGGGTCCAGGTCGTTTA_3,(配列番号 8)
Wnt-3a
(順方向) 5,-GACAAACCGGGAGTCAGCCTTTGTC_3,(配列番号 9)
(逆方向) 5,-TGCTGCACCCACAGATAGCA_3,(配列番号 10)
Wnt-8a
(逆方向) 5,-GTACATGCGCTCTGCTGCCATCATGTAC_3,(配列番号 11)
(順方向) 5,-GACTCGTCACAGCCGCAGTT-3,(配列番号 12)
上記の方法に基いて行った実験例の 1つを図 1に示す。 ES細胞の分化誘導 24時 間目(1日目)から 168時間目(7日目)における Wnt遺伝子の発現を調べたところ、 W nt-3および Wnt-3a、 Wnt_8aの遺伝子について、有意な発現上昇が認められた。これ らの Wnt遺伝子は、分化誘導後 72時間目力も 96時間目にかけて強い発現のピーク を呈し、その後、 120時間目以降には著しく低下した。そのため、当該 ES細胞の場合 、 Wnt遺伝子の発現上昇期を分化誘導後 72時間目と判断することができる。
[0092] コーディン蛋白やダン蛋白等の BMPアンタゴニストで処理した群では、未処理群と 同様、分化誘導 72時間目に強い Wnt遺伝子の発現上昇がみられ、その発現量は未 処理群よりも有意に高くなることがわかった。この様に、 BMPアンタゴニスト処理は、 ES 細胞の分化過程における Wnt遺伝子の発現上昇時期を、より明確に判断できる方法 であることがわかる。
[0093] 窗列 2 :リコンビナント Wnt¾ 0 蘭こよる ES纏o, fe 4、 纏 の 現,
Mil
ES細胞の分化誘導初期過程において、心筋細胞の出現に先立ち、各種 Wnt遺伝 子の一過的な発現上昇がみられたため、この時期の ES細胞にリコンビナント Wnt蛋白 質を処理し、その心筋分化誘導効果を検討した。 ES細胞の分化誘導は実施例 1と同 様の方法で行ったが、一部の実験群では、市販のリコンビナント WNT-1蛋白(Peprot ech社)、 Wnt_3a蛋白(R&D systems社)、又は Wnt_5a蛋白(R&D systems社)を含む 培地中で培養した。以下、 WNT-1等のカノ二力ノレ Wntのリコンビナント蛋白質を培地 中に添加し ES細胞に作用させることを「Wnt処理」と称する。
[0094] ES細胞から心筋細胞が分化、発生したことの 1つの指標として、 自律拍動性を呈す る EBの出現率を経時的に調べた。未処理群では、浮遊培養後 13日目において拍動 がみられる EBの出現率は 20%程度であつたが、分化誘導後 48時間目〜96時間目ま での 48時間(2日間)のみ Wnt処理を行った群 (Wnt4896h)および 48時間目〜120時 間目までの 72時間(3日間) Wnt処理を行った群 (Wnt4812Qh)では、有意に高い割合 の EBで拍動性が確認できた(図 2A、 B)。その効果は BMPアンタゴニスト処理(図中、 コーディン群)に匹敵する強さであった。
[0095] 一方、分化誘導後の初めの 48、 72、 96、又は 120時間(2, 3, 4又は 5日間) Wnt 処理を行った群 (それぞれ Wnt~48h、 Wnt~72h、 Wnt~96h、 Wnt~12Qh)や分化誘導 120時 間目又は 144時間目(5日目又は 6日目)以降に Wnt処理を行った群 (Wnt12°h~、 Wnt 144ΗΊ等では、拍動能を有する EBは未処理群と同程度しか出現しなかった。また、未 処理群等の拍動性 EBの割合が低い群の EBでは、拍動する部域は EBの一部に限定 されていたが、 Wnt48~96h群や Wnt48~12Qh群の EBでは、コーディン処理 EBと同様、 EB表 層のほぼ全域の拍動が観察できた。即ち、当該 ES細胞を、分化誘導直後から Wnt遺 伝子の発現上昇が認められる時期 (分化誘導開始後 72時間目)の 24時間前までの 期間に、 Wnt蛋白質を含む培地中で培養すると、有意な心筋分化誘導効果は得られ なかった。
[0096] 一方、当該 ES細胞を、 Wnt遺伝子の発現上昇が認められる時期(分化誘導開始後 72時間目)の 24時間前から 48時間(2日間)又は 72時間(3日間)、リコンビナント Wn t蛋白質を含む培地中で培養すると、著しい心筋分化能促進効果が得られた。
[0097] 以上の結果より、 Wnt処理は ES細胞の心筋分化を著しく誘導するが、その効果は分 化誘導過程のごく限られた期間でのみ得られることが示された。以下の実験では、特 に明示しない限り、「Wnt処理」とは、分化誘導開始後 48時間目〜96時間目までの 4 8時間(2日間)、又は分化誘導開始後 48時間目〜: 120時間目までの 72時間(3日間 ) Wnt処理を行つたものを示す。
[0098] 「Wnt処理」において、リコンビナント Wnt蛋白質の添加濃度の違いが、心筋分化誘 導に及ぼす影響について検討したところ、例えば Wnt_3aや Wnt_5a、 WNT-1を用い た場合、ともに同様の濃度依存性を示し、 1 ng/mL〜100 ng/mL濃度のリコンビナント 蛋白質添加により、未処理群より有意に高い拍動性 EBの出現率が得られた。特に 10 ng/mL〜50 ng/mL濃度の Wnt蛋白質添加により、きわめて良好な拍動性 EBの出現 がみられた。
[0099] 窗列 3 :Wn 蘭こより ィ 導した ES細包 、 細包の 晳
実施例 2で示す様に、 Wnt処理を行うことにより、 ES細胞から作製した EBの拍動性 が有意に高まったが、この拍動性 EBにおいて、その拍動性細胞が心筋細胞であるこ とを確認するため、各種心筋特異的マーカー分子の遺伝子発現ならびに蛋白質産 生を検討した。実施例 2と同様の方法で ES細胞の分化誘導を行い、分化誘導後 10日 目に EBを回収し、 cDNAを調製した。リアルタイム PCR定量反応は TaqManプローブ法 で行った。即ち、上記 cDNA (l μ L)を铸型として、 TaqMan Universal PCR Master Mi x (PE Applied Biosystems社)を用いて添付の説明書に記載の方法に従って行った。 各種遺伝子を検出するための TaqManプローブは、プライマー設計用ソフト(ABI PRI SM Primer Express)を用い、各種遺伝子の塩基配列情報を基に設計した。 GATA-4 、 Nkx-2.5, MLC_2a、 MLC_2v、および GAPDHの各転写産物の検出に用いたプライ マー及び TaqManプローブの塩基配列は以下の通りである。
GATA-4
(順方向) 5' -ACGGAAGCCCAAGAACCTGA-3' (配列番号 13)、
(逆方向) 5,-CATTGCTGGAGTTACCGCTG_3,(配列番号 14)、
(TaqManプローブ) 5, -TAAATCTAA GACGCCAGCAGGTCCTGCTG _3,(配列番 号 15) ;
Nkx-2.5
(順方向) 5,-TGACCCAGCCAAAGACCCT_3,(配列番号 16)、
(逆方向) 5, -CCATCCGTCTCGGCTTTGT-3 ' (配列番号 17)、
(TaqManプローブ) 5, -CGGATAAAAAAGA GCTGTGCGCGC-3' (配列番号 18); MLC-2a
(順方向) 5' _CCAGGCAGACAAGTTCTCTCCT-3' (配列番号 19)、
(逆方向) 5' -CTTGTAGTCAATGTTGCCGGC-3' (配列番号 20)、
(TaqManプローブ) 5, -CAACTGTTTGCGCTGACACCCATGGA-3 ' (配列番号 21 )
MLC-2v
(順方向) 5,- GCAGAGAGGTTCTCCAAAGAGG _3,(配列番号 22)、
(逆方向) 5,-AAGATTGCCGGTAACGTCAGG_3,(配列番号 23)、
(TaqManプローブ) 5,-ATCGACCAGATGTTCGCAGCCTTTCC-3,(配列番号 24)
GAPDH
(順方向) 5,-TGCACCACCAACTGCTTAG-3,(配列番号 25)、
(逆方向) 5,-GGATGCAGGGATGATGTTC-3,(配列番号 26)、
(TaqManプローブ) 5,- CAGAAGACTGTG GATGGCCCCTC-3' (配列番号 27) 分化誘導 10日目の Wnt処理群 (Wnt48~12Qh群) EBでは、代表的な心筋細胞マーカー として知られる GATA-4や Nkx_2.5、 MLC_2a、 MLC-2v (図 3)、 a MHC、 MHC等の 遺伝子に関し、未処理群よりも有意に強い発現が認められた。
[0100] 一方、拍動性 EBの出現率が低かった Wnt~48h、 Wnt~12Qh、 Wnt1441 ^群では、未処理 群と同程度の発現量であり、拍動性 EBの出現率と各種心筋マーカー遺伝子の発現 量はほぼ同様の傾向を示した。
[0101] 引き続き、 Wnt処理群 EB中に発生した拍動性細胞力 心筋細胞特異的マーカー蛋 白質を産生していることを、免疫組織化学的染色法を用いて確認した。分化誘導 10 日目の Wnt処理群 (Wnt4812Qh群) EBを、凍結切片作製用包坦剤(OCT Compound, S akura Finetek USA社)で新鮮包坦し、液体窒素で凍結して作製した凍結標本を薄 切(6 z m)後、スライドグラスに添付した。この凍結切片に対し、 1次抗体として抗サル コメァ 'ミオシン抗体(MF20 ; American Type Culture Collection)、抗 GATA-4抗体(C -20 ; Santa Cruz社)、又は抗 Nkx_2.5抗体(N-19 ; Santa Cruz社)と反応させた後、引 き続きホースラディッシュペルォキシダーゼ標識 2次抗体(Bio-RAD社)と反応させ、 最後に ACE (3 -ァミノ- 9-ェチルカルバゾール: 3-amino-9_ethylcarbazole)基質液(二 チレィ社)を用いた呈色反応を行った後、光学顕微鏡下にて観察を行った。
[0102] 結果を図 4に示した。未処理群では、心筋細胞に特異的なマーカー蛋白質である サルコメァ ·ミオシン(図中 MHC)や Nkx-2.5、 GATA-4の陽性細胞力 EB中のごく一 部にのみ観察されるのに対し、 Wnt処理群では、 BMPアンタゴニスト(ダン)処理群と 同様、 EBを構成している細胞の大多数が陽性像を呈し、心筋細胞集塊 (cardiospher es)を形成していることが確認できた。以上の結果より、 Wnt処理により分化誘導され た ES細胞由来の拍動性細胞が心筋細胞であることが実証され、本法は EB内の心筋 細胞の分化ならびに発生を強く促進する方法であることが明らかとなった。
[0103] -. Rカテユンの活性化剤による ES纏旬 、 纏 の 現,
上記カノ二カル Wnt蛋白質処理は、細胞内で GSK3 βの作用を阻害することにより、 βカテニンの安定化並びに転写活性能を促すことが公知である。そこで、 /3カテニン の安定化並びに転写活性能を促す各種薬剤処理が、 Wnt処理と同様、 ES細胞の心 筋分化誘導効果を示すことを確認した。 βカテニンの安定化並びに転写活性能を促 す薬剤としては、市販の GSK3 β阻害剤である BIO (Calbiochem社)、 GSK3 βインヒビ ター VII (Calbiochem社)、細胞膜透過型 GSK3 βペプチドインヒビター(L803_mts; Ca lbiochem社)、 SB216763 (Biomol社)、および GSK3 β阻害を介さずに βカテニンの転 写活性能を促す Wntァゴニスト(Calbiochem社)の 5種類を用いた。 ES細胞の分化誘 導は、上記実施例と同様に行い、上記化合物はリコンビナント Wnt蛋白質と同様、分 化誘導後 48時間目から 120時間目(3〜5日目)の期間、上記化合物を含む培地中 で培養した。
[0104] その結果、図 5に示す通り、上記化合物の添加群では、その至適濃度において、リ コンビナント Wnt蛋白質処理群と同様、若しくはそれ以上に強い心筋分化誘導活性 を示すことが確認できた。実施例 3と同様の方法で、これらの化合物で処理した EB中 の心筋マーカー遺伝子並びに心筋マーカー蛋白の発現を検討したところ、リコンビ ナント Wnt蛋白質処理群と同様、未処理群と比較して有意に高レ、遺伝子及び蛋白の 発現上昇効果が認められた。
[0105] 5 : ES纏 の ィ 禾呈における wnt ィ云 現藤 の f计 (2)
サルの 1種、コモンマーモセットに由来する ES細胞(以下、 cmES細胞と称する)を用 レ、、その分化過程における Wnt遺伝子の発現について検討を行った。 cmES細胞の 培養には、 20% Knockout Serum Replacement (Invitrogen社)、 0.1 mmol/L MEM非 必須アミノ酸液、 1 mmol/L L-グノレタミン、 0.1 mmol/L 2_メルカプトエタノールを含む Knockout— DMEM培地(Invitrogen社)(以下、 cmES培地と称する)に 10 ng/mLリコ ンビナント LIF (alomone labs社)および 10 ng/mLリコンビナント塩基性線維芽細胞増 殖因子(Invitrogen社)を添加した培地を用い、フィーダ一細胞として前もって播種し たマイトマイシン処理済みの初代マウス胚線維芽細胞の上で、未分化な形質を保ち ながら継代培養したものを実験に供した。
[0106] cmES細胞を分化誘導するための培養は、常法に基き、以下の様にして行った。 cm ES細胞を PBSで洗浄後、市販の霊長類 ES細胞用細胞剥離液(ReproCELL社)で 37 °C、 5分間処理し、 cmES細胞の細胞塊を含む細胞懸濁液を回収した。次に、フィーダ 一細胞と cmES細胞を分離するために、細胞懸濁液を孔径 100 μ mのメッシュで濾過し た後、その通過細胞画分を孔径 40 μ mのメッシュで濾過して非通過画分を回収した。 更に、この cmES細胞塊を含む非通過画分を、高い細胞接着能を呈する市販の培養 プレート(プライマリア;ベタトン ·ディッキンソン社)に播種し、 30分間培養した後、プレ ートに接着せず培地中で浮遊している細胞塊を回収した。この様にして得られた cmE S細胞塊は、 cmES培地で満たした市販の細胞非接着性培養プレート(ハイドロセル; CellSeed社製)に、細胞塊同士が互いに接触 '接着しない様な状態で培養して EBを 形成させ、分化誘導を行なった。
[0107] この様にして作製した EBを経時的に回収し、 RNeasy mini kit (Qiagen社)を使用し て全 RNAを調製した。続いて、逆転写酵素を用いて cDNAを合成した後、 PCRにより、 コモンマーモセット Wnt-3遺伝子(cmWnt_3)及び内因性コントロールとして /3 Actin (c m β Actin)の発現を検出した。検出に用いたプライマーは以下の通りである。
cmWnt-3
(順方向) 5'- GAGGTGAAGACCTGCTGGTGGGC _3,(配列番号 28)
(逆方向) 5'- GTTGGGCTCACAAAAGTTGG -3' (配列番号 29)
cm β Actin
(順方向) 5'- TCCTGACCCTGAAGTACCCC _3,(配列番号 30) (逆方向) 5'- GTGGTGGTGAAGCTGTAGCC _3' (配列番号 31)
上記の方法に基いて行った実験例の 1つを図 6に示す。 cmES細胞の分化誘導 24 時間目(1日目)から 168時間目(7日目)における発現を調べたところ、 Wnt-3遺伝子 は、分化誘導後 72時間目から 120時間目にかけて強い発現のピークを呈し、その後 、その発現は消失した(図 6)。そのため、当該 ES細胞の場合、 Wnt_3遺伝子の発現 上昇期を分化誘導後 72時間目と判断することができ、マウス ES細胞とほぼ同様の結 果が得られた。
[0108] 窗列 6 :リコンビナント Wnt¾ 0 蘭こよる ES纏o, fe 4、 纏 の 現, cmES細胞を用レ、、リコンビナント Wnt蛋白処理効果の検討を行った。実施例 5の方 法と同様に cmES細胞の培養及び分化誘導を行った。その際、一部の実験群では、 分化誘導後 48時間目〜 120時間目までの 72時間(3日間)、市販のリコンビナント W NT-1蛋白(PeproTech社)、 Wnt_3a蛋白(R&D systems社)又は WNT-7A蛋白(R&D s ystems社)を含む培地中で培養した。
[0109] cmES細胞から心筋細胞が分化、発生したことを確認するため、 EBの自律拍動能の 観察、及び各種心筋特異的マーカー分子の遺伝子並びに蛋白の発現を検討した。 未処理群では、 10%以下の EBにおいて、分化誘導後 2週間前後より、 EBの一部の領 域で拍動が認められた力 それに対し Wnt処理群では、分化誘導後 10日目前後から 自律拍動が始まり、分化誘導後 16日目にはほぼ半数の EBが拍動性を示した。
[0110] また、発現遺伝子の解析のため、分化誘導後 10日目に EBを回収し、実施例 5の方 法と同様に各種マーカー遺伝子の発現を検出した。コモンマーモセットの Nestin、 AN P、 MLC- 2a、 MLC- 2vの各転写産物(以下、 cmNestin、 cmANP、 cmMLC_2a、 cmMLC -2v)の検出に用いたプライマーは以下の通りである。
cmNestin
(順方向) 5'- GCCCTGACCACTCCAGTTTA-3' (配列番号 32)、
(逆方向) 5'- GGAGTCCTGGATTTCCTTCC-3' (配列番号 33)
cmANP
(順方向) 5'- GAACCAGAGGGGAGAGACAGA _3,(配列番号 34)、 (逆方向) 5'- CCCTCAGCTTGCTTTTTAGGAG _3' (配列番号 35) cmMLC-2a
(順方向) 5'- GAGGAGAATGGCCAGCAGGAA-3' (配列番号 36)、
(逆方向) 5'- GCGAACATCTGCTCCACCTCA- 3,(配列番号 37)
cmMLC-2v
(順方向) 5'- AGGAGGCCTTCACTATCATGG -3' (配列番号 38)、
(逆方向) 5'- GTGATGATGTGCAC CAGGTTC -3' (配列番号 39)
分化誘導後 10日目の Wnt_3a処理群 EBでは、代表的な心筋細胞マーカーである c mANP、 cmMLC_2a、 cmMLC_2v遺伝子に関し、未処理群よりも有意に強い発現が認 められた(図 7)。 Wnt-1処理群 EBでも同様の結果が得られた。
[0111] 一方、神経マーカーとして知られている cmNestinの発現は、 Wnt処理群において著 明な発現減少が認められた。
[0112] 引き続き、 Wnt処理群 EB中に発生した拍動性細胞力 特異的マーカー蛋白質を産 生している心筋細胞であることを、実施例 2と同様に、免疫組織化学的染色法を用い て確認した。分化誘導 16日目の Wnt処理群 (Wnt-3a、 WNT-1) EBから作製した凍結 切片に対し、 1次抗体として抗サルコメァ 'ミオシン抗体、抗 GATA-4抗体、又は抗 Nk x-2.5抗体を反応させ、呈色反応を行った後、光学顕微鏡下にて観察を行った。
[0113] その結果、未処理群では、心筋細胞に特異的なマーカー蛋白質であるサルコメァ · ミオシンや GATA-4の陽性細胞力 S、 EB中のごく一部にのみ観察され、また Nkx-2.5陽 性細胞はほとんど観察されないのに対し、 Wnt_3aや WNT-1で処理した群では、 EBを 構成している細胞の大多数が陽性像を呈していることが確認できた(図 8)。 WNT-7A 処理群 EBでも同様の結果が得られた。
[0114] 以上の結果より、 Wnt処理はげつ歯類の ES細胞のみならず霊長類の ES細胞に対し ても著明に心筋分化を促進誘導できることが明らかとなった。

Claims

請求の範囲
[1] 多能性幹細胞から心筋細胞を分化誘導する方法であって、多能性幹細胞を、
i)分化誘導開始からカノ二カル Wnt遺伝子の発現上昇期の 24時間前までの期間、 カノ二カル Wntシグナル経路の活性化を促す物質を含まない培養液中で培養するこ と;次いで
ii)カノ二カル Wnt遺伝子の発現上昇期の 24〜0時間前から 24〜96時間の期間、 カノ二カル Wntシグナル経路の活性化を促す物質を含む培養液中で培養すること を含むことを特徴とする多能性幹細胞から心筋細胞を分化誘導する方法。
[2] 多能性幹細胞を、カノ二カル Wnt遺伝子の発現上昇期の 24時間前から、カノ二力 ノレ Wntシグナル経路の活性化を促す物質を含む培養液中で培養する、請求項 1に 記載の方法。
[3] 多能性幹細胞を、カノ二カル Wntシグナル経路の活性化を促す物質を含む培養液 中で培養する期間が、 48〜72時間である、請求項 1又は 2に記載の方法。
[4] カノ二カル Wntシグナル経路の活性化を促す物質力 カノ二カル Wnt蛋白質、 GSK
3 β阻害剤、及び Wntァゴニストからなる群から選択される物質である、請求項:!〜 3 のレ、ずれか 1項に記載の方法。
[5] カノ二カル Wntシグナル経路の活性化を促す物質がカノ二力ノレ Wnt蛋白質である、 請求項 4に記載の方法。
[6] カノ二力ノレ Wnt蛋白質力 Wnt-1、 Wnt_3a及び Wnt_5aからなる群力、ら選択される少 なくとも 1つの Wnt蛋白質である、請求項 5に記載の方法。
[7] カノ二力ノレ Wnt蛋白質の培養液中の濃度が 0.1 ng/mL〜500 ng/mLである、請求項
5又は 6に記載の方法。
[8] カノ二カル Wntシグナル経路の活性化を促す物質が GSK3 β阻害剤である、請求項
4に記載の方法。
[9] GSK3 β阻害剤が、 GSK3 βインヒビター VII、 L803_mts、 SB216763,及び GSK3 βィ ンヒビター IX (ΒΙΟ)からなる群から選択される少なくとも 1つの阻害剤である、請求項 8 に記載の方法。
[10] GSK3 β阻害剤の培養液中の濃度力 GSK3 βインヒビター VIIの場合 2 μ mol/L〜l 00 μ mol/L、 L803_mtsの場合 5 μ mol/L〜500 μ mol/L、 SB216763の場合 10 nmol/L 〜1 β mol/L、又は、 GSK3 βインヒビター IX (BIO)の場合 10 nmolん〜 1 β mol/Lであ る、請求項 8又は 9に記載の方法。
カノ二カル Wntシグナル経路の活性化を促す物質が Wntァゴニストである、請求項 4 に記載の方法。
Wntァゴニストがァミノピリミジン誘導体である、請求項 11に記載の方法。
Wntァゴニストの培養液中の濃度が 1 nmol/L〜1000 nmol/Lである、請求項 11又 は 12に記載の方法。
多能性幹細胞が、胚性幹細胞、胚性生殖細胞、又は生殖細胞系列幹細胞である、 請求項:!〜 13に記載の方法。
多能性幹細胞が胚性幹細胞である、請求項 14に記載の方法。
多能性幹細胞がヒト由来である、請求項 14又は 15に記載の方法。
PCT/JP2007/059242 2006-04-28 2007-04-27 多能性幹細胞から心筋細胞を分化誘導する方法 WO2007126077A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020087029035A KR101234544B1 (ko) 2006-04-28 2007-04-27 다능성 줄기 세포로부터 심근 세포의 분화를 유도하는 방법
AU2007244226A AU2007244226B2 (en) 2006-04-28 2007-04-27 Method for inducing differentiation of pluripotent stem cells into cardiomyocytes
CA2650685A CA2650685C (en) 2006-04-28 2007-04-27 Method for inducing differentiation of pluripotent stem cells into cardiomyocytes
CN2007800146073A CN101426902B (zh) 2006-04-28 2007-04-27 将多能性干细胞分化诱导成心肌细胞的方法
JP2008513304A JP5149791B2 (ja) 2006-04-28 2007-04-27 多能性幹細胞から心筋細胞を分化誘導する方法
KR1020127032143A KR101346047B1 (ko) 2006-04-28 2007-04-27 다능성 줄기 세포로부터 심근 세포의 분화를 유도하는 방법
US12/298,565 US8293529B2 (en) 2006-04-28 2007-04-27 Method for inducing differentiation of pluripotent stem cells into cardiomyocytes
EP07742677A EP2014766A4 (en) 2006-04-28 2007-04-27 METHOD FOR DIFFERENTIATING INDICATION OF A MYOCARDIAL CELL FROM A PLURIPOTENTIAL STEM CELL
BRPI0710949-0A BRPI0710949A2 (pt) 2006-04-28 2007-04-27 Método para indução de diferenciação de células tronco pluripotentes em cardiomiócitos
IL194970A IL194970A (en) 2006-04-28 2008-10-28 Method for inducing differentiation of pluripotent stem cells into cardiomyocytes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006125148 2006-04-28
JP2006-125148 2006-04-28
JP2007-019531 2007-01-30
JP2007019531 2007-01-30

Publications (1)

Publication Number Publication Date
WO2007126077A1 true WO2007126077A1 (ja) 2007-11-08

Family

ID=38655597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059242 WO2007126077A1 (ja) 2006-04-28 2007-04-27 多能性幹細胞から心筋細胞を分化誘導する方法

Country Status (11)

Country Link
US (1) US8293529B2 (ja)
EP (2) EP2014766A4 (ja)
JP (1) JP5149791B2 (ja)
KR (2) KR101234544B1 (ja)
CN (1) CN101426902B (ja)
AU (1) AU2007244226B2 (ja)
BR (1) BRPI0710949A2 (ja)
CA (1) CA2650685C (ja)
IL (1) IL194970A (ja)
RU (1) RU2433174C2 (ja)
WO (1) WO2007126077A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007031A2 (en) * 2008-07-14 2010-01-21 Novartis Ag Methods for improving cardiac differentiation of human embryonic stem cells
WO2011071118A1 (ja) * 2009-12-09 2011-06-16 国立大学法人京都大学 ニトロビンを含む多能性幹細胞の心筋細胞への分化促進剤
US20110243899A1 (en) * 2008-04-25 2011-10-06 National University Corporation Chiba University Wnt Signaling Inhibitor Comprising Insulin-Like Growth Factor-Binding Protein
WO2012133945A1 (ja) 2011-03-30 2012-10-04 学校法人東京女子医科大学 胚性幹細胞から心筋シートを製造する方法
WO2013137491A1 (ja) 2012-03-15 2013-09-19 国立大学法人京都大学 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
JP2013540424A (ja) * 2010-07-29 2013-11-07 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 幹細胞の運命を調節するためのグリピカン4活性の制御及びその使用
WO2014192909A1 (ja) 2013-05-31 2014-12-04 iHeart Japan株式会社 ハイドロゲルを組み込んだ積層化細胞シート
JPWO2013111875A1 (ja) * 2012-01-27 2015-05-11 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
WO2015098962A1 (ja) 2013-12-25 2015-07-02 東亞合成株式会社 多能性幹細胞から内胚葉系細胞への分化誘導方法
WO2016035816A1 (ja) * 2014-09-02 2016-03-10 国立大学法人東京大学 多能性幹細胞から心筋細胞を分化誘導する方法、並びに該方法に好適な培地添加剤、分化誘導調節剤、培地、培地作製用キット、及び多能性幹細胞から心筋細胞を分化誘導するためのキット
JP5930205B2 (ja) * 2010-08-26 2016-06-08 国立大学法人京都大学 多能性幹細胞の心筋分化促進剤
WO2018062269A1 (ja) * 2016-09-30 2018-04-05 京都府公立大学法人 体細胞を製造する方法、体細胞、及び組成物
US10421944B2 (en) 2015-09-29 2019-09-24 Toagosei Co. Ltd. Method for producing neural stem cells using synthetic peptide
WO2019189554A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 心筋細胞成熟促進剤
WO2019189545A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 細胞の製造方法
WO2019189553A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 複素環化合物
WO2020032185A1 (ja) 2018-08-10 2020-02-13 国立大学法人京都大学 カチオン性脂質を用いた心筋細胞へのトランスフェクション方法
WO2021241658A1 (ja) 2020-05-26 2021-12-02 株式会社ヘリオス 低免疫原性細胞
US11359180B2 (en) 2015-04-28 2022-06-14 Toagosei Co., Ltd. Method for producing myocardial cells using synthetic peptide

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573442A (zh) * 2006-11-09 2009-11-04 J·大卫格莱斯顿学会 诱导心肌细胞形成的方法
JP5902092B2 (ja) 2009-10-19 2016-04-13 セルラー ダイナミクス インターナショナル, インコーポレイテッド 心筋細胞の生成
US9499790B2 (en) 2010-08-26 2016-11-22 Kyoto University Method for promoting differentiation of pluripotent stem cells into cardiac muscle cells
US9181529B2 (en) 2010-10-19 2015-11-10 Cellular Dynamics International, Inc. Titration of differentiation medium components
EP2694644B1 (en) 2011-03-30 2018-01-24 Cellular Dynamics International, Inc. Priming of pluripotent stem cells for neural differentiation
US9395354B2 (en) 2011-07-21 2016-07-19 The Board Of Trustees Of The Leland Stanford Junior University Cardiomyocytes from induced pluripotent stem cells from patients and methods of use thereof
WO2013159349A1 (en) * 2012-04-27 2013-10-31 Curegenix Inc. Method for producing cardiomyocytes
WO2014136519A1 (ja) 2013-03-08 2014-09-12 国立大学法人京都大学 Egf受容体阻害剤を含む多能性幹細胞の心筋分化促進剤
US9493742B2 (en) 2013-03-15 2016-11-15 Emory University Purification of cell mixtures using molecular beacons targeting cell specific RNA
WO2015038704A1 (en) * 2013-09-11 2015-03-19 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Compositions for preparing cardiomyocytes
RU2537141C1 (ru) * 2013-11-20 2014-12-27 государственное бюджетное образовательное учреждение высшего профессионального образования "Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации Способ определения способности клеток костного мозга к делению
CN105039399A (zh) * 2014-04-23 2015-11-11 复旦大学 多能干细胞-遗传性心肌病心肌细胞及其制备方法
JP6651218B2 (ja) 2014-05-30 2020-02-19 国立大学法人京都大学 低分子化合物を用いた多能性幹細胞の心筋分化誘導法
EP3286301B1 (en) * 2015-04-22 2021-07-28 Sonic Master Limited Generation of muscle-lineage cells from stem cells
WO2018034519A1 (ko) * 2016-08-18 2018-02-22 서울대학교병원 Necrox를 이용한 줄기세포 유래 심근세포의 분화 효율 및 성숙도 증진 방법
KR102010922B1 (ko) * 2017-11-01 2019-08-14 가톨릭관동대학교산학협력단 켄파울론 유도체의 줄기세포의 심근세포로의 분화 유도 용도
CN110907644B (zh) * 2019-12-11 2023-01-06 深圳市达科为生物工程有限公司 多种细胞鉴定试剂盒及操作方法
CN111411075A (zh) * 2020-03-10 2020-07-14 广东源心再生医学有限公司 一种构建人心肌细胞凋亡模型的方法
KR102205522B1 (ko) 2020-09-28 2021-01-19 이상호 미닫이형 자동문
CN114591895A (zh) * 2022-04-12 2022-06-07 澳门大学 一种诱导干细胞分化为心肌细胞的方法及其培养基组合
CN114891729B (zh) * 2022-04-15 2024-04-05 北京全式金生物技术股份有限公司 叶酸在促进人多能性干细胞向心肌细胞分化中的应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2168763A (en) 1933-03-23 1939-08-08 Ibm Record controlled machine with improved serial number controls
US5340740A (en) 1992-05-15 1994-08-23 North Carolina State University Method of producing an avian embryonic stem cell culture and the avian embryonic stem cell culture produced by the process
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
WO1999027076A1 (en) 1997-11-25 1999-06-03 Arc Genomic Research Pluripotent embryonic stem cells and methods of obtaining them
US6015671A (en) 1995-06-07 2000-01-18 Indiana University Foundation Myocardial grafts and cellular compositions
US6090622A (en) 1997-03-31 2000-07-18 The Johns Hopkins School Of Medicine Human embryonic pluripotent germ cells
WO2000049137A2 (en) 1999-02-20 2000-08-24 Intercytex Limited Pluripotential cell derived from an embryonic stem cell and a nucleus of a somatic cell
WO2003006950A2 (en) 2001-07-12 2003-01-23 Geron Corporation Cells of the cardiomyocyte lineage produced from human pluripotent stem cells
WO2005033298A1 (ja) 2003-10-03 2005-04-14 Keiichi Fukuda 幹細胞から心筋細胞を分化誘導する方法
JP2005224155A (ja) 2004-02-12 2005-08-25 Yamaguchi Technology Licensing Organization Ltd 舌組織から単離された、自動拍動する心筋細胞に分化する能力を有する細胞および細胞の培養、分化誘導法
WO2005118782A2 (en) * 2004-04-16 2005-12-15 Hydra Biosciences, Inc. Methods of promoting cardiac cell proliferation
JP2006023770A (ja) 2005-08-17 2006-01-26 Victor Co Of Japan Ltd 音声符号化方法及び音声復号方法
WO2006022377A1 (ja) 2004-08-27 2006-03-02 Daiichi Asubio Pharma Co., Ltd. 細胞内ミトコンドリアを指標とした心筋細胞の選択方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529070A (ja) 1998-11-09 2002-09-10 モナシュ・ユニヴァーシティ 胚性幹細胞
KR20030088022A (ko) 2000-11-30 2003-11-15 스템론 인크. 단리된 동종접합 간세포, 그로부터 유래된 분화 세포 및이들을 제조 및 사용하기 위한 물질 및 방법
WO2003046141A2 (en) * 2001-11-26 2003-06-05 Advanced Cell Technology, Inc. Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells
US20040014209A1 (en) * 2002-01-23 2004-01-22 Lassar Andrew B. Compositions and methods for modulating cell differentiation
CN1536076A (zh) * 2003-04-09 2004-10-13 中国人民解放军军事医学科学院野战输 成年人骨髓间充质干细胞体外扩增和定向诱导分化为心肌样细胞的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2168763A (en) 1933-03-23 1939-08-08 Ibm Record controlled machine with improved serial number controls
US5340740A (en) 1992-05-15 1994-08-23 North Carolina State University Method of producing an avian embryonic stem cell culture and the avian embryonic stem cell culture produced by the process
US5656479A (en) 1992-05-15 1997-08-12 North Carolina State University Avian embryonic stem cells
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US6015671A (en) 1995-06-07 2000-01-18 Indiana University Foundation Myocardial grafts and cellular compositions
US6090622A (en) 1997-03-31 2000-07-18 The Johns Hopkins School Of Medicine Human embryonic pluripotent germ cells
WO1999027076A1 (en) 1997-11-25 1999-06-03 Arc Genomic Research Pluripotent embryonic stem cells and methods of obtaining them
WO2000049137A2 (en) 1999-02-20 2000-08-24 Intercytex Limited Pluripotential cell derived from an embryonic stem cell and a nucleus of a somatic cell
WO2003006950A2 (en) 2001-07-12 2003-01-23 Geron Corporation Cells of the cardiomyocyte lineage produced from human pluripotent stem cells
WO2005033298A1 (ja) 2003-10-03 2005-04-14 Keiichi Fukuda 幹細胞から心筋細胞を分化誘導する方法
JP2005224155A (ja) 2004-02-12 2005-08-25 Yamaguchi Technology Licensing Organization Ltd 舌組織から単離された、自動拍動する心筋細胞に分化する能力を有する細胞および細胞の培養、分化誘導法
WO2005118782A2 (en) * 2004-04-16 2005-12-15 Hydra Biosciences, Inc. Methods of promoting cardiac cell proliferation
WO2006022377A1 (ja) 2004-08-27 2006-03-02 Daiichi Asubio Pharma Co., Ltd. 細胞内ミトコンドリアを指標とした心筋細胞の選択方法
JP2006023770A (ja) 2005-08-17 2006-01-26 Victor Co Of Japan Ltd 音声符号化方法及び音声復号方法

Non-Patent Citations (87)

* Cited by examiner, † Cited by third party
Title
"Animal Cell Culture: A Practical Approach, Third Edition", 2000, OXFORD UNIVERSITY PRESS
"Antibodies: A Laboratory Manual", 1987, COLD SPRING HARBOR LABORATORY PRESS
"Antibody Engineering: A Practical Approach", 1996, IRL PRESS AT OXFORD UNIVERSITY PRESS
"Current Protocols in Molecular biology", 1987, JOHN WILEY & SONS
"Embryonic Stem Cells", 2002, HUMANA PRESS
"Embryonic Stem Cells: Methods and Protocols", 2002, HUMANA PRESS
"Guide to Techniques in Mouse Development", 1993, ACADEMIC PRESS
"Manipulating the Mouse Embryo: A laboratory manual", 1994, COLD SPRING HARBOR LABORATORY PRESS
"Methods in Enzymology series", ACADEMIC PRESS
"Monoclonal Antibodies: principles and practice, Third Edition", 1993, ACAD. PRESS
"PCR Protocols: Methods in Molecular Biology", 2003, HUMANA PRESS
BEHFAR A ET AL., FASEB JOURNAL, vol. 16, 2002, pages 1558
BEQQALI ET AL., STEM CELLS, vol. 24, 2006, pages 1956
CIRC. RES., vol. 75, 1994, pages 233
DOEVENDANS ET AL., J. MOL. CELL. CARDIOL., vol. 32, 2000, pages 839
DOWELL ET AL., CARDIOVASC. RES., vol. 58, 2003, pages 336
FISHMAN, SCIENCE, vol. 294, 2001, pages 1290
HAO J ET AL., DEVELOPMENTAL BIOLOGY, vol. 290, 2006, pages 81
HWANG ET AL., SCIENCE, vol. 303, 2004, pages 1669
KEHAT I ET AL., JOURNAL OF CLINICAL INVESTIGATION, vol. 108, 2001, pages 407
KISHIDA ET AL., MOL. CELL. BIOL., vol. 24, pages 4487, Retrieved from the Internet <URL:http://www.stanford.edu/-rnusse/ wntwindow.html>
KLUG ET AL., J. CLIN. INVEST., vol. 98, 1996, pages 216
KLUG MG ET AL., JOURNAL OF CLINICAL INVESTIGATION, vol. 98, 1996, pages 216
KOYANAGI M ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, 2005, pages 16838
KOYANAGI M. ET AL.: "Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells", J. BIOL. CHEM., vol. 280, no. 17, 29 April 2005 (2005-04-29), pages 16838 - 16842, XP003018976 *
KÜHL M ET AL., TRENDS IN GENETICS, vol. 16, 2000, pages 279
LAFLAMME ET AL., AM. J. PATHOL., vol. 167, pages 663
LANNACCONE ET AL., DEV. BIOL., vol. 163, 1994, pages 288
LI J ET AL., JOURNAL OF CELL BIOLOGY, vol. 158, 2002, pages 103
LIU ET AL., ANGEW. CHEM. INT. ED. ENGL., vol. 44, 2005, pages 1987
M.V. WILES: "Embryonic Stem Cell Differentiation in vitro", METH. ENZYMOL., vol. 225, 1993, pages 900, XP009097134, DOI: doi:10.1016/0076-6879(93)25057-9
MALTSEV ET AL., MECH. DEV., vol. 44, 1993, pages 41
MALTSEV VA ET AL., CIRCULATION RESEARCH, vol. 75, 1994, pages 233
MALTSEV VA ET AL., MECHANISM OF DEVELOPMENT, vol. 44, 1993, pages 41
MARTINEZ ET AL., MED. RES. REV., vol. 22, 2002, pages 373
MARVIN MJ ET AL., GENES AND DEVELOPMENT, vol. 15, 2001, pages 316
MATSUI ET AL., CELL, vol. 70, 1992, pages 841
MEIJER L ET AL., TRENDS PHARMACOL. SCI., vol. 25, 2004, pages 471
MENASCHE, ANN. THORAC. SURG., vol. 75, 2003, pages S20
MITALIPOVA ET AL., CLONING, vol. 3, 2001, pages 59
MUNSIE ET AL., CURR. BIOL., vol. 10, 2000, pages 989
MURRY ET AL., COLD SPRING HARB. SYMP. QUANT. BIOL., vol. 67, 2002, pages 519
NAITO A.T. ET AL.: "Phosphatidylinositol 3-Kinase-Akt pathway plays as critical role in early cardiomyogenesis by regulating canonical Wnt signaling", CIRC. RES., vol. 97, no. 2, 22 July 2005 (2005-07-22), pages 144 - 151, XP003018975 *
NAITO AT ET AL., CIRCULATION RESEARCH, vol. 97, 2005, pages 144
NAITO AT ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 103, 2006, pages 19812
NAKAMURA T ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 100, 2003, pages 5834
NUSSE R, CELL RESEARCH, vol. 15, 2005, pages 28
PAIN ET AL., DEVELOPMENT, vol. 122, 1996, pages 2339
PANDUR P ET AL., NATURE, vol. 418, 2002, pages 636
PETITTE ET AL., MECH. DEV., vol. 121, 2004, pages 1159
PROC. NATL. ACAD. SCI. USA, vol. 92, 1996, pages 7844
REFFELMANN ET AL., HEART FAIL. REV., vol. 8, 2003, pages 201
REUBINOFF ET AL., NAT. BIOTECH., vol. 18, 2000, pages 399
SACHINIDIS ET AL., CARDIOVASCULAR RESEARCH, vol. 58, 2003, pages 278
SAMBROOK; RUSSELL: "Molecular Cloning: A Laboratory Manual, Third Edition", 2001, COLD SPRING HARBOR LABORATORY PRESS
SASAKI ET AL., STEM CELLS., vol. 23, 2005, pages 1304
SAUER H ET AL., FEBS LETTERS, vol. 476, 2000, pages 218
SCHNEIDER VA; MERCOLA M, GENES AND DEVELOPMENT, vol. 15, 2001, pages 304
See also references of EP2014766A4
SHAMBLOTT ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 13726
SHAMBLOTT MJ ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 95, 1998, pages 13726
SHIM ET AL., BIOL. REPROD., vol. 57, 1997, pages 1089
SHIMIZU ET AL., CIRC. RES., vol. 90, 2002, pages E40
SOONPAA MH ET AL., SCIENCE, vol. 264, 1994, pages 98
SUEMORI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 345, 2006, pages 926
SUEMORI ET AL., DEV. DYN., vol. 222, 2001, pages 273
TADA ET AL., CURR. BIOL., vol. 11, 2001, pages 1553
TAKAHASHI T ET AL., CIRCULATION, vol. 107, 2003, pages 1912
TERAMI H ET AL., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATION, vol. 325, 2004, pages 968
TERAMI H. ET AL.: "Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 325, no. 3, 17 December 2004 (2004-12-17), pages 968 - 975, XP004635519 *
THOMSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7844
THOMSON ET AL., SCIENCE, vol. 282, 1998, pages 114
THOMSON JA ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 92, 1995, pages 7844
THOMSON JA ET AL., SCIENCE, vol. 282, 1998, pages 1145
TSENG A.-S. ET AL.: "The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes", CHEM. BIOL., vol. 13, no. 9, September 2006 (2006-09-01), pages 957 - 963, XP005657324 *
VENTURA C ET AL., CIRCULATION RESEARCH, vol. 92, 2003, pages 623
VRANA K ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, pages 11911 - 6
WAKAYAMA ET AL., SCIENCE, vol. 292, 2001, pages 740
WHEELER ET AL., REPROD. FERTIL. DEV., vol. 6, 1994, pages 563
WIDELITZ R, GROWTH FACTORS, vol. 23, 2005, pages 111
WILLERT ET AL., NATURE, vol. 423, 2003, pages 448
WOBUS AM ET AL., JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, vol. 29, 1997, pages 1525
XU C ET AL., CIRCULATION RESEARCH, vol. 91, 2002, pages 501
YAMASHITA JK ET AL., FASEB JOURNAL, vol. 19, 2002, pages 1534
YUASA ET AL., NAT. BIOTECHNOL., vol. 23, 2005, pages 607
YUASA S ET AL., NATURE BIOTECHNOLOGY, vol. 23, 2005, pages 607
YUASA S. ET AL.: "Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells", NAT. BIOTECHNOL., vol. 23, no. 5, May 2005 (2005-05-01), pages 607 - 611, XP002421916 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243899A1 (en) * 2008-04-25 2011-10-06 National University Corporation Chiba University Wnt Signaling Inhibitor Comprising Insulin-Like Growth Factor-Binding Protein
WO2010007031A3 (en) * 2008-07-14 2010-03-11 Novartis Ag Methods for improving cardiac differentiation of human embryonic stem cells
WO2010007031A2 (en) * 2008-07-14 2010-01-21 Novartis Ag Methods for improving cardiac differentiation of human embryonic stem cells
WO2011071118A1 (ja) * 2009-12-09 2011-06-16 国立大学法人京都大学 ニトロビンを含む多能性幹細胞の心筋細胞への分化促進剤
JP2013540424A (ja) * 2010-07-29 2013-11-07 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 幹細胞の運命を調節するためのグリピカン4活性の制御及びその使用
JP5930205B2 (ja) * 2010-08-26 2016-06-08 国立大学法人京都大学 多能性幹細胞の心筋分化促進剤
WO2012133945A1 (ja) 2011-03-30 2012-10-04 学校法人東京女子医科大学 胚性幹細胞から心筋シートを製造する方法
JPWO2013111875A1 (ja) * 2012-01-27 2015-05-11 国立大学法人京都大学 多能性幹細胞の心筋分化誘導法
WO2013137491A1 (ja) 2012-03-15 2013-09-19 国立大学法人京都大学 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
WO2014192909A1 (ja) 2013-05-31 2014-12-04 iHeart Japan株式会社 ハイドロゲルを組み込んだ積層化細胞シート
WO2015098962A1 (ja) 2013-12-25 2015-07-02 東亞合成株式会社 多能性幹細胞から内胚葉系細胞への分化誘導方法
US10100284B2 (en) 2013-12-25 2018-10-16 Toagosei Co. Ltd. Method for inducing differentiation of pluripotent stem cells into endodermal cells
WO2016035816A1 (ja) * 2014-09-02 2016-03-10 国立大学法人東京大学 多能性幹細胞から心筋細胞を分化誘導する方法、並びに該方法に好適な培地添加剤、分化誘導調節剤、培地、培地作製用キット、及び多能性幹細胞から心筋細胞を分化誘導するためのキット
JP2016049099A (ja) * 2014-09-02 2016-04-11 国立大学法人 東京大学 多能性幹細胞から心筋細胞を分化誘導する方法、並びに該方法に好適な培地添加剤、分化誘導調節剤、培地、培地作製用キット、及び多能性幹細胞から心筋細胞を分化誘導するためのキット
US11359180B2 (en) 2015-04-28 2022-06-14 Toagosei Co., Ltd. Method for producing myocardial cells using synthetic peptide
US10421944B2 (en) 2015-09-29 2019-09-24 Toagosei Co. Ltd. Method for producing neural stem cells using synthetic peptide
WO2018062269A1 (ja) * 2016-09-30 2018-04-05 京都府公立大学法人 体細胞を製造する方法、体細胞、及び組成物
WO2019189554A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 心筋細胞成熟促進剤
WO2019189545A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 細胞の製造方法
WO2019189553A1 (ja) 2018-03-30 2019-10-03 国立大学法人京都大学 複素環化合物
WO2020032185A1 (ja) 2018-08-10 2020-02-13 国立大学法人京都大学 カチオン性脂質を用いた心筋細胞へのトランスフェクション方法
WO2021241658A1 (ja) 2020-05-26 2021-12-02 株式会社ヘリオス 低免疫原性細胞

Also Published As

Publication number Publication date
CA2650685C (en) 2014-02-04
EP2014766A4 (en) 2009-12-02
CA2650685A1 (en) 2007-11-08
US20090325288A1 (en) 2009-12-31
US8293529B2 (en) 2012-10-23
EP2014766A1 (en) 2009-01-14
EP2457994A1 (en) 2012-05-30
IL194970A (en) 2012-05-31
JPWO2007126077A1 (ja) 2009-09-10
RU2433174C2 (ru) 2011-11-10
AU2007244226B2 (en) 2012-09-20
KR20090009267A (ko) 2009-01-22
BRPI0710949A2 (pt) 2012-03-06
RU2008146991A (ru) 2010-06-10
KR101234544B1 (ko) 2013-03-07
KR20120139856A (ko) 2012-12-27
KR101346047B1 (ko) 2013-12-31
AU2007244226A1 (en) 2007-11-08
IL194970A0 (en) 2011-08-01
JP5149791B2 (ja) 2013-02-20
CN101426902A (zh) 2009-05-06
CN101426902B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5149791B2 (ja) 多能性幹細胞から心筋細胞を分化誘導する方法
JP4684108B2 (ja) 幹細胞から心筋細胞を分化誘導する方法
Kania et al. Somatic Stem Cell Marker Prominin‐1/CD133 Is Expressed in Embryonic Stem Cell–Derived Progenitors
US20160194608A1 (en) Methods for Inducing Cardiomyogenesis
WO2008054819A2 (en) Cardiovascular stem cells, methods for stem cell isolation, and uses thereof
JP2010517578A (ja) Islet1+系統に入るように細胞を誘導する方法およびそれを拡大する方法
WO2009092005A2 (en) Methods of generating cardiomyocytes and cardiac progenitors and compositions
JP5174019B2 (ja) G−csfを用いた心筋細胞への分化誘導方法
WO2011153236A1 (en) Purified compositions of cardiovascular progenitor cells
Salehi et al. Application of hanging drop culture for retinal precursor-like cells differentiation of human adipose-derived stem cells using small molecules
US20110003327A1 (en) Methods for production of atrial progenitors and their differentiation into smooth muscle cells and cardiomyocytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008513304

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007244226

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200780014607.3

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007742677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2650685

Country of ref document: CA

Ref document number: 12298565

Country of ref document: US

Ref document number: 2007742677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 194970

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007244226

Country of ref document: AU

Date of ref document: 20070427

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087029035

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008146991

Country of ref document: RU

Ref document number: 6526/CHENP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0710949

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081028

WWE Wipo information: entry into national phase

Ref document number: 1020127032143

Country of ref document: KR