WO2007125878A1 - アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品 - Google Patents

アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品 Download PDF

Info

Publication number
WO2007125878A1
WO2007125878A1 PCT/JP2007/058770 JP2007058770W WO2007125878A1 WO 2007125878 A1 WO2007125878 A1 WO 2007125878A1 JP 2007058770 W JP2007058770 W JP 2007058770W WO 2007125878 A1 WO2007125878 A1 WO 2007125878A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
silicon carbide
base plate
composite
power module
Prior art date
Application number
PCT/JP2007/058770
Other languages
English (en)
French (fr)
Inventor
Hideki Hirotsuru
Goh Iwamoto
Hideo Tsukamoto
Satoshi Higuma
Nobuyuki Hashimoto
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to CN2007800140433A priority Critical patent/CN101427367B/zh
Priority to US12/298,598 priority patent/US7993728B2/en
Priority to JP2008513199A priority patent/JP4996600B2/ja
Priority to EP07742205.3A priority patent/EP2012354B1/en
Publication of WO2007125878A1 publication Critical patent/WO2007125878A1/ja
Priority to KR1020087020448A priority patent/KR101344152B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24496Foamed or cellular component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/24999Inorganic

Definitions

  • the present invention relates to an aluminum silicon carbide composite suitable as a power module base plate and a heat dissipation component using the same.
  • a circuit board in which a copper or aluminum metal circuit is formed on the surface of a ceramic substrate such as an aluminum nitride substrate or a silicon nitride substrate having high insulation and high thermal conductivity is used as a circuit board for a power module. It has been.
  • a typical heat dissipation structure of a conventional circuit board is formed by soldering a base plate via a metal plate, for example, a copper plate, on the back surface (heat dissipation surface) of the circuit board.
  • a metal plate for example, a copper plate
  • heat dissipation surface back surface
  • Patent Document 1 Japanese Patent Publication No. 3-509860.
  • the shape and warpage of the base plate which is often used while being joined to a heat radiating fin, are also important characteristics.
  • it is generally applied with high thermal conductivity heat radiating grease and screwed to a heat radiating fin or heat radiating unit using holes provided in the peripheral edge of the base plate.
  • high thermal conductivity heat radiating grease and screwed to a heat radiating fin or heat radiating unit using holes provided in the peripheral edge of the base plate.
  • the heat transfer will be significantly reduced.
  • the heat dissipation of the entire module composed of ceramic circuit boards, base plates, heat dissipation fins, etc. will be significantly reduced. There was a problem.
  • a base plate with a convex warp is used in advance.
  • This warpage is usually obtained by using a jig having a predetermined shape and applying pressure to the base plate to deform it under heating.
  • the warpage obtained by this method has a problem that when the surface of the base plate has waviness, the shape is not constant and the quality is not stable.
  • an aluminum layer composed of a metal having aluminum as a main component is impregnated into a flat silicon carbide porous body that solves the above-described problems, and both main surfaces are made of a metal having aluminum as a main component.
  • the base plate manufactured using the above method has a large thickness of the surface aluminum alloy layer after machining, which increases the coefficient of thermal expansion of the base plate itself, and the power module assembly.
  • soldering to the ceramic circuit board at this time there was a case where a dent was generated on the heat radiation surface corresponding to the back surface of the ceramic circuit board.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an aluminum silicon carbide based composite suitable as a base plate for power module. Means for solving the problem
  • the present inventors have included a flat silicon carbide porous body containing a metal containing aluminum as a main component (hereinafter referred to as an aluminum alloy).
  • an aluminum silicon carbide based composite that has been immersed, aluminum layers made of an aluminum alloy are disposed on both main surfaces to provide plating properties and control the in-plane thickness difference of the planar silicon carbide based porous material.
  • the present invention was completed with the knowledge that the shape of warpage can be controlled by optimizing the laminating method during impregnation and controlling the aluminum layer thickness and the variation of both main surfaces.
  • the tightening torque in the surface direction is 1 to 20 Nm. It is composed of an aluminum silicon carbide composite that is sandwiched between release plates and laminated and impregnated with an aluminum alloy,
  • Both main surfaces have an aluminum layer that also has an aluminum alloy force, the average thickness of the aluminum layer is 10 to 150 ⁇ m, and the difference between the maximum value and the minimum value of the in-plane thickness of the aluminum layer is 80 ⁇ m or less.
  • the difference in the average thickness of the aluminum layers on both main surfaces is 50 ⁇ m or less, and the shape of the flat plate-like silicon carbide porous body is rectangular, or the outer peripheral portion of the portion surrounding the hole is added to the rectangle
  • This is a base plate for a power module, characterized in that it is shaped.
  • the present invention provides a base plate for a power module, wherein both the main surface and the periphery and the outer peripheral portion of the mounting hole also have an aluminum alloy layer or a composite force of ceramic fiber and aluminum alloy.
  • the present invention is to form a warp by subjecting the aluminum-silicon carbide composite to a stress of lOPa or more and heat treatment at a temperature of 450 ° C to 550 ° C for 30 seconds or more.
  • the warp force S is a base plate for a power module characterized by having a depth of 0 to 200 ⁇ m per 10 cm length and a recess depth of 50 ⁇ m or less, with a thermal conductivity of 180 WZmK or more.
  • a base plate for a power module characterized by a thermal expansion coefficient at a temperature of 150 ° C of 9 X 10 _6 ZK or less, and is naturally cooled at room temperature after being held at a temperature of 350 ° C for 10 minutes
  • a base plate for a power module characterized by a change force of the amount of warpage after 10 heat cycles, which is 30 ⁇ m or less per 10 cm length.
  • the aluminum silicon carbide composite is produced by the high pressure impregnation method.
  • the power module base plate is formed by applying Ni plating to the power module base plate to form a 1-20 m thick adhesive film and bonding a ceramic substrate for semiconductor mounting. It is a heat dissipation component.
  • the aluminum-silicon carbide based composite of the present invention has characteristics of low thermal expansion and high thermal conductivity.
  • the base of the power module that mounts the semiconductor elements that require high reliability is particularly important. It is suitable as a plate.
  • FIG. 1 is a structural diagram of an aluminum silicon carbide composite for base plate showing an embodiment of the present invention.
  • FIG. 2 is a structural diagram of an aluminum silicon carbide based composite for base plate showing one embodiment of the present invention.
  • FIG. 3 is a structural diagram of an aluminum silicon carbide composite for base plate showing one embodiment of the present invention.
  • FIG. 4 is a structural diagram of an aluminum silicon carbide based composite for base plate showing an embodiment of the present invention.
  • FIG. 5 is a structural diagram of an aluminum silicon carbide based composite for base plate showing an embodiment of the present invention.
  • FIG. 6 shows the result of warpage shape measurement by the contour shape measuring machine of Example 1.
  • the methods for producing metal-ceramic composites can be broadly divided into two types: impregnation and powder metallurgy.
  • the powder metallurgy method has not been sufficient in terms of characteristics such as thermal conductivity, and what is actually commercialized is the impregnation method.
  • impregnation methods There are various types of impregnation methods, and there are a method performed under normal pressure and a method performed under high pressure (high pressure impregnation method).
  • the high pressure impregnation method includes a melt forging method and a die casting method.
  • a method suitable for the present invention is a high-pressure impregnation method in which impregnation is performed under high pressure, and either a molten metal forging method or a die casting method can be used, but a molten metal forging method is more preferable.
  • the molten metal forging method in the high-pressure impregnation method is a method in which a porous ceramic body (hereinafter referred to as a preform) is loaded into a high-pressure vessel and impregnated with a molten aluminum alloy at a high temperature and high pressure to obtain a composite. is there.
  • a raw material silicon carbide powder (adding a binder such as silica, for example, if necessary) is molded and fired to prepare a preform.
  • the molded or fired product in order to form a uniform aluminum layer having a predetermined thickness, is subjected to surface covering so that the thickness variation in the surface of the preform is 100 ⁇ m or less, preferably 30 m or less. It is preferable to do. If the thickness variation in the surface of the preform exceeds 100 m, the variation in the thickness of the surface aluminum layer of the resulting aluminum silicon carbide composite is undesirably large.
  • the preform is sandwiched and laminated by a release plate coated with a release agent to form one block.
  • the preform is sandwiched and laminated so that the tightening torque in the surface direction is 1 to 20 Nm, preferably 2 to LONm.
  • the lamination method is not particularly limited. For example, after the preform is sandwiched and laminated by a stainless release plate coated with a release agent, an iron plate is placed on both sides and connected with bolts, and then tightened.
  • One method is to use a single block by tightening with a torque. Regarding the appropriate tightening torque in the surface direction, the force varies depending on the strength of the preform used.
  • Tightening torque If the force is less than SlNm, the thickness of the surface aluminum layer of the resulting aluminum-silicon carbide composite increases or the difference in thickness is large. Sometimes it becomes too much. On the other hand, when the tightening torque exceeds 20 Nm, the surface aluminum layer of the resulting aluminum silicon carbide based composite becomes too thin locally, and the aluminum aluminum silicon carbide composite is partially partially applied during the subsequent surface treatment such as plating pretreatment. May be exposed, resulting in problems such as unplated plating or reduced plating adhesion.
  • a molded body containing% is sandwiched between and laminated with a release plate, and then iron plates are arranged on both sides, connected with bolts, and tightened with a predetermined tightening torque to form one block.
  • Preliminary placement of the molded body has the advantage that an aluminum layer having a predetermined thickness can be formed and the thickness of the surface aluminum layer can be controlled. If the fiber content of alumina or silica as a main component in the molded body is less than 5% by mass, it may be difficult to control the thickness of the aluminum layers on both main surfaces after impregnation. On the other hand, if the fiber content exceeds 40% by mass, the preform may break due to the pressure during impregnation.
  • one or more blocks are placed in a high-pressure vessel, and the molten aluminum alloy is poured as quickly as possible to prevent the temperature of the block from decreasing.
  • a pressure of preferably 30 MPa or more By supplying hot water and pressurizing at a pressure of preferably 30 MPa or more and impregnating the aluminum alloy into the voids of the preform, an aluminum silicon carbide composite having aluminum layers on both main surfaces can be obtained.
  • annealing of the impregnated product may be performed for the purpose of removing distortion during the impregnation.
  • the aluminum alloy in the aluminum-silicon carbide composite of the present invention preferably has a melting point as low as possible in order to sufficiently penetrate into the voids of the preform when impregnated.
  • Such aluminum alloy, aluminum alloy and the like for example silicon containing 5-25 mass 0/0.
  • metal components other than aluminum, silicon, and magnesium in aluminum alloys especially within the range where the characteristics do not change extremely. For example, copper or the like may be included.
  • Annealing treatment performed for the purpose of strain removal when the preform is impregnated with an aluminum alloy is preferably performed at 400 ° C to 550 ° C, particularly preferably at 500 to 550 ° C for 10 minutes or more. . If the annealing temperature is less than 400 ° C, the distortion inside the composite may not be sufficiently released, and the warpage may change greatly in the heat treatment step after machining. On the other hand, if the annealing temperature exceeds 550 ° C, the aluminum alloy used for impregnation may melt.
  • the annealing time is less than 10 minutes, even if the annealing temperature is 400 ° C to 550 ° C, the internal distortion of the composite will not be released sufficiently, and in the heat treatment process to remove the processing distortion after machining In some cases, the warpage changes greatly.
  • the method for producing a porous silicon carbide molded body (hereinafter referred to as SiC preform) according to the present invention can be produced by a known method without any particular limitation.
  • SiC preform a porous silicon carbide molded body
  • it can be obtained by adding silica, alumina, or the like as a binder to silicon carbide powder, mixing, molding, and firing at 800 ° C or higher.
  • Aluminum Higher silicon carbide (hereinafter referred to as SiC) content in the silicon carbide-based composite is preferable because the thermal conductivity is high and the thermal expansion coefficient is small, but if the content is too high, aluminum The impregnation operation of the alloy is not easy. Practically, it is preferable to contain 40% by mass or more of coarse SiC particles of 40 ⁇ m or more and the SiC preform has a relative density in the range of 55 to 75%. Also, if the strength of the SiC preform is 3MPa or more in bending strength, there is no need to worry about cracking during handling or impregnation.
  • silicon carbide coarse powder having a particle size of 40 m or more is 40 to 80% by mass, preferably 50 to 70% by mass, and silicon carbide fine powder having a particle size of 15 m or less is 60%.
  • a mixed powder in which ⁇ 20 mass%, preferably 50-30 mass% is mixed is desired.
  • the firing temperature is 800 ° C or higher, a preform having a bending strength of 3 MPa or higher can be obtained regardless of the firing atmosphere.
  • firing at a temperature exceeding 1100 ° C promotes the oxidation of silicon carbide, which may reduce the thermal conductivity of the aluminum-silicon carbide composite. Therefore, in an oxidizing atmosphere, it is desirable to bake at a temperature of 800 to: L 100 ° C, preferably 900 to 1050 ° C.
  • the firing time is appropriately determined according to the conditions such as the size of the SiC preform, the amount charged into the firing furnace, and the firing atmosphere.
  • the SiC preform according to the present invention is dried one by one, or is overlapped and dried using a spacer such as carbon between the SiC preforms.
  • a spacer such as carbon between the SiC preforms.
  • the shape of the SiC preform is a rectangular shape (Fig. 1 (a)) or a shape in which the outer periphery of the portion surrounding the hole is added to a rectangle (Fig. 2 (e) and Fig. 3 (g)).
  • the flat plate is preferred.
  • the aluminum silicon carbide composite of the present invention In order to use the aluminum silicon carbide composite of the present invention as a power module base plate or the like, it is necessary to form mounting holes and the like on the outer peripheral shape and the outer peripheral portion. In this case, since the aluminum silicon carbide based composite requires a lot of grinding using a very hard tool such as diamond, there is a problem that the cost becomes high. Therefore, it is preferable that the machined part is previously made of an aluminum alloy or a complex of easily machinable material made of ceramic fibers, ceramic particles and aluminum alloy so that it can be easily machined.
  • the area of the SiC preform in the base plate surface is not particularly limited as long as it satisfies the portion to be joined to the ceramic circuit board, but is preferably 70% or more, particularly 85% or more of the area of the base plate. .
  • an aluminum silicon carbide composite as the part to be joined to the ceramic circuit board, the difference in thermal expansion between the two members can be suppressed, and the reliability of the joint can be improved.
  • the area of the SiC preform is less than 70% of the area of the base plate, the resulting base The thermal expansion coefficient of the steel plate itself may become too large, and the warpage shape and the reliability of the joint may be reduced.
  • the aluminum silicon carbide based composite of the present invention can be easily mechanically covered with an apparatus such as an NC lathe or a machining center at the outer periphery and the hole.
  • the outer peripheral portion, or the outer peripheral portion and the hole portion are formed on the aluminum silicon carbide using a water jet processing machine, an electric discharge processing machine, or the like. It can also be processed so that the quality complex is exposed (Fig. 4). Further, after producing an aluminum-silicon carbide composite using a SiC preform having a larger area than the obtained base plate shape, the outer peripheral portion, hole portion, etc. of the base plate can be formed by the above processing method. ( Figure 5).
  • the average thickness of the aluminum layer made of an aluminum alloy cover provided on the surface of the aluminum carbide composite is 10 to 150 ⁇ m, preferably 30 to LOO ⁇ m.
  • the thickness of the aluminum layer can be adjusted to a predetermined thickness by grinding the surface of the aluminum-silicon carbide composite.
  • the aluminum layer is necessary to ensure plating adhesion during the plating process. If the average thickness is less than 10 m, the aluminum-silicon carbide composite is partially exposed during the subsequent surface treatment such as pre-plating treatment, plating may not adhere to the part, or plating adhesion may be reduced. Problems may occur. On the other hand, when the average thickness exceeds 150 m, the thermal expansion coefficient of the obtained base plate itself becomes too large, and the reliability of the joint may be lowered. Furthermore, when the average thickness exceeds 150 m, the difference in the thickness of the aluminum layer may increase.
  • the difference between the maximum value and the minimum value of the thickness of the surface aluminum layer is 80 ⁇ m or less, preferably 60 ⁇ m or less. If the difference between the maximum and minimum thicknesses of the surface aluminum layer exceeds 80 m, undulations and depressions are generated due to the difference in thickness of the surface aluminum layer.
  • a gap will be created between the base plate and the heat dissipation fin in the subsequent module thread winding process, even if high thermal conductivity heat dissipation grease is used. Even if applied, heat transferability As a result, the heat dissipation of a module composed of a ceramic circuit board, a base plate, a heat radiating fin, etc. may be significantly reduced.
  • the difference in the average thickness of the aluminum layers on both main surfaces is 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the base plate for a power module of the present invention has a structure in which an aluminum layer is provided on both main surfaces of an aluminum silicon carbide composite, and the thermal expansion coefficient is different between the aluminum silicon carbide composite and the aluminum layer. Therefore, if the difference in the average thickness of the aluminum layers on both main surfaces exceeds 50 m, there is a problem that the warpage changes when a thermal cycle is added in the subsequent module assembly process.
  • the shape-processed aluminum silicon carbide based composite is subjected to a temperature of 450 to 550 while applying a stress of lOPa or more so as to have a predetermined warped shape.
  • C preferably 500-550.
  • Heat treatment with C for 30 min or more causes the aluminum silicon carbide composite to creep and impart warpage.
  • the aluminum silicon carbide composite after the warping treatment is annealed at a temperature of 300 ° C to 400 ° C as necessary to remove the residual stress generated during warping.
  • the base plate for a power module of the present invention has an extremely thin and uniform control of the thickness of the aluminum layer on the surface, so that the warped shape is close to an ideal spherical shape with few swells and dents! ).
  • the amount of warpage of the base plate for a power module of the present invention is 0 to 200 ⁇ m, preferably 50 to 150 ⁇ m per 10 cm length.
  • a gap will be created between the base plate and the heat dissipation fin in the subsequent module assembly process, even if high thermal conductivity heat dissipation grease is applied.
  • the heat transfer performance of the module composed of the ceramic circuit board, the base plate, the heat radiating fins and the like may be significantly reduced. If the warpage exceeds 200 m, cracks may occur on the base plate or the ceramic circuit board when screws are attached to the radiating fins.
  • the heat radiation surface of the base plate can be formed into a shape with few depressions and a depression depth of 50 m or less. it can. If the dent depth of the heat dissipation surface exceeds 50 m, the base plate will be used in the subsequent module mounting process when used as a power module base plate.
  • a module is made up of ceramic circuit boards, base plates, heat sink fins, etc. as a result of a gap between the plate and the heat sink fins, even if high heat conductive heat dissipation grease is applied. There is a case where the heat dissipation of the remarkably deteriorates.
  • the base plate for a power module of the present invention was subjected to a heat cycle test (which is held at a temperature of 350 ° C for 10 minutes and then naturally cooled at room temperature), which is a measure of the reliability of the power module. Excellent shape stability.
  • the amount of warpage change after 10 heat cycle tests under the above conditions is 30 / z m or less per 10 cm length. If the amount of change in warpage exceeds 30 ⁇ m per Ocm, a gap will be created between the base plate and the heat dissipation fin during the power module assembly process, and even if high thermal conductivity heat dissipation grease is applied, heat transfer performance will be increased. May decrease significantly.
  • the aluminum silicon carbide composite according to the present invention has good heat dissipation characteristics and stress relaxation, it is suitable, for example, as a base plate interposed between a ceramic circuit board and heat dissipation components such as heat dissipation fins. It is.
  • the aluminum silicon carbide composite according to the present invention is used as a base plate for a power module, it is generally used by being joined to a ceramic circuit board by soldering. For this reason, it is necessary to apply Ni plating to the surface of the base plate.
  • the plating treatment method is not particularly limited, and any of an electroless plating process and an electric plating process may be used.
  • the thickness of the Ni plating is 1 to 20 ⁇ m, preferably 3 to 12 ⁇ m. If the plating thickness is less than 1 ⁇ m, plating pinholes are partially generated, solder voids (voids) are generated during soldering, and heat dissipation characteristics such as circuit board strength may be degraded.
  • the peeling off may occur due to the difference in thermal expansion between the Ni plating film and the surface aluminum alloy.
  • the purity of the Ni plating film phosphorus, boron, etc., which are not particularly limited, can be contained as long as they do not hinder solder wettability.
  • the aluminum silicon carbide based composite of the present invention preferably has a thermal conductivity of 180 WZmK or more and a thermal expansion coefficient of 150 X C at 9 X 10 -6 ZK or less.
  • it has high thermal conductivity, and the strength is as low as that of semiconductor parts and ceramic circuit boards. Therefore, heat dissipating parts using them and power modules using them have excellent heat dissipation characteristics.
  • it is difficult to deform even when subjected to temperature changes. As a result, high reliability is obtained. There is a feature.
  • Silicon carbide powder A (manufactured by Taiyo Random: NG—150, average particle size: 100 m) 100 g
  • silicon carbide powder B (manufactured by Taiyo Random: NG—220, average particle size: 60 / ⁇ ⁇ ) 10 ( ⁇
  • Silicon carbide powder C (manufactured by Yakushima Electric: GC—1000F, average particle size: m) 100 g
  • silica gel Nasan Chemical: Snowtex 30 g are weighed and stirred for 30 minutes. After mixing, it was press-molded at a pressure lOMPa into a flat plate having dimensions of 190 mm ⁇ 140 mm ⁇ 5.5 mm.
  • the obtained molded body was dried at a temperature of 120 ° C for 2 hours and then calcined in the atmosphere at a temperature of 950 ° C for 2 hours to obtain a SiC preform having a relative density of 65%.
  • the obtained SiC preform was surface-coated to a thickness of 5. Omm using a diamond grinder with a flat surface grinder, and the outer dimensions were 183 X 133 mm at the machining center. The outer periphery was processed. The three-point bending strength of the obtained SiC preform was measured and found to be 5 MPa.
  • Comparative Example 1 a SiC preform was produced in the same manner as in Example 1 except that the molded body size was 190 mm X 140 mm X 5. Omm, and only the outer periphery was processed without surface processing.
  • Table 1 shows the thickness measurement results of the processed SiC preforms obtained in Example 1 and Comparative Example 1. The thickness measurement point was measured at the center of the preform divided into 9 parts.
  • Thickness difference difference between maximum and minimum values
  • Example 1 The SiC preforms obtained in Example 1 and Comparative Example 1 were sandwiched between 21 Omm XI 60mm X O. 8mm stainless steel plates with carbon coating on both sides, and 20 sheets were laminated. A 12mm-thick iron plate was placed on top of each other, connected with six M10 bolts, and tightened with a torque wrench so that the tightening torque in the surface direction was 3Nm. Next, the integrated block was preheated to 600 ° C in an electric furnace, and then placed in a pre-heated press mold with an inner diameter of 400 mm, 12 mass% of silicon and 0.8 mass of magnesium.
  • a molten aluminum alloy containing 10% was poured and pressurized with lOOMPa pressure for 20 minutes to impregnate the silicon carbide porous body with the aluminum alloy. After cooling to room temperature, cut along the shape of the release plate with a wet band saw, peel off the sandwiched stainless steel plate, and then anneal for 3 hours at a temperature of 530 ° C to remove strain during impregnation. And an aluminum silicon carbide composite was obtained.
  • Edge of the obtained aluminum-silicon carbide composite 8 mm diameter through hole, 7 mm diameter through hole, 4 force ⁇ 10-4 mm countersink, and the outer aluminum layer part Carved with an NC lathe to open 187mm X 137mm X 5mm.
  • an uneven mold having a spherical surface made of carbon and having a curvature radius of 15000 mm was prepared.
  • This concavo-convex mold was mounted on a heat press and heated to a mold surface temperature of 510 ° C.
  • the composite was placed between the concave and convex molds and pressed at 40 KPa.
  • the thermocouple is brought into contact with the side surface of the complex to measure the temperature. It was.
  • the pressure was released and the product was naturally cooled to 50 ° C.
  • the obtained composite was annealed in an electric furnace at a temperature of 350 ° C.
  • the obtained aluminum silicon carbide composite was cut along the diagonals of each sample, and the thickness of the aluminum layer on one main surface exposed by the cutting was measured at 20 points equally spaced from each other. The average thickness was calculated.
  • a specimen for measuring thermal expansion coefficient (diameter 3 mm, length 10 mm) and a specimen for measuring thermal conductivity (diameter 11 mm, thickness 3 mm) were prepared by grinding. Using each specimen, the coefficient of thermal expansion at a temperature of 150 ° C was measured with a thermal dilatometer (Seiko Denshi Kogyo; TMA300), and the thermal conductivity at 25 ° C was measured with the laser flash method (manufactured by Rigaku Corporation; LF) / TCM -8510B).
  • the warpage shape As for the warpage shape, the amount of warpage per 10 cm length and the depth of the depression were measured using a contour shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd .; contour record 1600D-22). The results obtained are shown in Table 2.
  • Figure 6 shows the results of measuring the warpage shape of Example 1 using a contour shape measuring machine.
  • Example 1 Using the plate product of Example 1, the plate product was placed on a hot plate heated to a temperature of 350 ° C. After the temperature reached 350 ° C, the product was held for 10 minutes and then returned to room temperature. A heat cycle test with natural cooling was performed 10 times. The change in the amount of warpage per 1 Ocm after the heat cycle test of Example 1 was 15 m.
  • Example 2 Silicon carbide powder A (manufactured by Taiheiyo Random: NG—150, average particle size: 100 m) 150 g, silicon carbide powder D (manufactured by Taiheiyo Random: NG-500, average particle size: 30 m) 50 g, silicon carbide powder
  • the relative density is the same as in Example 1 except that 100 g of C (manufactured by Yakushima Electric Works: GC—1000F, average particle size: m) and 30 g of silica sol (Nissan Chemical Co., Ltd .: Snowtex) were used as raw materials. 66% SiC preform was obtained.
  • the obtained SiC preform was surface-cured to a thickness of 4.9 mm using a diamond grinder with a flat surface grinder, and the outer dimensions were 183 X 133 mm at the machining center and the shape shown in FIG. The outer periphery was cut like this.
  • Table 3 shows the thickness measurement results of the SiC preform after processing.
  • Thickness difference difference between maximum and minimum values
  • the obtained aluminum-silicon carbide composite was formed by drilling a 7mm diameter through hole at the 8 peripheral edges and a ⁇ 10-4mm countersink at the 4 peripheral areas, and 187 X 137mm at the outer periphery. (Corner is R7 mm) (see Fig. 2). Next, a warping process was performed in the same manner as in the example. Next, it was cleaned by blasting with alumina pellets under conditions of pressure 0.4 MPa and transport speed 1. OmZmin. Thereafter, electroless Ni—P and Ni—B plating was performed to form a 8 m thick (Ni—P: 6 m + Ni—B: 2 m) plating layer on the composite surface. The obtained composite was evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • a SiC preform was produced in the same manner as in Example 2 except that the SiC preform was fired in the atmosphere at a temperature of 1100 ° C for 2 hours.
  • the three-point bending strength of the obtained preform was 12 MPa.
  • Table 5 shows the thickness measurement results of the SiC preform after processing.
  • the tightening torque was changed to lONm, an aluminum silicon carbide composite was produced by the same method as in Example 1, the same plating treatment as in Example 1 was performed, and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 6.
  • Thickness difference difference between maximum and minimum values [0061] [Table 6]
  • An aluminum silicon carbide composite was prepared in the same manner as in Example 1 except that the SiC preform shape was 190 ⁇ 140 ⁇ 5.3 mm.
  • the obtained composite was processed into a water jet processing machine trowel 187X137mm (corner part R7mm) with an 8mm diameter through-hole and outer peripheral part at 8 peripheral edges (see Fig. 5).
  • warpage was performed in the same manner as in Example 1 using a concavo-convex mold made of carbon and having a spherical surface with a curvature radius of 12000 mm.
  • Example 1 An aluminum silicon carbide composite was prepared in the same manner as in Example 1 except that the preform shape of Example 1 was changed to 180 X 110 X 5.3 mm (see Fig. 1), and was machined and bonded. Went. The obtained composite was evaluated in the same manner as in Example 1, and the results are shown in Table 9.
  • the aluminum silicon carbide based composite of the present invention has low thermal expansion equivalent to that of semiconductor components and ceramic circuit boards, and a power module using the same has excellent heat dissipation characteristics and is subject to temperature changes. It can also be used as a base plate for power modules equipped with semiconductor elements that are difficult to deform and require high reliability. It should be noted that the entire contents of the specification, claims, drawings and abstract of the Japanese Patent Application No. 2006-122350 filed on April 26, 2006 are cited here, and the specification of the present invention is disclosed. As it is incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

 パワーモジュール用ベース板として好適なアルミニウム-炭化珪素質複合体を提供する。  平板状の炭化珪素質多孔体を面内厚み差が100μm以下になるように成形又は加工した後、面方向の締め付けトルクが1~20Nmとなるように離型板で挟み込んで積層し、アルミニウムを主成分とする金属を含浸させたアルミニウム-炭化珪素質複合体からなり、  両主面にアルミニウムを主成分とする金属からなるアルミニウム層を有し、該アルミニウム層の平均厚みが10~150μmであり、アルミニウム層の面内の厚みの最大値と最小値の差が80μm以下であり、両主面のアルミニウム層の平均厚みの差が50μm以下であり、かつ、上記炭化珪素質多孔体の形状が長方形であるか、又は穴部を取り囲む部分の外周部が長方形に付加された形状であることを特徴とするパワーモジュール用ベース板。

Description

明 細 書
アルミニウム一炭化珪素質複合体及びそれを用いた放熱部品
技術分野
[0001] 本発明は、パワーモジュール用ベース板として好適なアルミニウム 炭化珪素質複 合体及びそれを用いた放熱部品に関する。
背景技術
[0002] 近年、半導体素子の高集積化、小型化に伴い、発熱量は増加の一途をたどってお り、いかに効率よく放熱させるかが課題となっている。そして、高絶縁性'高熱伝導性 を有する例えば窒化アルミニウム基板、窒化珪素基板等のセラミックス基板の表面に 、銅製又はアルミニウム製の金属回路が形成されてなる回路基板が、パワーモジユー ル用回路基板として使用されて 、る。
[0003] 従来の回路基板の典型的な放熱構造は、回路基板の裏面 (放熱面)の金属板、例 えば銅板を介してベース板が半田付けされてなるものであり、ベース板としては銅が 一般的であった。し力しながら、この構造においては、半導体装置に熱負荷がかかつ た場合、ベース板と回路基板の熱膨張差に起因するクラックが半田層に発生し、そ の結果放熱が不十分となって半導体素子を誤作動させたり、破損させたりするという 課題があった。
[0004] そこで、熱膨張係数を回路基板のそれに近づけたベース板として、アルミニウム合 金 炭化珪素質複合体が提案されている (特許文献 1)。
特許文献 1:特表平 3— 509860号公報。
[0005] ベース板は、放熱フィンと接合して用いることが多ぐその接合部分の形状や反りも また重要な特性として挙げられる。例えば、ベース板を放熱フィンに接合する場合、 一般に高熱伝導性の放熱グリースを塗布してベース板の周縁部に設けられた穴を利 用して放熱フィンや放熱ユニット等にねじ固定するが、ベース板に微少な凹凸が多く 存在すると、ベース板と放熱フィンとの間に隙間が生じ、高熱伝導性の放熱グリース を塗布しても、熱伝達性が著しく低下する。その結果、セラミックス回路基板、ベース 板、放熱フィン等で構成されるモジュール全体の放熱性が著しく低下してしまうと 、う 課題があった。
[0006] そこで、ベース板と放熱フィンとの間に出来るだけ隙間が出来ないように、予めべ一 ス板に凸型の反りを付けたものを用いることが行われている。この反りは通常、所定の 形状を有する治具を用い、加熱下、ベース板に圧力を掛けて変形させることで得られ る。しかし、この方法によって得られた反りは、ベース板表面にうねりがある場合、形 状が一定でなく品質が安定しないという課題があった。また、反り形状のバラツキや 表面の凹凸により、放熱フィンとの間に大きな隙間が生じるといった課題があった。
[0007] ベース板表面を加工することで反りを付ける方法もあるが、アルミニウム 炭化珪素 質複合体は非常に硬いため、ダイヤモンド等の工具を用い多くの研削が必要となり、 コストが高くなるという課題があった。
[0008] そこで、上記課題を解決するべぐ平板状の炭化珪素質多孔体にアルミニウムを主 成分とする金属を含浸し、両主面にアルミニウムを主成分とする金属からなるアルミ二 ゥム層を設け、放熱面側のアルミニウム合金層を機械加工する方法が提案されてい る。
[0009] し力しながら、上記方法を用いて製造されたベース板は、機械加工後に表面アルミ ニゥム合金層の厚みが厚くなり、そのため、ベース板自体の熱膨張率が大きくなり、 パワーモジュール組み立ての際にセラミックス回路基板と半田付けを行うと、セラミツ タス回路基板の裏面に相当する放熱面に窪みが発生する場合があった。
[0010] 更に、上記方法においては、両主面のアルミニウム合金層の厚みを均一に制御し、 かつ、アルミニウム 炭化珪素質複合体を露出させない様にするため、高度な加工 技術が必要となるという課題があった。
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上記の状況に鑑みてなされたものであり、その目的は、パワーモジユー ル用ベース板として好適なアルミニウム 炭化珪素質複合体を提供することである。 課題を解決するための手段
[0012] 本発明者は、上記の目的を達成するために鋭意検討した結果、平板状の炭化珪 素質多孔体にアルミニウムを主成分とする金属(以下、アルミニウム合金と 、う)を含 浸してなるアルミニウム 炭化珪素質複合体において、両主面にアルミニウム合金か らなるアルミニウム層を配することでめっき性を付与し、平板状の炭化珪素質多孔体 の面内の厚み差を制御するとともに、含浸時の積層方法を適正化して両主面のアル ミニゥム層厚、並びに、そのバラツキを制御することで、反り形状を制御できるとの知 見を得て本発明を完成した。
[0013] 即ち、本発明は、平板状の炭化珪素質多孔体を面内厚み差が 100 m以下にな るように成形又はカ卩ェした後、面方向の締め付けトルクが l〜20Nmとなるように離型 板で挟み込んで積層し、アルミニウム合金を含浸してなるアルミニウム 炭化珪素質 複合体からなり、
両主面にアルミニウム合金力もなるアルミニウム層を有し、該アルミニウム層の平均 厚みが 10〜150 μ mであり、アルミニウム層の面内の厚みの最大値と最小値の差が 80 μ m以下であり、両主面のアルミニウム層の平均厚みの差が 50 μ m以下であり、 かつ、上記平板状の炭化珪素質多孔体の形状が長方形、又は穴部を取り囲む部分 の外周部が長方形に付加された形状であることを特徴とするパワーモジュール用べ ース板である。
[0014] また、本発明は、両主面及び取り付け穴の周囲及び外周部が、アルミニウム合金層 、或いは、セラミックス繊維とアルミニウム合金との複合体力もなることを特徴とするパ ヮーモジュール用ベース板であり、外周部がアルミニウム 炭化珪素質複合体が露 出してなることを特徴とするパワーモジュール用ベース板である。
[0015] 更に、本発明は、アルミニウム—炭化珪素質複合体に lOPa以上の応力を掛けつ つ、温度 450°C〜550°Cで 30秒間以上加熱処理することで、反りを形成してなり、反 り量力 S長さ 10cmあたり 0〜200 μ mであり、かつ、窪み深さが 50 μ m以下であること を特徴とするパワーモジュール用ベース板であり、熱伝導率が 180WZmK以上、並 びに、温度 150°Cの熱膨張係数が 9 X 10_6ZK以下であることを特徴とするパワー モジュール用ベース板であり、かつ、温度 350°Cで 10分間保持した後、室温で自然 冷却するヒートサイクルを 10回施した後の反り量の変化力 長さ 10cmあたり 30 μ m 以下であることを特徴とするパワーモジュール用ベース板である。
[0016] 力!]えて、本発明は、アルミニウム 炭化珪素質複合体が高圧含浸法で製造される ことを特徴とするパワーモジュール用ベース板であり、パワーモジュール用ベース板 に Niめっき処理を施して厚さ 1〜20 mのめつき被膜を形成し、半導体搭載用セラミ ックス基板を接合してなる放熱部品である。
発明の効果
[0017] 本発明のアルミニウム 炭化珪素質複合体は、低熱膨張、並びに高熱伝導という 特性を有する。
また、平板状のアルミニウム—炭化珪素質複合体の両主面を、薄く均一なアルミ- ゥム層とすることで、めっき性を付与すると共に、放熱面となる主面の平面度を著しく 改善することができる。このため、従来の反り付け方法に比べて、セラミックス回路基 板と半田付けを行った後の放熱性が良好となるため、特に高信頼性を要求される半 導体素子を搭載するパワーモジュールのベース板として好適である。
図面の簡単な説明
[0018] [図 1]本発明の一実施の形態を示すベース板用アルミニウム 炭化珪素質複合体の 構造図。
[図 2]本発明の一実施の形態を示すベース板用アルミニウム 炭化珪素質複合体の 構造図。
[図 3]本発明の一実施の形態を示すベース板用アルミニウム 炭化珪素質複合体の 構造図。
[図 4]本発明の一実施の形態を示すベース板用アルミニウム 炭化珪素質複合体の 構造図。
[図 5]本発明の一実施の形態を示すベース板用アルミニウム 炭化珪素質複合体の 構造図。
[図 6]実施例 1の輪郭形状測定機による反り形状測定結果。
符号の説明
[0019] (a) アルミニウム 炭化珪素質複合体
(b) アルミニウム合金
(c) φ 7mmの貫通穴
(d) 表面アルミニウム合金層 (e) アルミニウム 炭化珪素質複合体
(f) φ 10— 4mmの皿穴
(g) アルミニウム 炭化珪素質複合体
(h) M4mmのタップネジ
発明を実施するための最良の形態
[0020] 金属 セラミックス複合体の製法は、大別すると含浸法と粉末冶金法の 2種類があ る。このうち粉末冶金法は熱伝導率等の特性面で十分なものが得られておらず、実 際に商品化されているのは、含浸法によるものである。含浸法にも種々の製法が有り 、常圧で行う方法と、高圧下で行う方法 (高圧含浸法)がある。高圧含浸法には、溶 湯鍛造法とダイキャスト法がある。
[0021] 本発明に好適な方法は、高圧下で含浸を行う高圧含浸法であり、溶湯鍛造法とダ ィキャスト法のどちらも使用できるが、溶湯鍛造法がより好ましい。
高圧含浸法における溶湯鍛造法とは、高圧容器内に、セラミックス多孔体 (以下、 プリフォームという)を装填し、これにアルミニウム合金の溶湯を高温、高圧下で含浸 させて複合体を得る方法である。
[0022] 以下、本発明について、溶湯鍛造法による製法例を説明する。
原料である炭化珪素粉末 (必要に応じて、例えば、シリカ等の結合材を添加する。 ) を、成形、焼成してプリフォームを作製する。本発明においては、所定厚みの均一な アルミニウム層を形成させるために、プリフォームの面内の厚みバラツキが 100 μ m 以下、好ましくは 30 m以下になる様に成形または焼成品を面カ卩ェすることが好まし い。プリフォームの面内の厚みバラツキが 100 mを超えると、得られるアルミニウム 炭化珪素質複合体の表面アルミニウム層の厚みのノ ツキが大きくなり好ましくな い。
[0023] プリフォームは、離型剤を塗布した離型板で挟み積層して一つのブロックとする。こ のプリフォームを積層して一つのブロックとする際に、面方向の締め付けトルクが 1〜 20Nm、好ましくは 2〜: LONmとなるように離型板で挟み込んで積層する。積層方法 は特に限定されないが、例えば、プリフォームを、離型剤を塗布したステンレス製の 離型板で挟み積層した後、両側に鉄製の板を配置してボルトで連結して所定締め付 けトルクで締め付けて一つのブロックとする方法が挙げられる。面方向の適正な締め 付けトルクに関しては、使用するプリフォームの強度により異なる力 締め付けトルク 力 SlNm未満では、得られるアルミニウム 炭化珪素質複合体の表面アルミニウム層 の厚みが厚くなつたり、厚み差が大きくなり過ぎる場合がある。一方、締め付けトルク が 20Nmを超えると、得られるアルミニウム 炭化珪素質複合体の表面アルミニウム 層が局所的に薄く成り過ぎ、その後のめっき前処理等の表面処理時に部分的にアル ミニゥムー炭化珪素質複合体が露出し、その部分にめっき未着が発生したり、めっき 密着性が低下する等の問題が発生する場合がある。
また、プリフォームの両面にアルミナまたはシリカを主成分とする繊維を 5〜40質量
%含有した成形体を、離型板との間に挟み積層した後、両側に鉄製の板を配置して ボルトで連結して所定締め付けトルクで締め付けて一つのブロックとする方法もある。 この成形体を予め配置することにより、所定厚みのアルミニウム層を形成でき、表面ァ ルミ-ゥム層の厚みの制御ができるという利点がある。前記成形体中のアルミナまた はシリカを主成分とする繊維含有率が 5質量%未満では、含浸後に両主面のアルミ -ゥム層の厚み制御が困難となる場合がある。一方、繊維含有率が 40%質量を超え ると、含浸時の圧力によりプリフォームが割れてしまう場合がある。
[0024] 次に、前記ブロックを 500〜750°C程度で予備加熱後、高圧容器内に 1個または 2 個以上配置し、ブロックの温度低下を防ぐために出来るだけ速やかにアルミニウム合 金の溶湯を給湯して好ましくは 30MPa以上の圧力で加圧し、アルミニウム合金をプリ フォームの空隙中に含浸させることで、両主面にアルミニウム層を設けたアルミニウム 炭化珪素質複合体が得られる。なお、含浸時の歪み除去の目的で、含浸品のァ ニール処理を行うこともある。
[0025] 本発明のアルミニウム 炭化珪素質複合体中のアルミニウム合金は、含浸時にプリ フォームの空隙内に十分に浸透するために融点がなるべく低 、ことが好ま 、。この ようなアルミニウム合金として、例えばシリコンを 5〜25質量0 /0含有したアルミニウム合 金が挙げられる。更にマグネシウムを含有させることは、炭化珪素粒子と金属部分と の結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグ ネシゥム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に 制限はなぐ例えば銅等が含まれていてもよい。
[0026] プリフォームへのアルミニウム合金含浸時の歪み除去の目的で行うァニール処理は 、好ましくは 400°C〜550°C、特に好ましくは 500〜550°Cで 10分以上行うことが好 ましい。ァニール温度が 400°C未満であると、複合体内部の歪みが十分に開放され ずに機械加工後の加熱処理工程で反りが大きく変化してしまう場合がある。一方、ァ ニール温度が 550°Cを越えると、含浸で用いたアルミニウム合金が溶融する場合が ある。ァニール時間が 10分未満であると、ァニール温度が 400°C〜550°Cであって も複合体内部の歪みが十分に開放されず、機械加工後の加工歪み除去のための加 熱処理工程で、反りが大きく変化してしまう場合がある。
[0027] 本発明に係る多孔質炭化珪素成形体 (以下、 SiCプリフォームと 、う)の製造方法 に関して特に制限はなぐ公知の方法で製造することが可能である。例えば、炭化珪 素粉末にシリカ或いはアルミナ等を結合材として添加して混合、成形し、 800°C以上 で焼成することによって得ることができる。成形方法についても特に制限は無ぐプレ ス成形、押し出し成形、铸込み成形等を用いることができ、必要に応じて保形用バイ ンダ一の併用が可能である。
[0028] アルミニウム 炭化珪素質複合体の特に重要な特性は、熱伝導率と熱膨張係数で ある。アルミニウム 炭化珪素質複合体中の炭化珪素(以下、 SiCという。)含有率の 高い方が、熱伝導率が高ぐ熱膨張係数が小さくなるため好ましいが、あまりにも含有 率が高い場合にはアルミニウム合金の含浸操作が容易でなくなる。実用的には、 40 μ m以上の粗い SiC粒子を 40質量%以上含み、 SiCプリフォームの相対密度が 55 〜75%の範囲にあるものが好ましい。又 SiCプリフォームの強度は、曲げ強度で 3M Pa以上あれば、取り扱い時や含浸中の割れの心配がなくなるため好ましい。
[0029] SiCプリフォームを得る為の、原料 SiC粉にっ 、ては、粒度調整を行うことが好まし い。粗粉のみでは、強度発現に乏しぐ微粉のみでは、得られる複合体について高 い熱伝導率を望めないからである。本発明者の検討によれば、例えば、 40 m以上 の粒径の炭化珪素粗粉を 40〜80質量%、好ましくは 50〜70質量%と、 15 m以下 の粒径の炭化珪素微粉を 60〜20質量%、好ましくは 50〜30質量%と、を混合した 混合粉末が望ま 、ものとして挙げられる。 [0030] SiCプリフォームは、炭化珪素粉末の成形体を、脱脂、焼成することにより得られる 。シリカゾルをバインダーとして用いた場合、焼成温度が 800°C以上であれば、焼成 時の雰囲気に関係なぐ曲げ強度が 3MPa以上のプリフォームとすることができる。 酸化性雰囲気では、 1100°Cを超える温度で焼成すると、炭化珪素の酸化が促進 され、アルミニウム 炭化珪素質複合体の熱伝導率が低下してしまう場合がある。そ のため、酸化性雰囲気では、 800〜: L 100°C、好ましくは 900〜1050°Cの温度で焼 成することが望ましい。焼成時間は、 SiCプリフォームの大きさ、焼成炉への投入量、 焼成雰囲気等の条件に合わせて適宜決められる。
[0031] 本発明に係る SiCプリフォームは、成形時に所定の形状を付加する場合、 1枚ずつ 乾燥を行うか、或いは、 SiCプリフォーム間にカーボン等のスぺーサーを用いて重ね て乾燥することで、乾燥による反り形状変化を防ぐことが出来る。また、焼成に関して も乾燥時と同様に焼成温度で使用可能なスぺーサーを用いることにより、内部組織 の変化に伴う形状変化を防ぐことが可能である。
[0032] SiCプリフォームの形状は、長方形形状(図 1 (a) )または穴部を取り囲む部分の外 周部が長方形に付加された形状 (図 2 (e)、及び図 3 (g) )の平板であることが好まし い。
本発明のアルミニウム 炭化珪素質複合体は、パワーモジュール用ベース板等と して用いるために、外周形状及び外周部に取り付け穴等を形成する必要がある。こ の場合、アルミニウム 炭化珪素質複合体は非常に硬ぐダイヤモンド等の工具を用 いて多くの研削が必要となるので、コストが高くなるという課題がある。従って、容易に 機械カ卩ェできる様に、予め加工部分をアルミニウム合金、或いは、セラミックス繊維、 セラミックス粒子及びアルミニウム合金力 なる易加工性の複合体としておくことが好 ましい。
[0033] SiCプリフォームのベース板面内に占める面積は、セラミックス回路基板と接合する 部分を満たしていれば特に制約はないが、ベース板の面積の 70%以上、特には 85 %以上が好ましい。セラミックス回路基板と接合する部分をアルミニウム 炭化珪素 質複合体とすることで、両部材の熱膨張差を抑え、接合部の信頼性を向上させられ る。一方、 SiCプリフォームの面積がベース板の面積の 70%未満では、得られるベー ス板自体の熱膨張率が大きくなり過ぎて、反り形状や接合部の信頼性が低下する場 合がある。
[0034] 次に、得られたアルミニウム 炭化珪素質複合体の加工方法の例を説明する。本 発明のアルミニウム 炭化珪素質複合体は、外周部及び穴部等を NC旋盤、マシ- ングセンター等の装置を用いて容易に機械カ卩ェすることができる。
[0035] 前記 SiCプリフォームを用いてアルミニウム 炭化珪素質複合体を作製した後、外 周部、或いは、外周部及び穴部を、ウォータジェット加工機、放電加工機等を用いて 、アルミニウム 炭化珪素質複合体が露出する様に加工することもできる(図 4)。更 には、得られるベース板形状より面積の大きい SiCプリフォームを用いてアルミニウム —炭化珪素質複合体を作製した後、前記加工法によりベース板の外周部、穴部等を 形成することもできる(図 5)。
[0036] アルミニウム 炭化珪素質複合体表面に設けられるアルミニウム合金カゝらなるアル ミニゥム層の厚みは、平均厚みが 10〜150 μ mであり、好ましくは 30〜: LOO μ mであ る。アルミニウム層の厚みは、アルミニウム 炭化珪素質複合体表面を研削加工して 所定厚みに調整することも可能である。
アルミニウム層は、めっき処理を施す際のめっき密着性を確保するために必要であ る。平均厚みが 10 m未満では、その後のめっき前処理等の表面処理時に部分的 にアルミニウム 炭化珪素質複合体が露出し、その部分にめっき未着が発生したり、 めっき密着性が低下する等の問題が発生する場合がある。一方、平均厚みが 150 mを超えると、得られるベース板自体の熱膨張率が大きくなり過ぎて、接合部の信頼 性が低下する場合がある。更に、平均厚みが 150 mを超えると、アルミニウム層の 厚みの差が大きくなる場合もある。
[0037] 本発明のパワーモジュール用ベース板は、表面アルミニウム層の厚みの最大値と 最小値の差が 80 μ m以下、好ましくは 60 μ m以下である。表面アルミニウム層の厚 みの最大値と最小値の差が 80 mを超えると、表面アルミニウム層の厚み差に起因 するうねり、窪みが発生する。パワーモジュール用ベース板として用いる場合、放熱 面にうねりや窪みがあると、その後のモジュール糸且み立て工程でベース板と放熱フィ ンとの間に隙間が生じ、たとえ高熱伝導性の放熱グリースを塗布しても、熱伝達性が 著しく低下し、その結果セラミックス回路基板、ベース板、放熱フィン等で構成される モジュールの放熱性が著しく低下してしまう場合がある。
[0038] 本発明のパワーモジュール用ベース板は、両主面のアルミニウム層の平均厚みの 差が 50 μ m以下、好ましくは 30 μ m以下である。本発明のパワーモジュール用べ一 ス板は、アルミニウム 炭化珪素質複合体の両主面にアルミニウム層を具備してなる 構造であり、アルミニウム 炭化珪素質複合体とアルミニウム層では、熱膨張率が異 なる為、両主面のアルミニウム層の平均厚みの差が 50 mを超えると、その後のモジ ユール組み立て工程で熱サイクルを付加した際に、反りが変化する問題がある。
[0039] 形状加工を施されたアルミニウム 炭化珪素質複合体は、所定の反り形状となるよ うに lOPa以上の応力を掛けつつ、温度 450〜550。C、好ましく 500〜550。Cで 30禾少 間以上加熱処理することで、アルミニウム 炭化珪素質複合体をクリープ変形させて 反りを付与する。反り付け処理後のアルミニウム 炭化珪素質複合体は、必要に応じ て 300°C〜400°Cの温度でァニール処理を行!、、反り付け時に発生した残留応力の 除去を行う。本発明のパワーモジュール用ベース板は、表面のアルミニウム層の厚み を非常に薄くかつ均一に制御することにより、反り形状はうねりや窪みの少ない理想 的な球面形状に近!、反り形状 (図 6)となる。
[0040] 本発明のパワーモジュール用ベース板の反り量は、長さ 10cmあたり 0〜200 μ m、 好ましくは 50〜150 μ mである。パワーモジュール用ベース板として用いる場合に、 放熱面が凹型に反ると、その後のモジュール組み立て工程でベース板と放熱フィンと の間に隙間が生じ、たとえ高熱伝導性の放熱グリースを塗布しても、熱伝達性が著し く低下し、その結果セラミックス回路基板、ベース板、放熱フィン等で構成されるモジ ユールの放熱性が著しく低下してしまう場合がある。又、反り量が 200 mを超えると 、放熱フィンとの接合の際のネジ止め時に、ベース板、又はセラミックス回路基板にク ラックが発生してしまう場合がある。
[0041] 本発明では、アルミニウム 炭化珪素質複合体表面に設けられるアルミニウム層の 厚みを制御することにより、前記ベース板の放熱面を凹凸の少ない、窪み深さ 50 m以下の形状とすることができる。放熱面の窪み深さが 50 mを超えると、パワーモ ジュール用ベース板として用いる場合、その後のモジュール取り付け工程でベース 板と放熱フィンとの間に隙間が生じ、たとえ高熱伝導性の放熱グリースを塗布しても、 熱伝達性が著しく低下し、その結果セラミックス回路基板、ベース板、放熱フィン等で 構成されるモジュールの放熱性が著しく低下してしまう場合がある。
[0042] 本発明のパワーモジュール用ベース板は、パワーモジュールの信頼性の尺度とな るヒートサイクル試験 (温度 350°Cで 10分間保持した後、室温で自然冷却する。)を 行った際の形状安定性に優れている。例えば、前記条件のヒートサイクル試験を 10 回実施した後の反り変化量は長さ 10cm当たり 30 /z m以下である。反り変化量が、 1 Ocmあたり 30 μ mを超えると、パワーモジュール組み立て工程でベース板と放熱フィ ンとの間に隙間が生じ、たとえ高熱伝導性の放熱グリースを塗布しても、熱伝達性が 著しく低下する場合がある。
[0043] 本発明に係るアルミニウム 炭化珪素質複合体は、良好な放熱特性と共に応力緩 和性を有するので、例えば、セラミックス回路基板と放熱フィン等の放熱部品との間 に介在するベース板として好適である。
[0044] 本発明に係るアルミニウム 炭化珪素質複合体は、パワーモジュール用ベース板 として用いる場合、セラミックス回路基板と半田付けにより接合して用いられるのがー 般的である。この為、ベース板表面には、 Niめっきを施すことが必要である。めっき処 理方法は特に限定されず、無電解めつき処理、電気めつき処理法のいずれでもよい 。 Niめっきの厚みは 1〜20 μ m、好ましくは 3〜12 μ mである。めっき厚みが 1 μ m 未満では、部分的にめっきピンホールが発生し、半田付け時に半田ボイド (空隙)が 発生し、回路基板力ゝらの放熱特性が低下する場合がある。一方、 Niめっきの厚みが 20 mを超えると、 Niめっき膜と表面アルミニウム合金との熱膨張差によりめつき剥 離が発生する場合がある。 Niめっき膜の純度に関しては、半田濡れ性に支障をきた さないものであれば特に制約はなぐリン、硼素等を含有することができる。
[0045] 本発明のアルミニウム 炭化珪素質複合体は、熱伝導率が 180WZmK以上、温 度 150°Cの熱膨張係数が 9 X 10_6ZK以下であることが好ましい。前記効果に加え て、高熱伝導率で、し力も半導体部品やセラミックス回路基板と同等レベルの低膨張 率であるため、これを用いた放熱部品、更にそれを用いたパワーモジュールは、放熱 特性に優れ、また、温度変化を受けても変形し難ぐその結果、高信頼性が得られる という特長がある。
実施例
[0046] 次に、実施例及び比較例により本発明をより具体的に説明する力 本発明は、以下 の実施例に限定して解釈されるものではない。
(実施例 1及び比較例 1)
炭化珪素粉末 A (大平洋ランダム社製: NG— 150、平均粒径: 100 m) 100g、炭 化珪素粉末 B (大平洋ランダム社製: NG— 220、平均粒径 : 60 /ζ πι) 10(^、炭化珪 素粉末 C (屋久島電工社製: GC— 1000F、平均粒径: m) 100g、及びシリカゾ ル(日産化学社製:スノーテックス) 30gを秤取し、攪拌混合機で 30分間混合した後、 190mm X 140mm X 5. 5mmの寸法の平板状に圧力 lOMPaでプレス成形した。
[0047] 得られた成形体を、温度 120°Cで 2時間乾燥後、大気中、温度 950°Cで 2時間焼 成して、相対密度が 65%の SiCプリフォームを得た。得られた SiCプリフォームは、平 面研削盤でダイヤモンド製の砲石を用いて、 5. Ommの厚みに面カ卩ェした後、マシ ユングセンターで外形寸法が 183 X 133mmで図 2の形状に外周部を加工した。得 られた SiCプリフォームの 3点曲げ強度を測定した結果、 5MPaであった。
比較例 1は、成形体寸法を 190mm X 140mmX 5. Ommとした以外は、実施例 1 と同様の方法での SiCプリフォームを作製し、面加工を行わず外周部のみ加工を行 つた o
実施例 1及び比較例 1で得られた、加工後の SiCプリフォームの厚み測定結果を表 1に示す。尚、厚み測定ポイントはプリフォームを 9分割した中心部を測定した。
[0048] [表 1]
項目 測定位置 実施例 1 比較例 1
1 5.00 5.03
2 5.00 5.12
プリフォーム 3 4.99 5.08
厚み 4 4.98 5.01
(mm) 5 5.01 5.02
6 4.99 4.95
7 4.98 5.00
8 5.00 4.94
9 4.98 4.99
平均値(mm) 4.99 5.02
最大値(mm) 5.01 5.12
最小値(mm) 4.98 4.94
厚み差 (mm) ※ 0.03 0.18
※, 厚み差 =最大値と最小値の差
[0049] 実施例 1及び比較例 1で得られた SiCプリフォームは、両面をカーボンコートした 21 Omm X I 60mm X O. 8mmの寸法のステンレス板で挟んで、 20枚を積層した後、両 側に 12mm厚みの鉄板を配置して、 M 10のボルト 6本で連結して面方向の締め付け トルクが 3Nmとなるようにトルクレンチで締め付けて一つのブロックとした。次に、一体 としたブロックを電気炉で 600°Cに予備加熱した後、あら力じめ加熱しておいた内径 400mmのプレス型内に収め、シリコンを 12質量%、マグネシウムを 0. 8質量%含有 するアルミニウム合金の溶湯を注ぎ、 lOOMPaの圧力で 20分間加圧して炭化珪素 質多孔体にアルミニウム合金を含浸させた。室温まで冷却した後、湿式バンドソーに て離型板の形状に沿って切断し、挟んだステンレス板をはがした後、含浸時の歪み 除去のために 530°Cの温度で 3時間ァニール処理を行い、アルミニウム 炭化珪素 質複合体を得た。
[0050] 得られたアルミニウム 炭化珪素質複合体の縁周部 8力所に直径 7mmの貫通穴、 4力所に φ 10— 4mmの皿穴をカ卩ェし、外周のアルミニウム層の部分を NC旋盤でカロ 工して、 187mm X 137mm X 5mmの开状とした。
次に、このアルミニウム—炭化珪素質複合体に反りを付与するため、カーボン製で 曲率半径が 15000mmの球面を設けた凹凸型を準備した。この凹凸型を熱プレス機 に装着し、加熱して型の表面温度を 510°Cとした。この凹凸型の間に前記複合体を 配置し 40KPaでプレスした。この際、当該複合体の側面に熱電対を接触させ測温し た。複合体の温度が 500°Cになった時点から 3分間保持後、加圧を解除し、 50°Cま で自然冷却した。次に、得られた複合体は、反り付け時の残留歪み除去のために、 電気炉で 350°Cの温度で 30分間ァニール処理を行った。次いで、圧力 0. 4MPa、 搬送速度 1. OmZminの条件でアルミナ砲粒にてブラスト処理を行い清浄ィ匕した。そ の後、無電解 Ni— P及び Ni— Bめっきを行い、複合体表面に 8 μ m厚(Ni— Ρ : 6 /ζ m+Ni— Β: 2 m)のめつき層を形成した。
[0051] 得られたアルミニウム 炭化珪素質複合体を各サンプルの対角線に沿って切断を 行い、切断により露出した片主面のアルミニウム層の厚みをそれぞれ対角線に等間 隔に 20点測定し、その平均の厚みを算出した。
また、研削加工により熱膨張係数測定用試験体 (直径 3mm長さ 10mm)、熱伝導 率測定用試験体 (直径 11mm厚さ 3mm)を作製した。それぞれの試験体を用いて、 温度 150°Cの熱膨張係数を熱膨張計 (セイコー電子工業社製; TMA300)で、 25°C での熱伝導率をレーザーフラッシュ法 (理学電機社製; LF/TCM -8510B)で測 定した。反り形状については、輪郭形状測定機 (東京精密社製;コンターレコード 16 00D— 22)を使用し、長さ 10cm当たりの反り量及び窪み深さを測定した。得られた 結果を表 2に示す。また、輪郭形状測定機による実施例 1の反り形状測定結果を図 6 に示す。
[0052] [表 2]
Figure imgf000016_0001
«2 範囲 =最大値と最小値の差
«3 反り付け面(B面)の長辺方向の中央部の長さ 1 0cm当たりの反り量
[0053] 実施例 1のめつき品を用いて、温度 350°Cに加熱したホットプレートに当該めつき品 を載せ、物温が 350°Cに達した後、 10分間保持した後、室温まで自然冷却するヒー トサイクル試験を 10回行った。実施例 1のヒートサイクル試験後の長さ 1 Ocm当たりの 反り量の変化は 15 mであった。
[0054] (実施例 2) 炭化珪素粉末 A (太平洋ランダム社製: NG— 150、平均粒径: 100 m) 150g、炭 化珪素粉末 D (太平洋ランダム社製: NG - 500、平均粒径: 30 m) 50g、炭化珪素 粉末 C (屋久島電工社製: GC— 1000F、平均粒径: m) 100g、及びシリカゾル (日産化学社製:スノーテックス) 30gを原料として用いた以外は、実施例 1と同様の 方法で相対密度が 66%の SiCプリフォームを得た。得られた SiCプリフォームは、平 面研削盤でダイヤモンド製の砲石を用いて、 4. 9mmの厚みに面カ卩ェした後、マシ ユングセンターで外形寸法が 183 X 133mmで図 2の形状のように外周部をカ卩ェした 。加工後の SiCプリフォームの厚み測定結果を表 3に示す。
[0055] [表 3]
Figure imgf000017_0001
厚み差 =最大値と最小値の差
[0056] 得られた SiCプリフォームは、両面に 180mm X 130mm X O. 2mmの 5質量0 /0ァ ルミナ繊維(田中製紙社製,純度 97%)を配置し、両面をカーボンコートした 210mm X 160mm X O. 8mmの寸法のステンレス板で挟んで、 20枚を積層した後、両側に 1 2mm厚みの鉄板を配置して、 M10のボルト 6本で連結して面方向の締め付けトルク 力 Nmとなるようにトルクレンチで締め付けて一つのブロックとした。次に、一体とした ブロックを実施例 1と同様の方法で含浸処理及び含浸時の歪み除去のために 530°C の温度で 3時間ァニール処理を行い、アルミニウム—炭化珪素質複合体を得た。
[0057] 得られたアルミニウム 炭化珪素質複合体は、縁周部 8力所に直径 7mmの貫通穴 、 4力所に φ 10— 4mmの皿穴をカ卩ェし、外周部を 187 X 137mm (コーナー部は R7 mm)に加工した(図 2参照)。次に、実施例と同様の方法で反り付け処理を行った。 次いで、圧力 0. 4MPa、搬送速度 1. OmZminの条件でアルミナ砲粒にてブラスト 処理を行い清浄化した。その後、無電解 Ni— P及び Ni— Bめっきを行い、複合体表 面に 8 m厚(Ni—P: 6 m+Ni—B: 2 m)のめつき層を形成した。得られた複合 体は、実施例 1と同様の評価を行った。結果を表 4に示す。
[0058] [表 4]
Figure imgf000018_0001
«2 範囲 =最大値と最小値の差
«3 反り付け面(B面〕の長辺方向の中央部の長さ 1 0cm当たりの反り量
[0059] (実施例 3)
SiCプリフォームを大気中、温度 1100°Cで 2時間焼成した以外は、実施例 2と同様 の方法で SiCプリフォームを作製した。得られたプリフォームの 3点曲げ強度は 12M Paであった。加工後の SiCプリフォームの厚み測定結果を表 5示す。次に、締め付け トルクを lONmに変更して、実施例 1と同様の方法でアルミニウム 炭化珪素質複合 体を作製し、実施例 1と同様のめっき処理を行い、実施例 1と同様の評価を行った。 結果を表 6に示す。
[0060] [表 5]
Figure imgf000018_0002
※1 厚み差 =最大値と最小値の差 [0061] [表 6]
Figure imgf000019_0001
※2 範囲 =最大値と最小値の差
«3 反り付け面(B面)の長辺方向の中央部の長さ 10cm当たりの反り量
[0062] (実施例 4)
SiCプリフォーム形状を 190X140X5.3mmとした以外は、実施例 1と同様の方 法でアルミニウム 炭化珪素質複合体を作製した。得られた複合体は、縁周部 8力 所に直径 8mmの貫通穴及び外周部をウォータージエツト加工機〖こて 187X137mm (コーナー部は R7mm)に加工した(図 5参照)。次に、このアルミニウム 炭化珪素 質複合体に反りを付与するため、カーボン製で曲率半径が 12000mmの球面を設け た凹凸型を用い実施例 1と同様の方法で反り付けを行った。次いで、圧力 0.4MPa 、搬送速度 1. OmZminの条件でアルミナ砲粒にてブラスト処理を行い清浄ィ匕した。 その後、無電解 Ni— P及び Ni— Bめっきを行い、複合体表面に 8 μ m厚(Ni— Ρ:6 m+Ni— Β:2/ζπι)のめつき層を形成した。得られた複合体は、実施例 1と同様の 評価を行った。結果を表 7に示す。
[0063] [表 7]
Figure imgf000019_0002
※ 範囲 =最大値と最小値の差
※3 反り付け面(B面)の長辺方向の中央部の長さ 10cm当たりの反り量
[0064] (実施例 5)
実施例 1の SiCプリフォームを 185mm X 135mm X 5. Ommに加工した後、ダイヤ モンド製の砥石を用 ヽて縁周部 12力所に直径 1 Ommの貫通穴を形成した。(図 4参 照) 次いで、実施例 1と同様の方法で、 187mmX137mmX5. Ommの複合体を 作製し、めっき処理を行った後、実施例 1と同様の評価を行った。結果を表 8に示す [0065] [表 8]
Figure imgf000020_0001
※ 範囲 =最大値と最小値の差
※ョ 反り付け面(B面)の長辺方向の中央部の長さ 1 0cm当たりの反リ量
[0066] (実施例 6)
実施例 1のプリフォーム形状を 180 X 110 X 5. 3mm (図 1参照)に変更した以外は 、実施例 1と同様の方法でアルミニウム 炭化珪素質複合体を作製し、機械加工、め つき処理を行った。得られた複合体は、実施例 1と同様の評価を行い、その結果を表 9に示す。
[0067] [表 9]
Figure imgf000020_0002
2 範囲 =最大値と最小値の差
※3 反り付け面 (B面)の長辺方向の中央部の長さ 1 0cm当たりの反り量 産業上の利用可能性
[0068] 本発明のアルミニウム 炭化珪素質複合体は、半導体部品やセラミックス回路基板 と同等レベルの低熱膨張であり、それを用いたパワーモジュールは、放熱特性に優 れ、また、温度変化を受けても変形し難ぐ高信頼性を要求される半導体素子を搭載 するパワーモジュールのベース板として利用可能である。 なお、 2006年 4月 26曰に出願された曰本特許出願 2006— 122350号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲
[1] 平板状の炭化珪素質多孔体を面内厚み差が 100 m以下になるように成形又は 加工した後、面方向の締め付けトルクが l〜20Nmとなるように離型板で挟み込んで 積層し、アルミニウムを主成分とする金属を含浸させたアルミニウム—炭化珪素質複 合体からなり、
両主面にアルミニウムを主成分とする金属からなるアルミニウム層を有し、該アルミ -ゥム層の平均厚みが 10〜150 μ mであり、アルミニウム層の面内の厚みの最大値 と最小値の差が 80 μ m以下であり、両主面のアルミニウム層の平均厚みの差が 50 μ m以下であり、かつ、上記炭化珪素質多孔体の形状が長方形であるか、又は穴部を 取り囲む部分の外周部が長方形に付加された形状であることを特徴とするパワーモ ジュール用ベース板。
[2] 両主面及び取り付け穴の周囲及び外周部力 アルミニウムを主成分とする金属層、 或いは、セラミックス繊維及びアルミニウムを主成分とする金属との複合体力 なる請 求項 1に記載のパワーモジュール用ベース板。
[3] 外周部が、アルミニウム 炭化珪素質複合体が露出している請求項 1に記載のパ ヮーモジュール用ベース板。
[4] アルミニウム 炭化珪素質複合体が、 lOPa以上の応力を掛けつつ、温度 450°C
〜550°Cで 30秒間以上加熱処理して形成した反りの反り量力 長さ 10cmあたり 0〜
200 μ mであり、かつ、窪み深さが 50 μ m以下である請求項 1〜3のいずれか一項に 記載のパワーモジュール用ベース板。
[5] アルミニウム 炭化珪素質複合体が、熱伝導率が、 180WZmK以上、並びに、温 度 150°Cの熱膨張係数力 9 X 10_6ZK以下である請求項 1〜4のいずれか一項に 記載のパワーモジュール用ベース板。
[6] 温度 350°Cで 10分間保持した後、室温で自然冷却するヒートサイクルを 10回施し た後の反り量の変化力 長さ 10cmあたり m以下である請求項 1〜5のいずれか 一項に記載のパワーモジュール用ベース板。
[7] 高圧含浸法で製造されたアルミニウム 炭化珪素質複合体からなる請求項 1〜6の いずれか一項に記載のパワーモジュール用ベース板。 請求項 1〜7のいずれか一項に記載のパワーモジュール用ベース板に Niめっき処 理を施して厚さ 1〜20 mのめつき被膜を形成し、半導体搭載用セラミックス基板を 接合してなる放熱部品。
PCT/JP2007/058770 2006-04-26 2007-04-23 アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品 WO2007125878A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800140433A CN101427367B (zh) 2006-04-26 2007-04-23 铝-碳化硅复合体和使用该复合体的散热零件
US12/298,598 US7993728B2 (en) 2006-04-26 2007-04-23 Aluminum/silicon carbide composite and radiating part comprising the same
JP2008513199A JP4996600B2 (ja) 2006-04-26 2007-04-23 アルミニウム−炭化珪素質複合体及びそれを用いた放熱部品
EP07742205.3A EP2012354B1 (en) 2006-04-26 2007-04-23 Method of producing a base plate for a power module
KR1020087020448A KR101344152B1 (ko) 2006-04-26 2008-08-21 알루미늄-탄화규소질 복합체 및 그것을 사용한 방열 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006122350 2006-04-26
JP2006-122350 2006-04-26

Publications (1)

Publication Number Publication Date
WO2007125878A1 true WO2007125878A1 (ja) 2007-11-08

Family

ID=38655403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058770 WO2007125878A1 (ja) 2006-04-26 2007-04-23 アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品

Country Status (6)

Country Link
US (1) US7993728B2 (ja)
EP (1) EP2012354B1 (ja)
JP (1) JP4996600B2 (ja)
KR (1) KR101344152B1 (ja)
CN (1) CN101427367B (ja)
WO (1) WO2007125878A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200447436Y1 (ko) 2007-11-08 2010-01-25 웬-롱 친 방열(放熱) 모듈
EP2305400A1 (en) * 2008-07-17 2011-04-06 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-diamond composite and method for producing the same
US20110198771A1 (en) * 2008-07-17 2011-08-18 Denki Kagaku Kogyo Kabushiki Kaisha Manufacturing method of aluminum-diamond composite
JP2012099821A (ja) * 2010-11-02 2012-05-24 Abb Technology Ag ベースプレート
JP2013012623A (ja) * 2011-06-30 2013-01-17 Denki Kagaku Kogyo Kk Led発光素子用保持基板、その製造方法及びled発光素子
WO2015141729A1 (ja) * 2014-03-18 2015-09-24 電気化学工業株式会社 アルミニウム-炭化珪素質複合体及びパワーモジュール用ベース板
WO2016013648A1 (ja) * 2014-07-24 2016-01-28 電気化学工業株式会社 複合体及びその製造方法
JP2017147303A (ja) * 2016-02-16 2017-08-24 株式会社 日立パワーデバイス パワー半導体モジュール
WO2018131583A1 (ja) * 2017-01-13 2018-07-19 三菱電機株式会社 金属-セラミックス接合基板及びその製造方法
WO2020013300A1 (ja) * 2018-07-13 2020-01-16 デンカ株式会社 金属-炭化珪素質複合体、及び金属-炭化珪素質複合体の製造方法
JP2020012194A (ja) * 2019-06-12 2020-01-23 デンカ株式会社 金属−炭化珪素質複合体及びその製造方法
WO2020110824A1 (ja) * 2018-11-29 2020-06-04 デンカ株式会社 放熱部材
WO2022181416A1 (ja) 2021-02-26 2022-09-01 デンカ株式会社 成形体及びその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501432B (zh) * 2009-07-17 2015-09-21 Denki Kagaku Kogyo Kk Led晶片接合體、led封裝、及led封裝之製造方法
WO2011125441A1 (ja) * 2010-04-02 2011-10-13 住友電気工業株式会社 マグネシウム基複合部材、放熱部材、および半導体装置
CN102815048B (zh) * 2011-06-10 2015-01-14 比亚迪股份有限公司 一种AlSiC复合材料及其制备方法、一种镀镍AlSiC复合材料
JP6012990B2 (ja) * 2012-03-19 2016-10-25 日本軽金属株式会社 放熱器一体型基板の製造方法
CN103433491B (zh) * 2013-09-18 2015-05-13 湖南航天工业总公司 一种碳化硅igbt基板骨架真空压力渗铝装置及双面覆铝方法
CN103521738B (zh) * 2013-10-17 2016-04-06 湖南航天工业总公司 碳化硅igbt基板骨架真空液压压力快捷渗铝装置及方法
CN103658659A (zh) * 2013-12-05 2014-03-26 湖南航天诚远精密机械有限公司 双面覆铝铝碳化硅igbt基板的近净成形方法
JPWO2016002943A1 (ja) * 2014-07-04 2017-06-08 デンカ株式会社 放熱部品及びその製造方法
CN106098634A (zh) * 2016-06-27 2016-11-09 安徽汉升新金属技术有限公司 铝基碳化硅电子元件封装底板、成型模具以及制作方法
EP3553817B1 (en) * 2016-12-06 2024-04-03 A.L.M.T. Corp. Composite member, heat-dissipation member, and semiconductor device
EP3410472A1 (en) * 2017-05-31 2018-12-05 ABB Schweiz AG Power electronic module cooling arrangement
EP3627546A1 (en) * 2018-09-24 2020-03-25 Infineon Technologies AG Power semiconductor module arrangement
CN109334390B (zh) * 2018-11-06 2024-02-02 海宁托博特种陶瓷制品有限公司 氮化硅发热体与铝件压铸或浇筑一体成型装置
JP7116690B2 (ja) * 2019-01-30 2022-08-10 デンカ株式会社 放熱部材およびその製造方法
JP7116689B2 (ja) * 2019-01-30 2022-08-10 デンカ株式会社 放熱部材およびその製造方法
CN112918039A (zh) * 2021-01-21 2021-06-08 西安工业大学 一种金属复合材料的复合结构及其成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297988A (ja) * 2002-04-05 2003-10-17 Denki Kagaku Kogyo Kk 構造物
JP2003300788A (ja) * 2002-04-09 2003-10-21 Denki Kagaku Kogyo Kk アルミニウム合金−炭化珪素質複合体の製造方法及びそれに用いる構造体
JP2006122350A (ja) 2004-10-28 2006-05-18 Hiroyuki Kono 義歯修理方法及び樹脂押出具

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779589B2 (ja) 1989-06-19 1995-08-30 市郎 山下 植物の湿度自動供給育成方法およびその植栽ボックス
US5774336A (en) * 1996-02-20 1998-06-30 Heat Technology, Inc. High-terminal conductivity circuit board
JP4080030B2 (ja) * 1996-06-14 2008-04-23 住友電気工業株式会社 半導体基板材料、半導体基板、半導体装置、及びその製造方法
JP3468358B2 (ja) * 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
AU2002218493A1 (en) 2000-11-29 2002-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
JP4434545B2 (ja) 2001-03-01 2010-03-17 Dowaホールディングス株式会社 半導体実装用絶縁基板及びパワーモジュール
JP2003155575A (ja) 2001-11-16 2003-05-30 Ngk Insulators Ltd 複合材料及びその製造方法
JP4133170B2 (ja) * 2002-09-27 2008-08-13 Dowaホールディングス株式会社 アルミニウム−セラミックス接合体
JP4761157B2 (ja) * 2004-09-14 2011-08-31 電気化学工業株式会社 アルミニウム−炭化珪素質複合体
EP1858078A4 (en) 2005-01-20 2009-03-04 Almt Corp ELEMENT FOR A SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR
JP4378334B2 (ja) 2005-09-09 2009-12-02 日本碍子株式会社 ヒートスプレッダモジュール及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297988A (ja) * 2002-04-05 2003-10-17 Denki Kagaku Kogyo Kk 構造物
JP2003300788A (ja) * 2002-04-09 2003-10-21 Denki Kagaku Kogyo Kk アルミニウム合金−炭化珪素質複合体の製造方法及びそれに用いる構造体
JP2006122350A (ja) 2004-10-28 2006-05-18 Hiroyuki Kono 義歯修理方法及び樹脂押出具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2012354A4

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200447436Y1 (ko) 2007-11-08 2010-01-25 웬-롱 친 방열(放熱) 모듈
EP2305400A4 (en) * 2008-07-17 2014-08-13 Denki Kagaku Kogyo Kk ALUMINUM DIAMOND COMPOSITE AND METHOD OF MANUFACTURING THEREOF
KR20160072847A (ko) * 2008-07-17 2016-06-23 덴카 주식회사 알루미늄-다이아몬드계 복합체 및 그 제조 방법
US20110123821A1 (en) * 2008-07-17 2011-05-26 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-diamond composite and manufacturing method
US20110198771A1 (en) * 2008-07-17 2011-08-18 Denki Kagaku Kogyo Kabushiki Kaisha Manufacturing method of aluminum-diamond composite
EP2305400A1 (en) * 2008-07-17 2011-04-06 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-diamond composite and method for producing the same
US8322398B2 (en) * 2008-07-17 2012-12-04 Denki Kagaku Kogyo Kabushiki Kaisha Manufacturing method of aluminum-diamond composite
KR20110040923A (ko) * 2008-07-17 2011-04-20 덴끼 가가꾸 고교 가부시키가이샤 알루미늄-다이아몬드계 복합체 및 그 제조 방법
US9017824B2 (en) * 2008-07-17 2015-04-28 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum-diamond composite and manufacturing method
KR101721818B1 (ko) 2008-07-17 2017-03-30 덴카 주식회사 알루미늄-다이아몬드계 복합체 및 그 제조 방법
KR101632727B1 (ko) * 2008-07-17 2016-06-23 덴카 주식회사 알루미늄-다이아몬드계 복합체 및 그 제조 방법
JP2012099821A (ja) * 2010-11-02 2012-05-24 Abb Technology Ag ベースプレート
JP2013012623A (ja) * 2011-06-30 2013-01-17 Denki Kagaku Kogyo Kk Led発光素子用保持基板、その製造方法及びled発光素子
US10233125B2 (en) 2014-03-18 2019-03-19 Denka Company Limited Aluminium-silicon carbide composite, and power-module base plate
WO2015141729A1 (ja) * 2014-03-18 2015-09-24 電気化学工業株式会社 アルミニウム-炭化珪素質複合体及びパワーモジュール用ベース板
JPWO2015141729A1 (ja) * 2014-03-18 2017-04-13 デンカ株式会社 アルミニウム−炭化珪素質複合体及びパワーモジュール用ベース板
JPWO2016013648A1 (ja) * 2014-07-24 2017-05-25 デンカ株式会社 複合体及びその製造方法
JP7160888B2 (ja) 2014-07-24 2022-10-25 デンカ株式会社 複合体及びその製造方法
US10081055B2 (en) 2014-07-24 2018-09-25 Denka Company Limited Composite body and method for producing same
WO2016013648A1 (ja) * 2014-07-24 2016-01-28 電気化学工業株式会社 複合体及びその製造方法
JP2021087995A (ja) * 2014-07-24 2021-06-10 デンカ株式会社 複合体及びその製造方法
JP2017147303A (ja) * 2016-02-16 2017-08-24 株式会社 日立パワーデバイス パワー半導体モジュール
WO2018131583A1 (ja) * 2017-01-13 2018-07-19 三菱電機株式会社 金属-セラミックス接合基板及びその製造方法
JPWO2018131583A1 (ja) * 2017-01-13 2019-06-27 三菱電機株式会社 金属−セラミックス接合基板及びその製造方法
US20190350078A1 (en) * 2017-01-13 2019-11-14 Mitsubishi Electric Corporation Metal-ceramic bonded substrate, and manufacturing method thereof
WO2020013300A1 (ja) * 2018-07-13 2020-01-16 デンカ株式会社 金属-炭化珪素質複合体、及び金属-炭化珪素質複合体の製造方法
JP7216094B2 (ja) 2018-07-13 2023-01-31 デンカ株式会社 金属-炭化珪素質複合体、及び金属-炭化珪素質複合体の製造方法
JPWO2020013300A1 (ja) * 2018-07-13 2021-08-26 デンカ株式会社 金属−炭化珪素質複合体、及び金属−炭化珪素質複合体の製造方法
WO2020110824A1 (ja) * 2018-11-29 2020-06-04 デンカ株式会社 放熱部材
JP6996008B2 (ja) 2018-11-29 2022-01-17 デンカ株式会社 放熱部材
JPWO2020110824A1 (ja) * 2018-11-29 2021-10-21 デンカ株式会社 放熱部材
US11903168B2 (en) 2018-11-29 2024-02-13 Denka Company Limited Heat dissipation member
JP2020012194A (ja) * 2019-06-12 2020-01-23 デンカ株式会社 金属−炭化珪素質複合体及びその製造方法
WO2022181416A1 (ja) 2021-02-26 2022-09-01 デンカ株式会社 成形体及びその製造方法

Also Published As

Publication number Publication date
EP2012354B1 (en) 2016-04-13
JP4996600B2 (ja) 2012-08-08
CN101427367B (zh) 2010-06-02
EP2012354A4 (en) 2010-10-20
CN101427367A (zh) 2009-05-06
KR101344152B1 (ko) 2013-12-20
US20090092793A1 (en) 2009-04-09
EP2012354A1 (en) 2009-01-07
KR20090004864A (ko) 2009-01-12
JPWO2007125878A1 (ja) 2009-09-10
US7993728B2 (en) 2011-08-09

Similar Documents

Publication Publication Date Title
WO2007125878A1 (ja) アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品
JP5144279B2 (ja) アルミニウム−炭化珪素質複合体及びそれを用いた放熱部品
JP4761157B2 (ja) アルミニウム−炭化珪素質複合体
JP5021636B2 (ja) アルミニウム−炭化珪素質複合体及びその加工方法
WO2010007922A1 (ja) アルミニウム-ダイヤモンド系複合体及びその製造方法
JP6704847B2 (ja) アルミニウム−炭化珪素質複合体及びパワーモジュール用ベース板
JP4864593B2 (ja) アルミニウム−炭化珪素質複合体の製造方法
JP2010024077A (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JPWO2016017689A1 (ja) アルミニウム‐炭化珪素質複合体及びその製造方法
JP3907620B2 (ja) セラミックス回路基板一体型アルミニウム−炭化珪素質複合体及びその製造方法
JP5037883B2 (ja) 放熱部品及びその製造方法
JP5208616B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JP5284704B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JP5662834B2 (ja) アルミニウム−炭化珪素質複合体の製造方法
JP6591113B1 (ja) 放熱部材およびその製造方法
JP5284706B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JP3732193B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008513199

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087020448

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007742205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780014043.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12298598

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE