WO2020110824A1 - 放熱部材 - Google Patents

放熱部材 Download PDF

Info

Publication number
WO2020110824A1
WO2020110824A1 PCT/JP2019/045208 JP2019045208W WO2020110824A1 WO 2020110824 A1 WO2020110824 A1 WO 2020110824A1 JP 2019045208 W JP2019045208 W JP 2019045208W WO 2020110824 A1 WO2020110824 A1 WO 2020110824A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation member
metal
hole
metal part
Prior art date
Application number
PCT/JP2019/045208
Other languages
English (en)
French (fr)
Inventor
庸介 石原
大助 後藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP19890026.8A priority Critical patent/EP3890007B1/en
Priority to US17/298,169 priority patent/US11903168B2/en
Priority to JP2020558412A priority patent/JP6996008B2/ja
Priority to CN201980077594.7A priority patent/CN113169146A/zh
Publication of WO2020110824A1 publication Critical patent/WO2020110824A1/ja
Priority to JP2021203404A priority patent/JP7427647B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20854Heat transfer by conduction from internal heat source to heat radiating structure

Definitions

  • the present invention relates to a heat dissipation member. More specifically, the present invention relates to a heat dissipation member having a substantially rectangular flat plate shape.
  • metal-silicon carbide composites have come to be used in place of conventional copper as heat dissipation components for power modules in electric vehicles and electric railway applications.
  • the thermal conductivity of metal-silicon carbide composites is inferior to that of copper.
  • its coefficient of thermal expansion is 6 to 10 ppm/K, which is about half of 17 ppm/K of copper. Therefore, it is easy to suppress the occurrence of cracks in the solder layer portion that bonds the ceramic circuit board forming the module and the heat dissipation plate, and there is a tendency that high reliability is obtained.
  • Aluminum is often used as the metal of the metal-silicon carbide composite.
  • the aluminum-silicon carbide composite is formed into a molded body by (1) mixing additives and the like with silicon carbide powder, (2) dry pressing method, extrusion method and injection method. Forming (3) firing the formed body to produce a porous formed body (preform) containing silicon carbide as a main component, (4) non-pressure impregnation method or molten metal It can be manufactured by a process of impregnating a metal containing aluminum by a pressure impregnation method such as a forging method or a die casting method.
  • the metal-silicon carbide composite is often surface-treated and polished, and then plated. Then, it is used as a component for radiating heat generated from electronic/electrical components, that is, as a heat radiation component.
  • the heat radiating component is further screwed to another heat radiating component such as a heat radiating fin or a product outer frame to form a module. Therefore, the metal-silicon carbide composite may have a hole for screwing preliminarily formed on the outer circumference or in the vicinity thereof.
  • the metal-silicon carbide composite tends to be highly reliable as a heat dissipation component as described above.
  • the required performance for reliability is increasing with the market needs. For example, recently, it has been demanded that cracking be suppressed even under heat cycle conditions that are more severe than in the past.
  • the thermal stress generated by the difference in thermal expansion coefficient between the metal part and the metal-silicon carbide composite generated in the thermal cycle becomes large and cracks are likely to occur. That is, there is a demand for a metal-silicon carbide composite or a heat dissipation component that has higher crack resistance than before and satisfies the recent severe reliability requirements.
  • the present invention has been made in view of such circumstances. It is an object of the present invention to provide a heat dissipation member that has higher crack resistance than before and can meet strict reliability requirements.
  • the inventors of the present invention have solved the above problems by making the inventions provided below as a result of earnest studies.
  • a heat dissipation member having a substantially rectangular flat plate shape includes a composite portion in which silicon carbide having voids is impregnated with a metal, and a metal portion different from the composite portion,
  • the ratio of the volume of the metal part to the total volume of the heat dissipation member is 2.9% or more and 12% or less,
  • the length of the diagonal line of the heat dissipation member is L and the heat dissipation member is viewed from above with one main surface as an upper surface, 40% or more of the total volume of the metal part is in any of the four corners of the heat dissipation member.
  • a heat dissipation member which has higher crack resistance than before and can meet strict reliability requirements.
  • FIG. 1A shows the heat dissipation member when viewed from above with one main surface as an upper surface
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • FIG. 7A shows the heat dissipation member as viewed from above with one main surface as an upper surface
  • FIG. 7B is a sectional view taken along line BB′ of FIG. 7A.
  • FIG. 7B shows the schematic diagram which expanded and showed a part of heat dissipation member of 2nd Embodiment.
  • Auxiliary lines are added for explanation. It is a schematic diagram for demonstrating the heat dissipation member of 3rd Embodiment.
  • FIG. 9A shows a top view of the heat dissipation member with one main surface as an upper surface
  • FIG. 9B is a sectional view taken along the line CC′ of FIG. 9A.
  • It is a schematic diagram for demonstrating the heat dissipation member of 4th Embodiment. It shows a case where the heat dissipation member is viewed from above with one main surface as an upper surface. It is a figure for demonstrating the measurement position for calculating
  • FIG. 1 is a schematic diagram for explaining the heat dissipation member (heat dissipation member 1) of the first embodiment.
  • 1A is a top view of the heat dissipation member 1 with one main surface as an upper surface
  • FIG. 1B is a cross-sectional view taken along the line AA′ of FIG. 1A.
  • the heat dissipation member 1 has a substantially rectangular flat plate shape. That is, the heat dissipation member 1 has a substantially rectangular flat plate shape when viewed from above with its one main surface as an upper surface.
  • the heat dissipation member 1 typically includes metal parts 5 at the four corners. Further, a part of the metal part 5 may be continuously provided on the peripheral edge of the heat dissipation member 1.
  • the "peripheral portion" means that when the length of the short side is L1 and the length of the long side is L2 when the main surface of the heat dissipation member 1 is viewed from above, the heat dissipation member 1 starts from the short side. Within L2/10 in the inward direction, or within L1/10 in the inward direction of the heat dissipation member 1 from the long side.
  • the part of the heat dissipation member 1 other than the metal part 5 is usually composed of a composite part 2 (hereinafter also simply referred to as the composite part 2) in which silicon carbide having voids is impregnated with a metal.
  • the ratio of the volume of the metal part 5 to the entire volume of the heat dissipation member 1 is 2.9% or more and 12% or less.
  • FIG. 2 is an additional diagram for explaining the heat dissipation member 1, in which some auxiliary lines and characters are added to the heat dissipation member 1 of FIG.
  • the length of the diagonal line of the rectangular flat plate-shaped heat dissipation member 1 is L.
  • region D a region at a distance L/6 from any one of the four corners of the heat dissipation member 1 is described as “region D”.
  • the heat dissipation member 1 has a hole 3 penetrating the metal portion 5 existing in the region D.
  • the holes 3 normally penetrate only the metal part 5 and not the composite part 2.
  • the hole 3 is usually provided so as to penetrate between both main surfaces of the heat dissipation member 1, and preferably is provided substantially perpendicular to the main surface of the heat dissipation member 1.
  • a fixing member such as a screw
  • the heat dissipation member 1 can be fixed to another component.
  • 40% or more of the total volume of the metal part 5 exists in the region D.
  • the heat dissipation member 1 is “substantially rectangular”, for example, as shown in FIG. 1, at least one of the four corners of the heat dissipation member 1 is not a right-angled shape but slightly rounded. It means that it may have a curved shape (of course, the four corners may have a right-angled shape).
  • FIG. 3 shows FIG. 1A
  • the point P that intersects when the straight line portion of the short side and the long side when the heat dissipation member 1 is viewed from above can be defined as a “vertex”.
  • the point P determined as shown in FIG. 3 can be set as the start point or the end point when the length “L” in FIG. 2 is measured.
  • the heat dissipation member 1 is (1) The ratio of the volume of the metal part 5 to the entire volume of the heat dissipation member 1 is 2.9% or more and 12% or less, (2) Most or all of the metal part 5 exists in the parts close to the four corners of the heat dissipation member 1, (3) The through hole (hole 3) is provided in the portion of the metal portion 5 near the four corners.
  • the ratio of the volume of the metal part 5 to the entire volume of the heat dissipation member 1 is “2.9% or more”, and most or all of the metal part 5 exists in the parts close to the four corners of the heat dissipation member 1.
  • the hole 3 having a size (sufficiently large) suitable for attachment to other parts can be provided in the metal portion 5. Therefore, it is considered that the heat dissipation member 1 can be firmly attached to other parts, which leads to improvement in reliability.
  • the ratio of the volume of the metal part 5 to the entire volume of the heat dissipation member 1 is “12% or less”, so that the heat generated by the heat cycle is reduced.
  • the stress can be made sufficiently small. This is considered to be particularly effective in reducing cracks (particularly, reducing cracks near the interface between the composite part 2 and the metal part 5 existing in the region D).
  • the presence of the through holes (holes 3) in the metal portion 5 that is “hard to break” and “hard to crack” as compared with the composite portion 2 also causes cracks around the through holes, that is, around the portion tightened with screws. It is considered to be further reduced (it is considered that cracking is suppressed by the malleability of the metal even if a force such as a screw is applied to the hole 3 in the metal portion 5).
  • the metal part 5 tends to have a lower elastic modulus than the composite part 2.
  • This merit means that the heat dissipation member 1 can be easily attached to another component with a screw or the like, which is preferable in terms of productivity improvement and the like.
  • the ratio of the volume of the metal part 5 to the entire volume of the heat dissipation member 1 is preferably 3.0% or more and 11.8% or less, and 3.2% or more and 11.5% or less. More preferable.
  • the thickness of the metal part 5 existing in the region D is preferably substantially equal to the thickness of the composite part 2. Since the metal part 5 around the hole 3 is sufficiently thick as compared with the composite part 2, sufficient toughness, better crack resistance and the like can be obtained.
  • “the thicknesses are substantially equal” means that (the thickness of the metal part 5/the thickness of the composite part 2) is, for example, 0.8 or more and 1.2 or less, preferably 0.9 or more and 1.1 or less. Means that. Supplementally, as the “thickness of the composite part 2 ”, for example, the thickness obtained by the thickness measurement described later with reference to FIG. 11 can be adopted.
  • the "thickness of the metal part 5" is measured by a micrometer or a caliper of the metal part 5 when the metal part 5 continuously exists from the upper surface to the lower surface of the heat dissipation member 1 as shown in FIG. Etc.
  • the method of obtaining the thickness is not limited to these, and any method capable of measuring with a certain degree of accuracy can be adopted.
  • the metal parts 5 having substantially the same volume are present in the four regions D at the four corners.
  • the four regions D each have substantially the same volume of the metal portion 5. More specifically, in the four regions D at the four corners, the volume of the metal part 5 in the region D in which the contained metal part 5 is the largest is Vmax, and the volume of the included metal part 5 is the smallest.
  • the value of Vmax/Vmin is preferably 1 or more and 1.2 or less.
  • the V hole /(V metal +V hole ) value is preferably 0.60 or less, and 0 It is more preferably 0.55 or less, still more preferably 0.50 or less.
  • V hole /(V metal +V hole ) can be set to, for example, 0.1 or more, preferably 0.3 or more, and more preferably 0.5 or more. .. Supplementally, the volume V hole of the hole 3 is the volume occupied by the hole 3 in the hole 3 between the two principal surfaces.
  • V hole when the hole 3 has a cylindrical shape and is provided substantially perpendicular to the main surface of the heat dissipation member 1, “a hole when the heat dissipation member 1 is viewed from above with one main surface of the heat dissipation member 1 as an upper surface”.
  • V hole can be obtained by calculating "area of 3 x thickness of heat dissipation member 1 in the vicinity of hole 3". In other words, V hole can be said to be the volume of the “hollowed out” portion of the heat dissipation member 1 when the hole 3 is provided in the heat dissipation member 1.
  • FIG. 4 is an enlarged view of a portion indicated by ⁇ in FIG. 1A (an enlarged view of one of the four corners of the heat dissipation member 1). In FIG. 4, when the volume of the metal part 5 existing in the region D is V metal and the volume of the hole 3 is V hole , the value of V hole /(V metal +V hole ) is within the above numerical range. Is preferred.
  • the size of the hole 3 is relatively small (not too large) with respect to the metal part 5 existing in the region D.
  • a sufficient amount of metal can be present in the region D to receive the stress due to the heat cycle (in particular, the stress applied to the periphery of the hole 3). Therefore, crack reduction and the like can be realized to a higher degree.
  • the composite part 2 does not exist in the region within 1.3 r. More preferably, it is preferable that the composite part 2 does not exist in a region within a distance of 1.5r from the center of the hole 3. In other words, it is preferable that only the hole 3 itself or the metal part 5 exists in a region within 1.3 r from the center of the hole 3.
  • the above-mentioned matter shows that the hole 3 has a size smaller than that of the metal part 5 existing in the region D. It means that it exists not in the "edge” but in the "center”. As a result, when the heat radiating member 1 is fastened with a screw, the entire “head” of the screw is likely to fit in the region of the metal portion 5, and cracks and the like during mounting can be further suppressed.
  • the entire metal portion 5 existing in the region D can more uniformly receive the stress due to the heat cycle (in particular, the stress applied to the periphery of the hole 3), and the crack reduction and the like can be realized to a higher degree. Conceivable.
  • the geometric center of gravity of the hole 3 is adopted as the "center of the hole 3".
  • the radius of 3 the radius of a circle having the same area as the area of the hole 3 can be adopted.
  • the distance from the apex P of the heat dissipation member 1 is preferably within L/40.
  • L is the length of the diagonal line of the heat dissipation member 1 as described above. More preferably, the hole 3 does not exist in a region where the distance from the apex P is within L/35.
  • the hole 3 is not located at the “close end” of the heat dissipation member 1, but is provided at a position apart from the end (apex) to some extent.
  • the heat dissipation member 1 as a whole can easily receive the stress uniformly and that the stress around the hole 3 is not excessively applied. That is, it is considered that there is a further effect of reducing cracks and the like.
  • the metal portion 5 may be continuously provided on the peripheral portion of the heat dissipation member 1.
  • the heat dissipation member 1 may have a structure in which a part of the metal portion 5 is formed on part or all of the outer peripheral surface when the heat dissipation member 1 is viewed from the outer peripheral surface direction. Since the metal portion 5 does not exist only around the holes 3 or near the four corners of the heat dissipation member 1 but also on the outer peripheral surface of the heat dissipation member 1, the metal portion 5 as a whole easily receives stress uniformly. This can further reduce cracks and the like.
  • the holes 3 are provided only at the four corners of the heat dissipation member 1. However, the holes 3 may be present at locations other than the four corners of the heat dissipation member 1 in consideration of the configuration of other parts to which the heat dissipation member 1 is attached and the characteristics of various materials forming the heat dissipation member. For example, the additional hole 3 may be provided near the midpoint of the long side of the heat dissipation member 1. Further, in the first embodiment, one hole 3 is provided in one area D, but a plurality of holes 3 may be provided in one area D.
  • the length and width of the heat dissipation member 1 are, for example, about 60 ⁇ 100 mm to 140 ⁇ 200 mm.
  • the thickness of the heat dissipation member 1 is, for example, 2 mm or more and 6 mm or less, preferably 3 mm or more and 5 mm or less.
  • the radius r of the hole 3 is, for example, 3 mm or more and 12 mm or less.
  • the metal part 5 can be a metal containing any one of aluminum, copper, magnesium, silver, etc. as a main component (50% by mass or more).
  • the heat dissipation member 1 can have a thermal conductivity, a thermal expansion coefficient, and the like suitable as a heat dissipation component.
  • the metal portion 5 is preferably a metal containing aluminum or magnesium as a main component, and more preferably a metal containing aluminum as a main component.
  • the metal part 5 may contain other elements in addition to the above-mentioned main component metal.
  • the metal part 5 preferably contains aluminum as a main component, and contains 0.1% by mass to 1.5% by mass of magnesium and 0.1% by mass to 18% by mass of silicon.
  • the alloying of aluminum with silicon or magnesium has the advantages of lowering the melting point of the alloy and lowering the viscosity of the molten metal at high temperatures, making it easier to obtain a dense composite by high temperature casting or the like.
  • the metal part 5 preferably contains, for example, an inorganic fiber in addition to the metal. Since the metal portion 5 includes the inorganic fiber, it is possible to suppress the occurrence of shrinkage voids during the production of the heat dissipation member 1 (for example, the maximum size of shrinkage voids is easily set to 1.0 mm 2 or less). The method of manufacturing the heat dissipation member 1 will be described later. In addition, since the metal portion 5 contains the inorganic fiber, it is possible to further strengthen the hole 3 and the metal portion 5 around the hole 3. Furthermore, since the metal part 5 contains the inorganic fiber, the difference in the coefficient of thermal expansion from the composite part 2 can be reduced, and the thermal stress in the thermal cycle can be further reduced.
  • the material of the inorganic fiber examples include metal, metal oxide, glass, carbon and the like. Of these, metal oxides are preferable, and alumina or silica fibers are particularly preferable.
  • the metal as the main component of the metal part 5 is aluminum, it is preferable that the metal part 5 contains alumina fibers from the viewpoint of affinity with aluminum.
  • the alumina fiber a crystalline alumina fiber having an alumina content of 70% or more is particularly preferable because of its affinity with aluminum.
  • the amount of the inorganic fiber is preferably 3% by volume or more and 30% by volume or less, and more preferably the amount of the inorganic fiber based on the whole metal part 5 from the viewpoint of achieving the above-mentioned effects in a well-balanced manner and the ease of processing the holes 3. It is 5% by volume or more and 28% by volume or less.
  • the composite part 2 is made by impregnating silicon carbide (also called a preform) having voids with a metal.
  • the silicon carbide having voids can be obtained, for example, by preparing one kind or two or more kinds of silicon carbide particles having an average particle size of 1 ⁇ m or more and 300 ⁇ m or less, compressing and molding, and further heating and firing.
  • the relative density of the silicon carbide (formed body of silicon carbide having voids before impregnation with metal) here is preferably 55% or more and 75% or less, more preferably 57% or more and 73% or less, and 60%. It is more preferably 70% or less.
  • the relative density of silicon carbide is defined by the volume ratio of silicon carbide in the volume of the molded body of silicon carbide having voids before being impregnated with metal.
  • a binder may be mixed in addition to silicon carbide when the molded body is manufactured. The proportion of the binder remaining in the molded body is typically 10% or less with respect to the relative density of silicon carbide.
  • the metal with which the composite part 2 is impregnated and the metal contained in the metal part 5 are preferably the same metal (when they are alloys, they have the same alloy composition). This relates in part to the manufacturing method described below. That is, when the composite body 2 and the metal portion 5 are collectively formed by impregnating the molded body of silicon carbide with the metal, the metal impregnated in the composite body 2 and the metal contained in the metal portion 5 are the same. It becomes metal. In short, by making the metal with which the composite part 2 is impregnated and the metal contained in the metal part 5 be the same, there is an advantage that the manufacturing becomes easy. It can also be said that the same metal is used to impregnate the composite part 2 and the metal contained in the metal part 5, so that the thermal expansion coefficients of the respective parts can be easily made uniform and the thermal stress can be further reduced.
  • Method of manufacturing heat dissipation member 1 A method of manufacturing the heat dissipation member 1 will be described. Naturally, the method of manufacturing the heat dissipation member 1 is not limited to the method described below. The heat dissipation member 1 may be manufactured by using various known methods.
  • the heat dissipation member 1 can be manufactured by the following procedure. (1) A step of forming a flat plate-shaped molded body (having voids) having a cutout portion and containing silicon carbide (2) A step of disposing inorganic fibers in the cutout portion of the molded body (3) A molded body and Step (4) of impregnating inorganic fibers with a metal to form the composite part 2 and the metal part 5 A step of cutting the metal-impregnated molded body into the shape of the flat heat dissipation member ((1) or (2))
  • the "cutout portion” means, for example, that a portion (four corner portions or the like) corresponding to the metal portion 5 of the finally obtained heat dissipation member 1 is missing in a rectangular flat plate-shaped molded body. ing.
  • a known dry pressing method is used as a method for shaping the raw material silicon carbide powder
  • a wet pressing method, an extrusion molding method, an injection method, a casting method, a punching method after forming a sheet, or the like can be used.
  • an inorganic or organic binder may be appropriately added in order to develop strength that does not cause abnormalities such as cracking when impregnating the metal.
  • Silica sol is preferable as the binder because a high-strength molded body is easily obtained. It is preferable to add the binder in a volume ratio of 20 or less as a solid content to 100 of silicon carbide because the relative density is improved.
  • a porous concavo-convex mold may be prepared, a slurry containing silicon carbide powder, a binder, water, etc. as a component may be filled in the concave mold, and the convex mold may be compression-molded.
  • the shaping is performed so that the metal part 5 forms a part of the outer peripheral surface of the heat radiating member 1 so that the notch is formed in the molded body. It should have been done.
  • the cutout portion can be preferably formed by using a mold having a desired shape of the cutout portion during compression molding.
  • the cutout portion can also be formed by machining (cutting, cutting, etc.) a plate-shaped molded body.
  • the molded body produced as described above varies depending on the manufacturing conditions, it is usually dried and subjected to heat degreasing treatment, and then fired to obtain a molded body having a predetermined strength.
  • the firing conditions are preferably 700° C. or higher in an inert atmosphere or air. However, in the air, if calcined at a temperature of 1100° C. or higher, the thermal conductivity of the composite obtained by oxidizing the silicon carbide may decrease. Therefore, it is preferable to bake at or below this temperature.
  • the relative density of the molded body is preferably 55% or more and 75% or less.
  • the relative density of the molded body By setting the relative density of the molded body to 55% or more and 75% or less, it is easy to design the thermal expansion coefficient of the heat dissipation member 1 to about 6 ppm/K or more and 10 ppm/K or less.
  • the average particle diameter is an average value of diameters obtained for 1000 particles using a scanning electron microscope (for example, “JSM-T200” manufactured by JEOL Ltd.) and an image analyzer (for example, manufactured by Nippon Avionics Co., Ltd.). Can be obtained by calculating.
  • the inorganic fiber in the cutout portion of the molded body it is preferable to dispose the inorganic fiber in the cutout portion of the molded body, that is, in the portions where the metal portions 5 at the four corners are provided. As a result, it is possible to suppress shrinkage voids that occur during metal impregnation. Further, the coefficient of thermal expansion of the metal part 5 becomes closer to that of the composite part 2, which leads to further reduction of stress due to thermal cycles. Examples of inorganic fibers that can be used are as described above. Therefore, further explanation is omitted.
  • step (3) of forming the composite part 2 and the metal part 5 by impregnating the molded body and the inorganic fiber with a metal a so-called molten metal forging method or a die casting method is adopted in order to impregnate the molded body with the metal. it can.
  • a molded body having a product shape is filled with a molded body, and the molded body is set in a concave press die. Then, a molten metal is poured into the concave mold, sealed with the convex mold, and pressed. After that, the molten metal is cooled and solidified into a block shape. After cooling, a molded body impregnated with a metal (metal-silicon carbide composite) can be obtained. It is also possible to obtain a plurality of metal-silicon carbide composites at once by devising the shape of the gate type.
  • the die casting method is a method in which a molded body is set in a mold having a product-shaped cavity, the mold is clamped, and then metal is injected at high speed to obtain a composite.
  • the molded body and the inorganic fibers are heated before the impregnation in any method. This is to prevent the metal melted in the molded body from solidifying with insufficient impregnation during the impregnation.
  • a metal containing aluminum as a main component
  • the molten metal temperature of the impregnated molten aluminum or its alloy is preferably 750° C. or higher.
  • the temperature condition is particularly preferably 900° C. or less.
  • the composite body portion 2, the hole 3, the metal portion 5 and the like are cut out into a predetermined shape. More specifically, the metal-impregnated formed body is cooled to room temperature and then cut with a wet band saw or the like, whereby the heat dissipation member 1 in a desired form can be obtained.
  • the heat dissipation member 1 manufactured by the above manufacturing method includes a metal part 5 in a part thereof. And the hole 3 can be provided in the metal part 5.
  • FIG. 7 is a schematic diagram for explaining the heat dissipation member (heat dissipation member 1B) of the second embodiment.
  • FIG. 7A shows the heat dissipation member 1B as viewed from above with one main surface as an upper surface
  • FIG. 7B is a cross-sectional view taken along the line BB′ of FIG. 7A.
  • the heat dissipation member 1 has a substantially rectangular flat plate shape. That is, the heat dissipation member 1 has a substantially rectangular flat plate shape when viewed from above with its one main surface as an upper surface.
  • the heat dissipation member 1B there are a first metal portion 5A including at least a part of the peripheral edge portion and a second metal portion 5B not in contact with the peripheral edge portion and the first metal portion 5A.
  • the heat dissipation member 1B is different from the heat dissipation member 1 of the first embodiment (in the heat dissipation member 1 of the first embodiment, all the metal parts 5 are "continuous").
  • the second metal portion 5B preferably has a range of L/55 to L/5, and more preferably L/50 to L/8 from the closest apex in the heat dissipation member 1B, as shown in FIG. (L is the length of the diagonal line of the heat dissipation member 1B).
  • a hole (hole 3) penetrates the second metal portion 5B.
  • the holes 3 normally penetrate only the metal part 5B and not the composite part 2. Further, the hole 3 is usually provided so as to penetrate between both main surfaces of the heat dissipation member 1, and preferably is provided substantially perpendicular to the main surface of the heat dissipation member 1.
  • the metal part is divided into the first metal part 5A and the second metal part 5B, and the second metal part 5B is appropriately separated from the apex of the heat dissipation member 1B.
  • the second embodiment it is easy to design the ratio of the metal part to the entire heat dissipation member 1B to be relatively small, and yet the toughness around the hole 3 can be sufficient (first embodiment). It has an additional technical significance which is not in the form).
  • a point where a metal part (first metal part 5A in FIGS. 7A and 7B) may be continuously provided at the peripheral edge of the heat dissipation member 1B.
  • the parts other than the metal part (the first metal part 5A and the second metal part 5B in FIGS. 7(a) and 7(b)) are usually the composite part in which silicon carbide having voids is impregnated with the metal.
  • the ratio of the volume of the metal part (the first metal part 5A and the second metal part 5B) to the entire volume of the point/heat dissipation member 1B composed of 2 (composite part 2) is 2.9% or more and 12% or more. 40% or more of the total volume of the following points/metal parts (first metal part 5A and second metal part 5B) is within a region D at a distance L/6 from any one of the four corners of the heat dissipation member 1B.
  • the features not mentioned above and the manufacturing method of the heat dissipation member 1B can be basically the same as those in the first embodiment.
  • FIG. 9 is a schematic diagram for explaining the heat dissipation member (heat dissipation member 1C) of the third embodiment.
  • 9A shows the heat dissipation member 1C as viewed from above with one main surface as an upper surface
  • FIG. 9B is a sectional view taken along the line CC′ of FIG. 9A.
  • the heat dissipation member 1C has a substantially rectangular flat plate shape. That is, the heat dissipation member 1C has a substantially rectangular flat plate shape when viewed from above with its one main surface as an upper surface.
  • the surface metal layer 4 exists on the main surface of the heat dissipation member 1C. Especially in this respect, the heat dissipation member 1C is different from the heat dissipation member 1 of the first embodiment and the heat dissipation member 1B of the second embodiment.
  • the surface metal layer 4 can be made of the same metal as that of the metal part 5. That is, in FIG. 9, the surface metal layer 4 and the metal part 5 are shown by different hatching, but when the surface metal layer 4 and the metal part 5 are made of the same metal, the surface metal layer 4 and the metal part 5 are usually The metal part 5 has no “boundary”.
  • the volume of the surface metal layer 4 is also included in the volume of the metal portion 5. That is, in the third embodiment, the total volume of the surface metal layer 4 and the metal portion 5 is 2.9% or more and 12% or less with respect to the entire heat dissipation member 1C. Further, 40% or more of the total volume of the combination of the surface metal layer 4 and the metal portion 5 exists in the region D at a distance L/6 from any one of the four corners of the heat dissipation member 1C. The reason why the volume of the surface metal layer 4 is included in the volume of the metal portion 5 is that there is no “boundary” between the surface metal layer 4 and the metal portion 5 as described above.
  • the thickness of the surface metal layer 4 is, for example, about 100 ⁇ m or more and 300 ⁇ m or less in total in the vertical direction.
  • a plating layer may be further present on the surface of the surface metal layer 4 (not shown in FIG. 9).
  • the plating layer can be, for example, Ni plating.
  • the thickness of the plating layer can be about 10 ⁇ m per layer and about 20 ⁇ m in total in the upper and lower layers.
  • the metal part 5 may be continuously provided in the peripheral portion of the heat dissipation member 1C.
  • -A space other than the metal part 5 (and a part other than the surface metal layer 4) in the heat dissipation member 1C has a void. It is composed of a composite part 2 (composite part 2) in which the silicon carbide that it has is impregnated with a metal.
  • the manufacturing method of the heat dissipation member 1C, and the like can be basically the same as those of the first embodiment and the like.
  • the surface metal layer 4 is the same as the manufacturing method of the heat dissipation member 1 of the first embodiment, except that the molded body and the inorganic fiber of the above (3) are impregnated with metal to form the composite portion 2 and It can be formed by devising the step of forming the metal part 5.
  • devising a concave and/or convex form more specifically, providing a “gap” corresponding to the surface metal layer 4 between the mold and the molded body. Can be formed by.
  • FIG. 10 is a schematic diagram for explaining the heat dissipation member (heat dissipation member 1D) of the fourth embodiment.
  • the figure shows a case where the heat dissipation member 1D is viewed from above with one main surface as an upper surface.
  • the heat dissipation member 1D has a total of eight holes 3 (two through holes provided in the thickness direction of the heat dissipation member 1D), two for each of the metal parts 5 at each corner.
  • By providing a total of eight holes 3 it is possible to more firmly fix the heat dissipation member 1D to another component with a screw or the like. Further, it is considered that the force applied per screw is dispersed as compared with the case where the heat dissipation member is fixed to other parts by the four screws, so that cracks and breaks around the hole 3 can be further reduced.
  • the following points can be basically the same as those in the first embodiment, the second embodiment, or the third embodiment. Therefore, further explanation is omitted.
  • the metal part 5 may be continuously provided on the peripheral edge of the heat dissipation member 1D.
  • -A space other than the metal part 5 (and a part other than the surface metal layer 4) in the heat dissipation member 1D has a void.
  • the ratio of the volume of the metal portion 5 to the entire volume of the heat dissipation member 1D is 2.9% or more 12 % Or less-A point in which 40% or more of the total volume of the metal part 5 exists in a region D at a distance L/6 from any of the four corners of the heat dissipation member 1D.
  • the features not mentioned above and the manufacturing method of the heat dissipation member 1D can be basically the same as those in the first embodiment.
  • Embodiments of the present invention will be described in detail based on examples and comparative examples.
  • the present invention is not limited to the embodiments.
  • the cutout portion was filled with short aluminum fibers (mullite ceramic fibers, "Arsen (registered trademark)" manufactured by Denka Co., Ltd.) in an amount described in the table below.
  • the obtained silicon carbide molded body was processed into a shape of 20 mm ⁇ 7 mm, and the relative density was determined from its size and mass. The relative density was 65%.
  • the obtained silicon carbide molded body was processed into a thickness of 4.8 mm with a diamond processing jig, and 10 samples were sandwiched between SUS plates coated with a release agent, and further, a thickness of 12 mm was applied.
  • the iron plate was fixed with 10 mm ⁇ bolts and nuts to form one block.
  • the four blocks described above were set as one block, preheated to a temperature of 650° C. in an electric furnace, and placed in a pre-heated press mold having voids of internal dimensions 320 mm ⁇ 260 mm ⁇ 440 mm. Then, a molten aluminum alloy (containing 12% by mass of silicon and 0.5% by mass of magnesium) heated to a temperature of 800° C. is poured into a press die and pressed at a pressure of 60 MPa for 20 minutes or more to form silicon carbide. The body was impregnated with aluminum metal.
  • the metal ingot containing the composite obtained by the above step is cooled to room temperature and then cut with a wet band saw to contain a composite part made of an aluminum alloy and silicon carbide and a metal part of the aluminum alloy, 170 mm
  • a metal-silicon carbide composite in the form of a flat plate of ⁇ 130 mm ⁇ 5 mm was taken out.
  • the outer periphery of the obtained metal-silicon carbide composite was machined to 162 mm ⁇ 122 mm (that is, compared with the size of the silicon carbide molded body before impregnation, +1 mm of metal was formed in the peripheral portion). Machined). Thereafter, holes (through holes) each having a diameter of 7.0 mm were formed in each of the four corners by machining to produce a plate-shaped heat dissipation member as shown in FIG. More specifically, it is as follows.
  • Example 13 in consideration of the size of the cutout portion in the silicon carbide molded body before metal impregnation, a metal portion of 7 mm ⁇ 7 mm corresponding to the location where the cutout portion was formed, and a peripheral portion of +1 mm A hole having a diameter of 7.0 mm was provided at the center of a square area of 8 mm ⁇ 8 mm including the metal part.
  • Example 14 As in Example 13, a metal portion of 6.5 mm ⁇ 6.5 mm corresponding to the place where the cutout portion was provided and a metal portion of +1 mm at the peripheral edge portion were combined, A 7.0 mm diameter hole was provided in the center of a 7.5 mm ⁇ 7.5 mm square area.
  • the through hole was formed in the portion where the metal part was formed.
  • each dimension shown in FIG. 11 was measured using an industrial microscope. Further, the thickness of the metal part was measured using a micrometer, the volume of the metal part was calculated, and the volume ratio of the metal layer to the entire heat dissipation member was calculated. In addition, various values were obtained from these values and the size of the originally provided notch.
  • Table 1 collectively shows the properties of the heat dissipation member and the silicon carbide molded body before metal impregnation.
  • Table 2 also shows the evaluation results.
  • Comparative Examples 1 and 2 the ratio of the metal part to the entire heat dissipation member was more than 12% by volume, and cracks and cracks were generated in the composite part and the interface between the composite part and the metal part after the thermal cycle.
  • Example 19 and 20 Example of using magnesium
  • a block of a silicon carbide molded body provided with a notch portion (10 silicon carbide molded bodies, fixed with bolts and nuts) prepared in the same manner as in Examples 1 and 2 was heated at a temperature of 600 in an electric furnace. Preheated to °C. This was placed in a pre-heated press die having a void of 320 mm ⁇ 260 mm ⁇ 440 mm. Then, a molten magnesium pure metal heated to a temperature of 800° C. was poured into a press die and pressed at a pressure of 60 MPa for 20 minutes or more to impregnate the silicon carbide compact and the aluminum short fibers with magnesium. In the same manner as in 1 and 2, impregnation of metal and formation of holes were performed to manufacture a heat dissipation member. Then, the same evaluation as above was performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

空隙を有する炭化珪素に金属が含浸された複合体部と、複合体部とは異なる金属部とを備える、実質的に矩形平板状である放熱部材。ここで、放熱部材の全体の体積に対する、金属部の体積の割合は2.9%以上12%以下である。また、矩形平板状である放熱部材の対角線の長さをLとし、放熱部材を一方の主面を上面として上面視したとき、金属部の全体積のうち40%以上が、放熱部材の四隅のいずれかの頂点から距離L/6の領域D内に存在する。さらに、領域Dの金属部を貫通する孔を有する。

Description

放熱部材
 本発明は、放熱部材に関する。より具体的には、実質的に矩形平板状である放熱部材に関する。
 近年、電気自動車や電鉄用途におけるパワーモジュール用放熱部品として、従来の銅に替わり金属-炭化珪素複合体が使用されるようになってきている。
 金属-炭化珪素複合体の熱伝導率は、銅のそれには及ばない。しかし、その熱膨張係数は6から10ppm/Kと、銅の17ppm/Kの約半分である。よって、モジュールを構成するセラミックス回路基板と放熱板を接着する半田層部分でのクラック発生を抑制しやすく、高い信頼性が得られる傾向にある。
 金属-炭化珪素複合体の金属としては、アルミニウムがしばしば用いられる。
 例えば、特許文献1に記載のように、アルミニウム-炭化珪素複合体は、(1)炭化珪素粉末に添加物等を混合する、(2)乾式プレス法、押し出し法やインジェクション法等により成形体を形成する、(3)その成形体を焼成して、炭化珪素を主成分とした多孔質の成形体(プリフォーム)を作製する、(4)このプリフォームに、非加圧含浸法や、溶湯鍛造法、ダイキャスト法などの加圧含浸法でアルミニウムを含有する金属を含浸させる、といった工程により作製することができる。
 金属-炭化珪素複合体には、しばしば、表面加工や研磨が施された後にメッキ加工が施される。そして、電子・電気部品から発生する熱を放熱するための部品、即ち放熱部品として用いられる。この放熱部品は、さらに放熱フィン等の他の放熱用の部品或いは製品外枠等にネジ止めされてモジュールとなる。そのため、金属-炭化珪素複合体には、予めその外周或いはその近傍にネジ止め用の孔部が形成されている場合がある。
 孔部の形成方法としては様々な方法が知られている。例えば特許文献1及び2に記載のように、成形体を作製する際に、予め成形時にピン等を用いて所定位置に孔を形成した成形体、或いは、成形体の作製後に所定位置を加工して孔部を設けた成形体などを用いて、金属を含浸させ、その後、金属部位を機械加工して孔部を形成する方法が知られている。
特許第3468358号公報 特許第3662221号公報
 金属-炭化珪素複合体は、上述のように放熱部品として高い信頼性が得られる傾向にある。しかしながら、市場ニーズに伴い、信頼性に対する要求性能はますます高まっている。
 例えば、最近、従来よりも厳しいヒートサイクル条件の下でもクラック発生が抑えられることが求められている。しかし、従来技術では、熱サイクルで生じる金属部と金属-炭化珪素複合体との熱膨張係数差によって生じる熱応力が大きくなり、クラックが発生しやすいという問題があった。
 すなわち、従来よりも高い耐クラック性を持ち、最近の厳しい信頼性要求を満たす金属-炭化珪素複合体ないし放熱部品が求められている。
 本発明はこのような事情に鑑みてなされたものである。本発明は、従来よりも高い耐クラック性を持ち、厳しい信頼性要求を満たしうる放熱部材を提供することを目的とする。
 本発明者らは、鋭意検討の結果、以下に提供される発明をなし、上記課題を解決した。
 本発明によれば、
 実質的に矩形平板状である放熱部材であって、
 当該放熱部材は、空隙を有する炭化珪素に金属が含浸された複合体部と、前記複合体部とは異なる金属部とを備え、
 当該放熱部材の全体の体積に対する、前記金属部の体積の割合は2.9%以上12%以下であり、 
 当該放熱部材の対角線の長さをLとし、当該放熱部材を一方の主面を上面として上面視したとき、前記金属部の全体積のうち40%以上が、当該放熱部材の四隅のいずれかの頂点から距離L/6の領域D内に存在し、
 前記領域Dの前記金属部を貫通する孔を有する、放熱部材、
が提供される。
 本発明によれば、従来よりも高い耐クラック性を持ち、厳しい信頼性要求を満たしうる放熱部材が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1実施形態の放熱部材を説明するための模式的な図である。図1(a)は放熱部材を一方の主面を上面として上面視したときを表し、図1(b)は図1(a)のA-A'断面図である。 第1実施形態の放熱部材を説明するための模式的な図である。説明のために補助線等を加筆している。 図1(a)のαで示した部分を拡大した図である。説明のために補助線等を加筆している。 図1(a)のαで示した部分を拡大した図である。説明のために補助線等を加筆している。 第1実施形態の放熱部材を説明するための模式的な図である。説明のために補助線等を加筆している。 第1実施形態の放熱部材を説明するための模式的な図である。説明のために補助線等を加筆している。 第2実施形態の放熱部材を説明するための模式的な図である。図7(a)は放熱部材を一方の主面を上面として上面視したときを表し、図7(b)は図7(a)のB-B'断面図である。 第2実施形態の放熱部材の一部を拡大して示した模式的な図である。説明のために補助線等を加筆している。 第3実施形態の放熱部材を説明するための模式的な図である。図9(a)は放熱部材を一方の主面を上面として上面視したときを表し、図9(b)は図9(a)のC-C'断面図である。 第4実施形態の放熱部材を説明するための模式的な図である。放熱部材を一方の主面を上面として上面視したときを表す。 放熱部材の体積を求めるための測定位置について説明するための図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、(i)同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合や、(ii)特に図2以降において、図1と同様の構成要素に改めては符号を付さない場合がある。
 すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応するものではない。また特に、図2から図6は、図1(a)の一部の拡大図ではあるが、説明のわかりやすさ等のため、各部位の相対的な大きさ等が必ずしも図1(a)のそれと一致しないことがある。
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
<第1実施形態>
 図1は、第1実施形態の放熱部材(放熱部材1)を説明するための模式的な図である。
 図1(a)は、放熱部材1を、一方の主面を上面として上面視したときを表し、図1(b)は図1(a)のA-A'断面図である。
 図1(a)に示されるように、放熱部材1は、実質的に矩形平板状である。すなわち、放熱部材1は、その一方の主面を上面として上面視したとき、実質的に矩形の平板状である。
 放熱部材1は、典型的には、その四隅に金属部5を備えている。
 また、放熱部材1の周縁部に、金属部5の一部が連続的に設けられていてもよい。ここで「周縁部」とは、放熱部材1の一方の主面を上面として上面視したときの短辺の長さをL1、長辺の長さをL2としたとき、短辺から放熱部材1の内側方向にL2/10以内、または、長辺から放熱部材1の内側方向にL1/10以内の領域をいう。
 一方、放熱部材1における、金属部5以外の部分は、通常、空隙を有する炭化珪素に金属が含浸された複合体部2(以下、単に複合体部2とも表記する)で構成されている。そして、放熱部材1の全体の体積に対する、金属部5の体積の割合は、2.9%以上12%以下である。
 図2は、放熱部材1について説明するための追加の図であり、図1(a)の放熱部材1にいくつかの補助線や文字を加筆したものである。
 図2においては、矩形平板状の放熱部材1の対角線の長さをLとしている。また、放熱部材1を、その一方の主面を上面として上面視したとき、放熱部材1の四隅のいずれかの頂点から距離L/6の領域を「領域D」と表記している。
 ここで、放熱部材1は、領域D内に存在する金属部5を貫通する孔3を有している。孔3は、通常は金属部5のみを貫通し、複合体部2を通らない。また、孔3は通常、放熱部材1の両主面間を貫くように設けられ、好ましくは放熱部材1の主面に略垂直に設けられている。孔3にネジ等の固定部材を挿通させることにより、放熱部材1を他の部品に固定することができる。
 また、金属部5の全体積のうち40%以上が、領域D内に存在する。 
 補足しておくと、放熱部材1が「実質的に矩形」であるとは、例えば図1に示されるように、放熱部材1の四隅のうち少なくとも1つが、直角形状ではなく、やや丸みを帯びた形状であってもよいことを意味する(もちろん、四隅は直角形状であってもよい)。
 ここで、放熱部材1の四隅のうち少なくとも1つが丸みを帯びた形状である場合、矩形の「頂点」は図3に示されるように定義することができる(図3は、図1(a)のαで示した部分を拡大した図である)。すなわち、放熱部材1を上面視したときの短辺と長辺の直線部分を延長したときに交差する点Pを「頂点」と定義することができる。また、図3に示されるようにして決めた点Pを、図2における長さ「L」を測定する際の始点または終点とすることができる。
 放熱部材1の如き放熱部材が、従来よりも高い耐クラック性を持ち、厳しい信頼性要求を満たしうる理由については、以下のように説明することができる。
 放熱部材1について敢えて大雑把に説明すると、放熱部材1は、
(1)放熱部材1の全体の体積に対する金属部5の体積の割合は2.9%以上12%以下であり、
(2)その金属部5の多くの部分または全部が、放熱部材1の四隅に近い部分に存在し、
(3)そして、その四隅に近い部分の金属部5の部分に貫通孔(孔3)がある
といった特徴を有するものである。
 ここで、放熱部材1の全体の体積に対する金属部5の体積の割合が「2.9%以上」で、かつ、その金属部5の大部分または全部が放熱部材1の四隅に近い部分に存在することで、他の部品に取り付けるのに適した(十分大きな)サイズの孔3を金属部5に設けることができる。これにより、放熱部材1をしっかりと他の部品に取り付けることができ、信頼性の向上につながると考えられる。
 一方、金属部5と複合体部2は、熱膨張係数が異なるところ、放熱部材1の全体の体積に対する金属部5の体積の割合が「12%以下」であることで、熱サイクルによって生じる熱応力を十分に小さくすることができる。このことは特にクラックの低減(とりわけ、複合体部2と、領域D内に存在する金属部5との界面付近におけるクラックの低減)に効果的と考えられる。
 そして、複合体部2に比べて「割れにくい」「クラックが入りにくい」金属部5の部分に貫通孔(孔3)があることによっても、貫通孔周辺すなわちネジで締め付けられる部分周辺のクラックが一層低減されると考えられる(金属の展延性により、金属部5の部分にある孔3に、ネジなどからの力がかかっても、クラック発生が抑えられると考えられる)。
 加えて、金属部5は、複合体部2に比べて弾性率が低い傾向にある。このことは、孔3を形成する際に割れ等が発生しにくい、または、放熱部材1を他の部品にネジ等で取り付ける際に割れ等が発生しにくい、といったメリットにつながる(弾性率が低いことは、衝撃を吸収しやすいことにつながる)。
 このメリットは、放熱部材1を他の部品にネジ等で取り付けやすくなることを意味し、生産性の向上等の点で好ましい。
 補足すると、上記で説明したクラックの低減ないし信頼性の向上は、従来技術で達成されていたレベルよりも更に高いものである。
 例えば、前述の特許文献2の実施例では、-40℃で30分間と、125℃で30分間の熱サイクルを300回繰り返してクラックや割れの有無が無かったことが示されているが、第1実施形態の放熱部材(および後述の第2、第3実施形態の放熱部材)では、それより過酷な、-40℃で30分間と、150℃で30分間(特許文献2の実施例の条件より25℃高い)の熱サイクルを300回繰り返しても、クラックや割れを抑えうる。
 放熱部材1の全体の体積に対する金属部5の体積の割合は、より一層のクラック低減の観点から、3.0%以上11.8%以下が好ましく、3.2%以上11.5%以下がより好ましい。
 領域D内に存在する金属部5の厚みは、複合体部2の厚みと略等しいことが好ましい。孔3周辺の金属部5が、複合体部2と比較して十分に厚いことで、十分な靱性、より良好な耐クラック性などを得ることができる。
 ここで、厚みが「略等しい」とは、(金属部5の厚み/複合体部2の厚み)が、例えば0.8以上1.2以下、好ましくは0.9以上1.1以下であることを意味する。
 補足すると、ここでの「複合体部2の厚み」は、例えば、後述の図11で説明する厚み測定で求められる厚みを採用することができる。また、「金属部5の厚み」は、金属部5が図1のように放熱部材1の上面から下面まで連続的に存在している場合には、金属部5をマイクロメータやノギスで測定する等により求めることができる。もちろん、厚みの求め方はこれらに限定されず、ある程度の精度で測定可能な任意の方法を採用することができる。
 補足すると、図2では、四隅にある4つの領域D内に、それぞれ、略同体積(上面視においては略同面積)の金属部5が存在する。放熱部材1全体としての信頼性、特定の箇所のみに過度な応力をかからないようにする等の観点から、4つの領域D内に、それぞれ、略同体積の金属部5が存在することが好ましい。
 より具体的には、四隅にある4つの領域Dにおいて、含まれる金属部5の体積が一番大きい領域D中の金属部5の体積をVmaxとし、含まれる金属部5の体積が一番小さい領域D中の金属部5の体積をVminとしたとき、Vmax/Vminの値が1以上1.2以下であることが好ましい。
 領域D内に存在する金属部5の体積をVmetalとし、孔3の体積をVholeとしたとき、Vhole/(Vmetal+Vhole)値は、0.60以下であることが好ましく、0.55以下であることがより好ましく、0.50以下であることがさらに好ましい。Vhole/(Vmetal+Vhole)の値の下限は特にないが、製造適性などを鑑みると、例えば0.1以上、好ましくは0.3以上、より好ましくは0.5以上とすることができる。
 念のため補足すると、孔3の体積Vholeとは、2つの主面間の孔3における孔3が占める体積のことである。例えば、孔3が円柱状であり、放熱部材1の主面に略垂直に設けられている場合には、「放熱部材1の一方の主面を上面として放熱部材1を上面視したときの孔3の面積×孔3近傍の放熱部材1の厚み」の計算によりVholeを求めることができる。別の言い方として、Vholeは、放熱部材1に孔3を設けるに際し、放熱部材1から「くり抜かれた」部分の体積ということもできる。
 図4は、図1(a)のαで示した部分を拡大した図(放熱部材1の四隅のうちの一つを拡大した図)である。図4において、領域D内に存在する金属部5の体積をVmetalとし、孔3の体積をVholeとしたとき、Vhole/(Vmetal+Vhole)の値が上記の数値範囲にあることが好ましい。
 上記事項は、孔3の大きさが、領域D内に存在する金属部5に対して相対的に小さい(大きすぎない)ことを意味する。これにより、ヒートサイクルによる応力(特に、孔3周辺にかかる応力)を十二分に受け止められる量の金属が領域D内に存在できる。よって、クラック低減等をより高度に実現することができる。
 別観点として、図5に示されるように、放熱部材1の一方の主面を上面として放熱部材1を上面視したときの、孔3の半径をrとしたとき、孔3の中心からの距離が1.3r以内の領域には複合体部2が存在しないことが好ましい。より好ましくは、孔3の中心からの距離が1.5r以内の領域には複合体部2が存在しないことが好ましい。別の言い方としては、孔3の中心からの距離が1.3r以内の領域には、孔3自体または金属部5のみが存在することが好ましい。
 上記事項は、孔3の大きさが、領域D内に存在する金属部5に対して相対的に小さい(大きすぎない)ことに加え、孔3が、領域D内に存在する金属部5の「端っこ」ではなくその「中心付近」に存在することを意味する。これにより、放熱部材1をネジで留める際、ネジの「頭」の部分全体が金属部5の領域に収まりやすくなり、取り付け時の割れ等を一層発生しにくくすることができる。また、領域D内に存在する金属部5全体として、ヒートサイクルによる応力(特に、孔3周辺にかかる応力)をより均一に受け止めることができ、クラック低減等をより高度に実現することができるとも考えられる。
 補足すると、もし、孔3を上面視したときの形状が実質的に真円とみなせない場合には、「孔3の中心」としては、孔3の幾何学的な重心を採用し、「孔3の半径」としては、孔3の面積と同じ面積となる円の半径を採用することができる。
 さらに別観点として、図6に示されるように、放熱部材1の一方の主面を上面として放熱部材1を上面視したとき、好ましくは、放熱部材1の頂点Pからの距離がL/40以内の領域には、孔3が存在しない(Lは、前述のように、放熱部材1の対角線の長さである)。より好ましくは、頂点Pからの距離がL/35以内の領域には、孔3が存在しない。
 上記事項は、孔3が放熱部材1の「ギリギリ端」にあるのではなく、端(頂点)からある程度離れた場所に孔3が設けられていることを意味する。これにより、放熱部材1全体として応力を均一に受け止めやすくなる、孔3周辺のみに過度な応力がかからない、等の技術的効果が考えられる。すなわち、クラック等の一層の低減効果があると考えられる。
 前述のように、放熱部材1の周縁部には、連続的に金属部5が設けられていてもよい。換言すると、放熱部材1は、放熱部材1を外周面方向から見たとき、金属部5の一部が、外周面の一部または全部に形成された構造であってもよい。
 金属部5が、孔3の周辺または放熱部材1の四隅近辺のみに存在するのではなく、放熱部材1の外周面にも存在することで、金属部5全体として応力を均一に受け止めやすくなる。これにより、クラック等を一層低減することができる。
 第1実施形態では、孔3は放熱部材1の四隅にのみ設けられている。しかし、放熱部材1が取り付けられる他の部品の構成や、放熱部品を構成する各種材料の特性などを考慮して、孔3は放熱部材1の四隅以外の場所に存在してもよい。例えば、放熱部材1の長辺の中点付近などに追加の孔3があってもよい。
 また、第1実施形態では、一つの領域D内に一つの孔3が設けられているが、一つの領域D内に複数の孔3が設けられていてもよい。
 放熱部材1の縦横の長さは、一例として、60×100mmから140×200mm程度である。
 放熱部材1の厚みは、一例として2mm以上6mm以下、好ましくは3mm以上5mm以下である。
 孔3の半径rは、一例として3mm以上12mm以下である。
 金属部5や複合体部2の材質、素材について説明する。
 金属部5は、アルミニウム、銅、マグネシウム、銀などのうちの、いずれか1種を主成分(50質量%以上)とする金属であることができる。このような金属を金属部5の素材とすることで、放熱部材1は、放熱部品として好適な熱伝導率、熱膨張係数などを備えることができる。
 金属部5は、アルミニウムまたはマグネシウムを主成分とする金属であることが好ましく、アルミニウムを主成分とする金属であることがより好ましい。
 金属部5は、上記の主成分たる金属以外に、他の元素を含んでもよい。例えば、金属部5は、アルミニウムを主成分とし、0.1質量%以上1.5質量%以下のマグネシウムと0.1質量%以上18質量%以下のシリコンを含有することが好ましい。アルミニウムにシリコンやマグネシウムが合金化することにより、合金の融点低下や高温での溶融金属の粘性低下があり、高温鋳造等で緻密な複合体を得やすくなるという利点がある。
 金属部5は、金属のほか、例えば、無機繊維を含むことが好ましい。金属部5が無機繊維を含むことで、放熱部材1の製造時の引け鬆の発生を抑制することができる(例えば、引け鬆の大きさの最大値を1.0mm以下としやすい)。なお、放熱部材1の製造方法については後述する。
 また、金属部5が無機繊維を含むことにより、孔3およびその周辺の金属部5の一層の強靭化を図ることができる。
 さらに、金属部5が無機繊維を含むことにより、複合体部2との熱膨張係数差を小さくでき、熱サイクルでの熱応力を一層小さくすることもできる。
 無機繊維の素材としては、金属、金属酸化物、ガラス、カーボン等が挙げられる。中でも、金属酸化物が好ましく、アルミナまたはシリカ繊維が特に好ましい。
 特に、金属部5の主成分たる金属がアルミニウムである場合、アルミニウムとの親和性の観点から、金属部5にアルミナ繊維を含ませることが好ましい。アルミナ繊維としては、アルミナ含有量が70%以上の結晶質のアルミナ繊維であることが、アルミニウムとの親和性という理由より特に好ましい。
 上記の各効果をバランスよく発現させる観点や、孔3の加工の容易性などから、無機繊維の量は、金属部5全体に対して、好ましくは3体積%以上30体積%以下、より好ましくは5体積%以上28体積%以下である。
 典型的には、複合体部2は、空隙を有する炭化珪素(プリフォームなどとも呼ばれる)に金属が含浸されたものである。
 空隙を有する炭化珪素は、例えば、平均粒子径が1μm以上300μm以下の炭化珪素粒子を一種又は二種以上準備し、これを圧縮して成形、さらに加熱焼成することで得ることができる。ここでの炭化珪素(金属を含浸する前の、空隙を有する炭化珪素の成形体)の相対密度は55%以上75%以下であることが好ましく、57%以上73%以下がより好ましく、60%以上70%以下がさらに好ましい。
 炭化珪素の相対密度を55%以上75%以下とすることにより、放熱部材1の熱膨張係数を6ppm/K以上10ppm/K以下程度に設計しやすい。このような設計により、熱サイクルで発生する熱応力を一層小さくしやすい。
 炭化珪素の相対密度は、金属を含浸する前の空隙を有する炭化珪素の成形体の体積中に占める炭化珪素の体積割合で定義される。
 成形体の作製時には、炭化珪素の他にもバインダーを混ぜることができる。成形体中に残留するバインダーの割合は、典型的には、炭化珪素の相対密度に対して10%以下である。
 複合体部2に含浸される金属と、金属部5が含む金属は、同一の金属である(合金である場合には、同一の合金組成である)ことが好ましい。
 これは、一つには、後述する製造方法に関係する。すなわち、炭化珪素の成形体に金属を含浸させて、複合体部2および金属部5を一括して形成すると、複合体部2に含浸される金属と、金属部5が含む金属は、同一の金属となる。要するに、複合体部2に含浸される金属と、金属部5が含む金属を同一とすることで、製造が容易になるメリットがある。
 また、複合体部2に含浸される金属と、金属部5が含む金属が同一であることで、各部の熱膨張係数を揃えやすく、そして熱応力を一層低減しやすいということも言える。
(放熱部材1の製造方法)
 放熱部材1の製造方法について説明する。当然ながら、放熱部材1の製造方法は、以下に説明する方法のみに限定されない。公知の各種手法を用いて放熱部材1を製造すればよい。
 例えば、放熱部材1は、以下の手順で製造することができる。
(1)切り欠き部を有し、炭化珪素を含む平板状の成形体(空隙を有する)を形成する工程
(2)成形体の切り欠き部に無機繊維を配置する工程
(3)成形体及び無機繊維に金属を含浸させて複合体部2及び金属部5を形成する工程
(4)金属が含浸した成形体を、平板状の放熱部材1の形状に切り出す工程
((1)や(2)の「切り欠き部」とは、例えば、矩形平板状の成形体において、最終的に得られる放熱部材1の金属部5に対応する部分(四隅の部分等)が欠損していることを意図している。)
 上記手順についてより詳しく説明する。
 上記(1)の、切り欠き部を有し、炭化珪素を含む平板状の成形体(空隙を有する)を形成する工程において、原料の炭化珪素粉末を成形する方法として、公知の乾式プレス法、湿式プレス法、押出し成型法、インジェクション法、キャスティング法、シート成形後打ち抜く方法等を用いることができる。
 このとき、金属の含浸時に割れなどの異常を発生しないような強度を発現させるために、無機質または有機質のバインダーを適宜添加してもよい。高強度の成形体が得やすいため、バインダーとしてはシリカゾルが好ましい。バインダーは、体積比率で、固形分として炭化珪素100に対し20以下の添加が、相対密度の向上という理由より好ましい。
 例えば湿式プレス法を適用する場合には、多孔質の凹凸型を用意し、凹型内に炭化珪素粉末、バインダー、水等を成分とするスラリーを充填し、凸型で圧縮成形すればよい。湿式プレス法を適用する場合には、例えば図1に示されるように金属部5が放熱部材1の外周面の一部を形成するよう、成形体に切り欠き部が形成されるように付形されていればよい。
 切り欠き部は、好ましくは、圧縮成形時に、所望の切り欠き部の形状を有する型枠等を用いることで形成することができる。また、切り欠き部は、板状の成形体を機械加工(切削、切断等)することでも形成できる。
 上記のようにして作製された成形体は、製造条件によって異なるものの、通常は乾燥、加熱脱脂処理を経た後、所定の強度を有する成形体を得るため焼成される。
 焼成条件としては、不活性雰囲気中や大気中、700℃以上の温度で行うことが好ましい。ただし、大気中の場合、1100℃以上の温度で焼成すると、炭化珪素が酸化し得られる複合体の熱伝導率が低下する場合がある。よって、この温度以下で焼成することが好ましい。
 前述したように、成形体の相対密度は55%以上75%以下とすることが好ましい。成形体の相対密度を55%以上75%以下とすることにより、放熱部材1の熱膨張係数を6ppm/K以上10ppm/K以下程度に設計しやすい。
 成形体の相対密度を55%以上75%以下とするには、粒度の異なる炭化珪素粉末を配合することが好ましい。炭化珪素の場合、平均粒径が100μmの粉末と平均粒径が10μm又はこれより細かい粉末を混合したもの、あるいは平均粒径が60μmの粉末と平均粒径が10μm又はこれより細かい粉末を混合した粉末の使用がその一例として挙げられる。
 ここで、平均粒径は、走査型電子顕微鏡(例えば日本電子社製「JSM-T200型」)と画像解析装置(例えば日本アビオニクス社製)を用い、1000個の粒子について求めた径の平均値を算出することによって求めることができる。
 上記(2)の、成形体の切り欠き部に無機繊維を配置する工程では、成形体の切り欠き部、すなわち四隅の金属部5を設ける部分に、無機繊維を配置することが好ましい。これにより、金属の含浸時に発生する引け鬆を抑制できる。また、金属部5の熱膨張係数を複合体部2のそれに近づけやすくなり、熱サイクルによる応力の一層の低減につながる。
 用いることができる無機繊維の例は前述のとおりである。よって改めての説明は省略する。
 上記(3)の、成形体及び無機繊維に金属を含浸させて複合体部2及び金属部5を形成する工程では、成形体へ金属を含浸させるために、いわゆる溶湯鍛造法やダイカスト法が採用できる。
 溶湯鍛造法の場合、製品形状を持つ湯口付きの型内に成形体を充填し、更にこれをプレス凹型内にセットする。その後、金属の溶湯を凹型内に注入し、凸型で密閉し、プレスする。さらにその後、溶湯を冷却固化してブロック状とする。冷却後、成形体に金属が含浸されたもの(金属-炭化珪素複合体)を得ることができる。
 湯口付き型の形状を工夫することで、一度に複数の金属-炭化珪素複合体を得ることもできる。
 ダイカスト法は、成形体を製品形状のキャビティーを有する金型内にセットし、型締めを行い、その後、金属を高速注入し、複合体を得る方法である。
 成形体および無機繊維へ金属の溶湯を含浸させる場合、いずれの方法においても、成形体および無機繊維は含浸前に加熱されていることが好ましい。これは、含浸途中において、成形体内で溶融した金属が含浸不十分のままに固化することを防ぐためである。
 例えば、アルミニウムを主成分とする金属を含浸させる場合、使用するアルミニウム合金の組成や成形体の大きさ・形状等により異なるが、550℃以上に加熱しておくことが好ましい。
 また、含浸させる溶融アルミニウムまたはその合金の溶湯温度は、通常750℃以上が好ましい。アルミニウムを含有する金属が、0.1質量%以上1.5質量%以下のマグネシウムと0.1質量%以上18質量%以下のシリコンを含有する場合、温度条件は900℃以下が特に好ましい。
 上記(4)の、金属が含浸した成形体を、平板状の放熱部材1の形状に切り出す工程では、複合体部2、孔3、金属部5などを所定の形状に切り出して形成する。
 より具体的には、金属が含浸した形成体を室温まで冷却し、その後、湿式バンドソー等で切断することで、所望の形態の放熱部材1を得ることができる。
 上記の製造方法によって製造された放熱部材1は、その一部に金属部5を備える。そして、その金属部5に孔3を設けることができる。
<第2実施形態>
 図7は、第2実施形態の放熱部材(放熱部材1B)を説明するための模式的な図である。
 図7(a)は、放熱部材1Bを、一方の主面を上面として上面視したときを表し、図7(b)は図7(a)のB-B'断面図である。
 図7(a)に示されるように、放熱部材1は、実質的に矩形平板状である。すなわち、放熱部材1は、その一方の主面を上面として上面視したとき、実質的に矩形の平板状である。
 放熱部材1Bにおいては、その周縁部の少なくとも一部を含む第一金属部5Aと、その周縁部および第一金属部5Aと接していない第二金属部5Bとが存在する。特にこの点において、放熱部材1Bは、第1実施形態の放熱部材1と異なっている(第1実施形態の放熱部材1においては、全ての金属部5は「一続き」になっている)。
 ここで、第二金属部5Bは、好ましくは、図8に示されるように、放熱部材1B内の最も近い頂点からL/55からL/5、より好ましくはL/50からL/8の範囲に存在する(Lは、放熱部材1Bの対角線の長さである)。
 また、第二金属部5Bには、孔(孔3)が貫通している。孔3は、通常は金属部5Bのみを貫通し、複合体部2を通らない。また、孔3は通常、放熱部材1の両主面間を貫くように設けられ、好ましくは放熱部材1の主面に略垂直に設けられている。
 第2実施形態においては、金属部が第一金属部5Aおよび第二金属部5Bに分かれ、そしてその第二金属部5Bが放熱部材1Bの頂点から適度に離れている。これらのことにより、第2実施形態は、放熱部材1B全体に対する金属部の割合を比較的小さく設計しやすく、それでいて孔3周辺の靱性を十分とすることができる等の技術的意義(第1実施形態にはない追加の技術的意義)を有する。
 第2実施形態において、以下の点は、基本的に第1実施形態と同様とすることができる。よって改めての説明は省略する。
・放熱部材1Bの周縁部には、連続的に金属部(図7(a)および図7(b)においては、第一金属部5A)が設けられていてもよい点
・放熱部材1Bにおける、金属部(図7(a)および図7(b)においては、第一金属部5Aおよび第二金属部5B)以外の部分は、通常、空隙を有する炭化珪素に金属が含浸された複合体部2(複合体部2)で構成される点
・放熱部材1Bの全体の体積に対する、金属部(第一金属部5Aおよび第二金属部5B)の体積の割合は、2.9%以上12%以下である点
・金属部(第一金属部5Aおよび第二金属部5B)の全体積のうち40%以上が、放熱部材1Bの四隅のいずれかの頂点から距離L/6の領域D内に存在する点
 上記に明記しなかった特徴や、放熱部材1Bの製造方法などについても、基本的には第1実施形態と同様とすることができる。
<第3実施形態>
 図9は、第3実施形態の放熱部材(放熱部材1C)を説明するための模式的な図である。
 図9(a)は、放熱部材1Cを、一方の主面を上面として上面視したときを表し、図9(b)は図9(a)のC-C'断面図である。
 図9(a)に示されるように、放熱部材1Cは、実質的に矩形平板状である。すなわち、放熱部材1Cは、その一方の主面を上面として上面視したとき、実質的に矩形の平板状である。
 放熱部材1Cの主面には、表面金属層4が存在する。特にこの点において、放熱部材1Cは、第1実施形態の放熱部材1や第2実施形態の放熱部材1Bとは異なっている。
 典型的には、表面金属層4は、金属部5を構成する金属と同じ金属で構成することができる。すなわち、図9において、表面金属層4と金属部5は別のハッチングで示されているが、表面金属層4と金属部5が同じ金属で構成されている場合、通常、表面金属層4と金属部5には「境界」は無い。
 補足しておくと、第3実施形態のように放熱部材1Cに表面金属層4が存在する場合、表面金属層4の体積も、金属部5の体積に含めるものとする。
 すなわち、第3実施形態においては、放熱部材1Cの全体に対する、表面金属層4と金属部5を合わせた体積が、2.9%以上12%以下である。また、表面金属層4と金属部5を合わせた全体積のうち40%以上が、放熱部材1Cの四隅のいずれかの頂点から距離L/6の領域D内に存在する。
 表面金属層4の体積を金属部5の体積に含める理由は、上述のように、表面金属層4と金属部5に「境界」が無い場合があるためである。
 図9(b)において、表面金属層4の厚みは、例えば上下あわせて100μm以上300μm以下程度である。
 また、表面金属層4の表面に、さらにメッキ層が存在してもよい(図9には示していない)。メッキ層は、例えばNiメッキであることができる。メッキ層の厚みは、一層あたり10μm程度、上下あわせて20μm程度とすることができる。
 第3実施形態において、例えば以下の点は、基本的に第1実施形態または第2実施形態と同様とすることができる。よって改めての説明は省略する。
・放熱部材1Cの周縁部には、連続的に金属部5が設けられていてもよい点
・放熱部材1Cにおける、金属部5以外の部分(および表面金属層4以外の部分)は、空隙を有する炭化珪素に金属が含浸された複合体部2(複合体部2)で構成されている点
 また、上記に明記しなかった特徴や、放熱部材1Cの製造方法などについても、基本的には第1実施形態等と同様とすることができる。
 製造方法について1点補足すると、表面金属層4は、第1実施形態の放熱部材1の製造方法において、前述の(3)の、成形体及び無機繊維に金属を含浸させて複合体部2及び金属部5を形成する工程、を工夫することで形成することができる。例えば、その工程(3)において、凹型および/または凸型の形態を工夫する、より具体的には、型と成形体との間に、表面金属層4に相当する「隙間」を設けるといった工夫により形成することができる。
<第4実施形態>
 図10は、第4実施形態の放熱部材(放熱部材1D)を説明するための模式的な図である。放熱部材1Dを、一方の主面を上面として上面視したときを表している。
 放熱部材1Dは、各隅の金属部5に2つずつ、計8つの孔3(放熱部材1Dの厚み方向に設けられた貫通孔)を有している。計8つの孔3を有することで、ネジ等によって一層強固に放熱部材1Dを他の部品に固定することができる。また、ネジ4つで放熱部材を他の部品に固定する場合よりもネジ1本あたりにかかる力が分散されるため、孔3周辺のクラックや割れを一層低減できると考えられる。
 第4実施形態において、以下の点は、基本的に第1実施形態、第2実施形態または第3実施形態と同様とすることができる。よって改めての説明は省略する。
・放熱部材1Dの周縁部には、連続的に金属部5が設けられていてもよい点
・放熱部材1Dにおける、金属部5以外の部分(および表面金属層4以外の部分)は、空隙を有する炭化珪素に金属が含浸された複合体部2(複合体部2)で構成されている点
・放熱部材1Dの全体の体積に対する、金属部5の体積の割合は、2.9%以上12%以下である点
・金属部5の全体積のうち40%以上が、放熱部材1Dの四隅のいずれかの頂点から距離L/6の領域D内に存在する点
 上記に明記しなかった特徴や、放熱部材1Dの製造方法などについても、基本的には第1実施形態等と同様とすることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。なお、本発明は実施例に限定されるものではない。
(放熱部材の作成)
 市販の高純度炭化珪素粉末A(平均粒径:200μm)、炭化珪素粉末B(平均粒径:20μm)およびシリカゾル(日産化学社製:スノーテックス)を質量比70:40:5で配合し、攪拌混合機で1時間混合して、混合粉末を得た。
 この混合粉末に10MPaの圧力をかけ、大きさ160mm×120mm×7mmで、四隅に後掲の表に示す大きさの切り欠き部を有する平板状に成形した。これを温度100℃で2時間乾燥させ、その後、大気中、900℃で2時間加熱して、炭化珪素成形体を作製した。なお、切り欠き部には、アルミニウム質短繊維(ムライト質のセラミックスファイバー、デンカ株式会社製「アルセン(登録商標)」)を、後掲の表に記載の量で充填した。
 なお、得られた炭化珪素成形体を、20mmφ×7mmの形状に加工して、その寸法と質量より相対密度を求めた。相対密度は65%であった。
 次に、得られた炭化珪素成形体を、ダイヤモンド加工治具で4.8mmの厚さに加工し、10枚の各試料間を、離型剤を塗布したSUS板で挟み、さらに12mm厚の鉄板を、10mmφのボルト及びナットで固定して一つのブロックを形成した。
 上記のブロック4個を1ブロックとして、電気炉で温度650℃に予備加熱し、予め加熱しておいた内寸320mm×260mm×440mmの空隙を有するプレス型内に載置した。
 そして、温度800℃に加熱したアルミニウム合金(シリコンを12質量%、マグネシウムを0.5質量%含有する)の溶湯をプレス型内に流し込み、60MPaの圧力で20分以上プレスして、炭化珪素成形体にアルミニウム金属を含浸させた。
 上記工程により得られた複合体を含む金属塊を、室温まで冷却し、その後、湿式バンドソーにて切断して、アルミニウム合金と炭化珪素とからなる複合体部およびアルミニウム合金の金属部を含む、170mm×130mm×5mmの平板状の、金属-炭化珪素複合体を取り出した。
 そして、得られた金属-炭化珪素複合体の外周を162mm×122mmに機械加工した(つまり、含浸前の炭化珪素成形体の大きさと比較して、周縁部に+1mmの金属が形成されるように機械加工を行った)。その後、4つの角部に、それぞれ、直径7.0mmの孔(貫通孔)を機械加工にて形成し、図1に示されるような板状の放熱部材を作製した。より具体的には以下のとおりである。
(i)実施例1から12および実施例15から18、ならびに、比較例1および2においては、孔の位置は、前述の、金属含浸前の炭化珪素成形体における切り欠き部の中心と、孔(貫通孔)の中心とが一致する位置とした。例えば、実施例1であれば、切り欠き部があった場所に対応する17mm×17mmの正方形領域の中心に、直径7.0mmの孔を設けた。
(ii)実施例13においては、金属含浸前の炭化珪素成形体における切り欠き部の大きさを鑑み、切り欠き部があった場所に対応する7mm×7mmの金属部と、周縁部の+1mmの金属部とをあわせた、8mm×8mmの正方形領域の中心に、直径7.0mmの孔を設けた。
(iii)実施例14においては、実施例13と同様に、切り欠き部があった場所に対応する6.5mm×6.5mmの金属部と、周縁部の+1mmの金属部とをあわせた、7.5mm×7.5mmの正方形領域の中心に、直径7.0mmの孔を設けた。
 すなわち、各実施例および比較例において、貫通孔は、金属部が形成された部分に形成された。
 得られた放熱部材については、図11で示した各寸法を、工業顕微鏡を用いて測定した。また、マイクロメータを用いて金属部の厚みを測定し、金属部の体積を算出し、放熱部材全体に対する金属層の体積割合を算出した。また、これらの値や、元々設けた切り欠き部の大きさなどから、各種の数値を求めた。
(性能評価)
 各実施例および比較例の放熱部材を、それぞれ、四隅に直径7.0mmの穴を設けてある大きさ170mm×130mm×10mmのアルミニウム板に、ボルトとナットを用いて締めて固定した。この際、トルクレンチにて締め付けトルクを15N・mとした。
 次に、それぞれのアルミニウム板を取り付けた放熱部材を、1サイクルが-40℃で30分間と150℃で30分間である熱サイクルに300回かけた。その後、アルミニウム板との固定を解除した。
 そして、四隅の締め付け部(孔)周辺と、複合体部と金属部との界面付近とを、超音波探傷機(日立建機社製:FS-Line)にて測定することで、欠陥の発生有無を調べた。また、10倍ルーペを用いて表面側からクラックおよび割れの発生有無を確認した。
 表1に、放熱部材および金属含浸前の炭化珪素成形体の性状をまとめて示す。
 また、表2に、評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1から18の評価では、熱サイクル後に、締め付け部周辺や、複合体部と金属部の界面などにクラックや割れ等は見られなかった。すなわち、-40℃で30分間と150℃で30分間の熱サイクル300回という非常に過酷な評価においても異常が認められず、放熱部材に対する最近の厳しい信頼性要求を満たしうることが示された。
 実施例1から18の放熱部材は、他の部品に固定するための貫通孔の周囲の靱性が向上しており、また、貫通孔を形成した金属層の複合体全体に対する割合が十分に小さいこと等により、熱サイクル時の熱応力の発生が抑制されており、他の部品に固定する際や、固定後の実使用時においてもクラックや割れ等の破損が抑制される。
 一方、比較例1および2は、放熱部材全体に対する金属部の割合が12体積%超であり、熱サイクル後に複合体部および複合体部と金属部の界面にクラックや割れが発生した。
(実施例19および20:マグネシウム使用例)
 実施例1および2と同様にして作成した、切り欠き部が設けられた炭化珪素成形体のブロック(10枚の炭化珪素成形体、ボルトとナットで固定したもの)を、電気炉で、温度600℃に予備加熱した。これを、予め加熱しておいた内寸320mm×260mm×440mmの空隙を有するプレス型内に載置した。
 その後、温度800℃に加熱した純マグネシウムの溶湯をプレス型内に流し込み、60MPaの圧力で20分間以上プレスして、炭化珪素成形体及びアルミニウム質短繊維にマグネシウムを含浸させた以外は、実施例1および2と同様にして金属の含浸や孔形成などを行い、放熱部材を製造した。そして、上記と同様の評価を行った。
 実施例19および20においても、締め付け部周辺や、複合化部および複合化部と金属層の界面に、クラック、割れ等は見られなかった。つまり、金属としてアルミニウムではなくマグネシウムを用いた場合にも、放熱部材に対する最近の厳しい信頼性要求を満たしうることが示された。
 この出願は、2018年11月29日に出願された日本出願特願2018-223830号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  実質的に矩形平板状である放熱部材であって、
     当該放熱部材は、空隙を有する炭化珪素に金属が含浸された複合体部と、前記複合体部とは異なる金属部とを備え、
     当該放熱部材の全体の体積に対する、前記金属部の体積の割合は2.9%以上12%以下であり、 
     当該放熱部材の対角線の長さをLとし、当該放熱部材を一方の主面を上面として上面視したとき、前記金属部の全体積のうち40%以上が、当該放熱部材の四隅のいずれかの頂点から距離L/6の領域D内に存在し、
     前記領域Dの前記金属部を貫通する孔を有する、放熱部材。
  2.  請求項1に記載の放熱部材であって、
     前記領域D内に存在する前記金属部の厚みは、前記複合体部の厚みと略等しい、放熱部材。
  3.  請求項1または2に記載の放熱部材であって、
     前記領域D内に存在する前記金属部の体積をVmetalとし、前記孔の体積をVholeとしたとき、Vhole/(Vmetal+Vhole)の値が0.60以下である、放熱部材。
  4.  請求項1から3のいずれか1項に記載の放熱部材であって、
     当該放熱部材の一方の主面を上面として当該放熱部材を上面視したときの、前記孔の半径をrとしたとき、前記孔の中心からの距離が1.3r以内の領域には前記複合体部が存在しない、放熱部材。
  5.  請求項1から4のいずれか1項に記載の放熱部材であって、
     当該放熱部材の一方の主面を上面として当該放熱部材を上面視したとき、当該放熱部材の四隅の頂点からの距離がL/40以内の領域には前記孔が存在しない、放熱部材。
  6.  請求項1から5のいずれか1項に記載の放熱部材であって、
     前記金属部の一部は、当該放熱部材の周縁部に連続的に設けられている、放熱部材。
  7.  請求項1から6のいずれか1項に記載の放熱部材であって、
     当該放熱部材の一方の主面を上面として当該放熱部材を上面視したとき、
     前記金属部は、当該放熱部材の周縁部の少なくとも一部を含む第一金属部と、当該放熱部材の周縁部および前記第一金属部と接していない第二金属部とを含み、
     前記第二金属部は、当該放熱部材内の最も近い頂点からL/55からL/5離れて存在し、
     前記第二金属部に前記孔が貫通している、放熱部材。
  8.  請求項1から7のいずれか1項に記載の放熱部材であって、
     前記金属部は、アルミナまたはシリカを主成分とする無機繊維を含む、放熱部材。
  9.  請求項1から8のいずれか1項に記載の放熱部材であって、
     前記炭化珪素の相対密度が55%以上75%以下である、放熱部材。
  10.  請求項1から9のいずれか1項に記載の放熱部材であって、
     前記複合体部に含浸された金属と、前記金属部が含む金属は、同一の金属である、放熱部材。
PCT/JP2019/045208 2018-11-29 2019-11-19 放熱部材 WO2020110824A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19890026.8A EP3890007B1 (en) 2018-11-29 2019-11-19 Heat dissipation member
US17/298,169 US11903168B2 (en) 2018-11-29 2019-11-19 Heat dissipation member
JP2020558412A JP6996008B2 (ja) 2018-11-29 2019-11-19 放熱部材
CN201980077594.7A CN113169146A (zh) 2018-11-29 2019-11-19 散热构件
JP2021203404A JP7427647B2 (ja) 2018-11-29 2021-12-15 放熱部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223830 2018-11-29
JP2018223830 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110824A1 true WO2020110824A1 (ja) 2020-06-04

Family

ID=70853197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045208 WO2020110824A1 (ja) 2018-11-29 2019-11-19 放熱部材

Country Status (6)

Country Link
US (1) US11903168B2 (ja)
EP (1) EP3890007B1 (ja)
JP (2) JP6996008B2 (ja)
CN (1) CN113169146A (ja)
TW (1) TWI819148B (ja)
WO (1) WO2020110824A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799297B (zh) * 2022-06-21 2023-04-11 千如電機工業股份有限公司 多孔洞陶瓷散熱鰭片及其製造方法
WO2023058597A1 (ja) * 2021-10-06 2023-04-13 デンカ株式会社 放熱部材
WO2024014211A1 (ja) * 2022-07-13 2024-01-18 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299532A (ja) * 2001-04-02 2002-10-11 Hitachi Metals Ltd Al−SiC系複合体および放熱部品
JP2003204022A (ja) * 2002-01-10 2003-07-18 Denki Kagaku Kogyo Kk 放熱部品
JP3468358B2 (ja) 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
WO2007080701A1 (ja) * 2006-01-13 2007-07-19 Denki Kagaku Kogyo Kabushiki Kaisha アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品
WO2007125878A1 (ja) * 2006-04-26 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品
WO2011125441A1 (ja) * 2010-04-02 2011-10-13 住友電気工業株式会社 マグネシウム基複合部材、放熱部材、および半導体装置
EP2447990A1 (en) * 2010-11-02 2012-05-02 ABB Technology AG Base plate
JP2014181372A (ja) * 2013-03-19 2014-09-29 Sumitomo Precision Prod Co Ltd 高熱伝導板材
WO2015141729A1 (ja) * 2014-03-18 2015-09-24 電気化学工業株式会社 アルミニウム-炭化珪素質複合体及びパワーモジュール用ベース板
WO2016002943A1 (ja) * 2014-07-04 2016-01-07 電気化学工業株式会社 放熱部品及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI446462B (zh) 2010-10-11 2014-07-21 Delta Electronics Inc 功率模組
US9010616B2 (en) 2011-05-31 2015-04-21 Indium Corporation Low void solder joint for multiple reflow applications
KR101284363B1 (ko) 2013-01-03 2013-07-08 덕산하이메탈(주) 금속코어 솔더볼 및 이를 이용한 반도체 장치의 방열접속구조
US9443744B2 (en) 2014-07-14 2016-09-13 Micron Technology, Inc. Stacked semiconductor die assemblies with high efficiency thermal paths and associated methods
JP6988091B2 (ja) 2014-12-08 2022-01-05 昭和電工マテリアルズ株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
WO2017065139A1 (ja) * 2015-10-13 2017-04-20 デンカ株式会社 アルミニウム-ダイヤモンド系複合体及びその製造方法
US10640853B2 (en) * 2016-03-15 2020-05-05 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
KR102614679B1 (ko) * 2018-06-22 2023-12-19 세키수이 폴리머텍 가부시키가이샤 열전도성 시트
US20220018617A1 (en) * 2018-11-20 2022-01-20 Sekisui Polymatech Co., Ltd. Thermal conductive sheet and method for manufacturing same
JP7116689B2 (ja) * 2019-01-30 2022-08-10 デンカ株式会社 放熱部材およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468358B2 (ja) 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2002299532A (ja) * 2001-04-02 2002-10-11 Hitachi Metals Ltd Al−SiC系複合体および放熱部品
JP2003204022A (ja) * 2002-01-10 2003-07-18 Denki Kagaku Kogyo Kk 放熱部品
JP3662221B2 (ja) 2002-01-10 2005-06-22 電気化学工業株式会社 放熱部品
WO2007080701A1 (ja) * 2006-01-13 2007-07-19 Denki Kagaku Kogyo Kabushiki Kaisha アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品
WO2007125878A1 (ja) * 2006-04-26 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品
WO2011125441A1 (ja) * 2010-04-02 2011-10-13 住友電気工業株式会社 マグネシウム基複合部材、放熱部材、および半導体装置
EP2447990A1 (en) * 2010-11-02 2012-05-02 ABB Technology AG Base plate
JP2014181372A (ja) * 2013-03-19 2014-09-29 Sumitomo Precision Prod Co Ltd 高熱伝導板材
WO2015141729A1 (ja) * 2014-03-18 2015-09-24 電気化学工業株式会社 アルミニウム-炭化珪素質複合体及びパワーモジュール用ベース板
WO2016002943A1 (ja) * 2014-07-04 2016-01-07 電気化学工業株式会社 放熱部品及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058597A1 (ja) * 2021-10-06 2023-04-13 デンカ株式会社 放熱部材
TWI799297B (zh) * 2022-06-21 2023-04-11 千如電機工業股份有限公司 多孔洞陶瓷散熱鰭片及其製造方法
WO2024014211A1 (ja) * 2022-07-13 2024-01-18 富士電機株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US11903168B2 (en) 2024-02-13
TWI819148B (zh) 2023-10-21
JP6996008B2 (ja) 2022-01-17
EP3890007B1 (en) 2022-12-28
TW202032738A (zh) 2020-09-01
EP3890007A1 (en) 2021-10-06
CN113169146A (zh) 2021-07-23
US20220124936A1 (en) 2022-04-21
JP2022027929A (ja) 2022-02-14
JPWO2020110824A1 (ja) 2021-10-21
EP3890007A4 (en) 2022-01-26
JP7427647B2 (ja) 2024-02-05

Similar Documents

Publication Publication Date Title
JP7427647B2 (ja) 放熱部材
US7838107B2 (en) Aluminum-silicon carbide composite
US11296008B2 (en) Aluminum-silicon carbide composite and production method therefor
EP3121847B1 (en) Aluminium-silicon carbide composite, and power-module base plate
WO2020158774A1 (ja) 放熱部材およびその製造方法
JP7050978B1 (ja) 成形体及びその製造方法
WO2016013648A1 (ja) 複合体及びその製造方法
US10869413B2 (en) Heat-dissipating component and method for manufacturing same
JP6591113B1 (ja) 放熱部材およびその製造方法
WO2020158775A1 (ja) 放熱部材およびその製造方法
JP5662834B2 (ja) アルミニウム−炭化珪素質複合体の製造方法
WO2023058597A1 (ja) 放熱部材
WO2023058598A1 (ja) 放熱部材
JP2023055311A (ja) 放熱部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890026

Country of ref document: EP

Effective date: 20210629