WO2020158775A1 - 放熱部材およびその製造方法 - Google Patents

放熱部材およびその製造方法 Download PDF

Info

Publication number
WO2020158775A1
WO2020158775A1 PCT/JP2020/003090 JP2020003090W WO2020158775A1 WO 2020158775 A1 WO2020158775 A1 WO 2020158775A1 JP 2020003090 W JP2020003090 W JP 2020003090W WO 2020158775 A1 WO2020158775 A1 WO 2020158775A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
dissipation member
main surface
heat
silicon carbide
Prior art date
Application number
PCT/JP2020/003090
Other languages
English (en)
French (fr)
Inventor
大助 後藤
寛朗 太田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP20747772.0A priority Critical patent/EP3920214B1/en
Priority to CN202080006007.8A priority patent/CN112997300B/zh
Priority to US17/425,541 priority patent/US12069837B2/en
Publication of WO2020158775A1 publication Critical patent/WO2020158775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/025Hot pressing, e.g. of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4523Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the molten state ; Thermal spraying, e.g. plasma spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention relates to a heat dissipation member and a manufacturing method thereof. More specifically, the present invention relates to a plate-shaped heat dissipation member including a metal-silicon carbide composite containing aluminum or magnesium and a method for manufacturing the same.
  • a heat dissipation member made of a metal-silicon carbide composite has been used instead of conventional copper.
  • Aluminum and its alloys are often used as the metal of the metal-silicon carbide composite.
  • the heat radiating member is often used by being joined to other components (for example, a heat radiating fin or a heat radiating unit), and the property of the joined portion is important.
  • the heat dissipation member is screw-fixed to the other component using a hole provided in the peripheral portion of the heat dissipation member.
  • the surface of the heat dissipating member that is in contact with other parts is concave or if there are many minute irregularities, a gap is created between the heat dissipating member and the other parts, and the thermal conductivity deteriorates. There was a problem.
  • some heat dissipation members have a convexly curved surface to be joined to the other parts so that a space between the heat dissipation member and the other parts is as small as possible.
  • the heat dissipation member is usually used by being fixed to another component with a fixing member such as a screw, but the joint surface with the other component is curved in a convex shape. By doing so, the joint surface becomes “appropriately flat” when it is fixed by the fixing member, and the jointability (adhesion) with other components is improved.
  • Patent Document 1 there is provided a plate-shaped composite body obtained by impregnating a porous silicon carbide molded body with a metal containing aluminum as a main component, the plate-shaped composite body being provided with another heat-dissipating component.
  • Patent Document 2 discloses a plate-shaped composite body obtained by impregnating a porous silicon carbide molded body with a metal containing aluminum as a main component, and having a major surface length of 10 cm. A silicon carbide composite body having a warp amount of 250 ⁇ m or less is described.
  • a curved heat dissipation member is manufactured, and (2) when it is joined to other parts, the curvature is “flattened” by the force of a fixing member such as a screw. It is known to enhance the bondability between the heat dissipation member and other parts, and thus enhance the heat dissipation performance.
  • parts such as power elements are usually connected to the surface of the heat dissipation member opposite to the surface in contact with the heat dissipation fins, etc., and particularly in the mass production stage, the parts are connected to the curved heat dissipation member. In some cases, it may be difficult to align the positions or connect the parts themselves. That is, there is room for improvement in manufacturing stability (yield, etc.) in manufacturing a power module or the like by connecting parts to one surface of a curved heat dissipation member.
  • the present invention has been made in view of such circumstances.
  • One of the objects of the present invention is to improve the manufacturing stability (yield etc.) in manufacturing a power module or the like by connecting parts to one surface of a curved heat dissipation member.
  • the present inventors have completed the inventions provided below as a result of diligent studies, and have solved the above problems.
  • a plate-shaped heat dissipation member provided with a metal-silicon carbide composite containing aluminum or magnesium,
  • the heat dissipation member is substantially rectangular, One main surface of the two main surfaces of the heat dissipation member is convexly curved in an outward direction of the heat dissipation member, and the other main surface is convexly curved in an inward direction of the heat dissipation member, In a curve C formed by the other main surface when the heat dissipating member is viewed in a cross section that is substantially perpendicular to the heat dissipating member and that passes through both midpoints of the two short sides of the other main surface.
  • a method of manufacturing the heat dissipation member comprising: A preparatory step of preparing a metal-silicon carbide composite containing aluminum or magnesium; And a heat-pressing step of hot-pressing the metal-silicon carbide composite in a concavo-convex shape.
  • the present invention it is possible to improve the manufacturing stability (yield etc.) in manufacturing a power module or the like by connecting parts to one surface of a curved heat dissipation member.
  • FIG. 1A is an overhead view of the heat dissipation member of the present embodiment
  • FIG. 1B is a cross-sectional view of the heat dissipation member taken along the plane ⁇ of FIG. 1A.
  • the term “substantially” indicates that it includes a range in which manufacturing tolerances, assembly variations, and the like are taken into consideration, unless otherwise specified.
  • FIG. 1A is an overhead view of the heat dissipation member (heat dissipation member 1) of the present embodiment.
  • the heat dissipation member 1 has a plate shape.
  • the main material of the heat dissipation member 1 is a metal-silicon carbide composite containing aluminum or magnesium (details of the material will be described later together with the method of manufacturing the heat dissipation member 1).
  • the heat dissipation member 1 has a substantially rectangular shape. That is, when the heat dissipation member 1 is viewed from above with one main surface or the other main surface of the heat dissipation member 1 as an upper surface, the shape of the heat dissipation member 1 is substantially rectangular.
  • substantially rectangular means that at least one of the four corners of the heat dissipation member 1 may be processed into a rounded shape instead of the right angled shape (of course, the four corners are right angled). The shape may be).
  • the rectangular “vertex” is a short side when the heat dissipation member 1 is viewed from above with one main surface of the heat dissipation member 1 as an upper surface. It is defined as the point where the straight line part of the side and the straight line part of the long side intersect when extended. At this time, the “short side length” and the “long side length” of the heat dissipation member 1 are defined with the “vertex” as the starting point or the ending point.
  • the length and width of the heat dissipation member 1 are, for example, about 40 mm ⁇ 90 mm to 140 mm ⁇ 250 mm.
  • the thickness of the heat dissipation member 1 is, for example, 2 mm or more and 6 mm or less, preferably 3 mm or more and 5 mm or less. If the thickness of the heat dissipation member 1 is not uniform, it is preferable that the thickness of at least the center of gravity of the heat dissipation member 1 be within the above range. Alternatively, when the thickness of the heat dissipation member 1 is not uniform, it is preferable that the thickness of each portion other than the hole is within the above range.
  • the plate-shaped heat dissipation member 1 includes two main surfaces (one main surface is a main surface 2A and the other main surface is a main surface 2B).
  • the main surface 2A is a surface to be joined to another component such as a radiation fin
  • the main surface 2B is a surface to be connected to a power element or the like.
  • the main surface 2A is convexly curved in the outward direction of the heat dissipation member 1, not in the inward direction.
  • the main surface 2B is convexly curved inward rather than outwardly of the heat dissipation member 1 (it has a concave shape toward the outside of the heat dissipation member 1).
  • FIG. 2 is a diagram showing only the main surface 2B of the heat dissipation member 1.
  • FIG. 3 is a cross-sectional view of the main surface 2B taken along a plane ⁇ that is substantially perpendicular to the heat dissipation member 1 and that passes through both midpoints of the two short sides of the main surface 2B (cut at the plane ⁇ .
  • the curve C formed by the main surface 2B is shown.
  • the curve C is preferably substantially symmetrical. That is, the “curvature degree” of the curve C is substantially the same on the left and right.
  • (2h/L)/(H/L) is 1.1 or more.
  • H/L is meant to be the degree of "overall” curvature of the principal surface 2B on the surface ⁇ (in the long side direction of the heat dissipation member 1). It can also be said to be the amount of bending per unit length.
  • the “portion near the end” of the main surface 2B is specifically the portion from the point P 1 to the point P mid in FIG.
  • (2h/L)/(H/L) is 1.1 or more, which means that, in the surface ⁇ , the “closer to the edge” of the main surface 2B than the degree of overall curvature of the main surface 2B.
  • the degree of curvature of the “part” indicates that it is sufficiently large.
  • a portion to which a particularly strong force is applied when the heat dissipation member 1 is joined to another component by a fixing member such as a screw is curved. Is relatively large, while the degree of bending near the center (the portion where components such as power elements are connected) is relatively small.
  • the heat dissipating member 1 By designing the heat dissipating member 1 in this manner, when connecting a power element near the center of the heat dissipating member 1, it is possible to improve the manufacturing stability such as easy alignment and easy connection of parts. You can get the benefits of.
  • the degree of curvature of the portion near the end of the heat radiating member 1, that is, the portion to which particularly strong force is applied when the heat radiating member 1 is joined to another component (heat radiating fin or the like) by a fixing member such as a screw is compared.
  • the heat dissipation member 1 By being relatively large, when the heat dissipation member 1 is joined to other parts by the fixing member, the heat dissipation member 1 can be more easily “flattened” as a whole.
  • the "gap" between the heat dissipation member 1 and other components (heat dissipation fins, etc.) can be reduced, and the bondability and thus the heat dissipation can be further improved.
  • the ratio (2h/L)/(H/L) may be 1.1 or more, but is preferably 1.3 or more and 2.0 or less, more preferably 1.4 or more and 1.6 or less.
  • the ratio (2h/L)/(H/L) may be 1.1 or more, but is preferably 1.3 or more and 2.0 or less, more preferably 1.4 or more and 1.6 or less.
  • H/L is preferably 5.0 ⁇ 10 ⁇ 4 or more and 6.0 ⁇ 10 ⁇ 3 or less, more preferably 1.0 ⁇ 10 ⁇ 3 or more and 3.0 ⁇ 10 ⁇ 3 or less. ..
  • FIG. 4 is a cross-sectional view of the main surface 2B of the heat dissipation member 1 of FIG. 2 taken along a plane ⁇ that is substantially perpendicular to the heat dissipation member 1 and that passes through both midpoints of the two short sides of the main surface 2B.
  • a curve C′ formed by the main surface 2B (when cut at the surface ⁇ ) is shown.
  • (2h'/L')/(H'/L') is preferably 1.1 or more, more preferably 1.3 or more and 2.0 or less, and further preferably 1.4.
  • the above is 1.6 or less.
  • the degree of curvature of the “near portion” is considerably large, it is possible to further improve the ease of connecting the power element and the bondability with the heat radiation fin.
  • the curved shape on the main surface 2B side can be particularly suitable to obtain the effect of enhancing the manufacturing stability in the power module manufacturing, but the curved shape on the main surface 2A side can be also obtained. It is preferable to design appropriately. Specifically, the curved shape of the main surface 2A is “a portion close to the end” like the main surface 2B, except that the main surface 2A is convexly curved in the outward direction instead of the inward direction. It is preferable that the degree of curvature is relatively large and the degree of curvature near the center is relatively small. More quantitatively, suppose that "main surface 2B" in FIG.
  • L, H, h, L', H', h', etc. on the main surface 2A are defined.
  • the relationship between L, H and h in the main surface 2A is preferably the same as in the main surface 2B (for example, (2h/L)/(H/L) satisfies 1.1 or more). ..
  • the same applies to the relationship between L′, H′, and h′ (for example, (2h′/L′)/(H′/L′) is 1.1 or more).
  • designing the main surface 2A as described above is also preferable from the viewpoint of ease of manufacturing the heat dissipation member 1. This is because the heat dissipation member 1 in which the main surface 2A and the main surface 2B have substantially the same degree of curvature is relatively easy to manufacture by a heating press or the like described later.
  • a through hole is preferably provided in the peripheral portion of the heat dissipation member 1.
  • the "peripheral part” can be defined as a part corresponding to at least one of the following (1) and (2) when the heat dissipation member 1 is viewed from the main surface 2B side.
  • the through hole is contained within the region (1) or (2) (or within the region where (1) and (2) overlap).
  • the through-holes are provided in the peripheral portion of the long side of the heat dissipation member 1 (the region of (1) above or the overlapping region of (1) and (2) above). It is essential that the heat dissipation member 1 has a specific curvature in the short side direction (direction of the surface ⁇ in FIG. 2 ). Therefore, there is a through hole in the peripheral portion of the long side of the heat dissipation member 1, and a screw is inserted through the through hole to join the heat dissipation member 1 to other parts (heat dissipation fins or the like), so that the main surface 2B of the main surface 2B particularly in the short side direction. The flatness can be further enhanced.
  • the number of through holes is preferably 4 or more, more preferably 4 or more and 8 or less, and further preferably 4 or more and 6 or less from the viewpoint of stably joining the heat dissipation member 1 to other parts. is there.
  • the heat dissipation member 1 has at least one through hole in each of the regions where the above (1) and (2) overlap (that is, the peripheral portions of the four corners of the heat dissipation member 1).
  • the heat radiating member 1 is screwed to another component, it is possible to suppress unintended distortion, stress, and the like as much as possible.
  • the diameter of the through hole is, for example, 5 mm or more and 9 mm or less, preferably 6 mm or more and 8 mm or less.
  • the means for joining the heat dissipation member 1 to other components is not limited to screws.
  • the joining may be performed by a dedicated jig or the like that can be attached to other parts.
  • the manufacturing method of the heat dissipation member of the present embodiment is not particularly limited, and a known method can be applied as appropriate to manufacture.
  • the heat dissipation member of the present embodiment has a preparation step of preparing a metal-silicon carbide composite containing aluminum or magnesium (hereinafter, also simply referred to as “preparation step”), and the metal-silicon carbide composite having irregularities. It can be manufactured by a hot pressing step of sandwiching and hot pressing with a mold (hereinafter, also simply referred to as “heat pressing step”).
  • a flat metal-silicon carbide composite having no curvature or a small curvature is prepared, and the metal-silicon carbide composite is formed into an appropriately curved concave-convex shape. It can be manufactured by sandwiching and hot pressing.
  • a method preferably used for producing a metal-silicon carbide composite containing aluminum or magnesium is a high pressure forging method in which a porous body is impregnated with a metal under high pressure. More specifically, a molten metal forging method or a die casting method can be adopted.
  • the high-pressure forging method is a method in which a porous body (preform) of silicon carbide is loaded in a high-pressure container, and a molten metal of aluminum or magnesium is impregnated under high pressure to obtain a composite.
  • the molten metal forging method is particularly preferable for the production of the metal-silicon carbide composite because it can be stably produced in a large amount. The manufacturing method by the molten metal forging method will be described below.
  • SiC preform Silicon Carbide Porous Body
  • the silicon carbide porous body may not be composed only of silicon carbide as a chemical component so that silica, alumina or the like may be used as a raw material, and for example, 50% by mass or more of the whole may be composed of silicon carbide. Good.
  • the molding method is also not particularly limited, and press molding, extrusion molding, cast molding or the like can be used, and a shape-retaining binder can be used in combination if necessary.
  • metal-silicon carbide composite obtained by impregnating a silicon carbide porous body with a metal containing aluminum or magnesium are thermal conductivity and thermal expansion coefficient.
  • a higher SiC content in the silicon carbide porous body is preferable because it has a higher thermal conductivity and a smaller thermal expansion coefficient.
  • the metal may not be sufficiently impregnated.
  • coarse SiC particles having an average particle diameter of preferably 40 ⁇ m or more are contained in an amount of 40% by mass or more, and the relative density of the SiC preform is preferably in the range of 55% or more and 75% or less.
  • the strength of the silicon carbide porous body is preferably 3 MPa or more in terms of bending strength in order to prevent cracking during handling or during impregnation.
  • the average particle diameter is calculated by using a scanning electron microscope (for example, “JSM-T200” manufactured by JEOL Ltd.) and an image analyzer (for example, manufactured by Japan Avionics Co., Ltd.) and the average value of the diameters obtained for 1000 particles is calculated. Can be measured by The relative density can be measured by the Archimedes method or the like.
  • SiC powder that is a raw material of the silicon carbide porous body (SiC preform)
  • SiC preform it is preferable to adjust the particle size by appropriately using coarse powder and fine powder together. By doing so, it is easy to achieve both the strength of the silicon carbide porous body (SiC preform) and the high thermal conductivity of the finally obtained heat dissipation member.
  • a mixed powder obtained by mixing (i) SiC coarse powder having an average particle diameter of 40 ⁇ m or more and 150 ⁇ m or less and (ii) SiC fine powder having an average particle diameter of 5 ⁇ m or more and 15 ⁇ m or less is preferable.
  • the amount ratio of (i) and (ii) in the mixed powder is preferably (i) 40% by mass or more and 80% by mass or less, and (ii) 20% by mass or more and 60% by mass or less.
  • the silicon carbide porous body (SiC preform) is obtained by degreasing, firing, etc. a molded body of a mixture obtained by adding a binder to SiC powder.
  • the firing temperature is 800° C. or higher, it is easy to obtain a silicon carbide porous body (SiC preform) having a bending strength of 3 MPa or higher regardless of the atmosphere during firing.
  • firing in an oxidizing atmosphere at a temperature of higher than 1100° C. may promote the oxidation of SiC and reduce the thermal conductivity of the metal-silicon carbide composite. Therefore, it is preferable to perform firing at a temperature of 1100° C. or lower in an oxidizing atmosphere.
  • the firing time may be appropriately determined according to the conditions such as the size of the silicon carbide porous body (SiC preform), the amount charged into the firing furnace, and the firing atmosphere.
  • SiC preform silicon carbide porous body
  • a spacer such as carbon having a shape equal to the preform shape between the SiC preforms.
  • the silicon carbide porous body (SiC preform) obtained as described above can be impregnated with a metal containing aluminum or magnesium by a high pressure forging method or the like to obtain a metal-silicon carbide composite. ..
  • Examples of a method for impregnating a silicon carbide porous body (SiC preform) with a metal (alloy) containing aluminum or magnesium to obtain a metal-silicon carbide composite include the following methods.
  • a silicon carbide porous body (SiC preform) is set in a mold, and then a molten metal (metal containing aluminum or magnesium) is charged into the mold. Then, by pressing the molten metal, the metal is impregnated into the voids of the silicon carbide porous body (SiC preform). After cooling, a metal-silicon carbide composite is obtained.
  • the preheating temperature is, for example, 500° C. or higher and 650° C. or lower. Then, in order to prevent the temperature from decreasing, it is preferable to add the molten metal as soon as possible after setting the silicon carbide porous body (SiC preform) in the mold.
  • a surface metal layer may be provided on the surface (main surface, etc.) of the metal-silicon carbide composite.
  • a heat dissipation member including a surface metal layer (specifically, a surface metal layer containing aluminum or magnesium) on the surfaces such as the two main surfaces.
  • a mold for impregnation a mold having a size slightly larger than the size of the SiC preform is prepared, the SiC preform is placed in the mold, and molten metal is injected to obtain a surface metal. Layers can be provided.
  • one or more of fibers, spherical particles, and crushed particles made of alumina or silica are arranged so as to be in direct contact with the surface of the SiC preform, and then impregnated with a metal, A surface metal layer can be provided.
  • the content of the material made of one or more of the fibers made of alumina or silica, the spherical particles and the crushed particles in the surface metal layer is preferably based on the mass of the metal-silicon carbide composite. Is 5% by mass or more and 40% by mass or less, more preferably 10% by mass or more and 20% by mass or less.
  • the surface metal layer may be formed by a method such as arranging a thin metal plate or thin film on the surface of the SiC preform and then impregnating the metal, or pre-grooving the surface of the SiC preform. Can be provided.
  • the pressing pressure of the molten metal is not particularly limited as long as the metal is sufficiently impregnated, but is, for example, 30 MPa or more.
  • the melting point of the metal to be impregnated is preferably moderately low.
  • an aluminum alloy containing 7% by mass or more and 25% by mass or less of silicon is preferable.
  • magnesium in an amount of 0.2% by mass or more and 5% by mass or less, the bond between the silicon carbide grains and the metal portion becomes stronger, which is preferable.
  • the metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics do not change extremely, and for example, copper or the like may be contained.
  • casting alloys such as AC4C, AC4CH and ADC12 can also be used.
  • the metal-silicon carbide composite may be annealed for the purpose of removing the strain generated during the impregnation.
  • the annealing treatment can be performed, for example, at a temperature of about 400° C. or more and 550° C. or less for 10 minutes or more.
  • the metal-silicon carbide composite (plate-like) obtained by the above preparatory steps is typically flat or has an uncontrolled curvature.
  • the heat-radiating member having an appropriate curvature can be obtained by the following hot pressing process.
  • a metal-silicon carbide composite is formed by a press convex mold 10 and a press concave mold 11.
  • the body 1A is sandwiched and heated and pressed (pressed while being heated). This makes it possible to obtain the heat dissipation member 1 having a predetermined curvature.
  • the press convex mold 10 and the press concave mold 11 are shaped so that the heat dissipation member 1 is given a predetermined curve.
  • the press convex mold 10 may be one in which the radius of curvature of the central portion is relatively small and the radius of curvature of the portion away from the central portion is relatively large.
  • the form of the convex part of the press convex mold 10 and the form of the concave part of the press concave mold 11 are typically substantially the same. That is, typically, when the press convex mold 10 and the press concave mold 11 are stacked without sandwiching the metal-silicon carbide composite body 1A, almost no gap can be formed between the press convex mold 10 and the press concave mold 11.
  • the material of the press convex mold 10 and the press concave mold 11 is not particularly limited as long as it does not substantially deform under the temperature and pressure conditions described later. Specifically, ceramics such as carbon and boron nitride, and metal materials such as cemented carbide and stainless steel are preferably used.
  • the heating temperature at the time of hot pressing is not particularly limited as long as the heat dissipation member 1 having an appropriate curvature is obtained.
  • the heating temperature is preferably as high as possible within a range in which the metal in the metal-silicon carbide composite body 1A does not melt.
  • the temperature is preferably 450° C. or higher and 550° C. or lower.
  • the pressure at the time of hot pressing is not particularly limited as long as the heat dissipation member 1 having an appropriate curvature is obtained, and the pressure may be appropriately adjusted depending on the thickness of the metal-silicon carbide composite 1A, the heating temperature, and the like. Good. However, the pressure is preferably 10 kPa or more, and more preferably 30 kPa or more and 250 kPa or less, from the viewpoints of productivity and surely imparting curvature to the metal-silicon carbide composite body 1A.
  • the time of hot pressing is not particularly limited as long as the heat dissipation member 1 having an appropriate curvature is obtained.
  • the time when the temperature of the metal-silicon carbide composite body 1A itself is 450° C. or higher is 30 seconds or longer. Is preferable, and 30 seconds or more and 300 seconds or less is more preferable.
  • the hot pressing step may be performed multiple times to obtain the desired curvature. For example, a hot pressing step is performed using the first press convex mold 10 and the press concave mold 11, and then the second press convex mold 10 and the second press convex mold 10 having a curved shape different from those of the first press convex mold 10 and the press concave mold 11.
  • the second hot pressing step may be performed using the press concave mold 11.
  • the metal-silicon carbide composite body 1A is cooled.
  • the cooling may be rapid cooling or air cooling, for example. Since the curvature may change depending on the cooling method, it is preferable to appropriately set the cooling conditions in order to obtain a desired curvature. That is, in order to obtain the heat dissipation member 1 to which an appropriate curvature is applied, in addition to using the press convex mold 10 and the press concave mold 11 having appropriate shapes, the temperature and time of the heating press, and the cooling after the heating press are concrete. It is preferable to appropriately adjust and optimize the target method. By the way, the adjustment/optimization here is not so difficult if the tendency of the curve is grasped by several preliminary experiments.
  • the method for manufacturing the heat dissipation member of the present embodiment may include other steps not described above.
  • the step of providing a hole for screwing may be included.
  • a hole for screwing for joining with another component can be provided by machining or the like.
  • the positions for providing the holes for screwing have already been described, and will be omitted.
  • the step of providing the holes for screwing can be performed, for example, between the preparation step and the hot pressing step. Alternatively, it can be performed after the hot pressing step.
  • a step of mechanically processing at least a part of the surface of the heat dissipation member 1 may be performed.
  • the "mechanical processing” here includes cutting, grinding, polishing and the like.
  • the curved shape of the main surface 2A and/or the main surface 2B of the heat dissipation member 1 is finely adjusted by mechanical processing, whereby the connection with the power element can be further facilitated, and the bondability with the heat dissipation fin can be further improved. can do.
  • polishing the surface of the heat dissipation member 1 main surfaces 2A, 2B, etc.
  • the surface roughness can be appropriately adjusted, and the connectivity of the power element and the bondability with the heat dissipation fin or the like can be further enhanced. Conceivable.
  • Embodiments of the present invention will be described in detail based on examples and comparative examples. The invention is not limited to the examples.
  • Example 1 (Preparation of silicon carbide porous body) 300 g of silicon carbide powder A (NG-150 manufactured by Taihei Random Co., Ltd., average particle size: 100 ⁇ m), 150 g of silicon carbide powder B (GC-1000F manufactured by Yakushima Electric Co., Ltd., average particle size: 10 ⁇ m), and silica sol 30 g (manufactured by Nissan Chemical Industries, Ltd.: Snowtex) was mixed for 30 minutes with a stirring mixer. The obtained mixture was put into a mold of 178 mm ⁇ 128 mm ⁇ 5.5 mm and press-molded at a pressure of 10 MPa. This was fired in the air at a temperature of 900° C. for 2 hours to obtain a silicon carbide porous body. Thirty similar silicon carbide porous bodies were prepared for the following steps.
  • Both sides of the silicon carbide porous body were sandwiched by stainless steel (SUS304) plates having dimensions of 210 mm ⁇ 160 mm ⁇ 0.8 mm with release agents applied on both sides, and 30 sheets were laminated. Further, iron plates having a thickness of 6 mm were arranged on both ends, and then fixed with bolts and nuts of 10 mm ⁇ to form one block.
  • SUS304 stainless steel
  • the above block was preheated to a temperature of 600° C. in an electric furnace. After that, the block was put in a press die having a void of 400 mm ⁇ 300 mm in inner diameter which had been heated in advance. Then, a molten aluminum alloy having a composition of 12% of silicon and 1% of magnesium and the balance of aluminum and unavoidable impurities at a temperature of 800° C. was poured into a press die and pressed at a pressure of 100 MPa for 20 minutes. .. As a result, the porous silicon carbide body was impregnated with the aluminum alloy to obtain a metal block containing the aluminum-silicon carbide composite. The obtained metal lump was cooled to room temperature, then cut along a side surface shape of the release plate with a wet band saw, and the sandwiched stainless steel plate was peeled off. Through the above steps, an aluminum-silicon carbide composite was obtained.
  • the outer periphery of the obtained aluminum-silicon carbide composite was processed by an NC lathe to have vertical and horizontal dimensions of 180 mm ⁇ 130 mm. Then, a through hole having a diameter of 7 mm was formed at 8 locations around the edge, and a countersink having a diameter of 10-4 mm was formed at 4 locations.
  • a press convex mold and a press concave mold were prepared in order to impart curvature to the aluminum-silicon carbide composite. Specifically, in order to obtain a desired curved shape, a press convex mold and a press concave mold in which the radius of curvature of the central portion is relatively small and the radius of curvature of the portion away from the central portion is relatively large were prepared. These concavo-convex molds were mounted on a heating press machine and heated to bring the surface temperature of the mold to 460°C. The aluminum-silicon carbide composite was placed between the molds and pressed at 40 kPa. At this time, the temperature was measured by bringing a thermocouple into contact with the side surface of the composite. After the temperature of the composite reached 450° C., the temperature was maintained as it was for 3 minutes, then the pressure was released, and the mixture was naturally cooled to room temperature.
  • the composite was cleaned by blasting it with alumina abrasive grains under the conditions of a pressure of 0.4 MPa and a transfer speed of 1.0 m/min. After that, electroless Ni-P and Ni-B plating was performed. As a result, a plating layer having a thickness of 8 ⁇ m (Ni-P: 6 ⁇ m, Ni-B: 2 ⁇ m) was formed on the surface of the composite.
  • XY ⁇ stage unit K2-300 (manufactured by Kozu Seiki Co., Ltd.)
  • High precision laser displacement meter LK-G500 (manufactured by Keyence Corporation)
  • Motor controller SC-200K (manufactured by Kozu Seiki Co., Ltd.)
  • AD converter DL-100 (manufactured by Kozu Seiki Co., Ltd.)
  • Examples 2 to 7 A heat radiating member was manufactured in the same manner as in Example 1 except that the lengths of the long sides and the short sides of the heat radiating member and the curved shapes of the press convex type and the press concave type in the above (curving) were changed. Then, in the same manner as in Example 1, various numerical values were measured.
  • Comparative Example 1 In Comparative Example 1, a heat dissipation member was produced by the same steps as in Example 1 except that the uneven curved shape was changed.
  • Table 1 shows various numerical values. It should be noted that the values of L, H, h, etc. shown in Table 1 are the main surfaces of the one that is convexly curved inward of the heat dissipation member (the other main surface, (b of FIG. 1). ) Is the value for the main surface 2B). Although the numerical value itself regarding the degree of curvature of the main surface (one main surface, the main surface 2A of FIG. 1B) of the heat dissipation member which is convexly curved outward is not shown in Table 1, It had a roughly similar curved shape, except that the direction of curvature was reversed. Specifically, considering the figure in which the "main surface 2B" in FIG. 2 is the "main surface 2A", and h was measured, the value of (h in main surface 2B)/(h in main surface 2A) was almost It was 1.0.
  • the obtained simulated power module was inspected for any defects that could cause problems in mass production.
  • all of the simulated power modules manufactured using the heat dissipation member of each example there were no defects that could pose a problem in mass production.
  • the heat dissipation members of Examples 1 to 7 were joined to the heat dissipation fins with screws, and the adhesion between the heat dissipation member and the heat dissipation fin, the heat dissipation property, etc. were evaluated. As a result, the adhesion and heat dissipation were good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Al又はMgを含む金属-炭化珪素複合体を備えた実質的に矩形で板状の放熱部材。放熱部材の一方の主面は放熱部材の外側方向に、他方の主面は放熱部材の内側方向に凸に湾曲している。この放熱部材を、放熱部材に略垂直で、かつ、他方の主面の2つの短辺の中点の両方を通る断面で断面視したときの、他方の主面が成す曲線Cにおいて、曲線Cの両端点P1およびP2を通る直線をl1、曲線C上でのl1との距離が最大となる点をPmax、Pmaxからl1に下ろした垂線とl1との交点をP3、線分P1P3の中点をP4、P4を通りl1に垂直である直線と曲線Cとの交点をPmid、線分P1P3の長さをL、線分P3Pmaxの長さをH、線分P4Pmidの長さをhとしたとき、(2h/L)/(H/L)は1.1以上である。

Description

放熱部材およびその製造方法
 本発明は、放熱部材およびその製造方法に関する。より具体的には、アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体を備えた板状の放熱部材およびその製造方法に関する。
 近年、電気自動車や電鉄用途におけるパワーモジュール用放熱部品として、従来の銅に替わり、金属-炭化珪素複合体で構成された放熱部材が使用されるようになってきている。
 金属-炭化珪素複合体の金属としては、アルミニウムやその合金がしばしば用いられる。
 放熱部材は、他の部品(例えば放熱フィンや放熱ユニット)と接合されて用いることが多く、その接合部分の性状が重要である。
 例えば、放熱部材を他の部品に接合する場合、一般的には放熱部材の周縁部に設けられた孔を利用して、放熱部材を他の部品にネジ固定する。しかし、放熱部材の他の部品に接する面が凹面であったり、微少な凹凸が多く存在していたりすると、放熱部材と他の部品との間に隙間が生じ、熱伝導性が低下してしまうという問題があった。
 上記問題を鑑み、放熱部材と他の部品との間にできるだけ隙間ができないよう、他の部品と接合する面が凸型に湾曲した放熱部材がいくつか提案されている。
 これは、上述のように、放熱部材は、他の部品と、ネジ等の固定部材で固定して用いられることが通常であるところ、他の部品との接合面が凸型に湾曲していることで、固定部材で固定された際にその接合面が「適度に平ら」になり、他の部品との接合性(密着性)が高まるためである。
 例えば、特許文献1には、多孔質炭化珪素成形体にアルミニウムを主成分とする金属を含浸してなる板状複合体であって、板状複合体の面内に他の放熱部品に当該板状複合体の凸面を向けてネジ止めするための4個以上の穴部を有し、穴間方向(X方向)の長さ10cmに対する反り量(Cx;μm)と、それに垂直な方向(Y方向)の長さ10cmに対する反り量(Cy;μm)の関係が、50≦Cx≦250、且つ-50≦Cy≦200である(Cy=0を除く)ことを特徴とする炭化珪素複合体が記載されている。
 別の例として、特許文献2には、多孔質炭化珪素成形体にアルミニウムを主成分とする金属を含浸してなる板状複合体であって、複合体の主面の長さ10cmに対しての反り量が250μm以下の反りを有する炭化珪素複合体が記載されている。
特許第3468358号公報 国際公開第2015/115649号
 上述のように、(1)まず、湾曲した放熱部材を製造し、(2)それを他の部品と接合する際に、ネジ等の固定用部材の力により湾曲を「平らに」することで、放熱部材と他の部品との接合性を高め、ひいては放熱性を高めることが知られている。
 しかし、放熱部材の、放熱フィン等と接する面とは反対側の面には、通常、パワー素子等の部品が接続されるところ、特に量産段階において、湾曲した放熱部材に対して部品を接続することは、位置合わせが難しかったり、部品の接続自体が難しかったりする場合がある。
 すなわち、湾曲した放熱部材の片面に部品を接続してパワーモジュール等を製造するに当たっては、その製造安定性(歩留まりなど)の点で改善の余地がある。
 本発明はこのような事情に鑑みてなされたものである。本発明の目的の1つは、湾曲した放熱部材の片面に部品を接続してパワーモジュール等を製造に当たって、その製造安定性(歩留まりなど)を改善することである。
 本発明者らは、鋭意検討の結果、以下に提供される発明を完成させ、上記課題を解決した。
 本発明によれば、
 アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体を備えた板状の放熱部材であって、
 当該放熱部材は実質的に矩形であり、
 当該放熱部材の2つの主面のうち一方の主面は当該放熱部材の外側方向に凸に湾曲し、他方の主面は当該放熱部材の内側方向に凸に湾曲しており、
 当該放熱部材を、当該放熱部材に略垂直で、かつ、前記他方の主面の2つの短辺の中点の両方を通る断面で断面視したときの、前記他方の主面が成す曲線Cにおいて、
 曲線Cの両端点PおよびPを通る直線をlとし、
 曲線C上でのlとの距離が最大となる点をPmaxとし、
 Pmaxからlに下ろした垂線とlとの交点をPとし、
 線分Pの中点をPとし、
 Pを通り、lに垂直である直線と、曲線Cとの交点をPmidとし、
 線分Pの長さをL、線分Pmaxの長さをH、線分Pmidの長さをhとしたとき、
 (2h/L)/(H/L)が1.1以上である放熱部材
が提供される。
 また、本発明によれば、
 上記の放熱部材の製造方法であって、
 アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体を準備する準備工程と、
 前記金属-炭化珪素複合体を凹凸型で挟み加熱プレスする加熱プレス工程と
 を含む放熱部材の製造方法
が提供される。
 本発明によれば、湾曲した放熱部材の片面に部品を接続してパワーモジュール等を製造に当たって、その製造安定性(歩留まりなど)を改善することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の放熱部材を説明するための模式的な図である。図1(a)は、本実施形態の放熱部材の俯瞰図であり、図1(b)は、放熱部材を図1(a)の面αで切断したときの断面図である。 本実施形態の放熱部材の他方の主面について説明するための図である。 図2の断面βにて、本実施形態の放熱部材の他方の主面を切断したときの断面図である。 図2の断面γにて、本実施形態の放熱部材の他方の主面を切断したときの断面図である。 本実施形態の放熱部材の製造工程における「加熱プレス」について説明するための図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、(i)同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合や、(ii)特に図2以降において、図1と同様の構成要素に改めては符号を付さない場合がある。
 すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応するものではない。特に、説明上のわかりやすさのため、形状や寸法比は誇張して描かれている場合がある。とりわけ、各図において「湾曲」の大きさは実際の物品よりも誇張されている。
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
<放熱部材>
 図1(a)は、本実施形態の放熱部材(放熱部材1)の俯瞰図である。
 放熱部材1は、板状である。
 放熱部材1の主たる材質は、アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体である(材質の詳細は、放熱部材1の製造方法とあわせて、追って説明する)。
 放熱部材1は、実質的に矩形状である。つまり、放熱部材1の一方の主面または他方の主面を上面として放熱部材1を上面視したとき、放熱部材1の形状は実質的に矩形である。
 ここで「実質的に矩形である」とは、放熱部材1の四隅の少なくとも1つが、直角形状ではなく、丸みを帯びた形状に加工されていてもよいことを意味する(もちろん、四隅は直角形状であってもよい)。
 放熱部材1の四隅の少なくとも1つが丸みを帯びた形状に加工されている場合、矩形の「頂点」は、放熱部材1の一方の主面を上面として放熱部材1を上面視したときの、短辺の直線部分と長辺の直線部分を延長したときに交差する点と定義される。また、このとき、放熱部材1の「短辺の長さ」や「長辺の長さ」は、上記「頂点」を始点または終点として定義される。
 放熱部材1の縦横の長さは、一例として、40mm×90mmから140mm×250mm程度である。
 放熱部材1の厚みは、一例として2mm以上6mm以下、好ましくは3mm以上5mm以下である。もし放熱部材1の厚みが一様ではない場合には、少なくとも放熱部材1の重心部分における厚みが上記範囲にあることが好ましい。または、放熱部材1の厚みが一様ではない場合には、孔以外の各部分での厚みが上記範囲内に収まっていることが好ましい。
 図1(b)は、放熱部材1を、図1(a)の面αで切断したときの断面図である。
 板状の放熱部材1は、2つの主面を備える(一方の主面を主面2A、他方の主面を主面2Bとする)。典型的には、主面2Aのほうが放熱フィン等の他の部品と接合される面、主面2Bのほうがパワー素子等と接続される面である。
 放熱部材1においては、主面2Aが、放熱部材1の内側方向ではなく外側方向に凸に湾曲している。また、主面2Bは、放熱部材1の外側方向ではなく内側方向に凸に湾曲している(放熱部材1の外側方向に向かっては凹型形状となっている)。
 図2は、放熱部材1の主面2Bのみを示した図である。
 また、図3は、その主面2Bを、放熱部材1に略垂直で、かつ、主面2Bの2本の短辺の中点の両方を通る面βで断面視したとき(面βで切断したとき)の、主面2Bが成す曲線Cを表す。
 曲線Cは、好ましくは、略左右対称である。すなわち、曲線Cの「湾曲の度合い」は、左右で略同様である。
 図3に示された曲線Cにおいて、
・曲線Cの両端点PおよびPを通る直線をl(破線で示している)、
・曲線C上でのlとの距離が最大となる点をPmax
・Pmaxからlに下ろした垂線とlとの交点をP
・線分Pの中点をP
・Pを通り、lに垂直である直線と、曲線Cとの交点をPmid
・線分Pの長さをL、
・線分Pmaxの長さをH、
・線分Pmidの長さをh
とする。
 曲線Cが略左右対称である場合、Pは、線分Pの略中点となる。
 このとき、放熱部材1において、(2h/L)/(H/L)は、1.1以上である。
 「(2h/L)/(H/L)が1.1以上である」ということの技術的意義については、以下のように説明することができる。
 H/Lは、面βにおける(放熱部材1の長辺方向における)、主面2Bの「全体的な」湾曲の度合いと意味づけられる。単位長さあたりの湾曲量とも言うことができる。
 一方、2h/Lは、面βにおける(放熱部材1の長辺方向における)、主面2Bの「端に近い部分」の局所的な湾曲の度合いと意味づけられる(2h/L=h/(L/2)であることに留意されたい)。ここで、主面2Bの「端に近い部分」とは、具体的には、図3では、点Pから点Pmidまでの部分である。
 そうすると、(2h/L)/(H/L)が1.1以上であるということは、面βにおいては、主面2Bの全体的な湾曲の度合いよりも、主面2Bの「端に近い部分」の湾曲の度合いのほうが、十分に大きいことを表している。
 換言すると、放熱部材1の少なくとも主面2Bにおいては、ネジ等の固定用部材により放熱部材1を他の部品に接合する際に特に力が強くかかる部分(それゆえに特に変形が大きい部分)の湾曲の度合いが比較的大きく、一方、中心付近(パワー素子等の部品が接続される部分)の湾曲の度合いが比較的小さくなっている。
 このように放熱部材1を設計することで、放熱部材1の中心付近にパワー素子を接続する際、位置合わせをしやすかったり、部品の接続自体をより容易しやすかったり等の、製造安定性向上のメリットを得ることができる。
 その一方で、放熱部材1の端に近い部分、すなわちネジ等の固定用部材により放熱部材1を他の部品(放熱フィン等)に接合する際に特に力が強くかかる部分の湾曲の度合いが比較的大きいことにより、固定用部材により放熱部材1を他の部品に接合した際、放熱部材1を「全体として」一層「平ら」にしやすくなる。これにより、放熱部材1と他の部品(放熱フィン等)との間の「すき間」を少なくすることができ、接合性ひいては放熱性をより高めることができる。
 (2h/L)/(H/L)は、1.1以上であればよいが、好ましくは1.3以上2.0以下、より好ましくは1.4以上1.6以下である。(2h/L)/(H/L)を2.0以下にすることで、適度な(強すぎない)力により、放熱部材1を「平らに」しやすい。
 放熱部材1についてより具体的な説明を続ける。
[全体的な湾曲の度合い(H/L)]
 主面2Bの「全体的な」湾曲の度合い、または、単位長さあたりの湾曲量と解釈されるH/Lの値を最適に設計すること、すなわち、放熱部材1全体としての湾曲の程度を適切に設計することで、通常の固定部材(ネジ等)による力で、ちょうどよい具合に主面2Bを「平らに」しやすい。すなわち、放熱部材1と他の部品との接合性を一層高めることができる。
 具体的には、H/Lは、好ましくは5.0×10-4以上6.0×10-3以下、より好ましくは1.0×10-3以上3.0×10-3以下である。
[放熱部材1の「短辺方向」における湾曲の度合いなど]
 上記では、図2の「面βの方向」(放熱部材1の長辺方向)における、全体的な湾曲の度合いや局所的な湾曲の度合いなどについて定量的に説明した。
 同様に、図2の「面γの方向」(放熱部材1の短辺方向)における、全体的な湾曲の度合いや局所的な湾曲の度合いについても適切に設計することで、パワー素子の接続のしやすさや放熱フィンとの接合性などを一層高めうる。
 図4は、図2の放熱部材1の主面2Bを、放熱部材1に略垂直で、かつ、主面の2Bの2本の短辺の中点の両方を通る面γで断面視したとき(面γで切断したとき)の、主面2Bが成す曲線C'を表す。
 図4に示された曲線C'において、
・曲線C'の両端点P'およびP'を通る直線をl' (破線で示している)、
・曲線C'上でのl'との距離が最大となる点をPmax'、
・Pmax'からl'に下ろした垂線とl'との交点をP'、
・線分P'P'の中点をP'、
・P'を通り、l'に垂直である直線と、曲線C'との交点をPmid'、
・線分P'P'の長さをL'、
・線分P'Pmax'の長さをH'、
・線分P'Pmid'の長さをh'
とする。
 曲線C'が略左右対称である場合、P'は、線分P'P'の略中点となる。
 このとき、放熱部材1において、(2h'/L')/(H'/L')は、好ましくは1.1以上、より好ましくは1.3以上2.0以下、さらに好ましくは1.4以上1.6以下である。
 図2の「面βの方向」(放熱部材1の長辺方向)だけでなく、図2の「面γの方向」(放熱部材1の短辺方向)についても、主面2Bの「端に近い部分」の湾曲の度合いを相当に大きく設計することで、パワー素子の接続のしやすさや放熱フィンとの接合性などを一層高めうる。
[主面2Aについて]
 放熱部材1においては、特に主面2B側の湾曲形状を適切なものとすることで、パワーモジュール製造における製造安定性を高める等の効果を得ることができるが、主面2A側の湾曲形状も適切に設計することが好ましい。
 具体的には、主面2Aは放熱部材1の内側方向ではなく外側方向に凸に湾曲していることを除き、主面2Aの湾曲形状は、主面2Bと同様に「端に近い部分」の湾曲の度合いが比較的大きく、中心付近の湾曲の度合いが比較的小さいことが好ましい。
 より定量的には、図2の「主面2B」を「主面2A」とした図を考え、主面2AにおけるL、H、h、L'、H'、h'などを定義したとすると、主面2AにおけるL、Hおよびhの関係については、主面2Bと同様であることが好ましい(例えば、(2h/L)/(H/L)が1.1以上あることを満たす等)。L'、H'およびh'の関係についても同様である(例えば、(2h'/L')/(H'/L')が1.1以上である等)。
 補足すると、上記のように主面2Aを設計することは、放熱部材1の製造しやすさという観点からも好ましい。主面2Aと主面2Bの湾曲の度合いがおおよそ同じである放熱部材1は、後述の加熱プレス等により製造することが比較的容易であるためである。
[貫通孔]
 放熱部材1の周縁部には、好ましくは、貫通孔が設けられている。貫通孔を利用して放熱部材1を他の部品(放熱フィン等)に接合することで、放熱性が良好な最終製品(パワーデバイス等)を得ることができる。
 ここで、「周縁部」とは、放熱部材1を主面2Bの側から上面視したときに、以下(1)(2)の少なくともいずれかに該当する部分と定義することができる。
(1)放熱部材1(主面2B)の長辺からL/3以内の領域(長辺の周縁部)
(2)放熱部材1(主面2B)の短辺からL'/3以内の領域(短辺の周縁部)
 要は、貫通孔は、上記(1)または(2)の領域内(もしくは(1)と(2)が重複する領域内)に収まっていることが好ましい。
 貫通孔は、特に、放熱部材1の長辺の周縁部(上記(1)の領域、または、上記(1)と(2)の重複領域)に設けられていることが好ましい。
 放熱部材1においては、短辺方向(図2における面βの方向)に特定の湾曲を有することが必須である。よって、放熱部材1の長辺の周縁部に貫通孔があり、その貫通孔にネジを通して放熱部材1を他の部品(放熱フィン等)に接合することで、特に短辺方向における主面2Bの平面性を一層高めることができる。
 貫通孔の数は、放熱部材1を他の部品に安定的に接合するなどの点から、好ましくは4個以上、より好ましくは4個以上8個以下、さらに好ましくは4個以上6個以下である。
 特に、放熱部材1は、上記(1)と(2)が重複する領域内(すなわち、放熱部材1の四隅の周縁部)に、少なくとも1個ずつ貫通孔を有することが好ましい。これにより、放熱部材1を他の部品にネジ止めした際、意図せぬ歪みや応力等の発生を極力抑えることができる。
 貫通孔の直径は、例えば5mm以上9mm以下、好ましくは6mm以上8mm以下である。
 念のため述べておくと、放熱部材1を他の部品に接合するための手段は、ネジに限定されない。例えば、他の部品への取り付けができる専用冶具などにより接合を行ってもよい。
[製造方法/材質] 
 本実施形態の放熱部材の製造方法は特に限定されず、公知の方法を適宜応用して製造することができる。
 好ましくは、本実施形態の放熱部材は、アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体を準備する準備工程(以下、単に「準備工程」とも表記する)と、その金属-炭化珪素複合体を凹凸型で挟み加熱プレスする加熱プレス工程(以下、単に「加熱プレス工程」とも表記する)により製造することができる。換言すると、本実施形態の放熱部材は、まず、湾曲が無いまたは湾曲が小さい平板状の金属-炭化珪素複合体を準備し、その金属-炭化珪素複合体を、適切な湾曲形状の凹凸型で挟み加熱プレスすることで製造することができる。
 以下、準備工程および加熱プレス工程について説明する。
(準備工程)
 アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体の製造に好ましく用いられる方法は、高圧下で多孔質体に金属を含浸させる高圧鍛造法である。より具体的には、溶湯鍛造法またはダイキャスト法を採用することができる。高圧鍛造法は、高圧容器内に炭化珪素の多孔体(プリフォーム)を装填し、これにアルミニウムまたはマグネシウムを含む金属の溶湯を高圧で含浸させて複合体を得る方法である。
 大量に安定して製造することができるという理由から、金属-炭化珪素複合体の製造には、溶湯鍛造法が特に好ましい。以下、溶湯鍛造法による製造方法を説明する。
・炭化珪素多孔体(SiCプリフォーム)の製造
 金属-炭化珪素複合体の製造においては、まず、平板状の炭化珪素多孔体(SiCプリフォーム)を形成する。これの製造方法に関して特に制限はなく、公知の方法で製造することが可能である。例えば、原料である炭化珪素(SiC)粉末にシリカ若しくはアルミナ等を結合材として添加して混合、成形し、800℃以上で焼成することによって製造することができる。ここで、原料としてシリカやアルミナ等を用いてよいように、炭化珪素多孔体は、化学成分として炭化珪素のみにより構成されずともよく、例えば全体の50質量%以上が炭化珪素により構成されていればよい。
 成形方法についても特に制限は無く、プレス成形、押し出し成形、鋳込み成形等を用いることができ、必要に応じて保形用バインダーの併用が可能である。
 炭化珪素多孔体にアルミニウムまたはマグネシウムを含む金属を含浸せしめてなる金属-炭化珪素複合体の重要な特性は、熱伝導率と熱膨張係数である。炭化珪素多孔体中のSiC含有率の高い方が、熱伝導率が高く、熱膨張係数が小さくなるため好ましい。ただし、含有率が高くなりすぎると、金属が十分に含浸しない場合がある。
 実用的には、平均粒子径が好ましくは40μm以上の粗いSiC粒子を40質量%以上含み、SiCプリフォームの相対密度が好ましくは55%以上75%以下の範囲にあるものが好適である。炭化珪素多孔体(SiCプリフォーム)の強度は、取り扱い時や含浸中の割れを防ぐため、曲げ強度で3MPa以上あることが好ましい。平均粒子径は、走査型電子顕微鏡(例えば日本電子社製「JSM-T200型」)と画像解析装置(例えば日本アビオニクス社製)を用い、1000個の粒子について求めた径の平均値を算出することによって測定することができる。また、相対密度は、アルキメデス法等によって測定することができる。
 炭化珪素多孔体(SiCプリフォーム)の原料であるSiC粉については、粗粉と微粉を適宜併用するなどして、粒度調整を行うことが好ましい。こうすることで、炭化珪素多孔体(SiCプリフォーム)の強度と、最終的に得られる放熱部材の熱伝導率の高さとを両立させやすい。
 具体的には、(i)平均粒子径40μm以上150μm以下のSiC粗粉と、(ii)平均粒子径5μm以上15μm以下のSiC微粉を混合した混合粉末が好適である。ここで、混合粉末中の(i)と(ii)の量比は、好ましくは、(i)が40質量%以上80質量%以下、(ii)が20質量%以上60質量%以下である。
 炭化珪素多孔体(SiCプリフォーム)は、SiC粉末に結合材を添加した混合物の成形体を、脱脂、焼成などすることにより得られる。焼成温度が800℃以上であれば、焼成時の雰囲気に関係なく、曲げ強度が3MPa以上の炭化珪素多孔体(SiCプリフォーム)を得やすい。
 ただし、酸化性雰囲気中では、1100℃を超える温度で焼成すると、SiCの酸化が促進され、金属-炭化珪素複合体の熱伝導率が低下してしまう場合がある。よって、酸化性雰囲気中では、1100℃以下の温度で焼成することが好ましい。
 焼成時間は、炭化珪素多孔体(SiCプリフォーム)の大きさ、焼成炉への投入量、焼成雰囲気等の条件に合わせて適宜決めればよい。
 炭化珪素多孔体(SiCプリフォーム)は、成形時に所定の形状にする場合、1枚ずつ乾燥を行うか、SiCプリフォーム間にプリフォーム形状と等しい形状のカーボン等のスペーサーを用いて乾燥することで、乾燥による形状の変化(例えば湾曲量の変化)を抑えることができる。また、焼成に関しても乾燥時と同様の処理を行うことにより、内部組織の変化に伴う形状変化を防ぐことが可能である。
・金属の含浸
 高圧鍛造法等により、上記のようにして得られた炭化珪素多孔体(SiCプリフォーム)に、アルミニウムまたはマグネシウムを含む金属を含浸させ、金属-炭化珪素複合体を得ることができる。
 アルミニウムまたはマグネシウムを含む金属(合金)を、炭化珪素多孔体(SiCプリフォーム)に含浸させて、金属-炭化珪素複合体を得る方法としては、例えば、下記方法がある。
 まず、炭化珪素多孔体(SiCプリフォーム)を金型にセットし、その後、金型に、溶融金属(アルミニウムまたはマグネシウムを含む金属)を投入する。そして、溶融金属をプレスすることにより、炭化珪素多孔体(SiCプリフォーム)の空隙内に金属が含浸される。冷却を経て、金属-炭化珪素複合体が得られる。
 ここで、炭化珪素多孔体(SiCプリフォーム)を金型にセットする際には予熱を行っておくことが好ましい。予熱温度は例えば500℃以上650℃以下である。そして、温度低下を防ぐため、炭化珪素多孔体(SiCプリフォーム)を金型にセットした後は、できるだけ速やかに溶融金属を投入することが好ましい。
 炭化珪素多孔体(SiCプリフォーム)に金属を含浸させて金属-炭化珪素複合体を得る際、金属-炭化珪素複合体の表面(主面など)に表面金属層を設けてもよい。これにより、表面金属層(具体的には、アルミニウムまたはマグネシウムを含有する表面金属層)を、2つの主面等の表面に備える放熱部材を得ることができる。
 一例として、含浸の際の金型として、SiCプリフォームの寸法よりも若干大きな寸法の金型を準備し、その金型内にSiCプリフォームを配置し、溶融金属を注入することで、表面金属層を設けることができる。
 別の例として、アルミナ若しくはシリカからなる、繊維、球状粒子、及び破砕形状の粒子のうち1種以上を、SiCプリフォームの表面に直接接するように配置したうえで、金属を含浸させることでも、表面金属層を設けることができる。このとき、表面金属層中の、アルミナ若しくはシリカからなる繊維、球状粒子及び破砕形状の粒子のうちの1種以上からなる材料の含有量は、金属-炭化珪素複合体の質量に対して、好ましくは5質量%以上40質量%以下、さらに好ましくは10質量%以上20質量%以下である。
 さらに別の例として、金属の薄板または薄膜をSiCプリフォームの表面に配置してから金属を含浸させる、SiCプリフォームの表面に予め溝などを付加しておくなどの方法によっても、表面金属層を設けることができる。
 溶融金属のプレス圧力は、金属が十分に含浸する限り特に限定されないが、例えば30MPa以上である。
 金属(好ましくはアルミニウムまたはマグネシウムを含む合金)をプリフォームの空隙内に十分に浸透させるため、含浸させる金属の融点は適度に低いことが好ましい。
 この点で、例えばシリコンを7質量%以上25質量%以下含有したアルミニウム合金が好ましく挙げられる。更にマグネシウムを0.2質量%以上5質量%以下含有させることで、炭化珪素粒と金属部分との結合がより強固になり好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば銅等が含まれていてもよい。
 アルミニウム合金としては、好ましくは、鋳造用合金である、AC4C、AC4CH、ADC12なども使用することができる。
 ちなみに、含浸時に生じた歪み除去の目的で、金属-炭化珪素複合体に対してアニール処理を行ってもよい。アニール処理は、例えば、400℃以上550℃以下程度の温度で10分以上の条件で行うことができる。
 以上の準備工程により得られた金属-炭化珪素複合体(平板状)は、典型的には、平坦であったり、制御されていない湾曲を有していたりする。しかし、例えば以下の加熱プレス工程により、適切な湾曲が付与された放熱部材とすることができる。
・加熱プレス工程
 加熱プレス工程では、例えば、図5(a)、図5(b)および図5(c)に示されるように、プレス凸型10とプレス凹型11とにより、金属-炭化珪素複合体1Aを挟み、加熱プレスする(加熱しながら押圧する)。これにより、所定の湾曲が付与された放熱部材1を得ることができる。
 プレス凸型10とプレス凹型11については、放熱部材1に所定の湾曲が付与されるように形状加工されている。例えば、プレス凸型10は、中心部の曲率半径が比較的小さく、中心部から離れた部分の曲率半径が比較的大きいものを用いることができる。プレス凹型11も同様であることができる。
 プレス凸型10の凸部の形態と、プレス凹型11の凹部の形態は、典型的には略同一である。つまり、典型的には、金属-炭化珪素複合体1Aを挟まずにプレス凸型10とプレス凹型11とを重ねた場合、プレス凸型10とプレス凹型11の間にすき間はほとんどできない。
 プレス凸型10およびプレス凹型11の材質は特に限定されず、後述の温度および圧力条件下で実質上変形しないものであればよい。具体的には、カーボン、窒化ホウ素等のセラミックスや、超硬合金、ステンレス鋼などの金属材料が好ましく使用される。
 適切な湾曲が付与された放熱部材1が得られる限り、加熱プレス時の加熱温度は特に限定されない。しかしながら、生産性や、圧力を小さくする観点から、加熱温度は、金属-炭化珪素複合体1A中の金属が溶融しない範囲内でできるだけ高い温度であることが好ましい。本実施形態では、金属-炭化珪素複合体1A中に含まれる金属はアルミニウムやマグネシウム等(合金である場合を含む)であることを踏まえると、好ましくは450℃以上550℃以下である。
 適切な湾曲が付与された放熱部材1が得られる限り、加熱プレス時の圧力は特に限定されず、金属-炭化珪素複合体1Aの厚みや、加熱温度等に応じて、圧力は適宜調整すればよい。しかしながら、生産性や、金属-炭化珪素複合体1Aに対して確実に湾曲を付与する等の観点から、圧力は10kPa以上が好ましく、30kPa以上250kPa以下がより好ましい。
 適切な湾曲が付与された放熱部材1が得られる限り、加熱プレスの時間も特に限定されない。しかしながら、金属-炭化珪素複合体1Aに対して確実に湾曲を付与する等の観点から、例えば、金属-炭化珪素複合体1A自体の温度が450℃以上となる時間が、30秒以上となることが好ましく、30秒以上300秒以下となることがより好ましい。
 所望の湾曲を得るため、加熱プレス工程を複数回行ってもよい。例えば、第一のプレス凸型10およびプレス凹型11を用いて加熱プレス工程を行い、その後、第一のプレス凸型10およびプレス凹型11とは湾曲形状が異なる、第二のプレス凸型10およびプレス凹型11を用いて、2回目の加熱プレス工程を行ってもよい。
 加熱プレス後、金属-炭化珪素複合体1Aを冷却する。冷却は、例えば急冷であってもよいし、空冷であってもよい。冷却の方法により湾曲が変化する場合があるため、所望の湾曲を得るためには、冷却の条件を適切に設定することが好ましい。
 つまり、適切な湾曲が付与された放熱部材1を得るためには、適切な形状のプレス凸型10とプレス凹型11を用いることに加え、加熱プレスの温度および時間、加熱プレス後の冷却の具体的方法などを適切に調整・最適化することが好ましい。ちなみに、ここでの調整・最適化は、何度かの予備実験により湾曲の傾向を把握するようにすれば、さほど難しいことではない。
 本実施形態の放熱部材の製造方法は、上述していない他の工程を含んでもよい。
 例えば、ネジ止め用の孔を設ける工程を含んでもよい。具体的には、機械加工などにより、他の部品と接合するためのネジ止め用の孔を設けることができる。ネジ止め用の孔を設ける位置などについては既に述べたため省略する。
 ネジ止め用の孔を設ける工程は、例えば、準備工程と加熱プレス工程の間に行うことができる。または、加熱プレス工程の後に行うことができる。
 また、放熱部材1の表面の少なくとも一部に機械的加工を施す工程を行ってもよい。ここでの「機械的加工」には、切削加工、研削加工、研磨加工等を含む。
 例えば、機械的加工により放熱部材1の主面2Aおよび/または主面2Bの湾曲形状を微調整し、これにより一層パワー素子と接続をしやすくしたり、放熱フィンとの接合性を一層高めたりすることができる。
 また例えば、放熱部材1の表面(主面2A、2B等)を研磨することで、その表面粗さを適切に調整し、パワー素子の接続性や放熱フィン等との接合性を一層高めることも考えられる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。本発明は実施例に限定されるものではない。
<放熱部材の製造>
[実施例1]
(炭化珪素多孔体の作成)
 炭化珪素粉末A(大平洋ランダム株式会社製:NG-150、平均粒径:100μm) 300g、炭化珪素粉末B(屋久島電工株式会社製:GC-1000F、平均粒径:10μm)150g、および、シリカゾル(日産化学工業株式会社製:スノーテックス)30gを撹拌混合機で30分混合した。得られた混合物を178mm×128mm×5.5mmの金型へ投入し、10MPaの圧力でプレス成形した。これを大気中で温度900℃にて2時間焼成し、炭化珪素多孔体を得た。
 以下の工程のために、同様の炭化珪素多孔体を30枚作製した。
 炭化珪素多孔体の両面を、両面に離型剤を塗布した210mm×160mm×0.8mmの寸法のステンレス製(SUS304)の板で挟み、30枚を積層した。さらに、両端に厚み6mmの鉄板を配した後、10mmφのボルト、ナットで固定し、一つのブロックを形成した。
(アルミニウム-炭化珪素複合体の作成)
 上記のブロックを、電気炉で温度600℃に予備加熱した。その後、そのブロックを、あらかじめ加熱しておいた内寸400mmφ×300mmの空隙を有するプレス型内に収めた。
 その後、珪素を12%、マグネシウムを1%含有し、残部がアルミニウム及び不可避的不純物からなる組成を有する温度800℃のアルミニウム合金の溶湯をプレス型内に注ぎ、100MPaの圧力で20分間加圧した。これにより、炭化珪素多孔体にアルミニウム合金を含浸させ、アルミニウム-炭化珪素複合体を含む金属塊を得た。
 得られた金属塊を、室温まで冷却し、その後、湿式バンドソーにて離型板の側面形状に沿って切断し、そして挟んだステンレス板を剥がした。
 以上により、アルミニウム-炭化珪素複合体を得た。
(含浸後の処理)
 得られたアルミニウム-炭化珪素複合体の外周をNC旋盤で加工し、縦横の大きさを180mm×130mmとした。その後、縁周部8カ所に直径7mmの貫通穴、4カ所にφ10-4mmの皿穴を加工した。
(湾曲の付与)
 アルミニウム-炭化珪素複合体に湾曲を付与するため、プレス凸型とプレス凹型を準備した。具体的には、所望の湾曲形状を得るため、中心部の曲率半径が比較的小さく、中心部から離れた部分の曲率半径が比較的大きいプレス凸型とプレス凹型を準備した。
 これらの凹凸型を加熱プレス機に装着し、加熱して型の表面温度を460℃とした。この凹凸型の間に上記のアルミニウム-炭化珪素複合体を配置し、そして40kPaでプレスした。この際、複合体の側面に熱電対を接触させて測温した。複合体の温度が450℃になった時点からそのまま3分間保持し、その後、加圧を解除し、室温まで自然冷却した。
 その後、その複合体を、圧力0.4MPa、搬送速度1.0m/minの条件でアルミナ砥粒にてブラスト処理を行い清浄化した。さらにその後、無電解Ni―P及びNi-Bめっきを行った。これにより、複合体表面に8μm厚(Ni-P:6μm、Ni-B:2μm)のめっき層を形成した。
 以上により、放熱部材を得た。
(各種パラメータの測定)
 以下構成のレーザー三次元形状測定機を用いて、主面2A、主面2B、それぞれの形状に関するデータを取得し、そのデータを解析することで、L、H、h、L'、H'およびh'を求めた(これらの記号の定義は前述のとおりである)。
 装置:レーザー三次元形状測定機(以下4つの装置が一体となったもの)
  XYθステージユニット:K2-300(神津精機株式会社製)
  高精度レーザー変位計:LK-G500(株式会社キーエンス製)
  モータコントローラ:SC-200K(神津精機株式会社製)
  AD変換機:DL-100(神津精機株式会社製)
[実施例2~7]
 放熱部材の長辺および短辺の長さや、上記(湾曲の付与)におけるプレス凸型とプレス凹型の湾曲形状を変更したこと以外は、実施例1と同様にして放熱部材を作製した。そして、実施例1と同様にして、各種数値を測定した。
[比較例1]
 比較例1では、凹凸型の湾曲形状を変更したこと以外は、実施例1と同様の工程により放熱部材を作製した。
 各種数値を表1にまとめて示す。
 念のため述べておくと、表1に記載のL、H、hなどの値は、放熱部材の内側方向に凸に湾曲している方の主面(他方の主面、図1の(b)の主面2B)についての値である。
 放熱部材の外側方向に凸に湾曲している方の主面(一方の主面、図1の(b)の主面2A)の湾曲度合に関する数値自体は表1には記載していないが、湾曲の方向が逆であること以外は、おおよそ同様の湾曲形状を有していた。具体的には、図2の「主面2B」を「主面2A」とした図を考え、hを測定したところ、(主面2Bにおけるh)/(主面2Aにおけるh)の値はほぼ1.0であった。
Figure JPOXMLDOC01-appb-T000001
(パワーモジュールの製造安定性などの評価)
 各実施例または比較例の放熱部材を10個ずつ準備し、それらに模擬的なパワー素子を接続することで、模擬パワーモジュール用基板を製造した。
 製造の具体的な手順としては、パワーモジュールの製造に通常用いられている装置を利用して、各実施例または比較例の放熱部材の2つの主面のうち、主面2B上の特定の6箇所に、セラミックス基板(セラミックス板の両面に銅、アルミニウム等の金属層が設けられた基板)をはんだ付けした。これにより模擬パワーモジュール用基板を得た。
 その後、模擬パワーモジュールとするため、模擬パワーモジュール用基板に対し、ケース付、樹脂封止、蓋付を行い、模擬パワーモジュールを得た。
 得られた模擬パワーモジュールについて、量産上問題となりうる不具合が無いかを検査した。
 各実施例の放熱部材を用いて製造した模擬パワーモジュール全てにおいて、量産上問題となりうる不具合は存在しなかった。
 また、実施例1~7の放熱部材を、放熱フィンにネジにより接合し、放熱部材と放熱フィンとの密着性、放熱性等を評価した。結果として、密着性および放熱性は良好であった。
 一方、比較例1においては、セラミックス基板の位置合わせ用の治具がうまく嵌らず、また、部品の接続自体が行いにくかった。
 以上より、実施例1~7のような、「端に近い部分」の湾曲が比較的大きい放熱部材を用いることで、パワーモジュール製造の際の生産性向上を図ることができ、また、放熱性を良好とすることができることが示された。
 この出願は、2019年1月30日に出願された日本出願特願2019-013765号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体を備えた板状の放熱部材であって、
     当該放熱部材は実質的に矩形であり、
     当該放熱部材の2つの主面のうち一方の主面は当該放熱部材の外側方向に凸に湾曲し、他方の主面は当該放熱部材の内側方向に凸に湾曲しており、
     当該放熱部材を、当該放熱部材に略垂直で、かつ、前記他方の主面の2つの短辺の中点の両方を通る断面で断面視したときの、前記他方の主面が成す曲線Cにおいて、
     曲線Cの両端点PおよびPを通る直線をlとし、
     曲線C上でのlとの距離が最大となる点をPmaxとし、
     Pmaxからlに下ろした垂線とlとの交点をPとし、
     線分Pの中点をPとし、
     Pを通り、lに垂直である直線と、曲線Cとの交点をPmidとし、
     線分Pの長さをL、線分Pmaxの長さをH、線分Pmidの長さをhとしたとき、
     (2h/L)/(H/L)が1.1以上である放熱部材。
  2.  請求項1に記載の放熱部材であって、
     前記一方の主面および前記他方の主面は、アルミニウムまたはマグネシウムを含有する表面金属層を備える放熱部材。
  3.  請求項1または2に記載の放熱部材であって、
     当該放熱部材を、当該放熱部材に略垂直で、かつ、前記他方の主面の2つの長辺の中点の両方を通る断面で断面視したときの、前記他方の主面が成す曲線C'において、
     曲線C'の両端点P'およびP'を通る直線をl'とし、
     曲線C'上でのl'との距離が最大となる点をPmax'とし、
     Pmax'からl'に下ろした垂線とl'との交点をP'とし、
     線分P'P'の中点をP'とし、
     P'を通り、l'に垂直である直線と、曲線C'との交点をPmid'とし、
     線分P'P'の長さをL'、線分P'Pmax'の長さをH'、線分P'Pmid'の長さをh'としたとき、
     (2h'/L')/(H'/L')が1.1以上である放熱部材。
  4.  請求項1から3のいずれか1項に記載の放熱部材であって、
     前記H/Lの値が5.0×10-4以上6.0×10-3以下である放熱部材。
  5.  請求項1から4のいずれか1項に記載の放熱部材であって、
     周縁部に貫通孔が設けられている放熱部材。
  6.  請求項5に記載の放熱部材であって、
     前記貫通孔は、当該放熱部材の長辺の周縁部に設けられている放熱部材。
  7.  請求項6に記載の放熱部材であって、
     4個以上の貫通孔が、当該放熱部材の長辺の周縁部に設けられている放熱部材。
  8.  請求項1から7のいずれか1項に記載の放熱部材の製造方法であって、
     アルミニウムまたはマグネシウムを含む金属-炭化珪素複合体を準備する準備工程と、
     前記金属-炭化珪素複合体を凹凸型で挟み加熱プレスする加熱プレス工程と
    を含む放熱部材の製造方法。    
PCT/JP2020/003090 2019-01-30 2020-01-29 放熱部材およびその製造方法 WO2020158775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20747772.0A EP3920214B1 (en) 2019-01-30 2020-01-29 Heat-dissipating member and manufacturing method for same
CN202080006007.8A CN112997300B (zh) 2019-01-30 2020-01-29 散热构件及其制造方法
US17/425,541 US12069837B2 (en) 2019-01-30 2020-01-29 Heat dissipation member and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019013765A JP7116690B2 (ja) 2019-01-30 2019-01-30 放熱部材およびその製造方法
JP2019-013765 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158775A1 true WO2020158775A1 (ja) 2020-08-06

Family

ID=71841807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003090 WO2020158775A1 (ja) 2019-01-30 2020-01-29 放熱部材およびその製造方法

Country Status (5)

Country Link
US (1) US12069837B2 (ja)
EP (1) EP3920214B1 (ja)
JP (1) JP7116690B2 (ja)
CN (1) CN112997300B (ja)
WO (1) WO2020158775A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181224A1 (ja) * 2023-02-27 2024-09-06 デンカ株式会社 セラミックス板、包装体、セラミックス板の製造方法、モジュールおよび電気・電子製品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851352B (zh) * 2022-05-23 2023-11-28 松山湖材料实验室 电阻加热元件及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS468358B1 (ja) 1967-01-27 1971-03-02
JP2002246515A (ja) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp 半導体装置
WO2015053316A1 (ja) * 2013-10-10 2015-04-16 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びその製造方法
WO2015115649A1 (ja) 2014-02-03 2015-08-06 電気化学工業株式会社 炭化珪素質複合体及びその製造方法並びにそれを用いた放熱部品
WO2018012616A1 (ja) * 2016-07-14 2018-01-18 株式会社 東芝 セラミックス回路基板および半導体モジュール
WO2018105297A1 (ja) * 2016-12-06 2018-06-14 住友電気工業株式会社 複合部材、放熱部材、半導体装置、及び複合部材の製造方法
WO2018163864A1 (ja) * 2017-03-07 2018-09-13 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板
JP2019013765A (ja) 2018-08-09 2019-01-31 株式会社カプコン 映像音声処理プログラム及びゲーム装置
WO2019026836A1 (ja) * 2017-08-04 2019-02-07 デンカ株式会社 パワーモジュール
JP6591114B1 (ja) * 2019-06-05 2019-10-16 デンカ株式会社 放熱部材およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468358B2 (ja) 1998-11-12 2003-11-17 電気化学工業株式会社 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP4267947B2 (ja) * 2003-03-19 2009-05-27 日本碍子株式会社 ハニカム構造体
JP3907620B2 (ja) * 2003-11-14 2007-04-18 電気化学工業株式会社 セラミックス回路基板一体型アルミニウム−炭化珪素質複合体及びその製造方法
KR20080077094A (ko) * 2006-01-13 2008-08-21 덴끼 가가꾸 고교 가부시키가이샤 알루미늄-탄화규소질 복합체 및 그것을 사용한 방열 부품
CN101427367B (zh) * 2006-04-26 2010-06-02 电气化学工业株式会社 铝-碳化硅复合体和使用该复合体的散热零件
JP4864593B2 (ja) * 2006-08-08 2012-02-01 電気化学工業株式会社 アルミニウム−炭化珪素質複合体の製造方法
US8092624B2 (en) * 2006-12-07 2012-01-10 Ngk Insulators, Ltd. Bonding material composition and method for manufacturing the same, and joined body and method for manufacturing the same
JP2010227755A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd セラミックハニカム構造体
US8865607B2 (en) * 2010-11-22 2014-10-21 Saint-Gobain Ceramics & Plastics, Inc. Infiltrated silicon carbide bodies and methods of making
JP6636924B2 (ja) 2014-07-31 2020-01-29 デンカ株式会社 アルミニウム‐炭化珪素質複合体及びその製造方法
WO2016021645A1 (ja) 2014-08-06 2016-02-11 電気化学工業株式会社 放熱部品及びその製造方法
JP7199988B2 (ja) * 2019-02-08 2023-01-06 日本碍子株式会社 ハニカム構造体の製造方法
FR3094039B1 (fr) * 2019-03-21 2021-03-19 Faurecia Systemes Dechappement Organe de chauffage durable pour dispositif de purification des gaz d’échappement d’un véhicule

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS468358B1 (ja) 1967-01-27 1971-03-02
JP2002246515A (ja) * 2001-02-20 2002-08-30 Mitsubishi Electric Corp 半導体装置
WO2015053316A1 (ja) * 2013-10-10 2015-04-16 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びその製造方法
WO2015115649A1 (ja) 2014-02-03 2015-08-06 電気化学工業株式会社 炭化珪素質複合体及びその製造方法並びにそれを用いた放熱部品
WO2018012616A1 (ja) * 2016-07-14 2018-01-18 株式会社 東芝 セラミックス回路基板および半導体モジュール
WO2018105297A1 (ja) * 2016-12-06 2018-06-14 住友電気工業株式会社 複合部材、放熱部材、半導体装置、及び複合部材の製造方法
WO2018163864A1 (ja) * 2017-03-07 2018-09-13 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板
WO2019026836A1 (ja) * 2017-08-04 2019-02-07 デンカ株式会社 パワーモジュール
JP2019013765A (ja) 2018-08-09 2019-01-31 株式会社カプコン 映像音声処理プログラム及びゲーム装置
JP6591114B1 (ja) * 2019-06-05 2019-10-16 デンカ株式会社 放熱部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920214A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181224A1 (ja) * 2023-02-27 2024-09-06 デンカ株式会社 セラミックス板、包装体、セラミックス板の製造方法、モジュールおよび電気・電子製品

Also Published As

Publication number Publication date
JP7116690B2 (ja) 2022-08-10
EP3920214A1 (en) 2021-12-08
CN112997300A (zh) 2021-06-18
EP3920214A4 (en) 2022-03-23
US20220369499A1 (en) 2022-11-17
US12069837B2 (en) 2024-08-20
CN112997300B (zh) 2023-03-24
JP2020123639A (ja) 2020-08-13
EP3920214B1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
US7993728B2 (en) Aluminum/silicon carbide composite and radiating part comprising the same
US8025962B2 (en) Aluminum-silicon carbide composite and heat dissipation device employing the same
JP4761157B2 (ja) アルミニウム−炭化珪素質複合体
JP7116689B2 (ja) 放熱部材およびその製造方法
WO2020158775A1 (ja) 放熱部材およびその製造方法
JP6636924B2 (ja) アルミニウム‐炭化珪素質複合体及びその製造方法
TW201601926A (zh) 鋁-碳化矽質複合體及電力模組用基底板
JP4864593B2 (ja) アルミニウム−炭化珪素質複合体の製造方法
WO2020110824A1 (ja) 放熱部材
JP5037883B2 (ja) 放熱部品及びその製造方法
JP6591114B1 (ja) 放熱部材およびその製造方法
JP6591113B1 (ja) 放熱部材およびその製造方法
JP5662834B2 (ja) アルミニウム−炭化珪素質複合体の製造方法
WO2023058598A1 (ja) 放熱部材
JP2023055311A (ja) 放熱部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020747772

Country of ref document: EP

Effective date: 20210830