WO2023058598A1 - 放熱部材 - Google Patents

放熱部材 Download PDF

Info

Publication number
WO2023058598A1
WO2023058598A1 PCT/JP2022/036942 JP2022036942W WO2023058598A1 WO 2023058598 A1 WO2023058598 A1 WO 2023058598A1 JP 2022036942 W JP2022036942 W JP 2022036942W WO 2023058598 A1 WO2023058598 A1 WO 2023058598A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipating
dissipating member
heat
less
silicon carbide
Prior art date
Application number
PCT/JP2022/036942
Other languages
English (en)
French (fr)
Inventor
大助 後藤
寛朗 太田
和則 小柳
信宏 船津
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202280066945.6A priority Critical patent/CN118056272A/zh
Publication of WO2023058598A1 publication Critical patent/WO2023058598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to heat dissipation members.
  • Patent Literature 1 describes a power conversion device for a railway vehicle, which includes a plurality of power semiconductor elements and a heat receiving member, and in which the plurality of power semiconductor elements are attached to one side surface of the heat receiving member (Patent Literature 1).
  • the heat receiving member is made of metal such as aluminum alloy, iron, copper, etc.
  • the power semiconductor element is fixed to one surface (upper surface) of the heat receiving member by screws or the like via a member such as grease. (Paragraphs 0021, 0023, etc. of Patent Document 1).
  • the following heat radiating member is provided.
  • a heat dissipating member comprising a flat metal-silicon carbide composite containing aluminum, The heat dissipating member has a thickness of 4 mm or less, A heat-dissipating member used for a heat-dissipating member for automobiles.
  • 2. 1.
  • 8. 7. A heat dissipating member according to The heat dissipating member, wherein the surface of the plating layer has an arithmetic mean roughness Ra of 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • 9. 7. or 8. A heat dissipating member according to The heat dissipating member, wherein an average length Rsm of roughness curve elements on the surface of the plating layer is 50 ⁇ m or more and 400 ⁇ m or less. 10. 7. ⁇ 9.
  • the heat dissipating member according to any one of A heat dissipating member comprising a metal layer containing aluminum formed on a main surface of the heat dissipating member.
  • the heat dissipating member according to any one of A heat radiating member having a thermal conductivity in the plate thickness direction at 25° C. of 150 W/m ⁇ K or more and 300 W/m ⁇ K or less.
  • a heat dissipation member that is thin and has excellent heat dissipation is provided.
  • the term "substantially” in this specification indicates that it includes a range that takes into account manufacturing tolerances, assembly variations, etc. . Unless otherwise specified, among various numerical values (especially measured values) in this specification, values at room temperature (25° C.) can be adopted for those values that may change depending on temperature. In the present specification, "-" means including upper and lower limits unless otherwise specified.
  • the heat dissipation member of this embodiment will be outlined.
  • the heat dissipating member of this embodiment includes a flat metal-silicon carbide composite containing aluminum, has a thickness of 4 mm or less, and is a heat dissipating component for mounting on an automobile.
  • the heat dissipating member of this embodiment is used as a heat dissipating component for dissipating heat from electronic components mounted on an automobile such as an electric vehicle.
  • an electric vehicle There is an increasing demand for downsizing and low-profile components mounted on automobiles, and the heat dissipation member of the present embodiment has low thermal resistance and is thin, so it can be suitably used in such automobile-mounted applications. .
  • the heat dissipation member can be used as a heat dissipation component for a power module of electronic components including power semiconductor elements.
  • An example of an electronic component is an electrical conversion device such as an inverter device.
  • the main surface of the heat dissipating member may be joined to an electronic component including a ceramic plate or the like.
  • the other surface of the heat dissipating member may be joined to other heat dissipating parts such as heat dissipating fins or a heat dissipating unit in order to enhance the heat dissipating property of the heat generated from the electronic parts.
  • FIG. 1(a) is a perspective view schematically showing an example of a heat radiating member
  • FIG. 1(b) is a cross-sectional view taken along line AA in FIG. 1(a).
  • a heat radiating member 1 of FIG. 1 includes a flat metal-silicon carbide composite 2 and metal layers 3 formed on at least both front and back surfaces of the metal-silicon carbide composite 2 .
  • the surface on which electronic components are mounted is referred to as principal surface 3A, and the other surface is referred to as back surface 3B.
  • main surface 3A and/or back surface 3B (that is, the surface of heat dissipation member 1) can be metal-silicon carbide composite 2 containing aluminum.
  • main surface 3A and/or back surface 3B (surface of heat dissipation member 1) may be metal layer 3.
  • the main surface 3A and/or the back surface 3B of the heat dissipation member 1 is preferably provided with a metal layer 3 (surface metal layer) containing aluminum.
  • the portion of heat radiating member 1 other than the surface metal layer may be a metal-silicon carbide composite or the like.
  • Electronic components may include electronic circuits and ceramic plates.
  • the electronic component is mounted on the main surface 3A side of the heat dissipation member 1 by being joined with solder or brazing material, for example.
  • heat dissipating parts for example, heat dissipating fins, etc.
  • the heat dissipating member 1 may not have screw holes for inserting screws for joining other heat dissipating components.
  • the heat dissipation member 1 is preferably substantially rectangular. That is, when viewed from the direction perpendicular to main surface 3A of heat radiating member 1, the shape of heat radiating member 1 is substantially rectangular.
  • substantially rectangular means that at least one of the four corners of the heat dissipation member 1 may be processed into a rounded shape instead of a right-angled shape (of course, the four corners are right-angled). shape).
  • the point where the straight line portions of the short side and the long side when the heat dissipation member 1 is viewed from above are extended is , can be defined as the "vertices" of a rectangle.
  • the "length of the short side” and the “length of the long side” of the heat dissipation member 1 can be defined with the "vertex" as the starting point or the ending point.
  • the thickness of the heat dissipating member 1 is 4 mm or less, preferably 0.8 to 3 mm, more preferably 1 to 2 mm in cross-sectional view of the heat dissipating member 1 .
  • the thickness of the heat radiating member 1 is not uniform, it is preferable that at least the thickness of the center of gravity of the heat radiating member 1 is within the above range.
  • the vertical and horizontal lengths of the heat radiating member 1 are, for example, 10 mm ⁇ 10 mm to 200 mm ⁇ 150 mm when viewed from the direction perpendicular to the main surface 3A of the heat radiating member 1.
  • the arithmetic mean roughness Ra (hereinafter also referred to as “surface roughness Ra”) of the main surface 3A and/or the back surface 3B of the heat dissipation member 1 is, for example, 0.1 to 2.0 ⁇ m, more preferably 0.2 to 2.0 ⁇ m. 1.6 ⁇ m. Thereby, heat dissipation can be further improved. It is believed that an appropriate surface roughness value Ra enhances the wettability of solder and brazing material, and enhances the bonding strength with electronic components and/or other heat-dissipating components.
  • the average length Rsm (hereinafter also referred to as “average length Rsm”) of the roughness curvilinear element on the main surface 3A and/or the back surface 3B of the heat dissipation member 1 is, for example, 50 to 400 ⁇ m, more preferably 60 to 350 ⁇ m. be. Thereby, heat dissipation can be further improved. It is believed that an appropriate value for the average length Rsm reduces microscopic gaps and enhances the bonding strength with electronic components and/or other heat-dissipating components.
  • the surface roughness Ra and average length Rsm are measured in accordance with ISO4287-1997, and the exposed portion where no electronic components or other heat-dissipating components are mounted is taken as the measurement surface.
  • the flatness of main surface 3A and/or rear surface 3B of heat dissipation member 1 is, for example, 5 to 700 ⁇ m, preferably 10 to 600 ⁇ m, more preferably 30 to 500 ⁇ m.
  • the bondability is improved and excellent heat dissipating performance can be obtained.
  • the flatness is defined as the distance between two geometric parallel planes when the distance between the two parallel planes is the minimum (see JIS B 0621). .
  • a flatness measuring device for example, a device VR-3000 manufactured by Keyence Corporation can be mentioned.
  • the warping amount of the main surface 3A and/or the back surface 3B of the heat dissipation member 1 is, for example, 5 to 700 ⁇ m, preferably 10 to 600 ⁇ m, more preferably 30 to 500 ⁇ m.
  • the average thermal expansion coefficient of the heat radiating member 1 from 25° C. to 150° C. is, for example, 4 to 12 ppm/K, preferably 4 to 10 ppm/K. As a result, it is possible to suppress cracks, cracks, etc. caused by the difference in coefficient of thermal expansion from the ceramic plate.
  • the coefficient of linear thermal expansion is measured with a thermal dilatometer in accordance with JIS R1618 under the condition that the temperature is increased at a rate of 5°C/min or less, and the value when the temperature is increased from 25°C to 150°C is used.
  • the thermal conductivity of the heat radiating member 1 in the plate thickness direction at 25° C. is, for example, 150 to 300 W/m ⁇ K, preferably 180 to 300 W/m ⁇ K. Thermal conductivity can be measured according to JIS R1611 by a laser flash method.
  • metal contained in metal-silicon carbide composite 2 may be, for example, aluminum, an aluminum alloy, magnesium, or a magnesium alloy. From the viewpoint of thermal conductivity, metal-silicon carbide composite 2 preferably contains aluminum or an aluminum alloy. Also, examples of alloys include aluminum alloys containing 7 to 25% by mass of silicon (Si). By using an aluminum alloy containing 7 to 25% by mass of silicon, the effect of promoting densification of the metal-silicon carbide composite 2 can be obtained.
  • the metal-silicon carbide composite 2 is an aluminum-silicon carbide composite
  • the metal is mainly composed of aluminum, and the content of aluminum in the metal is, for example, 60 to 100% by mass, 70 to 99.8% by mass. It's okay.
  • the metal contained in the aluminum-silicon carbide composite contains one or more elements selected from the group consisting of magnesium, silicon, iron and copper, in addition to the main component aluminum, as long as the effects of the present invention are not impaired. may be
  • the metal contained in the metal layer 3 may be of the same type as the metal contained in the metal-silicon carbide composite 2, and may be, for example, aluminum, an aluminum alloy, magnesium, or a magnesium alloy.
  • the thickness of the metal layer 3 is, for example, 10-300 ⁇ m, preferably 30-150 ⁇ m. By making it equal to or higher than the above lower limit, the film strength of the metal layer 3 can be improved. By making it equal to or less than the above upper limit, it is possible to suppress the occurrence of warping due to the difference in thermal expansion coefficient from the metal-silicon carbide composite 2 .
  • the material of the ceramic plate included in the electronic component is not particularly limited as long as it is a ceramic material.
  • examples include nitride ceramics such as silicon nitride and aluminum nitride, oxide ceramics such as aluminum oxide and zirconium oxide, carbide ceramics such as silicon carbide, and boride ceramics such as lanthanum boride.
  • nitride ceramics such as silicon nitride and aluminum nitride
  • oxide ceramics such as aluminum oxide and zirconium oxide
  • carbide ceramics such as silicon carbide
  • boride ceramics such as lanthanum boride.
  • aluminum nitride, silicon nitride, and aluminum oxide are preferable from the viewpoint of insulation, strength of bonding with the metal layer 13, mechanical strength, and the like.
  • the brazing material for joining the metal layer 3 and the ceramic plate an Ag--Cu based brazing material is preferable. That is, the brazing material is preferably a mixture of Ag powder, Cu powder, or the like.
  • the brazing material may contain Sn or In for the purpose of improving wettability with the ceramic plate.
  • the brazing filler metal preferably contains an active metal from the viewpoint of enhancing reactivity with the ceramic plate. Active metals include titanium, zirconium, hafnium, niobium, and the like. Titanium is preferably contained from the viewpoint of high reactivity with the aluminum nitride substrate or the silicon nitride substrate and the ability to significantly increase the bonding strength.
  • solder is not particularly limited, for example, lead-tin eutectic solder or lead-free solder can be used.
  • the heat dissipation member 1 may have a plating layer formed on the main surface 3A side of the heat dissipation member 1, specifically on the outermost surface. Thereby, the bondability with solder can be improved.
  • the plating layer may contain at least one of Ni, Au and Ag. Among these, the plating layer is preferably composed of a Ni plating layer containing Ni.
  • the thickness of the plating layer is, for example, 3-15 ⁇ m, preferably 4-10 ⁇ m. By making it equal to or higher than the above lower limit, the coating stability of the plating layer can be improved. By setting the thickness to be equal to or less than the above upper limit, it is possible to suppress the occurrence of warpage due to the difference in thermal expansion coefficient from the underlying layer such as the metal layer 3 .
  • the arithmetic average roughness Ra of the surface B of the plating layer is, for example, 0.1 to 2.0 ⁇ m, more preferably 0.2 to 1.6 ⁇ m. Thereby, heat dissipation can be further improved. It is believed that an appropriate surface roughness value Ra enhances the wettability of solder and brazing material, and enhances the bonding strength with electronic components and/or other heat-dissipating components.
  • the average length Rsm of the roughness curve elements on the surface of the plating layer is, for example, 50-400 ⁇ m, more preferably 60-350 ⁇ m. Thereby, heat dissipation can be further improved. It is believed that an appropriate value for the average length Rsm reduces microscopic gaps and enhances the bonding strength with electronic components and/or other heat-dissipating components.
  • An example of a method for manufacturing a heat dissipating member includes a preparatory step of forming a flat silicon carbide porous body (SiC preform), and impregnating the silicon carbide porous body with a metal (alloy) to combine the silicon carbide and the metal. and an impregnation step of making a metal-silicon carbide composite comprising a composite portion comprising:
  • the silicon carbide porous body (SiC preform)
  • SiC preform silicon carbide porous body
  • it can be manufactured by a known method.
  • it can be produced by adding silica, alumina, or the like as a binder to silicon carbide (SiC) powder as a raw material, mixing, molding, and firing at 800° C. or higher.
  • a known method can be appropriately applied.
  • a dry press method, a wet press method, an extrusion molding method, an injection method, a casting method, a punching method after sheet molding, and the like can be used.
  • a higher SiC content in the silicon carbide-based porous body is preferable because the thermal conductivity is higher and the thermal expansion coefficient is smaller. However, if the content is too high, the aluminum alloy may not be sufficiently impregnated. Practically, a SiC preform containing 40% by mass or more of coarse SiC particles having an average particle diameter of preferably 40 ⁇ m or more and having a relative density in the range of 55 to 75% is suitable.
  • the strength of the silicon carbide-based porous body is preferably 3 MPa or more in terms of bending strength in order to prevent cracking during handling and impregnation.
  • the average particle size is obtained by using a scanning electron microscope (eg, "JSM-T200 type” manufactured by JEOL Ltd.) and an image analyzer (eg, manufactured by Nippon Avionics Co., Ltd.), and the average value of the diameters obtained for 1000 particles is calculated. can be measured by Also, the relative density can be measured by the Archimedes method or the like.
  • the particle size of the SiC powder which is the raw material of the silicon carbide porous body (SiC preform)
  • SiC preform the raw material of the silicon carbide porous body
  • a mixed powder obtained by mixing (i) SiC coarse powder having an average particle size of 40 to 150 ⁇ m and (ii) SiC fine powder having an average particle size of 5 to 15 ⁇ m or less is suitable.
  • the ratio of (i) and (ii) in the mixed powder is preferably 40 to 80% by mass for (i) and 20 to 60% by mass for (ii).
  • a silicon carbide-based porous body is obtained by degreasing, sintering, or the like a molded body of a mixture of SiC powder and a binder.
  • the firing temperature is 800° C. or higher, it is easy to obtain a silicon carbide porous body (SiC preform) having a bending strength of 3 MPa or higher regardless of the firing atmosphere.
  • firing at a temperature exceeding 1100° C. in an oxidizing atmosphere may accelerate the oxidation of SiC and reduce the thermal conductivity of the metal-silicon carbide composite. Therefore, it is preferable to bake at a temperature of 1100° C. or less in an oxidizing atmosphere.
  • the sintering time may be appropriately determined according to conditions such as the size of the silicon carbide porous body (SiC preform), the amount to be charged into the sintering furnace, and the sintering atmosphere.
  • SiC preform silicon carbide porous body
  • At least one surface of the silicon carbide porous body may be processed by a cutting/grinding tool such as a lathe so as to have an outwardly convex curved shape. Not only one side of the silicon carbide porous body (SiC preform) but also both sides may be processed. In this way, by performing machining (cutting) at the preform stage, there is no need to use special tools for cutting after metal impregnation, and the degree of curvature and flatness can be easily controlled.
  • the thickness of the flat silicon carbide-based porous material may be adjusted to 4 mm or less during molding before firing, or may be adjusted by thinning treatment such as grinding after firing.
  • a method of adjusting the thickness during molding is preferable from the viewpoint of manufacturing stability against cracks and cracks.
  • the vertical and horizontal dimensions of the flat silicon carbide-based porous body may be adjusted during molding before firing, but may also be adjusted by outer peripheral processing after firing or after metal impregnation.
  • the silicon carbide porous body (SiC preform) is impregnated with a metal containing aluminum by high pressure forging or the like, and the composite portion containing silicon carbide and the metal and the outer surface of the composite portion are formed.
  • a metal-silicon carbide composite can be produced, comprising a surface metal layer of Examples of methods for obtaining a metal-silicon carbide composite by impregnating a silicon carbide porous body (SiC preform) with a metal (alloy) containing aluminum include the following methods.
  • a silicon carbide-based porous body (SiC preform) is placed in a mold, and then one of fibers, spherical particles, and crushed particles made of alumina or silica is placed on both plate surfaces of the mold.
  • the above are placed in direct contact with each other to form a single block.
  • the blocks are preheated at 500-650° C. and placed one or more in a high pressure vessel. After that, as soon as possible to prevent the temperature drop of the block, the molten metal containing aluminum is pressurized at a pressure of 30 MPa or more to impregnate the metal into the pores of the silicon carbide porous body (SiC preform).
  • SiC preform silicon carbide-based porous body
  • the metal (typically aluminum or an alloy containing aluminum) in the metal-silicon carbide composite preferably has a melting point as low as possible so that it can sufficiently penetrate into the voids of the preform during impregnation.
  • a melting point as low as possible so that it can sufficiently penetrate into the voids of the preform during impregnation.
  • an aluminum alloy containing 7% by mass or more and 25% by mass or less of silicon is preferable.
  • Metal components other than aluminum and silicon in the aluminum alloy are not particularly limited as long as the properties do not change extremely.
  • copper may be included.
  • magnesium or an alloy containing magnesium may be used as the metal.
  • AC4C As the aluminum alloy, it is also possible to preferably use AC4C, AC4CH, ADC12, etc., which are alloys for casting.
  • Annealing treatment may be performed after the metal-silicon carbide composite is produced for the purpose of removing strain generated during impregnation.
  • Annealing treatment for strain removal is preferably performed at a temperature of 400 to 550° C. for 10 minutes to 5 hours. If the annealing temperature is 400° C. or higher, the strain inside the composite is sufficiently released, and a large change in curvature in the annealing process after machining can be suppressed. On the other hand, if the annealing temperature is 550° C. or lower, it is possible to prevent the aluminum alloy used in the impregnation from melting.
  • the annealing time is 10 minutes or more, the strain inside the composite is sufficiently released, and it is possible to suppress a large change in curvature in the annealing process for removing processing strain after machining.
  • the annealing time of 5 hours or less is preferable from the viewpoint of mass productivity.
  • one or more of fibers, spherical particles, and crushed particles made of alumina or silica can be arranged so as to be in direct contact with the surface of the silicon carbide porous body (SiC preform).
  • SiC preform silicon carbide porous body
  • the content of the material comprising one or more of fibers, spherical particles and crushed particles made of alumina or silica in the surface metal layer is preferably 0 with respect to the mass of the metal-silicon carbide composite. .1 to 5% by mass, more preferably 0.3 to 2% by mass. If this content is 0.1% by mass or more, the thickness of the aluminum layer can be easily controlled, and a large change in the curved shape due to annealing after processing can be suppressed. Also, if the content is 5% by mass or less, the aluminum alloy layer does not become too hard, making it easier to apply general machining.
  • At least the surface metal layer on the surface of the metal-silicon carbide composite that has been processed into a convex curved shape may be machined, and in some cases, annealing may be performed.
  • a tool such as a lathe capable of precise scraping (grinding, cutting, etc.) is used to form an appropriate curved shape on the heat dissipation surface of the metal-silicon carbide composite.
  • Annealing is performed by heating to about 550° C. for about 2 to 6 hours.
  • the heat dissipating member of the present embodiment is obtained.
  • the manufacturing method of the heat radiating member of this embodiment is not limited to the above.
  • the surface metal layer has an arbitrary structure, the surface metal layer does not necessarily have to be formed.
  • a step of polishing or blasting the surface of the obtained heat dissipating member may be performed.
  • the specific method of polishing treatment or blasting treatment a known method can be appropriately applied.
  • the arithmetic mean roughness Ra on the main surface of the heat dissipating member and the roughness curve element It is possible to control the average length Rsm, flatness, and amount of warpage.
  • appropriate control of grinding treatment and polishing conditions for the silicon carbide porous body, and annealing treatment after preparation of the metal-silicon carbide composite, etc. as elements for setting the flatness and the amount of warpage within desired numerical ranges.
  • a plating process may be performed to provide a plated layer.
  • a plated layer can be provided on the surface of the heat dissipation member by a known electroless Ni--P plating or Ni--B plating method.
  • Example 1 (Formation of silicon carbide porous body) First, the following silicon carbide powder A, silicon carbide powder B and silica sol were mixed with a stirring mixer for 30 minutes to obtain a mixture.
  • Silicon carbide powder A (manufactured by Pacific Rundum Co., Ltd.: NG-150, average particle size: 100 ⁇ m) 300 g
  • Silicon carbide powder B (manufactured by Yakushima Denko Co., Ltd.: GC-1000F, average particle size: 10 ⁇ m) 150 g
  • Silica sol (manufactured by Nissan Chemical Industries, Ltd.: Snowtex) 30 g
  • the resulting mixture was put into a mold and press-molded at a pressure of 10 MPa. As a result, a flat plate-like compact having dimensions of 185 mm ⁇ 135 mm ⁇ 3 mm was obtained.
  • the obtained molded body was sintered in the air at a temperature of 900° C. for 2 hours to obtain a silicon carbide porous body having a relative density (bulk density) of 65% by volume.
  • This silicon carbide porous body which will be the rear surface 3B of the completed heat dissipating member, was processed by a surface grinder. For the following steps, 30 similar silicon carbide porous bodies were prepared.
  • a molten aluminum alloy containing 12% by mass of silicon and 1.2% by mass of magnesium was poured into the press mold and pressed at a pressure of 60 MPa for 20 minutes.
  • the silicon carbide based porous body was impregnated with the aluminum alloy.
  • the product was cooled to 25° C., and then cut along the shape of the stainless steel plate with a wet band saw to remove the sandwiched stainless steel plate. Further, after that, annealing treatment was performed at a temperature of 500° C. for 3 hours in order to remove distortion during impregnation. As described above, an aluminum-silicon carbide composite was obtained.
  • the outer circumference of the obtained aluminum-silicon carbide composite was machined with an NC lathe to obtain a length and width of 190 mm ⁇ 140 mm.
  • the obtained aluminum-silicon carbide composite was cut into a size of 35 mm ⁇ 35 mm by laser processing. As described above, a heat radiating member without a plating layer was obtained.
  • the aluminum-silicon carbide composite is cleaned by blasting with alumina abrasive grains under the conditions of a pressure of 0.4 MPa and a conveying speed of 1.0 m / min, and then electroless Ni-P and Ni-B plating. did As a result, a plated layer having a thickness of 8 ⁇ m (Ni—P: 6 ⁇ m, Ni—B: 2 ⁇ m) was formed on the surface of the composite. As described above, a heat dissipating member having a plating layer was obtained.
  • Example 2 to 10 the grinding conditions of the surface grinder (thin filming treatment after firing) were changed, and if necessary, the treatment of forming a curved shape on the surface by more precise grinding was performed under predetermined conditions.
  • a heat radiating member was produced by the same steps as in Example 1, except that the polishing treatment was performed under predetermined conditions after the thinning treatment and/or the polishing treatment was performed under predetermined conditions. Then, in the same manner as in Example 1, various numerical values were measured.
  • Ra, Rsm In the main surface 3A of the heat dissipating member without a plating layer and the heat dissipating member with a plating layer, the arithmetic mean roughness Ra and the average length Rsm of the roughness curve element are measured by Mitutoyo SJ-310 according to ISO 4287-1997. measured by As shown in FIG. 2(a), Ra and Rsm were measured at three points.
  • the flatness of the main surface 3A of the heat radiating member having no plating layer was measured using a Xizax apparatus manufactured by Tokyo Seimitsu Co., Ltd. At this time, the measurement was performed so that the center (geometric center of gravity) of the main surface 3A when viewed from above coincided with the center of the observation field of the measuring device.
  • the amount of warpage was measured using a contour shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd.; Contour Record 1600D) in the heat radiating member without a plating layer. As shown in FIG. 2(c), the amount of warpage was measured diagonally with a width of 30 mm.
  • the thickness of the heat radiating member without the plating layer was measured using a micrometer. As shown in FIG. 2(d), the thickness was measured at five points.
  • Thermal conductivity was measured according to JIS R1611 by a laser flash method.
  • the coefficient of linear thermal expansion was measured with a thermal dilatometer in accordance with JIS R1618 under the condition of a temperature increase rate of 5°C/min or less, and the value when the temperature was increased from 25°C to 150°C was used.
  • the heat radiating members of Examples 1 to 10 have smaller thermal expansion coefficients than aluminum and copper, and are thin and have good heat radiating properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明放熱部材は、アルミニウムを含む平板状の金属-炭化珪素質複合体を備えた放熱部材であって、当該放熱部材の厚みが、4mm以下であり、自動車搭載用放熱部材に用いるものである。

Description

放熱部材
 本発明は、放熱部材に関する。
 これまで放熱部材について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、複数のパワー半導体素子と、受熱部材とを備え、複数のパワー半導体素子が受熱部材の一方側の面に取付けられた鉄道車両の電力変換装置が記載されている(特許文献1の請求項1)。
 また、同文献において、受熱部材は、例えば、アルミニウム合金、鉄、銅等の金属からなり、パワー半導体素子は、グリース等の部材を介してねじ等によって受熱部材の一面(上面)に固定されることが記載されている(特許文献1の段落0021、0023等)。
特開2020-171196号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の鉄道車両の受熱部材において、自動車用に使用する際に、薄化および放熱性の点で改善の余地があることが判明した。
 近年、自動車に搭載される部品において、小型化や低背化の要求が益々高まってきている。
 本発明者が検討したところ、熱膨張が小さくかつ熱伝導率が良好な金属-炭化珪素質複合体を薄化して用いることにより、薄型としつつも良好な放熱特性を有する放熱部材を実現でき、このような放熱部材が、自動車搭載用放熱部材として好適に使用できることを見出し、本発明を完成するに至った。
 本発明の一態様によれば、以下の放熱部材が提供される。
1. アルミニウムを含む平板状の金属-炭化珪素質複合体を備えた放熱部材であって、
 当該放熱部材の厚みが、4mm以下であり、
 自動車搭載用放熱部材に用いる、放熱部材。
2. 1.に記載の放熱部材であって、
 主面に対して垂直方向からみたときの縦横の長さが、200mm以下×150mm以下である、放熱部材。
3. 1.又は2.に記載の放熱部材であって、
 主面における算術平均粗さRaが、0.1μm以上2.0μm以下である、放熱部材。
4. 1.~3.のいずれか一つに記載の放熱部材であって、
 主面における粗さ曲線要素の平均長さRsmが、50μm以上400μm以下である、放熱部材。
5. 1.~4.のいずれか一つに記載の放熱部材であって、
 主面における平面度が5μm以上700μm以下である、放熱部材。
6. 1.~5.のいずれか一つに記載の放熱部材であって、
 反り量が5μm以上700μm以下である、放熱部材。
7. 1.~6.のいずれか一つに記載の放熱部材であって、
 当該放熱部材の主面側に形成されためっき層を備える、放熱部材。
8. 7.に記載の放熱部材であって、
 前記めっき層の表面における算術平均粗さRaが、0.1μm以上2.0μm以下である、放熱部材。
9. 7.又は8.に記載の放熱部材であって、
 前記めっき層の表面における粗さ曲線要素の平均長さRsmが、50μm以上400μm以下である、放熱部材。
10. 7.~9.のいずれか一つに記載の放熱部材であって、
 前記めっき層は、Niめっき層で構成される、放熱部材。
11. 1.~10.のいずれか一つに記載の放熱部材であって、
 当該放熱部材の主面上に形成された、アルミニウムを含む金属層を備える、放熱部材。
12. 1.~11.のいずれか一つに記載の放熱部材であって、
 当該放熱部材の、25℃から150℃の平均熱膨張係数が、4ppm/K以上12ppm/K以下である、放熱部材。
13. 1.~12.のいずれか一つに記載の放熱部材であって、
 当該放熱部材の、25℃における板厚方向の熱伝導率が、150W/m・K以上300W/m・K以下である、放熱部材。
 本発明によれば、薄型であり放熱性に優れた放熱部材が提供される。
放熱部材の一例を模式的に表した図(斜視図、断面図)である。 測定方法について説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 特に明示的な説明の無い限り、本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
 特に断りの無い限り、本明細書中の各種数値(特に測定値)のうち、温度により値が変わりうるものについては、室温(25℃)での値を採用することができる。
 本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 本実施形態の放熱部材を概説する。
 本実施形態の放熱部材は、アルミニウムを含む平板状の金属-炭化珪素質複合体を備え、厚みが4mm以下であり、自動車搭載用放熱部品である。
 本実施形態の放熱部材は、電気自動車などの自動車に搭載される電子部品を放熱するための放熱部品として用いられる。自動車の搭載部品において、小型化や低背化が益々要求されているが、本実施形態の放熱部材は、熱抵抗が低く、かつ薄型のため、そのような自動車搭載の用途において好適に使用できる。
 また、放熱部材は、パワー半導体素子などを含む電子部品のパワーモジュール用放熱部品として使用できる。電子部品の一例として、インバーター装置などの電気変換装置が挙げられる。
 放熱部材の主面は、セラミックス板などを含む電子部品と接合されていてもよい。
 一方、放熱部材の他面は、電子部品から発生した熱の放熱性を高めるため、放熱フィンや放熱ユニットなどの他の放熱部品と接合されていてもよい。
 本実施形態の放熱部材の詳細について説明する。
 図1(a)は、放熱部材の一例を模式的に表した斜視図、図1(b)は、図1(a)のA-A矢視における断面図である。
 図1の放熱部材1は、平板状の金属-炭化珪素複合体2、および金属-炭化珪素複合体2の少なくとも表裏両面に形成された金属層3を備える。
 放熱部材1の2つの両面のうち、電子部品が搭載される側の面を主面3A、他方の面を裏面3Bとする。
 一態様として、主面3Aおよび/または裏面3B(すなわち放熱部材1の表面)は、アルミニウムを含む金属-炭化珪素複合体2であることができる。
 別の態様として、主面3Aおよび/または裏面3B(放熱部材1の表面)は、金属層3であってもよい。例えば、放熱部材1の主面3Aおよび/または裏面3Bは、アルミニウムを含有する金属層3(表面金属層)を備えることが好ましい。この場合、放熱部材1における、表面金属層以外の部分は、金属-炭化珪素質複合体等であることができる。
 電子部品は、電子回路およびセラミックス板を含むものであってもよい。電子部品は、例えば、はんだやろう材により接合されることで、放熱部材1の主面3A側に搭載される。
 他の放熱部品(例えば放熱フィンなど)は、例えば、はんだ又はろう材により接合され、放熱部材1の裏面3B側に搭載される。この場合、放熱部材1は、他の放熱部品を接合するためのネジを挿入するためのネジ穴を有さなくてもよい。
 放熱部材1は、好ましくは、実質的に矩形である。つまり、放熱部材1の主面3Aに対して垂直方向からみたとき、放熱部材1の形状は実質的に矩形である。
 ここで「実質的に矩形である」とは、放熱部材1の四隅の少なくとも1つが、直角形状ではなく、丸みを帯びた形状に加工されていてもよいことを意味する(もちろん、四隅は直角形状であってもよい)。
 なお、放熱部材1の四隅の少なくとも1つが、丸みを帯びた形状に加工されている場合、放熱部材1を上面視したときの短辺と長辺の直線部分を延長したときに交差する点を、矩形の「頂点」と定義することができる。また、このとき、放熱部材1の「短辺の長さ」や「長辺の長さ」は、上記「頂点」を始点または終点として定義することができる。
 放熱部材1の厚みは、放熱部材1の断面視において、4mm以下、好ましくは0.8~3mm、より好ましくは1~2mmである。上記上限値以下まで薄化するにより、熱抵抗を低減できる上、放熱部材1の軽量化を図ることができる。
 なお、放熱部材1の厚みが一様ではない場合には、少なくとも放熱部材1の重心部分における厚みが上記範囲にあることが好ましい。
 放熱部材1の縦横の長さは、放熱部材1の主面3Aに対する垂直方向から見たとき、例えば、10mm×10mm~200mm×150mmである。
 放熱部材1の主面3Aおよび/または裏面3Bにおける、算術平均粗さRa(以下、「表面粗さRa」ともいう)は、例えば、0.1~2.0μm、より好ましくは0.2~1.6μmである。
 これにより放熱性をより一層良好とすることができる。表面粗さRaの値が適切であることで、はんだやろう材の濡れ性が高められ、電子部品および/または他の放熱部品との接合強度を高められるためと考えられる。
 放熱部材1の主面3Aおよび/または裏面3Bにおける、粗さ曲線要素の平均長さRsm(以下、「平均長さRsm」ともいう)は、例えば、50~400μm、より好ましくは60~350μmである。
 これにより放熱性をより一層良好とすることができる。平均長さRsmの値が適切であることで、ミクロなすき間が少なくなり、電子部品および/または他の放熱部品との接合強度を高められるためと考えられる。
 なお、表面粗さRaや平均長さRsmは、ISO4287-1997に準じて測定し、電子部品や他の放熱部品が搭載されていない露出している部分を測定面とする。
 放熱部材1の主面3Aおよび/または裏面3Bにおける、平面度は、例えば、5~700μm、好ましくは10~600μm、より好ましくは30~500μmである。
 放熱部材1を電子部品および/または他の放熱部材と接合した際に、接合性が良好となり、優れた放熱性能が得られる。
 なお、平面度とは、平面形体を幾何学的平行二平面で挟んだとき、平行二平面の間隔が最小となる場合の、二平面の間隔と定義される(JIS B 0621を参照されたい)。
 平面度の測定装置としては、例えば、キーエンス社製の装置VR-3000を挙げることができる。
 放熱部材1の主面3Aおよび/または裏面3Bにおける、反り量は、例えば、5~700μm、好ましくは10~600μm、より好ましくは30~500μmである。
 放熱部材1の25℃から150℃の平均熱膨張係数は、例えば、4~12ppm/K、好ましくは4~10ppm/Kである。これにより、セラミックス板との熱膨張係数差に起因するクラックや割れ等を抑制できる。
 線熱膨張係数は、熱膨張計により、JIS R1618に準拠して、昇温速度が5℃/分以下の条件で測定し、温度25℃から150℃の昇温時の値を用いる。
 放熱部材1の25℃における板厚方向の熱伝導率は、例えば、150~300W/m・K、好ましくは180~300W/m・Kである。
 熱伝導率は、レーザーフラッシュ法により、JIS R1611に準拠して測定できる。
 金属-炭化珪素複合体2に含まれる金属は、例えば、アルミニウム、アルミニウム合金、マグネシウム又はマグネシウム合金であってよい。熱伝導率の観点から、金属-炭化珪素複合体2は、アルミニウムまたはアルミニウム合金を含むことが好ましい。
 また、合金として、例えば、ケイ素(Si)を7~25質量%含有したアルミニウム合金が挙げられる。ケイ素を7~25質量%含有したアルミニウム合金を用いることにより,金属-炭化珪素複合体2の緻密化が促進されるという効果を得ることができる。
 金属-炭化珪素複合体2がアルミニウム-炭化珪素複合体の場合、金属はアルミニウムが主成分であり、金属中のアルミニウムの含有量は、例えば、60~100質量%、70~99.8質量%でもよい。
 アルミニウム-炭化珪素複合体に含まれる金属は、主成分であるアルミニウム以外、本発明の効果を損なわない限り、マグネシウム、ケイ素、鉄、銅からなる群から選ばれる一または二以上の元素が含まれていてもよい。
 金属層3に含まれる金属は、金属-炭化珪素複合体2に含まれる金属と同種のものであればよく、例えば、アルミニウム、アルミニウム合金、マグネシウム又はマグネシウム合金であってよい。
 金属層3の厚みは、例えば、10~300μm、好ましくは30~150μmである。
 上記下限値以上とすることにより、金属層3の皮膜強度を向上できる。上記上限値以下とすることにより、金属-炭化珪素複合体2との熱膨張係数差による反り発生を抑制できる。
 電子部品が含むセラミックス板の材質は、セラミックス材料である限り特に限定されない。
 例えば、窒化珪素、窒化アルミニウムなどの窒化物系セラミックス、酸化アルミニウム、酸化ジルコニウムなどの酸化物系セラミックス、炭化珪素等の炭化物系セラミックス、ほう化ランタン等のほう化物系セラミックス等であることができる。中でも、窒化アルミニウム、窒化ケイ素および酸化アルミニウムが、絶縁性、金属層13との接合性の強さ、機械的強度などの観点から好ましい。
 金属層3とセラミックス板と接合するろう材としては、Ag-Cu系ろう材が好ましい。すなわち、ろう材は、Ag粉末、Cu粉末等の混合物であることが好ましい。
 ろう材は、セラミックス板との濡れ性改善などの目的から、SnまたはInを含んでもよい。
 ろう材は、セラミックス板との反応性を高める等の観点から、活性金属を含むことが好ましい。活性金属としては、チタン、ジルコニウム、ハフニウム、ニオブなどを挙げることができる。窒化アルミニウム基板や窒化珪素基板との反応性が高く、接合強度を非常に高くできる観点で、チタンを含むことが好ましい。
 また、はんだとして、特に種類は限定しないが、例えば、鉛すず共晶はんだ、または鉛フリーはんだを用いることができる。
 放熱部材1は、図1には示していないが、放熱部材1の主面3A側、具体的には最表面に形成されためっき層を備えてもよい。これにより、はんだとの接合性を高められる。
 めっき層は、Ni、Au及びAgの少なくとも一種を含んでいてよい。この中でも、めっき層は、Niを含むNiめっき層で構成されることが好ましい。
 めっき層の厚みは、例えば、3~15μm、好ましくは4~10μmである。
 上記下限値以上とすることにより、めっき層の被覆安定性を向上できる。上記上限値以下とすることにより、金属層3などの下地層との熱膨張係数差による反り発生を抑制できる。
 めっき層の表面Bにおける、算術平均粗さRaは、例えば、0.1~2.0μm、より好ましくは0.2~1.6μmである。
 これにより放熱性をより一層良好とすることができる。表面粗さRaの値が適切であることで、はんだやろう材の濡れ性が高められ、電子部品および/または他の放熱部品との接合強度を高められるためと考えられる。
 めっき層の表面における、粗さ曲線要素の平均長さRsmは、例えば、50~400μm、より好ましくは60~350μmである。
 これにより放熱性をより一層良好とすることができる。平均長さRsmの値が適切であることで、ミクロなすき間が少なくなり、電子部品および/または他の放熱部品との接合強度を高められるためと考えられる。
 放熱部材の製造方法について説明する。
 放熱部材の製造方法の一例は、平板状の炭化珪素質多孔体(SiCプリフォーム)を形成する準備工程と、炭化珪素質多孔体に、金属(合金)を含浸させ、炭化珪素と金属とを含む複合化部を備える金属-炭化珪素質複合体を作製する含浸工程と、を含む。
 準備工程では、炭化珪素質多孔体(SiCプリフォーム)の製造方法に関して特に制限はなく、公知の方法で製造することが可能である。例えば、原料である炭化珪素(SiC)粉末にシリカ若しくはアルミナ等を結合材として添加して混合、成形し、800℃以上で焼成することによって製造することができる。
 平板状にする方法としては、公知の方法を適宜適用することができる。例えば、乾式プレス法、湿式プレス法、押出し成型法、インジェクション法、キャスティング法、シート成形後打ち抜く方法等を用いることができる。
 炭化珪素質多孔体中のSiC含有率の高い方が、熱伝導率が高く、熱膨張係数が小さくなるため好ましい。ただし、含有率が高くなりすぎると、アルミニウム合金が十分に含浸しない場合がある。
 実用的には、平均粒子径が好ましくは40μm以上の粗いSiC粒子を40質量%以上含み、SiCプリフォームの相対密度が好ましくは55~75%の範囲にあるものが好適である。
 炭化珪素質多孔体(SiCプリフォーム)の強度は、取り扱い時や含浸中の割れを防ぐため、曲げ強度で3MPa以上あることが好ましい。平均粒子径は、走査型電子顕微鏡(例えば日本電子社製「JSM-T200型」)と画像解析装置(例えば日本アビオニクス社製)を用い、1000個の粒子について求めた径の平均値を算出することによって測定することができる。また、相対密度は、アルキメデス法等によって測定することができる。
 炭化珪素質多孔体(SiCプリフォーム)の原料であるSiC粉については、粗粉と微粉を適宜併用するなどして、粒度調整を行うことが好ましい。こうすることで、炭化珪素質多孔体(SiCプリフォーム)の強度と、最終的に得られる放熱部材の熱伝導率の高さとを両立させやすい。
 具体的には、(i)平均粒子径40~150μmのSiC粗粉と、(ii)平均粒子径5~15μm以下のSiC微粉を混合した混合粉末が好適である。ここで、混合粉末中の(i)と(ii)の量比は、好ましくは、(i)が40質量~80質量%、(ii)が20~60質量%である。
 炭化珪素質多孔体(SiCプリフォーム)は、SiC粉末に結合材を添加した混合物の成形体を、脱脂、焼成などすることにより得られる。焼成温度が800℃以上であれば、焼成時の雰囲気に関係なく、曲げ強度が3MPa以上の炭化珪素質多孔体(SiCプリフォーム)を得やすい。
 ただし、酸化性雰囲気中では、1100℃を超える温度で焼成すると、SiCの酸化が促進され、金属-炭化珪素質複合体の熱伝導率が低下してしまう場合がある。よって、酸化性雰囲気中では、1100℃以下の温度で焼成することが好ましい。
 焼成時間は、炭化珪素質多孔体(SiCプリフォーム)の大きさ、焼成炉への投入量、焼成雰囲気等の条件に合わせて適宜決めればよい。
 炭化珪素質多孔体(SiCプリフォーム)は、成形時に所定の形状にする場合、1枚ずつ乾燥を行うか、SiCプリフォーム間にプリフォーム形状と等しい形状のカーボン等のスペーサーを用いて乾燥することで、乾燥による湾曲の変化を防ぐことができる。また、焼成に関しても乾燥時と同様の処理を行うことにより、内部組織の変化に伴う形状変化を防ぐことが可能である。
 必定に応じて、例えば旋盤などの切削・研削機具により、炭化珪素質多孔体(SiCプリフォーム)の少なくとも片面を、その外側に向かって凸型の湾曲形状となるように加工してもよい。炭化珪素質多孔体(SiCプリフォーム)の片面だけでなく、両面に加工を施してもよい。
 このように、プリフォームの段階で機械加工(切削加工)を施すことで、金属含浸後に切削のための特別な器具等を用いる必要がなく、容易に湾曲の度合いや平面度を制御しやすいメリットがある。
 平板状の炭化珪素質多孔体の厚みは、焼成前の成形時に4mm以下となるように調整してもよいが、焼成後に研削などの薄膜化処理により調整してもよい。クラックや割れなどの製造安定性の観点から、成形時に厚み調整する方法が好ましい。
 平板状の炭化珪素質多孔体の縦横寸法は、焼成前の成形時に調整してもよいが、焼成後あるいは金属含浸後における外周加工により調整してもよい。
 続いて、含浸工程では、高圧鍛造法等により、炭化珪素質多孔体(SiCプリフォーム)に、アルミニウムを含む金属を含浸させ、炭化珪素と金属とを含む複合化部と、複合化部の外面の表面金属層とを備える、金属-炭化珪素質複合体を作製することができる。
 アルミニウムを含む金属(合金)を、炭化珪素質多孔体(SiCプリフォーム)に含浸させて、金属-炭化珪素質複合体を得る方法としては、例えば、下記方法がある。
 炭化珪素質多孔体(SiCプリフォーム)を型枠内に収納し、その後、その型枠の両板面に、アルミナ若しくはシリカからなる、繊維、球状粒子、及び破砕形状の粒子のうちの1種以上を直接接するように配置し、一つのブロックとする。
 このブロックを、500~650℃で予備加熱し、そして、高圧容器内に1個または2個以上配置する。その後、ブロックの温度低下を防ぐためにできるだけ速やかに、アルミニウムを含む金属の溶湯を30MPa以上の圧力で加圧し、金属を炭化珪素質多孔体(SiCプリフォーム)の空隙中に含浸させる。
 以上により、炭化珪素と金属とを含む複合化部と、複合化部の外面の表面金属層とを備える、金属-炭化珪素質複合体が得られる。
 金属-炭化珪素質複合体中の金属(典型的にはアルミニウムまたはアルミニウムを含む合金)は、含浸時にプリフォームの空隙内に十分に浸透するようにするため、融点がなるべく低いことが好ましい。
 この点で、例えばケイ素を7質量%以上25質量%以下含有したアルミニウム合金が好ましく挙げられる。アルミニウム合金中のアルミニウム、ケイ素以外の金属成分に関しては、極端に特性が変化しない範囲であれば特に制限はなく、例えば銅等が含まれていてもよい。
 なお、金属として、アルミニウムまたはアルミニウムを含む合金に代えて、マグネシウムまたはマグネシウム含む合金を用いてもよい。
 アルミニウム合金としては、好ましくは、鋳造用合金である、AC4C、AC4CH、ADC12なども使用することができる。
 なお、含浸時に生じた歪み除去の目的で、金属-炭化珪素質複合体の作製後に、アニール処理を行ってもよい。歪み除去の目的で行うアニール処理は、400~550℃の温度で10分~5時間行うことが好ましい。
 アニール温度が400℃以上であれば、複合体内部の歪みが十分に開放されて、機械加工後のアニール処理工程で湾曲が大きく変化することを抑制できる。一方、アニール温度が550℃以下であれば、含浸で用いたアルミニウム合金が溶融することを防止できる。
 アニール時間が10分以上であれば、複合体内部の歪みが十分に開放され、機械加工後の加工歪み除去のためのアニール処理工程で、湾曲が大きく変化することを抑制できる。一方、アニール時間が5時間以下であることが、量産性などの観点から好ましい。
 また、例えば、アルミナ若しくはシリカからなる、繊維、球状粒子、及び破砕形状の粒子のうち1種以上を、炭化珪素質多孔体(SiCプリフォーム)の表面に直接接するように配置することができる。これにより、所定の厚みの表面金属層を形成することができる。そして、含浸後の色むらもほとんどなく、形状付加の際に加工性が良くなるという利点もある。
 表面金属層中の、アルミナ若しくはシリカからなる繊維、球状粒子及び破砕形状の粒子のうちの1種以上からなる材料の含有量は、金属-炭化珪素質複合体の質量に対して、好ましくは0.1~5質量%、さらに好ましくは0.3~2質量%である。
 この含有量が0.1質量%以上であれば、アルミニウム層の厚み制御が容易となり、加工後のアニール処理により湾曲形状が大きく変化することを抑制できる。また、この含有量が5質量%以下であれば、アルミニウム合金層が硬くなり過ぎず、一般的な機械加工を施しやすくなる。
 必要に応じて、金属-炭化珪素質複合体の、少なくとも凸型の湾曲形状に加工された面側の表面金属層を機械加工し、また場合によってはさらにアニール処理などを施してもよい。
 具体的には、旋盤等の精密な削り取り(研削、切削等)が可能な機具により、金属-炭化珪素質複合体の放熱面に適切な湾曲形状を形成し、その後、例えば、マッフル炉により400~550℃程度に加熱して2~6時間程度アニール処理を行う。
 以上により、本実施形態の放熱部材が得られる。
 なお、当然ながら、本実施形態の放熱部材の製造方法は、上記に限定されない。
 例えば、本実施形態の放熱部材においては、表面金属層は任意の構成であるから、表面金属層は必ずしも形成されなくてもよい。
 また、得られた放熱部材の表面を研磨処理またはブラスト処理する工程を行ってもよい。研磨処理またはブラスト処理の具体的方法については、公知の手法を適宜適用することができる。
 本実施形態では、たとえば放熱部材、具体的には金属-炭化珪素質複合体の製造方法等を適切に選択することにより、上記放熱部材の主面における算術平均粗さRa、粗さ曲線要素の平均長さRsm、平面度、および反り量を制御することが可能である。これらの中でも、たとえば、炭化珪素質多孔体に対する研削処理や研磨条件を適切に制御すること、また、金属-炭化珪素質複合体の作製後にアニール処理を実施することなど等が、上記Ra、Rsm、平面度および反り量を所望の数値範囲とするための要素として挙げられる。
 外周加工として、通常の機械加工、研削加工、ウォータージェット加工、レーザー加工、放電加工等が用いられるが、これに限定されない。
 また、得られた放熱部材1において、メッキ工程を行ってメッキ層を設けてもよい。例えば、公知の無電解Ni―PメッキやNi-Bメッキの手法により、放熱部材の表面にメッキ層を設けることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<放熱部材の製造>
[実施例1]
(炭化珪素質多孔体の形成)
 まず、以下の炭化珪素粉末A、炭化珪素粉末Bおよびシリカゾルを、攪拌混合機で30分間混合し、混合物を得た。
・炭化珪素粉末A(大平洋ランダム株式会社製:NG-150、平均粒径:100μm) 300g
・炭化珪素粉末B(屋久島電工株式会社製:GC-1000F、平均粒径:10μm) 150g
・シリカゾル(日産化学工業株式会社製:スノーテックス) 30g
 得られた混合物を金型へ投入し、圧力10MPaでプレス成形した。これにより、185mm×135mm×3mmの寸法の平板状の成形体を得た。得られた成形体を、大気中、温度900℃で2時間焼成して、相対密度(嵩密度)が65体積%の炭化珪素質多孔体を得た。
 この炭化珪素質多孔体の、完成後の放熱部材の裏面3Bとなる面を平面研削盤で加工した。
 なお、以下の工程のため、同様の炭化珪素質多孔体を30枚作成した。
(金属の含浸)
 平面研削した炭化珪素質多孔体の両面をカーボンコートした210mm×160mm×0.8mmの寸法のステンレス板で挟んで、30枚を積層した。
 次に、両側に6mm厚みの鉄板を配置して、M10のボルト6本で連結して面方向の締め付けトルクが2Nmとなるようにトルクレンチで締め付けて一つのブロックとした。
 その後、一体としたブロックを電気炉で620℃に予備加熱し、さらにその後、あらかじめ加熱しておいた内径400mmφのプレス型内に収めた。そのプレス型内に、ケイ素を12質量%、マグネシウムを1.2質量%含有するアルミニウム合金の溶湯を注ぎ、そして60MPaの圧力で20分間加圧した。これにより、炭化珪素質多孔体にアルミニウム合金を含浸させた。
 含浸終了後、25℃まで冷却し、その後、湿式バンドソーにてステンレス板の形状に沿って切断し、挟んだステンレス板をはがした。さらにその後、含浸時の歪み除去のために500℃の温度で3時間アニール処理を行った。
 以上により、アルミニウム-炭化珪素質複合体を得た。
(含浸後の処理)
 得られたアルミニウム-炭化珪素質複合体の外周を、NC旋盤で加工して、縦横の大きさを190mm×140mmとした。
 得られたアルミニウム-炭化珪素質複合体をレーザー加工により35mm×35mmサイズにカットした。
 以上により、めっき層無しの放熱部材を得た。
 さらに、アルミニウム-炭化珪素質複合体を、圧力0.4MPa、搬送速度1.0m/minの条件でアルミナ砥粒にてブラスト処理を行い清浄化し、その後、無電解Ni―P及びNi-Bめっきを行った。これにより複合体表面に8μm厚(Ni-P:6μm、Ni-B:2μm)のめっき層を形成した。
 以上により、めっき層有りの放熱部材を得た。
[実施例2~10]
 実施例2から10においては、上記の平面研削盤の研削条件(焼成後の薄膜化処理)を変更したこと、必要なら、より精密な研削により表面に湾曲形状を形成する処理を所定条件にて実施したこと、および/または薄膜化処理後に研磨処理を所定条件にて実施したこと以外、実施例1と同様の工程により放熱部材を作製した。そして、実施例1と同様にして、各種数値を測定した。
(Ra,Rsm)
 めっき層無しの放熱部材およびめっき層有り放熱部材の主面3Aにおいて、算術平均粗さRaおよび粗さ曲線要素の平均長さRsmは、ミツトヨ社製の装置SJ-310により、ISO4287-1997に準じて測定した。
 図2(a)に示す様に、RaおよびRsmの測定を3箇所で行った。
(平面度)
 めっき層無しの放熱部材の主面3Aにおいて、東京精密社製の装置ザイザックスを用いて平面度測定した。このとき、主面3Aを上面視したときの中心(幾何学的重心)と、測定装置の観測視野の中心とが一致するようにして、測定した。
(反り量)
 めっき層無しの放熱部材において、反り量を、輪郭形状測定機(東京精密社製;コンターレコード1600D)を用いて測定した。
 図2(c)に示す様に、反り量の測定を30mm幅で対角線状に行った。
(厚み)
 めっき層無しの放熱部材において、厚みを、マイクロメーターを用いて測定した。
 図2(d)に示す様に、厚みの測定を5箇所で行った。
(熱伝導率、熱膨張係数)
 熱伝導率は、レーザーフラッシュ法により、JIS R1611に準拠して測定した。
 線熱膨張係数は、熱膨張計により、JIS R1618に準拠して、昇温速度が5℃/分以下の条件で測定し、温度25℃から150℃の昇温時の値を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~10の放熱部材は、アルミニウムや銅と比べて熱膨張係数が小さく、薄型で良好な放熱特性を有することから自動車搭載用放熱部材に好適に用いられることが分かった。
 この出願は、2021年10月6日に出願された日本出願特願2021-164570号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 放熱部材
 2 金属-炭化珪素複合体
 3 金属層
 3A 主面
 3B 裏面

Claims (13)

  1.  アルミニウムを含む平板状の金属-炭化珪素質複合体を備えた放熱部材であって、
     当該放熱部材の厚みが、4mm以下であり、
     自動車搭載用放熱部材に用いる、放熱部材。
  2.  請求項1に記載の放熱部材であって、
     主面に対して垂直方向からみたときの縦横の長さが、200mm以下×150mm以下である、放熱部材。
  3.  請求項1又は2に記載の放熱部材であって、
     主面における算術平均粗さRaが、0.1μm以上2.0μm以下である、放熱部材。
  4.  請求項1~3のいずれか一項に記載の放熱部材であって、
     主面における粗さ曲線要素の平均長さRsmが、50μm以上400μm以下である、放熱部材。
  5.  請求項1~4のいずれか一項に記載の放熱部材であって、
     主面における平面度が5μm以上700μm以下である、放熱部材。
  6.  請求項1~5のいずれか一項に記載の放熱部材であって、
     反り量が5μm以上700μm以下である、放熱部材。
  7.  請求項1~6のいずれか一項に記載の放熱部材であって、
     当該放熱部材の主面側に形成されためっき層を備える、放熱部材。
  8.  請求項7に記載の放熱部材であって、
     前記めっき層の表面における算術平均粗さRaが、0.1μm以上2.0μm以下である、放熱部材。
  9.  請求項7又は8に記載の放熱部材であって、
     前記めっき層の表面における粗さ曲線要素の平均長さRsmが、50μm以上400μm以下である、放熱部材。
  10.  請求項7~9のいずれか一項に記載の放熱部材であって、
     前記めっき層は、Niめっき層で構成される、放熱部材。
  11.  請求項1~10のいずれか一項に記載の放熱部材であって、
     当該放熱部材の主面上に形成された、アルミニウムを含む金属層を備える、放熱部材。
  12.  請求項1~11のいずれか一項に記載の放熱部材であって、
     当該放熱部材の、25℃から150℃の平均熱膨張係数が、4ppm/K以上12ppm/K以下である、放熱部材。
  13.  請求項1~12のいずれか一項に記載の放熱部材であって、
     当該放熱部材の、25℃における板厚方向の熱伝導率が、150W/m・K以上300W/m・K以下である、放熱部材。
PCT/JP2022/036942 2021-10-06 2022-10-03 放熱部材 WO2023058598A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280066945.6A CN118056272A (zh) 2021-10-06 2022-10-03 散热构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021164570 2021-10-06
JP2021-164570 2021-10-06

Publications (1)

Publication Number Publication Date
WO2023058598A1 true WO2023058598A1 (ja) 2023-04-13

Family

ID=85804276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036942 WO2023058598A1 (ja) 2021-10-06 2022-10-03 放熱部材

Country Status (2)

Country Link
CN (1) CN118056272A (ja)
WO (1) WO2023058598A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077755A1 (ja) * 2005-01-20 2006-07-27 A.L.M.T.Corp. 半導体装置用部材とその製造方法
JP2008300450A (ja) * 2007-05-29 2008-12-11 Allied Material Corp 半導体装置用ヒートスプレッダとその製造方法
JP2018170504A (ja) * 2017-03-29 2018-11-01 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法
JP2020123638A (ja) * 2019-01-30 2020-08-13 デンカ株式会社 放熱部材およびその製造方法
JP2020171196A (ja) 2020-07-27 2020-10-15 株式会社日立製作所 鉄道車両の電力変換装置
JP2021164570A (ja) 2020-04-07 2021-10-14 王子ホールディングス株式会社 吸収性物品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077755A1 (ja) * 2005-01-20 2006-07-27 A.L.M.T.Corp. 半導体装置用部材とその製造方法
JP2008300450A (ja) * 2007-05-29 2008-12-11 Allied Material Corp 半導体装置用ヒートスプレッダとその製造方法
JP2018170504A (ja) * 2017-03-29 2018-11-01 三菱マテリアル株式会社 ヒートシンク付き絶縁回路基板の製造方法
JP2020123638A (ja) * 2019-01-30 2020-08-13 デンカ株式会社 放熱部材およびその製造方法
JP2021164570A (ja) 2020-04-07 2021-10-14 王子ホールディングス株式会社 吸収性物品の製造方法
JP2020171196A (ja) 2020-07-27 2020-10-15 株式会社日立製作所 鉄道車両の電力変換装置

Also Published As

Publication number Publication date
CN118056272A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
KR101021450B1 (ko) 알루미늄-탄화 규소질 복합체
JP5021636B2 (ja) アルミニウム−炭化珪素質複合体及びその加工方法
KR101344152B1 (ko) 알루미늄-탄화규소질 복합체 및 그것을 사용한 방열 부품
WO2020158774A1 (ja) 放熱部材およびその製造方法
JP6636924B2 (ja) アルミニウム‐炭化珪素質複合体及びその製造方法
JP2022027929A (ja) 放熱部材
JP3907620B2 (ja) セラミックス回路基板一体型アルミニウム−炭化珪素質複合体及びその製造方法
JP7050978B1 (ja) 成形体及びその製造方法
WO2023058598A1 (ja) 放熱部材
JP6591113B1 (ja) 放熱部材およびその製造方法
JPWO2016002943A1 (ja) 放熱部品及びその製造方法
JP5662834B2 (ja) アルミニウム−炭化珪素質複合体の製造方法
WO2020158775A1 (ja) 放熱部材およびその製造方法
WO2023058597A1 (ja) 放熱部材
WO2021200011A1 (ja) 素子搭載基板、および素子搭載基板の製造方法
JP2020123714A (ja) 放熱部材およびその製造方法
JP3732193B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JP2023055311A (ja) 放熱部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023552869

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022878467

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022878467

Country of ref document: EP

Effective date: 20240502