WO2007122847A1 - 有機合成用試薬、及び当該試薬を用いた有機合成反応方法 - Google Patents

有機合成用試薬、及び当該試薬を用いた有機合成反応方法 Download PDF

Info

Publication number
WO2007122847A1
WO2007122847A1 PCT/JP2007/052996 JP2007052996W WO2007122847A1 WO 2007122847 A1 WO2007122847 A1 WO 2007122847A1 JP 2007052996 W JP2007052996 W JP 2007052996W WO 2007122847 A1 WO2007122847 A1 WO 2007122847A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
reaction
organic synthesis
chemical
group
Prior art date
Application number
PCT/JP2007/052996
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Chiba
Shokaku Kim
Yusuke Kono
Original Assignee
National University Corporation, Tokyo University Of Agriculture And Technology
Jitsubo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation, Tokyo University Of Agriculture And Technology, Jitsubo Co., Ltd. filed Critical National University Corporation, Tokyo University Of Agriculture And Technology
Priority to AU2007242276A priority Critical patent/AU2007242276A1/en
Priority to EP07714522.5A priority patent/EP2003104B1/en
Priority to US12/225,442 priority patent/US8093435B2/en
Priority to DK07714522.5T priority patent/DK2003104T3/en
Priority to CN2007800103222A priority patent/CN101405240B/zh
Priority to JP2008511981A priority patent/JPWO2007122847A1/ja
Priority to ES07714522.5T priority patent/ES2546808T3/es
Publication of WO2007122847A1 publication Critical patent/WO2007122847A1/ja
Priority to US13/346,175 priority patent/US8293948B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/58Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/12Derivatives of isocyanic acid having isocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/32Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms
    • C07C275/34Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/20Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group the two nitrogen atoms of the functional groups being doubly-bound to each other, e.g. azoformamide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)

Definitions

  • the present invention relates to an organic synthesis reagent and an organic synthesis reaction method using the same, and more specifically, a compound that rapidly changes from a liquid phase state to a solid phase state by a change in solution composition and / or solution temperature.
  • a compound that that acts as a reaction substrate or catalyst, or in an organic synthesis reaction, it is supplied as a compound that binds to an unreacted compound or by-product.
  • the present invention relates to an organic synthesis reagent that can be easily removed from the organic compound, and an organic synthesis reaction method using the reagent.
  • Such solidification (crystallization) of a specific component dissolved in a solution is realized by satisfying certain conditions in relation to chemical properties, physical properties, and solvents of the compound.
  • Patent Document 1 discloses a method for performing a nucleophilic substitution reaction (Mitsunobu reaction) of an alcohol to produce a target product, in which an alcohol and a nucleophilic reagent are mixed with azodicarboxylate and A step of reacting with phosphine, and carrying out a nucleophilic substitution reaction of an alcohol containing at least one fluorous tag (a holding group such as a highly fluorinated alkyl group) of at least one of azodicarboxylate and phosphate A method is disclosed.
  • a fluorous solvent made of perfluorocarbon or the like is present as a third layer without being mixed with an organic solvent or water, and has a feature of dissolving a compound having a fluorous tag. .
  • a fluorous solvent made of perfluorocarbon or the like is present as a third layer without being mixed with an organic solvent or water, and has a feature of dissolving a compound having a fluorous tag. .
  • the addition of a fluorous solvent to the uniform reaction phase can easily separate a compound having a fluorous tag that needs to be separated from the product.
  • Patent Document 1 Japanese Translation of Special Publication 2005—508890
  • the present invention has been made in view of the above-described problems, and the object thereof is to perform an ionic reaction in the liquid phase and unnecessary from the liquid phase after completion of the reaction.
  • Reagents for organic synthesis which can be easily and inexpensively separated, and using such reagents It is to provide an organic synthesis reaction method.
  • the present inventors have intensively studied to solve the above problems.
  • the reagent for organic synthesis having an aromatic group having a specific hydrophobic group has a property of reversibly changing from a liquid phase state to a solid phase state with a change in solution composition and / or solution temperature.
  • the present invention provides the following.
  • R to R may be the same or different and each may have hydrogen, halogen, or substituent.
  • An optionally substituted acyl group having 1 to 30 carbon atoms, an optionally substituted thioalkyl group having 1 to 30 carbon atoms, an optionally substituted dialkylamino group having 1 to 30 carbon atoms, a nitro group, Or an amino group, and at least two of R to R may have an alkyl group having 18 to 30 carbon atoms.
  • X represents a reagent active site having one or more atoms selected from a carbon atom, an oxygen atom, a sulfur atom, and a nitrogen atom.
  • the reagent has an active site having one or more atoms selected from carbon, oxygen, sulfur, and nitrogen atoms, and is substituted as a substituent on the aromatic ring. It may have a group, or may have an alkyl group having 18 to 30 carbon atoms, may have a substituent, or may have an alkoxyl group having 18 to 30 carbon atoms, or may have a substituent.
  • a good 18 to 30 carbon group acyl group, an optionally substituted thioalkyl group having 18 to 30 carbon atoms, or an optionally substituted dialkylamino group having 18 to 30 carbon atoms. Have at least two. Therefore, the organic synthesis reagent can be uniformly dissolved at a high concentration in many organic solvents, and can react with other compounds with high reactivity in many organic solvents. .
  • the organic synthesis reagent (1) is mainly used as a nucleophilic scavenger, an electrophilic force generator, a synthetic building block, a reaction accelerator, a condensing agent, or a metal ligand. It can. That is, as a reaction product with unnecessary substances such as by-products, catalysts, and unreacted reaction substrates in chemical reactions, as a reaction substrate in organic synthesis reactions, and as a catalyst and reaction accelerator in organic synthesis reactions, It can be used in a wide variety of applications, and has the property of reversibly changing from a liquid phase to a solid phase with changes in solution composition and / or solution temperature. Therefore, the reaction system force can be easily separated.
  • any compound added to the reaction system and by-products generated in the reaction system can be easily separated from the reaction system, or can be easily separated later.
  • a specific reaction substrate or reaction accelerator can be added to the reaction system, and it can be easily separated from the reaction system after completion of the reaction.
  • the "reagent for organic synthesis” refers to all reagents used for organic synthesis reaction or subsequent treatment, and includes reaction substrates, reaction accelerators, synthetic building blocks and the like.
  • the reagent for organic synthesis of the present invention is not particularly limited by the amount of use thereof. It may be used in any case, such as when used in large quantities industrially, or when used in small amounts in tests and research. It can be done.
  • the chemical formula (1) It is a compound which has a structure as shown by these.
  • the “organic synthesis reagent” of the present invention has a “hydrophobic retention group” as a part thereof.
  • the “hydrophobic retention group” refers to a site having hydrophobicity in the compound (1), and specifically, a portion of the chemical formula (1) excluding X which is a reagent active site.
  • nucleophilic scavenger refers to an electrophile used in a chemical reaction, surplus electrophile remaining without reacting with other reaction substrates, and reaction by-products. And a compound capable of binding an unreacted reaction substrate or the like.
  • An "electrophilic scavenger” is a nucleophilic reagent used in a chemical reaction that is generated as a surplus nucleophilic reagent remaining without reacting with other reaction substrates or as a by-product of the reaction. It refers to a compound capable of binding a compound having a nuclear property and an unreacted reaction substrate.
  • the “synthetic building block” is an intermediate for providing the target compound in the present invention by an organic synthetic reaction, and a specific functional group is introduced into any reaction substrate through a chemical bond. This is a generic term for compounds that can impart any reagent activity to the reaction substrate.
  • Condensation agent refers to promoting desorption of active hydrogen and hydroxyl groups from a reaction substrate in a dehydration condensation reaction such as an ester synthesis reaction, an amide synthesis reaction, and an ether synthesis reaction. It refers to a compound that works to promote
  • Metal ligand refers to a compound having an atomic group capable of coordinating and binding to a metal ion added as a catalyst or reaction accelerator in an organic synthesis reaction.
  • reaction accelerator refers to a compound that can be added to a reaction system to promote an organic synthesis reaction, and examples thereof include acids, bases, and catalysts.
  • X in the chemical formula (1) is a functional group represented by the following formulas (A) to (M) or ( ⁇ ′) to ( ⁇ ′): The reagent for organic synthesis as described in 1).
  • Y may have an ester bond, an ether bond, an amide bond, a thioester bond, a sulfide bond, a urea bond, a force rubamate bond, or a carbonate bond, or these bonds.
  • Zb is a hydroxyl group, a chlorine atom, or a bromine atom.
  • the “force rubamate bond” refers to a chemical bond represented by the chemical formula (N).
  • Carbonate bond refers to a chemical bond represented by the chemical formula (O).
  • the organic synthesis reagent (2) is used in the following applications. That is, in the compound (1) represented by (2), when X is a reagent active site represented by the chemical formula (A) to (C) or ( ⁇ ′) to (C,), Since it has a nucleophilic reaction center such as a group or amino group, it can be used as a nucleophilic scavenger.
  • a reagent active site represented by X in the case of a reagent active site represented by X force chemical formulas (D) to (H) or (D ') to ( ⁇ '), Since it has an electrophilic reaction center such as carbonyl carbon, it can be used as an electrophilic scavenger.
  • X is a reagent active site represented by the chemical formula (M) or ( ⁇ ′)
  • a halogen atom not directly bonded to a carbon atom to which a hydroxyl group is bonded or a benzene ring is also used. Since the carbon atom to which the atom is bonded has electrophilicity, it can be used as an electrophilic scavenger.
  • X is from the chemical formula ( ⁇ ) to ( ⁇ ), or ( ⁇ ')
  • a reagent active site represented by ( ⁇ ′) further, via a sulfide bond, a thioester bond, an amino bond, an amide bond, a force rubamate bond, a urea bond, a carbonate bond, an ether bond, or an ester bond.
  • a sulfide bond a thioester bond
  • an amino bond an amide bond
  • a force rubamate bond a urea bond
  • a carbonate bond an ether bond
  • an ester bond since it can be converted into a compound having any reagent activity, it can also be used as a synthetic building block.
  • R and R in the chemical formula (1) are R and R carboxyl groups (C ⁇ ⁇ _), R, R, R
  • the reagent for organic synthesis of (3) has two doxoxy groups, it can be used against many organic solvents. It can be dissolved uniformly at a high concentration, and can react with other compounds with high reactivity in many organic solvents.
  • the reagent for organic synthesis described in (4) is specifically a compound represented by the chemical formula (2a).
  • n and n are each independently 0 or 1
  • Za is a chlorine atom or an aromatic atom
  • Zb is a hydroxyl group, a chlorine atom, or a bromine atom.
  • the reagent for organic synthesis of (4) has a hydroxyl group, a chlorine atom, or a bromine atom, and therefore can be used as an electrophilic scavenger. Furthermore, since the organic synthesis reagent (4) has two docosyloxy groups, it can be uniformly dissolved in many organic solvents at a high concentration. It is possible to react with high reactivity.
  • X force is a hydroxymethyl group
  • the invention (5) is an organic synthesis reagent represented by the following chemical formula (2) and used for organic synthesis.
  • the organic synthesis reagent (5) has a hydroxyl group, and therefore can be used as a nucleophilic scavenger. Furthermore, since the organic synthesis reagent (5) has two doxoxy groups, it can be uniformly dissolved in many organic solvents at a high concentration. It can react with compounds with high reactivity.
  • the invention of (6) is an organic synthesis reaction method using the organic synthesis reagent described in (5), wherein the chemical formula ( 2) A reaction step in which the organic synthesis reagent is dissolved in a reaction system in which the hydroxyl group in the reaction is involved in the reaction, and then the organic synthesis reagent and the organic synthesis reagent after the reaction are added.
  • An organic synthesis reaction method including a separation step of separating.
  • the organic synthesis reaction method of (6) in the reaction step, the chemistry for producing the target compound using the organic synthesis reagent according to any one of (1) to (5)
  • the ability to react is S. Furthermore, by-products generated by the chemical reaction, by-products having a hydrophobic retention group in the organic synthesis reagent, or excessively added to the reaction system, remained unreacted. Since the organic synthesis reagent can be separated in the separation step, the operation of separating another compound from the target compound can be easily performed.
  • the "organic synthesis reaction method” means that a target compound is produced by an organic synthesis reaction.
  • it particularly refers to a method using the organic synthesis reagent according to any one of (1) to (5).
  • the organic synthesis reaction method of the present invention is not particularly limited by the amount of the organic synthesis reagent used. When organic synthesis reagents are used in large quantities industrially, when used in small quantities in tests and research, etc. This is a method that can be implemented in any case.
  • the separation step is performed by the means for changing the solution composition and / or the means for changing the solution temperature.
  • a step of crystallizing and separating the reagent for organic synthesis That is, the reagent for organic synthesis according to any one of (1) to (5) reacts sensitively to changes in solution composition and / or solution temperature, and therefore uses means for changing the composition and / or temperature of the solution.
  • the organic synthesis reagent and the organic synthesis reagent after the reaction can be crystallized, and the target compound for synthesis is left in the solution while the organic synthesis reagent and the organic compound after the reaction are present.
  • the machine synthesis reagent can be easily crystallized and separated.
  • Examples of means for changing the solution composition include means for adding another solvent such as a poor solvent for the organic synthesis reagent to the reaction system, means for concentrating the solution, and the like.
  • Examples of the means for changing the solution temperature include a means for cooling the solution.
  • the present invention since it can be uniformly dissolved in many organic solvents, it can react with other compounds with high reactivity.
  • a reagent for organic synthesis after the reaction, a reagent for organic synthesis, a method for solid-liquid separation by crystallization of the reagent for organic synthesis after the reaction, and a solvent for separation that is not mixed with the solvent for reaction are added.
  • various separation methods such as a method of partitioning the organic synthesis reagent after the reaction into a separation solvent and performing liquid-liquid extraction separation.
  • the separation conditions of these separation methods can be determined uniformly according to the properties of the organic synthesis reagent, so it is necessary to examine the separation conditions based on the properties specific to each organic synthesis reaction. Absent.
  • the organic synthesis reagent according to this embodiment is represented by the chemical formula (1), in which R to R are the same.
  • 1 5 may be one or different, hydrogen, halogen, optionally substituted alkyl group having 1 to 30 carbon atoms, alkoxyl group, aryl group, acyl group, thioalkyl group, dianolenoquinamino group, nitro group Represents an amino group, or at least two of R forces R are substituted
  • X represents a reagent active site having one or more atoms selected from carbon, oxygen, sulfur, and nitrogen atoms.
  • the compound is at least two or more hydrophobic groups selected from the group consisting of an optionally substituted alkyl group having 18 to 30 carbon atoms, an alkoxyl group, an acyl group, or a thioalkyl group. Since it has sufficient hydrophobicity, it can be dissolved in various organic solvents, and has 18 carbon atoms at the 3rd and 5th positions (R and R) with respect to X. ⁇ 3
  • a compound substituted with an alkoxy group of 0 is stable to acid treatment and is particularly suitable as an organic reaction reagent of this embodiment.
  • X represents a reagent active site having one or more atoms selected from carbon, oxygen, sulfur, and nitrogen atoms.
  • X may have a structure represented by the following chemical formulas (A) to (M), or ( ⁇ ′) to ( ⁇ ′).
  • is an ester bond, an ether bond, an amide bond, an amino bond, a thioester bond, a sulphoid bond, a urea bond, a force rubamate bond, a carbonate bond, or a carbon number that may have these bonds.
  • 1 to 10 is an alkylene group.
  • m and ⁇ are each independently 0 or 1
  • Za is a chlorine atom or a bromine atom
  • Z b is a hydroxyl group, a chlorine atom, or a bromine atom. It is.
  • R and R are a dodecoxy group (C
  • Preferred is a compound in which R R and R are hydrogen.
  • organic synthesis reagent of the present embodiment may be a compound represented by the following chemical formula (2).
  • the compound represented by the chemical formula (2) is an organic synthesis reagent represented by the chemical formula (1), wherein X in the chemical formula (1) is a hydroxymethyl group, and R and R Calcyloxy group (C
  • R R and R are hydrogen for organic synthesis.
  • the compound represented by the chemical formula (2) since the compound represented by the chemical formula (2) has a hydroxyl group and exhibits nucleophilicity, it can be used as a nucleophilic scavenger.
  • the method for producing the reagent represented by the above formula is not particularly limited, but in general, it can be synthesized through the following reaction.
  • a compound having a plurality of phenolic hydroxyl groups such as methyl gallate and a long-chain alkyl bromide are reacted in N, N-dimethylformamide under basic conditions to obtain an aromatic compound having an alkoxy group.
  • the reagent of this embodiment can be produced by converting the ester moiety into a desired compound by converting the functional group by a known technique, or by coupling the reagent moiety to a reagent moiety prepared separately.
  • the reagent for organic synthesis according to the present embodiment can be used in the same manner as the reagent used in the conventional liquid phase organic synthesis reaction that does not have a hydrophobic retention group. That is, a reaction substrate to be reacted is dissolved or dispersed in a solvent, and an organic synthesis reagent having a hydrophobic retention group is added and reacted.
  • a general organic solvent can be used for the reaction.
  • the higher the solubility of the organic synthesis reagent in the solvent the higher the reactivity, and therefore the organic synthesis reagent. It is preferable to select a solvent having a high solubility.
  • tetrahydrofuran, dichloromethane, dimethyl ether, hexane, cyclohexane, N, N-dimethylformamide and the like are preferred, but not particularly limited thereto.
  • the same method as a general liquid phase organic synthesis reaction can be applied. That is, the reaction can be traced using thin layer silica gel chromatography, high speed liquid chromatography or the like.
  • the target compound in the reaction step, can be obtained by reacting a specific reaction substrate with an organic synthesis reagent or by using an organic synthesis reagent as a reaction accelerator in a specific chemical reaction. it can.
  • an arbitrary chemical reaction for obtaining a target compound can be performed, and an excessive reaction substrate or by-product added excessively to the reaction system can be reacted with an organic synthesis reagent.
  • an organic synthesis reagent is used as a synthetic building block
  • use of the organic synthesis reagent as a reaction substrate in a nucleophilic addition reaction, a nucleophilic substitution reaction, a dehydration condensation reaction, or the like can be considered.
  • the organic synthesis reagent that can be used in such a reaction is not particularly limited.
  • the solvent used for the reaction may be any solvent that can be normally used for the reaction, but in this embodiment, the organic synthesis reagent having a hydrophobic retention group is dissolved. From the viewpoint of properties, tetrahydrofuran, dichloromethane, cyclohexane ⁇ , ⁇ -dimethylformamide mixed solvent and the like can be used.
  • the reagent for organic synthesis of this embodiment can be used as a reaction accelerator.
  • the effect as a reaction accelerator depends on the nature of the reagent active site of the organic synthesis reagent, for example, the degree of acidity and basicity, and the catalytic activity. Reagent active sites with these properties can be directed to hydrophobic retention groups by using synthetic building blocks.
  • the organic synthesis reagent that can be used as the reaction accelerator is not particularly limited.
  • X is (1), hi), (1 ' ), Or ') is a reagent for organic synthesis which is a reagent active site.
  • These organic synthesis reagents are strongly basic and capture active hydrogen in the reaction substrate, thereby nucleophilic reaction, deprotection reaction, carboxylic acid ester reaction, active methylene alkyl reaction, secondary amine. , Alkylation reaction of phenol, alkylation reaction of thiol, etc.
  • Reagents for organic synthesis having strong basicity can be used, for example, for the deprotection reaction of F moc group (9-fluorenylmethoxycarbonyl group) known as a protecting group for an amino group. It's not limited to the reaction.
  • the solvent used in the reaction may be any solvent that can be normally used in the reaction. However, in this embodiment, the solubility of the organic synthesis reagent having a hydrophobic retention group is not limited.
  • tetrahydrofuran, dichloromethane, cyclohexane / N, N-dimethylformamide mixed solvent and the like can be used.
  • the amount of the organic synthesis reagent used in the reaction is the solubility of the organic synthesis reagent in the solvent used, the equilibrium constant of the acid-base equilibrium in the base, and the stoichiometry of the reaction. However, it is usually preferable to add 1 to 5 times the equivalent amount theoretically required.
  • the organic synthesis reagent having a strong basicity is a nucleophilic reaction, deprotection reaction, carboxylic acid ester reaction, active methylene alkyl reaction, amine alkyl reaction, as well as promotion of deprotection reaction. It can be used for the promotion of the alkylation reaction, phenol alkylation reaction, and thiol alkylation reaction. In these cases, the same solvent as that used in the promotion of the deprotection reaction can be used, and the organic synthesis with the same amount as that of the organic synthesis reagent used in the promotion of the deprotection reaction can be used. The reaction can be promoted by adding a reagent for use.
  • the reagent for organic synthesis of this embodiment can be used as a condensing agent.
  • a reagent for organic synthesis can be used as a condensing agent that substitutes for triphenylphosphine or jetyl diazodicarboxylate necessary for the dehydration condensation reaction known as Mitsunobu reaction.
  • Examples of such a reagent for organic synthesis include a reagent for organic synthesis represented by the chemical formula (1), wherein X is a reagent activity represented by (K), (L), ( ⁇ ′), or (L ′). Examples include organic synthesis reagents that are sites.
  • the dehydration condensation reaction that can be used in the present embodiment is not particularly limited, and examples thereof include an ester synthesis reaction, an amide synthesis reaction, and an ether synthesis reaction.
  • the solvent that can be used for the reaction is not particularly limited as long as it is a solvent that can be generally used in the reaction, but in the present embodiment, the organic synthesis reagent having a hydrophobic retention group is dissolved. From the viewpoint of properties, tetrahydrofuran, dichloromethane, cyclohexane / N, N-dimethylformamide mixed solvent and the like can be used.
  • the amount of the organic synthesis reagent used in the reaction is, for example, in the case of the Mitsunobu reaction, considering the solubility of the organic synthesis reagent in the solvent used, the stoichiometry of the Mitsunobu reaction, etc.
  • organic synthesis reagents are added as substitutes for triphenylphosphine, 1 to 5 equivalents are substituted for diethyl azodicarboxylate for 1 equivalent of hydroxyl group to be dehydrated.
  • an electrophilic reagent that is added excessively and remains unreacted in the reaction solution and a nucleophilic reagent.
  • Reagents and compounds produced as by-products in chemical reactions can be captured by electrophilic and nucleophilic compounds.
  • an unreacted reaction substrate may be bound to allow the chemical reaction to proceed on the organic synthesis reagent. it can.
  • the organic synthesis reagent that can be used in such a reaction is not particularly limited.
  • the organic synthesis reagent represented by chemical formula (1) is a nucleophilic strength generator
  • X If the reagent for organic synthesis, which is a reagent active site represented by (A) to (C) or ( ⁇ ′) to (C ′), is an electrophilic scavenger, X is changed from (D) to ( ⁇ ), And ( ⁇ ), or (D ′) to ( ⁇ ′), and ( ⁇ ′) are reagents for organic synthesis that are reagent active sites.
  • the amount of the organic synthesis reagent used in the reaction is appropriately determined by those skilled in the art in consideration of the solubility of the organic synthesis reagent in the solvent used and the electrophilicity and nucleophilicity of the compound to be captured. Although it can be determined, it is preferable to add an organic synthesis reagent with an equivalent force of 5 equivalents to 1 equivalent of the remaining amount of the expected nucleophilic or electrophilic reaction substrate.
  • the organic synthesis reagent of the present embodiment is used as a nucleophilic scavenger, for example, the following forms of use can be given as an example.
  • the organic synthesis reagent represented by the chemical formula (1), wherein X is (M), or ( ⁇ ′) is an electrophilic scavenger.
  • it can be used as a reagent for peptide synthesis.
  • the carbon atom bonded to the hydroxyl group in the reagent active site represented by the chemical formulas ( ⁇ ) and ( ⁇ '), and the carbon to which the halogen atom not directly bonded to the benzene ring is bonded.
  • the atom Since the atom has electrophilicity, it can be bonded to the carboxyl group of an amino acid, and the activated amino acid is sequentially bonded to the peptide for organic synthesis in the state where the carboxyl group is bonded to the peptide. Synthetic reactions can be performed.
  • the reagent for organic synthesis separated from the reaction system after completion of the peptide synthesis reaction can easily cleave only the peptide by adding an acid.
  • the reagent for organic synthesis having the reagent active sites ( ⁇ ) and ( ⁇ ′) is not capable of activating the carbonyl group when an amino acid is bound to the reagent for organic synthesis. It does not produce an intermediate with an oxazolone skeleton that causes racemization, and therefore does not cause peptide racemization during peptide synthesis.
  • the use of the organic synthesis reagent having the reagent active sites ( ⁇ ) and ( ⁇ ') is not limited to the use as a peptide synthesis reagent.
  • the target compound can be used as a hydrophobic protecting group by reacting an organic synthesis reagent having the reagent active site with the target compound.
  • the organic synthesis reagent used as such a hydrophobic protecting group is also within the scope of the present invention.
  • the organic synthesis reagent as a metal ligand, the metal ion added to the reaction system as a catalyst or the like can be coordinated and captured by the organic synthesis reagent.
  • the organic synthesis reagent that can be used for such a reaction is not particularly limited.
  • X is ( ⁇ ), or ( ⁇ ′)
  • a reagent for organic synthesis which is a reagent active site represented by
  • the amount of the organic synthesis reagent used in the reaction is as follows. In consideration of the solubility of the reagent for use and the usual coordination number of the metal ion, those skilled in the art can appropriately set, but 1 equivalent to 5 equivalents of organic per 1 equivalent of the added metal ion. It is preferable to add a reagent for synthesis.
  • an organic synthesis reagent is used as a nucleophilic scavenger, an electrophilic scavenger, and a metal ligand
  • a chemical reaction prior to a reaction for capturing surplus compounds and the like is usually performed in the reaction.
  • a mixed solution of tetrahydrofuran, dichloromethane, cyclohexane / N, N-dimethylformamide is used. It is preferable to use a solvent such as a medium.
  • the reagent for organic synthesis according to the present embodiment dissolves and reacts sharply with changes in the composition and / or temperature of the solution, and crystallizes. For this reason, the reagent for organic synthesis can be crystallized by using means for changing the composition and / or temperature of the solution.
  • the organic synthesis reagent separation step is not mixed with the reaction solvent used in the reaction step, but by adding a separation solvent that can easily dissolve the organic synthesis reagent, It can also be separated.
  • Preferable means for changing the solution composition include, for example, a means for adding a poor solvent for the organic synthesis reagent to the reaction solution.
  • a solvent having high affinity to the reaction solvent by adding a solvent having high affinity to the reaction solvent, the liquid phase is not phase-separated, so that the solution composition can be easily changed.
  • the poor solvent any solvent can be used, and the same solvent as the reaction solvent and a solvent different from the reaction solvent can be used.
  • dichloromethane, tetrahydrofuran, dimethyl ether, or the like is used as a reaction solvent
  • acetonitrile, ⁇ , ⁇ -dimethylformamide, methanol, or the like can be used as a poor solvent.
  • the organic synthesis reagent and the organic synthesis reagent after the reaction can be crystallized and solid-liquid separated.
  • a suction filter such as Kiriyama funnel can be used.
  • an octadecylsilylation (ODS) silica gel filter or ODS short column may be used.
  • Another preferred means for changing the solution composition includes, for example, a means for concentrating the organic synthesis reagent and the solvent of the solution in which the organic synthesis reagent after the reaction is dissolved.
  • the concentration means that a part of the solvent is distilled off.
  • the solvent When distilling off the solvent, the solvent must be distilled off within a range where the organic synthesis reagent and the organic synthesis reagent after the reaction crystallize and the compound intended for synthesis does not crystallize. Is preferred.
  • Such conditions can be appropriately set by those skilled in the art in consideration of the addition amount of the organic synthesis reagent, the estimated production amount of the target compound, the solubility of each compound, and the like. .
  • the organic synthesis reagent and the organic synthesis reagent after the reaction can be crystallized and separated by changing the solution temperature.
  • the means for changing the solution temperature preferably used is not particularly limited as long as it is a means capable of changing the temperature of the solution in which the organic synthesis reagent and the organic synthesis reagent after the reaction are dissolved. It is not something.
  • a means for cooling the solution can be mentioned.
  • cyclohexane is used as the reaction solvent, it is possible to crystallize the organic synthesis reagent and the organic synthesis reagent after the reaction by cooling to 5 ° C or lower.
  • the solubility of the organic synthesis reagent is increased by heating in the reaction step, and the organic synthesis reagent and reaction are performed by cooling after the reaction.
  • the later organic synthesis reagent can be crystallized.
  • the organic synthesis reagent is crystallized by changing the solution composition or the solution temperature, it is possible to facilitate the formation of crystals by adding octadecylsilylated silica gel, Karaz beads, etc. as crystallization nuclei. It becomes possible.
  • the organic synthesis reagent is not mixed with the reaction solvent in which the organic synthesis reagent is dissolved.
  • a separation solvent that is greater than the solubility of the drug
  • the separation solvent in which the organic synthesis reagent and the organic synthesis reagent after the reaction are dissolved is separated by a separatory funnel so that the organic synthesis reagent and the organic solvent after the reaction can be easily separated from the reaction solvent. Synthetic reagents can be separated.
  • the separation solvent that can be used is not particularly limited.
  • acetonitrile, propionitryl, N, N-dimethylformamide, or the like is used as the reaction solvent, for example, Cyclohexane, delican and the like can be used.
  • reagents that can be used for separating the organic synthesis reagent and the atomic group bonded to the reactive site include acids such as trifluoroacetic acid and hydrochloric acid; bases such as sodium hydroxide. And catalysts used for hydrogenation reaction such as palladium. Of these, trifluoroacetic acid can be preferably used.
  • 2,4-Dihydroxybenzaldehyde lg, 1-bromodocosane 8.4 g, and carbonated lithium 6 g are dissolved in 20 ml of N, N-dimethylformamide, and at 80 ° C for 8 hours under a nitrogen stream. Reacted. After confirming the completion of the reaction by thin layer chromatography, 20 ml of toluene and 10 ml of water were added to the reaction solution and stirred at 80 ° C. for 5 minutes. The toluene layer was separated with a separatory funnel and the solvent was distilled off, and then 50 ml of methanol was added to precipitate crystals. This solution was suction filtered with a Kiriyama funnel to obtain 6.97 g of crude crystals.
  • Example 3 Synthesis of black mouthform having a hydrophobic retention group> 3,5 Methyl bis (docosyloxy) benzoate (4.43 g) was dissolved in 100 ml of tetrahydrofuran, 240 mg of lithium aluminum hydride was added, and the mixture was stirred at room temperature. After confirming the completion of the reaction by thin layer chromatography, 1 ml of methanol was added to stop the reaction.
  • Table 1 shows a comparison of the yields of Example 10, Comparative Example 1, and Comparative Example 2.
  • the solvent was distilled off under reduced pressure, acetonitrile was added, and the mixture was filtered through a syringe filled with octadecylsilylated silica, and 16.7 mg of isopropyl-2- (4-methoxyphenyl) acetate was obtained from the filtrate.
  • the yield was 70%.
  • Methyl 3,5-bis (docosyloxy) benzoate 1570 mg (2. Ommol) was dissolved in 30 ml of tetrahydrofuran, 9 ml of phenylmagnesium bromide tetrahydrofuran solution (9 equivalents) was added, and the mixture was stirred at 76 ° C for 2 hours. . After confirming the completion of the reaction by thin layer chromatography, 40 ml of 1N hydrochloric acid was added to stop the reaction.
  • the organic synthesis reagent and the organic synthesis reaction method of the invention can promote research and development of pharmaceuticals by compound library synthesis and the like, and can contribute to technological innovation in the biochemical industry and the chemical industry. it can.
  • the efficient use and recovery of reagents can be an innovative technology that contributes to the development of green chemistry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 液相にて化学反応を行うことができ、且つ、反応終了後の液相からの不必要な化合物の分離を、容易に、且つ低コストで行うことができる、有機合成用試薬、及び当該試薬を用いた有機合成反応方法を提供することである。  溶液組成及び/又は溶液温度の変化に伴い、液相状態から固相状態に可逆的に変化する性質を有し、且つ、有機合成反応に用いられる有機合成用試薬。本発明の有機合成用試薬によれば、プロセス開発を容易とするばかりでなく、例えば、化合物ライブラリー合成等による医薬品等の研究開発を促進することが可能となり、ひいては生化学工業や化学工業における技術革新に寄与することができる。

Description

明 細 書
有機合成用試薬、及び当該試薬を用いた有機合成反応方法
技術分野
[0001] 本発明は、有機合成用試薬、及びこれを用いた有機合成反応方法に関し、詳しく は、溶液組成及び/又は溶液温度の変化により、液相状態から固相状態に迅速に 変化する化合物であり、有機合成反応において、反応基質や触媒として作用する化 合物として供給され、又は、有機合成反応において、未反応の化合物や副生物と、 結合する化合物として供給され、反応後は反応系から容易に除去され得る、有機合 成用試薬、及び当該試薬を用いた有機合成反応方法に関する。
背景技術
[0002] 化学反応プロセスにおいては、液体に溶解した特定成分を固体として分離する方 法が広く用レ、られている。特定成分のみを固体化 (結晶化)することにより、反応後の 分離 ·精製が容易となるためである。特に、近年、医薬品の開発研究等で用いられて レ、る化合物ライブラリー合成等の逐次多段階合成においては、各反応の終了毎に、 不要な化合物を固体化 (結晶化)させることにより、固体化 (結晶化)した物質の分離 が容易となり、工程が煩雑となることを防止できる。
[0003] このような、溶液に溶解した特定成分の固体化 (結晶化)は、化合物の化学的性質 、物性、及び溶媒との関係において、一定の条件を満たすことにより実現される。
[0004] しかしながら、固体化 (結晶化)の条件は、多くの場合、試行錯誤を行い、経験的に 探索せねばならない。特に、逐次多段階合成においては、それぞれの段階において 合成された化合物に特有な性質に基づレ、て、固体化 (結晶化)条件の検討が必要と なるため、プロセス開発に多大なコストと時間を要していた。
[0005] このような問題を解決するため、従来、ポリスチレンやシリカに化学修飾した試薬を 用レ、、反応終了後は濾過により生成物を含む溶液と試薬とを分離する手法が知られ ている。これらの試薬によれば、有機合成反応等において過剰に添加された未反応 の化合物や、副生成物、触媒等を、複雑な分離工程を経ずに容易に分離することが できるとされている。 [0006] また、特許文献 1には、 目的とする生成物を生成するためにアルコールの求核置換 反応(光延反応)を実施する方法であって、アルコールと求核試薬とを、ァゾジカルボ キシラート及びホスフィンと反応させるステップを含み、ァゾジカルボキシラート及びホ スフインのうち少なくとも一種力 フルォラスタグ(高度にフッ素化されたアルキル基等 の保持基)を少なくとも 1つ含むアルコールの求核置換反応を実施する方法が開示さ れている。ここで、例えば、パーフルォロカーボン等からなるフルオラス溶媒は、有機 溶媒や水とは混合せずに、第三の層として存在し、フルオラスタグを有する化合物を 溶解させる特徴を有している。このため、均一な反応相にフルオラス溶媒を添加する ことにより、生成物から分離することが必要な、フルオラスタグを有する化合物を容易 に分離すること力 Sできるとされてレ、る。
[0007] 更に、フルォラスタグに選択的に結合する、フルオラス担体を用いることにより、固 液抽出によって、フルオラスタグを有する化合物を容易に分離できるとされてレ、る。 特許文献 1 :特表 2005— 508890号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、ポリスチレンやシリカに化学修飾した試薬を用いた反応を利用する場 合、ポリスチレンやシリカに担持させた試薬は反応点が固液界面のみであるため、反 応性が乏しい事が多レ、。更に、固相表面での反応となるため、 2種以上の試薬が、立 体的に複数の方向から反応して生成物を生じる多くの合成反応では、この方法を用 レ、ることが出来なレ、とレ、う問題点があった。
[0009] また、特許文献 1に開示された方法にぉレ、て、フルォラスタグを有する化合物の分 離にフルオラス溶媒を用いる場合は、フルオラス溶媒が高価であるために、反応に費 やすコストを低く抑えることができないという問題点があった。更に、フルオラスタグを 有する化合物の分離にフルオラス担体を用いる場合は、高価なフッ素化シリカゲル 等を用いる上、分離操作も煩雑で、容易に用いられるものではなかった。
[0010] 本発明は、以上のような課題に鑑みてなされたものであり、この目的は液相にてィ匕 学反応を行うことができ、且つ、反応終了後の液相からの不必要な化合物の分離を、 容易に、且つ低コストで行うことができる、有機合成用試薬、及び当該試薬を用いた 有機合成反応方法を提供することである。
課題を解決するための手段
[0011] 本発明者らは、上記課題を解決するため鋭意研究を重ねた。その結果、溶液組成 及び/又は溶液温度の変化に伴い、液相状態から固相状態に可逆的に変化する性 質を有し、特定の疎水性基を有する芳香族基を含む有機合成用試薬を用いることに より、反応終了後の液相からの不必要な化合物の分離を、容易に、且つ低コストで行 えることを見出し、本発明を完成するに至った。
[0012] 具体的には、本発明は、以下のものを提供する。
[0013] (1) 溶液組成及び/又は溶液温度の変化に伴い、液相状態から固相状態に可 逆的に変化する性質を有し、下記の化学式(1)で示され、有機合成反応に用いられ る有機合成用試薬。
[化 1]
Figure imgf000004_0001
… (1 )
(式中、 R〜Rは、同一でも異なっていてもよぐ水素、ハロゲン、置換基を有しても
1 5
よい炭素数 1〜30のアルキル基、置換基を有してもよい炭素数 1〜30のアルコキシ ル基、置換基を有してもよい炭素数 1〜30のァリール基、置換基を有してもよい炭素 数 1〜30のァシル基、置換基を有してもよい炭素数 1〜30のチォアルキル基、置換 基を有してもよい炭素数 1〜30のジアルキルアミノ基、ニトロ基、又はアミノ基を表し、 R〜Rのうち、少なくとも 2つは、置換基を有していてもよい炭素数 18〜30のアルキ
1 5
ル基、置換基を有していてもよい炭素数 18〜30のアルコキシル基、置換基を有して いてもよい炭素数 18〜30のァシル基、置換基を有していてもよい炭素数 18〜30の チォアルキル基、又は置換基を有していてもよい炭素数 18〜30のジアルキルアミノ 基である。また、式中、 Xは炭素原子、酸素原子、硫黄原子、及び窒素原子から選ば れる 1以上の原子を有する試薬活性部位を示す。 ) [0014] (1)の有機合成用試薬によれば、炭素、酸素、硫黄、及び窒素原子から選ばれる 1 以上の原子を有する試薬活性部位を有するとともに、芳香族環上の置換基として、 置換基を有してレ、てもよレ、炭素数 18〜30のアルキル基、置換基を有してレ、てもよレヽ 炭素数 18〜30のアルコキシル基、置換基を有していてもよい炭素数 18〜30のァシ ル基、置換基を有していてもよい炭素数 18〜30のチォアルキル基、又は置換基を 有していてもよい炭素数 18〜 30のジアルキルアミノ基を少なくとも二つ有する。この ため、当該有機合成用試薬は多くの有機溶媒に対して高い濃度で均一に溶解する ことができ、多くの有機溶媒において、他の化合物と、高い反応性を持って反応する こと力 Sできる。
[0015] また、(1)の有機合成用試薬は、主に求核性スカベンジャー、求電子性ス力べンジ ヤー、合成ビルディングブロック、反応促進剤、縮合剤、又は金属リガンドとして用い ることができる。即ち、化学反応における副生成物、触媒、及び未反応の反応基質等 の不必要な物質との反応物質として、有機合成反応における反応基質として、並び に有機合成反応における触媒や反応促進剤として、広く様々な用途に用いることが できるとともに、溶液組成及び/又は溶液温度の変化に伴い、液相状態から固相状 態に可逆的に変化する性質を有するので、反応後は固相化することにより、反応系 力 容易に分離することができる。
[0016] これにより、反応系に添加した任意の化合物や、反応系に生じた副生成物を、反応 系から容易に分離することができ、或いは、後に容易に分離することができる化合物 として、反応系に特定の反応基質や反応促進剤を加え、反応終了後は反応系から 容易に分離することができる。
[0017] また、(1)の有機合成試薬を用いた反応においては、特に高価な試薬を用いること がなぐ有機合成反応を低コストで行うことができる。
[0018] ここで、「有機合成用試薬」には、有機合成反応、又はその後処理を行うために用 レ、る全ての試薬を指し、反応基質、反応促進剤、合成ビルディングブロック等を含む 。本発明の有機合成用試薬は、その使用量により特に限定されるものではな 工業 的に大量に使用される場合、試験、研究において少量使用される場合等、どのような 場合においても用いることができるものである。本発明においては、特に、化学式(1) で示されるような構造を有している化合物である。
[0019] また、本発明の「有機合成用試薬」は、その一部として、「疎水性保持基」を有する。
本発明において、「疎水性保持基」とは、化合物(1)において、疎水性を有する部位 を指し、具体的には、化学式(1)のうち、試薬活性部位である Xを除いた部分を指す
[0020] 更に、「求核性スカベンジャー」とは、化学反応において用いられた求電子試薬のう ち、他の反応基質と反応せずに残存した余剰の求電子試薬や、反応の副生成物とし て生成し、求電子性を有する化合物、更には未反応の反応基質等を結合することが できる化合物を指す。
[0021] 「求電子性スカベンジャー」とは、化学反応において用いられた求核試薬のうち、他 の反応基質と反応せずに残存した余剰の求核試薬や、反応の副産物として生成し、 求核性を有する化合物、更には未反応の反応基質等を結合することができる化合物 を指す。
[0022] 「合成ビルディングブロック」とは、本発明において目的とする化合物を有機合成反 応により提供するための中間体であって、任意の反応基質に化学結合を介して特定 の官能基を導入することにより、当該反応基質に任意の試薬活性を付与することが できる化合物の総称を指す。
[0023] 「縮合剤」とは、エステル合成反応、アミド合成反応、及びエーテル合成反応等の脱 水縮合反応において、反応基質からの活性水素や水酸基の脱離を促進し、以つて 脱水縮合反応の促進に働く化合物を指す。
[0024] 「金属リガンド」とは、有機合成反応において、触媒や反応促進剤として添加した金 属イオンに、配位して結合することができる原子団を有する化合物を指す。
[0025] 更に、「反応促進剤」とは、反応系に添加することにより、有機合成反応を促進させ ることができる化合物を指し、例えば、酸、塩基、及び触媒等が挙げられる。
[0026] (2) 前記化学式(1)中の Xは、下記式 (A)から (M)、又は (Α' )から(Μ' )で示さ れる官能基であることを特徴とする、 (1)に記載の有機合成用試薬。
[化 2] (,〇)-■■' 」a- (〇)'-■■ Ja——人
Figure imgf000007_0001
Figure imgf000007_0002
(,α). -
Figure imgf000007_0003
(,〇)- ..·
Figure imgf000007_0004
(,g) .... 2HN '(g) .... 2HN
(,V)■■■■ HS- (V)■■■■ HS——人-
9
966ZS0/.00Zdf/X3d ■ Z動 OAV
Figure imgf000008_0001
[化 10]
Figure imgf000008_0002
[化 11]
― Υ— Ν ΝΗ -Ν ΝΗ
■(J), ■(」')
[化 12]
Figure imgf000008_0003
[化 13]
Figure imgf000008_0004
[化 14]
Figure imgf000009_0001
(式 (A)から(M)中、 Yはエステル結合、エーテル結合、アミド結合、チォエステル 結合、スルフイド結合、ゥレア結合、力ルバメート結合、若しくはカーボネート結合、又 はこれらの結合を有していてもよい炭素数 1以上 10以下のアルキレン基である。また 、式(Μ)及び(Μ' )中、 m及び ηは、それぞれ独立に 0又は 1であり、 Zaは塩素原子、 又は臭素原子であり、 Zbはヒドロキシノレ基、塩素原子、又は臭素原子である。 )
[0027] ここで、「力ルバメート結合」とは、化学式 (N)で示される化学結合を指す。
[化 15]
o
ヽ人 0z
n ■ · · · (N)
[0028] また、「カルボネート結合」とは、化学式 (〇)で示される化学結合を指す。
[化 16]
Figure imgf000009_0002
[0029] (2)の有機合成用試薬は以下の用途で用いられる。即ち、(2)において示される化 合物(1)のうち、 Xが、化学式 (A)から (C)又は (Α' )から (C, )で示される試薬活性 部位である場合は、チオール基、アミノ基等、求核性を持つ反応中心を有しているた め、求核性スカベンジャーとして用いることができる。
[0030] また、(2)において示される化合物(1)のうち、 X力 化学式 (D)から(H)、又は(D' )から(Η' )で示される試薬活性部位である場合は、カルボニル炭素等、求電子性を 持つ反応中心を有しているため、求電子性スカベンジャーとして用いることができる。 また、化合物(1)のうち、 Xが、化学式 (M)、又は (Μ' )で示される試薬活性部位であ る場合も、水酸基が結合する炭素原子やベンゼン環に直接結合していないハロゲン 原子が結合する炭素原子が求電子性を有しているため、求電子性スカベンジャーと して用いることができる。
[0031] (2)において示される化合物(1)のうち、 Xが、化学式 (Α)から (Η)、又は (Α' )から
(Η' )で示される試薬活性部位である場合は、更に、スルフイド結合、チォエステル結 合、ァミノ結合、アミド結合、力ルバメート結合、ゥレア結合、カルボネート結合、エー テル結合、又はエステル結合等を介して、任意の試薬活性を持つ化合物への構造 変換が可能であるため、合成ビルディングブロックとしても用いることができる。
[0032] (2)において示される化合物(1)のうち、 Xが、化学式 (1)、 α)、( )、又は α ' )で 示される試薬活性部位である場合には、アミノ基等が、強い塩基性を示すため、強塩 基として、反応促進剤等に用いることができる。即ち、これらの化合物が強塩基として 、一部の反応基質の有する活性水素を捕捉することにより、求核反応、脱保護反応、 カルボン酸のエステル化反応、活性メチレンのアルキル化反応、ァミンのアルキルィ匕 反応、フエノールのアルキル化反応、及びチオールのアルキル化反応等の反応促進 剤として用いることができる。
[0033] (2)において示される化合物(1)のうち、 X力 化学式 (Κ)、又は (Κ' )で示される試 薬活性部位である場合には、金属原子に対し、リン原子が有する非結合電子対が供 与されるとともに、金属原子から 3級ホスフィンの π軌道に電子対が逆供与される。こ のため、これらの化合物は、金属原子との強固な配位結合を形成することができる。
[0034] 更に、(2)において示される化合物(1)のうち、 Xが、化学式 (K)、(L)、 (K,)、又 は (L' )で示される試薬活性部位である場合には、 (K)、又は (Κ' )力 トリフエニルホ スフインと同様に作用し、更に (L)、又は(L' )が、ァゾジカルボン酸ジェチルと同様 に作用することにより、光延反応として公知の様々な縮合反応の縮合剤として用いる こと力 Sできる。
[0035] (3) 前記化学式(1)中の R及び Rカ^コシロキシ基(C Η 〇_)であり、 R、R
2 4 22 45 1 3 及び Rが水素である、(1)又は(2)に記載の有機合成用試薬。
5
[0036] (3)の有機合成用試薬は、ドコシ口キシ基を 2つ有するため、多くの有機溶媒に対し て高い濃度で均一に溶解することができ、多くの有機溶媒において、他の化合物と、 高レ、反応性を持って反応することができる。
[0037] (4) 前記化学式(1)中の試薬活性部位 Xが、前記式 (M)、又は (Μ' )で示される 官能基である(3)に記載の有機合成用試薬。
[0038] (4)に記載の有機合成用試薬は、具体的には化学式 (2a)で表される化合物であ る。
[化 17]
Figure imgf000011_0001
(式(2a)中、 m及び nは、それぞれ独立に 0又は 1であり、 Zaは塩素原子、又は臭 素原子であり、 Zbはヒドロキシノレ基、塩素原子、又は臭素原子である。 )
[0039] (4)の有機合成用試薬は、水酸基、塩素原子、又は臭素原子を有するため、求電 子性スカベンジャーとして用いることができる。更に、(4)の有機合成用試薬は、ドコ シロキシ基を 2つ有するため、多くの有機溶媒に対して高い濃度で均一に溶解するこ とができ、多くの有機溶媒において、他の化合物と、高い反応性を持って反応するこ とがでさる。
[0040] (5) 前記化学式(1)中の試薬活性部位 X力 ヒドロキシメチル基であり、 R及び R
2 4 力 Sドコシ口キシ基(c H 0_)であり、 R、 R及び Rが水素である(1)に記載の有
22 45 1 3 5
機合成用試薬。
[0041] 換言すれば、(5)の発明は、下記の化学式(2)で示され、有機合成に用いられる有 機合成用試薬である。
[化 18]
Figure imgf000012_0001
[0042] (5)の有機合成用試薬は、水酸基を有するため、求核性スカベンジャーとして用い ることができる。更に、(5)の有機合成用試薬は、ドコシ口キシ基を 2つ有するため、 多くの有機溶媒に対して高い濃度で均一に溶解することができ、多くの有機溶媒に おいて、他の化合物と、高い反応性を持って反応することができる。
[0043] (6) (1)から(5)のいずれかに記載の有機合成用試薬を用いた有機合成反応方 法であって、前記化学式(1)中の試薬活性部位 Xが反応に関与する反応系に、前記 有機合成用試薬を溶解させて反応を行う反応工程と、その後、前記有機合成用試薬 、及び反応後の前記有機合成用試薬を分離させる分離工程と、を含む、有機合成反 応方法。
[0044] (5)に記載の有機合成用試薬に着目すれば、 (6)の発明は、(5)に記載の有機合 成用試薬を用いた有機合成反応方法であって、前記化学式(2)中の水酸基が反応 に関与する反応系に、前記有機合成用試薬を溶解させて反応を行う反応工程と、そ の後、前記有機合成用試薬、及び反応後の前記有機合成用試薬を分離させる分離 工程と、を含む、有機合成反応方法である。
[0045] (6)の有機合成反応方法によれば、反応工程において、(1)から(5)のいずれかに 記載の有機合成用試薬を用いて、 目的とする化合物を生成するための化学反応を 行うこと力 Sできる。更に、当該化学反応で生じた副生成物で、有機合成用試薬が有 する疎水性保持基を有している副生成物や、反応系に過剰に添加して、未反応のま ま残った有機合成用試薬は、分離工程により分離することができるから、 目的とする 化合物から他の化合物を分離する操作を、容易に行うことができる。
[0046] また、 (6)の有機合成反応方法の反応工程にぉレ、ては、 目的の化合物を得るため の任意の化学反応を行った上で有機合成用試薬を加え、反応系に過剰に加えた余 剰の反応基質や副生成物と、有機合成用試薬とを反応させてもよい。
[0047] ここで、「有機合成反応方法」とは、 目的とする化合物を有機合成反応により生成す るための方法を指し、本発明においては、特に、(1)から(5)のいずれかに記載の有 機合成用試薬を用いた方法を指す。本発明の有機合成反応方法は、有機合成用試 薬の使用量により特に限定されるものではなぐ有機合成用試薬が工業的に大量に 使用される場合、試験、研究において少量使用される場合等、どのような場合におい ても実施することができる方法である。
[0048] また、ここで、 (6)の有機合成反応方法における分離工程は、溶液組成を変化させ る手段及び/又は溶液温度を変化させる手段により、前記有機合成用試薬、及び反 応後の前記有機合成用試薬を晶析させて分離する工程を含む。即ち、(1)から (5) のいずれかに記載の有機合成用試薬は、溶液組成及び/又は溶液温度の変化に 鋭敏に反応するため、溶液の組成及び/又は温度を変化させる手段を用いることに より、有機合成用試薬、及び反応後の有機合成用試薬を晶析することでき、合成の 目的とする化合物は溶液に残したままの状態で、有機合成用試薬、及び反応後の有 機合成用試薬を容易に晶析して分離することができる。
[0049] 溶液組成を変化させる手段としては、例えば、反応系に、当該有機合成用試薬に 対する貧溶媒等の他の溶媒を添加する手段、溶液を濃縮する手段等が挙げられる。 溶液温度を変化させる手段としては、例えば、溶液を冷却する手段が挙げられる。 発明の効果
[0050] 本発明によれば、多くの有機溶媒に均一に溶解できるので、他の化合物と、高い反 応性を以つて、反応することができる。また、反応後においては、有機合成用試薬、 及び反応後の有機合成用試薬を晶析させて固液分離する方法、並びに反応用溶媒 とは混合しない分離用溶媒を添加し、有機合成用試薬、及び反応後の有機合成用 試薬を分離用溶媒に分配させ液液抽出分離する方法等、種々の分離方法を選択す ること力 Sできる。これらの分離方法の分離条件は、有機合成用試薬の性質に応じて、 画一的に定めることができるため、それぞれの有機合成反応に特有の性質等に基づ く分離条件を検討する必要がない。これにより、プロセス開発を容易とするばかりでな ぐ例えば、化合物ライブラリー合成等による医薬品等の研究開発を促進することが 可能となり、ひいては生化学工業や化学工業における技術革新に寄与することがで きる。 [0051] 更に、本発明の有機合成試薬を用いた有機合成反応においては、特に高価な化 合物を使用しないため、低コストで有機合成反応を行うことができる。
発明を実施するための形態
[0052] 以下、本発明の実施形態について詳細に説明する。なお、本発明の有機合成用 試薬、及び当該試薬を用いた有機合成反応方法は、以下の実施形態になんら限定 されるものではなぐ本発明の目的の範囲内において、適宜変更を加えて実施するこ とがでさる。
[0053] <有機合成用試薬 >
本実施形態に係る有機合成用試薬は、化学式(1)で表され、式中、 R〜Rは、同
1 5 一でも異なっていてもよぐ水素、ハロゲン、置換基を有してもよい炭素数 1〜30のァ ルキル基、アルコキシル基、ァリール基、ァシル基、チォアルキル基、若しくはジァノレ キノレアミノ基、ニトロ基、又はアミノ基を表し、 R力 Rのうち、少なくとも 2つは、置換
1 5
基を有していてもよい炭素数 18〜30のアルキル基、アルコキシル基、ァシル基、チ ォアルキル基、又はジアルキルアミノ基である。また、式中、 Xは炭素、酸素、硫黄、 及び窒素原子から選ばれる 1以上の原子を有する試薬活性部位を示す。
[化 19]
Figure imgf000014_0001
[0054] 上記化合物は、少なくとも 2つ以上の、置換基を有していてもよい炭素数 18〜30の アルキル基、アルコキシル基、ァシル基、又はチォアルキル基からなる群より選ばれ る疎水性基を有しているので、十分な疎水性を示すことができ、様々な有機溶媒に 溶解することができる、また、 Xに対して 3位、及び 5位 (R、及び R )に炭素数 18〜3
2 4
0のアルコシキル基が置換した化合物は、酸処理にも安定であり、本実施形態の有 機反応用試薬として特に適してレ、る。
[0055] [試薬活性部位] 上記化学式(1)において、 Xは炭素、酸素、硫黄、及び窒素原子から選ばれる 1以 上の原子を有する試薬活性部位を示す。ここで、 Xは、下記の化学式 (A)から (M)、 又は (Α' )から(Μ' )で示される構造を有するものであってもよレ、。ここで、 Υは、エス テル結合、エーテル結合、アミド結合、ァミノ結合、チォエステル結合、スノレフイド結 合、ゥレア結合、力ルバメート結合、若しくはカーボネート結合、又はこれらの結合を 有していてもよい炭素数 1〜: 10のアルキレン基である。また、式(Μ)及び(Μ' )中、 m及び ηは、それぞれ独立に 0又は 1であり、 Zaは塩素原子、又は臭素原子であり、 Z bはヒドロキシル基、塩素原子、又は臭素原子である。
[化 20] Y—— SH ■■■■ (A), SH ■■■■ (Α')
[化 21]
Υ ΝΗ2 (Β), ΝΗ2 (Β')
[化 22]
Figure imgf000015_0001
[化 25]
Figure imgf000016_0001
[化 26]
Y
[化 27]
Figure imgf000016_0002
[化 28]
Figure imgf000016_0003
[化 29] 一 Υ— Ν
Figure imgf000016_0004
[化 30]
Figure imgf000016_0005
[化 31]
Figure imgf000017_0001
[化 32]
Figure imgf000017_0002
• · · · (M), · · ■ · (Μ ' )
[0056] なお、本実施形態の有機合成用試薬においては、 R及び Rがドコシ口キシ基(C
2 4 22
Η 〇_)であり、 R R及び Rが水素である化合物が好ましい。
45 1 3 5
[0057] 更に、本実施形態の有機合成用試薬は、下記の化学式 (2)で示される化合物であ つてもよい。
[化 33]
Figure imgf000017_0003
[0058] 即ち、化学式(2)で表される化合物は、化学式(1)で表される有機合成用試薬であ つて、化学式(1)中の Xが、ヒドロキシメチル基であり、 R及び Rカ^コシロキシ基(C
2 4 2
H 〇_)であり、 R R及び Rが水素である有機合成用試薬である。
2 45 1 3 5
[0059] ここで、化学式(2)で示される化合物は水酸基を有し、求核性を示すため、求核性 スカベンジャーとして用いることができる。
[0060] [有機合成用試薬の製造方法]
上記式で示される試薬の製造方法としては、特に限定されないが、一般に、次の様 な反応を経て合成することができる。 [0061] 没食子酸メチルのようにフエノール性水酸基を複数有する化合物と長鎖臭化アル キルを N, N—ジメチルホルムアミド中、塩基性条件下で反応させアルコキシ基を有 する芳香族化合物を得る。次いで、エステル部位を公知の手法で官能基変換させて 所望の化合物へ誘導するか、又は別に調製した試薬部位と任意の結合形式で結合 させることで本実施形態の試薬を製造する事ができる。
[0062] <有機合成反応方法 >
本実施形態に係る有機合成用試薬は疎水性の保持基を有さない、従来の液相有 機合成反応において用いられる試薬と同様の使用法により、利用することができる。 即ち、反応させたい反応基質を溶媒に溶解し、又は分散させた状態で、疎水性保持 基を有する有機合成用試薬を添加して反応させる。ここで、反応系に用いる溶媒とし ては、一般的な有機溶媒を反応に用いることが出来るが、当該溶媒における有機合 成用試薬の溶解度が高い程、反応性は高まるため、有機合成用試薬の溶解度の高 い溶媒を選択することが好ましい。具体的には、テトラヒドロフラン、ジクロロメタン、ジ ェチルエーテル、へキサン、シクロへキサン、 N, N—ジメチルホルムアミド等が好まし いが、特にこれらに限定されるものではない。反応の進行の確認は一般的な液相有 機合成反応と同様の方法を適用できる。即ち、薄層シリカゲルクロマトグラフィー、高 速液体クロマトグラフィー等を用いて反応を追跡することができる。
[0063] [反応工程]
反応工程においては、特定の反応基質と、有機合成用試薬を反応させることにより 、或いは、特定の化学反応における反応促進剤として、有機合成用試薬を利用する ことにより、 目的の化合物を得ることができる。また、 目的の化合物を得るための任意 の化学反応を行い、反応系に過剰に添加した余剰の反応基質や副生成物と、有機 合成用試薬とを反応させることができる。
[0064] (合成ビルディングブロックとしての有機合成用試薬の使用)
合成ビルディングブロックとして有機合成用試薬を使用する場合、例えば、求核付 加反応、求核置換反応、及び脱水縮合反応等における反応基質としての有機合成 用試薬の利用が考えられる。このような反応に用いることのできる有機合成用試薬と しては、特に限定されないが、例えば、化学式(1)に示される有機合成用試薬で、 X が (A)から (H)、又は (Α' )から (Η' )で示される試薬活性部位である有機合成用試 薬が挙げられる。反応に用レ、る溶媒としては、当該反応に通常利用することができる 溶媒であればどのようなものでもよいが、本実施形態においては、疎水性保持基を有 する有機合成用試薬の溶解性の点から、テトラヒドロフラン、ジクロロメタン、シクロへ キサン ΖΝ, Ν—ジメチルホルムアミド混合溶媒等を用いることができる。
[0065] (反応促進剤としての有機合成用試薬の使用)
本実施形態の有機合成用試薬は、反応促進剤として使用することができる。反応 促進剤としての効果は、当該有機合成用試薬の試薬活性部位の性質、例えば、酸 性、及び塩基性の度合い、並びに触媒活性等に依存する。このような性質を持つ、 試薬活性部位は、合成ビルディングブロックを用いることにより、疎水性保持基上に 導人すること力 Sできる。
[0066] 反応促進剤として用いることができる有機合成用試薬としては、特に限定されない が、例えば、化学式(1)に示される有機合成用試薬で、 Xが(1)、ひ)、(1' )、又は ') で示される試薬活性部位である有機合成用試薬が挙げられる。これらの有機合成用 試薬は、強塩基性を示し、反応基質が有する活性水素を捕捉することにより、求核反 応、脱保護反応、カルボン酸のエステルィヒ反応、活性メチレンのアルキルィヒ反応、 2 級ァミンのアルキル化反応、フエノールのアルキル化反応、及びチオールのアルキル 化反応等を促進する。
[0067] (脱保護反応の促進)
強塩基性を有する有機合成用試薬は、例えば、ァミノ基の保護基として知られる F moc基(9—フルォレニルメトキシカルボニル基)の脱保護反応等に用いることができ るが、特にこれらの反応に限定されるものではなレ、。反応に用いる溶媒としては、そ の反応において通常利用することができる溶媒であればどのようなものでもよいが、 本実施形態においては、疎水性保持基を有する有機合成用試薬の溶解性の点から 、テトラヒドロフラン、ジクロロメタン、シクロへキサン/ N, N—ジメチルホルムアミド混 合溶媒等を用いることができる。
[0068] 反応に用いられる有機合成用試薬の添加量は、用いられる溶媒への当該有機合 成用試薬の溶解度、当該塩基における酸塩基平衡の平衡定数、当該反応の化学量 論等を考慮して、当業者が適宜設定することができるが、通常は、理論上必要とされ る当量の 1倍から 5倍添カ卩することが好ましい。
[0069] なお、強塩基性を有する有機合成用試薬は、脱保護反応の促進と同様に、求核反 応、脱保護反応、カルボン酸のエステルィヒ反応、活性メチレンのアルキルィヒ反応、ァ ミンのアルキル化反応、フエノールのアルキル化反応、及びチオールのアルキルィ匕 反応等の促進に用いることができる。これらの場合、脱保護反応の促進において用 レ、た溶媒と同様の溶媒を用いることができ、更に、脱保護反応の促進において用い られる有機合成用試薬の添加量と同様の添加量の有機合成用試薬を添加すること により反応を促進させることができる。
[0070] (縮合剤としての有機合成用試薬の使用)
本実施形態の有機合成用試薬は、縮合剤として使用することができる。例えば、光 延反応として公知の脱水縮合反応に必要なトリフエニルホスフィンやァゾジカルボン 酸ジェチルに代替する縮合剤として、有機合成用試薬を用いることができる。このよう な有機合成用試薬としては、例えば、化学式(1)に示される有機合成用試薬で、 Xが (K)、 (L)、(Κ' )、又は (L' )で示される試薬活性部位である有機合成用試薬が挙げ られる。
[0071] 本実施形態において用いることができる脱水縮合反応としては、特に限定されない 、例えばエステル合成反応、アミド合成反応、及びエーテル合成反応が挙げられ る。反応に用いることができる溶媒としては、当該反応に通常用レ、ることができる溶媒 であれば、特に限定されないが、本実施形態においては、疎水性保持基を有する有 機合成用試薬の溶解性の点から、テトラヒドロフラン、ジクロロメタン、シクロへキサン /N, N—ジメチルホルムアミド混合溶媒等を用いることができる。
[0072] 反応に用いられる有機合成用試薬の添加量は、例えば、光延反応の場合、用いら れる溶媒への当該有機合成用試薬の溶解度、及び光延反応の化学量論等を考慮し て、当業者が適宜設定することができるが、有機合成用試薬をトリフエニルホスフィン の代替物質として添加する場合には、脱水される水酸基 1当量に対して、 1当量から 5当量、ァゾジカルボン酸ジェチルの代替物質として添加する場合には、脱水される 水酸基 1当量に対して、 1当量から 5当量添加することが好ましレ、。 [0073] (求核性スカベンジャー及び求電子性スカベンジャーとしての有機合成用試薬の使 用)
本実施形態の有機合成用試薬を、求核性スカベンジャー、及び求電子性スカベン ジャーとして用いることにより、過剰に添カ卩し、反応液中に未反応のまま存在する求 電子試薬、及び求核試薬、並びに化学反応において副生成物として生成し、求電子 性、及び求核性を有する化合物を捕捉することができる。或いは、本実施形態の有 機合成用試薬を求核性スカベンジャー、及び求電子性スカベンジャーとして用いる 場合、未反応の反応基質を結合させて、有機合成用試薬上で化学反応を進行させ ることもできる。このような反応に用いることができる有機合成用試薬としては、特に限 定されないが、例えば、化学式(1)に示される有機合成用試薬で、求核性ス力べンジ ヤーであれば、 Xが (A)から(C)、又は (Α' )から(C' )で示される試薬活性部位であ る有機合成用試薬が、求電子性スカベンジャーであれば、 Xが(D)から(Η)、及び( Μ)、又は(D' )から (Η' )、及び (Μ' )で示される試薬活性部位である有機合成用試 薬が挙げられる。
[0074] 反応に用いられる有機合成用試薬の添加量は、用いられる溶媒に対する当該有機 合成用試薬の溶解度、並びに捕捉する化合物の求電子性及び求核性等を考慮して 、当業者が適宜定めることができるが、予測される求核性、又は求電子性の反応基 質の残存量 1当量に対し、 1当量力 5当量の有機合成用試薬を添加することが好ま しい。
[0075] 本実施形態の有機合成用試薬を、求核性スカベンジャーとして用いる場合には、 例えば、以下のような利用の形態を一例として挙げることができる。
[0076] 即ち、 Ν, Ν—ジメチルホルムアミド/プロピオ二トリル混合溶媒中で、活性化ァミノ 酸を利用してペプチド合成反応を行う場合において、ペプチドの Ν末端のァミノ基に 対して、過剰量の活性化アミノ酸を添加してペプチド結合を形成させる。反応系内に 残った余剰の活性化アミノ酸は求電子性を有しているため、化学式(2)で示される化 合物を添加することで、これと容易にエステル結合を形成する。反応後、シクロへキ サン等の溶媒を添加することにより、アミド層から活性アミノ酸の結合した求核性スカ ベンジャーを回収することができ、反応系内には、反応前のペプチドの Ν末端に、 1 アミノ酸残基が付加されたペプチドが残る。
[0077] (ペプチド合成用試薬としての有機合成用試薬の使用)
本実施形態の有機合成用試薬のうち、化学式 (1)に示される有機合成用試薬で、 Xが(M)、又は (Μ' )で表される有機合成用試薬は、求電子性スカベンジャーとして 用いることができ、とりわけ、ペプチド合成用試薬として用いることができる。ペプチド 合成用試薬として用いる場合、化学式 (Μ)及び (Μ' )で表される試薬活性部位中の 水酸基に結合する炭素原子、並びに、ベンゼン環に直接結合していないハロゲン原 子が結合する炭素原子は、求電子性を有するため、アミノ酸のカルボキシノレ基と結合 することができ、当該有機合成用試薬にカルボキシノレ基が結合した状態で、活性化 アミノ酸を順次結合させていくことにより、ペプチド合成反応を行うことができる。
[0078] ペプチド合成反応を終え、反応系から分離した有機合成用試薬は、酸を加えること により、ペプチドのみを容易に切り出すことができる。ここで、試薬活性部位 (Μ)、及 び (Μ' )を有する有機合成用試薬は、アミノ酸を当該有機合成用試薬に結合させる 際にカルボ二ル基を活性化させることがなぐ ひ炭素のラセミ化を引き起こす原因とな るォキサゾロン骨格を有する中間体を生成しないため、ペプチド合成の過程におい てペプチドのラセミ化を引き起こさない。
[0079] なお、試薬活性部位 (Μ)、及び (Μ' )を有する有機合成用試薬の用途としては、 ペプチド合成用試薬としての用途に限定されるわけではなレ、。具体的には、例えば、 目的とする化合物に対して当該試薬活性部位を有する有機合成用試薬を反応させ て、疎水性保護基として用いる用途を挙げることができる。このような疎水性保護基と して用いられる有機合成用試薬についても、本発明の範囲内に属するものである。
[0080] (金属リガンドとしての有機合成用試薬の使用)
有機合成用試薬を金属リガンドとして用いることにより、触媒等として反応系に添加 された金属イオンを、有機合成用試薬が配位して捕捉することができる。このような反 応に用いることができる有機合成用試薬としては、特に限定されないが、例えば、化 学式(1)に示される有機合成用試薬で、 Xが (Κ)、又は (Κ' )で示される試薬活性部 位である有機合成用試薬が挙げられる。
[0081] 反応に用いられる有機合成用試薬の添加量としては、溶媒に対する当該有機合成 用試薬の溶解度、及び当該金属イオンにおける通常の配位数等を考慮して、当業 者が適宜設定することができるが、添加した金属イオン 1当量に対し、 1当量から 5当 量の有機合成用試薬を添加することが好ましレヽ。
[0082] なお、有機合成用試薬を求核性スカベンジャー、求電子性スカベンジャー、及び金 属リガンドとして用いる場合には、余剰の化合物等を捕捉する反応に先立つ化学反 応においては、当該反応において通常用いられる溶媒を用いることができる力 本実 施形態においては、疎水性保持基を有する有機合成用試薬の溶解性の点から、テト ラヒドロフラン、ジクロロメタン、シクロへキサン/ N, N—ジメチルホルムアミド混合溶 媒等の溶媒を用いることが好ましい。
[0083] [分離工程]
本実施形態に係る有機合成用試薬は、溶解してレ、る溶液の組成及び/又は温度 の変化に鋭敏に反応して晶析する。このため、溶液の組成及び/又は温度を変化さ せる手段を用いることにより、有機合成用試薬を晶析させることができる。また、有機 合成用試薬の分離工程は、反応工程において用いられた反応用溶媒と混合せず、 有機合成用試薬を容易に溶解することができる分離用溶媒を添加することにより液 夜キ由出分離することもできる。
[0084] (溶液組成を変化させることによる分離)
溶液組成を変化させる好ましい手段としては、例えば、反応溶液に有機合成用試 薬に対する貧溶媒を添加する手段が挙げられる。ここで、反応用溶媒に親和性の高 い溶媒を添加することにより、液相が相分離することがないので、容易に溶液組成を 変ィ匕させることができる。貧溶媒としては、どのような溶媒も用いることができ、反応用 溶媒として用いられた溶媒と同一の溶媒、及び反応用溶媒とは異なった溶媒を用い ることができる。例えば、反応用溶媒として、ジクロロメタン、テトラヒドロフラン、及びジ ェチルエーテル等を用いた場合には、貧溶媒として、ァセトニトリル、 Ν, Ν—ジメチ ルホルムアミド、及びメタノール等を用いることができる。反応用溶媒に貧溶媒を添加 することにより、溶液の極性が高くなり、有機合成用試薬、及び反応後の有機合成用 試薬を晶析して固液分離することが可能となる。固液分離の際には、例えば桐山漏 斗のような吸引濾過器を用いることができるが、疎水性保持基を有する試薬と生成物 の分離を徹底する為にォクタデシルシリル化(ODS)シリカゲルフィルターや ODSシ ョートカラム等を用いてもよい。
[0085] (溶液を濃縮することによる分離)
溶液組成を変化させる別の好ましい手段としては、例えば、有機合成用試薬、及び 反応後の有機合成用試薬が溶解している溶液の溶媒を、濃縮する手段が挙げられ る。ここで、濃縮とは、溶媒の一部を留去することをいう。溶媒を留去する際には、有 機合成用試薬、及び反応後の有機合成用試薬が晶析し、且つ、合成の目的とする 化合物が晶析しない範囲内で、溶媒を留去することが好ましい。このような条件につ いては、有機合成用試薬の添加量や、 目的とする化合物の推定される生成量、各化 合物の溶解度等を考慮して、当業者が適宜設定することができる。
[0086] (溶液温度を変化させることによる分離)
分離工程においては、溶液温度を変化させることにより、有機合成用試薬、及び反 応後の有機合成用試薬を晶析させて、分離することができる。本実施形態において 、好ましく用いられる溶液温度を変化させる手段としては、有機合成用試薬及び反応 後の有機合成用試薬が溶解した、溶液の温度を変化させることのできる手段であれ ば、特に制限されるものではない。具体的には、溶液を冷却する手段を挙げることが できる。例えば、反応用溶媒としてシクロへキサンを用いた場合には、 5°C以下に冷 却することにより、有機合成用試薬、及び反応後の有機合成用試薬を晶析させること が可能となる。また、反応用溶媒として、 N, N—ジメチルホルムアミドを用いた場合に は、反応工程においては加熱により、有機合成用試薬の溶解度を高め、反応後に冷 却することで有機合成用試薬、及び反応後の有機合成用試薬を晶析することが出来 る。
[0087] 溶液組成や溶液温度を変化させて有機合成用試薬を晶析させる場合には、ォクタ デシルシリル化シリカゲル、カラズビース等を、結晶化の核として添加することにより、 結晶の形成を容易とすることが可能となる。
[0088] (液液抽出分離による分離)
分離工程においては、反応工程において、有機合成用試薬を溶解させた反応用 溶媒と混合せず、有機合成用試薬の溶解度が、反応用溶媒における有機合成用試 薬の溶解度よりも大きいものである分離用溶媒を添加することにより、有機合成用試 薬、及び反応後の有機合成用試薬を分離用溶媒に溶解させることができる。この、有 機合成用試薬、及び反応後の有機合成用試薬が溶解した分離用溶媒を、分液漏斗 により分離することにより、反応用溶媒から、容易に有機合成用試薬、及び反応後の 有機合成用試薬を分離することができる。
[0089] 本実施形態において、用いることができる分離用溶媒としては、特に限定されない 力 反応用溶媒として、ァセトニトリル、プロピオ二トリル、及び N, N—ジメチルホルム アミド等を用いる場合には、例えば、シクロへキサン、及びデリカン等を用いることが できる。
[0090] 即ち、例えば、反応用溶媒として、 N, N—ジメチルホルムアミドを用いた場合には、 化学反応の終了後に反応系にシクロへキサンを分離用溶媒として加え、加熱し、更 に冷却することで、有機合成用試薬、及び反応後の有機合成用試薬が選択的にシ クロへキサン相に分配される。シクロへキサン相を分液漏斗により分離することにより
、有機合成用試薬、及び反応後の有機合成用試薬が除かれた、 N, N—ジメチルホ ルムアミド溶液を得ることができる。
[0091] なお、本実施形態の有機合成反応方法においては、有機合成用試薬を分離した 後、更に、有機合成用試薬と、反応活性部位に結合する原子団とを分離する操作を 行い、分離した原子団を単離してもよい。このような場合、有機合成用試薬と反応活 性部位に結合している原子団を分離する際に用いることができる試薬としては、トリフ ルォロ酢酸、及び塩酸等の酸;水酸化ナトリウム等の塩基;並びにパラジウム等の水 素添加反応に用いる触媒を挙げることができる。この中でも、トリフルォロ酢酸を好ま しく用いることができる。
実施例
[0092] 以下、本発明について実施例により説明するが、本発明は以下の実施例になんら 限定されるものではない。
[0093] <実施例 1;疎水性保持基を有するァミンの合成 >
2, 4—ジヒドロキシベンズアルデヒド lg、 1ーブロモドコサン 8. 4g、及び炭酸力リウ ム 6gを N, N—ジメチルホルムアミド 20ml中に溶解させ、窒素気流下で 80°C、 8時間 反応させた。薄層クロマトグラフィーで反応終了を確認後、反応液にトルエン 20ml、 及び水 10mlをカ卩えて 80°Cで 5分間撹拌した。分液漏斗によりトルエン層を分取し溶 媒を留去した後メタノール 50mlをカ卩えて結晶を析出させた。この溶液を桐山漏斗で 吸引濾過して粗結晶 6. 97gを得た。粗結晶をへキサン 200mlに 70°Cで溶解させ室 温で再結晶させた後、桐山漏斗で再度吸引濾過し目的の化合物 3を 4. 7g得た。収 率は 85%であった。化合物 3 ; 2, 4 _ビス(ドコシロキシ)ベンズアルデヒド。
[0094] 化合物 3を 1. 9g分取してジクロロメタンに溶解させ、 500mgのヒドロキシァミン塩酸 塩、過剰量のトリェチルァミンを添加し室温で 6時間反応させた。反応終了後、溶液 を濃縮しァセトニトリル 50mlを加えて生成物を結晶化させた。この溶液を桐山漏斗で 吸引濾過しィ匕合物 4を 1. 9g得た。収率は 98%であった。化合物 4 ; 2, 4—ビス(ドコ シロォキシ)ベンズアルデヒドォキシム。
[0095] 次に化合物 4を 770mg分取してテトラヒドロフランに溶解させ、室温で水素化リチウ ムアルミニウム 150mgをカ卩えて撹拌した後加熱還流させた。反応終了を薄層クロマト グラフィ一で確認した後メタノール 5ml、トルエン 50mlを加え有機層を IN塩酸水溶 液で洗浄し、飽和炭酸水素ナトリウム水溶液で中和して、飽和食塩水で洗浄した。有 機層を分取し溶媒を減圧留去後、メタノール 50mlを加えて結晶を析出させた。この 溶液を桐山漏斗で吸引濾過して化合物 5を 719mg得た。収率は 95%であった。化 合物 5 ; (2, 4 _ビス(ドコシロォキシ)フエニル)メタンァミン。
[0096] 以上の反応を以下に示した。
[化 34]
Figure imgf000026_0001
2,4-ジヒドロキシベンズアルデヒド 3 4 5
[化合物 3の構造解析]
'H-NMR CCDCl , 300MHz) δ 10. 32 (1Η, s) , 7. 78 (1H, d, J = 8. 62Hz)
3
6. 50 (1H, dd, J = 8. 62, 2. 20Hz) , 6. 41 (1H, d, J = 2. 20Hz) , 4. 04 (1H d, J = 6. 60Hz) , 3. 99 (1H, d, J = 6. 60Hz) , 1. 81 (4H, m) , 1. 51— 1. 18 ( 76H, m), 0.88 (6H, t, J = 6.60Hz)
[0098] [化合物 4の構造解析]
'H-NMRCCDCl , 300MHz) δ 8.45(1Η, s), 7.65 (1Η, d, J = 8.40Hz) ,
3
6.46(1H, dd, J = 8.40, 2.20Hz) , 3.96 (2H, t, J = 6.42Hz) , 3.95 (2H, t , J = 6.42Hz), 1.78 (4H, m), 1.50— 1.15(76H, m) , 0.88 (6H, t, J = 6. 80Hz)
[0099] [化合物 5の構造解析]
'H-NMRCCDCl , 300MHz) δ 8.45 (1Η, s), 7.65 (1H, d, J = 8.40Hz) ,
3
6.46(1H, dd, J = 8.40, 2.20Hz) , 3.96 (2H, t, J=6.42Hz), 3.95 (2H, t , J = 6.42Hz), 1.78 (4H, m) , 1.50— 1.15(76H, m) , 0.88 (6H, t, J = 6. 80Hz)
[0100] <実施例 2;疎水性保持基を有するイソシァネートの合成 >
3, 4, 5—トリス(ォクタデシ口キシ)安息香酸 371mg(0.4mmol)をトルエン 5mlに 溶解し、ジフエニルホスホリルアジド(DPPA)412mg(l.50mmol)、トリェチノレアミ ン 30mg(0.4mmol)と混合した。これを室温で 3時間撹拌した後、 90°Cまで加温し 、更に 3.5時間反応させた。反応終了後、ァセトニトリルを加えて、結晶を析出させた 後、桐山漏斗で吸引濾過しィ匕合物 6を 333mg得た。収率は 90%であった。化合物 6 ;5_ィソシァネート_1, 2, 3—トリス(ォクタデシロォキシ)ベンゼン。
[0101] 以上の反応を以下に示した。
[化 35]
Figure imgf000027_0001
3,4,5 -卜リス (才クタデシ口キシ) 安息香酸 6
[0102] [化合物 6の構造解析]
'H-NMRCCDCl , 400MHz) δ 6.20 (2Η, s), 3.98— 3.92 (6H, m) , 1.8
3
2-1.69 (6H, m), 1.49— 1.23(84H, m), 0.88 (9H, t, J = 6.60Hz)
[0103] <実施例 3:疎水性保持基を有するクロ口ホーメートの合成 > 3, 5 ビス(ドコシロキシ)安息香酸メチル 4. 43gをテトラヒドロフラン 100mlに溶解 させ、水素化リチウムアルミニウム 240mgを投入し、室温で撹拌させた。薄層クロマト グラフィ一で反応終了を確認した後、メタノール lmlをカ卩えて反応を停止させた。その 後 1N塩酸 30mlを加え、抽出した有機層を更に 1N塩酸 30mlで 2回、飽和炭酸水素 ナトリウム水溶液 30mlで 1回、飽和食塩水 30mlで 2回洗浄し硫酸マグネシウムで乾 燥させた。溶媒を減圧留去後、メタノール 100mlをカ卩ぇ結晶を析出させ、桐山漏斗を 用いて吸引濾過を行い化合物 7を 3. 62g得た。収率は 80%であった。化合物 7 ; 3, 5—ビス(ドコシロキシ)ベンジルアルコール。
[0104] トルエン 50mlに化合物 7を 5g溶解させ、トリホスゲン 4. 86gをカロえ、窒素気流下、 2 時間撹拌して反応させた。その後、反応液を 40°Cまで加熱し、更に 1時間撹拌した。 反応の終了を薄層クロマトグラフィーで確認した後、真空ポンプにて 40°C、 3mmHg にて 2時間乾燥させて化合物 8を 5. lg得た。収率は 94%であった。化合物 8 ; 3, 5 ビス(ドコシロキシ)ベンジルカルボノクロリデート。
[0105] 以上の反応を以下に示した。
[化 36]
Figure imgf000028_0001
3,5-ビス (ドコシロキシ) 安息香酸メチル
[0106] [化合物 7の構造解析]
'H-NMR CCDCl , 300MHz) δ 6. 49 (2Η, d, J = 2. 20Hz) , 6. 37 (1H, t, J
3
= 2. 20Hz) , 4. 60 (2H, s) , 3. 92 (4H, t, J = 6. 60Hz) , 1. 76 (4H, m), 1. 4 9 - 1. 18 (76H, m) , 0. 88 (6H, t, J = 6. 60Hz)
[0107] [化合物 8の構造解析]
'H-NMR CCDCl , 300MHz) δ 6. 49 (2Η, d, J = 2. 20Hz) , 6. 45 (1H, t, J
3
= 2. 20Hz) , 5. 20 (2H, s) , 3. 93 (4H, t, J = 6. 79Hz) , 1. 76 (4H, m), 1. 5 2- 1. 13 (76H, m) , 0. 88 (6H, t, J = 6. 97Hz)
[0108] <実施例 4 ;疎水性保持基を有する力ルバメートの合成 >
実施例 3で合成した化合物 7を 756mg (l . Ommol)分取し、ジクロロメタン 20mlに 溶解させた。そこに、 1, 1,_カルボニルジイミダゾール 810mg(5. Ommol)を加え、 室温で 4時間撹拌させた。反応の終了を薄層クロマトグラフィーで確認した後、溶媒 を減圧下で留去し、ァセトニトリルを添加して結晶化させた。これを桐山漏斗を用いて 吸引濾過し、化合物 9を 850mg得た。収率は 99。/。であった。化合物 9 ;3, 5_ビス( ドコシ口キシ)ベンジル 1H—イミダゾール一 1_カルボキシレート。
[0109] 以上の反応を以下に示した。
[化 37]
Figure imgf000029_0001
[0110] [化合物 9の構造解析]
'H-NMRCCDCl , 400MHz) δ 8.15(1H, m), 7.44(1H, m) , 7.06(1H,
3
m), 6.53 (2H, d, J = 2.21Hz), 6.46(1H, t, J = 2.21Hz), 5.32 (2H, s), 3 .93 (4H, t, J = 6.42Hz), 1.75 (4H, m) , 1.49— 1.16(76H, m), 0.88(6 H, t, J = 6.97Hz)
[0111] <実施例 5;疎水性保持基を有する臭素化合物の合成 >
乾燥させたナスフラスコに、 3, 4, 5 _トリスォクタデシロキシベンジルアルコール 91 5. Omg(lmmol)を入れ、ジクロロメタン 10mlに溶解させた。そこに、 3臭ィ匕リン 406 .3mg(l.5mmol)を加え、室温で 3時間撹拌させた。反応の終了を薄層クロマトグ ラフィ一で確認した後、水 lmlをカ卩ぇ試薬を失活させた。その後、へキサンで液液抽 出を行い、次いで飽和食塩水で洗浄して有機相を得た。この有機相から溶媒を減圧 下で留去し、桐山漏斗を用いて吸引濾過を行って、化合物 10を 988. lmg得た。収 率は 99%)であった。化合物 10 ;3, 4, 5—トリスォクタデシロキシベンジルブロマイド
[0112] 以上の反応を以下に示した
[化 38] C18H37O
Figure imgf000030_0001
(3,4,5—トリス(ォクタデシ口キジ) フエニル) メタノール
[0113] [化合物 10の構造解析]
'H-NMR CCDCl , 400MHz) δ 6. 57 (2Η, s), 4. 43 (2H, s), 3. 98— 3. 9
3
2 (6H, m), 1. 82- 1. 69 (6H, m) , 1. 50— 1. 42 (6H, m) , 1. 33— 1. 23 (84 H, m), 0. 88 (9H, t, J= 7. OHz)
[0114] 赤外線吸収スぺクトノレ(KBr) δ 2954, 2920, 2848, 1591 , 1504, 1466, 144 1, 1394, 1246, 1213, 1115 (単位: cm—1)
[0115] <実施例 6;疎水性保持基を有する塩基性化合物の合成 >
乾燥させたナスフラスコに、実施例 5で合成した化合物 10を 1. 46g (l . 5mmol)分 取し、 N, N ジメチルホルムアミド 20mlに溶解した。これに、炭酸カリウム 443. lm g (2当量)、テトラプチルアンモニゥムョーダイド 369. 4mg (l当量)、 1, 5, 7 トリア ザビシクロ [4, 4, 0]デカ一 5 ェン 1 · 05g (5当量)をカロえ、 80°Cで 4時間撹拌させ た。反応の終了を薄層クロマトグラフィーで確認した後、へキサン、次いで飽和食塩 水で液液抽出を行レ、、有機相を得た。この有機相を減圧下で留去し、メタノールを加 えて結晶化させ桐山漏斗を用いて吸引濾過を行い、化合物 11を 1. 3g得た。収率は 84%であった。化合物 11 ; 1ー(3, 4, 5 トリス(ォクタデシ口キシ)ベンジル) 2, 3 , 4, 6, 7, 8—へキサヒドロ— 1H—ピリミド [1 , 2— a]ピリミジン。
[0116] 以上の反応を以下に示した。
[化 39]
Figure imgf000030_0002
[0117] [化合物 11の構造解析]
'H-NMRCCDCl , 600MHz) δ 6.46 (2Η, s), 4.49 (2H, s), 3, 94 (4H, t
3
, J = 6.6), 3.91 (2H, t, J = 6.6), 3.41 (2H, t, J = 5.5), 3.18 (2H, t, J=5 .9), 3.13(2H, t, J = 5.9), 3.03 (2H, t, J = 5.9), 1.89 (4H, m), 1.79— 1.70 (6H, m), 1.48— 1.43(6H, m), 1.35— 1.21(84H, m), 0.87 (9H, t ,J = 7)
[0118] 赤外線吸収スぺクトノレ(KBr) :2954, 2916, 2850, 1593, 1504, 1468, 1435 , 1381, 1228, 1115, 835(単位: cm—1)
[0119] <実施例 7;疎水性保持基を有するトリフエニルホスフィンの合成 >
実施例 3で合成した化合物 7を 756mg(l. Ommol)分取し、ジクロロメタン 20mlに 溶解させた。これに、 4 (ジフエニルホスフイノ)安息香酸 612mg (2. Ommol)、ジメ チルァミノピリジン 25mg(0.2mmol)、ジシクロへキシルカルボジイミド 631mg(5.0 mol)を加え、室温で 4時間撹拌させた。反応の終了を薄層クロマトグラフィーで確認 した後、溶媒を減圧下で留去し、ァセトニトリルを添加して結晶化させ、桐山漏斗を用 いて吸引濾過を行レ、、化合物 12を 1. Og得た。収率は 96%であった。化合物 12 ;3, 5—ビス(ドコシロキシ)ベンジルー 4 (ジフヱニルホスフイノ)安息香酸。
[0120] 以上の反応を以下に示した。
[化 40]
Figure imgf000031_0001
[化合物 12の構造解析]
'H-NMRCCDCl , 400MHz) δ 8.00 (2Η, dd, J=l.28Hz), 7.39— 7.27
3
(12H, m), 6.53 (2H, d, J = 2.01Hz), 6.41 (1H, t, J = 2.01Hz), 5.26(2 H, s), 3.92 (4H, m), 1.75 (4H, m) , 1.49— 1.14(76H, m) , 0.88 (6H, t , J = 6.97Hz) [0122] く実施例 8;疎水性保持基を有するァゾジカルボン酸エステルの合成 >
実施例 4で合成した化合物 9を 850mg(l. Ommol)分取し、トルエン 10mlに溶解 させた。これにカルバジン酸ェチル 312mg (3. Ommol)、トリェチ ァミン 303mg (3 . Ommol)を添加し、 120°Cまでカ卩温して 18時間撹拌した。反応終了後、溶媒を留 去しァセトニトリル 100mlをカ卩えて、析出した結晶を吸引濾過し、化合物 13を 798m g得た。収率は 90%であった。次に、ィ匕合物 13を 888mg(l. Ommol)分取し、ジク ロロメタン 10mlに溶解させた後、酢酸ョードベンゼン 644mg(2. Ommol)を加え、室 温で 3時間撹拌した。反応の終了を薄層クロマトグラフィーで確認した後、溶媒を減 圧下で留去し、ァセトニトリル 100mlをカ卩えて晶析させた。桐山漏斗を用いて吸引濾 過を行って結晶を分離し、化合物 14を 620mg得た。収率は 70%であった。化合物 1 3;1— (3, 5—ビス(ドコシロキシ)ベンジル) 2—ェチルヒドラジン一 1, 2—ジカル ボキシレート。化合物 14; 1 (3, 5 ビス(ドコシロキシ)ベンジル) 2- ゼンー 1, 2—ジカルボキシレート,
[0123] 以上の反応を以下に示した。
[化 41]
Figure imgf000032_0001
[0124] [化合物 13の構造解析]
'H-NMRCCDCl , 400MHz) δ 6.45 (2H, d, J = 2.20Hz) , 6.37(1H, t, J
3
=2.20Hz), 5.07 (2H, s) , 4. 19 (2H, q, J = 7.34Hz) 3.89 (4H, t, J = 6. 60Hz), 1.73 (4H, m) , 1.46— 1.14(76H, m) , 0.86 (6H, t, J = 6.60Hz)
[0125] [化合物 14の構造解析]
'H-NMRCCDCl , 400MHz) δ 6.52(2Η, d, J = 2.20Hz) , 6.39(1Η, t, J
3
=2.20Hz), 5.32 (2Η, s) , 4.49 (2Η, m) , 3.89 (4Η, m) , 1.73 (4Η, m) , 1.46-1.14(76Η, m) , 0.86 (6Η, t, J = 6.60Hz)
[0126] <実施例 9;疎水性保持基を有するイソシァネートを用いた 4 クロ口べンジルアミ ンのスカノ
4 クロ口ベンジルァミン 141mg(l. Ommol)と N— (4 クロ口ベンジル)ァセトアミ ド 183mg(l. Ommol)をジクロロメタン 20mlに溶解させた。溶液に実施例 2で合成し た化合物 6を 1. Og(l. lmmol)加え 10分間撹拌した後、ァセトニトリル 50mlを加え た。室温で減圧下ジクロロメタンを留去させた後、桐山漏斗で結晶を濾過した。濾液 を減圧留去すると、 N- (4_クロ口ベンジル)ァセトアミドが定量的に回収され、結晶 は化合物 15であった。化合物 15;1_(4_クロ口ベンジル) _3_(3 4, 5 トリス( ォクタデシ口キシ)フエニル)尿素。
[0127] 以上の反応を以下に示した。
[化 42]
4—
ァミ
Figure imgf000033_0001
ン ァセトアミド
[0128] [化合物 15の構造解析]
'H-NMRCCDCl , 300MHz) δ 7.10 (4Η, m) , 6.45 (2H, s) , 6.39 (2H,
3
m), 3.90 (6H, m) , 1.77 (6H, m) , 1.53— 1.17(90H, m) , 0.86 (6H, t, J =6.60Hz)
[0129] <実施例 10;疎水性保持基を有する塩基を用いたジケトビペラジン合成反応 >
3, 4, 5 トリス(ォクタデシ口キシ)ベンジル一 1— (2— (((9H フルオレン一 9— ィノレ)メトキシ)カルボニルァミノ) 3 フエニルプロパノィノレ)ピロリジン 2 カルボ キシレート 278mg(0.2mmol)をジクロロメタン 20mlに溶解させた。これに実施例 6 で合成した化合物 11を 205mg(0.2mmol)添加し、 7時間撹拌させた。反応液にァ セトニトリル 50mlを加えた。室温で減圧下ジクロロメタンを留去させた後、桐山漏斗で 結晶を濾過した。濾液を減圧留去し、ジケトピペラジンを 35. lmg得た。収率は 72% であった。 [0130] <比較例 1;ポリスチレンに担持した塩基を用いたジケトピペラジン合成反応 >
3, 4, 5—トリス(ォクタデシ口キシ)ベンジル _ 1 _ (2_ ( ( (9H—フルオレン _ 9 _ ィル)メトキシ)カルボニルァミノ) - 3-フヱニルプロパノィル)ピロリジン _ 2 _カルボ キシレート 278mg (0. 2mmol)をジクロロメタン 20mlに溶解させた。これに、「TBD —メチルポリスチレン」(ノバビオケム社製)を 600mg (ァミノ基換算 1. 2mmol)加え て 21時間撹拌させた。反応液を濾過し、溶媒を留去させた後、ァセトニトリル 50mlを カロえた。桐山漏斗で結晶を濾過した後、濾液を減圧留去し、ジケトビペラジンを 18. 5mg得た。収率は 38%であった。
[0131] <比較例 2;シリカゲルに担持した塩基を用いたジケトビペラジン合成反応 >
3, 4, 5—トリス(ォクタデシ口キシ)ベンジル一 1— (2— ( ( (9H—フルオレン一 9— ィノレ)メトキシ)カルボニルァミノ) 3 フエニルプロパノィノレ)ピロリジン 2 カルボ キシレート 278mg (0. 2mmol)をジクロロメタン 20mlに溶解させた。これに、「Si— T BDJ (シグマアルドリッチ社製)を 1200mg (ァミノ基換算 1. 2mmol)加えて 21時間 撹拌させた。反応液を濾過し、溶媒を留去させた後、ァセトニトリル 50mlを加えた。 桐山漏斗で結晶を濾過した後、濾液を減圧留去し、ジケトビペラジンを 7. 3mg得た。 収率は 15%であった。
[0132] 実施例 10、比較例 1、及び比較例 2の反応を以下に示した。
[化 43]
3 , 4 ,
(2— (
Figure imgf000034_0001
力ルポニルァミノ)一 3—フエニルプロパノィル)
ピロリジン一 2—カルボキシレ一ト
[0133] 実施例 10、比較例 1、及び比較例 2の収率の比較を表 1に示した。
[表 1] 実施例 1 ◦ 比較例 1 比較例 2 塩基試薬量 (当量) 1 6 6
反応時間 (時間) 7 2 1 2 1
収率 (%) 7 2 3 8 1 5
[0134] <実施例 11;疎水性保持基を有するァゾジカルボン酸エステルを用いた光延反応
>
ナスフラスコに、 2_ (4—メトキシフエニル)酢酸 16mg (0. lmmol)、イソプロパノー ノレ 7mg (0. l lmmol)を入れ、テトラヒドロフラン 5mlに溶解させた。そこにトリフエ二 ルホスフィン 52mg (0. 2mmol)、実施例 8で合成した化合物 14を 177mg (0. 2mm ol)加え、室温で 24時間撹拌させた。溶媒を減圧下で留去し、ァセトニトリルを添加し て、ォクタデシルシリル化シリカを詰めたシリンジで濾過し、濾液からイソプロピル— 2 _ (4—メトキシフエニル)アセテートを 16. 7mg得た。収率は 70%であった。
[0135] 以上の反応を以下に示した。
[化 44]
Figure imgf000035_0001
2— (4—メ トキシフエ二ル)酔酸 イソプロピル一 2—
( 4—メ トキシフエ二ル) アセテート
[0136] <実施例 12 ;ペプチド合成反応 >
3, 5_ビス(ドコシロキシ)安息香酸メチル 785mg (l . Ommol)を、テトラヒドロフラ ン 20mLに溶解させ、 4—クロ口フエニルマグネシウムブロマイドテトラヒドロフラン溶液 18ml (9当量)をカ卩え、 76°Cにて 2時間撹拌した。薄層クロマトフィーで反応終了を確 認した後、 1N塩酸 30mlを加え反応を停止させた。その後、へキサン 30mlにて 3回 抽出し、得られた有機相を更に 1N塩酸 30mlで 1回、飽和炭酸水素ナトリウム水溶液 で 1回、飽和食塩水で 1回洗浄し、硫酸マグネシウムにて乾燥させた。溶媒を減圧留 去後、これにメタノール 100mlを加え結晶を析出させ、桐山漏斗を用いて吸引濾過 を行い化合物 16を 780mg得た。収率は 80%であった。化合物 16 ; 3, 5_ビス(ドコ シロキシ)フエニル一4, 4—ジクロロフェニルアルコール
[化 45]
Figure imgf000036_0001
[0137] [化合物 16の構造解析]
'H-NMR CCDCl , 400ΜΗζ) δ 7. 30— 7. 26 (4H, m), 7. 23— 7. 17 (4
3
H, m), 6. 44- 6. 32 (2H, m) , 6. 32— 6. 30 (1H, m) , 3. 84 (4H, t, J = 6. 6 Hz) , 1. 67- 1. 63 (4H, m) , 1. 27— 1. 24 (76H, m) , 0. 88 (6H, t, J = 7. 0 Hz)
[0138] ジクロロメタン 5mlに化合物 16を 294mg (0. 3mmol)溶解させ、ァセチルクロライド lmlをカ卩ぇ 45°Cにて 1時間反応させた。薄層クロマトフィーで反応終了を確認した後 、減圧蒸留を行うことで溶媒を留去し、結晶物 (ィ匕合物 17)を得た。ここで得られた結 晶を、ジクロロメタン 10mlに溶解し、 Fmoc— Cys (tBu)—OH 180mg (l . 5当量) 、ジイソプロピルェチルァミン 262 μ 1 (5当量)をカ卩ぇ 0°Cにて 30分反応させた。薄層 クロマトフィーで反応終了を確認した後、ジァザビシクロウンデセン 500 μ ΐを加え、更 に 10分反応させた。再び薄層クロマトフィーで反応終了を確認した後、これにァセト 二トリル 100mlを加え、溶液を少しずつ減圧留去することで結晶を析出させ、桐山漏 斗を用いて吸引濾過を行レ、結晶物を得た。
[0139] ここで得られた結晶物を、ジクロロメタン 10mlに溶解し、 Fmoc-Phe-OH 175 mg (l . 5当量)、ジイソプロピルカルボジイミド 188 μ 1 (4当量)、 1—ヒドロキシベンゾ トリァゾール 162mg (4当量)を加え室温にて 1時間反応させた。薄層クロマトフィーで 反応終了を確認した後、これにァセトニトリル 100mlを加え、溶液を少しずつ減圧留 去することで結晶を析出させ、桐山漏斗を用いて吸引濾過を行い化合物 18を 371m g得た。総収率は 83%であった。ここで得られた結晶物を、予め調整した 0. 1 %トリフ ルォロ酢酸 Zジクロロメタン溶液 10mlに溶解し、 1時間反応させた。薄層クロマトダラ フィ一で反応終了を確認した後、これにァセトニトリル 100mlをカ卩え、溶液を少しずつ 減圧留去することで結晶を析出させ、桐山漏斗を用いて吸引濾過を行った。得られ た溶液を減圧留去することで、 目的化合物である Fmoc_Phe_Cys (tBu) _OH ( 化合物 19)を得た。なお、 目的生成物の確認は、質量分析器にて確認した。化合物 17 ;クロ口一 3, 5—ビス(ドコシロキシ)フエニル一 4, 4—ジクロロフェニルメタン
[0140] [化 46]
Figure imgf000037_0001
[0141] [化合物 17の構造解析]
'H-NMR CCDCl , 300ΜΗζ) δ 7. 36— 7. 06 (8H, m), 6. 45— 6. 20 (3
3
H, m), 4. 01 - 3. 59 (4H, m) , 1. 83— 1. 49 (4H, m) , 1. 40— 1. 10 (76H, m) , 0. 88 (6H, t, J = 6. 6Hz)
[0142] [化合物 19の構造解析]
HRMS m/z (ESl) calculated for [M + H] + 547. 2267, found 547 . 2274
[0143] <実施例 13;トリチル基を有する有機合成用試薬の合成 >
3, 5—ビス(ドコシロキシ)安息香酸メチル 1570mg (2. Ommol)を、テトラヒドロフラ ン 30mlに溶解させ、フエニルマグネシウムブロマイドテトラヒドロフラン溶液 9ml (9当 量)を加えて 76°Cにて 2時間撹拌した。薄層クロマトグラフィーで反応終了を確認した 後、 1N塩酸 40mlを加え反応を停止させた。その後、へキサン 30mlを用いて 3回抽 出し、抽出後の有機相を更に 1N塩酸 30mlで一回、飽和炭酸水素ナトリウム水溶液 で 1回、飽和食塩水で 1回洗浄し、硫酸マグネシウムにて乾燥させた。溶媒の一部を 減圧留去後、溶液にメタノール 100mlをカ卩えて結晶を析出させ、桐山漏斗を用いて 吸引濾過を行い、化合物 20を 1456mg得た。収率は 80%であった。化合物 20 ; 3, 5 _ビス(ドコシロキシ)フエニル—ジフヱニルアルコール [化 47]
Figure imgf000038_0001
[0144] [化合物 20の構造解析]
'H-NMRCCDCl , 300ΜΗζ) δ 7.70— 6.80 (10H, m), 6.45— 3.38 (
3
2H, m), 6.38-6.34(1H, m) , 3.84(4H, t, J = 6.6Hz), 1.74—1.56(4 H, m), 1.50-1.10(76H, m) , 0.88 (6H, t, J = 6.6Hz)
[0145] ジクロロメタン 30mlにィ匕合物 20を 1000mg(l. Immol)溶解させ、塩化チォニル 2 34 μ 1(3.3mmol)を加えて室温にて 1時間反応させた。薄層クロマトグラフィーで反 応終了を確認した後、溶媒を減圧留去し、結晶物 (化合物 21)を定量的に得た。化 合物 21;クロ口一 3, 5—ビス(ドコシロキシ)フエ二ル一ジフエニルメタン
[化 48]
Figure imgf000038_0002
[0146] [化合物 21の構造解析]
'H-NMRCCDCl , 300ΜΗζ) δ 7.33— 7.22(10H, m), 6.40— 6.30(
3
3H, m), 3.83 (4H, t, J = 6.6Hz), 1.80— 1.60(4H, m), 1.50— 1.10(76 H, m), 0.88 (6H, t, J = 6.6Hz)
[0147] <実施例 14;トリチル基を有する有機合成用試薬とアミノ酸との反応 >
H-Ser-OMe 513mg(3.3mmol)をジクロロメタン 20mlに溶解させた。ここで 、溶 f夜に、ジイソプロピノレエチノレ: Γミンを 1150/^1(6.6mmol)カロ免るととちに、実施 例 13で合成した化合物 21を全量カ卩えて 30分間撹拌した。薄層クロマトグラフィーで 反応終了を確認した後、ァセトニトリル 100mlを加え、室温にてジクロロメタンを減圧 留去した。これを、桐山漏斗を用いて吸引濾過を行うことにより、結晶物 (化合物 22) を定量的に得た。化合物 22 ;2— (3, 5_ビス(ドコシロキシ)フエニル)—ジフヱニル
Figure imgf000039_0001
[化 49]
Figure imgf000039_0002
[0148] [化合物 22の構造解析]
'H-NMRCCDCl , 300ΜΗζ) δ 7.60— 7. 10(10H, m), 6.64— 6.60(
3
2H, m), 6.29-6.25(1H, m) , 3.82 (4H, t, J = 6.6Hz), 3.78— 3.60(2 H, m), 3.60-3.50(1H, m) , 3.32(3H, s) , 1.74— 1.56 (4H, m) , 1.50 -1.10(76H, m), 0.88 (6H, t, J = 6.6Hz)
産業上の利用可能性
[0149] 発明の有機合成用試薬と有機合成反応方法は、化合物ライブラリー合成等による 医薬品等の研究開発を促進することが可能となり、ひいては生化学工業や化学工業 における技術革新に寄与することができる。試薬の効率的利用、回収が可能となるこ とでグリーンケミストリーの発展に寄与する革新的技術となり得る。

Claims

請求の範囲 溶液組成及び/又は溶液温度の変化に伴い、液相状態から固相状態に可逆的に 変化する性質を有し、下記の化学式(1)で示され、有機合成反応に用いられる有機 合成用試薬。
[化 1]
Figure imgf000040_0001
(式中、 R〜Rは、同一でも異なっていてもよぐ水素、ハロゲン、置換基を有しても
1 5
よい炭素数 1〜30のアルキル基、置換基を有してもよい炭素数 1〜30のアルコキシ ル基、置換基を有してもよい炭素数 1〜30のァリール基、置換基を有してもよい炭素 数 1〜30のァシル基、置換基を有してもよい炭素数 1〜30のチォアルキル基、置換 基を有してもよい炭素数 1〜30のジアルキルアミノ基、ニトロ基、又はアミノ基を表し、 R〜Rのうち、少なくとも 2つは、炭素数が 18〜30の基である。また、式中、 Xは炭
1 5
素原子、酸素原子、硫黄原子、及び窒素原子から選ばれる 1以上の原子を有する試 薬活性部位を示す。 )
前記化学式 (1)中の試薬活性部位 Xは、
下記式 (A)から(M)、又は (Α' )から(Μ' )で示される官能基であることを特徴とす る、請求項 1に記載の有機合成用試薬。
[化 2]
-Υ- -SH (Α), ■SH (Α')
[化 3]
-Υ- ■ΝΗ; (Β), -ΝΗ (Β')
[化 4]
Figure imgf000041_0001
[化 5]
Figure imgf000041_0002
[化 6] 一 Υ
Figure imgf000041_0003
[化 7]
Figure imgf000041_0004
[化 8]
Y—— Br ----(G)
9]
Figure imgf000041_0005
[化 10]
Figure imgf000042_0001
[化 11]
— Υ— Ν ΝΗ -Ν ΝΗ
.(J), ■(J')
[化 12]
Figure imgf000042_0002
•(Κ), '(Κ')
Figure imgf000042_0003
[化 14]
Figure imgf000042_0004
. . . . (Μ), · · ■ · (Μ ' )
(式 (Α)から(Μ)中、 Υはエステル結合、エーテル結合、アミド結合、チォエステル結 合、スルフイド結合、ゥレア結合、力ルバメート結合、若しくはカーボネート結合、又は これらの結合を有していてもよい炭素数 1以上 10以下のアルキレン基である。また、 式(M)及び(Μ' )中、 m及び ηは、それぞれ独立に 0又は 1であり、 Zaは塩素原子、 又は臭素原子であり、 Zbはヒドロキシノレ基、塩素原子、又は臭素原子である。 ) [3] 前記化学式(1)中の R及び Rカ^コシロキシ基(C H 〇_)であり、 R、 R及び R
2 4 22 45 1 3 が水素である、請求項 1又は 2に記載の有機合成用試薬。
5
[4] 前記化学式(1)中の試薬活性部位 Xが、前記式 (M)、又は (Μ' )で示される官能 基である請求項 3に記載の有機合成用試薬。
[5] 前記化学式(1)中の試薬活性部位 X力 ヒドロキシメチル基であり、 R及び R力 Sドコ
2 4 シロキシ基(C Η 〇一)であり、 R、 R及び Rが水素である請求項 1に記載の有機
22 45 1 3 5
合成用試薬。
[6] 請求項 1から 5のいずれかに記載の有機合成用試薬を用いた有機合成反応方法 であって、
前記化学式(1)中の試薬活性部位 Xが反応に関与する反応系に、前記有機合成 用試薬を溶解させて反応を行う反応工程と、
その後、前記有機合成用試薬、及び反応後の前記有機合成用試薬を分離させる 分離工程と、を含む、有機合成反応方法。
PCT/JP2007/052996 2006-03-24 2007-02-19 有機合成用試薬、及び当該試薬を用いた有機合成反応方法 WO2007122847A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2007242276A AU2007242276A1 (en) 2006-03-24 2007-02-19 Reagent for organic synthesis and method of organic synthesis reaction with the reagent
EP07714522.5A EP2003104B1 (en) 2006-03-24 2007-02-19 Reagent for organic synthesis and method of organic synthesis reaction with the reagent
US12/225,442 US8093435B2 (en) 2006-03-24 2007-02-19 Reagent for organic synthesis and method of organic synthesis reaction with the reagent
DK07714522.5T DK2003104T3 (en) 2006-03-24 2007-02-19 Reagents for organic synthesis and method for organic synthesis reaction with the reagent
CN2007800103222A CN101405240B (zh) 2006-03-24 2007-02-19 有机合成用试剂、以及使用该试剂的有机合成反应方法
JP2008511981A JPWO2007122847A1 (ja) 2006-03-24 2007-02-19 有機合成用試薬、及び当該試薬を用いた有機合成反応方法
ES07714522.5T ES2546808T3 (es) 2006-03-24 2007-02-19 Reactivo para síntesis orgánica y método de reacción de síntesis orgánica con dicho reactivo
US13/346,175 US8293948B2 (en) 2006-03-24 2012-01-09 Reagent for organic synthesis and method of organic synthesis reaction with the reagent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006084019 2006-03-24
JP2006-084019 2006-03-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/225,442 A-371-Of-International US8093435B2 (en) 2006-03-24 2007-02-19 Reagent for organic synthesis and method of organic synthesis reaction with the reagent
US13/346,175 Division US8293948B2 (en) 2006-03-24 2012-01-09 Reagent for organic synthesis and method of organic synthesis reaction with the reagent

Publications (1)

Publication Number Publication Date
WO2007122847A1 true WO2007122847A1 (ja) 2007-11-01

Family

ID=38624764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052996 WO2007122847A1 (ja) 2006-03-24 2007-02-19 有機合成用試薬、及び当該試薬を用いた有機合成反応方法

Country Status (8)

Country Link
US (2) US8093435B2 (ja)
EP (1) EP2003104B1 (ja)
JP (2) JPWO2007122847A1 (ja)
CN (1) CN101405240B (ja)
AU (1) AU2007242276A1 (ja)
DK (1) DK2003104T3 (ja)
ES (1) ES2546808T3 (ja)
WO (1) WO2007122847A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185063A (ja) * 2006-03-24 2009-08-20 Jitsubo Co Ltd 有機合成用試薬、及び当該試薬を用いた有機合成反応方法
WO2010104169A1 (ja) 2009-03-12 2010-09-16 味の素株式会社 フルオレン化合物
WO2011078295A1 (ja) 2009-12-25 2011-06-30 味の素株式会社 ベンジル化合物
WO2012029794A1 (ja) 2010-08-30 2012-03-08 味の素株式会社 分岐鎖含有芳香族化合物
WO2012121057A1 (ja) 2011-03-09 2012-09-13 Jitsubo株式会社 新規な非ペプチド性架橋構造を含む架橋ペプチド、ならびに該架橋ペプチドの合成方法および該方法に用いる新規な有機化合物
WO2012157723A1 (ja) 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
US8722934B2 (en) 2009-03-30 2014-05-13 Ajinomoto Co., Inc. Diphenylmethane compound
WO2014189142A1 (ja) 2013-05-24 2014-11-27 味の素株式会社 モルフォリノオリゴヌクレオチドの製造方法
US9353148B2 (en) 2011-05-31 2016-05-31 Ajinomoto Co., Inc. Method for producing peptide
US9353147B2 (en) 2011-05-31 2016-05-31 Ajinomoto Co., Inc. Method for producing peptide
WO2016140232A1 (ja) * 2015-03-04 2016-09-09 Jitsubo株式会社 ペプチド合成方法
WO2019198833A1 (ja) 2018-04-13 2019-10-17 Jitsubo株式会社 ペプチド合成方法
WO2020101032A1 (ja) 2018-11-16 2020-05-22 味の素株式会社 分子内s-s結合を有する環化ペプチドの製造方法
US10729775B2 (en) 2013-03-08 2020-08-04 Novartis Ag Lipids and lipid compositions for the delivery of active agents
US10792361B2 (en) 2013-03-08 2020-10-06 Novartis Ag Lipids and lipid compositions for the delivery of active agents
WO2022214692A1 (en) 2021-04-09 2022-10-13 Bachem Holding Ag Pseudo solid phase protecting group and methods for the synthesis of oligonucleotides and oligonucleotide conjugates
US11691165B2 (en) 2011-10-27 2023-07-04 Copilot Ventures Fund Iii Llc Methods of delivery of encapsulated perfluorocarbon taggants
US11827660B2 (en) 2019-02-01 2023-11-28 Sederma Synthesis strategy for gap protecting group
US12024537B2 (en) 2020-11-25 2024-07-02 Sederma Compositions and methods for chemical synthesis

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102584546A (zh) * 2011-09-26 2012-07-18 盘锦兴福化工有限公司 2,3—二氟苯乙醚的合成方法
CN104918949B (zh) 2012-11-14 2017-10-10 武田药品工业株式会社 核酸的液相合成方法
US9365615B2 (en) 2013-09-09 2016-06-14 Jitsubo Co., Ltd. Cross-linked peptides containing non-peptide cross-linked structure, method for synthesizing cross-linked peptides, and novel organic compound used in method
EP4049991A1 (en) 2015-01-21 2022-08-31 Ajinomoto Co., Inc. Precipitation promoter and precipitation method in which same is used
KR101889893B1 (ko) * 2015-06-12 2018-08-22 애니젠 주식회사 선별적 용해도를 갖는 트리페닐메탄 유도체 및 그의 용도
US10981940B2 (en) 2016-11-11 2021-04-20 SEKISUl MEDICAL CO., LTD. Trityl protecting agent
MX2020004702A (es) 2017-11-07 2020-11-06 Bayer Animal Health Gmbh Metodo para la sintesis de depsipeptidos ciclicos.
EP3480195A1 (en) 2017-11-07 2019-05-08 Bayer Animal Health GmbH Method for the synthesis of cyclic depsipeptides
CA3131774A1 (en) 2019-02-28 2020-09-03 Fujifilm Corporation Method for producing peptide compound, protecting group-forming reagent, and aromatic heterocyclic compound
JP7162853B1 (ja) 2021-07-02 2022-10-31 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044493A (ja) * 1998-07-27 2000-02-15 Asahi Chem Ind Co Ltd 化合物ライブラリー合成用保護基
JP2001122889A (ja) * 1999-10-26 2001-05-08 Noguchi Inst 糖脂質アナログ化合物
WO2003018188A1 (fr) * 2001-08-24 2003-03-06 Japan Science And Technology Agency Systeme de solvant multiphase compatible
JP2003183298A (ja) * 2001-12-19 2003-07-03 Japan Science & Technology Corp 相溶性−多相有機溶媒システムによりアミノ酸を逐次的に付加する液相ペプチド合成法
JP2005508890A (ja) 2001-08-20 2005-04-07 ユニヴァーシティ オブ ピッツバーグ アルコールのフルオラス求核置換反応および反応に使用する求核試薬

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014937A (en) * 1974-08-26 1977-03-29 Pfizer Inc. 3,4-And 3,5-dialkoxyphenethylamines
JPH06239995A (ja) 1993-02-22 1994-08-30 Matsushita Electric Works Ltd ポリアニリン誘導体およびその製造方法
WO1997042166A1 (fr) 1996-05-02 1997-11-13 Terumo Kabushiki Kaisha Derives amidines et vecteurs de medicaments les contenant
JP2003292494A (ja) 2002-04-01 2003-10-15 Japan Science & Technology Corp 温度依存的集合形態を有するデンドリマー及びそれから成る発光体
JP2004059509A (ja) 2002-07-30 2004-02-26 Nokodai Tlo Kk 液相ペプチド合成用アミノ酸試薬
CN1753725A (zh) 2003-02-24 2006-03-29 东京农工大学Tlo株式会社 使用互溶·分离状态随温度发生可逆变化的溶剂组合的化学处理方法
JP4360854B2 (ja) 2003-07-08 2009-11-11 テルモ株式会社 グアニジン誘導体およびそれを構成成分とする薬物担体
WO2006104166A1 (ja) 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology 晶析分離用担体及び化合物の分離方法
CN101405240B (zh) * 2006-03-24 2012-07-25 日商·Jitsubo株式会社 有机合成用试剂、以及使用该试剂的有机合成反应方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044493A (ja) * 1998-07-27 2000-02-15 Asahi Chem Ind Co Ltd 化合物ライブラリー合成用保護基
JP2001122889A (ja) * 1999-10-26 2001-05-08 Noguchi Inst 糖脂質アナログ化合物
JP2005508890A (ja) 2001-08-20 2005-04-07 ユニヴァーシティ オブ ピッツバーグ アルコールのフルオラス求核置換反応および反応に使用する求核試薬
WO2003018188A1 (fr) * 2001-08-24 2003-03-06 Japan Science And Technology Agency Systeme de solvant multiphase compatible
EP1426101A1 (en) 2001-08-24 2004-06-09 Japan Science and Technology Agency Compatible-multiphase organic solvent system
JP2003183298A (ja) * 2001-12-19 2003-07-03 Japan Science & Technology Corp 相溶性−多相有機溶媒システムによりアミノ酸を逐次的に付加する液相ペプチド合成法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AZEFU Y. ET AL.: "Facile synthesis of stable lipid analogues processing a range of alkyl groups: application to artificial glycolipids", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 10, 2002, pages 4013 - 4022, XP003012981 *
CHIBA K. ET AL.: "A liquid-phase peptide synthesis in cyclohexane-based biphasic thermomorphic systems", CHEM. COMMUN., 2002, pages 1766 - 1767, XP008076759 *
HAYASHI K. ET AL.: "Microwave-promoted Suzuki-Miyaura coupling reactions in a cycloalkane-based thermomorphic biphasic system", TETRAHEDRON LETTERS, vol. 47, 9 January 2006 (2006-01-09), pages 171 - 174, XP005194793 *
KISHIMURA A. ET AL.: "Phosphorescent organogels via "Metallophilic" interactions for reversible RGB-Color Switching", J. AM. CHEM. SOC., vol. 127, no. 1, 2005, pages 179 - 183, XP003012985 *
MARTINEZ-PALAU M. ET AL.: "Synthsis of luminescent N-arylcarbazoles by copper bronze-mediated reaction", LETTERS IN ORGANIC CHEMISTRY, vol. 1, 2004, pages 231 - 237, XP003012983 *
SATO R. ET AL.: "Synthesis of 3,4,5-tris(alkyloxy)benzyl glycosides as glycolipid analogues", JOURNAL OF CARBOHYDRATE CHEMISTRY, vol. 23, no. 6&7, 2004, pages 375 - 388, XP003012982 *
See also references of EP2003104A4 *
TAMIAKI H. ET AL.: "A novel protecting group for constructing combinatorial peptide libraries", BULL. CHEM. SOC. JPN., vol. 74, 2001, pages 733 - 738, XP002989508 *
YAMAGUCHI T. ET AL.: "Macroscopic spinning chirality memorized in spin-coated films of spatially designed zinc porphyrin J-aggregates", ANGEW. CHEM. INT. ED., vol. 43, 2004, pages 6350 - 6355, XP003012984 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185063A (ja) * 2006-03-24 2009-08-20 Jitsubo Co Ltd 有機合成用試薬、及び当該試薬を用いた有機合成反応方法
US9029504B2 (en) 2009-03-12 2015-05-12 Ajinomoto Co., Inc. Fluorene compound
WO2010104169A1 (ja) 2009-03-12 2010-09-16 味の素株式会社 フルオレン化合物
US8569453B2 (en) 2009-03-12 2013-10-29 Ajinomoto Co., Inc. Fluorene compound
US9670121B2 (en) 2009-03-30 2017-06-06 Ajinomoto Co., Inc. Diphenylmethane compound
US9169187B2 (en) 2009-03-30 2015-10-27 Ajinomoto Co., Inc. Method of making peptides using diphenylmethane compound
US8722934B2 (en) 2009-03-30 2014-05-13 Ajinomoto Co., Inc. Diphenylmethane compound
WO2011078295A1 (ja) 2009-12-25 2011-06-30 味の素株式会社 ベンジル化合物
US9206230B2 (en) 2009-12-25 2015-12-08 Ajinomoto Co., Inc. Benzylic compound
US8859732B2 (en) 2009-12-25 2014-10-14 Ajinomoto Co., Inc. Benzylic compound
JP5929756B2 (ja) * 2010-08-30 2016-06-08 味の素株式会社 分岐鎖含有芳香族化合物
US10711033B2 (en) 2010-08-30 2020-07-14 Ajinomoto Co., Inc. Branched chain-containing aromatic compound
US8546534B2 (en) 2010-08-30 2013-10-01 Ajinomoto Co., Inc. Branched chain-containing aromatic compound
US9499579B2 (en) 2010-08-30 2016-11-22 Ajinomoto Co., Inc. Branched chain-containing aromatic compound
WO2012029794A1 (ja) 2010-08-30 2012-03-08 味の素株式会社 分岐鎖含有芳香族化合物
WO2012121057A1 (ja) 2011-03-09 2012-09-13 Jitsubo株式会社 新規な非ペプチド性架橋構造を含む架橋ペプチド、ならびに該架橋ペプチドの合成方法および該方法に用いる新規な有機化合物
WO2012157723A1 (ja) 2011-05-17 2012-11-22 味の素株式会社 オリゴヌクレオチドの製造方法
US9353148B2 (en) 2011-05-31 2016-05-31 Ajinomoto Co., Inc. Method for producing peptide
US9353147B2 (en) 2011-05-31 2016-05-31 Ajinomoto Co., Inc. Method for producing peptide
JP2017036322A (ja) * 2011-05-31 2017-02-16 味の素株式会社 ペプチドの製造方法
US11691165B2 (en) 2011-10-27 2023-07-04 Copilot Ventures Fund Iii Llc Methods of delivery of encapsulated perfluorocarbon taggants
US10792361B2 (en) 2013-03-08 2020-10-06 Novartis Ag Lipids and lipid compositions for the delivery of active agents
US10729775B2 (en) 2013-03-08 2020-08-04 Novartis Ag Lipids and lipid compositions for the delivery of active agents
WO2014189142A1 (ja) 2013-05-24 2014-11-27 味の素株式会社 モルフォリノオリゴヌクレオチドの製造方法
JPWO2016140232A1 (ja) * 2015-03-04 2017-12-21 Jitsubo株式会社 ペプチド合成方法
US11098078B2 (en) 2015-03-04 2021-08-24 Jitsubo Co., Ltd. Peptide synthesis method
WO2016140232A1 (ja) * 2015-03-04 2016-09-09 Jitsubo株式会社 ペプチド合成方法
WO2019198833A1 (ja) 2018-04-13 2019-10-17 Jitsubo株式会社 ペプチド合成方法
US11420997B2 (en) 2018-04-13 2022-08-23 Jitsubo Co., Ltd. Peptide synthesis method
WO2020101032A1 (ja) 2018-11-16 2020-05-22 味の素株式会社 分子内s-s結合を有する環化ペプチドの製造方法
US11827660B2 (en) 2019-02-01 2023-11-28 Sederma Synthesis strategy for gap protecting group
US12024537B2 (en) 2020-11-25 2024-07-02 Sederma Compositions and methods for chemical synthesis
WO2022214692A1 (en) 2021-04-09 2022-10-13 Bachem Holding Ag Pseudo solid phase protecting group and methods for the synthesis of oligonucleotides and oligonucleotide conjugates

Also Published As

Publication number Publication date
US8293948B2 (en) 2012-10-23
CN101405240B (zh) 2012-07-25
AU2007242276A1 (en) 2007-11-01
EP2003104B1 (en) 2015-07-01
EP2003104A9 (en) 2009-04-15
ES2546808T3 (es) 2015-09-28
DK2003104T3 (en) 2015-08-10
US20120108788A1 (en) 2012-05-03
EP2003104A4 (en) 2010-01-06
CN101405240A (zh) 2009-04-08
JPWO2007122847A1 (ja) 2009-09-03
US20090299103A1 (en) 2009-12-03
JP2009185063A (ja) 2009-08-20
US8093435B2 (en) 2012-01-10
JP5113118B2 (ja) 2013-01-09
EP2003104A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
WO2007122847A1 (ja) 有機合成用試薬、及び当該試薬を用いた有機合成反応方法
Pirkle et al. Useful and easily prepared chiral stationary phases for the direct chromatographic separation of the enantiomers of a variety of derivatized amines, amino acids, alcohols, and related compounds
JP4913077B2 (ja) 光学活性ホモアリルヒドラジノエステル類の製造方法
WO2003064420A1 (fr) Nouveaux composes optiquement actifs, procede de resolution optique cinetique de derives d&#39;acide carboxylique, et catalyseurs y relatifs
JP6048762B2 (ja) 光学活性β−ヒドロキシ−α−アミノカルボン酸エステルの製造方法
WO2010063002A2 (en) Processes for the preparation and purification of gabapentin enacarbil
JP2008007457A (ja) β−ヒドロキシカルボニル化合物の後処理方法
JP4802191B2 (ja) 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα−アミノ酸およびその誘導体の製造方法
WO2004031163A1 (ja) 光学活性α−置換システインまたはその塩の製造方法並びにその合成中間体及びその製造方法
EP4249470A1 (en) Method for preparing alpha-amino acids
JP3477631B2 (ja) 1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラオルガノジシロキサンの精製方法
JP2003261490A (ja) 新規キラルジルコニウム触媒とそれを用いた光学活性アンチα−メチル−β−アミノカルボニル化合物の製造方法
CN109081785B (zh) 一种含氟甘氨酸酯衍生物的合成方法
JP4338478B2 (ja) 固相担体およびそれを用いる液晶化合物の固相合成
JPS58951A (ja) Nα↓−(3↓−シアノ↓−プロパノイル)↓−アミノカルボン酸誘導体
JP4749579B2 (ja) (メタ)アクリロイル基含有カルバミン酸ハライド類及びその製造方法
JP3281916B2 (ja) アセタール化合物の製造方法及びその製造反応用触媒
CN117843525A (zh) (2s,3r,4r)-4,5-二羟基异亮氨酸衍生物及中间体的制备方法
KR100599255B1 (ko) 고체상 합성용 신규 레진 및 이를 이용한 하이드록실아민유도체의 고체상 합성방법
JP4714730B2 (ja) α−イミノ酸類の不斉アリル化反応方法
CN112321451A (zh) 一种用于制备盐酸西那卡塞药物中间体的方法
JP2004115439A (ja) L−フェニレフリンの製造方法
EP3800178A1 (en) Preparation of enamide intermediate for the synthesis of dasotraline
CN101778815A (zh) 光学活性的n-(卤代丙基)氨基酸衍生物的制造方法
JP2003002869A (ja) α−ケトアミド類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714522

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008511981

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780010322.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007242276

Country of ref document: AU

Ref document number: 3984/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007714522

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007242276

Country of ref document: AU

Date of ref document: 20070219

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12225442

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)