WO2007119842A1 - チタン製の部材に対して行う貴金属めっき - Google Patents

チタン製の部材に対して行う貴金属めっき Download PDF

Info

Publication number
WO2007119842A1
WO2007119842A1 PCT/JP2007/058230 JP2007058230W WO2007119842A1 WO 2007119842 A1 WO2007119842 A1 WO 2007119842A1 JP 2007058230 W JP2007058230 W JP 2007058230W WO 2007119842 A1 WO2007119842 A1 WO 2007119842A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
temperature
plate
degrees celsius
separator
Prior art date
Application number
PCT/JP2007/058230
Other languages
English (en)
French (fr)
Inventor
Naotaka Aoyama
Seiji Mizuno
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CA2646189A priority Critical patent/CA2646189C/en
Priority to JP2008511015A priority patent/JP5088318B2/ja
Priority to DE112007000680T priority patent/DE112007000680B8/de
Priority to US12/282,003 priority patent/US8211495B2/en
Publication of WO2007119842A1 publication Critical patent/WO2007119842A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to noble metal plating, and more particularly to a technique for performing noble metal plating on a member made of titanium or a titanium alloy.
  • the separator in a fuel cell, if the separator is made of a material that will increase the contact resistance with the fuel cell electrode if it is used as it is, the contact portion with the electrode on the surface of the separator will be gold-plated. I have given it.
  • a separator when a separator is formed of titanium or a titanium alloy, it is difficult to perform electrolytic gold plating directly on the surface. This is because a titanium oxide film, which is a passive state, is formed on the surface of a titanium or titanium alloy separator (hereinafter collectively referred to as “titanium separator j”).
  • the gold plating can be performed overnight on the titanium separator.However, in such a separator evening, there is a defect in the surface metal plating. If present, nickel may leach out of it, and nickel has a negative impact on the environment, so there is a need for a technique for direct gold plating on titanium. Widely used for precious metal plating in titanium or titanium alloy products and parts that require low contact resistance with other conductive members The present invention has been made to solve at least a part of the above-described problems, and an object of the present invention is to provide a technique for performing electrolytic noble metal plating on the surface of titanium. Note that the disclosure of Japanese Patent Application No. 2 0 0 6— 1 1 1 5 1 4 is incorporated into this specification for reference. Disclosure of the invention
  • the present invention performs the following treatment when manufacturing a fuel cell separator overnight that is at least partially plated with a noble metal. That is, first, (a) titanium carbide is formed on at least a part of the surface of a titanium member provided with titanium or a titanium alloy and used for a separator of a fuel cell. Thereafter, (b) noble metal plating is performed on at least a part of the surface of the titanium member. Gold adheres to titanium carbide more strongly than titanium oxide. Therefore, with such an embodiment, noble metal plating can be performed on the surface of titanium. In addition, when forming titanium carbide on at least a part of the surface of the titanium member, it is preferable to perform the following treatment.
  • a titanium member having a carbon-containing substance attached to the surface is prepared as a chidan member.
  • a 2 The first heat treatment is performed on the titanium member at a predetermined first temperature higher than room temperature.
  • titanium carbide can be formed on at least a part of the surface of the titanium member.
  • the titanium member having a carbon-containing substance attached to the surface thereof can be a titanium member to which the rolling oil used when the titanium member is rolled.
  • the carbon containing material is rolling oil. If it is set as such an aspect, titanium carbide can be formed using the rolling oil adhering in the manufacturing process of a titanium member.
  • the first temperature is preferably a temperature included in the range of 300 to 700 degrees Celsius.
  • the first temperature is in the range of 45 to 50 degrees Celsius It is more preferable that the temperature be included.
  • titanium carbide is formed with a non-uniform density on at least a part of the surface of the titanium member by the first treatment. Further, when titanium carbide is formed on the surface of the titanium member, it can be formed as follows. That is, titanium carbide is formed with a first thickness at a first location included in at least part of the surface of the titanium member.
  • titanium carbide is formed with a second thickness different from the first thickness at a second location that is included in at least part of the surface of the titanium member and is different from the first location.
  • titanium hydride present at the interface between the noble metal plating layer and the titanium member can be diffused into the titanium member.
  • the second temperature is preferably a temperature included in the range of 220 degrees Celsius to 400 degrees Celsius.
  • the present invention can be realized in various forms.
  • a fuel cell separator for example, a fuel cell separator, a method for manufacturing a fuel cell separator, a fuel cell including a titanium separator, and a fuel cell It can be realized in the form of a manufacturing method or the like.
  • a fuel cell separator for example, a fuel cell separator, a method for manufacturing a fuel cell separator, a fuel cell including a titanium separator, and a fuel cell It can be realized in the form of a manufacturing method or the like.
  • FIG. 1 is a flowchart showing a method for manufacturing a separator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a separator plate-like member at each stage of the method for manufacturing a separator according to the embodiment.
  • Fig. 3 shows the adhesion test of the plating layer by changing the target temperature of the heat treatment in step S20 while changing the conditions of the other steps in Fig. 1 and performing the process of Fig. 1. It is a graph which shows the result.
  • FIG. 1 is a flowchart showing a method for manufacturing a separator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a plate member for a separate night at each stage of the manufacturing method for a separate night of the embodiment.
  • a titanium separator plate member 10 made of gold is prepared.
  • the material of the plate-like member 10 can be, for example, JIS type 1 pure titanium.
  • This plate-like member ⁇ 0 is a plate-like member provided by rolling a titanium member, and rolling oil 20 is attached to the surface thereof (see FIG. 2 (a)).
  • the rolling oil is provided with oil and fat containing carbon.
  • the surface of the titanium member is usually covered with passive titanium oxide i 0 2 .
  • the pure titanium T i portion of the plate-like member 10 is denoted by 1 1
  • the titanium oxide T i 0 2 portion of the surface is denoted by 1 2.
  • the plate member 10 is subjected to a conductive treatment.
  • plate-like member 1 0 is the argon atmosphere of 1 0- 2 T orr, between about 3 0 seconds is heat treated 4 0 0 degrees to 5 0 0 degrees Celsius.
  • the target temperature for temperature control is set to 4500 degrees.
  • the carbon in the rolling oil 20 reacts with the surface portion of the plate member 10 made of titanium to become titanium carbide Ti 1 C.
  • Plate member The portion of titanium carbide out of 10 is shown as 30 in FIG. 2 (b). Note that the rolling oil 20 attached to the surface of the plate-like member 10 did not adhere to each portion in a strictly homogeneous amount and density. For this reason, the density and thickness of the titanium carbide portion 30 vary depending on the location. In some cases, the passive titanium oxide T i 0 2 remains as it is. That is, the surface of the plate member 1 0, titanium carbide T i-C is a rich portion, titanium oxide Ding I 0 2 is that exist and the rich portion.
  • Step S20 can be realized by adjusting the temperature to 400 degrees Celsius to 500 degrees Celsius in the final stage of the annealing process.
  • the set temperature of 400 degrees Celsius to 500 degrees Celsius in Step S 20 is a temperature lower than the temperature of the annealing process.
  • the cleaning process is performed first. However, even after the cleaning process, sufficient rolling oil that can form titanium carbide in step S20 is made of titanium. It remains on the surface of the plate member.
  • step S 3 a pretreatment is performed prior to the subsequent electrolytic gold plating.
  • step S 30 buffing is performed on the plate-like member 10.
  • the carbonized rolling oil and the like adhering to the surface of the plate-like member 10 by this buffing is mechanically removed by the abrasive.
  • step S 40 buffing is removed from the plate-like member 10. In this buff removal, the abrasive attached to the surface of the plate-like member 10 is removed by the surfactant.
  • step S 50 immersion degreasing is performed on the plate-like member 10.
  • the plate-like member 0 is immersed in an alkaline solution mainly containing Na OH. as a result, Oils and fats on the surface of the plate member 10 are removed by the hatching reaction.
  • electrolytic degreasing is performed on the plate-like member 10. Specifically, electrolysis of the plate member 10 is performed in an alkaline solution containing NaOH as a main component. As a result, the dirt on the surface of the plate-like member 10 is removed by the gas generated by the electrolysis along with the hatching reaction.
  • acid activity is performed on the plate-like member 10. Specifically, the plate member 10 is immersed in a hydrofluoric acid-based solution.
  • step S 70 electrolytic gold plating is performed on the plate-like member 10. Specifically, in a sulfite-based bath containing gold ions or gold complex ions, a plate-like member 10 is disposed on the cathode, and an electric current is applied to deposit metal gold on the surface of the plate-like member 10.
  • step S 80 gold plating can be performed on the surface of the plate-like member 10.
  • gold adheres more strongly to titanium carbide than titanium oxide, which is in a passive state.
  • a gold plating layer 40 is provided on the surface of the plate-like member ⁇ 0 as shown in FIG. 2 (c). At this time, a layer 50 of titanium hydride T i H and T i H 2 is formed between the metallized layer 40 and the titanium carbide portion 30.
  • step S 90 the plate member 10 is cleaned. Specifically, the plate-like member 10 is immersed in warm water and cleaned with ultrasonic waves. In step S 1 0 0, heat treatment is performed on the plate-like member 10.
  • the plate-like member 1 0 is the argon atmosphere of 1 0- 2 T 0 rr, C 3 0 0 degrees to 3 5 0 degrees to about 9 minutes, it is heat treated.
  • the target temperature is 3 30 degrees Celsius.
  • the titanium hydride in the titanium hydride layer 50 diffuses into the plate member 10.
  • the titanium hydride layer 50 disappears as shown in FIG. 2 (d). Titanium hydride is fragile. For this reason, if the layer 50 of titanium hydride T i H and T i H 2 exists between the gold plating layer 40 and the titanium carbide portion 30, the gold plating layer 40 is easily peeled off.
  • titanium hydride between the gold-plated layer 40 and the titanium carbide portion 30 is diffused by heat treatment. For this reason, the gold-plated layer 40 and the titanium carbide portion 30 are firmly adhered, and the gold-plated layer 40 is hardly peeled off from the plate-like member 10.
  • Step S 20 the target temperature of the heat treatment in Step S 20 was changed, and the treatment was performed while keeping the conditions of the other steps constant.
  • the conditions are as follows.
  • Conductive treatment for generating Ti and C on the surface of the plate-like member 10 is about 10 to 2 Torr in argon atmosphere. For 30 seconds, the target temperature was set at various temperatures ranging from 30 to 700 degrees.
  • Electrolytic degreasing and immersion degreasing were performed with an alkaline solution containing NaOH as a main component.
  • Gold plating (see step S 80) was performed in a sulfite-based bath containing gold complex ions.
  • FIG. 3 shows the process of Fig. 1 by changing the target temperature of the heat treatment in step S20 while keeping the conditions of the other steps in Fig. 1 constant.
  • Fig. 3 is a graph showing the results of a test of adhesion force V s The test in Fig. 3 was conducted according to the tape peeling method specified in JIS, and as can be seen from the graph in Fig. 3, titanium carbide was generated.
  • the heat treatment in step S20 is preferably performed in the range of 400 degrees Celsius to 600 degrees Celsius, and more preferably performed at a temperature of 45 degrees Celsius to 5500 degrees Celsius.
  • the adhesion force of the adhesion layer is lower when the temperature is lower than 400 degrees Celsius because of the following reasons: That is, when the temperature of the heat treatment is lower than 400 degrees Celsius, carbonization of the rolling oil, which is a compound containing carbon, is not promoted, and the rolling oil is hardly decomposed. This is probably because Ti i C is not easily generated.
  • the reason why the adhesion of the plating layer is reduced is considered to be as follows.
  • the titanium plate member 10 in which titanium carbide is nonuniformly formed on the surface by heat treatment as described above (see FIG. 2 (b)), and the same titanium plate member A test was conducted to compare the adhesion strength of the gold plating with each of the titanium carbide layer uniformly provided on the surface by sputtering rather than heat treatment. The test was conducted according to the tape peeling method specified in JIS. As a result, the plate-like member 10 that produced non-uniform titanium carbide on the surface by heat treatment is more firmly attached to the plate-like member that produced uniform titanium carbide by spattering. I found out that
  • the present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof.
  • the following modes are also possible.
  • the plate-like member 10 is gold-plated.
  • the material to be plated on the surface of the member is not limited to gold (A u), but silver (A g), platinum (P t), palladium (P d), rhodium (R h), iridium (I r), ruthenium Other noble metals such as (R u), osmium (O s), etc. can be employed.
  • the plate member 10 is made of JIS 1 type titanium.
  • the material of the member that performs gold plating is not limited to this.
  • the material of the member to be plated can be JIS type 2 or type 3 titanium.
  • titanium alloys containing a larger amount of other metals can also be used.
  • the titanium carbide is generated by the reaction of carbon in the rolling oil adhering to the surface of the plate-like member 10 and titanium of the plate-like member 10.
  • the carbon used to produce titanium carbide may be supplied in other ways.
  • a suitable material containing carbon may be applied to the surface of the plate-like member 10 prior to the heat treatment.
  • the temperature, pressure, and heating time can be set to various values.
  • the heating temperature is preferably 300 ° C. or more and 70 ° C. or less, and preferably 400 ° C. or more and 60 ° C. or less. It is more preferable that the heating temperature be 4500 ° C. or higher and 55 ° C. or lower.
  • the step of generating titanium carbide on the surface of the plate-like member 10 (FIG. 1 step S 2 0) is performed at the final stage of the annealing step.
  • the process of generating titanium carbide on the surface of the titanium member is not limited to such an embodiment, and can be performed as a process independent of the annealing process.
  • titanium carbide is unevenly distributed on the surface of the plate-like member 10 by heat treatment. -It is provided with a certain thickness.
  • titanium carbide can also be provided on the surface of the titanium member by other processes such as sputtering. Titanium carbide can also be provided on the surface of the titanium member with a substantially uniform thickness.
  • the titanium carbide provided on the surface of the titanium member is more preferably provided with a non-uniform thickness.
  • the phrase “titanium carbide is provided with a non-uniform thickness” includes an aspect in which a portion of the surface of the titanium member is not provided with titanium carbide.
  • the heat treatment is performed at a target temperature of 3 30 ° C for about 9 minutes in an argon atmosphere of 10 0 to 2 Torr. I do.
  • the temperature, pressure, and heating time can be set to various values. It can also be carried out in an atmosphere of other inert gas such as in a helium atmosphere.
  • the heating temperature is preferably 300 ° C. or more and 400 ° C. or less, and more preferably 3 20 ° C. or more and 380 ° C. or less.
  • This fuel cell is a fuel cell including a membrane electrode assembly that generates power by an electrochemical reaction of a reaction gas, and the separator.
  • the membrane electrode assembly includes an electrolyte membrane and electrodes provided on both sides of the electrolyte membrane.
  • the separator is provided on the side opposite to the electrolyte membrane with respect to the electrode, and is in contact with the electrode through a gold-plated portion.
  • the separator since the separator is made of titanium, the separator can exhibit stable performance over a long period of time without causing corrosion.
  • the contact resistance between the separator evening and the electrode is small because the separator evening is in contact with the electrode through the gold-plated portion.
  • the power generation efficiency is higher than when there is no gold plating at the contact portion between the separator and the electrode. And in the Separat evening In this case, since the gold plating layer and the titanium member are in contact with each other through titanium carbide, the gold plating layer is difficult to peel from the titanium member.
  • the present invention has been described in detail above with reference to preferred exemplary embodiments thereof. However, the present invention is not limited to the embodiments and configurations described above. The present invention includes various modifications and equivalent configurations. Furthermore, although the various elements of the disclosed invention have been disclosed in various combinations and configurations, they are exemplary and each element may be more or less. And there may be one element. These embodiments are included in the scope of the present invention.
  • the present invention can be applied to a fuel cell, a fuel cell system, a prime mover using the fuel cell as a power source, and a vehicle having a power source using the fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Fuel Cell (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

チタンの表面に貴金属めっきを行う技術を提供する。たとえば、一部に金めっきが施された燃料電池用セパレータの製造する際に、以下のような処理を行う。すなわち、まず、チタンまたはチタン合金で設けられ燃料電池のセパレータに用いられるチタン部材を準備する(S10)。このチタン部材は、炭素を含む物質が表面に付着したチタン部材である。そして、このチタン部材に対して、摂氏300度~700度の所定の第1の温度で第1の加熱処理を実行する(S20)。その後、加熱処理したチタン部材の表面に金めっきを行う(S80)。このような態様とすれば、チタンの表面により簡便に電解金めっきを行うことができる。

Description

明細書
チタン製の部材に対して行う貴金属めつき
技術分野
この発明は、 貴金属めつきに関し、 さらに詳しくは、 チタンまたはチタン合金 製の部材に貴金属めつきを行う技術に関する。
背景技術
従来より、 燃料電池においては、 そのまま使用したのでは燃料電池の電極との 接触抵抗が大きくなるような素材でセパレータを形成する場合には、 セパレー夕 表面の電極との接触部分に金めつきを施してきた。 しかし、 チタンまたはチタン合金でセパレー夕を形成する場合には、 その表面 に直接電解金めつきを行うことは難しい。 チタンまたはチタン合金製のセパレー 夕 (以下、 まとめて 「チタン製のセパレー夕 j という) の表面には不働態である チタンの酸化物被膜が形成されているためである。 一方、 まず下地めつきとして ニッケルめっきを行い、 その後、 金めつきを行えば、 チタン製のセパレ一夕に金 めっきを行うことができる。 しかし、 そのような態様のセパレー夕においては、 表面の金めつきに欠陥が存在すると、そこからニッケルが溶出する可能性がある。 ニッケルは環境に悪影響を与えるため、 チタンに直接金めつきを行う技術が求め られている。 このような課題は、 金めつきに限らず、 他の導電性の部材と接触抵 抗が低いことが要求されるチタン製またはチタン合金製の製品や部品において、 貴金属めつきを行う場合について、 広く存在する。 本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、 チタンの表面に電解貴金属めつきを行う技術を提供することを目的とする。 なお、 日本国特許出願 2 0 0 6— 1 1 1 5 1 4号の開示内容は、 参考のため に、 この明細書に組み込まれる。 発明の開示
上記目的を達成するために、 本発明は、 少なくとも一部に貴金属めつきが施さ れた燃料電池用セパレ一夕を製造する際に、 以下のような処理を行う。 すなわち、 まず、 (a ) チタンまたはチタン合金で設けられ燃料電池のセパレー夕に用いら れるチタン部材の表面の少なくとも一部に炭化チタンを形成する。 その後、 (b ) チタン部材の表面の少なくとも一部に貴金属めつきを行う。 炭化チタンには、 酸 化チタンよりも強固に金が付着する。 よって、 このような態様とすれば、 チタン の表面に貴金属めつきを行うことができる。 なお、 チタン部材の表面の少なくとも一部に炭化チタンを形成する際には、 以 下のような処理を行うことが好ましい。 すなわち、 (a 1 ) チダン部材として、 炭素を含む物質が表面に付着したチタン部材を準備する。 そして、 (a 2 ) チタ ン部材に対して、常温よりも高い所定の第 1の温度で第 1の加熱処理を実行する。 このような態様とすれば、 チタン部材の表面の少なくとも一部に炭化チタンを形 成することができる。 また、 炭素を含む物質が表面に付着したチタン部材は、 チタン部材を圧延した 際に使用された圧延油が付着したチタン部材とすることができる。 そのような態 様においては、 炭素を含む物質は圧延油である。 このような態様とすれば、 チタ ン部材の製造工程において付着する圧延油を使用して炭化チタンを形成すること ができる。 このため、 炭化チタンを形成するための炭素を含む物質を塗布するェ 程を、 圧延工程とは別に設ける必要がない。 また、 上記の第 1の温度は、 摂氏 3 0 0度〜 7 0 0度の範囲に含まれる温度と することが好ましい。 さらに、 第 1の温度は、 摂氏 4 5 0度〜 5 5 0度の範囲に 含まれる温度とすることがよリ好ましい。 なお、 第〗の処理によって、 炭化チタンが、 チタン部材の表面の少なくとも一 部に不均一な密度で形成されることが好ましい。 また、 チタン部材の表面に炭化チタンを形成する際には、 以下のように形成す ることができる。 すなわち、 チタン部材の表面の少なくとも一部に含まれる第 1 の場所において、 第 1の厚みで炭化チタンを形成する。 そして、 チタン部材の表 面の少なくとも一部に含まれ第 1の場所とは異なる第 2の場所において、 第 1の 厚みとは異なる第 2の厚みで炭化チタンを形成する。 また、 燃料電池用セパレ一夕を製造する際には、 さらに、 (c ) 貴金属めつき したチタン部材に対して、 常温よりも高い所定の第 2の温度で第 2の加熱処理を 実行することが好ましい。 このような態様とすれば、 貴金属めつき層とチタン部 材との界面に存在する水素化チタンをチタン部材内に拡散させることができる。 その結果、貴金属めつき層とチタン部材とをより強固に密着させることができる。 なお、 第 2の温度は、 摂氏 2 2 0度〜 4 0 0度の範囲に含まれる温度とするこ とが好ましい。 なお、 本発明は、 種々の形態で実現することが可能であり、 例えば、 燃料電池 のセパレー夕、 燃料電池のセパレ一夕の製造方法、 チタン製のセパレータを備え た燃料電池、 その燃料電池の製造方法等の形態で実現することができる。 以下では、 図面を参照して、 本願発明の好ましい実施例の詳細が説明され、 本願発明の上述の目的およびその他の目的、 構成、 効果が明らかにされる。
図面の簡単な説明 図 1は、 本発明の実施形態のセパレー夕の製造方法を示すフローチャートであ る。
図 2は、 実施形態のセパレー夕の製造方法の各段階におけるセパレータ用板状 部材を示す断面図である。
図 3は、 図 1の他の各ステップの条件を一定に保ったまま、 ステップ S 2 0に おける加熱処理の目標温度を変えて図 1の処理を行い、 めっき層の付着力の試験 を行った結果を示すグラフである。
発明を実施するための最良の形態
A . 実施形態:
図 1は、 本発明の実施形態のセパレー夕の製造方法を示すフローチヤ一卜であ る。 図 2は、 実施形態のセパレ一夕の製造方法の各段階におけるセパレ一夕用板 状部材を示す断面図である。 セパレー夕の製造する際には、 まず、 図 1のステツ プ S 1 0で、 金めつきの対象とするチタン製のセパレー夕用板状部材 1 0を準備 する。 板状部材 1 0の素材は、 たとえば、 J I S 1種の純チタンとすることがで きる。 この板状部材〗 0は、 チタンの部材が圧延されて設けられた板状部材であ り、 その表面には圧延油 2 0が付着している (図 2 ( a ) 参照) 。 なお、 圧延油 は炭素を含む油脂で設けられている。 空気が存在する環境下では、 通常、 チタン製の部材の表面は不働態の酸化チタ ン丁 i 02で覆われている。 図 2では、 板状部材 1 0のうち、 純チタン T iの部分 を 1 1で示し、 表面の酸化チタン T i 02の部分を 1 2で示す。 図 1のステップ S 2 0では、 板状部材 1 0の導電化処理が行われる。 具体的に は、 たとえば、 板状部材 1 0は、 1 0— 2 T o r rのアルゴン雰囲気化で、 約 3 0秒 間、 摂氏 4 0 0度〜 5 0 0度に加熱処理される。 ここでは、 温度制御の目標温度 を 4 5 0度に設定する。 この加熱処理により、 圧延油 2 0中の炭素とチタン製の 板状部材 1 0の表面の部分とが反応して、 炭化チタン T i 一 Cとなる。 板状部材 1 0のうち、 炭化チタンの部分を図 2 ( b ) において 3 0で示す。 なお、 板状部 材 1 0の表面に付着していた圧延油 2 0は、 各部分について厳密に均質な量およ び密度で付着していたわけではない。 このため、 炭化チタン部 3 0の密度および 厚みは、 場所によって異なっている。 また、 一部には、 不働態の酸化チタン T i 02がそのまま残っている部分もある。 すなわち、 板状部材 1 0の表面には、 炭化 チタン T i—Cがリッチな部分と、 酸化チタン丁 ί 02がリッチな部分とが存在す る。 なお、 チタン製のセパレータを製造する際には、 ステップ S 2 0の処理に先だ つて、 チタンの板状部材の圧延工程およびその後の焼鈍工程が実施される。 ステ ップ S 2 0は、 その焼鈍工程の最終段階において、 温度を摂氏 4 0 0度〜 5 0 0 度に調整することによって、 実現することができる。 実際には、 ステップ S 2 0 における摂氏 4 0 0度〜 5 0 0度の設定温度は、 焼鈍工程の温度よりも低い温度 である。 また、 連続焼鈍工程においては、 多くの場合、 最初に洗浄工程が実施さ れるが、 その洗浄工程を経ても、 ステップ S 2 0において炭化チタンを形成でき る程度に十分な圧延油が、 チタン製の板状部材の表面に残存する。
S 3 0 ~ S 7 0では、 後に行われる電解金めつきに先だって、 前処理が行われ る。 ステップ S 3 0では、 板状部材 1 0に対してバフ研磨が行われる。 このバフ 研磨により板状部材 1 0の表面に付着していた炭化した圧延油などが、 研磨剤に よって機械的に除去される。 なお、 清浄な表面の場合は、 ステップ S 3 0〜S 7 0を経ず、 直接ステップ S 8 0の工程に進むことができる。 ステップ S 4 0では、 板状部材 1 0に対してバフカス除去が行われる。 このバ フカス除去において、 界面活性剤によって、 板状部材 1 0の表面に付着していた 研磨剤が除去される。 ステップ S 5 0では、 板状部材 1 0に対して浸漬脱脂が行われる。 具体的には、 板状部材 0が、 N a O Hを主剤としたアルカリ性溶液に浸される。 その結果、 板状部材 1 0の表面の油脂分が鹼化反応によって除かれる。 ステップ S 6 0では、 板状部材 1 0に対して電解脱脂が行われる。 具体的には、 N a O Hを主剤としたアルカリ性溶液中で板状部材 1 0の電解を行う。その結果、 鹼化反応とともに、 電解によって発生するガスによって、 板状部材 1 0の表面の 汚れが落とされる。 ステップ S 7 0では、 板状部材 1 0に対して酸活性が行われる。 具体的には、 板状部材 1 0がフッ酸系容液に浸される。 その結果、 板状部材 1 0の表面の薄い 鯖びゃスマットが除去され、 板状部材 1 0の表面が一部、 溶解されて、 金属表面 が露出される。 なお、 ステップ S 7 0後に露出される金属は炭化チタン、 水酸化 チタンまたは酸化チタンである。 すなわち、 炭化チタン部 3 0や酸化チタン部 1 2の下にあるチタン部 1 1が露出されるわけではない。 ステップ S 8 0では、 板状部材 1 0に対して電解金めつきが行われる。 具体的 には、 金イオンまたは金錯イオンを含む亜硫酸系浴中で、 陰極に板状部材 1 0を 配し、 電流を流して、 板状部材 1 0の表面に金属金を析出させる。 ここでは、 電 流密度 0 . 3 AZ d m2、 摂氏 5 0度で約 1 0分間、 通電を行った。 なお、 電解金 めっきを行う際には、 シアン系浴を使用することもできる。 通常、 チタン製の部材の表面は不働態の酸化チタン T i 02で覆われている。 こ のため、 チタン製の部材には電解金めつきをすることは困難である。 しかし、 本 実施形態では、 ステップ S 2 0で板状部材 1 0の表面に酸化チタン T i 02よりも 導電性が高い炭化チタン T i一 Cの部分 3 0が設けられている。 このため、 ステ ップ S 8 0において、 板状部材 1 0の表面上に金めつきをすることができる。 ま た、 炭化チタンには、 不働態である酸化チタンに比べて強固に金が付着する。 よ つて、 本実施形態によれば、 この点からも、 剥離しにくい金めつきをチタン部材 上に形成することができる。 なお、 本発明は、 T i一 Cの代わりに T i Nや T i B等の高導電化皮膜を有する態様でも実施可能であることも分かったが、 T i ― Cの態様は、 より好ましい結果が得られた。 ステップ S 8 0で電解金めつきが行われた結果、 板状部材 Ί 0の表面には、 図 2 ( c ) に示すように、 金めつき層 4 0が設けられる。 なお、 その際、 金めつき 層 4 0と炭化チタン部 3 0との間には、 水素化チタン T i H , T i H 2の層 5 0が できる。 これは、 ステップ S 7 0の酸活性の際に水素が板状部材 1 0の表面に付 着し、 その水素と板状部材 1 0の炭化チタン T i一 Cとが反応してできたものと 考えられる。 理由として、 T i—C層を完全に除去した T i 02層ではそもそも A uはのらないが、 T i H , T i H 2層の形成も著しく阻害されていることが挙げら れる。 ステップ S 9 0では、 板状部材 1 0を洗浄する。 具体的には、 板状部材 1 0を 温水に浸して、 超音波により洗浄を行う。 ステップ S 1 0 0では、 板状部材 1 0に対して加熱処理が行われる。 すなわち、 板状部材 1 0は、 1 0— 2 T 0 r rのアルゴン雰囲気化で、 摂氏 3 0 0度〜 3 5 0度 で約 9分間、 加熱処理される。 なお、 目標温度は摂氏 3 3 0度とする。 この加熱 処理により、 水素化チタン層 5 0の水素化チタンは、 板状部材 1 0内部に拡散す る。 その結果、 図 2 ( d ) に示すように、 水素化チタン層 5 0は消滅する。 水素化チタンはもろい。 このため、 金めつき層 4 0と炭化チタン部 3 0との間 に水素化チタン T i H , T i H 2の層 5 0が存在すると、金めつき層 4 0が剥離し やすくなる。 しかし、 実施形態では、 加熱処理により、 金めつき層 4 0と炭化チ タン部 3 0との間の水素化チタンを拡散させている。 このため、 金めつき層 4 0 と炭化チタン部 3 0とが強固に密着し、 金めつき層 4 0は、 板状部材 1 0からよ リ剥がれにくくなる。
B . 実施例:
実施例では、 図 1 に示すフローチャートに従ってチタン製のセパレータ用板状 部材 1 0に金めつきを行った。 その際、 ステップ S 2 0における加熱処理の目標 温度を変え、 他の各ステップの条件を一定に保って、 処理を行った。 条件は以下 の通りである。
( a ) 板状部材〗 0の素材は、 J I S 1種のチタンとした。
( b ) 板状部材 1 0の表面に T i一 Cを生成するための導電化処理 (図 1のステ ップ S 2 0参照) は、 1 0— 2T o r rのアルゴン雰囲気化で、 約 3 0秒間、 目標温 度を 3 0 0〜 7 0 0度の様々な温度に設定して行った。
( c ) 電解脱脂および浸漬脱脂 (ステップ S 5 0および S 6 0参照) は、 N a O Hを主剤としたアル力リ性溶液で行った。
( d ) 酸活性 (ステップ S 7 0参照) は、 フッ酸系容液を使用して行った。
( e ) 金めつき (ステップ S 8 0参照) は、 金錯イオンを含む亜硫酸系浴で行つ た。
( f ) 水素化チタンを拡散させるための加熱処理 (ステップ S 1 0 0参照) は、 1 0 "2T 0 r rのアルゴン雰囲気化で、 目標温度を摂氏 3 3 0度に設定して、 約 9 分間行った。 図 3は、 図 1の他の各ステップの条件を一定に保ったまま、 ステップ S 2 0に おける加熱処理の目標温度を変えて図 1の処理を行い、 めっき層の付着力 V sの 試験を行った結果を示すグラフである。 図 3の試験は、 J I Sに規定されたテー プ剥離法にしたがって行った。 図 3のグラフから分かるように、 炭化チタンを生 成するステップ S 2 0の加熱処理は、 摂氏 4 0 0度〜 6 0 0度の範囲で行うこと が好ましく、 摂氏 4 5 0〜 5 5 0度の温度で行うことがより好ましい。 加熱処理の温度が摂氏 4 0 0度よりも低い場合にめつき層の付着力が低くなる のは、 以下のような理由からであると考えられる。 すなわち、 加熱処理の温度が 摂氏 4 0 0度よりも低い場合は、 炭素を含む化合物である圧延油の炭化が促進さ れず、 圧延油の分解が起こりにくくなる。 このため、 炭化チタン T i一 Cが生成 されにくいためであると考えられる。 一方、 加熱処理の温度が摂氏 7 0 0度よりも高い場合にめっき層の付着力が低 くなるのは、 以下のような理由からであると考えられる。 すなわち、 加熱処理の 温度が摂氏 7 0 0度よりも高い場合は、 圧延油中の多くの炭素成分が二酸化炭素 等のガスとして素材外に排出されるか、 もしくは素材内部に拡散し素材表層付近 に残らないためであると考えられる。 また、 上記のようにして加熱処理して表面に不均一に炭化チタンを生成したチ タン製の板状部材 1 0と (図 2 ( b ) 参照) 、 同じチタン製の板状部材に対して、 加熱処理ではなくスパッタリングによって表面に均一に炭化チタンの層を設けた ものと、 のそれぞれについて、 金めつきの付着力の比較の試験を行った。 なお、 試験は、 J I Sに規定されたテープ剥離法にしたがって行った。 その結果、 加熱 処理によって表面に不均一な炭化チタンを生成した板状部材 1 0の方が、 スパッ 夕リングによって均一な炭化チタンを生成した板状部材ょリも、 金めつきが強固 に付着することが分かった。
C . 他の態様:
なお、 この発明は上記の実施例や実施形態に限られるものではなく、 その要旨 を逸脱しない範囲において種々の態様において実施することが可能であり、 例え ば次のような形態も可能である。
C 1 . 他の形態 1 :
上記実施形態では、 板状部材 1 0に対して金めつきが行われる。 しかし、 部材 表面にめっきする物質は、 金 (A u ) に限られず、 銀 (A g ) 、 白金 (P t ) 、 パラジウム (P d ) 、 ロジウム (R h ) 、 イリジウム ( I r ) 、 ルテニウム (R u ) 、 オスミウム (O s ) 、 などの他の貴金属を採用することができる。
C 2 . 他の形態 2 :
上記実施形態では、 板状部材 1 0は、 J I S 1種のチタンで設けられている。 しかし、 金めつきを行う部材の素材は、 これに限られるものではない。 すなわち、 金めつきを行う部材の素材は、 J I S 2種や 3種のチタンとすることもできる。 また、 J I Sに定められた純チタン以外に、 他の金属をより多く含むチタン合金 とすることもできる。
C 3 . 他の形態 3 :
上記実施形態では、 炭化チタンは、 板状部材 1 0の表面に付着した圧延油中の 炭素と板状部材 1 0のチタンとが反応して生じている。 しかし、 炭化チタンの生 成に使用される炭素は他の方法で供給されてもよい。 たとえば、 炭素を含む好適 な素材を、 加熱処理に先立って板状部材 1 0表面に塗布してもよい。 C 4 · 他の形態 4 :
上記実施形態では、 板状部材 1 0の表面に炭化チタンを生成する際には、 1 0 "2 T 0 r rのアルゴン雰囲気化で、 約 3 0秒間、 目標温度 4 5 0 °Cの加熱処理を行 う。 しかし、 チタン部材の表面に炭化チタンを生成する際には、 温度、 圧力およ び加熱時間は様々な値とすることができる。 また、 ヘリウム雰囲気下で行うなど、 他の不活性ガスの雰囲気下で行うこともできる。 ただし、 加熱温度は、 3 0 0 °C 以上、 7 0 0 °C以下であることが好ましく、 4 0 0 °C以上、 6 0 0 °C以下である ことがより好ましい。 そして、 加熱温度は、 4 5 0 °C以上、 5 5 0 °C以下である ことがさらに好ましい。
C 5 . 他の形態 5 :
上記実施形態では、 板状部材 1 0の表面に炭化チタンを生成する工程 (図 1ス テツプ S 2 0 ) は、 焼鈍工程の最終段階において行われている。 しかし、 チタン 部材の表面に炭化チタンを生成する工程は、 このような態様に限られず、 焼鈍ェ 程とは独立な工程として実施することもできる。
C 6 . 他の形態 6 :
上記実施形態では、 板状部材 1 0の表面に炭化チタンは加熱処理によって不均 —な厚みで設けられている。 しかし、 炭化チタンはスパッタリングなどの他の処 理でチタン部材の表面に設けることもできる。 また、 炭化チタンはほぼ均一な厚 みでチタン部材の表面に設けることもできる。 ただし、 チタン部材の表面に設け る炭化チタンは、 不均一な厚みで設けることがより好ましい。 なお、 「炭化チタ ンが不均一な厚みで設けられる」 とは、 チタン部材の表面の一部に炭化チタンが 設けられない部分がある態様をも含む。
C 7 , 他の形態 7 :
上記実施形態では、 水素化チタンを拡散させる工程 (図 1のステップ S 1 0 0 ) では、 1 0 _2T o r rのアルゴン雰囲気化で、 目標温度 3 3 0 °Cで約 9分間加熱処 理を行う。 しかし、 金めつきを行ったチタン部材において水素化チタンを拡散さ せるために加熱処理を行う際には、 温度、 圧力および加熱時間は様々な値とする ことができる。 また、 ヘリウム雰囲気下で行うなど、 他の不活性ガスの雰囲気下 で行うこともできる。 ただし、 加熱温度は、 3 0 0 °C以上、 4 0 0 °C以下である ことが好ましく、 3 2 0 °C以上、 3 8 0 °C以下であることがより好ましい。
C 8 . 他の形態 8 :
上記実施形態の方法で製造したセパレー夕を用いて燃料電池を製造することも 好ましい。 この燃料電池は、 反応ガスの電気化学反応によって発電を行う膜電極 接合体と、 上記セパレー夕とを備えた燃料電池である。 膜電極接合体は、 電解質 膜と、 電解質膜の両側に設けられた電極と、 を備える。 そして、 セパレー夕は、 電極に対して電解質膜とは逆の側にそれぞれ設けられ、 金めつきが施された部分 を介して電極と接している。 このような燃料電池は、 セパレー夕がチタンで設けられているため、 セパレー 夕が腐食を起こすことなく、 長期にわたって安定した性能を発揮することができ る。 また、 セパレ一夕が金めつきが施された部分を介して電極と接しているため、 セパレー夕と電極との接触抵抗が小さい。 よって、 セパレー夕と電極との接触部 分に金めつきを有しない場合に比べて発電効率が高い。 そして、 セパレー夕にお いては、 金めつき層とチタン部材とが炭化チタンを介して接触しているため、 金 めっき層がチタン部材から剥離しにくい。 以上では、本願発明をその好ましい例示的な実施例参照して詳細に説明した。 しかし、本願発明は、以上で説明した実施例や構成に限定されるものではない。 そして、 本願発明は、 様々な変形や均等な構成を含むものである。 さらに、 開 示された発明の様々な要素は、 様々な組み合わせおよび構成で開示されたが、 それらは例示的な物であリ、各要素はより多くてもよく、また少なくてもよい。 そして、 要素は一つであってもよい。 それらの態様は本願発明の範囲に含まれ るものである。
産業上の利用可能性
この発明は、 燃料電池、 燃料電池システム、 燃料電池を動力源とする原動機、 燃料電池を利用した動力源を有する車両に適用可能である。

Claims

請求の範囲
1. 少なくとも一部に貴金属めつきが施された燃料電池用セパレータを製造す る方法であって、
(a) チタンまたはチタン合金で設けられ燃料電池のセパレー夕に用いられるチ タン部材の表面の少なくとも一部に炭化チタンを形成する工程と、
(b) 前記工程 (a) の後に、 前記炭化チタンの少なくとも一部に貴金属めつき を行う工程と、 を含む、 方法。
2. 請求項 1記載の方法であって、
前記工程 (a) は、
(a 1 ) 前記チタン部材として、 炭素を含む物質が表面に付着したチタン部材を 準備する工程と、
(a 2) 前記チタン部材に対して、 常温よりも高い所定の第〗の温度で第 1の加 熱処理を実行する工程とを含む、 方法。
3. 請求項 2記載の方法であって、
前記炭素を含む物質が表面に付着したチタン部材は、 前記チタン部材を圧延し た際に使用された圧延油が付着したチタン部材であり、
前記炭素を含む物質は前記圧延油である、 方法。
4. 請求項 2記載の方法であって、
前記第 1の温度は、 摂氏 300度〜 700度の範囲に含まれる温度である、 方 法。
5. 請求項 2記載の方法であって、
前記第 1の温度は、 摂氏 450度〜 550度の範囲に含まれる温度である、 方
6. 請求項 1記載の方法であって、 前記工程 (a ) の結果、 前記炭化チタンは前記チタン部材の前記表面の少なく とも一部に不均一な密度で形成される、 方法。
7 . 請求項 1記載の方法であって、
前記工程 (a ) は、
前記チタン部材の前記表面の少なくとも一部に含まれる第 1の場所におい て、 第 1の厚みで炭化チタンを形成し、
前記チタン部材の前記表面の少なくとも一部に含まれ前記第 1の場所とは 異なる第 2の場所において、 前記第 1の厚みとは異なる第 2の厚みで炭化チタン を形成する工程である、 方法。
8 . 請求項 1ないし 7のいずれかの請求項に記載の方法であって、 さらに、 ( c ) 前記貴金属.めっきしたチタン部材に対して、 常温よりも高い所定の第 2の 温度で第 2の加熱処理を実行する工程を含む、 方法。
9 . 請求項 8記載の方法であって、
前記第 2の温度は、 摂氏 2 2 0度〜 4 0 0度の範囲に含まれる温度である、 方
PCT/JP2007/058230 2006-04-14 2007-04-10 チタン製の部材に対して行う貴金属めっき WO2007119842A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2646189A CA2646189C (en) 2006-04-14 2007-04-10 Noble metal plating of titanium components
JP2008511015A JP5088318B2 (ja) 2006-04-14 2007-04-10 チタン製の部材に対して行う貴金属めっき
DE112007000680T DE112007000680B8 (de) 2006-04-14 2007-04-10 Edelmetallplattierung von Titankomponenten
US12/282,003 US8211495B2 (en) 2006-04-14 2007-04-10 Noble metal plating of titanium components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-111514 2006-04-14
JP2006111514 2006-04-14

Publications (1)

Publication Number Publication Date
WO2007119842A1 true WO2007119842A1 (ja) 2007-10-25

Family

ID=38609601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058230 WO2007119842A1 (ja) 2006-04-14 2007-04-10 チタン製の部材に対して行う貴金属めっき

Country Status (6)

Country Link
US (1) US8211495B2 (ja)
JP (1) JP5088318B2 (ja)
CN (1) CN101421875A (ja)
CA (1) CA2646189C (ja)
DE (1) DE112007000680B8 (ja)
WO (1) WO2007119842A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123528A (ja) * 2007-11-15 2009-06-04 Kobe Steel Ltd 燃料電池セパレータ用チタン基材およびこれを用いた燃料電池セパレータの製造方法
JP2009289511A (ja) * 2008-05-28 2009-12-10 Kobe Steel Ltd 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
WO2010119313A1 (en) * 2009-04-15 2010-10-21 Toyota Jidosha Kabushiki Kaisha Titanium-based material, method of manufacturing titanium-based material and fuel cell separator
WO2011016465A1 (ja) * 2009-08-03 2011-02-10 新日本製鐵株式会社 固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP2012028046A (ja) * 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータ
WO2014156673A1 (ja) * 2013-03-27 2014-10-02 株式会社神戸製鋼所 燃料電池セパレータ用チタン板材およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118553A1 (en) * 2002-12-23 2004-06-24 Graftech, Inc. Flexible graphite thermal management devices
CN102051647A (zh) * 2010-12-29 2011-05-11 东莞市泰赛特汽车用品科技有限公司 钛及钛合金的无氰无镍水电镀工艺
JP5108976B2 (ja) * 2011-02-14 2012-12-26 株式会社神戸製鋼所 燃料電池セパレータ
JP2013174261A (ja) * 2012-02-23 2013-09-05 Advics Co Ltd ディスクロータ
KR101861032B1 (ko) * 2014-01-22 2018-05-24 신닛테츠스미킨 카부시키카이샤 표면의 도전성을 갖는 티타늄재 또는 티타늄 합금재, 이것을 사용한 연료 전지 세퍼레이터와 연료 전지
CN107825086A (zh) * 2016-04-29 2018-03-23 成都九十度工业产品设计有限公司 一种贵金属物品的加工方法
CN108888805B (zh) * 2018-06-15 2021-04-23 烯旺新材料科技股份有限公司 基于石墨烯的植入体及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353532A (ja) * 1999-06-11 2000-12-19 Daihatsu Motor Co Ltd 金属体の表面処理方法、および燃料電池に用いられるプレートの表面処理方法
JP2002012962A (ja) * 2000-02-23 2002-01-15 Nippon Steel Corp 大気環境中において変色を生じにくいチタンおよびその製造方法
JP2002060984A (ja) * 2000-08-18 2002-02-28 Sumitomo Metal Ind Ltd チタン冷延板の製造方法
JP2003105564A (ja) * 2001-09-26 2003-04-09 Daido Steel Co Ltd 耐食性金属部材の製造方法及び耐食性金属部材
JP2003105523A (ja) * 2001-09-27 2003-04-09 Daido Steel Co Ltd 耐食性金属部材の製造方法及び耐食性金属部材
JP2003236604A (ja) * 2002-02-19 2003-08-26 Sumitomo Metal Ind Ltd チタン材の製造方法と潤滑剤
JP2003338296A (ja) * 2002-03-15 2003-11-28 Nippon Light Metal Co Ltd 燃料電池部材及びその製造方法
JP2004031166A (ja) * 2002-06-26 2004-01-29 Kansai Paint Co Ltd 燃料電池金属セパレーター用電着塗料組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2893115A (en) * 1957-06-28 1959-07-07 Chicago Dev Corp Method of coating and working metal
JPH0715156B2 (ja) 1986-10-13 1995-02-22 日本化学産業株式会社 チタン及びチタン合金上のめつき方法
JPH0243354A (ja) * 1988-07-30 1990-02-13 Kobe Steel Ltd Ti板及びその製造方法
JP3020673B2 (ja) 1991-08-21 2000-03-15 同和鉱業株式会社 チタン合金素材のめっき前処理法
JP3854682B2 (ja) 1997-02-13 2006-12-06 アイシン高丘株式会社 燃料電池用セパレータ
CA2373344C (en) * 2001-02-28 2012-03-20 Daido Tokushuko Kabushiki Kaisha Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JP4274737B2 (ja) 2002-03-29 2009-06-10 本田技研工業株式会社 燃料電池用金属製セパレータおよびその製造方法
JP4062132B2 (ja) 2003-03-11 2008-03-19 住友金属工業株式会社 燃料電池セパレータ用チタン系材料とその製造方法
JP4494155B2 (ja) 2004-09-29 2010-06-30 日本高純度化学株式会社 金めっき構造体およびこの金めっき構造体からなる燃料電池用セパレーター
JP2006111514A (ja) 2004-10-14 2006-04-27 Yonezou Hidetani 活性炭の連続生産システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353532A (ja) * 1999-06-11 2000-12-19 Daihatsu Motor Co Ltd 金属体の表面処理方法、および燃料電池に用いられるプレートの表面処理方法
JP2002012962A (ja) * 2000-02-23 2002-01-15 Nippon Steel Corp 大気環境中において変色を生じにくいチタンおよびその製造方法
JP2002060984A (ja) * 2000-08-18 2002-02-28 Sumitomo Metal Ind Ltd チタン冷延板の製造方法
JP2003105564A (ja) * 2001-09-26 2003-04-09 Daido Steel Co Ltd 耐食性金属部材の製造方法及び耐食性金属部材
JP2003105523A (ja) * 2001-09-27 2003-04-09 Daido Steel Co Ltd 耐食性金属部材の製造方法及び耐食性金属部材
JP2003236604A (ja) * 2002-02-19 2003-08-26 Sumitomo Metal Ind Ltd チタン材の製造方法と潤滑剤
JP2003338296A (ja) * 2002-03-15 2003-11-28 Nippon Light Metal Co Ltd 燃料電池部材及びその製造方法
JP2004031166A (ja) * 2002-06-26 2004-01-29 Kansai Paint Co Ltd 燃料電池金属セパレーター用電着塗料組成物

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123528A (ja) * 2007-11-15 2009-06-04 Kobe Steel Ltd 燃料電池セパレータ用チタン基材およびこれを用いた燃料電池セパレータの製造方法
JP2009289511A (ja) * 2008-05-28 2009-12-10 Kobe Steel Ltd 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
WO2010119313A1 (en) * 2009-04-15 2010-10-21 Toyota Jidosha Kabushiki Kaisha Titanium-based material, method of manufacturing titanium-based material and fuel cell separator
JP2010248570A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp チタン系材料及び燃料電池用セパレータ
US20120088185A1 (en) * 2009-04-15 2012-04-12 Kuroudo Maeda Titanium-based material, method of manufacturing titanium-based material, and fuel cell separator
US8586262B2 (en) 2009-04-15 2013-11-19 Toyota Jidosha Kabushiki Kaisha Titanium-based material, method of manufacturing titanium-based material, and fuel cell separator
DE112010001642B4 (de) * 2009-04-15 2019-05-02 Toyota Jidosha Kabushiki Kaisha Verfahren zum herstellen eines materials auf titanbasis
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
WO2011016465A1 (ja) * 2009-08-03 2011-02-10 新日本製鐵株式会社 固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP4837798B2 (ja) * 2009-08-03 2011-12-14 新日本製鐵株式会社 固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP2012028046A (ja) * 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータ
JP2014192039A (ja) * 2013-03-27 2014-10-06 Kobe Steel Ltd 燃料電池セパレータ用チタン板材およびその製造方法
RU2633173C2 (ru) * 2013-03-27 2017-10-11 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Материал титанового листа для сепараторов топливных элементов и способ его получения
WO2014156673A1 (ja) * 2013-03-27 2014-10-02 株式会社神戸製鋼所 燃料電池セパレータ用チタン板材およびその製造方法

Also Published As

Publication number Publication date
CA2646189A1 (en) 2007-10-25
JPWO2007119842A1 (ja) 2009-08-27
DE112007000680T5 (de) 2009-02-19
CN101421875A (zh) 2009-04-29
JP5088318B2 (ja) 2012-12-05
US8211495B2 (en) 2012-07-03
CA2646189C (en) 2011-07-26
DE112007000680B8 (de) 2013-10-31
US20090087558A1 (en) 2009-04-02
DE112007000680B4 (de) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2007119842A1 (ja) チタン製の部材に対して行う貴金属めっき
JP5280957B2 (ja) 導電部材及びその製造方法
CA2373344A1 (en) Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JPH0747826B2 (ja) チタニウム上にメッキする方法
JPWO2009139440A1 (ja) 摺動部材の製造方法、摺動部材及び摺動部材母材
JP5858698B2 (ja) 太陽電池用インターコネクタ材料、太陽電池用インターコネクタ、およびインターコネクタ付き太陽電池セル
KR101679545B1 (ko) 고체 고분자형 연료 전지의 세퍼레이터용 스테인리스박
WO2005017235A1 (ja) マグネシウム又はマグネシウム合金からなる製品及びその製造方法
US6913791B2 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
JP4928222B2 (ja) 燃料電池用セパレータの製造方法、燃料電池用セパレータおよび燃料電池
TW201133625A (en) Method for manufacturing semiconductor device
JP2009076322A (ja) フレキシブルフラットケーブルおよびその製造方法
US6932897B2 (en) Titanium-containing metals with adherent coatings and methods for producing same
US20150197870A1 (en) Method for Plating Fine Grain Copper Deposit on Metal Substrate
JP2003123782A (ja) 燃料電池用セパレータおよびその製造方法、ならびに燃料電池
JP4040008B2 (ja) 燃料電池用金属製セパレータおよびその製造方法
JP2013036118A (ja) 金属膜付きガラス材料および製造方法
JPH05191001A (ja) プリント配線用基板およびその製造方法
JPH1129894A (ja) 連続鋳造に用いる鋳型片のめっき方法
JP7144251B2 (ja) 水素発生用電極およびその製造方法
JP2021025086A (ja) コネクタ用端子材及びコネクタ用端子
JP2005302669A (ja) 燃料電池用アルミ製セパレータの製造方法
JP4616490B2 (ja) Cvt用プーリーへのめっき方法
CN112301395B (zh) 附有陶瓷与聚合物复合膜的镍钛合金的制备方法
JP4452489B2 (ja) 固体高分子型燃料電池セパレータの貴金属薄膜形成方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008511015

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12282003

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2646189

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780013446.6

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112007000680

Country of ref document: DE

Date of ref document: 20090219

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07741666

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)