WO2007116709A1 - プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物およびそれからなる成形体 - Google Patents

プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物およびそれからなる成形体 Download PDF

Info

Publication number
WO2007116709A1
WO2007116709A1 PCT/JP2007/056302 JP2007056302W WO2007116709A1 WO 2007116709 A1 WO2007116709 A1 WO 2007116709A1 JP 2007056302 W JP2007056302 W JP 2007056302W WO 2007116709 A1 WO2007116709 A1 WO 2007116709A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
polymerization
block copolymer
ethylene
random block
Prior art date
Application number
PCT/JP2007/056302
Other languages
English (en)
French (fr)
Inventor
Keita Itakura
Satoshi Hashizume
Kunihiko Takesue
Munehito Funaya
Original Assignee
Mitsui Chemicals, Inc.
Prime Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38581008&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007116709(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Chemicals, Inc., Prime Polymer Co., Ltd. filed Critical Mitsui Chemicals, Inc.
Priority to CN2007800115268A priority Critical patent/CN101410426B/zh
Priority to EP07739740.4A priority patent/EP2006314B2/en
Priority to US12/225,689 priority patent/US20090069523A1/en
Priority to JP2008509759A priority patent/JP5167120B2/ja
Publication of WO2007116709A1 publication Critical patent/WO2007116709A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition

Definitions

  • the present invention relates to a propylene random block copolymer, a polypropylene resin composition containing the copolymer, and a molded article comprising the same.
  • Polypropylene resin is generally used in a wide range of applications because it is excellent in chemical properties, physical properties and molding processability and has low cost.
  • a propylene random copolymer produced by copolymerizing propylene and ethylene using a Ziegler-Natta catalyst is excellent in transparency, lightness, flexibility, and heat resistance.
  • Films or sheets such as heat seal films and shrink films, injection molding applications such as clothes cases, food containers and medical containers, hollow molded products such as residential detergent containers, and injection stretch molding of beverage containers and seasoning containers It is used as a product. In recent years, replacement with other plastic materials against the backdrop of light weight and CO emissions
  • Japanese Patent Application Laid-Open No. 02-173016 discloses that a low-melting-point propylene random copolymer is applied to a low-temperature heat sealant. According to the method disclosed in the publication, it is possible to shorten the heat sealing process of various packages. However, according to the method of the publication, it is necessary to improve the film cooling process because the solidification rate at the time of film formation is slow, and in some food packaging, further low-temperature heat sealability may be required. . In Japanese Patent Application Laid-Open No.
  • a low-melting point propylene-based random copolymer is applied to a heat-shrinkable shrink label film.
  • the thermal shrinkage rate is increased, but there is a problem that the rigidity of the film is lowered.
  • Japanese Patent Application Laid-Open No. 06-192332 discloses application of a meta-mouth cene catalyst-based propylene random copolymer to an injection molded product. According to the method disclosed in the publication, it is possible to obtain an injection-molded article having excellent rigidity and transparency, but there is a problem that it is inferior in impact resistance.
  • Propylene-based random block copolymer for preparing a copolymer elastomer of propylene and ethylene by preparing a copolymer of propylene and ethylene and producing a copolymer elastomer of propylene and ethylene having a higher ethylene content than in the first step in the second step and a method for producing the same Is disclosed.
  • the propylene-based random block copolymer disclosed in the above publication has a low molecular weight, a high rigidity, a blocking property, etc., produced in the second step depending on the catalyst performance. While maintaining the properties of propylene random block copolymers with excellent properties, it was difficult to impart physical properties such as impact resistance and tear strength.
  • Patent Document 1 Japanese Patent Laid-Open No. 02-173016
  • Patent Document 2 JP 2002-249167 A
  • Patent Document 3 Japanese Patent Laid-Open No. 06-192332
  • Patent Document 4 Japanese Translation of Special Publication 2005-529227
  • Patent Document 5 Japanese Patent Laid-Open No. 2005-132979
  • the present invention relates to a propylene-based random block copolymer in which the above-mentioned problems are solved or a resin composition containing the copolymer, and particularly for sealants for packages such as foods.
  • a film, a sheet and a laminate suitably used as a packaging material
  • injection molded articles, hollow molded articles, injection blow molded articles, food containers and medical instruments that are suitably used for food containers that require heat resistance, transparency, and impact resistance.
  • An object of the present invention is to provide a molded body such as, and a fiber.
  • the propylene random block copolymer (A) of the present invention is a propylene block copolymer having a melt flow rate of 0.1 to lOOg / 10 min and a melting point of 100 to 155 ° C.
  • n-decane insoluble part (D) 90-60 wt% and room temperature n-decane soluble part (D
  • the D satisfies the requirements (1) to (3), and the D
  • MwZMn The molecular weight distribution (MwZMn) calculated from GPC of D is 1.0 to 3.5.
  • the propylene-based resinous yarn composition of the present invention contains the propylene-based random block copolymer (A).
  • the propylene-based block copolymer is desirably polymerized with a meta-octane catalyst system.
  • the sheet, film, injection molded body, hollow molded body, injection blow molded body of the present invention, and molded bodies and fibers such as food containers and medical devices are the same for the propylene random block. It consists of a polymer (A) or a propylene-based resin composition.
  • the propylene random block copolymer (A) of the present invention and the resin composition containing the copolymer only the low temperature heat sealability, the low temperature impact resistance, and the heat shrinkability are excellent.
  • a film or sheet excellent in film forming property can be obtained, and can be suitably used for a film for sealant, a shrink film, a shrink label and the like.
  • FIG. 1 is a graph showing an example of heat seal temperature and heat seal strength of a film formed using (A-2), which is an example of the propylene random block copolymer of the present invention. It is.
  • Figure 1 shows the heat seal of a film formed using a propylene random copolymer (R-1) and a film formed using a propylene-ethylene block copolymer (R-2). The relationship between temperature and heat seal strength is also shown.
  • the propylene random block copolymer (A) of the present invention is preferably in the presence of a meta-octane catalyst system,
  • Propylene and ethylene are copolymerized in the first polymerization step to produce a propylene block copolymer, propylene 'ethylene random copolymer, and then the second polymerization step produces propylene-ethylene random copolymer rubber. Is obtained.
  • the propylene random block copolymer (A) has a melt flow rate of 0.1 to: LOOg / 10 min, a melting point of 100 to 155 ° C, and is produced in the first polymerization step.
  • the propylene-based block copolymer is desirably obtained by polymerization in a meta-octane catalyst system.
  • the D is
  • the molecular weight distribution (MwZMn) determined from GPC of the portion (D) insoluble in room temperature n-decane of the propylene random block copolymer (A) of the present invention is 1.0 to 3.5, preferably 1.5.
  • MwZMn molecular weight distribution
  • MwZMn molecular weight distribution obtained for the GPC force of the insoluble portion (D) in room temperature n-decane contained in the propylene random block copolymer (A) of the present invention is as described above. This can be narrowed because a metallocene catalyst system is used as the catalyst. If MwZMn is greater than 3.5, low molecular weight components increase, resulting in film bleedout and reduced transparency after heat treatment. On the other hand, if MwZMn is greater than 3.5, the transparency of the injection molded product, injection stretch molded product, hollow molded product, etc. decreases after heat sterilization.
  • the content of skeletons derived from ethylene in the D is less than 0.5 mole 0/0, the propylene random block copolymer melting point (Tm) increases in (A), transparency in various molded products As the temperature decreases, the low temperature heat sealability deteriorates.
  • the content of the skeleton derived from ethylene in D is more than 13 mol%.
  • the amount is too large, the melting point of the propylene random block copolymer (A) becomes low, resulting in problems such as a decrease in film-forming properties and a decrease in rigidity at high temperatures in various molded products.
  • the molecular weight distribution (Mw / Mn) determined from GPC of the room temperature n-decane soluble part (D) of the propylene random block copolymer (A) of the present invention is 1.0 to 3.5, preferably 1. .2-3. 0 sol
  • the molecule (D) of the propylene random block copolymer (A) of the present invention soluble in room temperature n-decane (D) is a molecule determined from GPC.
  • Mw / Mn The reason why the quantity distribution (Mw / Mn) can be narrowed as described above is also due to the use of a meta-octacene catalyst system as a catalyst. And if Mw / Mn is greater than 3.5, D will contain low molecular weight propylene.
  • n-decane soluble part (D) of the propylene random block copolymer (A) of the present invention is 1.5-4 dlZg, preferably 1. 5dl sol
  • a propylene-based random block copolymer having an intrinsic viscosity [r?] Exceeding 1.5 dlZg can be obtained by using a catalyst other than the meta-octane catalyst system suitably used in the present invention. It is extremely difficult to produce the polymer (A), and in particular, it is almost impossible to produce the propylene random block copolymer (A) having an intrinsic viscosity [r?] Of 1.8 dl / g or more. . In addition, the intrinsic viscosity D of 135 ° C
  • the content is less than 15 mole 0/0, the impact resistance of the propylene random block copolymer is deteriorated.
  • the content of skeleton derived from ethylene in D is less than 35 mol%.
  • the transparency of the injection-molded product is lowered and, at the same time, the impact resistance of the injection-molded product is lowered.
  • the propylene random block copolymer (A) of the present invention is preferably a propylene composed of propylene and a small amount of ethylene in the first polymerization step ([Step 1]) in the presence of a metalocene catalyst.
  • meta-octacene catalyst preferably used in the present invention, a meta-orthocene compound, and further, an ion pair is formed by reacting with an organometallic compound, an organoaluminum compound and a meta-orthocene compound.
  • a compound power capable of being a meta-octacene catalyst comprising at least one selected compound and, if necessary, a particulate carrier, preferably a stereoregular polymerization such as an isotactic or syndiotactic structure.
  • a meta-catacene catalyst that can be used.
  • the following cross-linkable meta-mouth compounds illustrated in an international application (WO01 / 27124 pamphlet) by the present applicant are preferably used.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 10 , R U , R 12 , R 13 , R 14 are selected from a hydrogen atom, a hydrocarbon group, and a silicon-containing group. These may be the same or different.
  • Such hydrocarbon groups include methyl, ethyl, n-propyl, aryl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n Linear hydrocarbon groups such as -nor group and n-de- group; isopropyl group, tert-butyl group, amyl group, 3-methylpentyl group, 1,1-jetylpropyl group, 1 , 1-dimethylbutyl group, 1-methyl-1-propylbutyl group, 1,1-propylbutyl group, 1,1-dimethyl-2-methylpropyl group, 1-methyl-1-isopropyl-2-methylpropyl A branched hydrocarbon group such as a group; a cyclic saturated hydrocarbon group such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooc
  • Examples of the group containing a cage include a trimethylsilyl group, a triethylsilyl group, a dimethylphenylsilyl group, and a diphenyl group. Examples thereof include a rumethylsilyl group and a triphenylsilyl group.
  • substituents R 5 to R 12 may be bonded to adjacent substituents to form a ring.
  • substituted fluorenyl groups include benzofluorenyl, dibenzofluoryl, octahydrodibenzofluoryl, otamethyloctahydrodibenzofluoryl, otamethyltetrahydrodicyclo And pentafluorenyl group.
  • R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group having 1 to 20 carbon atoms include the aforementioned hydrocarbon groups. More preferably, R 3 is a hydrocarbon group having 1 to 20 carbon atoms.
  • R 5 to R 12 substituted on the fluorene ring are preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms include the hydrocarbon groups listed above.
  • adjacent substituents may be bonded to each other to form a ring.
  • Y that bridges the cyclopentagenyl ring and the fluorenyl ring is preferably a group 14 element of the periodic table, more preferably carbon, silicon, germanium. More preferably a carbon atom.
  • R 13 and R 14 substituted for Y are preferably hydrocarbon groups having 1 to 20 carbon atoms. These may be the same or different from each other and may be bonded to each other to form a ring. Examples of the hydrocarbon group having 1 to 20 carbon atoms include the hydrocarbon groups listed above. More preferably, R 14 is an aryl group having 6 to 20 carbon atoms.
  • aryl group examples include the above-mentioned cyclic unsaturated hydrocarbon group, a saturated hydrocarbon group substituted with a cyclic unsaturated hydrocarbon group, and a heteroatom-containing cyclic unsaturated hydrocarbon group.
  • R 13 and R 14 may be the same or different and may be bonded to each other to form a ring.
  • a fluorenylidene group, a 10-hydroanthracerylidene group, a dibenzocycloheptadagelidene group and the like are preferable.
  • the meta-orthocene compound represented by the general formula [I] is: A substituent selected from R 5 and R 12 and R 13 or R 14 of the bridge part may be bonded to each other to form a ring.
  • M is preferably a Group 4 transition metal of the periodic table, more preferably There are Ti, Zr and HfC.
  • Q is selected from a halogen atom, a hydrocarbon group, a lone ligand, or a neutral ligand capable of coordinating with a lone pair in the same or different combination.
  • j is an integer of 1 to 4, and when j is 2 or more, Qs may be the same or different from each other.
  • Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • specific examples of the hydrocarbon group include those similar to the above.
  • anion ligand examples include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate.
  • neutral ligands examples include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, jetyl ether, And ethers such as dioxane and 1,2-dimethoxyethane.
  • Q is preferably at least one halogen atom or alkyl group! /.
  • Examples of such a bridged meta-cene compound include diphenylmethylene (3-tert-butyl-5-methyl-cyclopentagel) (fluorene) zirconium dichloride, diphenylmethylene (3- tert-butyl-5-methyl-cyclopentagel) (2,7-di tert-butylfluoryl) zirconium dichloride, diphenylmethylene (3-tert-butyl-5-methyl-cyclopentagenyl) (3,6 -Di-tert-butylfluoryl) zirconium dichloride, (methyl) (phenyl) methylene (3-tert-butyl-5-methyl-cyclopentagel) (otatamethyloctahydride oral benzofluorenyl) zirconium dichloride , [3- (1 ', 1', 4 ', 4', 7 ', 7', 10 ', 10, -Otamethyloctahydrodibenzo
  • an organometallic compound, an organoaluminum compound, and a transition metal compound used together with the Group 4 transition metal compound represented by the general formula [I] At least one compound selected from the compounds that react with each other to form an ion pair, and further, the particulate carrier force used as necessary.
  • the above-mentioned publication WO01 / No. 27124 pamphlet
  • the compound disclosed in JP-A-11-315109 can be used without limitation with the compound disclosed in JP-A-11-315109.
  • the propylene random block copolymer (A) in the present invention uses a polymerization apparatus in which two or more reaction apparatuses are connected in series, and uses the following two steps ([Step 1] and [Step 2]). ) Can be obtained continuously.
  • propylene and ethylene are copolymerized at a polymerization temperature of 0 to 100 ° C. and a polymerization pressure of normal pressure to 5 MPa gauge pressure.
  • the propylene-based random copolymer produced in [Step 1] can be obtained by reducing the amount of ethylene feed relative to propylene.
  • [Step 2] propylene and ethylene are copolymerized at a polymerization temperature of 0 to 100 ° C. and a polymerization pressure of normal pressure to 5 MPa gauge pressure.
  • the propylene-ethylene copolymer rubber produced in [Step 2] becomes the main component of D by increasing the amount of ethylene fed to propylene than in [Step 1]. To do.
  • the satisfactory physical properties of the propylene random block copolymer (A) of the present invention are often determined by the chemical structure of the metalocene catalyst used. Specifically, the molecular weight distribution (MwZMn) obtained from GPC of requirement (1) D,
  • the amount distribution (MwZMn) and the melting point of the propylene-based random block copolymer (A) are mainly determined by appropriately selecting the metalocene catalyst used in [Step 1] and [Step 2]. Adjustments can be made to meet the requirements of the present invention.
  • the metalocene catalyst preferably used is as described above.
  • the intrinsic viscosity [135] in 135 ° C decalin can be adjusted by the feed amount of a molecular weight regulator such as hydrogen in [Step 2].
  • a molecular weight regulator such as hydrogen in [Step 2].
  • the content of the skeleton derived from sol ethylene can be adjusted by the amount of ethylene feed in [Step 2]. Furthermore, by adjusting the amount ratio of the polymer produced in [Step 1] and [Step 2], the composition ratio of D and D, and the propylene
  • the melt flow rate of the random block copolymer (A) can be adjusted appropriately.
  • the propylene random block copolymer (A) of the present invention is produced by the propylene ethylene random copolymer produced in [Step 1] of the above method and [Step 2] of the above method.
  • Propylene-ethylene random copolymer rubbers may be produced separately in the presence of a meta-octacene compound-containing catalyst and then blended using these physical means.
  • the propylene random block copolymer (A) of the present invention is added with elastomer (B) for the purpose of imparting properties such as impact resistance, heat sealability, transparency, dimensional stability and flexibility. You can do it.
  • elastomer (B) ethylene a-olefin random copolymer (Ba), ethyl acetate ' ⁇ -olefin' nonconjugated polyene random copolymer (Bb), hydrogenated block copolymer (Bc), propylene.
  • B—d ethylene a-olefin random copolymer
  • Bb ethyl acetate ' ⁇ -olefin' nonconjugated polyene random copolymer
  • Bc hydrogenated block copolymer
  • propylene propylene.
  • A-olefin copolymer (B—d) other elastic polymers, and mixtures thereof Etc.
  • the content of the elastomer (B) in the propylene-based resin composition containing the propylene-based random block copolymer (A) and the elastomer (B) varies depending on the properties to be imparted. ⁇ 50 wt%, preferably 3-30 wt%, more preferably 5-25 wt%
  • the ethylene 'a -olefin random copolymer rubber (B-a) is a random copolymer rubber of ethylene and ⁇ -olefin having 3 to 20 carbon atoms.
  • the structural unit derived from Z 2 -olefin is usually 95Z5-15Z85, preferably 80Z20-25Z75.
  • the MFR measured at 230 ° C and a load of 2.16 kg for this ethylene ' ⁇ -olefin random copolymer ( ⁇ -a) is usually at least 0.1 lg / 10 minutes, preferably 0.5-30 g. / Within 10 minutes.
  • the ethylene ' ⁇ -olefin' nonconjugated polyene random copolymer (Bb) is a random copolymer rubber of ethylene, ⁇ -olefin having 3 to 20 carbon atoms, and nonconjugated polyene. Examples of the ⁇ -olefin having 3 to 20 carbon atoms are the same as those described above.
  • Non-conjugated polyethylenes include: 5-ethylidene-2-norbornene, 5-propylidene-5-norbornene, dicyclopentagen, 5-but-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2 -Non-cyclic gens such as norbornene and norbornagen; 1,4-hexagen, 4-methyl-1,4-hexagen, 5-methyl-1,4-hexagen, 5-methyl-1,4-hexagen, 5-methyl-1,5-heptadiene , 6-methyl-1,5-hexabutadiene, 6-methyl-1,7-octadiene, 7-methyl-1,6-octagen and other chain non-conjugated gens; 2,3-diisopropylidene-5 -Triborns such as norbornene.
  • Lien random copolymer (Bb) is 94.9 to 0 structural units of ethylene force is also induced usually 1 mole 0/0, preferably 89.5 to 40 mole 0 / 0 , a structure derived from ⁇ -olefin Is the unit usually 5 to 45 mol 0/0, preferably from 10 to 40 mol%, the non-conjugated Poryen or we derived a structural unit usually from 0.1 to 25 mole 0/0, preferably 0.
  • the total of the structural unit derived from ethylene force, the structural unit derived from ⁇ -olefin precursor, and the structural unit derived from non-conjugated polyoler is 100 mol%.
  • Ethylene. ⁇ -Olefin 'non-conjugated polyene random copolymer (Bb) Measured at 230 ° C, load 2. 16kg MFR is usually 0. O5g / 10 min or more, preferably 0.1 to 30g / Within 10 minutes.
  • Specific examples of the ethylene ' ⁇ -olefin' nonconjugated polyene random copolymer (BB) include ethylene 'propylene' gen terpolymer (EPDM).
  • the hydrogenated block copolymer (Bc) is a hydrogenated block copolymer having a block form represented by the following formula (a) or (b), and the hydrogenation rate is usually 90 mol. %, Preferably 95 mol% or more of a hydrogenated block copolymer.
  • Examples of the monobu substituted aromatic hydrocarbon constituting the polymerization block represented by X in the formula (a) or the formula (b) include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, chlorostyrene, Examples thereof include styrene such as lower alkyl-substituted styrene and urnaphthalene or derivatives thereof. These can be used alone or in combination of two or more.
  • Examples of the conjugated gen constituting the polymer block represented by Y in the formula (a) or (b) include butadiene, isoprene, and black-opened plane. These can be used individually by 1 type, and can also be used in combination of 2 or more types.
  • n is usually an integer of 1 to 5, preferably 1 or 2.
  • hydrogenated block copolymer (Bc) include styrene 'ethylene' butene 'styrene block copolymer (SEBS), styrene' ethylene 'propylene / styrene block copolymer (SEPS) and styrene'. Examples thereof include styrenic block copolymers such as ethylene'propylene block copolymer (SEP).
  • SEBS styrene 'ethylene' butene 'styrene block copolymer
  • SEPS styrene' ethylene 'propylene / styrene block copolymer
  • SEP styrenic block copolymers
  • the block copolymer before hydrogenation is prepared by, for example, performing block copolymerization in an inert solvent in the presence of a lithium catalyst or a Ziegler catalyst. It can be
  • a detailed production method is described in, for example, Japanese Patent Publication No. 40-23798.
  • the hydrogenation treatment can be performed in an inert solvent in the presence of a known hydrogenation catalyst.
  • a known hydrogenation catalyst Detailed methods are described in, for example, Japanese Patent Publication Nos. 42-8704, 43-6636 and 46-20814.
  • the proportion of 1,2-bond in the polybutadiene block is usually 20 to 80% by weight, preferably 30 to 60% by weight.
  • a commercially available product can be used as the hydrogenated block copolymer (Bc).
  • Propylene 'a-olefin copolymer rubber is a random copolymer rubber of propylene and ⁇ -olefin having 4 to 20 carbon atoms.
  • the molar ratio of the structural unit derived from propylene force to the structural unit derived from ⁇ -olefin fin (the structural unit derived from propylene carbonate Z a
  • the structural unit derived from -olefin is usually 95Z5-5Z95, preferably 80Z15-20Z80.
  • propylene ′ ⁇ -olefin finned random copolymer rubber (Bd) two or more kinds of ⁇ -olefin may be used, and one of them may be ethylene.
  • Propylene ' ⁇ -olefin random copolymer rubber ( ⁇ -d) has an MFR measured at 230 ° C and a load of 2.16 kg is usually at least 0.1 lg / 10 minutes, preferably 0.5 to 3 Og / 10 Within minutes.
  • the elastomer (B) can be used alone or in combination of two or more.
  • the above elastomer (B) is a propylene block random copolymer.
  • the amount is usually 0 to 50 parts by weight, preferably 1 to 50 parts by weight per 100 parts by weight.
  • the propylene random block copolymer (A) of the present invention is provided with an elastomer (B) for the purpose of imparting functions such as impact resistance, heat sealability, transparency, dimensional stability, and high-speed extrusion sheet formability.
  • elastomer (B) for the purpose of imparting functions such as impact resistance, heat sealability, transparency, dimensional stability, and high-speed extrusion sheet formability.
  • polyethylene resin (C) may be added.
  • a density of 0.900 produced by copolymerizing ethylene and C4 or higher a-olefin in the presence of a metalocene catalyst. -0. It is preferable to add 930kg / m 3 linear low density polyethylene! /.
  • the high-pressure polyethylene is a polyethylene having a long chain branch obtained by radical polymerization of ethylene in the presence of peroxide at a pressure of 100 kg / cm 2 or more.
  • melt flow rate AS TMD1238, 190. C, measured at 2.16 kg
  • the density is usually 0. 900 ⁇ 0. 940g / cm 3 , in preferred ⁇ or 0.910 to 0.
  • the content of polyethylene resin (C) in the propylene-based resin composition containing propylene-based random block copolymer (A) and polyethylene resin (C) varies depending on the properties to be imparted. However, it is usually in the range of 0 to 50% by weight, preferably 1 to 50 parts by weight, particularly preferably 3 to 30% by weight, more preferably 5 to 25% by weight. Polyethylene resin (C) can be used alone or in combination of two or more. However, in the propylene-based resin composition of the present invention, the above-mentioned elastomer (B) and the polyethylene resin (C) do not simultaneously become 0 parts by weight.
  • the propylene-based random block copolymer (A) The amount depends on the properties imparted and is usually in the range of 50 to 99% by weight, preferably 70 to 97% by weight, more preferably 75 to 95% by weight.
  • the total amount of elastomer (B) and polyethylene resin (C) is usually 1 to 50% by weight, preferably 3 to 30% by weight, based on 100 parts by weight of the propylene-based block random copolymer (A). , more preferably from 5 to 25 polymerizable 0/0.
  • the ratio of elastomer to polyethylene can be adjusted arbitrarily according to the purpose.
  • the propylene random block copolymer (A) or polypropylene type of the present invention may be added with a crystal nucleating agent (D) as necessary for improving transparency, heat resistance, moldability, and the like. Also good.
  • crystal nucleating agent (D) used in the present invention examples include sorbitol compounds such as dibenzylidene sorbitol, organophosphate compounds, rosinate compounds, C4 to C12 aliphatic dicarboxylic acids and The metal salt etc. can be mentioned.
  • organophosphate compounds are preferred.
  • the organic phosphate ester compound is a compound represented by the following general formula [III] and Z or [IV].
  • R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 and R 3 are hydrogen atoms or carbon atoms 1 Is a hydrocarbon group of ⁇ 10
  • R 2 and R 3 may be the same or different
  • M is a 1 to 3 valent metal atom
  • n is an integer of 1 to 3
  • M is 1 or 2.
  • organic phosphate ester compound represented by the general formula [III] include sodium -2, 2 methylene-bis (4,6-di-t-butylphenol) phosphate, sodium-2,2'-ethylidene-bis (4,6-di-1-butylphenol) phosphate Lithium-2,2 methylene-bis (4,6-di-t-butylphenyl) phosphate, Lithium-2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphate , Sodium-2,2'-ethylidene-bis (4-topropyl-6-t-butylphenyl) phosphate, lithium-2,2methylene-bis (4-methyl-6-t-butylphenol) Phosphate, lithium-2,2'-methylene-bis (4-ethyl-6-tert-butylphenol) phosphate, sodium-2,2 butylidene-bis (4,
  • a hydroxyaluminum phosphate compound represented by the general formula [IV] can also be used, in particular, R 2 and R 3 are both tert-butyl groups.
  • a compound represented by [V] is preferred.
  • R 1 is a divalent hydrocarbon group having 1 to 10 carbon atoms, and m is 1 or 2.
  • Particularly preferred organophosphate compounds are compounds represented by the general formula [VI].
  • R 1 is a methylene group or an ethylidene group.
  • hydroxyaluminum-bis [2,2-methylene-bis (4,6-di-t-butyl) phosphate]
  • hydroxyaluminum-bis [2,2-ethylidene-bis (4, 6-di-t-butyl) phosphate].
  • Specific examples of the sorbitol compound include 1,3,2,4-dibenzylidene sorbitol, 1,3-benzylidene-2,4-p-methylbenzylidene sorbitol, 1,3-benzylidene-2.
  • 1,3,2,4-dibenzylidene sorbitol 1,3,2,4-di (p-methylbenzylidene) sorbitol or 1,3-p-chlorobenzylidene-2,4-p-methylbenzylidene Sorbitol is preferred.
  • C4-C12 aliphatic dicarboxylic acids and metal salts thereof that can be used as the crystal nucleating agent (D) in the present invention include succinic acid, dartaric acid, adipic acid, suberic acid, and sebacic acid. And Li salt, Na salt, Mg salt, Ca salt, Ba salt, A1 salt and the like.
  • aromatic carboxylic acids and metal salts thereof that can be used as the crystal nucleating agent (D) in the present invention include benzoic acid, allyl-substituted acetic acid, aromatic dicarboxylic acids, and groups 1 to 3 of these periodic tables.
  • benzoic acid P-isopropylbenzoic acid, 0-tertiary butyl benzoic acid, P-tertiary butyl benzoic acid, monofluoroacetic acid, diphenylacetic acid, phenol -Didimethylacetic acid, phthalic acid, and their Li salts, Na salts, Mg salts, Ca salts, Ba salts, A1 salts, and the like.
  • the crystal nucleating agent (D) used in the present invention is usually 0 to 100 parts by weight of the propylene-based random block copolymer (A) or a propylene-based resin composition containing the copolymer. It is added in a proportion of 05 to 0.5 parts by weight, preferably 0.1 to 0.3 parts by weight.
  • propylene-based resin (P) may be added to the propylene-based random block copolymer (A) of the present invention or a propylene-based resin composition containing the polymer. .
  • the propylene-based resin (P) used herein is different from the propylene-based random block copolymer (A) of the present invention in a propylene homopolymer, propylene 'ethylene copolymer, propylene' ⁇ -olefin copolymer.
  • ⁇ -olefins can be olefins with 4 carbon atoms and 20 carbon atoms.
  • the propylene-based random block copolymer ( ⁇ ) or the propylene-based resin composition containing the copolymer of the present invention is a vitamins, if necessary, as long as the object of the present invention is not impaired. It may contain additives such as antioxidants, heat stabilizers, weather stabilizers, slip agents, antiblocking agents, petroleum oils and mineral oils.
  • a propylene-butene random copolymer rubber and a butene-propylene random copolymer rubber have been added to impart low temperature heat sealability to the propylene-ethylene copolymer.
  • Propylene-based random block of the present invention The amount of these rubber components added can be reduced by the copolymer (ii), and the production cost of the sealant film product can be reduced.
  • the propylene random block copolymer ( ⁇ ) of the present invention has a low-temperature heat-sealability close to that of polyethylene and at the same time has higher rigidity than polyethylene, the propylene random block copolymer ( ⁇ ) can be used as a low-temperature sealant film. Can be made thinner.
  • the sealant has good film-forming properties, high rigidity, and low-temperature heat sealability. A film can be obtained.
  • the melting point of the propylene random block copolymer ( ⁇ ) is 100-155 ° C, preferably 110 ° C-150 ° C. It is preferably 115 ° C to 140 ° C.
  • the amount of soluble part (D) in room temperature n-decane is 100-155 ° C, preferably 110 ° C-150 ° C. It is preferably 115 ° C to 140 ° C.
  • the amount of soluble part (D) in room temperature n-decane is 100-155 ° C, preferably 110 ° C-150 ° C. It is preferably 115 ° C to 140 ° C.
  • a retort film having high transparency and good impact resistance can be obtained. Since retort film requires heat resistance during heat treatment, it has a melting point of 140-155 ° C, preferably 145 ° C-155 ° C among propylene random block copolymers (A).
  • a propylene random block copolymer is used.
  • the amount of the portion (D) soluble in room temperature n-decane is 10 to 40% by weight, preferably 20 to 30% by weight.
  • the propylene-based random block copolymer (A) of the present invention and a propylene-based resin composition containing the copolymer are mixed with a polypropylene single polymer having a melting point of 155 ° C or higher. It is desirable to add coalescence.
  • the melting point of the propylene random block copolymer (8) is 100 to 155 °, preferably 115 ° to 140 ° C., more preferably 120 ° to 135 ° C.
  • the amount of the portion soluble in room temperature n-decane (D) is 10-40% by weight
  • the propylene-based random block copolymer (A) of the present invention and the propylene-based resin composition containing the copolymer are moderately tacky and have few bleed components at high temperatures. It can be used as a substrate for a protective film or as a self-adhesive surface protective adhesive film.
  • the basic constitution of the surface pressure-sensitive adhesive film is based on the propylene-based random block copolymer of the present invention (A) using a propylene-based resin composition containing the copolymer as a base material, and if necessary The structure which provided the adhesive layer on the single side
  • the adhesive film for surface protection based on the propylene-based random block copolymer (A) of the present invention or a propylene-based resin composition containing the copolymer is required for use in re-peeling applications.
  • the adhesive strength will not increase and the re-peelability will not be impaired, so electronic devices such as mobile phones, portable game machines, display panels, etc. It can be suitably used for a surface protective adhesive film for precision instruments.
  • the melting point of the propylene random block copolymer (A) is 100 to 155 ° C, preferably 115 ° C to 155. ° C, more preferably 120 ° C to 155 ° C.
  • the amount of the portion (D) soluble in room temperature n-decane is usually 10 to 40% by weight, preferably 15 to 30% by weight.
  • the propylene random block copolymer (A) and the propylene resin composition containing the copolymer of the present invention can be used for various other films such as medical containers, food packaging, miscellaneous goods packaging, and sheets. it can.
  • the propylene-based random block copolymer (A) of the present invention and the propylene-based resin composition containing the copolymer are excellent in transparency, heat resistance, rigidity, and low-temperature impact resistance, a prefield syringe It can be suitably used for medical containers such as food containers, food containers such as ice cream containers, and injection-molded bodies such as clothes cases.
  • the melting point of the propylene random block copolymer (A) is 100 to 155 ° C, preferably 130 ° C to 155 ° C, more preferably 140 ° C to 155 ° C.
  • the amount of sol is 10 to 40% by weight, preferably 10 to 30% by weight, more preferably 10 to 20% by weight.
  • a polypropylene homopolymer having a melting point of 155 ° C or higher may be added for the purpose of further improving heat resistance.
  • the propylene-based random block copolymer (A) of the present invention and the propylene-based resin composition containing the copolymer are excellent in transparency, heat resistance and low-temperature impact resistance, beverage containers, seasonings It can be suitably used for an injection stretch molded product such as a material container.
  • the melting point of the propylene random block copolymer (A) is 100 to 155 ° C, preferably 110 ° C to 155 ° C, more preferably 120 ° C to 155 ° C.
  • the amount of the portion soluble in room temperature n-decane (D) is 10 to 40% by weight, preferably 10 to 30% by weight, more preferably.
  • a polypropylene homopolymer having a melting point of 155 ° C or higher may be added for the purpose of improving rigidity, and a modifier for improving the thickness uniformity may be added as necessary.
  • the propylene random block copolymer (A) of the present invention and the propylene-based resin composition containing the copolymer are excellent in high gloss, transparency, and low-temperature impact resistance. It can be suitably used for hollow molded articles such as product bottles.
  • the melting point of the propylene random block copolymer (A) is 100 to 155 ° C, preferably 110 ° C to 145 ° C, more preferably 120 ° C to 140 ° C.
  • the amount of the portion (D) soluble in room temperature n-decane is 10 to 40% by weight, preferably 10 to 30% by weight.
  • a modifier such as an ultrahigh molecular weight component-containing polypropylene polymer may be added as necessary.
  • the propylene-based random block copolymer (A) of the present invention and the propylene-based resin composition containing the copolymer have good flexibility and less stickiness. It can be used for non-woven fabric fibers.
  • the melting point of the propylene random block copolymer (A) is 100 to 155 ° C, preferably 110 ° C to 140 ° C, more preferably 115 to 130.
  • the amount of the portion (D) soluble in room temperature n-decane is 10 to 40% by weight, preferably 20 to 40% by weight.
  • the present invention will be described in detail based on examples, but the present invention is not limited to powerful examples.
  • the measuring method of the physical property in an Example and a comparative example is as follows.
  • the measurement was performed using a differential scanning calorimeter (DSC, manufactured by Perkin Elma).
  • DSC differential scanning calorimeter
  • Tm melting point
  • Lstep Increase the temperature to 240 ° C at 10 ° C / min and hold for lOmin.
  • Second step The temperature is decreased to 60 ° C at 10 ° C / min.
  • n-decane insoluble part D
  • n-decane soluble part amount (wt%) [precipitate (A) weight Z sample weight] X 100.
  • the separation columns are TSKgel GMH6—HT and TSKgel GMH6—HTL.
  • the column size is 7.5 mm inside diameter and 600 mm length, the column temperature is 140 ° C, and the mobile phase is o-dichlorobenzene (Wako Pure Chemical Industries). Yakuhin Kogyo Co., Ltd.) and BHT (Wako Pure Chemical Industries, Ltd.) 0.025% by weight as an acid inhibitor, moved in l.OmlZ, the sample concentration was 0.1% by weight, and the sample injection amount was A differential refractometer was used as a detector. Standard polystyrene has a molecular weight of Mw 1000 and Mw> 4 X 10 6 ! /, Manufactured by Tosoh Corporation, 1000 ⁇ Mw ⁇ 4 X 10 6 ! / Was used.
  • Measurement was performed at 135 ° C. using a decalin solvent. About 20 mg of the sample was dissolved in 15 ml of decalin, and the specific viscosity rj sp was measured in an oil bath at 135 ° C. After adding 5 ml of decalin solvent to this decalin solution for dilution, the specific viscosity of 7? Sp was measured in the same manner. This dilution operation was repeated two more times, and the value of 7? Sp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity.
  • the measurement was performed using a differential scanning calorimeter (DSC, manufactured by Seiko Instruments Inc.).
  • Lstep Increase the temperature to 220 ° C at 10 ° C / min and hold for 3 min.
  • Second step Decrease the temperature to 110 ° C at 60 ° C / min.
  • the film was sampled to a width of 5 mm, sealed with a sealing time of 1 second and a pressure of 0.2 MPa.
  • the figure shows a plot of the relationship between the upper temperature and heat seal strength by varying the upper temperature of the seal bar, pulling both ends of the film heat-sealed at 70 ° C at 300 mm / min, measuring the maximum peel strength, and Created. From this plot, heat seal strength is 1
  • the temperature at which N / 15 mm was developed was read and taken as the minimum heat seal temperature.
  • the Young's modulus of the stretched film was measured according to JIS K 6781.
  • the tensile speed is 20 Omm / min and the distance between chucks is 80 mm.
  • the film was sampled at 5cm x 5cm, and the impact strength was measured with an impact tester (a method of pushing the hammer from the bottom to the top) at a predetermined temperature (hammer conditions: tip 1 inch, 3. OJ).
  • the chill rolls of 10cm in the MD direction and 10cm in the TD direction are overlapped and held in a 50 ° C constant temperature bath under a load of 200g / cm 2 for 3 days. Then, after conditioning in a room at 23 ° C and 50% humidity for 24 hours or more, measure the peel strength when peeled at a pulling speed of 200 mm / min, and divide the peel strength by the specimen width. It was set as the blocking coefficient. Here, the greater the blocking coefficient, the greater the tackiness.
  • Izod impact strength was measured under the following conditions in accordance with ASTM D256.
  • Test piece 12.7mm (width) X 6.4mm (thickness) X 64mm (length)
  • the notch was formed by machining.
  • the high-speed surface impact strength was determined by measuring the total fracture energy under the following conditions.
  • Test piece 120mm (width) X 130mm (length) X 2. Omm (thickness) (square plate)
  • the heat distortion temperature was measured according to ASTM D648.
  • Test piece 12.7mm (width) X 127mm (length) X 6.4mm (thickness)
  • Test piece thickness 1Z4 inch.
  • HAZE was measured according to ASTM D1003.
  • Test piece 120 mm (width) X 130 mm (length) X 2. Omm (thickness) (square plate).
  • MAO methylaluminoxane
  • Propylene 40 kgZ time, hydrogen 5N liter Z time, and the catalyst slurry produced in (3) above as solid catalyst components 3.6 gZ time, triethyl aluminum 2.2 gZ time was continuously fed, and polymerization was performed in a full liquid state in which no gas phase was present in the tubular polymerizer.
  • the temperature of the tubular reactor was 30 ° C, and the pressure was 3.2 MPaZG.
  • the catalyst in this reaction is an Ml catalyst.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for 10 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase portion was 1.5 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase portion was 0.2 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 lmol%.
  • Polymerization was carried out by supplying ethylene so that the polymerization temperature was 61 ° C and the pressure was maintained at 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • Propylene is 40 kgZ time
  • hydrogen is 5 N liter Z time
  • the catalyst slurry produced in (3) of Production Example 1 is used as a solid catalyst component 3.6 gZ time, triethylaluminum 2.
  • 2 gZ time was continuously supplied, and polymerization was performed in a full liquid state without a gas phase in the tubular polymerization reactor.
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2 MPa ZG.
  • the catalyst in this reaction is an Ml catalyst.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 1000 liters, and further polymerization was performed.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerized.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 mol%.
  • Polymerization was carried out by supplying ethylene so as to maintain a polymerization temperature of 54 ° C and a pressure of 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • Propylene is 40 kgZ time
  • hydrogen is 5 N liter Z time
  • the catalyst slurry produced in (3) of Production Example 1 is used as a solid catalyst component 3.6 gZ time, triethylaluminum 2.
  • 2 gZ time was continuously supplied, and polymerization was performed in a full liquid state without a gas phase.
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2 MPaZG.
  • the catalyst in this reaction is an M1-based catalyst.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerized.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 mol%.
  • Polymerization was carried out by supplying ethylene so as to maintain a polymerization temperature of 51 ° C and a pressure of 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • Propylene is 40 kgZ time
  • hydrogen is 5 N liter Z time
  • the catalyst slurry produced in (3) of Production Example 1 is used as a solid catalyst component 3.6 gZ time, triethylaluminum 2.
  • 2 gZ time was continuously supplied, and polymerization was performed in a full liquid state without a gas phase in the tubular polymerization reactor.
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2 MPa ZG.
  • the catalyst in this reaction is an Ml catalyst.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 1000 liters, and polymerization was further performed.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.6 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.2 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.6 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 lmol%.
  • Polymerization was carried out by supplying ethylene so that the polymerization temperature was 63 ° C and the pressure was maintained at 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters, and further polymerization was performed.
  • propylene was supplied for 45 kgZ hours, ethylene was supplied so that the ethylene concentration in the gas phase was 3.7 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.3 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase portion was 3.7 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase portion was 0.3 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 lmol%.
  • Polymerization was carried out by supplying ethylene so that the polymerization temperature was 61 ° C and the pressure was maintained at 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • Propylene is 40 kgZ time
  • hydrogen is 5 N liter Z time
  • the catalyst slurry produced in (3) of Production Example 1 is used as a solid catalyst component 3.6 gZ time, triethylaluminum 2.
  • 2 gZ time was continuously supplied, and polymerization was performed in a full liquid state without a gas phase in the tubular polymerization reactor.
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2 MPa ZG.
  • the catalyst in this reaction is an Ml catalyst.
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.5 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 mol%.
  • Polymerization was carried out by supplying ethylene to maintain a polymerization temperature of 48 ° C and a pressure of 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2 MPa ZG.
  • the catalyst in this reaction is an Ml catalyst.
  • the obtained slurry was sent to a vessel polymerization reactor with an internal volume of 1000 liters equipped with a stirrer, and further polymerization was performed.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.6 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.4 mol%.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase portion was 1.6 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase portion was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time, and hydrogen was supplied so that the hydrogen concentration in the gas phase became 0.2 mol%.
  • Polymerization was carried out by supplying ethylene so as to maintain a polymerization temperature of 61 ° C and a pressure of 2.9 MPaZG.
  • Anhydrous magnesium chloride (952 g), decane (4420 ml) and 2-ethylhexyl alcohol (3906 g) were heated at 130 ° C. for 2 hours to obtain a homogeneous solution.
  • 213 g of phthalic anhydride was added, and further stirred and mixed at 130 ° C. for 1 hour to dissolve phthalic anhydride.
  • the solid titanium catalyst component prepared as described above is stored as a hexane slurry. A part of the solid titanium catalyst component was dried to examine the catalyst composition.
  • the solid titanium catalyst component consists of 2% titanium, 57% chlorine, 21% magnesium, and 20% DIBP. Contained in an amount of.
  • Transition metal catalyst component 56g triethylaluminum 8.
  • Og 80 liters of heptane were introduced into an autoclave with a stirrer with a content of 200 liters. It was. After completion of the polymerization, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice. The obtained prepolymerized catalyst was resuspended in purified heptane and adjusted by adding heptane so that the transition metal catalyst component concentration was 0.7 gZ liter. This prepolymerized catalyst contained 10 g of polypropylene per lg of transition metal catalyst component.
  • the obtained slurry was sent to a vessel polymerization apparatus with a stirrer having an internal volume of 100 liters, and further polymerization was performed.
  • Propylene was supplied to the polymerization vessel for 15 kgZ time, ethylene was 0.3 kgZ time, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 15.0 mol%.
  • Polymerization was carried out at a polymerization temperature of 63 ° C. and a pressure of 3.4 M PaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 50 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.4 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • Polymerization Polymerization was performed at a temperature of 60 ° C and a pressure of 2.5 MPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for llkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 1.4 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.2 mol%.
  • Polymerization was performed at a polymerization temperature of 59 ° C and a pressure of 2.4 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows.
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 50 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 3.9 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.28 mol%.
  • Polymerization was carried out at a polymerization temperature of 60 ° C and a pressure of 2.6 MPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for llkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 3.9 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.28 mol%.
  • Polymerization Polymerization was performed at a temperature of 59 ° C and a pressure of 2.5 MPaZG.
  • the homogeneous solution thus obtained was cooled to 23 ° C, and then 750 ml of this homogeneous solvent was added dropwise to 2000 ml of tetra-salt-titanium titanium kept at -20 ° C over 1 hour. After the dropwise addition, the temperature of the resulting mixture was raised to 110 ° C over 4 hours, and when the temperature reached 110 ° C, 52.2 g of diisobutyl phthalate (DIBP) was added to maintain this temperature. Stirring was continued for 2 hours.
  • DIBP diisobutyl phthalate
  • the solid part was collected by hot filtration, and the solid part was resuspended in 2750 ml of tetrasalt-titanium titanium, and then heated again at a temperature of 110 ° C for 2 hours.
  • the solid titanium catalyst component prepared as described above is stored as a hexane slurry. A part of the solid titanium catalyst component was dried to examine the catalyst composition. [0183]
  • the solid titanium catalyst component contained 2 wt% titanium, 57 wt% chlorine, 21 wt% magnesium and 20 wt% DIBP.
  • Transition metal catalyst component 56g triethylaluminum 8.
  • Og 80 liters of heptane are introduced into an autoclave with a stirrer with a content of 200 liters, and the internal temperature is maintained at 5 ° C. It was. After completion of the polymerization, the solid component was allowed to settle, and the supernatant was removed and washed with heptane twice.
  • the obtained prepolymerization catalyst was resuspended in purified heptane and adjusted by adding heptane so that the transition metal catalyst component concentration was 0.7 gZ liter.
  • This polymerization catalyst contained 10 g of polypropylene per lg of transition metal catalyst component.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 1000 liters, and further polymerization was performed.
  • propylene is 18 kgZ time
  • ethylene is the ethylene concentration in the gas phase
  • 1-butene is the 1-butene concentration force in the gas phase
  • 2.7 mol% is the hydrogen concentration in the gas phase. 1. It was supplied to 8 mol%.
  • Polymerization was performed at a polymerization temperature of 65 ° C and a pressure of 2.5 MPa ZG.
  • Propylene random block copolymer produced in Production Example 1 100 layers Heat stabilizer IRGANOX1010 (trademark of Ciba Geigy) 0.1 part by weight, heat stabilizer IRGAFOS168 (trademark of Ciba Geigy Co., Ltd.) 0.1 part, calcium stearate 0.1 part by weight After mixing, the mixture is melt-kneaded in a twin screw extruder to prepare a polypropylene resin composition in the form of a pellet. Using a T-die extruder [Part No. GT-25A, manufactured by Plastic Engineering Laboratory Co., Ltd.] A cast film was formed. Table 2 shows the physical properties of the molded products.
  • Kneading temperature 180 ° C
  • Example 1 In Example 1, except that 100 parts by weight of the propylene random block copolymer (A-1) was replaced with 100 parts by weight of the propylene random block copolymer (A-2) produced in Production Example 2. Did the same. Table 2 shows the physical properties of the molded products.
  • Example 1 In Example 1, except that 100 parts by weight of the propylene random block copolymer (A-1) was replaced with 100 parts by weight of the propylene random block copolymer (A-4) produced in Production Example 4. Did the same. Table 2 shows the physical properties of the molded products. Example 5
  • Example 1 In Example 1, except that 100 parts by weight of the propylene random block copolymer (A-1) was replaced with 100 parts by weight of the propylene ethylene random copolymer (R-1) produced in Production Example 9. The same was done. Table 2 shows the physical properties of the molded products.
  • Example 1 except that 100 parts by weight of the propylene random block copolymer (A-1) was replaced by 100 parts by weight of the propylene-ethylene random copolymer (R-2) produced in Production Example 10. Did the same.
  • Table 2 shows the physical properties of the molded products.
  • Example 1 100 parts by weight of the propylene random block copolymer (A-1) was added to 100 parts by weight of the propylene ethylene-butene random copolymer (r-1) produced in Production Example 11. The procedure was the same except that it was replaced. Table 2 shows the physical properties of the molded products. Room it0201
  • Kneading temperature 180 ° C
  • Feeder rotation speed 400rpm.
  • the propylene random block copolymer is a propylene ethylene-butene random Compared to a copolymer / propylene-butene random copolymer blend, it has an equivalent low heat seal temperature, less transparency loss during heat treatment, and good impact strength. Therefore, the propylene-based random block copolymer of the present invention can provide functions such as low-temperature heat sealability without blending the propylene-butene random copolymer.
  • Figure 1 shows the heat-seal characteristics of a film with a propylene-based random random copolymer (A-2) force with a melting point of 138 ° C in relation to the heat-seal strength with respect to the heat-seal temperature (figure 1). (Indicated by “ ⁇ ” in the inside). For comparison, melting point is 138 ° C but D is 0, 5 layers
  • sol amount 0/0 less than a is a propylene random copolymer (R- 1) heat-sealing characteristics of the force resulting film (in the figure shown by "mouth") and a melting point of 113 ° C D is 0, Propylene-ethylene random copolymer (R-2) strength of less than 5% by weight
  • R- 1 propylene random copolymer
  • R-2 Propylene-ethylene random copolymer
  • the propylene-based random block copolymer (A-2) is a propylene-ethylene random copolymer (R-2) having a melting point of 113 ° C despite a melting point of 138 ° C.
  • the propylene random copolymer (R-2) having a melting point of 113 ° C is formed into a film.
  • the propylene-based random copolymer (R-2) with a melting point of 113 ° C is a propylene-based random block copolymer (A-2) with a melting point of 138 ° C.
  • the crystallization rate is slow, so that the film formation is extremely difficult.
  • the propylene random block copolymer (A-2) satisfying the characteristics of the present invention has excellent low-temperature heat sealability and heat seal strength, as well as good film-forming properties. It can be seen that it can be suitably used as a heat sealant.
  • the film characteristics of the propylene random block polymer of the present invention and the propylene-ethylene random copolymer are shown in terms of film properties of the propylene random block copolymer (A-1), propylene-ethylene random.
  • the film characteristics of copolymer (R-1) and the propylene-ethylene random copolymer (R-2) film characteristics will be compared as an example.
  • the propylene random block copolymer (A-1) has a higher blocking coefficient than the propylene random block copolymer, but the transparency during the heat treatment is almost reduced. It can be seen that there is almost no bleed component.
  • the melting point of the propylene random block copolymer (A-1) is 138 ° C, which is relatively high and has high heat resistance, but also has a high blocking coefficient.
  • the propylene random block copolymer of the present invention can be suitably used for a self-adhesive releasable surface protective film or the like.
  • Polyethylene resin (Mirason 11 (Prime Polymer Trademark) (C-1) was cast on a T-die extruder [Product No .: GT-25A, manufactured by Plastic Engineering Laboratory Co., Ltd.]. It was. Table 6 shows the physical properties of the molded products.
  • a cast film was formed from polyethylene resin (15100C Prime Polymer Trademark (C-2)) using a T-die extruder [product number: GT-25A, manufactured by Plastic Engineering Laboratory Co., Ltd.]. Table 6 shows the physical properties of the molded products.
  • Table 6 summarizes the results of a comparison of film properties between the propylene random block copolymer (A-2) of the present invention and polyethylene resin.
  • the propylene random block copolymer (A-2) has a low Young's modulus while having a low-temperature heat-sealability equivalent to that of polyethylene resin (C-1). Therefore, the propylene random block copolymer (A-2) can be made thinner than the polyethylene resin sealant film currently used.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene is lOkgZ time and ethylene is ethylene concentration in the gas phase.
  • the hydrogen was supplied so that the degree of hydrogen was 0.8 mol% and the hydrogen concentration in the gas phase was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 lmol%.
  • Polymerization was carried out by supplying ethylene so that the polymerization temperature was 61 ° C and the pressure was maintained at 2.9 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerized.
  • propylene is lOkgZ time and ethylene is ethylene concentration in the gas phase.
  • the hydrogen was supplied so that the degree of hydrogen was 0.8 mol% and the hydrogen concentration in the gas phase was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • propylene was supplied for lOkgZ time and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.1 lmol%.
  • Polymerization was carried out by supplying ethylene so that the polymerization temperature was 61 ° C and the pressure was maintained at 2.9 MPaZG.
  • the slurry was transferred to a 4-liter flask having a capacity of 5 liters, and 260 ml of toluene was added. 2830 ml of methylaluminoxane (hereinafter MAO) -toluene solution (Albemarle 10 wt% solution) was introduced. The mixture was stirred at room temperature for 30 minutes. The temperature was raised to 110 ° C in 1 hour and the reaction was carried out for 4 hours. After completion of the reaction, it was cooled to room temperature. After cooling, the supernatant toluene was extracted and replaced with fresh toluene until the replacement rate reached 95%.
  • MAO methylaluminoxane
  • Propylene is 40 kgZ time
  • hydrogen is 5 N liter Z time
  • the catalyst slurry produced in (3) of Production Example 13 is 1.6 gZ time
  • OgZ time was continuously supplied, and polymerization was performed in a full liquid state where no gas phase was present in the tubular polymerizer.
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2M PaZG.
  • the catalyst in this reaction is an M2 catalyst.
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.7 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.5 mol%.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for 10 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.7 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.5 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for 10 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.7 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.5 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C and a pressure of 3. OMPaZG.
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • the polymerization was carried out in the same manner as in Production Example 14, except that the polymerization method was changed as follows. (1) Main polymerization
  • the temperature of the tubular reactor was 30 ° C and the pressure was 3.2 MPa ZG.
  • the catalyst in this reaction is an M2 catalyst.
  • the obtained slurry was sent to a vessel polymerization reactor with an internal volume of 1000 liters equipped with a stirrer, and further polymerization was performed.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.7 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.5 mol%.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase portion was 0.7 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase portion was 0.5 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase portion was 0.7 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase portion was 0.5 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C and a pressure of 3. OMPaZG.
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters and further subjected to polymerization.
  • propylene was supplied for lOkgZ time
  • ethylene was supplied so that the ethylene concentration in the gas phase part was 0.8 mol%
  • hydrogen was supplied so that the hydrogen concentration in the gas phase part was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters for copolymerization.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the obtained slurry was sent to a vessel polymerization reactor with an internal volume of 1000 liters equipped with a stirrer for further polymerization.
  • propylene was supplied for 45 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.8 mol%.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for lOkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase part was 0.8 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase part was 0.8 mol%.
  • Polymerization was performed at a polymerization temperature of 71 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters, and further polymerized.
  • propylene was supplied for lOkgZ time
  • ethylene was supplied so that the ethylene concentration in the gas phase part was 0.8 mol%
  • hydrogen was supplied so that the hydrogen concentration in the gas phase part was 0.8 mol%.
  • Polymerization was performed at a polymerization temperature of 70 ° C and a pressure of 3. OMPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel equipped with a stirrer having an internal volume of 500 liters for copolymerization.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 50 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • Polymerization Polymerization was performed at a temperature of 60 ° C and a pressure of 2.5 MPaZG.
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for llkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 0.8 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • Polymerization was performed at a polymerization temperature of 59 ° C and a pressure of 2.4 MPaZG.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • the resulting slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 liters for further polymerization.
  • propylene was supplied for 50 kgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 2.7 mol%, and hydrogen was supplied in the gas phase so that the hydrogen concentration was 0.4 mol%.
  • Polymerization Polymerization was performed at a temperature of 60 ° C and a pressure of 2.6 MPaZG.
  • the obtained slurry was sent to a vessel polymerizer with a stirrer having an internal volume of 500 liters, and further polymerization was performed.
  • propylene was supplied for llkgZ time, ethylene was supplied so that the ethylene concentration in the gas phase was 2.7 mol%, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.4 mol%.
  • Polymerization was carried out at a polymerization temperature of 59 ° C and a pressure of 2.5 MPaZG.
  • the polymerization was carried out in the same manner as in Production Example 8, except that the polymerization method was changed as follows. (1) Main polymerization
  • the obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 100 liters, and further polymerization was performed.
  • Propylene was supplied to the polymerization vessel for 15 kgZ hours, ethylene was 0.2 kgZ hours, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 5. Omol%.
  • Polymerization was performed at a polymerization temperature of 63 ° C. and a pressure of 3.4 MPa, G.
  • the obtained slurry was transferred to a sandwich tube having an internal volume of 2.4 liters, gasified and subjected to gas-solid separation, and then a polypropylene homopolymer powder was placed in a 480 liter gas phase polymerization vessel.
  • the ethylene Z propylene block copolymer was carried out.
  • Table 7 shows the properties of the resulting propylene random block copolymer (A-15).
  • the polymerization was carried out in the same manner as in Production Example 8, except that the polymerization method was changed as follows. (1) Main polymerization
  • Propylene was supplied to a vessel polymerization vessel with an internal volume of 500 liters equipped with a stirrer so that the hydrogen concentration in the gas phase became 5 mol% for 130 kgZ hours.
  • the catalyst slurry produced in (3) of Comparative Example 5 was continuously fed with 1.3 gZ time, 5.9 gZ time for triethylaluminum, and 5.9 gZ time with dipentapentyldimethoxysilane.
  • the polymerization temperature was 65 ° C and the pressure was 3. OMPaZG.
  • the catalyst in this reaction is a ZN catalyst.
  • the polymerization was performed in the same manner as in Production Example 1 except that the polymerization method was changed as follows. (1) Main polymerization
  • Propylene random block copolymer produced in Production Example 12 100 layers
  • the crystal nucleating agent ADK STAB NA21 (Asahi Denka Co., Ltd.) 0.3 parts by weight
  • heat stabilizer IR GANOX1010 (Ciba Geigy Co., Ltd.) 0.1 part by weight
  • heat stabilizer IRGAFOS168 (Chipagagi Co., Ltd.) ) Trademark) 0.1 part by weight, 0.1 part by weight of calcium stearate was mixed in a tumbler, melted and kneaded in a twin screw extruder to prepare a pellet-shaped polypropylene resin composition, which was put into an injection molding machine.
  • ASTM specimens and square plates (HAZE, for high-speed surface impact measurement) were molded. Table 8 shows the mechanical properties of the molded products.
  • Kneading temperature 190 ° C
  • Feeder rotation speed 400rpm.
  • Injection molding machine Part number IS 100, manufactured by Toshiba Machine Co., Ltd.
  • Injection molding machine Product number AUTOSHOT Tseries MODEL100D, FANUC Co., Ltd. Cylinder temperature: 210 ° C
  • Example 6 100 parts by weight of the propylene random block copolymer (A-9) was produced.
  • the propylene random block copolymer (A-10) produced in Example 13 was replaced by 100 parts by weight.
  • the procedure was the same except for the above.
  • Table 8 shows the physical properties of the molded products.
  • Example 6 100 parts by weight of the propylene random block copolymer (A-9) was produced. Instead of 100 parts by weight of the propylene random block copolymer (A-11) produced in Example 14. The procedure was the same except for the above. Table 8 shows the physical properties of the molded products.
  • Example 9 [0284] In Example 6, 100 parts by weight of the propylene random block copolymer (A-9) was produced. Instead of 100 parts by weight of the propylene random block copolymer (A-12) produced in Example 15 The procedure was the same except for the above. Table 8 shows the physical properties of the molded products.
  • Example 6 100 parts by weight of the propylene random block copolymer (A-9) was produced.
  • the propylene random block copolymer (A-13) produced in Example 16 was replaced by 100 parts by weight.
  • the procedure was the same except for the above.
  • Table 8 shows the physical properties of the molded products.
  • Example 6 except that 100 parts by weight of the propylene random block copolymer (A-9) was replaced with 100 parts by weight of the propylene random block copolymer (A-14) produced in Production Example 17. Did the same.
  • Table 8 shows the physical properties of the molded products.
  • Example 6 except that 100 parts by weight of the propylene-based random block copolymer (A-9) was replaced with 100 parts by weight of the propylene-ethylene random copolymer (R-3) produced in Production Example 18. Did the same. Table 8 shows the physical properties of the molded products.
  • Example 6 except that 100 parts by weight of the propylene random block copolymer (A-9) was replaced with 100 parts by weight of the propylene ethylene random copolymer (R-4) produced in Preparation Example 19. The same was done.
  • Table 8 shows the physical properties of the molded products.
  • Example 6 except that 100 parts by weight of the propylene random block copolymer (A-9) was replaced by 100 parts by weight of the propylene random block copolymer (A-15) produced in Production Example 20. Did the same.
  • Table 8 shows the physical properties of the molded products.
  • Example 6 except that 100 parts by weight of the propylene random block copolymer (A-9) was replaced with 100 parts by weight of the propylene-ethylene random copolymer (R-5) produced in Production Example 21. Did the same.
  • Table 8 shows the physical properties of the molded products.
  • Kneading temperature 190 ° C
  • Feeder rotation speed 400rpm.
  • Injection molding machine Part number IS 100, manufactured by Toshiba Machine Co., Ltd.
  • Injection molding machine Product number AUTOSHOT Tseries MODEL100D, FANUC Co., Ltd. Cylinder temperature: 210 ° C
  • Feeder rotation speed 400rpm.
  • Injection molding machine Part number IS 100, manufactured by Toshiba Machine Co., Ltd.
  • Injection molding machine Product number AUTOSHOT Tseries MODEL100D, FANUC Co., Ltd. Cylinder temperature: 210 ° C
  • Table 10 shows the results of a comparison of the mechanical properties of the injection-molded article of the propylene random block copolymer (A-11) and the propylene-ethylene random copolymer rubber (R-5).
  • Propylene random block copolymer (A-11) has the same transparency as propylene-ethylene random copolymer rubber (R-5), but has high impact resistance and high heat distortion temperature. .
  • the propylene random block copolymer (A) of the present invention is suitable for use in food containers and medical containers that require heat treatment and require transparency and impact resistance.
  • the propylene random block copolymer (A) of the present invention has an n-decane insoluble content (D).
  • n-decane solubles (D) has high molecular weight and narrow composition distribution
  • the propylene random block copolymer (A) or the propylene resin composition containing the propylene random block copolymer (A) is excellent in low-temperature heat sealability, transparency, impact resistance, and heat shrinkability in film applications. Excellent in heat resistance, rigidity and impact resistance in injection molding, injection stretch molding and hollow molding applications. Accordingly, the propylene random block copolymer (A) or the propylene resin composition of the present invention is a low-temperature sealant for packaging, a retort film for food packaging, a heat-shrinkable film, a heat-shrinkable label, and a surface-protective adhesive. Film for medical use It is suitably used for various molded products such as packaging films, medical containers, food containers, and beverage containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

 本発明は、メルトフローレートが0.1~100g/10min、融点が100~155°Cの範囲にあるプロピレン系ブロック共重合体で、室温n-デカンに不溶な部分(Dinsol)90~60重量%と室温n-デカンに可溶な部分(Dsol)10~40重量%とから構成され、前記Dinsolが要件(1)~(3)を満たし、前記Dsolが要件(4)~(6)を満たすことを特徴とするプロピレン系ランダムブロック共重合体(A)であり、さらに本発明は、このプロピレン系ランダムブロック共重合体(A)またはこれを含むプロピレン系樹脂組成物を用いたシート、フィルム、射出成形体、中空成形体、射出延伸ブロー成形体、繊維などの成形品を提供する。 (1) DinsolのGPCから求めた分子量分布(Mw/Mn)が1.0~3.5 (2) Dinsol中のエチレンに由来する骨格の含有量が0.5~13モル% (3) Dinsol中のプロピレンの2,1-挿入結合量と1,3-挿入結合量の和が0.2モル%以下 (4) DsolのGPCから求めた分子量分布(Mw/Mn)が1.0~3.5 (5) Dsolの135°Cデカリン中における極限粘度[η]が1.5~4dl/g (6) Dsol中のエチレンに由来する骨格の含有量が15~35モル%。

Description

明 細 書
プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物 およびそれからなる成形体
技術分野
[0001] 本発明は、プロピレン系ランダムブロック共重合体、該共重合体を含むポリプロピレ ン榭脂組成物、およびそれからなる成形体に関する。
背景技術
[0002] 一般にポリプロピレン榭脂は、化学的特性、物理的特性および成形加工性に優れ 、し力も安価であることから、広い範囲の用途で使用されている。例えば、チーグラー ナッタ系触媒を用いてプロピレンとエチレンとを共重合して製造されたプロピレン系ラ ンダム共重合体は透明性、軽量性、柔軟性、耐熱性に優れていることから、食品包 装用のヒートシールフィルムおよびシュリンクフィルムなどのフィルムまたはシート、ま た衣装ケース、食品容器および医療容器等の射出成形用途、住宅用洗剤容器等の 中空成形品、飲料容器および調味料容器等の射出延伸成形品等として使用されて いる。し力 近年、軽量ィ匕を背景とした他プラスチック素材からの代替、および CO排
2 出量低減を背景とした成形プロセス効率ィ匕による省エネルギー化、生活スタイルの 多様ィ匕による快適性の追求が社会的に求められていることから、既存のプロピレン系 ランダム共重合体よりも高度な機能を有するポリプロピレン榭脂の開発が必要となつ てきている。
[0003] これら開発要請を基に、メタ口セン触媒の存在下で製造されたプロピレン系ランダム 共重合体に関する発明が開示されている。例えば、特開平 02-173016号公報では、 低融点のプロピレン系ランダム共重合体を低温ヒートシール剤に応用することが開示 されている。同公報に開示された方法によれば、各種包装のヒートシール工程を短縮 化することが可能である。しかし、同公報の方法では、フィルム製膜時の固化速度が 遅くなる為、フィルム冷却工程を改良する必要があり、また一部食品包装では更なる 低温ヒートシール性が要求される場合があった。特開 2002-249167号公報では、低融 点のプロピレン系ランダム共重合体を熱収縮性シュリンクラベル用フィルムに応用す ることが開示されている。同公報に開示された方法によると、熱収縮率は大きくなるが 、フィルムの剛性が低下するという問題がある。
[0004] さらに、特開平 06-192332号公報では、メタ口セン触媒系プロピレン系ランダム共重 合体の射出成形品への応用が開示されている。同公報に開示された方法によると、 剛性と透明性とに優れた射出成形品を得ることができるが、耐衝撃性に劣るという問 題があった。
[0005] メタ口セン触媒存在下で製造されたプロピレン系ランダム共重合体の欠点を改良す る手法として、前記プロピレン系ランダム共重合体にエラストマ一成分を添加すること が考えられる。ここで、製造工程の簡便化、省エネルギー化を配慮した製造方法とし て、例えば特表 2005-529227号公報および特開 2005-132979号公報では、メタ口セン 触媒の存在下で、第一工程でプロピレンとエチレンとの共重合体を調製し、第二ェ 程で第一工程よりもエチレン含量が多いプロピレンとエチレンとの共重合体エラストマ 一を製造するプロピレン系ランダムブロック共重合体およびその製造方法が開示され ている。しかし、前記公報にて開示されているプロピレン系ランダムブロック共重合体 は、各々の触媒性能により第二工程で製造されるプロピレン エチレン共重合体ェ ラストマーの分子量が低ぐ剛性が高ぐブロッキング性などの特性に優れるというプ ロピレン系ランダムブロック共重合体の有する特性を保持した状態で、さらに耐衝撃 性、引き裂き強度等の物性を付与することがむず力 力つた。
特許文献 1:特開平 02-173016号公報
特許文献 2:特開 2002-249167号公報
特許文献 3:特開平 06-192332号公報
特許文献 4:特表 2005-529227号公報
特許文献 5:特開 2005-132979号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記のような問題点が解決されたプロピレン系ランダムブロック共重合 体または該共重合体を含む榭脂組成物に関するものであり、特に食品等の被包装 物のシーラント用包装材として好適に用いられるフィルム、シート、積層体を提供する こと、および、特に耐熱性、透明性、耐衝撃性が必要とされる食品容器等に好適に使 用される射出成形体、中空成形体、射出ブロー成形体、さらには食品容器および医 療器具などの成形体、ならびに繊維を提供することを目的とする。
課題を解決するための手段
[0007] 本発明のプロピレン系ランダムブロック共重合体 (A)は、メルトフローレートが 0. 1〜 lOOg/10min、融点が 100〜155°Cの範囲にあるプロピレン系ブロック共重合体で、 室温 n-デカンに不溶な部分 (D ) 90〜60重量%と室温 n-デカンに可溶な部分 (D
insol so
) 10〜40重量%とから構成され、前記 D が要件 (1)〜(3)を満たし、前記 D が要件(
1 insol soi
4)〜(6)を満たすことを特徴として 、る。
(1) D の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5
insol
(2) D 中のエチレンに由来する骨格の含有量が 0. 5〜13モル0 /0
insol
(3) D 中のプロピレンの 2,1-挿入結合量と 1,3-挿入結合量の和が 0. 2モル0 /0以下 insol
(4) D の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5
sol
(5) D
Figure imgf000005_0001
(6) D 中のエチレンに由来する骨格の含有量が 15〜35モル0 /0
sol
[0008] さらに、本発明のプロピレン系榭脂糸且成物は、上記プロピレン系ランダムブロック共 重合体 (A)を含有してなる。
[0009] 上記プロピレン系ブロック共重合体は、メタ口セン触媒系で重合されたものであるこ とが望ましい。
[0010] また、本発明のシート、フィルム、射出成形体、中空成形体、射出ブロー成形体、さ らには食品容器および医療用器具などの成形体および繊維は、上記プロピレン系ラ ンダムブロック共重合体 (A)またはプロピレン系榭脂組成物からなる。
発明の効果
[0011] 本発明のプロピレン系ランダムブロック共重合体 (A)、該共重合体を含む榭脂組成 物によれば、低温ヒートシール性、低温耐衝撃性、熱収縮性に優れているだけでなく 、製膜性にも優れたフィルムあるいはシートを得ることができ、シーラント用フィルム、 シュリンクフィルム、シュリンクラベル等に好適に使用することができる。また、耐熱性、 透明性、耐衝撃性に優れた射出成形体、射出延伸成形体、中空成形体を得ることが でき、食品容器、医療容器等として好適に使用することができる。
図面の簡単な説明
[0012] [図 1]図 1は本発明のプロピレン系ランダムブロック共重合体の例である(A— 2)を用 いて形成されたフィルムのヒートシール温度とヒートシール強度との例を示すグラフで ある。また、図 1には、プロピレン系ランダム共重合体 (R—1)を用いて形成されたフィ ルムおよびプロピレン-エチレンブロック共重合体 (R— 2)を用いて形成されたフィル ムのヒートシール温度とヒートシール強度との関係も併せて示されている。
発明を実施するための最良の形態
[0013] 以下、本発明のプロピレン系ランダムブロック共重合体 (A)、該共重合体を含むプ ロピレン系榭脂組成物およびこれら力もなる各種成形体について詳細に説明する。 <プロピレン系ランダムブロック共重合体 (A) >
本発明のプロピレン系ランダムブロック共重合体 (A)は、好適にはメタ口セン触媒系 の存在下で、
第一重合工程にてプロピレンとエチレンとを共重合してプロピレン系ブロック共重合 体であるプロピレン 'エチレンランダム共重合体を製造し、引き続き第二重合工程で プロピレン一エチレンランダム共重合体ゴムを製造して得られる。プロピレン系ランダ ムブロック共重合体 (A)は、メルトフローレートが 0. 1〜: LOOg/10min、融点が 100〜 155°Cの範囲にあり、第一重合工程で製造されるプロピレン エチレンランダム共重 合体を主成分とする室温 n-デカンに不溶な部分 (D ) 90〜60重量%と、第二重合 工程で製造されるプロピレン エチレンランダム共重合体ゴムを主成分とする室温 n- デカンに可溶な部分 (D ) 10〜40重量0 /0とから構成される。ここで、プロピレン系ラ
sol
ンダムブロック共重合体 (A)におけるメルトフローレート、融点、室温 n-デカンに不溶 な部分 (D )の重量分率、室温 n-デカンに可溶な部分 (D )の重量分率は、各種成
insol sol
形体用途に応じて好適に変えることができる。
[0014] ここでプロピレン系ブロック共重合体は、メタ口セン触媒系で重合して得られたもの であることが望ましい。
[0015] そして、本発明のプロピレン系ランダムブロック共重合体 (A)において、前記 D が
insol 要件 (1)〜(3)を満たし、さらに前記 D が要件 (4)〜(6)を満たす。 (1) D の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5
insol
(2) D 中のエチレンに由来する骨格の含有量が 0. 5〜13モル0 /0
insol
(3) D 中のプロピレンの 2,1-挿入結合量と 1,3-挿入結合量の和が 0. 2モル0 /0以下 insol
(4) D の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5
sol
(5) D
Figure imgf000007_0001
(6) D 中のエチレンに由来する骨格の含有量が 15〜35モル0 /0
sol
[0016] 以下、本発明に係るプロピレン系ランダムブロック共重合体 (A)が備える上記要件(
1)〜(6)について詳細に説明する。
[0017] 要件 (1)
本発明のプロピレン系ランダムブロック共重合体 (A)の室温 n-デカンに不溶な部分 (D )の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5、好ましくは、 1. 5〜 insol
3. 2、更に好ましくは 2. 0〜3. 0である。このように本発明のプロピレン系ランダムブ ロック共重合体 (A)に含有される室温 n-デカンに不溶な部分 (D )につ 、て、 GPC 力 求めた分子量分布 (MwZMn)を上述のように狭くできるのは、触媒としてメタロセ ン触媒系を用いているからである。そして、 MwZMnが 3. 5よりも大きいと、低分子量 成分が増える為、フィルムのブリードアウトが発生し、加熱処理後の透明性が低下す る。また、 MwZMnが 3. 5よりも大きいと、射出成形体、射出延伸成形体、中空成形 体等で加熱滅菌処理後に透明性が低下する。
[0018] 要件(2)
本発明のプロピレン系ランダムブロック共重合体 (A)の室温 n-デカンに不溶な部分 (D )中のエチレンに由来する骨格の含有量が 0. 5〜13モル0 /0、好ましくは 0. 7〜 insol
10モル0 /0、更に好ましくは 1. 0〜8モル0 /0である。 D 中のエチレンに由来する骨格 の含有量が 0. 5モル0 /0未満であると、プロピレン系ランダムブロック共重合体 (A)の 融点 (Tm)が高くなり、各種成形体での透明性が低下すると共に、低温ヒートシール 性が悪ィ匕する。また、 D 中のエチレンに由来する骨格の含有量が 13モル%よりも
insol
多いと、プロピレン系ランダムブロック共重合体 (A)の融点が低くなり、フィルム製膜 性の低下、各種成形体での高温下での剛性が低下する等の不具合が発生する。
[0019] 要件(3) 本発明のプロピレン系ランダムブロック共重合体 (A)の室温 n-デカンに不溶な部分 (D )中のプロピレンの 2,1-挿入結合量と 1,3-挿入結合量の和が 0. 2モル0 /0以下、 insol
好ましくは 0. 1モル0 /0以下である。 D 中のプロピレンの 2,1-挿入結合量と 1,3-挿入
insol
結合量の和が 0. 2モル0 /0よりも多い場合、プロピレンとエチレンとのランダム共重合 性が低下し、その結果、室温 n-デカンに可溶な部分 (D )中のプロピレン エチレン
sol
共重合体ゴムの組成分布が広くなる為、各種成形体の耐衝撃性が低下し、さらに、 加熱処理後に透明性が低下するなどの不具合が発生する。
[0020] 要件 (4)
本発明のプロピレン系ランダムブロック共重合体 (A)の室温 n-デカンに可溶な部分 (D )の GPCから求めた分子量分布(Mw/Mn)が 1. 0〜3. 5、好ましくは 1. 2〜3. 0 sol
、更に好ましくは 1. 5〜2. 5である。このように本発明のプロピレン系ランダムブロック 共重合体 (A)の室温 n-デカンに可溶な部分 (D )につ 、て、 GPCから求めた分子
sol
量分布 (Mw/Mn)を上述のように狭くできるのは、触媒としてメタ口セン触媒系を用 ヽ ている力もである。そして、 Mw/Mnが 3. 5よりも大きいと、 D に低分子量プロピレン一
sol
エチレンランダム共重合体ゴムが増える為、各種成形体で耐衝撃性の低下、加熱処 理後の透明性悪化、成形体保管時のブロッキング等の不具合が生ずる。
[0021] 要件(5)
本発明のプロピレン系ランダムブロック共重合体 (A)の室温 n-デカンに可溶な部分 (D )の 135°Cデカリン中における極限粘度 [ 7? ]が 1. 5〜4dlZg、好ましくは 1. 5dl sol
/gを超え 3. 5dl/g以下であり、さらに好ましくは 1. 8〜3. 5dlZg、最も好ましくは 2. 0〜3. OdlZgである。こうしたランダムブロック共重合体の製造において、本発明で 好適に使用されるメタ口セン触媒系以外の触媒を用いたのでは、極限粘度 [ r? ]が 1. 5dlZgを超えるプロピレン系ランダムブロック共重合体 (A)を製造することは極めた 困難であり、特に極限粘度 [ r? ]が 1. 8dl/g以上のプロピレン系ランダムブロック共重 合体 (A)を製造することはほとんど不可能である。また、極限粘度 D の 135°Cデカリ
sol
ン中における極限粘度 [ r? ]が 4dlZgよりも高いと、第二重合工程でプロピレンーェ チレンランダム共重合体ゴムを製造する際に、超高分子量乃至高工チレン量プロピ レン エチレンランダム共重合体ゴムが微量に副生する。この微量に副生したプロピ レン エチレンランダム共重合体ゴムは、プロピレン系ランダムブロック共重合体 (A) 中に不均一に存在する為、各種成形体での耐衝撃性の低下、フィルムおよびシート でフィッシュアイ等が発生するなどの外観不具合が生ずる。
[0022] 要件(6)
本発明のプロピレン系ランダムブロック共重合体 (A)の室温 n-デカンに可溶な部分 (D )中のエチレンに由来する骨格の含有量が 15〜35モル0 /0、好ましくは 18〜30 sol
モル0 /0、更に好ましくは 20〜25モル0 /0である。 D 中のエチレンに由来する骨格の
sol
含有量が 15モル0 /0よりも低いと、プロピレン系ランダムブロック共重合体の耐衝撃性 が低下する。また、 D 中におけるエチレンに由来する骨格の含有量が 35モル%より
sol
も高 、と、フィルムおよびシートでの透明性が低下する。
[0023] なお、本発明のプロピレン系ランダムブロック共重合体 (A)を用いて食品容器、医 療用器具などの射出成形体を製造する場合には、この室温 n-デカンに可溶な部分( D )中のエチレンに由来する骨格の含有量を通常は 17〜28モル0 /0、好ましくは 20 sol
〜25モル%の範囲内にすることにより、射出成形体の透明性が低下しに《なると共 に、射出成形体の耐衝撃性の低下が生じに《なる。
[0024] 本発明のプロピレン系ランダムブロック共重合体 (A)は、好適にはメタ口セン触媒の 存在下に、第一重合工程([工程 1] )でプロピレンと少量のエチレンとからなるプロピ レン系ランダム共重合を製造後、第二重合工程 ( [工程 2] )でプロピレンと第一工程よ りも多量のエチレンとを共重合してプロピレン エチレン共重合体ゴムを製造して得 られるプロピレン系ランダムブロック共重合体である。
[0025] 本発明において好適に使用されるメタ口セン触媒としては、メタ口セン化合物、並び に、有機金属化合物、有機アルミニウムォキシ化合物およびメタ口センィ匕合物と反応 してイオン対を形成することのできる化合物力 選ばれる少なくとも 1種の化合物、さ らに必要に応じて粒子状担体とからなるメタ口セン触媒であり、好ましくはアイソタクチ ックまたはシンジオタクチック構造等の立体規則性重合をすることのできるメタ口セン 触媒を挙げることができる。前記メタ口センィ匕合物の中では、本願出願人による国際 出願 (WO01/27124号パンフレット)に例示されている以下に示すような架橋性メタ口 センィ匕合物が好適に用いられる。 [0026] [化 1]
Figure imgf000010_0001
[0027] 上記一般式 [I]において、
Figure imgf000010_0002
R2、 R3、 R4、 R5、 R6、 R7、 R8、 R10、 RU、 R12、 R13、 R14 は水素原子、炭化水素基、ケィ素含有基から選ばれ、それぞれ同一でも異なってい てもよい。このような炭化水素基としては、メチル基、ェチル基、 n-プロピル基、ァリル 基、 n-ブチル基、 n-ペンチル基、 n-へキシル基、 n-ヘプチル基、 n-ォクチル基、 n-ノ -ル基、 n-デ力-ル基などの直鎖状炭化水素基;イソプロピル基、 tert-ブチル基、ァ ミル基、 3-メチルペンチル基、 1,1-ジェチルプロピル基、 1,1-ジメチルブチル基、 1-メ チル- 1-プロピルブチル基、 1 , 1-プロピルブチル基、 1 , 1-ジメチル -2-メチルプロピル 基、 1-メチル -1-イソプロピル- 2-メチルプロピル基などの分岐状炭化水素基;シクロ ペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基、ノルボル-ル 基、ァダマンチル基などの環状飽和炭化水素基;フエニル基、トリル基、ナフチル基、 ビフエ-ル基、フエナントリル基、アントラセニル基などの環状不飽和炭化水素基;ベ ンジル基、タミル基、 1,1-ジフエ-ルェチル基、トリフエ-ルメチル基などの環状不飽 和炭化水素基の置換した飽和炭化水素基;メトキシ基、エトキシ基、フ ノキシ基、フ リル基、 N-メチルァミノ基、 Ν,Ν-ジメチルァミノ基、 Ν-フエ-ルァミノ基、ピリル基、チ ェニル基などのへテロ原子含有炭化水素基等を挙げることができる。ケィ素含有基と しては、トリメチルシリル基、トリェチルシリル基、ジメチルフヱ-ルシリル基、ジフエ- ルメチルシリル基、トリフエニルシリル基などを挙げることができる。
[0028] また、一般式 [I]において、置換基 R5〜R12は隣接する置換基と相互に結合して環を 形成してもよい。このような置換フルォレニル基としては、ベンゾフルォレニル基、ジ ベンゾフルォレ-ル基、ォクタヒドロジべンゾフルォレ -ル基、オタタメチルォクタヒド ロジベンゾフルォレ-ル基、オタタメチルテトラヒドロジシクロペンタフルォレニル基等 を挙げることができる。
[0029] 前記一般式 [I]において、シクロペンタジェ-ル環に置換する 、 R2
Figure imgf000011_0001
R4は水素 原子または炭素数 1〜20の炭化水素基であることが好ま 、。炭素数 1〜20の炭化 水素基としては、前述の炭化水素基を例示することができる。さらに好ましくは R3が炭 素数 1〜20の炭化水素基である。
[0030] 前記一般式 [I]において、フルオレン環に置換する R5〜R12は炭素数 1〜20の炭化 水素基であることが好ましい。炭素数 1〜20の炭化水素基としては、前掲の炭化水 素基を例示することができる。置換基 R5〜R12は、隣接する置換基が相互に結合して 環を形成してもよい。
[0031] 前記一般式 [I]にお 、て、シクロペンタジェニル環とフルォレニル環を架橋する Yは 周期律表第 14族元素であることが好ましぐより好ましくは炭素、ケィ素、ゲルマニウ ムであり、さらに好ましくは炭素原子である。この Yに置換する R13、 R14は炭素数 1〜2 0の炭化水素基が好ましい。これらは相互に同一でも異なっていてもよぐ互いに結 合して環を形成してもよい。炭素数 1〜20の炭化水素基としては、前掲の炭化水素 基を例示することができる。さらに好ましくは R14は炭素数 6〜20のァリール (aryl)基で ある。ァリール基としては、前述の環状不飽和炭化水素基、環状不飽和炭化水素基 の置換した飽和炭化水素基、ヘテロ原子含有環状不飽和炭化水素基を挙げること ができる。また、 R13、 R14はそれぞれ同一でも異なっていてもよぐ互いに結合して環を 形成してもよい。このような置換基としては、フルォレニリデン基、 10-ヒドロアントラセ ユリデン基、ジベンゾシクロヘプタジェユリデン基などが好まし 、。
[0032] また、上記一般式 [I]で表されるメタ口セン化合物は、
Figure imgf000011_0002
R5または R12から選ば れる置換基と架橋部の R13または R14が互いに結合して環を形成してもよい。
[0033] 前記一般式 [I]において、 Mは好ましくは周期律表第 4族遷移金属であり、さらに好 ましくは Ti、 Zr、 HfCある。また、 Qはハロゲン原子、炭化水素基、ァ-オン配位子ま たは孤立電子対で配位可能な中性配位子から同一または異なる組合せで選ばれる 。 jは 1〜4の整数であり、 jが 2以上のときは、 Qは互いに同一でも異なっていてもよい。 ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子であ り、炭化水素基の具体例としては前掲と同様のものなどが挙げられる。ァニオン配位 子の具体例としては、メトキシ、 tert-ブトキシ、フエノキシなどのアルコキシ基、ァセテ ート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネー ト基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメ チルホスフィン、トリェチルホスフィン、トリフエ-ルホスフィン、ジフエ-ルメチルホスフ インなどの有機リンィ匕合物、テトラヒドロフラン、ジェチルエーテル、ジォキサン、 1,2- ジメトキシェタンなどのエーテル類等が挙げられる。 Qは少なくとも 1つがハロゲン原 子またはアルキル基であることが好まし!/、。
[0034] このような架橋メタ口セン化合物としては、ジフエ-ルメチレン(3-tert-ブチル -5-メ チル-シクロペンタジェ -ル)(フルォレ -ル)ジルコニウムジクロリド、ジフエ-ルメチレ ン(3-tert-ブチル -5-メチル -シクロペンタジェ -ル)(2, 7-ジ tert-ブチルフルォレ -ル )ジルコニウムジクロリド、ジフエ-ルメチレン(3-tert-ブチル -5-メチル -シクロペンタ ジェニル)(3,6-ジ tert-ブチルフルォレ -ル)ジルコニウムジクロリド、(メチル)(フエ- ル)メチレン(3-tert-ブチル -5-メチル -シクロペンタジェ -ル)(オタタメチルォクタヒド 口べンゾフルォレニル)ジルコニウムジクロリド、 [3- (1 ' ,1 ' ,4' ,4' ,7' ,7' , 10' ,10,-オタ タメチルォクタヒドロジべンゾ [b,h]フルォレ -ル)( 1 , 1 ,3-トリメチル -5-tert-ブチル - 1 , 2,3,3a-テトラヒドロペンタレン) ]ジルコニウムジクロライド(下記式 [II]参照)などが好ま しく挙げられる。
[0035] [化 2]
Figure imgf000013_0001
[0036] なお、本発明で使用されるメタ口セン触媒において、前記一般式 [I]で表わされる第 4族遷移金属化合物とともに用いられる、有機金属化合物、有機アルミニウムォキシ 化合物、および遷移金属化合物と反応してイオン対を形成する化合物から選ばれる 少なくとも 1種の化合物、さらには必要に応じて用いられる粒子状担体力 なり、これ らにつ 、ては、本出願人による前記公報 (WO01/27124号パンフレット)ある 、は特開 平 11- 315109号公報中に開示されたィ匕合物を制限無く使用することができる。
[0037] 本発明におけるプロピレン系ランダムブロック共重合体 (A)は、二つ以上の反応装 置を直列に連結した重合装置を用い、次の二つの工程 ( [工程 1]および [工程 2] )を 連続的に実施することによって得られる。
[0038] [工程 1]は、重合温度 0〜100°C、重合圧力常圧〜 5MPaゲージ圧で、プロピレン とエチレンとを共重合させる。 [工程 1]では、プロピレンに対してエチレンのフィード量 を少量とすることによって、 [工程 1]で製造されるプロピレン系ランダム共重合体が D
in の主成分となるようにする。
[0039] [工程 2]は、重合温度 0〜100°C、重合圧力常圧〜 5MPaゲージ圧で、プロピレン とエチレンとを共重合させる。 [工程 2]では、プロピレンに対するエチレンのフィード 量を [工程 1]のときよりも多くすることによって、 [工程 2]で製造されるプロピレン一ェ チレン共重合ゴムが D の主成分となるようにする。
sol
[0040] このようにすることにより、 D に係る要件 (1)〜(3)は、 [工程 1]における重合条件の
insol
調整によって、 D 〖こ係る要件 (4)〜(6)は、 [工程 2]における重合条件の調整によって 、満足させることが可能となる。
[0041] また、本発明のプロピレン系ランダムブロック共重合体 (A)が満足すべき物性につ いては、使用するメタ口セン触媒の化学構造により決定されることが多い。具体的に は、要件 (1)D の GPCから求めた分子量分布(MwZMn)、要件 (3)D 中のプロ
insol insol
ピレンの 2,1-挿入結合量と 1,3-挿入結合量の和、要件 (4)D の GPCから求めた分子
sol
量分布(MwZMn)、およびプロピレン系ランダムブロック共重合体 (A)の融点につ いては、主として、 [工程 1]および [工程 2]において用いられるメタ口セン触媒を適切 に選択することによって、本発明の要件を満足するように調節することができる。本発 明にお 、て好ましく用いられるメタ口セン触媒にっ 、ては前述の通りである。
[0042] さらに、要件 (2)D 中のエチレンに由来する骨格の含有量については、 [工程 1]
insol
におけるエチレンのフィード量などによって調整することが可能である。要件 (5)D の
sol
135°Cデカリン中における極限粘度 [ 7? ]については、 [工程 2]における水素などの 分子量調節剤のフィード量などによって調節することが可能である。要件 (6)D 中の
sol エチレンに由来する骨格の含有量については、 [工程 2]におけるエチレンのフィード 量などによって調節することが可能である。さらに、 [工程 1]と [工程 2]とで製造する 重合体の量比を調整することによって、 D と D との組成比、およびプロピレン系ラ
insol sol
ンダムブロック共重合体 (A)のメルトフローレートを適切に調節することが可能である
[0043] また、本発明のプロピレン系ランダムブロック共重合体 (A)は、前記方法の [工程 1] で製造されるプロピレン エチレンランダム共重合体と、前記方法の [工程 2]で製造 されるプロピレン—エチレンランダム共重合体ゴムを、メタ口セン化合物含有触媒の 存在下で個別に製造した後に、これら物理的手段を用いてブレンドして製造しても良 い。
<エラストマ一(B) >
本発明のプロピレン系ランダムブロック共重合体 (A)には、耐衝撃性、ヒートシール 性、透明性、寸法安定性、柔軟性等の特性を付与する目的で、エラストマ一 (B)を添 カロすることがでさる。
[0044] エラストマ一(B)としては、エチレン · a -ォレフインランダム共重合体(B-a)、ェチレ ン' α -ォレフイン'非共役ポリェンランダム共重合体 (B-b)、水素添加ブロック共重体 (B-c)、プロピレン. aーォレフイン共重合体(B— d)、その他の弾性重合体、および これらの混合物などが挙げられる。
[0045] プロピレン系ランダムブロック共重合体 (A)とエラストマ一(B)とを含むプロピレン系 榭脂組成物に占めるエラストマ一(B)の含有量は、付与される特性により異なるが、 通常 1〜50重量%、好ましくは 3〜30重量%、さらに好ましくは 5〜25重量%である
[0046] エチレン' a -ォレフインランダム共重合体ゴム(B-a)は、エチレンと炭素数 3〜20 の α -ォレフィンとのランダム共重合体ゴムである。エチレン' α -ォレフィンランダム共 重合体ゴム (B-a)にお 、ては、エチレン力 誘導される構成単位と a -ォレフインから 誘導される構成単位とのモル比(エチレンカゝら誘導される構成単位 Z -ォレフイン から誘導される構成単位)は、通常は 95Z5〜15Z85、好ましくは 80Z20〜25Z7 5である。また、このエチレン' α -ォレフィンランダム共重合体(Β- a)について 230°C 、荷重 2. 16kgで測定した MFRは、通常は 0. lg/10分以上、好ましくは 0. 5〜30g/ 10分の範囲内にある。
[0047] エチレン' α -ォレフイン'非共役ポリェンランダム共重合体(B-b)は、エチレンと炭 素数 3〜20の α -ォレフィンと非共役ポリェンとのランダム共重合体ゴムである。上記 炭素数 3〜20の α -ォレフィンとしては、前記と同じものが挙げられる。非共役ポリェ チレンとしては、 5-ェチリデン- 2-ノルボルネン、 5-プロピリデン- 5-ノルボルネン、ジシ クロペンタジェン、 5-ビュル- 2-ノルボルネン、 5-メチレン- 2-ノルボルネン、 5-イソプロ ピリデン- 2-ノルボルネン、ノルボルナジェンなどの非環状ジェン; 1,4-へキサジェン 、 4-メチル -1,4-へキサジェン、 5-メチル -1,4-へキサジェン、 5-メチル -1,5-ヘプタジ ェン、 6-メチル -1,5-へブタジエン、 6-メチル -1,7-ォクタジェン、 7-メチル -1,6-ォクタ ジェンなどの鎖状の非共役ジェン; 2,3-ジイソプロピリデン- 5-ノルボルネンなどのトリ ェン等が挙げられる。これらの中では、 1,4-へキサジェン、ジシクロペンタジェン、 5- ェチリデン- 2-ノルボルネンが好ましく用いられる。エチレン' α -ォレフイン'非共役ポ リエンランダム共重合体 (B-b)は、エチレン力も誘導される構成単位が通常は 94. 9 〜0. 1モル0 /0、好ましくは 89. 5〜40モル0 /0であり、 α -ォレフィンから誘導される構 成単位が通常は 5〜45モル0 /0、好ましくは 10〜40モル%であり、非共役ポリェンか ら誘導される構成単位が通常は 0. 1〜25モル0 /0、好ましくは 0. 5〜20モル0 /0である 。ただし、本発明では、エチレン力 誘導される構成単位と、 α -ォレフインカ 誘導さ れる構成単位と、非共役ポリェンカゝら誘導される構成単位との合計を 100モル%とす る。エチレン. α -ォレフイン'非共役ポリェンランダム共重合体(B-b)〖こついて 230°C 、荷重 2. 16kgで測定した MFRは通常は 0. O5g/10分以上、好ましくは 0. l〜30g/ 10分の範囲内にある。エチレン' α -ォレフイン'非共役ポリェンランダム共重合体(B- b)の具体例としては、エチレン 'プロピレン'ジェン三元共重合体 (EPDM)などが挙 げられる。
[0048] 水素添加ブロック共重合体 (B-c)は、ブロックの形態が下式 (a)または (b)で表され るブロック共重合体の水素添加物であり、水素添加率が通常は 90モル%以上、好ま しくは 95モル%以上の水素添加ブロック共重合体である。
[0049] [化 3]
X (YX) n ( a )
(XY)n ( b )
[0050] 上記式 (a)または式 (b)における Xで示される重合ブロックを構成するモノビュル置 換芳香族炭化水素の例としては、スチレン、 α -メチルスチレン、 Ρ-メチルスチレン、ク ロロスチレン、低級アルキル置換スチレン、ビュルナフタレン等のスチレンまたはその 誘導体などが挙げられる。これらは一種単独で使用することもできるし、二種以上を 組み合せて使用することもできる。式 (a)または (b)の Yで示される重合ブロックを構 成する共役ジェンとしては、ブタジエン、イソプレン、クロ口プレンなどが挙げられる。 これらは一種単独で使用することもできるし、二種以上を組み合せて使用することも できる。 nは通常は 1〜5の整数、好ましくは 1または 2である。水素添加ブロック共重 合体(B-c)の具体的な例としては、スチレン'エチレン 'ブテン'スチレンブロック共重 合体(SEBS)、スチレン'エチレン'プロピレン ·スチレンブロック共重合体(SEPS)お よびスチレン'エチレン'プロピレンブロック共重合体(SEP)等のスチレン系ブロック 共重合体などが挙げられる。水素添加前のブロック共重合体は、例えば不活性溶媒 中で、リチウム触媒またはチーグラー触媒の存在下に、ブロック共重合を行わせる方 法により製造することができる。詳細な製造方法は、例えば特公昭 40— 23798号公 報などに記載されている。水素添加処理は、不活性溶媒中で公知の水素添加触媒 の存在下に行うことができる。詳細な方法は、例えば特公昭 42— 8704号公報、同 4 3— 6636号公報、同 46— 20814号公報などに記載されている。共役ジェンモノマ 一としてブタジエンが用いられる場合、ポリブタジエンブロックにおける 1,2-結合量の 割合は通常は 20〜80重量%、好ましくは 30〜60重量%である。水素添加ブロック 共重合体 (B-c)としては市販品を使用することもできる。具体的なものとしては、タレ ィトン G1657 (登録商標)(シェルィ匕学 (株)製)、セプトン 2004 (登録商標)((株)クラレ製 )、タフテック H1052 (登録商標)(旭化成 (株)製)などが挙げられる。
[0051] プロピレン' aーォレフイン共重合体ゴム(B— d)は、プロピレンと炭素数 4〜20の α -ォレフィンとのランダム共重合体ゴムである。プロピレン' α -ォレフィンランダム共 重合体 (B-d)においては、プロピレン力 誘導される構成単位と α -ォレフィン力 誘 導される構成単位とのモル比(プロピレンカゝら誘導される構成単位 Z a -ォレフインか ら誘導される構成単位)が通常は 95Z5〜5Z95、好ましくは 80Z15〜20Z80で ある。また、プロピレン' α -ォレフィンランダム共重合体ゴム(B—d)においては、 2種 以上の α -ォレフィンを使用しても良ぐその 1つはエチレンであっても良い。プロピレ ン' α -ォレフィンランダム共重合体ゴム(Β- d)について 230°C、荷重 2. 16kgで測定 した MFRが通常は 0. lg/10分以上、好ましくは 0. 5〜3Og/10分の範囲内にある。
[0052] エラストマ一(B)は一種単独で使用することもできるし、二種以上を組み合せて使 用することちでさる。
[0053] 本発明にお!/、て上記のエラストマ一(B)は、プロピレン系ブロックランダム共重合体
(A) 100重量部に対して、通常は 0〜50重量部、好ましくは 1〜50重量部の範囲内 の量で使用する。
くポリエチレン榭脂(C) >
本発明のプロピレン系ランダムブロック共重合体 (A)には、耐衝撃性、ヒートシール 性、透明性、寸法安定性、高速押出シート成形性付与等の機能を付与する目的で、 エラストマ一(B)と共に、あるいはエラストマ一(B)の代わりにポリエチレン榭脂(C)を 添カ卩しても良い。 [0054] 例えば、透明性の低下を抑えながら耐衝撃性を付与させる場合、メタ口セン触媒の 存在下で、エチレンと C4以上の aーォレフインとを共重合させて製造した、密度 0. 9 00-0. 930kg/m3の直鎖状低密度ポリエチレンを添加することが好まし!/、。
[0055] その他の例として、高速押出成形性を改良する場合、高圧法ポリエチレンを添加す ることが望ましい。ここで高圧法ポリエチレンとは、 100kg/cm2以上の圧力において、 パーオキサイドの存在下に、エチレンをラジカル重合することにより得られる、長鎖分 岐を有するポリエチレンである。高圧法ポリエチレンの好まし 、メルトフローレート(AS TMD1238, 190。C、荷重 2. 16kgで測定)は、通常は 0. 01〜: LOOg/10分、好ましく は 0. 1〜: LOg/10分の範囲内にある。また密度(ASTMD1505)は、通常は 0. 900 〜0. 940g/cm3、好ましく ίま 0. 910〜0. 930g/cm3の範囲内にある。
[0056] プロピレン系ランダムブロック共重合体 (A)とポリエチレン榭脂(C)とを含むプロピレ ン系榭脂組成物に占めるポリエチレン榭脂 (C)の含有量は、付与される特性により異 なるが、通常 0〜50重量%、好ましくは 1〜50重量部、特に好ましくは 3〜30重量% 、さらに好ましくは 5〜25重量%の範囲内にある。ポリエチレン榭脂(C)は一種単独 で使用することもできるし、二種以上を組み合せて使用することもできる。ただし、本 発明のプロピレン系榭脂組成物において、上述のエラストマ一(B)とこのポリエチレン 榭脂 (C)とが同時に 0重量部とはならない。
[0057] また、プロピレン系ランダムブロック共重合体 (A)とエラストマ一(B)とポリエチレン 榭脂(C)と力もなるプロピレン系榭脂組成物の場合、プロピレン系ランダムブロック共 重合体 (A)の量は、付与される特性により異なる力 通常 50〜99重量%、好ましくは 70〜97重量%、さらに好ましくは 75〜95重量%の範囲内にある。また、エラストマ 一 (B)とポリエチレン榭脂(C)の合計量は、プロピレン系ブロックランダム共重合体 (A ) 100重量部に対して、通常 1〜50重量%、好ましくは 3〜30重量%、さらに好ましく は 5〜25重合0 /0である。なお、エラストマ一とポリエチレンとの比率は目的に応じて任 意に調整することができる。
<結晶核剤 (D) >
本発明のプロピレン系ランダムブロック共重合体 (A)あるいはポリプロピレン系には 、透明性、耐熱性、成形性改良などのために必要に応じて結晶核剤(D)を添加して も良い。
[0058] 本発明で用いられる結晶核剤 (D)の例としては、ジベンジリデンソルビトール等のソ ルビトール化合物、有機リン酸エステル系化合物、ロジン酸塩系化合物、 C4〜C12 の脂肪族ジカルボン酸およびその金属塩などを挙げることができる。
[0059] これらのうちでは、有機リン酸エステル系化合物が好ましい。有機リン酸エステル系 化合物は、次に示す一般式 [III]および Zまたは [IV]で表わされる化合物である。
[0060] [化 4]
Figure imgf000019_0001
Figure imgf000019_0002
[0061] 前記の式 [ΠΙ]、 [IV]中、 R1は、炭素原子数 1〜10の 2価炭化水素基であり、 R2およ び R3は、水素原子または炭素原子数 1〜10の炭化水素基であって、 R2と R3とは同じ であっても異なっていてもよぐ Mは、 1〜3価の金属原子であり、 nは 1〜3の整数で あり、 mは 1または 2である。
[0062] 一般式 [III]で表わされる有機リン酸エステル系化合物の具体例としては、ナトリウム -2, 2しメチレン-ビス(4,6-ジ -t-ブチルフエ-ル)フォスフェート、ナトリウム- 2,2'-ェチリ デン-ビス(4,6-ジ- 1-ブチルフエ-ル)フォスフェート、リチウム- 2,2しメチレン-ビス (4,6 -ジ -t-ブチルフエ-ル)フォスフェート、リチウム- 2,2'-ェチリデン-ビス(4,6-ジ -t-ブチ ルフエニル)フォスフェート、ナトリウム- 2,2'-ェチリデン-ビス(4-トプロピル- 6-t-ブチ ルフエ-ル)フォスフェート、リチウム- 2,2しメチレン-ビス(4-メチル -6-t-ブチルフエ- ル)フォスフェート、リチウム- 2,2'-メチレン-ビス(4-ェチル -6-t-ブチルフエ-ル)フォ スフェート、ナトリウム- 2,2しブチリデン-ビス(4,6-ジ-メチルフエ-ル)フォスフェート、 ナトリウム- 2,2'-ブチリデン-ビス(4,6-ジ- 1-ブチルフエ-ル)フォスフェート、ナトリウム - 2,2'-t-ォクチルメチレン-ビス(4,6-ジ-メチルフエ-ル)フォスフェート、ナトリウム- 2, 2'-t-ォクチルメチレン-ビス(4, 6-ジ -t-ブチルフエ-ル)フォスフェート、カルシウム-ビ ス-(2, 2しメチレン-ビス(4, 6-ジ -t-ブチルフエ-ル)フォスフェート)、マグネシウム-ビ ス [2, 2しメチレン-ビス(4, 6-ジ -t-ブチルフエ-ル)フォスフェート]、ノ リウム-ビス [2,2, -メチレン-ビス(4,6-ジ -t-ブチルフエ-ル)フォスフェート]、ナトリウム- 2,2'-メチレン- ビス(4-メチル -6-t-ブチルフエ-ル)フォスフェート、ナトリウム- 2,2しメチレン-ビス(4- ェチル -6- 1-ブチルフエ-ル)フォスフェート、ナトリウム- 2,2'-ェチリデン-ビス(4- m- ブチル -6-t-ブチルフエ-ル)フォスフェート、ナトリウム- 2,2'-メチレン-ビス(4,6-ジ-メ チルフエ-ル)フォスフェート、ナトリウム- 2,2しメチレン-ビス(4,6-ジ-ェチルフエ-ル) フォスフェート、カリウム- 2,2しェチリデン-ビス(4,6-ジ -t-ブチルフエ-ル)フォスフエ ート、カルシウム-ビス [2,2'-ェチリデン-ビス(4,6-ジ- 1-ブチルフエ-ル)フォスフエ一 ト]、マグネシウム-ビス [2,2しェチリデン-ビス(4,6-ジ -t-ブチルフエ-ル)フォスフエ ート]、バリウム-ビス [2,2'-ェチリデン-ビス(4,6-ジ- 1-ブチルフエ-ル)フォスフェート ]、アルミニウム-トリス [2, 2しメチレン-ビス(4,6-ジ- 1-ブチルフェル)フォスフェート]、 アルミニウム-トリス [2,2'-ェチリデン-ビス(4,6-ジ- 1-ブチルフエ-ル)フォスフェート] 、およびこれらの二種以上の混合物などを挙げることができる。
[0063] 一般式 [IV]で表わされるヒドロキシアルミニウムフォスフェートィ匕合物も使用可能な 有機リン酸エステル系化合物であって、特に R2および R3が共に tert-ブチル基である 、一般式 [V]で表わされる化合物が好ましい。
[0064] [化 5]
Figure imgf000021_0001
[0065] 式 [V]において、 R1は、炭素原子数 1〜10の 2価炭化水素基であり、 mは 1または 2 である。特に好ましい有機リン酸エステル系化合物は、一般式 [VI]で表わされる化合 物である。
[0066] [化 6]
Figure imgf000021_0002
[0067] 式 [VI]において、 R1は、メチレン基またはェチリデン基である。具体的には、ヒドロキ シアルミニウム-ビス [2,2-メチレン-ビス(4,6-ジ -t-ブチル)フォスフェート]、またはヒド ロキシアルミニウム-ビス [2, 2-ェチリデン-ビス(4,6-ジ -t-ブチル)フォスフェート]であ る。前記ソルビトール系化合物としては、具体的には、 1,3,2,4-ジベンジリデンソルビト ール、 1,3-ベンジリデン -2,4-p-メチルベンジリデンソルビトール、 1,3-ベンジリデン -2 ,4-p-ェチルベンジリデンソルビトール、 1,3-p-メチルベンジリデン- 2,4-ベンジリデン ソルビトール、 1,3-p-ェチルベンジリデン- 2,4-ベンジリデンソルビトール、 1,3-p-メチ ルベンジリデン -2,4-p-ェチルベンジリデンソルビトール、 1,3-p-ェチルベンジリデン -2,4-p-メチルベンジリデンソルビトール、 1,3,2,4-ジ(p-メチルベンジリデン)ソルビト ール、 1,3,2,4-ジ(p-ェチルベンジリデン)ソルビトール、 1,3,2,4-ジ(p- n-プロピルべ ンジリデン)ソルビトール、 1,3,2,4-ジ(p-i-プロピルべンジリデン)ソルビトール、 1,3,2, 4-ジ(p-n-ブチルベンジリデン)ソルビトール、 1 ,3,2,4-ジ(p-s-ブチルベンジリデン) ソルビトール、 I,3,2,4-ジ(p-t-ブチルベンジリデン)ソルビトール、 I,3,2,4-ジ(p-メト キシベンジリデン)ソルビトール、 1,3,2,4-ジ(p-エトキシベンジリデン)ソルビトール、 1, 3-ベンジリデン- 2,4-p-クロルべンジリデンソルビトール、 1,3-p-クロルべンジリデン -2 ,4-ベンジリデンソルビトール、 1,3-p-クロルべンジリデン -2,4-p-メチルベンジリデン ソルビトール、 1,3-p-クロルべンジリデン -2,4-p-ェチルベンジリデンソルビトール、 1, 3-p-メチルベンジリデン -2,4-p-クロルべンジリデンソルビトール、 1,3-p-ェチルベン ジリデン- 2,4-p-クロルべンジリデンソルビトールもしくは 1,3,2,4-ジ(p-クロルべンジリ デン)ソルビトール等を挙げることができる。特に、 1,3,2,4-ジベンジリデンソルビトー ル、 1,3,2,4-ジ(p-メチルベンジリデン)ソルビトールまたは 1,3-p-クロルベンジリデン- 2,4-p-メチルベンジリデンソルビトールが好ましい。
[0068] 本発明で結晶核剤 (D)として使用可能な C4〜C12の脂肪族ジカルボン酸および その金属塩としては、具体的には、コハク酸、ダルタール酸、アジピン酸、スベリン酸 、セバシン酸、およびこれらの Li塩、 Na塩、 Mg塩、 Ca塩、 Ba塩、 A1塩などを挙げる ことができる。また、本発明で結晶核剤 (D)として使用可能な芳香族カルボン酸およ びその金属塩としては、安息香酸、ァリル置換酢酸、芳香族ジカルボン酸およびこれ らの周期律表第 1〜3族金属塩であり、具体的には、安息香酸、 P-イソプロピル安息 香酸、 0-第 3級ブチル安息香酸、 P-第 3級ブチル安息香酸、モノフ -ル酢酸、ジフ ェ-ル酢酸、フエ-ルジメチル酢酸、フタル酸、およびこれらの Li塩、 Na塩、 Mg塩、 Ca塩、 Ba塩、 A1塩などを挙げることができる。
[0069] 本発明で用いられる結晶核剤 (D)は、プロピレン系ランダムブロック共重合体 (A) あるいは該共重合体を含むプロピレン系榭脂組成物 100重量部に対して、通常は 0 . 05〜0. 5重量部、好ましくは 0. 1〜0. 3重量部の割合で添加される。
[0070] なお必要に応じて、本発明のプロピレン系ランダムブロック共重合体 (A)あるいは 該重合体を含むプロピレン系榭脂組成物に、プロピレン系榭脂(P)を添加しても良 ヽ 。ここで使用されるプロピレン系榭脂(P)とは、本発明のプロピレン系ランダムブロック 共重合体 (A)とは異なるプロピレンの単独重合体、プロピレン 'エチレン共重合体、 プロピレン' α -ォレフィン共重合体、プロピレン 'エチレンブロック共重合体、プロピレ ン' α -ォレフィンブロック共重合体、シンジオタクチックプロピレン系重合体、ァタクチ ックプロピレン系重合体等を指す。ここで α -ォレフィンとは、炭素数 4力も炭素数 20 のひ -ォレフィンを使用することができる。
[0071] 本発明のプロピレン系ランダムブロック共重合体 (Α)あるいは該共重合体を含むプ ロピレン系榭脂組成物は、本発明の目的を損なわない範囲で、必要に応じて、ビタミ ン類、酸化防止剤、耐熱安定剤、耐候安定剤、スリップ剤、アンチブロッキング剤、石 油榭脂、ミネラルオイル等の添加物を含んで 、てもよ 、。
[0072] 前記の各成分および必要に応じて各種添加剤を、例えばヘンシェルミキサー、バン ノ リーミキサー、タンブラ一ミキサー等の混合機でブレンドした後、一軸乃至二軸の 押出機を用いてペレット状とした後、得られたペレットなどを用いて、押出成形、射出 成形、射出延伸成形、中空成形等の各種方法により、各種成形体が得られる。以下 、本発明の代表的な用途事例について記載する。
[0073] くシーラントフィルム >
従来プロピレン エチレン共重合体に低温ヒートシール性を付与させる為に、プロ ピレンーブテンランダム共重合体ゴム、ブテン一プロピレンランダム共重合体ゴムを 添カ卩していた力 本発明のプロピレン系ランダムブロック共重合体 (Α)によりこれらゴ ム成分の添加量を低減させることができ、シーラントフィルム製品製造コストの低減ィ匕 が図れる。また、本発明のプロピレン系ランダムブロック共重合体 (Α)はポリエチレン に近い低温ヒートシール性を有すると同時にポリエチレンよりも剛性が高いので、プロ ピレン系ランダムブロック共重合体 (Α)により低温シーラントフィルムの薄肉化を図る ことができる。
[0074] 本発明のプロピレン系ランダムブロック共重合体 (Α)および該共重合体を含むプロ ピレン系榭脂組成物により、製膜性が良好で高剛性かつ低温ヒートシール性を有す るシーラントフィルムを得ることができる。シーラントフィルム用途では、プロピレン系ラ ンダムブロック共重合体 (Α)の融点は 100〜155°C、好ましくは 110°C〜150°C、更 に好ましくは 115°C〜140°Cである。また、室温 n-デカンに可溶な部分(D )の量は
sol
、 10〜40重量%、好ましくは 20〜30重量%である。
[0075] <レトルト用フィルム >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物により、高透明性かつ耐衝撃性が良好なレトルト用フィルムを得 ることができる。レトルト用フィルムでは、加熱処理時の耐熱性が要求される為、プロ ピレン系ランダムブロック共重合体 (A)の中でも融点が 140〜155°C、好ましくは 14 5°C〜155°Cであるプロピレン系ランダムブロック共重合体を用いる。また、室温 n-デ カンに可溶な部分(D )の量は、 10〜40重量%、好ましくは 20〜30重量%である。
sol
特に加熱処理温度が高いハイレトルト用途に使用する場合、本発明のプロピレン系 ランダムブロック共重合体 (A)および該共重合体を含むプロピレン系榭脂組成物に 融点 155°C以上のポリプロピレン単独重合体を添加することが望ましい。
[0076] <シュリンクフィルムおよびシュリンクラベル >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物により、高剛性かつ熱収縮性が良好なシュリンクフィルムおよび シュリンクラベルを得ることができる。これら用途では、プロピレン系ランダムブロック共 重合体(八)の融点は100〜155°〇、好ましくは 115°C〜140°C、更に好ましくは 120 °C〜135°Cである。また、室温 n-デカンに可溶な部分(D )の量は、 10〜40重量%
sol
、好ましくは 15〜30重量%である。ここで、ポリスチレン等の他の素材力もなる熱収 縮性フィルムの代替を図る場合、剛性および熱収縮性改良を目的として、石油榭脂 あるいは融点 155°C以上のポリプロピレン単独重合体を添カ卩しても良い。
[0077] <表面保護用粘着フィルム >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物は、適度に粘着性があり、かつ高温下でのブリード成分が少な いことから、表面保護用フィルム用の基材あるいは自己粘着型表面保護粘着フィル ムとして使用することができる。
[0078] ここで、表面用粘着フィルムの基本的構成は本発明のプロピレン系ランダムブロック 共重合体 (A)該共重合体を含むプロピレン系榭脂組成物を基材とし、必要に応じて そのフィルムの片面に粘着剤層を設けた構成をとる。本発明のプロピレン系ランダム ブロック共重合体 (A)あるいは該共重合体を含むプロピレン系榭脂組成物を基材とし た表面保護用粘着フィルムは、再剥離用途に使用する上で必要とされる適度な粘着 性を有していながら、高温環境下に放置された場合にも粘着力が上昇して再剥離性 を損なうことがないので、携帯電話、携帯ゲーム機、ディスプレイパネル等の電子機 器、精密機器の表面保護粘着フィルムに好適に使用することができる。表面保護用 粘着フィルム用途では、保護する部品に応じて機械特性を制御する必要があるが、 プロピレン系ランダムブロック共重合体 (A)の融点は 100〜 155°C、好ましくは 115 °C〜155°C、更に好ましくは 120°C〜155°Cである。また、室温 n-デカンに可溶な部 分(D )の量は、通常は 10〜40重量%、好ましくは 15〜30重量%である。
sol
[0079] <その他、フイノレム、シート用途 >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物は、医療容器、食品包装、雑貨包装等のその他各種フィルム、 シート用途に使用することができる。
[0080] <射出成形体 >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物は透明性、耐熱性、剛性および低温耐衝撃性に優れていること から、プレフィールドシリンジ等の医療容器、アイスクリーム容器等の食品容器、衣装 ケース等の射出成形体へ好適に使用することができる。これら用途では、プロピレン 系ランダムブロック共重合体 (A)の融点は 100〜 155°C、好ましくは 130°C〜 155°C 、更に好ましくは 140°C〜155°Cである。また、室温 n-デカンに可溶な部分(D )の
sol 量は、 10〜40重量%、好ましくは 10〜30重量%、更に好ましくは 10〜20重量%で ある。特に医療容器等のように加熱滅菌処理が必要な用途では、更に耐熱性を改良 させる目的で、融点 155°C以上のポリプロピレン単独重合体を添加しても良い。
[0081] <射出延伸成形体 >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物は透明性、耐熱性および低温耐衝撃性に優れて ヽることから、 飲料容器、調味料容器等の射出延伸成形体に好適に使用することができる。これら 用途では、プロピレン系ランダムブロック共重合体 (A)の融点は 100〜155°C、好ま しくは 110°C〜155°C、更に好ましくは 120°C〜155°Cである。また、室温 n-デカン に可溶な部分(D )の量は、 10〜40重量%、好ましくは 10〜30重量%、更に好まし
sol
くは 10〜20重量%である。なお、本用途では剛性を改良する目的で融点 155°C以 上のポリプロピレン単独重合体を、また肉厚均一性を改良する為の改質材を必要に 応じて添加しても良い。
[0082] <中空成形体 >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物は高光沢、透明性、低温耐衝撃性に優れていることから、住宅 洗剤ボトル、化粧製品用ボトル等の中空成形体に好適に使用することができる。これ ら用途では、プロピレン系ランダムブロック共重合体 (A)の融点は 100〜155°C、好 ましくは 110°C〜145°C、更に好ましくは 120°C〜140°Cである。また、室温 n-デカン に可溶な部分(D )の量は、 10〜40重量%、好ましくは 10〜30重量%である。なお
sol
、本用途では中空成形時の耐ドローダウン性改良を目的して、超高分子量成分含有 ポリプロピレン重合体等の改質材を必要に応じて添加しても良い。
[0083] <繊維 >
本発明のプロピレン系ランダムブロック共重合体 (A)および該共重合体を含むプロ ピレン系榭脂組成物は、柔軟性が良好なうえ、ベタツキが少ないことから、医療用途 、衛生材用途、工業材用途等の不織布用繊維に使用することができる。これら用途 では、プロピレン系ランダムブロック共重合体 (A)の融点は 100〜155°C、好ましくは 110°C〜140°C、更に好ましくは115で〜130ででぁる。また、室温 n-デカンに可溶 な部分(D )の量は、 10〜40重量%、好ましくは 20〜40重量%である。
sol
[0084] 〔実施例〕
次に本発明を実施例に基づき詳細に説明するが、本発明は力かる実施例に限定さ れるものではない。なお、実施例および比較例における物性の測定方法は次の通り である。
[0085] (ml)MFR (メルトフローレート)
MFRは、 ASTM D1238 (230°C、荷重 2.16kg)に従って測定した。 [0086] (m2)融点 (Tm)
示差走査熱量計 (DSC、パーキンエルマ一社製)を用いて測定を行った。ここで測 定した第 3stepにおける吸熱ピークを融点 (Tm)と定義した。
[0087] (測定条件)
第 lstep : 10°C/minで 240°Cまで昇温し、 lOmin間保持する。
[0088] 第 2step : 10°C/minで 60°Cまで降温する。
[0089] 第 3step : 10°C/minで 240°Cまで昇温する。
[0090] (m3)室温 n-デカン可溶部量 (D
sol 1
最終生成物(すなわち、本発明のプロピレン系ランダムブロック重合体)のサンプル 5gに n-デカン 200mlをカ卩え、 145°Cで 30分間加熱溶解した。約 3時間かけて、 20°Cま で冷却させ、 30分間放置した。その後、析出物(以下、 n-デカン不溶部: D )を濾別
insol した。濾液を約 3倍量のアセトン中入れ、 n-デカン中に溶解していた成分を析出させ た (析出物 (A) )。析出物 (A)とアセトンを濾別し、析出物を乾燥した。なお、濾液側を 濃縮乾固しても残渣は認められな力つた。
[0091] N-デカン可溶部量は、以下の式によって求めた。
n-デカン可溶部量 (wt%) =〔析出物 (A)重量 Zサンプル重量〕 X 100。
[0092] (m4) MwZMn測定 Γ重量平均分子量(Mw)、数平均分子量(Mn) 1
ウォーターズ社製 GPC-150C Plusを用い以下の様にして測定した。分離カラムは、 TSKgel GMH6— HT及び TSKgel GMH6— HTLであり、カラムサイズはそれぞれ 内径 7.5mm、長さ 600mmであり、カラム温度は 140°Cとし、移動相には o-ジクロロベン ゼン (和光純薬工業 (株))および酸ィヒ防止剤として BHT (和光純薬工業 (株)) 0.025重 量%を用い、 l.OmlZ分で移動させ、試料濃度は 0.1重量%とし、試料注入量は 500 マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量 が Mwく 1000および Mw>4 X 106につ!/、ては東ソー(株)製を用い、 1000≤Mw ≤4 X 106につ!/ヽてはプレッシャーケミカル社製を用いた。
[0093] (m5)エチレンに由来する骨格の含有量
D 、D 中のエチレンに由来する骨格濃度を測定するために、サンプル 20〜30mg insol sol
を 1,2,4—トリクロ口ベンゼン/重ベンゼン (2:1)溶液 0.6mlに溶解後、炭素核磁気共鳴 分析(13C- NMR)を行った。プロピレン、エチレン、 α -ォレフィンの定量はダイアツド連 鎖分布より求めた。例えば、プロピレン エチレン共重合体の場合、
[0094] [数 1]
PP= S a a、 EP= S + S。3、 EE=l/2 (SM +S S i ) +l/4Sy S
[0095] を用い、以下の計算式 (Eq-1)および (Eq-2)により求めた。
[0096] [数 2]
プロピレン(mol%) = (PP+1/2EP) X 100/ [ (PP+1/2EP) + (1/2EP+EE) -- (Eq-1) エチレン(mol%) = (1/2EP+EE) X 100/ [ (PP+1/2EP) + (1/2EP+EE) --- (Eq-2)
[0097] (m6)極限粘度「7 l
デカリン溶媒を用いて、 135°Cで測定した。サンプル約 20mgをデカリン 15mlに溶解 し、 135°Cのオイルバス中で比粘度 rj spを測定した。このデカリン溶液にデカリン溶媒 を 5ml追加して希釈後、同様にして比粘度 7? spを測定した。この希釈操作をさらに 2回 繰り返し、濃度 (C)を 0に外挿した時の 7? sp/Cの値を極限粘度として求めた。
[0098] [ 7? ] = lim ( 7? sp/C) (C→0)。
[0099] (m7)2,l-揷入結合量、 1,3-揷入結合量の測定
13C— NMRを用いて、特開平 7-145212号公報に記載された方法に従って、プロピ レンの 2,1-挿入結合量、 1,3-挿入結合量を測定した。
[0100] (m8)半結晶ィ 時間 (T )
1/2
示差走査熱量計 (DSC、セイコーインスツル (株)製)を用いて測定を行った。
[0101] (測定条件)
第 lstep : 10°C/minで 220°Cまで昇温し、 3min間保持する。
[0102] 第 2step : 60°C/minで 110°Cまで降温する。
[0103] (m9)フィルムのヒートシール性(最低ヒートシール温度)
フィルムを 5mm巾にサンプリングし、シール時間を 1秒、圧力を 0.2Mpaに設定してシ ールした。シールバーの上部温度を変動させ、下部を 70°Cでヒートシールしたフィル ムの両端を 300mm/minで引張り、剥離する最大強度を測定し、上部温度 ヒートシ ール強度の関係をプロットした図を作成した。このプロット図よりヒートシール強度が 1 N/ 15mmを発現する温度を読み取り、最低ヒートシール温度とした。
[0104] (mlO)フイノレムのヤング率
JIS K 6781に準じて延伸フィルムのヤング率の測定を行った。なお、引張速度は 20 Omm/min、チャック間距離は 80mmである。
[0105] (mil)フィルムのインパクト試験
フィルムを 5cm X 5cmにサンプリングし、所定温度下でインパクトテスター(下から上 へハンマーを突きあげる方式)で面衝撃強度を測定した (ハンマーの条件:先端 1ィ ンチ、 3. OJ)。
[0106] (ml2) フィルムのヘイズ (HAZE)
ASTM D- 1003に準拠して測定した。
[0107] また、 80°C、 4日間加熱処理した後のフィルムについても同様にヘイズ測定をした
[0108] (m!3)フィルムのブロッキング件
MD方向 10cm X TD方向 10cmのフィルムのチルロール面どうしを重ね合わせ、 50 °Cの恒温槽に 200g/cm2の荷重下で 3日間保持する。その後、 23°C、湿度 50%の室 内にて 24時間以上状態調節した後、引張速度 200mm/minで剥離させたときの剥離 強度を測定し、剥離強度を試験片幅で割った値をブロッキング係数とした。ここで、ブ ロッキング係数が大きいほど、粘着性が大きい。
[0109] (ml4)射出成形体の Izod衝擊強度
アイゾット衝撃強度(IZ)は、 ASTM D256に準拠して下記の条件で測定した。
[0110] <試験条件 >
温度: 23°C
試験片: 12.7mm (幅) X 6.4mm (厚さ) X 64mm (長さ)
ノッチは機械加工により形成した。
[0111] (ml5)射出成形体の高谏 rif衝擊強度 (HRIT)
高速面衝撃強度は以下の条件にて全破壊エネルギーを測定した。
[0112] <試験条件 >
温度 : 0°C 試験片 : 120mm (幅) X 130mm (長さ) X 2. Omm (厚さ)(角板)
速度 : 3m/s
撃芯 : 1/2インチ φ
受け台 : 3インチ φ。
[0113] (ml6)射出成形体の加熱栾形温度
加熱変形温度は、 ASTM D648に従って測定した。
[0114] <試験条件 >
試験片:12.7mm (幅) X 127mm (長さ) X 6.4mm (厚さ)
荷重 : 0. 45MPa
試験片の厚み: 1Z4インチ。
[0115] (ml 7)射出成形体の HAZE
HAZEは、 ASTM D1003に準拠して測定した。
[0116] <試験条件 >
試験片 : 120mm (幅) X 130mm (長さ) X 2. Omm (厚さ)(角板)。
[0117] [製造例 1]
(1)固体触媒担体の製造
容量 1リットル枝付フラスコに SiO 300gをサンプリングし、トルエン 800mlを入れ、ス
2
ラリー化した。
[0118] 次にスラリーを容量 5リットルの 4つ口フラスコへ移液し、トルエン 260mlを加えた。
[0119] ここにメチルアルミノキサン(以下、 MAO)—トルエン溶液(アルべマール社製 10wt %溶液)を 2830ml導入し、室温のままで、 30分間攪拌した。 1時間で 110°Cに昇温 し、 4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエン を抜き出し、フレッシュなトルエンで、置換率が 95%になるまで、置換を行った。
(2)固体触媒成分の製造 (担体への金属触媒成分の担持)
グローブボックス内にて、容量 5リットルの 4つ口フラスコに WO2004/08775号の記載 に従って合成されたジフエ-ルメチレン(3— t—ブチルー 5—メチルシクロペンタジェ -ル)(2, 7—ジー t—ブチルフルォレ -ル)ジルコニウムジクロリド(Ml)を 2. Og秤取 つた。フラスコをグローブボックスの外に出し、トルエン 0. 46リットルと上記 (1)で調製 した MAO/SiO /トルエンスラリー 1. 4リットルとを窒素下でカ卩え、 30分間攪拌し担持
2
を行った。
[0120] 得られたジフエ-ルメチレン(3— t ブチルー 5—メチルシクロペンタジェ -ル)(2,7 t ブチルフルォレ -ル)ジルコニウムジクロリド ZMAOZSiO Zトルエンスラリー
2
は n-ヘプタンにて 99%置換を行い、最終的なスラリー量を 4. 5リットルとした。この操 作は、室温で行った。
(3)予備重合触媒の製造
前記の (2)で調製した固体触媒成分 202g、トリェチルアルミニウム 109ml、ヘプタン 100リットルを内容量 200リットルの攪拌機付きオートクレーブに導入し、内温 15〜2 0°Cに保ち、エチレンを 2020g導入し、 180分間攪拌しながら反応させた。
[0121] 重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を 2 回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度 で 2gZリットルとなるよう、ヘプタンにより調整を行った。この予備重合触媒は固体触 媒成分 lg当りポリエチレンを 10g含んでいた。
(4)本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、上記 (3)で製造した触媒スラリーを固体触媒成分として 3. 6gZ時間、トリェチルァ ルミ-ゥム 2. 2gZ時間を連続的に供給し、管状重合器内に気相の存在しない満液 の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPaZGであ つた。この反応における触媒を Ml系触媒とする。
[0122] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0123] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを 10kgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0124] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0125] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0126] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-1)を得た。得られたプロピレン系ランダムブロック共重合体 (A-1)を、 80°Cで 真空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-1)の特性を表 1 に示す。
[0127] [製造例 2]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 3. 6gZ時間、トリ ェチルアルミニウム 2. 2gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0128] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0129] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0130] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0131] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 mol%になるように供給した。重合温度 54°C、圧力 2. 9MPaZGを保つようにエチレン を供給し重合を行った。
[0132] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-2)を得た。得られたプロピレン系ランダムブロック共重合体 (A-2)を 80°Cで真 空乾燥した。得られたプロピレン系ランダムブロック共重合体 (A-2)の特性を表 1に示 す。
[0133] [製造例 3]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 3. 6gZ時間、トリ ェチルアルミニウム 2. 2gZ時間を連続的に供給し、気相の存在しない満液の状態 にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPaZGであった。こ の反応における触媒を M 1系触媒とする。
[0134] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0135] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0136] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0137] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 mol%になるように供給した。重合温度 51°C、圧力 2. 9MPaZGを保つようにエチレン を供給し重合を行った。
[0138] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-3)を得た。得られたプロピレン系ランダムブロック共重合体 (A-3)を 80°Cで真 空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-3)の特性を表 1に 示す。
[0139] [製造例 4]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 3. 6gZ時間、トリ ェチルアルミニウム 2. 2gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0140] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 1. 6mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0141] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 6mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0142] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 6mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0143] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 63°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0144] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-4)を得た。得られたプロピレン系ランダムブロック共重合体 (A-4)を 80°Cで真 空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-4)の特性を表 1に 示す。
[0145] [製造例 5]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 2. 6gZ時間、トリ ェチルアルミニウム 1. 6gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0146] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 3. 7mol%、水素を気相部の水素濃度が 0. 3mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0147] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 3. 7mol%、水素を気相部の水素濃度が 0. 3mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0148] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 3. 7mol%、水素を気相部の水素濃度が 0. 3mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0149] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0150] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-5)を得た。得られたプロピレン系ランダムブロック共重合体 (A-5)を 80°Cで真 空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-5)の特性を表 1に 示す。
[0151] [製造例 6]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 3. 6gZ時間、トリ ェチルアルミニウム 2. 2gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0152] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0153] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0154] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 5mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0155] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 mol%になるように供給した。重合温度 48°C、圧力 2. 9MPaZGを保つようにエチレン を供給し重合を行った。
[0156] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-6)を得た。得られたプロピレン系ランダムブロック共重合体 (A-6)を 80°Cで真 空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-6)の特性を表 1に 示す。
[0157] [製造例 7]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 2. 7gZ時間、トリ ェチルアルミニウム 1. 6gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0158] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 1. 6mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0159] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 6mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。 [0160] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 1. 6mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0161] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 2 mol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにエチレン を供給し重合を行った。
[0162] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-7)を得た。得られたプロピレン系ランダムブロック共重合体 (A-7)を 80°Cで真 空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-7)の特性を表 1に 示す。
[0163] [製造例 8]
(1) 固体状チタン触媒成分の調製
無水塩化マグネシウム 952g、デカン 4420mlおよび 2—ェチルへキシルアルコール 3906gを、 130°Cで 2時間加熱して均一溶液とした。この溶液中に無水フタル酸 213 gを添加し、 130°Cにてさらに 1時間攪拌混合を行つて無水フタル酸を溶解させた。
[0164] このようにして得られた均一溶液を 23°Cまで冷却した後、この均一溶液 750mlを、 — 20°Cに保持された四塩ィ匕チタン 2000ml中に 1時間にわたって滴下した。滴下後 、得られた混合液の温度を 4時間かけて 110°Cに昇温し、 110°Cに達したところでフ タル酸ジイソブチル (DIBP) 52. 2gを添加し、これより 2時間攪拌しながら同温度に 保持した。次いで熱時濾過にて固体部を採取し、この固体部を 2750mlの四塩ィ匕チ タンに再懸濁させた後、再び 110°Cで 2時間加熱した。
[0165] 加熱終了後、再び熱濾過にて固体部を採取し、 110°Cのデカンおよびへキサンを 用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。
[0166] 上記の様にして調製された固体状チタン触媒成分はへキサンスラリーとして保存さ れるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタ ンを 2重量%、塩素を 57重量%、マグネシウムを 21重量%および DIBPを 20重量% の量で含有していた。
(2) 予備重合触媒の製造
遷移金属触媒成分 56g、トリェチルアルミニウム 8. Og、ヘプタン 80リットルを内容 量 200リットルの攪拌機付きオートクレーブに導入し、内温 5°Cに保ちプロピレンを 56 Og挿入し、 60分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上 澄み液の除去およびヘプタンによる洗浄を 2回行った。得られた予備重合触媒を精 製ヘプタンに再懸濁して、遷移金属触媒成分濃度で 0. 7gZリットルとなるよう、ヘプ タンを加えて調整した。この予備重合触媒は遷移金属触媒成分 lg当りポリプロピレン を 10g含んでいた。
(3) 本重合
内容量 58リットルの管状重合器にプロピレンを 30kgZ時間、エチレン 0. 4kgZ時 間、水素を 300Nリットル Z時間、触媒スラリーを固体触媒成分として 0. 4gZ時間、ト リエチルアルミニウム 2. 7gZ時間、ジシクロペンチルジメトキシシラン 1. 8gZ時間を 連続的に供給し、管状重合器内に気相の存在しない満液の状態にて重合した。環 状反応器の温度は 65°Cであり、圧力は 3. 6MPaZGであった。この反応における触 媒を ZN系触媒とする。
[0167] 得られたスラリーを内容量 100リットルの攪拌器付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを 15kgZ時間、エチレン 0. 3kgZ時間、水素を 気相部の水素濃度が 15. 0mol%になるように供給した。重合温度 63°C、圧力 3. 4M PaZGで重合を行った。
[0168] 得られたスラリーを内容量 2. 4リットルの挟み込み管に移送し、当該スラリーをガス 化させ、気固分離を行った後、 480リットルの気相重合器にポリプロピレンホモポリマ 一パウダーを送り、エチレン Zプロピレンブロック共重合を行った。気相重合器内の ガス組成力 エチレン Z (エチレン +プロピレン) =0. 30 (モル比)、水素 Z (ェチレ ン +プロピレン) =0. 066 (モル比)になるようにプロピレン、エチレン、水素を連続的 に供給した。重合温度 70°C、圧力 1. 2MPaZGで重合を行ってプロピレン系ランダ ムブロック共重合体 (A-8)を得た。
[0169] 得られたプロピレン系ランダムブロック共重合体 (A-8)を 80°Cで真空乾燥させた。 得られたプロピレン系ランダムブロック共重合体 (A-8)の特性を表 1に示す。
[0170] [製造例 9]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。
(1) 本重合
内容量 58リットルの管状重合器にプロピレンを 57kgZ時間、水素を 2. 5Nリットル Z時間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 5. OgZ時間 、トリェチルアルミニウム 2. 3gZ時間を連続的に供給し、気相の存在しない満液の 状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 2. 6MPaZGであった 。この反応における触媒を Ml系触媒とする。
[0171] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 50kgZ時間、エチレンを気相部のエチレン 濃度が 1. 4mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合 温度 60°C、圧力 2. 5MPaZGで重合を行った。
[0172] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを llkgZ時間、エチレンを気相部のエチレン濃 度が 1. 4mol%、水素を気相部の水素濃度が 0. 2mol%になるように供給した。重合温 度 59°C、圧力 2. 4MPaZGで重合を行った。
[0173] 得られたスラリーを気化後、気固分離を行い、プロピレン-エチレンランダム共重合 体 (R— 1)を得た。得られたプロピレン-エチレンランダム共重合体 (R-1)を 80°Cで真 空乾燥させた。得られたプロピレン-エチレンランダム共重合体 (R-1)の特性を表 1に 示す。
[0174] [製造例 10]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。
(1) 本重合
内容量 58リットルの管状重合器にプロピレンを 57kgZ時間、水素を 2. 5Nリットル Z時間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 4. 9gZ時間 、トリェチルアルミニウム 2. 3gZ時間を連続的に供給し、管状重合器内に気相の存 在しない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 2. 7M PaZGであった。この反応における触媒を Ml系触媒とする。
[0175] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 50kgZ時間、エチレンを気相部のエチレン 濃度が 3. 9mol%、水素を気相部の水素濃度が 0. 28mol%になるように供給した。重 合温度 60°C、圧力 2. 6MPaZGで重合を行った。
[0176] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを llkgZ時間、エチレンを気相部のエチレン濃 度が 3. 9mol%、水素を気相部の水素濃度が 0. 28mol%になるように供給した。重合 温度 59°C、圧力 2. 5MPaZGで重合を行った。
[0177] 得られたスラリーを気化後、気固分離を行い、プロピレン-エチレンランダム共重合 体 (R-2)を得た。得られたプロピレン-エチレンランダム共重合体 (R-2)を 80°Cで真 空乾燥させた。得られたプロピレン-エチレンランダム共重合体 (R-2)の特性を表 1に 示す。
[0178] [製造例 11]
(1) 固体状チタン触媒成分の調製
無水塩化マグネシウム 952g、 n-デカン 4420mlおよび 2-ェチルへキシルアルコー ル 3906gを、 130°Cで 2時間加熱して均一溶液とした。この溶液に無水フタル酸 213 gを添加し、 130°Cに加熱して 1時間攪拌混合を行って無水フタル酸を溶解させた。
[0179] こうして得られた均一溶液を 23°Cまで冷却した後、この均一溶媒 750mlを— 20°C に保持された四塩ィ匕チタン 2000ml中に 1時間かけて滴下した。滴下後、得られた混 合物の温度を 4時間かけて 110°Cに昇温し、 110°Cに達したところでフタル酸ジイソ ブチル (DIBP) 52. 2gを添加し、この温度を維持して 2時間攪拌を続けた。
[0180] 次いで、熱時濾過にて固体部を採取し、この固体部を 2750mlの四塩ィ匕チタンに再 び懸濁させた後、再び 110°Cの温度で 2時間加熱した。
[0181] 加熱終了後、再び熱時濾過により固体部を採取し、 110°Cのデカンおよびへキサ ンを用いて、洗浄液中にチタンィ匕合物が検出されなくなるまで洗浄した。
[0182] 上記の様に調製された固体状チタン触媒成分はへキサンスラリーとして保存される 力 このうち一部を乾燥して触媒組成を調べた。 [0183] 固体状チタン触媒成分は、チタンを 2重量%、塩素を 57重量%、マグネシウムを 21 重量%および DIBPを 20重量%の量で含有していた。
(2) 予備重合触媒の製造
遷移金属触媒成分 56g、トリェチルアルミニウム 8. Og、ヘプタン 80リットルを内容 量 200リットルの攪拌機付きオートクレーブに導入し、内温 5°Cに保ちプロピレンを 56 Og導入し、 60分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上 澄み液の除去およびヘプタンによる洗浄を 2回行った。
[0184] 得られた前重合触媒を精製ヘプタンに再懸濁して、遷移金属触媒成分濃度で 0. 7 gZリットルとなるよう、ヘプタンを加えて調整した。この重合触媒は遷移金属触媒成 分 lg当りポリプロピレンを 10g含んで 、た。
(3) 本重合
内容量 100リットルの攪拌器付きベッセル重合器に触媒スラリーを固体触媒成分と して 1. lgZ時間、トリェチルアルミニウム 4. 5gZ時間、シクロへキシルメチルジメトキ シシラン 12. 5gZ時間を連続的に供給し、プロピレンを llOkgZ時間、エチレンを気 相部のエチレン濃度力 0. 8mol%、水素を気相部の水素濃度が 0. 65mol%になる ように供給した。重合温度 65°C、圧力 2. 7MPaZGで重合を行った。この反応にお ける触媒を ZN系触媒とする。
[0185] 得られたスラリーを内容量 1000リットルの攪拌器付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 18kgZ時間、エチレンを気相部のエチレン 濃度が、 3. 4mol%、 1ーブテンを気相部の 1ーブテン濃度力 2. 7mol%、水素を気 相部の水素濃度が 1. 8mol%になるように供給した。重合温度 65°C、圧力 2. 5MPa ZGで重合を行った。
[0186] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダム共重合体 (r-1) を得た。得られたプロピレン系ランダム共重合体 (r-1)を、 80°Cで真空乾燥させた。 得られたプロピレン系ランダム共重合体 (r-1)の特性を表 1に示す。
[0187] [表 1]
Figure imgf000043_0001
実施例 1
製造例 1で製造されたプロピレン系ランダムブロック共重合体 (A— 1) 100重 に対して、熱安定剤 IRGANOX1010 (チバガイギー (株)商標) 0. 1重量部、熱安定剤 IRGAFOS168 (チバガイギー(株)商標) 0. 1重量部、ステアリン酸カルシウム 0. 1重 量部をタンブラ一にて混合後、二軸押出機にて溶融混練してペレット状のポリプロピ レン榭脂組成物を調製し、 Tダイ押出機 [品番 GT— 25A、(株)プラスチック工学研 究所製]を用いてキャストフィルムを製膜した。成形品の物性を表 2に示す。
[0189] <溶融混練条件 >
同方向二軸混練機 : 品番 NR2— 36、ナカタニ機械 (株)製
混練温度 : 180°C
スクリュー回転数 : 200rpm
フィーダ一回転数 : 400rpm
<フィルム成形 >
25mm φ Τダイ押出機:品番 GT— 25Α、(株)プラスチック工学研究所製 押出温度 : 230°C
チルロール温度 : 30°C
引取速度 : 8. 5m/min
フィルム厚さ : 30 /z m
実施例 2
[0190] 実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1) 100重量部を製 造例 2で製造されたプロピレン系ランダムブロック共重合体 (A— 2) 100重量部に代 えた以外は同様に行った。成形品の物性を表 2に示す。
実施例 3
[0191] 実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1) 100重量部を製 造例 3で製造されたプロピレン系ランダムブロック共重合体 (A— 3) 100重量部に代 えた以外は同様に行った。成形品の物性を表 2に示す。
実施例 4
[0192] 実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1) 100重量部を製 造例 4で製造されたプロピレン系ランダムブロック共重合体 (A— 4) 100重量部に代 えた以外は同様に行った。成形品の物性を表 2に示す。 実施例 5
[0193] 実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1)
Figure imgf000045_0001
造例 5で製造されたプロピレン系ランダムブロック共重合体 (Α— 5) 100重:! えた以外は同様に行った。成形品の物性を表 2に示す。
[0194] [比較例 1]
実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1)
Figure imgf000045_0002
造例 6で製造されたプロピレン系ランダムブロック共重合体 (A— 6) 100重:! えた以外は同様に行った。成形品の物性を表 2に示す。
[0195] [比較例 2]
実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1)
Figure imgf000045_0003
造例 7で製造されたプロピレン系ランダムブロック共重合体 (Α— 7) 100重:! えた以外は同様に行った。成形品の物性を表 2に示す。
[0196] [比較例 3]
実施例 1においてプロピレン系ランダムブロック共重合体 (A— 1)
Figure imgf000045_0004
造例 8で製造されたプロピレン系ランダムブロック共重合体 (A— 8) 100重:! えた以外は同様に行った。成形品の物性を表 2に示す。
[0197] [比較例 4]
実施例 1にお 、てプロピレン系ランダムブロック共重合体 (A— 1) 100重量部を製 造例 9で製造されたプロピレン エチレンランダム共重合体 (R— 1) 100重量部に代 えた以外は同様に行った。成形品の物性を表 2に示す。
[0198] [比較例 5]
実施例 1にお 、てプロピレン系ランダムブロック共重合体 (A— 1) 100重量部を製 造例 10で製造されたプロピレン—エチレンランダム共重合体 (R— 2) 100重量部に 代えた以外は同様に行った。成形品の物性を表 2に示す。
[0199] [比較例 6]
実施例 1にお 、てプロピレン系ランダムブロック共重合体 (A— 1) 100重量部を製 造例 11で製造されたプロピレン系エチレン-ブテンランダム共重合体 (r— 1) 100重 量部に代えた以外は同様に行った。成形品の物性を表 2に示す。 室it0201
表 2
Figure imgf000046_0001
is 製造例 11で製造されたプロピレン系エチレン—ブテンランダム共重合体 (r— 1) 80 重量部とプロピレンーブテンランダム共重合体ゴム(タフマー XM7070 (三井化学( 株)商標)(B— d— 1) 20重量部と合わせて 100重量部に対して、熱安定剤 IRGANO X1010 (チバガイギー (株)商標) 0. 1重量部、熱安定剤 IRGAFOS168 (チバガイギー( 株)商標) 0. 1重量部、ステアリン酸カルシウム 0. 1重量部をタンブラ一にて混合後、 二軸押出機にて溶融混練してペレット状のポリプロピレン榭脂組成物を調製し、 Tダ ィ押出機 [品番: GT— 25A、(株)プラスチック工学研究所製]にてキャストフィルムを 製膜した。成形品の物性を表 3に示す。
[0202] <溶融混練条件 >
同方向二軸混練機:品番: NR2— 36、ナカタニ機械 (株)製
混練温度: 180°C
スクリュー回転数: 200rpm
フィーダ一回転数: 400rpm。
[0203] <フィルム成形 >
25mm φ Τダイ押出機:品番: GT— 25Α、(株)プラスチック工学研究所製 押出温度: 230°C
チルロール温度:30°C
引取速度: 8. 5m/min
フィルム厚さ: 30 m。
[0204] [比較例 8]
比較例 7において、プロピレン—ブテンランダム共重合体ゴム(B—d— 1) 20重量 部をプロピレン—ブテンランダム共重合体ゴム(タフマー BL2481 (三井ィ匕学 (株)商 標)(B— d— 2) 20重量部に代えた以外は同様に行った。成形品の物性を表 3に示 す。
[0205] プロピレン系ランダムブロック共重合体 (A— 2)、プロピレン系ランダムブロック共重 合体 (A—3)のフィルム物性を、プロピレン エチレンーブテンランダム共重合体/プ ロピレンーブテンランダム共重合体ブレンド物との比較で表 3にまとめた。
[0206] プロピレン系ランダムブロック共重合体は、プロピレン エチレンーブテンランダム 共重合体/プロピレンーブテンランダム共重合体ブレンド物と比較すると、同等の低 温ヒートシール温度を有するうえ、加熱処理時の透明性低下が少なぐかつインパクト 強度が良好である。従って、本発明のプロピレン系ランダムブロック共重合体により、 プロピレンーブテンランダム共重合体をブレンドすることなぐ低温ヒートシール性等 の機能を付与できることが分力る。
[0207] [表 3]
表 3
Figure imgf000048_0001
[0208] プロピレン系ランダムブロック共重合体 (A— 2) (融点 138°C)の各ヒートシール温度 でのヒートシール強度を以下に示す表 4および図 1にまとめた。
[0209] [表 4] 表 4
Figure imgf000049_0001
[0210] 図 1には、融点 138°Cのプロピレン系ランダムランダム共重合体 (A— 2)力も得られ たフィルムのヒートシール特性をヒートシール温度に対するヒートシール強度との関係 で示した(図中では「〇」で示す)。比較のために融点は 138°Cであるが D が 0、 5重
sol 量0 /0未満であるプロピレン系ランダム共重合体 (R— 1)力 得られたフィルムのヒート シール特性(図中では「口」で示す)および融点が 113°Cであり D が 0、 5重量%未 満であるプロピレン-エチレンランダム共重合体 (R— 2)力 得られたフィルムのヒート シール特性(図中では「△」で示す)を併せて記載する。
[0211] 図 1に示すように、プロピレン系ランダムブロック共重合体 (A— 2)は、融点が 138 °Cであるにも拘らず融点 113°Cのプロピレン エチレンランダム共重合体 (R— 2)と 同等以上の低温ヒートシール性およびヒートシール強度を有している。また、融点 13 8°Cのプロピレン系ランダムブロック共重合体 (A— 2)と同等の融点 138°Cを示す力 D が 0、 5重量0 /0未満であるプロピレン-エチレンランダム共重合体 (R— 2)は、 D sol sol がほとんど含有されてな 、ために、同融点であるプロピレン系ランダムブロック共重合 体 (A— 2)と比較してヒートシール特性が著しく劣ることがわかる。
[0212] 上記融点 113°Cのプロピレン系ランダム共重合体 (R— 2)は、形成されたフィルム は良好なヒートシール特性を有している力 この融点 113°Cのプロピレン系ランダム 共重合体 (R— 2)は、融点が 138°Cのプロピレン系ランダムブロック共重合体 (A— 2 )と比較すると結晶化速度が遅 、ために、著しく製膜しにく 、との特性を有して 、る。
[0213] これらの結果力 本発明の特性を満足するプロピレン系ランダムブロック共重合体( A- 2)は、低温ヒートシール性、ヒートシール強度が良好である上に、フィルム製膜 性が良好であり、ヒートシール剤として好適に使用できることが判る。
[0214] 次に本発明のプロピレン系ランダムブロック重合体と、プロピレン-エチレンランダム 共重合体とのフィルム特性を、プロピレン系ランダムブロック共重合体 (A— 1)のフィ ルム物性、プロピレン—エチレンランダム共重合体 (R- 1)のフィルム特性およびプロ ピレン一エチレンランダム共重合体 (R— 2)のフィルム特性を例にして対比する。
[0215] 表 5に示すように、プロピレン系ランダムブロック共重合体 (A— 1)は、プロピレン系 ランダム共重合体と比較するとブロッキング係数が高 、が、加熱処理時の透明性が 殆ど低下せず、ブリード成分が殆ど無いことが分かる。また、プロピレン系ランダムブ ロック共重合体 (A— 1)の融点は 138°Cと比較的高ぐ高い耐熱性を有しながら、ブ ロッキング係数が高い。
[0216] これらの特性を利用することにより、本発明のプロピレン系ランダムブロック共重合 体は、自己粘着型の再剥離可能な表面保護フィルム等に好適に使用することが可能 である。
[0217] [表 5]
表 5
Figure imgf000050_0001
[0218] [比較例 9]
ポリエチレン榭脂 (ミラソン 11 ( (株)プライムポリマー商標) (C- 1) )を、 Tダイ押出 機 [品番: GT— 25A、(株)プラスチック工学研究所製]にてキャストフィルムを製膜し た。成形品の物性を表 6に示す。
[0219] <フィルム成形 >
25mm φ Τダイ押出機:品番: GT— 25Α、(株)プラスチック工学研究所製 押出温度: 230°C
チルロール温度:30°C
引取速度: 8. 5m/min
フィルム厚さ: 30 m。
[0220] [比較例 10]
ポリエチレン榭脂(15100C (株)プライムポリマー商標 (C— 2) )を、 Tダイ押出機 [ 品番: GT— 25A、(株)プラスチック工学研究所製]にてキャストフィルムを製膜した。 成形品の物性を表 6に示す。
[0221] <フィルム成形 >
25mm φ Τダイ押出機:品番 GT— 25Α、(株)プラスチック工学研究所製 押出温度: 230°C
チルロール温度:30°C
引取速度: 8. 5m/min
フィルム厚さ: 30 m。
[0222] 本発明のプロピレン系ランダムブロック共重合体 (A— 2)とポリエチレン榭脂とのフィ ルム物性を比較した結果を表 6にまとめた。
[0223] プロピレン系ランダムブロック共重合体 (A— 2)は、ポリエチレン榭脂(C— 1)と同等 の低温ヒートシール性を有しながら、ヤング率が高い。その為、プロピレン系ランダム ブロック共重合体 (A— 2)は、現在使用されているポリエチレン榭脂製シーラントフィ ルムに対して、フィルムの薄肉化が可能である。
[0224] [表 6] 表 6
Figure imgf000052_0001
[0225] [製造例 12]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 2. 6gZ時間、トリ ェチルアルミニウム 1. 6gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0226] 得られたスラリーは内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0227] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。
[0228] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0229] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0230] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-9)を得た。得られたプロピレン系ランダムブロック共重合体 (A-9)を 80°Cで真 空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-9)の特性を表 7に 示す。
[0231] [製造例 13]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、前記製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 2. 6gZ時間 、トリェチルアルミニウム 1. 6gZ時間を連続的に供給し、管状重合器内に気相の存 在しない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2M PaZGであつた。この反応における触媒を M 1系触媒とする。
[0232] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0233] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。
[0234] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。
[0235] 得られたスラリーは内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0236] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A-10)を得た。得られたプロピレン系ランダムブロック共重合体 (A-10)を 80°Cで 真空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-10)の特性を 表 7に示す。
[0237] [製造例 14]
(1) 固体触媒担体の製造
容量 1リットル枝付フラスコに SiO 300gをサンプリングし、トルエン 800mlを入れ、ス
2
ラリーィ匕した。次にスラリーを容量 5リットルの 4つ口フラスコへ移液をし、トルエン 260 mlを加えた。メチルアルミノキサン(以下、 MAO)—トルエン溶液(アルべマール社製 10wt%溶液)を 2830ml導入した。室温のままで、 30分間攪拌した。 1時間で 110°C に昇温し、 4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みト ル工ンを抜き出し、フレッシュなトルエンで、置換率が 95%になるまで、置換を行った
(2) 固体触媒成分の製造 (担体への金属触媒成分の担持)
グローブボックス内にて、容量 5リットノレの 4つ口フラスコに W02006/068308号の記 載に従って合成された [3- (1 ' ,1 ' ,4' ,4' ,7' ,7' ,10' ,10,-オタタメチルォクタヒドロジべ ンゾ [b,h]フルォレ -ル) (1,1, 3-トリメチル -5-tert-ブチル -1,2,3, 3a-テトラヒドロペンタレ ン)]ジルコニウムジクロライド(M2)を 2. 0g秤取った。フラスコをグローブボックスから 取り出し、トルエン 0. 46リットルと前記(1)で調製した MAO/SiO /トルエンスラリー 1
2
. 4リットルを窒素雰囲気下で加え、 30分間攪拌し担持を行った。得られた [3-(1 ' ,1 ' , 4' ,4' ,10' ,10 ' -オタタメチルォクタヒドロジべンゾ [b,h]フルォレニル) (1,1, 3-トリメ チル -5-tert-ブチル -1,2,3,3a-テトラヒドロペンタレン)]ジルコニウムジクロライド ZMA O/SiO Zトルエンスラリーは n-ヘプタンにて 99%置換を行い、最終的なスラリー量
2
を 4. 5リットルとした。この操作は、室温で行った。
(3) 予備重合触媒の製造
前記の (2)で調製した固体触媒成分 202g、トリェチルアルミニウム 109ml、ヘプタン 100リットルを内容量 200リットルの攪拌機付きオートクレーブに導入し、内温 15〜2 0°Cに保ちエチレンを 2020g導入し、 180分間攪拌しながら反応させた。重合終了 後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を 2回行った。 得られた予備重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で 2gZリツ トルとなるよう、ヘプタンにより調整を行った。この予備重合触媒は固体触媒成分 lg 当りポリエチレンを 10g含んで!/、た。
(4) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、前記製造例 13の (3)で製造した触媒スラリーを固体触媒成分として 1. 6gZ時間 、トリェチルアルミニウム 1. OgZ時間を連続的に供給し、管状重合器内に気相の存 在しない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2M PaZGであった。この反応における触媒を M2系触媒とする。
[0238] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 0. 7mol%、水素を気相部の水素濃度が 0. 5mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0239] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを 10kgZ時間、エチレンを気相部のエチレン濃 度が 0. 7mol%、水素を気相部の水素濃度が 0. 5mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。
[0240] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを 10kgZ時間、エチレンを気相部のエチレン濃 度が 0. 7mol%、水素を気相部の水素濃度が 0. 5mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。 [0241] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0242] 得られたスラリーを気化後、気固分離を行い、プロピレン系ランダムブロック共重合 体 (A- 11)を得た。得られたプロピレン系ランダムブロック共重合体 (A- 11)は、 80°C で真空乾燥を行った。得られたプロピレン系ランダムブロック共重合体 (A-11)の特 性を表 7に示す。
[0243] [製造例 15]
重合方法を以下の様に変えた以外は、製造例 14と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 13の (3)で製造した触媒スラリーを固体触媒成分として 1. 6gZ時間、トリ ェチルアルミニウム 1. OgZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を M2系触媒とする。
[0244] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 0. 7mol%、水素を気相部の水素濃度が 0. 5mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0245] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 7mol%、水素を気相部の水素濃度が 0. 5mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。
[0246] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 7mol%、水素を気相部の水素濃度が 0. 5mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。 [0247] 得られたスラリーは内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0248] 得られたスラリーを気化後、気固分離を行 、、プロピレン系ランダムブロック共重合 体 (A— 12)を得た。得られたプロピレン系ランダムブロック共重合体 (A-12)を 80°Cで 真空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-12)の特性を 表 7に示す。
[0249] [製造例 16]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 2. 6gZ時間、トリ ェチルアルミニウム 1. 6gZ時間を連続的に供給し、気相の存在しない満液の状態 にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPaZGであった。こ の反応における触媒を M 1系触媒とする。
[0250] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0251] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。
[0252] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。 [0253] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 1 lmol%になるように供給した。重合温度 54°C、圧力 2. 9MPaZGを保つようにェチレ ンを供給し重合を行った。
[0254] 得られたスラリーを気化後、気固分離を行 、、プロピレン系ランダムブロック共重合 体 (A-13)を得た。得られたプロピレン系ランダムブロック共重合体 (A-13)を 80°Cで 真空乾燥させた。得られたプロピレン系ランダムブロック共重合体 (A-13)の特性を 表 7に示す。
[0255] [製造例 17]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 40kgZ時間、水素を 5Nリットル Z時 間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 2. 6gZ時間、トリ ェチルアルミニウム 1. 6gZ時間を連続的に供給し、管状重合器内に気相の存在し ない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 3. 2MPa ZGであった。この反応における触媒を Ml系触媒とする。
[0256] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 45kgZ時間、エチレンを気相部のエチレン 濃度が 0. 8mol%、水素を気相部の水素濃度が 0. 8mol%になるように供給した。重合 温度 72°C、圧力 3. IMPaZGで重合を行った。
[0257] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 8mol%になるように供給した。重合温 度 71°C、圧力 3. OMPaZGで重合を行った。
[0258] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを lOkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 8mol%になるように供給した。重合温 度 70°C、圧力 3. OMPaZGで重合を行った。 [0259] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、共重合 を行った。重合器へは、プロピレンを lOkgZ時間、水素を気相部の水素濃度が 0. 2 mol%になるように供給した。重合温度 61°C、圧力 2. 9MPaZGを保つようにエチレン を供給し重合を行った。
[0260] 得られたスラリーを気化後、気固分離を行 、、プロピレン系ランダムブロック共重合 体 (A-14)を得た。得られたプロピレン系ランダムブロック共重合体 (A-14)は、 80°C で真空乾燥を行った。得られたプロピレン系ランダムブロック共重合体 (A-14)の特 性を表 7に示す。
[0261] [製造例 18]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。
(1) 本重合
内容量 58リットルの管状重合器にプロピレンを 57kgZ時間、水素を 2. 5Nリットル Z時間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 4. 2gZ時間 、トリェチルアルミニウム 2. 6gZ時間を連続的に供給し、管状重合器内に気相の存 在しない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 2. 6M PaZGであつた。この反応における触媒を M 1系触媒とする。
[0262] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 50kgZ時間、エチレンを気相部のエチレン 濃度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合 温度 60°C、圧力 2. 5MPaZGで重合を行った。
[0263] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを llkgZ時間、エチレンを気相部のエチレン濃 度が 0. 8mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 59°C、圧力 2. 4MPaZGで重合を行った。
[0264] 得られたスラリーを気化後、気固分離を行い、プロピレン-エチレンランダム共重合 体 (R-3)を得た。得られたプロピレン-エチレンランダム共重合体 (R-3)を 80°Cで真 空乾燥させた。得られたプロピレン-エチレンランダム共重合体 (R-3)の特性を表 7に 示す。 [0265] [製造例 19]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 57kgZ時間、水素を 2. 5Nリットル Z時間、製造例 1の (3)で製造した触媒スラリーを固体触媒成分として 3. lgZ時間 、トリェチルアルミニウム 1. 9gZ時間を連続的に供給し、管状重合器内に気相の存 在しない満液の状態にて重合した。管状反応器の温度は 30°Cであり、圧力は 2. 7M PaZGであつた。この反応における触媒を M 1系触媒とする。
[0266] 得られたスラリーを内容量 1000リットルの攪拌機付きベッセル重合器へ送り、更に 重合を行った。重合器へは、プロピレンを 50kgZ時間、エチレンを気相部のエチレン 濃度が 2. 7mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合 温度 60°C、圧力 2. 6MPaZGで重合を行った。
[0267] 得られたスラリーを内容量 500リットルの攪拌機付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを llkgZ時間、エチレンを気相部のエチレン濃 度が 2. 7mol%、水素を気相部の水素濃度が 0. 4mol%になるように供給した。重合温 度 59°C、圧力 2. 5MPaZGで重合を行った。
[0268] 得られたスラリーを気化後、気固分離を行い、プロピレン-エチレンランダム共重合 体 (R-4)を得た。得られたプロピレン-エチレンランダム共重合体 (R-4)を 80°Cで真 空乾燥させた。得られたプロピレン-エチレンランダム共重合体 (R-4)の特性を表 7に 示す。
[0269] [製造例 20]
重合方法を以下の様に変えた以外は、製造例 8と同様の方法で行った。 (1) 本重合
内容量 58リットルの管状重合器にプロピレンを 30kgZ時間、エチレン 0. 2kgZ時 間、水素を 250Nリットル Z時間、触媒スラリーを固体触媒成分として 0. 4gZ時間、ト リエチルアルミニウム 1. 9gZ時間、ジシクロペンチルジメトキシシラン 1. 9gZ時間を 連続的に供給し、管状重合器内に気相の存在しない満液の状態にて重合した。環 状反応器の温度は 65°Cであり、圧力は 3. 6MPaZGであった。この反応における触 媒を ZN系触媒とする。
[0270] 得られたスラリーを内容量 100リットルの攪拌器付きベッセル重合器へ送り、更に重 合を行った。重合器へは、プロピレンを 15kgZ時間、エチレン 0. 2kgZ時間、水素を 気相部の水素濃度が 5. Omol%になるように供給した。重合温度 63°C、圧力 3. 4MP a,Gで重合を行った。
[0271] 得られたスラリーを内容量 2. 4リットルの挟み込み管に移送し、当該スラリーをガス 化させ、気固分離を行った後、 480リットルの気相重合器にポリプロピレンホモポリマ 一パウダーを送り、エチレン Zプロピレンブロック共重合を行った。気相重合器内の ガス組成力 エチレン Z (エチレン +プロピレン) =0. 11 (モル比)、水素 Z (ェチレ ン +プロピレン) =0. 024 (モル比)になるようにプロピレン、エチレン、水素を連続的 に供給した。重合温度 70°C、圧力 1. 2MPaZGで重合を行ってプロピレン系ランダ ムブロック共重合体 (A-15)を得た。
[0272] 得られたプロピレン系ランダムブロック共重合体 (A-15)を 80°Cで真空乾燥させた。
得られたプロピレン系ランダムブロック共重合体 (A-15)の特性を表 7に示す。
[0273] [製造例 21]
重合方法を以下の様に変えた以外は、製造例 8と同様の方法で行った。 (1) 本重合
内容量 500リットルの攪拌機付きベッセル重合器にプロピレンを 130kgZ時間、気 相部の水素濃度が 5mol%になるように供給した。比較例 5の (3)で製造した触媒スラリ 一を固体触媒成分として 1. 3gZ時間、トリェチルアルミニウム 5. 9gZ時間、ジシク 口ペンチルジメトキシシラン 5. 9gZ時間を連続的に供給した。重合温度は 65°Cであ り、圧力は 3. OMPaZGであった。この反応における触媒を ZN系触媒とする。
[0274] 得られたスラリーを気化後、気固分離を行い、プロピレン-エチレンランダム共重合 体ゴム(R-5)を得た。得られたプロピレン-エチレンランダム共重合体ゴム(R-5)は、 8 0°Cで真空乾燥を行った。得られたプロピレン-エチレンランダム共重合体ゴム (R-5) の物性を表 7に示す。
[0275] [製造例 22]
重合方法を以下の様に変えた以外は、製造例 1と同様の方法で行った。 (1) 本重合
充分に窒素置換し、 10°Cにした内容量 30リットルの SUS製オートクレープに液体 プロピレン 9kgを導入し、エチレンを分圧として 0. 5MPa導入した。充分に撹拌しな 力 Sら 45°Cまで加温し、触媒挿入用ポットから、固体触媒成分として 0. 6gZヘプタン 3 OOmlとトリェチルアルミニウム 0. 5mlの混合溶液を窒素でオートクレーブに加圧圧入 した。この反応における触媒を Ml系触媒とする。
[0276] 60°Cで、 20分間重合を行った後、メタノールを添加し重合を停止した。重合終了 後、プロピレンをパージし、充分窒素置換をし、ポリマー(B- a-1)を分別した。 80°Cで 真空乾燥を行った。得られたプロピレン系共重合体 (Β-a-l)の物性を表 7に示す。
[0277] [表 7]
Figure imgf000063_0001
実施例 6
製造例 12で製造されたプロピレン系ランダムブロック共重合体 (A— 9) 100重 に対して、結晶核剤アデカスタブ NA21 (旭電化 (株)商標) 0. 3重量部、熱安定剤 IR GANOX1010 (チバガイギー(株)商標) 0. 1重量部、熱安定剤 IRGAFOS168 (チパガ ィギー (株)商標) 0. 1重量部、ステアリン酸カルシウム 0. 1重量部をタンブラ一にて 混合後、二軸押出機にて溶融混練してペレット状のポリプロピレン榭脂組成物を調製 し、射出成形機にて ASTM試験片と角板 (HAZE、高速面衝撃測定用)を成形した 。成形品の機械物性を表 8に示す。
[0279] <溶融混練条件 >
同方向二軸混練機 : 品番 NR2— 36、ナカタニ機械 (株)製
混練温度 : 190°C
スクリュー回転数 : 200rpm
フィーダ一回転数 : 400rpm。
[0280] < ASTM試験片射出成形条件 >
射出成形機 : 品番 IS 100、東芝機械 (株)製
シリンダー温度 : 190°C
金型温度 : 40°C。
[0281] <角板射出成形条件 >
射出成形機 : 品番 AUTOSHOT Tseries MODEL100D、 FANUC (株)製 シリンダー温度 : 210°C
金型温度 : 40°C。
実施例 7
[0282] 実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製造 例 13で製造されたプロピレン系ランダムブロック共重合体 (A— 10) 100重量部に代 えた以外は同様に行った。成形品の物性を表 8に示す。
実施例 8
[0283] 実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製造 例 14で製造されたプロピレン系ランダムブロック共重合体 (A— 11) 100重量部に代 えた以外は同様に行った。成形品の物性を表 8に示す。
実施例 9 [0284] 実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製造 例 15で製造されたプロピレン系ランダムブロック共重合体 (A— 12) 100重量部に代 えた以外は同様に行った。成形品の物性を表 8に示す。
実施例 10
[0285] 実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製造 例 16で製造されたプロピレン系ランダムブロック共重合体 (A— 13) 100重量部に代 えた以外は同様に行った。成形品の物性を表 8に示す。
[0286] [比較例 11]
実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製 造例 17で製造されたプロピレン系ランダムブロック共重合体 (A— 14) 100重量部に 代えた以外は同様に行った。成形品の物性を表 8に示す。
[0287] [比較例 12]
実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製 造例 18で製造されたプロピレン―エチレンランダム共重合体 (R— 3) 100重量部に 代えた以外は同様に行った。成形品の物性を表 8に示す。
[0288] [比較例 13]
実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製 造例 19で製造されたプロピレン エチレンランダム共重合体 (R— 4) 100重量部に 代えた以外は同様に行った。成形品の物性を表 8に示す。
[0289] [比較例 14]
実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製 造例 20で製造されたプロピレン系ランダムブロック共重合体 (A— 15) 100重量部に 代えた以外は同様に行った。成形品の物性を表 8に示す。
[0290] [比較例 15]
実施例 6にお 、てプロピレン系ランダムブロック共重合体 (A— 9) 100重量部を製 造例 21で製造されたプロピレン—エチレンランダム共重合体 (R— 5) 100重量部に 代えた以外は同様に行った。成形品の物性を表 8に示す。
[0291] [表 8]
Figure imgf000066_0001
実施例 11
製造例 14で製造されたプロピレン系ランダムブロック共重合体 (A— 11) 95重量部と ポリエチレン榭脂(エボリユー SP0510 ( (株)プライムポリマー商標))(C— 3) 5重量 部とを合わせて 100重量部に対して、結晶核剤アデカスタブ NA21 (旭電化 (株)商標 ) 0. 3重量部、熱安定剤 IRGANOX1010 (チバガイギー (株)商標) 0. 1重量部、熱安 定剤 IRGAFOS168 (チバガイギー (株)商標) 0. 1重量部、ステアリン酸カルシウム 0. 1重量部をタンブラ一にて混合後、二軸押出機にて溶融混練してペレット状のポリプ ロピレン榭脂組成物を調製し、射出成形機にて ASTM試験片と角板 (HAZE、高速 面衝撃測定用)を成形した。成形品の機械物性を表 9に示す。
[0293] <溶融混練条件 >
同方向二軸混練機 : 品番 NR2— 36、ナカタニ機械 (株)製
混練温度 : 190°C
スクリュー回転数 : 200rpm
フィーダ一回転数 : 400rpm。
[0294] < ASTM試験片射出成形条件 >
射出成形機 : 品番 IS 100、東芝機械 (株)製
シリンダー温度 : 190°C
金型温度 : 40°C。
[0295] <角板射出成形条件 >
射出成形機:品番 AUTOSHOT Tseries MODEL100D、 FANUC (株)製 シリンダー温度 : 210°C
金型温度 : 40°C。
実施例 12
[0296] 製造例 18で製造されたプロピレン—エチレンランダム共重合体 (R— 3) 80重量部と 製造例 21で製造されたプロピレン—エチレンランダム共重合体ゴム (B— a— 1) 20重 量部とを合わせて 100重量部に対して、結晶核剤アデカスタブ NA21 (旭電化 (株)商 標) 0. 3重量部、熱安定剤 IRGANOX1010 (チバガイギー (株)商標) 0. 1重量部、熱 安定剤 IRGAFOS168 (チバガイギー (株)商標) 0. 1重量部、ステアリン酸カルシウム 0 . 1重量部をタンブラ一にて混合後、二軸押出機にて溶融混練してペレット状のポリ プロピレン榭脂組成物を調製し、射出成形機にて ASTM試験片と角板 (HAZE、高 速面衝撃測定用)を成形した。成形品の機械物性を表 9に示す。
[0297] <溶融混練条件 >
同方向二軸混練機 : 品番 NR2— 36、ナカタニ機械 (株)製 混練温度 : 190°C
スクリュー回転数 : 200rpm
フィーダ一回転数 : 400rpm。
[0298] <ASTM試験片射出成形条件 >
射出成形機 : 品番 IS 100、東芝機械 (株)製
シリンダー温度 : 190°C
金型温度 : 40°C。
[0299] <角板射出成形条件 >
射出成形機:品番 AUTOSHOT Tseries MODEL100D、 FANUC (株)製 シリンダー温度 : 210°C
金型温度 : 40°C。
[0300] [表 9]
表 9
Figure imgf000068_0001
[0301] プロピレン系ランダムブロック共重合体 (A— 11)とプロピレン一エチレンランダム共 重合体ゴム (R— 5)の射出成形品機械物性を比較した結果を表 10に示す。
[0302] プロピレン系ランダムブロック共重合体 (A— 11)は、プロピレン一エチレンランダム 共重合体ゴム (R— 5)と同等の透明性を有しながら、耐衝撃性、加熱変形温度が高 い。これより本発明のプロピレン系ランダムブロック共重合体 (A)は、耐熱処理が必要 とされ、かつ透明性と耐衝撃性が要求される食品容器、医療容器に好適に使用可能 であることが半 Uる。
[0303] [表 10]
表 1 0
Figure imgf000069_0001
産業上の利用可能性
[0304] 本発明のプロピレン系ランダムブロック共重合体 (A)は、 n-デカン不溶分 (D )が
insol 低融点であり、 n-デカン可溶分 (D )が高分子量かつ組成分布が狭いという特性を
sol
有しており、このプロピレン系ランダムブロック共重合体 (A)またはこれを含むプロピレ ン系榭脂組成物は、フィルム用途では低温ヒートシール性、透明性、耐衝撃性、熱収 縮性に優れ、射出成形用途、射出延伸成形用途、中空成形用途では、耐熱性と剛 性、耐衝撃性に優れる。従って、本発明のプロピレン系ランダムブロック共重合体 (A )またはプロピレン系榭脂組成物は、各種包装用低温シーラント、食品包装用レトルト フィルム、熱収縮性フィルム、熱収縮性ラベル、表面保護用粘着性フィルム、医療用 包装フィルム、医療用容器、食品用容器、飲料用容器等、各種成形体用途に好適に 使用される。

Claims

請求の範囲 [1] メルトフローレートが 0. l〜lOOg/10min、融点が 100〜155°Cの範囲にあるプロピレ ン系ブロック共重合体で、室温 n-デカンに不溶な部分 (D ) 90〜60重量%と室温 n insol -デカンに可溶な部分 (D ) 10〜40重量%とから構成され、前記 D が要件 (1)〜(3) sol insol を満たし、前記 D が要件 (4)〜(6)を満たすことを特徴とするプロピレン系ランダムプロ sol ック共重合体 (A) ;
(1) D の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5
insol
(2) D 中のエチレンに由来する骨格の含有量が 0. 5〜13モル0 /0
insol
(3) D 中のプロピレンの 2,1-挿入結合量と 1,3-挿入結合量の和が 0. 2モル0 /0以下 insol
(4) D の GPCから求めた分子量分布(MwZMn)が 1. 0〜3. 5
sol
(5) D
Figure imgf000071_0001
(6) D 中のエチレンに由来する骨格の含有量が 15〜35モル0 /0
sol
[2] 上記プロピレン系ブロック共重合体力 メタ口セン触媒系で重合されてなることを特徴 とする請求項 1記載のプロピレン系ランダムブロック重合体 (A)。
[3] 請求項 1に記載したプロピレン系ランダムブロック共重合体 (A)と、該プロピレン系ラ ンダムブロック共重合体 (A) 100重量部に対して、結晶核剤(D)を 0. 05〜0. 5重量 部の量で含有してなることを特徴とする請求項 1記載のプロピレン系ランダムブロック 共重合体 (A)。 請求項 1または請求項 2に記載したプロピレン系ランダムブロック共重合体 (A)と、ェ ラストマー (B)および Zまたはポリエチレン榭脂 (C)とを含有することを特徴とするプ ロピレン系榭脂組成物。
[5] 上記プロピレン系ランダムブロック共重合体 (A) 100重量部に対して、エラストマ一( B)を 0〜50重量部の範囲内の量、ポリエチレン榭脂(C)を 0〜50重量部の範囲内の 量で配合することを特徴とする請求項 3記載のプロピレン系榭脂組成物 (ただし、エラ ストマー(B)とポリエチレン榭脂(C)とが同時に 0重量部となることはな 、。 )
[6] 請求項 1に記載したプロピレン系ランダムブロック共重合体 (A) 100重量部に対して 0. 05〜0. 5重量部の量の結晶核剤(D)とを含有してなることを特徴とする請求項 4 記載のプロピレン系榭脂組成物。
[7] 請求項 4に記載したプロピレン系榭脂組成物 100重量部に、結晶核剤 (D)を 0. 05 〜0. 5重量部の量で含有してなるプロピレン系榭脂組成物。
[8] 請求項 1〜7の 、ずれかに記載のプロピレン系ランダムブロック共重合体またはプロ ピレン系榭脂組成物から得られるシートまたはフィルム。
[9] シートまたはフィルム力 シーラントフィルムであることを特徴とする請求項 8記載のシ ートまたはフィルム。
[10] シートまたはフィルム力 レトルトフィルム用シーラントフィルムであることを特徴とする 請求項 8記載のシートまたはフィルム。
[11] シートまたはフィルム力 粘着フィルムであることを特徴とする請求項 8記載のシートま たはフィルム。
[12] シートまたはフィルム力 表面保護フィルムであることを特徴とする請求項 8記載のシ ートまたはフィルム。
[13] 請求項 1〜7のいずれかに記載のプロピレン系ランダムブロック共重合体 (A)または プロピレン系榭脂組成物から得られる射出成形体。
[14] 請求項 1〜7 、ずれかに記載のプロピレン系ランダムブロック共重合体 (A)またはプ ロピレン系榭脂組成物から得られる中空成形体。
[15] 請求項 1〜7のいずれかに記載のプロピレン系ランダムブロック共重合体 (A)または プロピレン系榭脂組成物力 得られる射出延伸ブロー成形体。
[16] 請求項 1〜7のいずれかに記載のプロピレン系ランダムブロック共重合体 (A)または プロピレン系榭脂組成物からなる成形体が、食品容器であることを特徴とする成形体
請求項 1〜7の 、ずれかに記載のプロピレン系ランダムブロック共重合体 (A)または プロピレン系榭脂組成物からなる成形体が、医療用器具であることを特徴とする成形 体。 請求項 1〜7の 、ずれかに記載のプロピレン系ランダムブロック共重合体 (A)または プロピレン系榭脂組成物力も得られる繊維。
PCT/JP2007/056302 2006-03-29 2007-03-27 プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物およびそれからなる成形体 WO2007116709A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800115268A CN101410426B (zh) 2006-03-29 2007-03-27 丙烯类无规嵌段共聚物、含有该共聚物的树脂组合物和由其形成的成型体
EP07739740.4A EP2006314B2 (en) 2006-03-29 2007-03-27 Propylene random block copolymer, resin compositions containing the copolymer, and moldings of both
US12/225,689 US20090069523A1 (en) 2006-03-29 2007-03-27 Propylene Random Block Copolymer, Resin Composition Containing the Copolymer and Molded Article Made Thereof
JP2008509759A JP5167120B2 (ja) 2006-03-29 2007-03-27 プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物およびそれからなる成形体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-092184 2006-03-29
JP2006092184 2006-03-29
JP2006-092185 2006-03-29
JP2006092185 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007116709A1 true WO2007116709A1 (ja) 2007-10-18

Family

ID=38581008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056302 WO2007116709A1 (ja) 2006-03-29 2007-03-27 プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物およびそれからなる成形体

Country Status (7)

Country Link
US (1) US20090069523A1 (ja)
EP (1) EP2006314B2 (ja)
JP (1) JP5167120B2 (ja)
KR (1) KR101007482B1 (ja)
CN (1) CN101410426B (ja)
TW (1) TW200745178A (ja)
WO (1) WO2007116709A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041381A1 (ja) * 2007-09-28 2009-04-02 Mitsui Chemicals, Inc. シリンジ用ポリプロピレン樹脂およびこれを原料として得られるシリンジ並びにプレフィルドシリンジ製剤
JP2009084378A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc シュリンクラベル
JP2009084303A (ja) * 2007-09-27 2009-04-23 Mitsui Chemicals Inc プロピレン系樹脂組成物およびその用途
JP2009084305A (ja) * 2007-09-27 2009-04-23 Mitsui Chemicals Inc 医療容器用プロピレン系ランダムブロック共重合体および該共重合体等からなる医療容器用シートまたは医療容器用フィルム
JP2009084379A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc レトルト食品包装用フィルム
JP2009149724A (ja) * 2007-12-19 2009-07-09 Japan Polypropylene Corp プロピレン・エチレン系樹脂組成物およびそれからなる容器
JP2009185237A (ja) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc 積層フィルム
JP2009185240A (ja) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc 熱成形用シート
JP2009185239A (ja) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc 表面保護フィルム
JP2009275132A (ja) * 2008-05-15 2009-11-26 Japan Polypropylene Corp 難燃性樹脂組成物及びそれを用いた成形体
WO2014030594A1 (ja) * 2012-08-24 2014-02-27 株式会社プライムポリマー 表面保護フィルムおよび表面保護フィルム用プロピレン共重合体組成物
WO2014142111A1 (ja) * 2013-03-12 2014-09-18 三井化学株式会社 オレフィン重合体の製造方法およびオレフィン重合用触媒
JP2019172944A (ja) * 2017-05-26 2019-10-10 三井化学株式会社 プロピレン/α−オレフィン共重合体の製造方法
KR20210092816A (ko) 2019-02-26 2021-07-26 가부시키가이샤 프라임 폴리머 프로필렌계 수지 조성물 및 성형체
JP7474624B2 (ja) 2020-03-27 2024-04-25 株式会社プライムポリマー プロピレン系樹脂組成物、およびそれを用いた射出成型品

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089187A1 (en) * 2006-08-10 2011-04-21 Capitol Vial Inc. Shatterproof Container And Cap Assembly
US8083094B2 (en) 2006-08-10 2011-12-27 Capitol Vial Inc. Container and cap assembly
US20100249354A1 (en) * 2009-03-26 2010-09-30 Fina Technology, Inc. Injection stretch blow molded articles and syndiotactic polymers for use therein
BR112013015536A2 (pt) 2010-12-21 2017-07-25 Basell Polyolefine Gmbh composição de polipropileno com alta elasticidade e transparência
US8715449B2 (en) 2011-06-17 2014-05-06 Berry Plastics Corporation Process for forming an insulated container having artwork
US9758292B2 (en) 2011-06-17 2017-09-12 Berry Plastics Corporation Insulated container
AU2012363114B2 (en) 2011-06-17 2016-10-06 Berry Plastics Corporation Insulated sleeve for a cup
WO2012174422A2 (en) 2011-06-17 2012-12-20 Berry Plastics Corporation Insulated container with molded brim
DE202012013192U1 (de) 2011-08-31 2015-05-20 Berry Plastics Corporation Polymermaterial für einen isolierten Behälter
EP2888092A4 (en) 2012-08-07 2016-03-23 Berry Plastics Corp METHOD AND MACHINE FOR MOLDING
JP5918665B2 (ja) * 2012-09-13 2016-05-18 株式会社ジェイエスピー ポリエチレン系樹脂発泡シートの製造方法
TWI627321B (zh) * 2012-09-20 2018-06-21 Asahi Kasei Fibers Corp Polypropylene non-woven fabric, manufacturing method thereof and sanitary material
RU2015119420A (ru) 2012-10-26 2016-12-20 Берри Пластикс Корпорейшн Полимерный материал для теплоизоляционного контейнера
AR093943A1 (es) 2012-12-14 2015-07-01 Berry Plastics Corp Reborde de un envase termico
US9840049B2 (en) 2012-12-14 2017-12-12 Berry Plastics Corporation Cellular polymeric material
AR093944A1 (es) 2012-12-14 2015-07-01 Berry Plastics Corp Troquelado para envase
US9957365B2 (en) 2013-03-13 2018-05-01 Berry Plastics Corporation Cellular polymeric material
US9725202B2 (en) 2013-03-14 2017-08-08 Berry Plastics Corporation Container
TW201522445A (zh) 2013-08-16 2015-06-16 Berry Plastics Corp 用於絕熱容器之聚合材料
WO2015137268A1 (ja) * 2014-03-10 2015-09-17 株式会社プライムポリマー プロピレン系樹脂組成物およびそれからなる延伸容器
US9758655B2 (en) 2014-09-18 2017-09-12 Berry Plastics Corporation Cellular polymeric material
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container
JP6446123B2 (ja) * 2015-03-31 2018-12-26 株式会社プライムポリマー 表面保護フィルム及び表面保護フィルム用プロピレン共重合体組成物
CA3013585A1 (en) 2017-08-08 2019-02-08 Berry Global, Inc. Insulated container
WO2019083616A1 (en) * 2017-10-26 2019-05-02 Exxonmobil Chemical Patents Inc. OLEFIN BLOCK COPOLYMERS AND THEIR USE IN ELASTOMERIC ARTICLES
WO2019139125A1 (ja) * 2018-01-12 2019-07-18 株式会社プライムポリマー プロピレン系樹脂組成物、成形体および容器

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4023798B1 (ja) 1962-01-29 1965-10-19
JPS428704B1 (ja) 1963-12-26 1967-04-20
JPS436636B1 (ja) 1963-04-25 1968-03-12
JPS4620814B1 (ja) 1965-10-06 1971-06-11
JPH02173016A (ja) 1988-12-26 1990-07-04 Mitsui Petrochem Ind Ltd ヒートシール剤
JPH06192332A (ja) 1992-09-11 1994-07-12 Hoechst Ag 射出成形による剛性および透明性の高い成形品製造用のポリオレフィン成形材料
JPH07145212A (ja) 1993-11-22 1995-06-06 Mitsui Petrochem Ind Ltd プロピレン系重合体
JPH11315109A (ja) 1997-04-25 1999-11-16 Mitsui Chem Inc オレフィン重合用触媒、遷移金属化合物、オレフィンの重合方法およびα−オレフィン・共役ジエン共重合体
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
JP2002249167A (ja) 2000-12-22 2002-09-03 Japan Polychem Corp 熱収縮性ポリプロピレン系シュリンクラベル用フィルム
JP2002356526A (ja) * 2001-03-29 2002-12-13 Japan Polychem Corp プロピレン系ブロック共重合体の製造方法
WO2004008775A1 (ja) 2002-07-15 2004-01-22 Hitachi, Ltd. 動画像符号化方法及び復号化方法
JP2004051801A (ja) * 2002-07-19 2004-02-19 Mitsui Chemicals Inc ポリオレフィン樹脂組成物及びその用途
JP2005132979A (ja) 2003-10-31 2005-05-26 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体
JP2005132992A (ja) * 2003-10-31 2005-05-26 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体及びその製造方法
JP2005248156A (ja) * 2004-02-06 2005-09-15 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを成形してなる各種の成形品
JP2005529227A (ja) 2002-06-12 2005-09-29 バセル ポリオレフィン ジーエムビーエイチ 良好な低温衝撃靭性と高い透明性を有するプロピレンコポリマー組成物
JP2005314621A (ja) * 2004-04-30 2005-11-10 Japan Polypropylene Corp 新規なプロピレン−エチレンランダムブロック共重合体
WO2006068308A1 (ja) 2004-12-22 2006-06-29 Mitsui Chemicals, Inc. プロピレン系重合体、該重合体を含む組成物及びこれらから得られる成形体
JP2006188563A (ja) * 2004-12-28 2006-07-20 Japan Polypropylene Corp 柔軟性に優れたポリプロピレン系樹脂組成物
JP2006188562A (ja) * 2004-12-28 2006-07-20 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを用いた積層材料
JP2006307060A (ja) * 2005-04-28 2006-11-09 Japan Polypropylene Corp 空冷インフレーション成形ポリプロピレン系フィルム
JP2006307120A (ja) * 2005-04-29 2006-11-09 Japan Polypropylene Corp プロピレン系樹脂フィルム及びプロピレン系樹脂積層フィルム並びにそれらの用途
JP2006307072A (ja) * 2005-04-28 2006-11-09 Japan Polypropylene Corp 水冷インフレーション成形ポリプロピレン系フィルム及びその用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284857B1 (en) * 1993-07-22 2001-09-04 Mitsui Chemical, Inc. Propylene polymer, propylene block copolymer, process for preparing said polymer and said block copolymer, and propylene polymer composition
JPH10182924A (ja) 1996-12-27 1998-07-07 Mitsui Chem Inc プロピレン系樹脂製中空成形体
DE19833507A1 (de) * 1997-07-28 1999-02-04 Sumitomo Chemical Co Propylenblockcopolymer
JP2001220471A (ja) 1999-12-03 2001-08-14 Japan Polychem Corp プロピレン系樹脂組成物、それを用いた樹脂フィルムおよび積層樹脂フィルム
JP3530143B2 (ja) 2001-03-15 2004-05-24 三井化学株式会社 ポリオレフィン樹脂組成物
US7081493B2 (en) * 2001-03-15 2006-07-25 Mitsui Chemicals, Inc. Automotive part made of polypropylene resin composition
EP1428853A1 (en) 2002-12-09 2004-06-16 Borealis Technology OY Propylene polymer composition with improved balance of mechanical and optical properties
JP2005015772A (ja) 2003-05-30 2005-01-20 Mitsui Chemicals Inc エチレン−プロピレンブロック共重合体、これを含むプロピレン樹脂組成物およびその用途
JP4294381B2 (ja) * 2003-06-06 2009-07-08 株式会社プライムポリマー プロピレン系樹脂組成物
JP2006008983A (ja) 2004-05-28 2006-01-12 Mitsui Chemicals Inc プロピレン系重合体
JP2006028449A (ja) 2004-07-21 2006-02-02 Mitsui Chemicals Inc プロピレン系重合体

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4023798B1 (ja) 1962-01-29 1965-10-19
JPS436636B1 (ja) 1963-04-25 1968-03-12
JPS428704B1 (ja) 1963-12-26 1967-04-20
JPS4620814B1 (ja) 1965-10-06 1971-06-11
JPH02173016A (ja) 1988-12-26 1990-07-04 Mitsui Petrochem Ind Ltd ヒートシール剤
JPH06192332A (ja) 1992-09-11 1994-07-12 Hoechst Ag 射出成形による剛性および透明性の高い成形品製造用のポリオレフィン成形材料
JPH07145212A (ja) 1993-11-22 1995-06-06 Mitsui Petrochem Ind Ltd プロピレン系重合体
JPH11315109A (ja) 1997-04-25 1999-11-16 Mitsui Chem Inc オレフィン重合用触媒、遷移金属化合物、オレフィンの重合方法およびα−オレフィン・共役ジエン共重合体
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
JP2002249167A (ja) 2000-12-22 2002-09-03 Japan Polychem Corp 熱収縮性ポリプロピレン系シュリンクラベル用フィルム
JP2002356526A (ja) * 2001-03-29 2002-12-13 Japan Polychem Corp プロピレン系ブロック共重合体の製造方法
JP2005529227A (ja) 2002-06-12 2005-09-29 バセル ポリオレフィン ジーエムビーエイチ 良好な低温衝撃靭性と高い透明性を有するプロピレンコポリマー組成物
WO2004008775A1 (ja) 2002-07-15 2004-01-22 Hitachi, Ltd. 動画像符号化方法及び復号化方法
JP2004051801A (ja) * 2002-07-19 2004-02-19 Mitsui Chemicals Inc ポリオレフィン樹脂組成物及びその用途
JP2005132992A (ja) * 2003-10-31 2005-05-26 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体及びその製造方法
JP2005132979A (ja) 2003-10-31 2005-05-26 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体
JP2005248156A (ja) * 2004-02-06 2005-09-15 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを成形してなる各種の成形品
JP2005314621A (ja) * 2004-04-30 2005-11-10 Japan Polypropylene Corp 新規なプロピレン−エチレンランダムブロック共重合体
WO2006068308A1 (ja) 2004-12-22 2006-06-29 Mitsui Chemicals, Inc. プロピレン系重合体、該重合体を含む組成物及びこれらから得られる成形体
JP2006188563A (ja) * 2004-12-28 2006-07-20 Japan Polypropylene Corp 柔軟性に優れたポリプロピレン系樹脂組成物
JP2006188562A (ja) * 2004-12-28 2006-07-20 Japan Polypropylene Corp プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを用いた積層材料
JP2006307060A (ja) * 2005-04-28 2006-11-09 Japan Polypropylene Corp 空冷インフレーション成形ポリプロピレン系フィルム
JP2006307072A (ja) * 2005-04-28 2006-11-09 Japan Polypropylene Corp 水冷インフレーション成形ポリプロピレン系フィルム及びその用途
JP2006307120A (ja) * 2005-04-29 2006-11-09 Japan Polypropylene Corp プロピレン系樹脂フィルム及びプロピレン系樹脂積層フィルム並びにそれらの用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006314A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084303A (ja) * 2007-09-27 2009-04-23 Mitsui Chemicals Inc プロピレン系樹脂組成物およびその用途
JP2009084305A (ja) * 2007-09-27 2009-04-23 Mitsui Chemicals Inc 医療容器用プロピレン系ランダムブロック共重合体および該共重合体等からなる医療容器用シートまたは医療容器用フィルム
JP5514550B2 (ja) * 2007-09-28 2014-06-04 三井化学株式会社 シリンジ用ポリプロピレン樹脂およびこれを原料として得られるシリンジ並びにプレフィルドシリンジ製剤
JP2009084378A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc シュリンクラベル
JP2009084379A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc レトルト食品包装用フィルム
WO2009041381A1 (ja) * 2007-09-28 2009-04-02 Mitsui Chemicals, Inc. シリンジ用ポリプロピレン樹脂およびこれを原料として得られるシリンジ並びにプレフィルドシリンジ製剤
JP2009149724A (ja) * 2007-12-19 2009-07-09 Japan Polypropylene Corp プロピレン・エチレン系樹脂組成物およびそれからなる容器
JP2009185237A (ja) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc 積層フィルム
JP2009185240A (ja) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc 熱成形用シート
JP2009185239A (ja) * 2008-02-08 2009-08-20 Mitsui Chemicals Inc 表面保護フィルム
JP2009275132A (ja) * 2008-05-15 2009-11-26 Japan Polypropylene Corp 難燃性樹脂組成物及びそれを用いた成形体
WO2014030594A1 (ja) * 2012-08-24 2014-02-27 株式会社プライムポリマー 表面保護フィルムおよび表面保護フィルム用プロピレン共重合体組成物
KR20150038537A (ko) * 2012-08-24 2015-04-08 가부시키가이샤 프라임 폴리머 표면 보호 필름 및 표면 보호 필름용 프로필렌 공중합체 조성물
CN104583307A (zh) * 2012-08-24 2015-04-29 普瑞曼聚合物株式会社 表面保护膜以及表面保护膜用丙烯共聚物组合物
JP5872048B2 (ja) * 2012-08-24 2016-03-01 株式会社プライムポリマー 表面保護フィルムおよび表面保護フィルム用プロピレン共重合体組成物
JPWO2014030594A1 (ja) * 2012-08-24 2016-07-28 株式会社プライムポリマー 表面保護フィルムおよび表面保護フィルム用プロピレン共重合体組成物
KR101671654B1 (ko) 2012-08-24 2016-11-01 가부시키가이샤 프라임 폴리머 표면 보호 필름 및 표면 보호 필름용 프로필렌 공중합체 조성물
WO2014142111A1 (ja) * 2013-03-12 2014-09-18 三井化学株式会社 オレフィン重合体の製造方法およびオレフィン重合用触媒
JP5951108B2 (ja) * 2013-03-12 2016-07-13 三井化学株式会社 オレフィン重合体の製造方法およびオレフィン重合用触媒
US9540459B2 (en) 2013-03-12 2017-01-10 Mitsui Chemicals, Inc. Production method of olefin polymer and olefin polymerization catalyst
JP2019172944A (ja) * 2017-05-26 2019-10-10 三井化学株式会社 プロピレン/α−オレフィン共重合体の製造方法
KR20210092816A (ko) 2019-02-26 2021-07-26 가부시키가이샤 프라임 폴리머 프로필렌계 수지 조성물 및 성형체
JP7474624B2 (ja) 2020-03-27 2024-04-25 株式会社プライムポリマー プロピレン系樹脂組成物、およびそれを用いた射出成型品

Also Published As

Publication number Publication date
KR101007482B1 (ko) 2011-01-12
EP2006314A4 (en) 2011-04-06
JPWO2007116709A1 (ja) 2009-08-20
TW200745178A (en) 2007-12-16
JP5167120B2 (ja) 2013-03-21
EP2006314A9 (en) 2009-07-22
EP2006314A2 (en) 2008-12-24
CN101410426B (zh) 2012-05-09
US20090069523A1 (en) 2009-03-12
KR20080112301A (ko) 2008-12-24
EP2006314B2 (en) 2019-07-31
EP2006314B1 (en) 2012-09-19
CN101410426A (zh) 2009-04-15

Similar Documents

Publication Publication Date Title
WO2007116709A1 (ja) プロピレン系ランダムブロック共重合体、該共重合体を含む樹脂組成物およびそれからなる成形体
US10385197B2 (en) Polypropylene films with improved sealing behaviour, especially in view of improved sealing properties
BR112020003650A2 (pt) composição de polipropileno
JP5595733B2 (ja) ポリオレフィン組成物
JP4585274B2 (ja) プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを成形してなる各種の成形品
JP2010121119A (ja) プロピレン系樹脂組成物およびその成形品
JP4512411B2 (ja) 新規なプロピレン−エチレンランダムブロック共重合体
JP2008536720A (ja) 二軸配向プロピレンポリマーフィルム
JP5455311B2 (ja) 表面保護フィルム
JP2001064335A (ja) プロピレン系樹脂組成物およびその製造方法
JP2006188562A (ja) プロピレン−エチレンランダムブロック共重合体による樹脂組成物及びそれを用いた積層材料
JP2000198892A (ja) 非晶性α―オレフィン系共重合体組成物およびその用途
US20080281046A1 (en) Propylene Based Resin Composition
JP2005220272A (ja) プロピレン−エチレンランダムブロック共重合体樹脂組成物
JP5224763B2 (ja) シュリンクラベル
JP5424547B2 (ja) インモールド成形用ラベルおよびそれを用いた成形品
JP5221093B2 (ja) シュリンクフィルム
WO1999011708A1 (fr) Compositions de resine de polyolefine
JP3397095B2 (ja) 高透明性フィルム及びその製造方法
JP2009084376A (ja) ブロー成形体
JP2009185240A (ja) 熱成形用シート
JP4980188B2 (ja) 医療容器用プロピレン系ランダムブロック共重合体および該共重合体等からなる医療容器用シートまたは医療容器用フィルム
JP5221160B2 (ja) 積層フィルム
JP5117807B2 (ja) 積層フィルム
JP2006052243A (ja) 極性基含有成分を有すポリオレフィン系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509759

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12225689

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780011526.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087025179

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007739740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8844/DELNP/2008

Country of ref document: IN