WO2007114132A1 - 潤滑油基油及びその製造方法並びに潤滑油組成物 - Google Patents

潤滑油基油及びその製造方法並びに潤滑油組成物 Download PDF

Info

Publication number
WO2007114132A1
WO2007114132A1 PCT/JP2007/056566 JP2007056566W WO2007114132A1 WO 2007114132 A1 WO2007114132 A1 WO 2007114132A1 JP 2007056566 W JP2007056566 W JP 2007056566W WO 2007114132 A1 WO2007114132 A1 WO 2007114132A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
base oil
lubricating
acid
Prior art date
Application number
PCT/JP2007/056566
Other languages
English (en)
French (fr)
Inventor
Takashi Sano
Shinichi Shirahama
Kazuo Tagawa
Kenichi Komiya
Shigeki Matsui
Osamu Kurosawa
Original Assignee
Nippon Oil Corporation
Petroleum Energy Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006100175A external-priority patent/JP5137314B2/ja
Priority claimed from JP2006100204A external-priority patent/JP2007270062A/ja
Priority claimed from JP2006187092A external-priority patent/JP5498644B2/ja
Priority claimed from JP2006187087A external-priority patent/JP4945180B2/ja
Priority claimed from JP2006187078A external-priority patent/JP4945178B2/ja
Priority claimed from JP2006187084A external-priority patent/JP4945179B2/ja
Application filed by Nippon Oil Corporation, Petroleum Energy Center filed Critical Nippon Oil Corporation
Priority to CN2007800198010A priority Critical patent/CN101454431B/zh
Priority to EP07740004.2A priority patent/EP2009084B1/en
Priority to KR1020087026873A priority patent/KR101100635B1/ko
Priority to US12/225,764 priority patent/US8394745B2/en
Publication of WO2007114132A1 publication Critical patent/WO2007114132A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G73/00Recovery or refining of mineral waxes, e.g. montan wax
    • C10G73/02Recovery of petroleum waxes from hydrocarbon oils; Dewaxing of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/013Iodine value
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/015Distillation range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/09Treatment with nitrogen containing compounds

Definitions

  • the present invention relates to a lubricating base oil and a method for producing the same, a lubricating oil composition, a lubricating oil composition for an internal combustion engine, a lubricating oil composition for a wet clutch, and a lubricating oil composition for a drive transmission device. To do.
  • a lubricating oil used in an internal combustion engine such as an automobile engine is required to have heat and acid stability to withstand long-term use under severe conditions. Therefore, in conventional lubricating oils for internal combustion engines, in order to ensure thermal 'oxidation stability, highly refined base oils such as hydrocracked mineral oil or high-performance base oils such as synthetic oils are used. It is common to add peroxide-resolving sulfur-containing compounds such as zinc dithiophosphate (ZDTP) and molybdenum dithiocarnomate (MoDTC), or ashless acid soot inhibitors such as phenolic or amine antioxidants. Has been made.
  • ZDTP zinc dithiophosphate
  • MoDTC molybdenum dithiocarnomate
  • ashless acid soot inhibitors such as phenolic or amine antioxidants.
  • Patent Document 2 Japanese Patent Laid-Open No. 63-223094
  • Patent Document 3 JP-A-8-302378
  • Patent Document 4 Japanese Patent Laid-Open No. 9-003463
  • Patent Document 5 Japanese Patent Laid-Open No. 4-68082
  • Patent Document 6 Japanese Patent Laid-Open No. 4-120193
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-41283
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-262979
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 2004-262980
  • the present invention has been made in view of such circumstances, and the object thereof is excellent in viscosity and temperature characteristics and thermal oxidation stability, and when an additive is blended, It is an object of the present invention to provide a lubricating base oil and a method for producing the same, and a lubricating oil composition capable of expressing functions at a higher level.
  • the present invention includes a saturated component of 90% by mass or more, a ratio of the cyclic saturated component in the saturated component is 40% by mass or less, and a viscosity index of 110 or more. Therefore, a lubricant base oil having an iodine value of 2.5 or less (hereinafter referred to as “first lubricant base oil” for convenience) is provided.
  • the content of the saturated component, the ratio of the cyclic saturated component in the saturated component, the viscosity index, and the iodine value satisfy the above conditions, respectively, so that an excellent viscosity can be obtained. Temperature characteristics and thermal / acid stability can be achieved.
  • the additive when an additive is blended in the lubricant base oil, the additive functions at a higher level while the additive is sufficiently stably dissolved and retained in the lubricant base oil. That's right.
  • the first lubricating base oil it is possible to reduce viscosity resistance and stirring resistance in the practical temperature range due to the excellent viscosity temperature characteristics described above, and a friction modifier and the like are blended. When it is done, the effect can be maximized. Therefore, the first lubricating base oil is very useful in that it can reduce energy loss and achieve energy saving in the equipment to which the lubricating base oil is applied.
  • the mass ratio between the one ring saturated component and the two or more ring saturated components included in the cyclic saturated component satisfies the condition represented by the following formula (1). I like it.
  • M represents the mass of one ring saturation, and M represents the saturation of two or more rings.
  • the ratio of saturated components in two or more rings in the saturated component is 0.1% by mass or more.
  • the first lubricating base oil preferably contains 0.1 to 7% by mass of an aromatic component.
  • the kinematic viscosity at 100 ° C is 3.5 to 6 mm 2.
  • the viscosity index is 130 or more and the freezing point is 25 ° C or less.
  • the present invention provides a lubrication characterized by having a kinematic viscosity at 100 ° C of 3.5 to 6 mm 2 Zs, a viscosity index of 130 or more, and a freezing point of 25 ° C or less.
  • Oil base oil hereinafter referred to as “second lubricating base oil” for convenience
  • the kinematic viscosity at 100 ° C, the viscosity index, and the freezing point satisfy the above conditions, respectively, so that excellent viscosity-temperature characteristics and thermal / oxidation stability can be achieved. become able to.
  • the second lubricating base oil it is possible to achieve both a high viscosity index of 135 or higher and a low temperature viscosity of ⁇ 35 ° C or lower, and particularly to significantly reduce the MRV viscosity at -40 ° C. Will be able to.
  • the function of the additive is improved to a higher level while the additive is sufficiently stably dissolved and retained in the lubricating base oil. Can be expressed.
  • the second lubricating base oil Furthermore, according to the second lubricating base oil, the above-described excellent viscosity-temperature characteristics can reduce viscosity resistance and stirring resistance in the practical temperature range, and a friction modifier or the like is blended. When it is done, the effect can be maximized. Therefore, the second lubricating base oil is very useful in that it can reduce energy loss and achieve energy saving in the equipment to which the lubricating base oil is applied.
  • a lubricating base oil that has excellent low-temperature viscosity, such as a synthetic oil such as poly-oc 1-year-old refin base oil and ester base oil, and a low-viscosity mineral oil base oil.
  • the above synthetic oils are expensive, and low viscosity mineral base oils generally have a low viscosity index and a high NOACK evaporation.
  • the manufacturing cost of the lubricating oil increases, and it becomes difficult to achieve a high viscosity index and low evaporation.
  • these conventional lubricating base oils are used, there is a limit to the improvement of the above-mentioned characteristics by adding additives.
  • the viscosity temperature characteristics and thermal oxidation stability are excellent, and synthetic OCs such as poly OC 1-year-old refin base oil and ester base oil, Even without using low-viscosity mineral base oil, it is possible to achieve both high viscosity index and low-temperature viscosity at 35 ° C or lower, especially lubricant base oil that can remarkably improve the MRV viscosity of lubricating oil at 40 ° C. Is feasible.
  • a method for producing a lubricating base oil having a kinematic viscosity at 100 ° C of 3.5 to 6 mm 2 Zs and a viscosity index of 130 or more has a freezing point of ⁇ 25.
  • a method for producing a lubricating base oil characterized by performing dewaxing treatment so as to be at or below ° C.
  • the lubricating base oil is 25 ° C or lower, it has excellent viscosity temperature characteristics and thermal oxidation stability, and is a poly OC one-year-old refin base. Even without using synthetic oils such as oils and ester base oils and low-viscosity mineral oil base oils, it is possible to achieve both a high viscosity index and a low-temperature viscosity at 35 ° C or lower. A lubricating base oil capable of significantly improving the RV viscosity can be obtained effectively.
  • the present invention also relates to a lubricating oil composition
  • a lubricating oil composition comprising the first or second lubricating base oil and having an MRV viscosity at -40 ° C of 20, OOOmPa's or less. I will provide a
  • the lubricating oil composition of the present invention by containing the first or second lubricating base oil having the above-mentioned excellent performance, the viscosity-temperature characteristics and the heat / acid stability are improved. Therefore, it is possible to achieve both high viscosity index and low temperature viscosity at 35 ° C or less without blending synthetic oil such as poly-aolefin base oil and ester base oil and low viscosity mineral oil base oil. Can be balanced. As a result, low-temperature performance, which was difficult to achieve with conventional lubricants with an MRV viscosity at 40 ° C of 20, OOOmPa's or less, can be effectively realized.
  • the present invention relates to the above-mentioned first or second lubricating base oil, 0.02-0.08 mass% phosphorus-based antiwear agent in terms of phosphorus element based on the total amount of the composition, 0.5-5% by weight of ashless acid
  • a lubricating oil composition for an internal combustion engine comprising an anti-oxidation agent and 3 to 12% by mass of an ashless dispersant (hereinafter referred to as “first lubricating oil composition for an internal combustion engine” for convenience). )I will provide a.
  • the first or second lubricating base oil contained in the first internal combustion engine lubricating oil composition itself is excellent in thermal oxidation stability. Furthermore, the first or second lubricating base oil is capable of expressing the function at a higher level while stably dissolving and maintaining the additive when the additive is added. .
  • a lubricant base oil having such excellent characteristics is added to a phosphorus-based antiwear agent (hereinafter, sometimes referred to as “component (A-1)”), an ashless acid antifouling agent (hereinafter, “case”).
  • component (C-1) component) By adding the ashless dispersant (hereinafter referred to as “(C-1) component”) so as to be within the above range, a sufficiently long acid can be obtained.
  • the performance of the exhaust gas aftertreatment device can be sufficiently maintained over a long period of time.
  • the first or second lubricating base oil contained in the first composition for an internal combustion engine itself is excellent in viscosity-temperature characteristics and friction characteristics. Further, the first or second lubricating base oil is excellent in terms of solubility and effectiveness of the additive as described above, and when a friction modifier is blended, a friction reducing effect is obtained at a high level. It is something that can be done. Therefore, according to the first lubricating oil composition for an internal combustion engine including such a superior lubricating base oil, energy loss due to frictional resistance, stirring resistance, etc. in the sliding portion is reduced. Energy saving can be achieved.
  • the lubricating oil composition for an internal combustion engine of the present invention is useful in terms of improving the startability at low temperature in addition to improving the life of the soot, maintaining the performance of the exhaust gas aftertreatment device, and saving energy.
  • exhaust gas such as a three-way catalyst or a particulate filter is used for the purpose of trapping and collecting harmful substances such as sulfur oxides and particulate matter in the exhaust gas.
  • a treatment device is attached, when conventional lubricating oil is used, a part of it enters the combustion chamber, and the combustion product is mixed into the exhaust gas so that the exhaust gas aftertreatment device May reduce the performance.
  • zinc alkyldithiophosphate is a compound containing phosphorus and zinc, the phosphorus content poisons the three-way catalyst, and the zinc content also becomes sulfated ash, which has the negative effect of blocking the filter. have.
  • a method of reducing the blending amount of the phosphorus wear inhibitor in the lubricating oil for the internal combustion engine can be considered.
  • an additive that also functions as an antioxidant such as zinc alkyldithiophosphate
  • the first lubricating oil composite for an internal combustion engine has excellent performance as described above, it is suitably used as a lubricating oil for an internal combustion engine of a vehicle equipped with an exhaust gas aftertreatment device.
  • the ash content of the lubricating oil composition for an internal combustion engine of the present invention is 1.2% by mass or less because the performance of the exhaust gas aftertreatment device can be maintained for a longer period.
  • the present invention also provides the first or second lubricating base oil, V containing sulfur as a constituent element, an ashless antioxidant, an ashless antioxidant containing sulfur as a constituent element, and provided is a lubricating oil composition for internal combustion engines (hereinafter referred to as “second lubricating oil composition for internal combustion engines” for convenience) containing at least one selected from organic molybdenum compound power.
  • the first or second lubricating base oil contained in the second internal combustion engine lubricating oil composition itself is excellent in heat / oxidation stability and volatilization prevention. Furthermore, when the first or second lubricating base oil is blended with an additive, the function can be expressed at a higher level while the additive is stably dissolved and held.
  • the lubricating base oil having such excellent characteristics is combined with an ashless acid soot inhibitor that does not contain sulfur as a constituent element (hereinafter referred to as “component (A-2)”).
  • component (B-2) component By adding both of the ashless antioxidant containing sulfur as a constituent element and at least one selected from organic molybdenum compounds (hereinafter referred to as “(B-2) component”).
  • the first or second lubricating base oil contained in the second internal combustion engine composition itself is excellent in viscosity-temperature characteristics and friction characteristics. Further, the first or second lubricating base oil is excellent in terms of solubility and effectiveness of the additive as described above, and when a friction modifier is blended, a friction reducing effect is obtained at a high level. It is something that can be done. Therefore, according to the second lubricating oil composition for an internal combustion engine including such a superior lubricating base oil, energy loss due to frictional resistance and stirring resistance in the sliding portion is reduced, and Energy saving can be achieved.
  • the second lubricating oil composition for an internal combustion engine is useful in terms of improving startability at low temperatures in addition to long drainage and energy saving of the internal combustion engine.
  • the first or second lubricating base oil preferably contains 0.1 to 5% by mass of an aromatic component.
  • the present invention based on the first or second lubricating base oil, and the total amount of the composition,
  • a lubricating oil composition for a wet clutch comprising 0.5 to 3% by mass of an ashless acid wrinkle inhibitor and 3 to 12% by mass of an ashless dispersant.
  • the first or second lubricating base oil contained in the lubricating oil composition for wet clutches of the present invention itself is excellent in heat / oxidation stability, viscosity-temperature characteristics, and friction characteristics. Furthermore, the lubricating base oil, when an additive is blended, can exhibit its function at a higher level while stably dissolving and maintaining the additive.
  • the first or second lubricating base oil having such excellent characteristics is added to an ashless antioxidant (hereinafter referred to as “component (A-3)”) and an ashless dispersant (hereinafter referred to as “component”).
  • “(B-3) component”) is blended so as to be within the above-mentioned range, so that even if it is used for a four-stroke internal combustion engine for a two-wheeled vehicle, sludge caused by deterioration can be produced. Generation of insoluble components such as varnishes and clogging of the wet clutch due to the insoluble components can be suppressed, and the friction characteristics and power transmission performance of the wet clutch can be sufficiently maintained over a long period of time.
  • the present invention includes the first or second lubricating base oil, a poly (meth) acrylate-based viscosity index improver, and a phosphorus-containing compound.
  • a lubricating oil composition for a device is provided.
  • the first or second lubricating base oil contained in the lubricating oil composition for a drive transmission device of the present invention has a viscosity-temperature characteristic as compared with a conventional lubricating base oil having the same viscosity grade. Excellent heat / oxidation stability and friction characteristics. Furthermore, when the first or second lubricating base oil is blended with an additive, a function can be expressed at a higher level while the additive is stably dissolved and held.
  • a lubricating base oil having such excellent characteristics is added to a poly (meth) acrylate-based viscosity index improver (hereinafter referred to as “(A-4) component” and V, in some cases) and a phosphorus-containing compound (
  • (A-4) component” and V poly (meth) acrylate-based viscosity index improver
  • a phosphorus-containing compound a poly (meth) acrylate-based viscosity index improver
  • B-4) component acrylate-based viscosity index improver
  • phosphorus-containing compound phosphorus-containing compound
  • the lubricating oil composition for a drive device of the present invention is useful in terms of improving startability at low temperatures in addition to achieving both fuel saving and durability of the drive transmission device.
  • the proportion of saturated components of two or more rings in the saturated component is 3 mass. % Is preferred.
  • the first or second lubricating base oil preferably contains 0.1 to 5% by mass of an aromatic component.
  • a lubricating oil that is excellent in viscosity-temperature characteristics and thermal oxidation stability and that can exhibit the function of the additive at a higher level when the additive is blended.
  • Base oil is provided.
  • the lubricating base oil of the present invention can be suitably used in various lubricating oil fields. In particular, it can reduce energy loss and achieve energy savings in a device to which the lubricating base oil is applied. Very useful.
  • the viscosity-temperature characteristics and heat / acid stability are compatible at a high level, and synthetic oils such as poly-olefin base oils and ester base oils, and low-viscosity mineral oil systems are used. Even without using a base oil, it is possible to achieve both a high viscosity index and a low temperature viscosity at ⁇ 35 ° C or lower, especially a lubricating base oil that can remarkably improve the MRV viscosity of a lubricating oil at 40 ° C. and A lubricating oil composition is provided. Further, according to the method for producing a lubricating base oil of the present invention, the lubricating base oil of the present invention having excellent performance as described above can be obtained effectively.
  • a lubricating oil composition for an internal combustion engine is realized that has a sufficiently long oxidation life and can sufficiently maintain the performance of the exhaust gas aftertreatment device for a long period of time.
  • a lubricating oil composition for an internal combustion engine that is excellent in heat / oxidation stability or further in viscosity / temperature characteristics, friction characteristics, and volatilization prevention properties is realized. And, by applying the lubricating oil composition for an internal combustion engine of the present invention to the internal combustion engine, long drainage and energy saving can be achieved, and furthermore, low temperature startability can be improved. become.
  • a lubricating oil composition for a wet clutch which can suppress clogging and can sufficiently maintain the friction characteristics and power transmission performance of the wet clutch for a long period of time.
  • a lubricating oil composition for a drive transmission device capable of achieving a high fatigue life for a long period of time.
  • the lubricating oil composition for a drive transmission device of the present invention it is possible to achieve both fuel saving and durability of the drive transmission device, and further improve startability at low temperatures. become.
  • the lubricating base oil according to the first embodiment of the present invention contains 90% by mass or more of the saturated component, and the ratio of the cyclic saturated component to the saturated component is 40% by mass or less, and the viscosity index is 110 or less.
  • the iodine value is 2.5 or less.
  • the lubricating base oil according to the first embodiment is particularly limited as long as the content of the saturated component, the ratio of the cyclic saturated component in the saturated component, the viscosity index, and the iodine value satisfy the above conditions.
  • a lubricating oil fraction obtained by atmospheric distillation and Z or vacuum distillation of crude oil is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid Of paraffinic mineral oil, or normal paraffinic base oil, isoparaffinic base oil, etc. purified by combining one or more types of purification treatments such as washing and clay treatment alone or in combination of two or more types.
  • the content and the ratio of the cyclic saturated component in the saturated component, and the viscosity index and iodine value satisfy the above conditions.
  • These lubricating base oils may be used alone or in combination of two or more.
  • the base oils (1) to (8) shown below are used as raw materials, and the lubricating oil recovered from this raw oil and Z or this raw oil is used.
  • the base oil obtained by refining the oil fraction by a predetermined refining method and recovering the lubricating oil fraction can be mentioned.
  • Wax slack wax, etc.
  • Z or gas toli obtained by the lubricant dewaxing process
  • Synthetic wax Fischer-Tropsch wax, GTL wax, etc.
  • Kid (GTL) process etc.
  • the predetermined purification method includes hydrorefining such as hydrocracking and hydrofinishing; solvent purification such as furfural solvent extraction; dewaxing such as solvent dewaxing and catalytic dewaxing; It is preferable to use white clay purification using activated clay, or chemicals (acid or alkali) cleaning such as sulfuric acid cleaning or caustic soda cleaning.
  • one of these purification methods may be performed alone, or two or more may be combined.
  • the order is not particularly limited and can be appropriately selected.
  • the base oil selected from the base oils (1) to (8) or a predetermined fraction of the lubricating oil fraction recovered from the base oil is treated.
  • the following base oil (9) or (10) obtained by performing is particularly preferred.
  • the above base oil (1) to (8) The base oil whose power is also selected or the lubricating oil fraction recovered from the base oil is hydroisomerized, and the product or the product force is recovered by distillation, etc. Hydroisomerized mineral oil obtained by subjecting the oil fraction to dewaxing such as solvent dewaxing or catalytic dewaxing, or distillation after the dewaxing treatment.
  • a solvent refining treatment and a Z or hydrofinishing treatment step may be further provided as necessary at an advantageous step.
  • the catalyst used in the hydrocracking 'hydroisomerization' is not particularly limited, A composite oxide having decomposition activity (for example, silica alumina, alumina polya, silica zirconium oxide, etc.) or a combination of one or more of the above complex oxides bound with a binder and having a hydrogenation ability Hydrocracking catalyst supporting metal (for example, one or more metals such as Group Via metal or Group VII I metal) or zeolite (eg ZSM-5, zeolite beta, SAPO-11) A hydroisomerization catalyst in which a metal having a hydrogenation ability containing at least one of the Group VIII metals is supported on the support is preferably used. Hydrocracking catalyst and hydroisomerization catalyst may be used in combination by stacking or mixing.
  • a composite oxide having decomposition activity for example, silica alumina, alumina polya, silica zirconium oxide, etc.
  • Hydrocracking catalyst supporting metal for example, one or more metals such as Group Via
  • reaction conditions for hydrocracking and hydroisomerization are not particularly limited, but the hydrogen partial pressure is 0.1 to 20 MPa, the average reaction temperature is 150 to 450 ° C, LHSVO. 1 to 3. Ohr— 1 , Hydrogen Z oil ratio 5 0-20000 scfZb is preferred! /.
  • a preferred example of the method for producing a lubricating base oil according to the first embodiment is Production Method A shown below.
  • the production method A according to the present invention includes:
  • a carrier with a fraction of H desorption amount of 80% or less must be at least one of the Via group metals in the periodic table.
  • raw material oil containing 50% by volume or more of slack wax is used.
  • “raw oil containing 50% by volume or more of slack wax” Includes both a raw material oil that only has slack wax and a mixed oil of slack wax and other raw material oils containing 50% by volume or more of slack wax.
  • Slack wax is a wax-containing component that is by-produced in the solvent dewaxing step when producing a lubricating base oil from a paraffinic lubricating oil fraction.
  • this wax-containing component is used as a by-product.
  • what was deoiled is also included in slack wax.
  • the main component of slack wax is n-paraffin and branched paraffin (isoparaffin) with few side chains, and it has little naphthene and aromatics.
  • the kinematic viscosity of the slack wax used for the preparation of the raw material oil can be appropriately selected according to the kinematic viscosity of the target lubricating base oil.
  • the lubricating base oil according to the first embodiment has a low viscosity base.
  • 100 kinematic viscosity at ° C is 2 ⁇ 25m m 2 Zs, preferably about 2. 5 to 20 mm 2 Zs, more preferably about about 3 to 15 mm 2 Zs, a relatively low viscosity slack Wax is desirable.
  • other properties of the slack wax are optional, but the melting point is preferably 35 to 80 ° C, more preferably 45 to 70 ° C, and further preferably 50 to 60 ° C.
  • the oil content of the slack wax is preferably not more than mass%, more preferably not more than 50 mass%, still more preferably not more than 25 mass%, particularly preferably not more than 10 mass%, and preferably not less than 0.5 mass%. More preferably, it is 1% by mass or more.
  • the sulfur content of slack wax is preferably 1 mass 0/0 or less, a more preferred 0.5 wt% or less, also, is preferably 0.001 mass% or more.
  • slack wax A fully deoiled treated slack wax oil content
  • sulfur content of the slide Kkuwakkusu A is preferably .001 to 0.2 mass 0/0, more preferably 0.01 to 0.15 wt%, more preferably 0. 05-0. 12% is there.
  • oil content of slack wax (hereinafter referred to as “slack wax B”) that is not deoiled or insufficiently deoiled is preferably 10 to 60% by weight, more preferably 12 to 50% by weight. More preferably, it is 15 to 25% by mass.
  • the sulfur content of slack wax B is preferably 0.05 to 1 mass 0/0, more preferably 0.1 to 0.5 mass 0/0, more preferably 0.15 to 0.25 wt% is there.
  • These slack waxes A and B may be those subjected to desulfurization treatment depending on the type of hydrocracking Z isomerization catalyst, and the sulfur content in that case is preferably 0. 01% by mass or less, more preferably 0.001% by mass or less.
  • the lubricating base oil according to the first embodiment that satisfies the conditions can be suitably obtained.
  • slack wax B which is relatively poor and inexpensive, with a relatively high oil content and sulfur content, is used as a raw material, the low temperature characteristics and the heat and acid stability with a high viscosity index. It is possible to obtain a lubricating base oil having a high added value with excellent resistance.
  • the raw material oil is a mixed oil of slack wax and other raw material oil
  • the other raw material oil is particularly limited as long as the proportion of slack wax in the total amount of the mixed oil is 50% by volume or more.
  • a mixed oil of crude oil heavy atmospheric distillation distillate and Z or vacuum distillation distillate is preferably used.
  • the proportion of slack wax in the mixed oil is 70% by volume or more from the viewpoint of producing a base oil having a high viscosity index. 75% by volume or more is even more preferable. If the ratio is less than 50% by volume, the resulting lubricant base oil tends to increase the oil content such as aromatics and naphthenes and lower the viscosity index of the lubricant base oil.
  • the total NH desorption amount is evaluated in the NH desorption temperature dependency evaluation.
  • Periodic Table VI is applied to a carrier whose NH desorption fraction at 300 to 800 ° C is 80% or less.
  • a hydrocracking catalyst supporting at least one of group a metals and at least one of group VIII metals is used.
  • the catalyst support is pretreated at a temperature of 400 ° C or higher for 30 minutes or more under a nitrogen stream to remove adsorbed molecules, and then adsorbed at 100 ° C until NH is saturated. Then NH is desorbed by raising the temperature of the catalyst support from 100 to 800 ° C at a temperature rise rate of 10 ° CZ or less.
  • the catalyst carrier used in the above production method A is used for the evaluation of the NH desorption temperature dependency.
  • the fraction of NH desorption at 300-800 ° C is less than 80% of the total NH desorption
  • the acidity that governs cracking activity is sufficiently suppressed, so that the high molecular weight n- derived from slack wax or the like in the feedstock by hydrocracking.
  • Isoparaffins can be efficiently and reliably produced by the decomposition isomers of norafine, and excessive decomposition of the produced isoparaffin compounds can be sufficiently suppressed. As a result, a sufficient amount of molecules having a moderately branched chemical structure and a high viscosity index can be provided in an appropriate molecular weight range.
  • binary acid oxides that are amorphous and have acid properties are preferred.
  • literature Metal acid oxides and their catalytic action
  • Tetsuro Shimizu, Kodansha, 1978 and the like are exemplified.
  • amorphous composite oxides including Al, B, Ba, Bi, Cd, Ga, La, Mg, Si, Ti, W, Y, Zn, and Zr force are selected from the oxides of selected elements 2 It is preferable to contain binary oxides with acid properties due to different types of composites. By adjusting the ratio of each of these acid properties of binary acid compounds, etc., in the above-mentioned NH adsorption / desorption evaluation, acidity suitable for this purpose can be obtained.
  • the acidic binary oxide constituting the carrier may be one of the above or a mixture of two or more.
  • the carrier may be composed of the above-mentioned acid property binary acid oxide, or may be a carrier obtained by binding the acid property binary acid oxide with a binder.
  • the carrier includes amorphous silica 'alumina, amorphous silica' zirconia, amorphous silica 'magnesia, amorphous silica' titer, amorphous silica 'polya, amorphous alumina' zircoua, Amorphous alumina 'magnesia', amorphous alumina 'titer, amorphous alumina' boria, amor At least one selected from Fass Zirco-Magnesia, Amorphous Zircoa Tita, Amorphous Zircoyu Polya, Amorphous Magnesia Tita, Amorphous Magnesia Boria and Amorphous Titania Polya It is preferable to contain an acidic binary oxide.
  • the acid property binary oxide constituting the carrier may be one of the above or a mixture of two or more.
  • the carrier may be one having the above-mentioned acid property binary acid strength, or may be a carrier obtained by binding the acid property binary oxide with a binder.
  • a binder is not particularly limited as long as it is generally used for catalyst preparation, but silica, alumina, magnesia, titania, zircoure, clay power or a mixture thereof is preferable.
  • the above-mentioned support is composed of at least one kind of metals in the periodic table group Via (molybdenum, chromium, tungsten, etc.) and a group VIII metal (nickel, cobalt). At least one of a catalyst, a hydrocracking catalyst, and the like. These metals are responsible for hydrogenation ability, and terminate the reaction of decomposition or branching of the baraffine compound by the acid nature carrier, and play an important role in the production of isoparaffin having an appropriate molecular weight and branching structure. Yes.
  • the supported amount of metal in the hydrocracking catalyst is that the supported amount of the Group V metal is 5 to 30% by mass per one type of metal, and the supported amount of the Group VIII metal is 0.2 per type of metal. ⁇ 10% by weight is preferred.
  • the hydrocracking catalyst used in the above production method A contains 5 to 30% by mass of molybdenum as one or more kinds of metals of Group Via metals, and contains 1 of Group VIII metals. It is more preferable that nickel is contained in the range of 0.2 to 10% by mass as at least one kind of metal.
  • the hydrocracking catalyst composed of the above support and one or more kinds of metal of Group Via metal and one or more kinds of metal of Group VIII metal is used for hydrocracking in a sulfurized state.
  • the sulfur treatment can be performed by a known method.
  • slack wax is added in the presence of the hydrocracking catalyst.
  • a feedstock containing 50% or more by volume has a hydrogen partial pressure of 0.1 to 14 MPa, preferably 1 to 14 MPa, more preferably 2 to 7 MPa; an average reaction temperature of 230 to 430 ° C, preferably 330 to 400 ° C, Preferably 350 to 390. . ;. 1 ⁇ 3 ⁇ mosquito 0. 3 ⁇ 3 Ohr _1, preferably 0. 5 ⁇ 2 Ohr "1;.
  • Hydrogen oil ratio 50 ⁇ 14000ScfZb preferably decomposes hydrogenated at 100 ⁇ 5000ScfZb.
  • the pour point is lowered and the viscosity index is reduced by advancing the isomorphism to isoparaffin in the process of cracking n-paraffin derived from slack wax in the feedstock.
  • aromatic compounds that are inhibitors of high viscosity index contained in raw oil are converted into monocyclic aromatic compounds, naphthenic compounds, and paraffin compounds.
  • polycyclic naphthenic compounds, which are inhibitors of high viscosity indexing can be decomposed into monocyclic naphthenic compounds and paraffinic compounds.
  • the point power of the high viscosity index y is preferable when the raw material oil has a high boiling point, a low viscosity index, and few compounds.
  • the decomposition rate is preferably 3 to 90% by volume.
  • the pour point contained in the feedstock is high, the production of isoparaffins by decomposition isomerization of high molecular weight n-paraffins, and the hydrogen content of aromatic and polycyclic naphthenes with poor viscosity index. If the cracking rate is more than 90% by volume, the yield of the lubricating oil fraction is lowered, which is not preferable.
  • the lubricating oil fraction is distilled and separated from the cracked product oil obtained by the hydrocracking step. At this time, a fuel oil fraction may be obtained as a light component.
  • the fuel oil fraction is a fraction obtained as a result of sufficient desulfurization and denitrogenation and sufficient hydrogenation of aromatics.
  • the naphtha fraction has high isoparaffin content
  • the kerosene fraction has a high smoke point
  • the light oil fraction has a high cetane number.
  • the lubricating oil fraction may be further distilled under reduced pressure. This vacuum distillation separation may be performed after the following dewaxing treatment.
  • a lubricant base oil called 70Pale, SAE10, or SAE20 can be suitably obtained by distillation under reduced pressure of the cracked product oil obtained in the hydrocracking step.
  • the system using slack wax with lower viscosity as the feedstock is suitable for producing a large amount of 70 Pale and 10 SAE fractions, and the system using slack wax with high viscosity in the above range as feedstock is SAE20 It is suitable for generating a lot.
  • SAE20 high-viscosity slack racks, conditions that produce a considerable amount of 70 Pale and SAE 10 can be selected depending on the progress of the decomposition reaction.
  • the lubricating oil fraction fractionated from the cracked product oil since the lubricating oil fraction fractionated from the cracked product oil has a high pour point, it is dewaxed to obtain a lubricating base oil having a desired pour point.
  • the dewaxing treatment can be performed by a usual method such as a solvent dewaxing method or a contact dewaxing method.
  • the solvent dewaxing method generally uses a mixed solvent of MEK and toluene. Solvents such as benzene, acetone, and MIBK may be used.
  • the solvent Z oil ratio is 1 to 6 times, and the filtration temperature is -5 to 145 ° C, preferably 10 to 40 ° C.
  • the solvent Z oil ratio is preferably 1-25 ° C or less, more preferably 26-45 ° C, more preferably 27-1-40 ° C. It is particularly preferable that the temperature is 28 to 35 ° C.
  • the wax removed here can be used again in the hydrocracking step as slack wax.
  • a solvent refining process and a Z or hydrotreating process may be added to the dewaxing process. These additional treatments are performed in order to improve the ultraviolet stability and oxidation stability of the lubricating base oil, and can be carried out by a method that is generally performed in a normal lubricating oil refining process.
  • solvent purification furfural, phenol, N-methylpyrrolidone or the like is generally used as a solvent to remove a small amount of aromatic compounds, particularly polycyclic aromatic compounds, remaining in the lubricating oil fraction. To do.
  • hydrorefining is performed to hydrogenate olefinic compounds and aromatic compounds
  • the catalyst is not particularly limited. However, at least one kind of Group VI metal such as molybdenum is used. And an alumina catalyst supporting at least one of Group VIII metals such as Conoleto and Nickel, reaction pressure (hydrogen partial pressure) 7-16 MPa, average reaction temperature 300-3 90 ° C, LHSVO 5-4. Can be performed under the condition of Ohr _1 .
  • the production method B according to the present invention includes:
  • a fifth step of hydrocracking Z and hydroisomerization of a feedstock containing paraffinic hydrocarbons in the presence of a catalyst
  • paraffinic hydrocarbon refers to a hydrocarbon having a paraffin molecule content of 70% by mass or more.
  • the carbon number of paraffinic hydrocarbons is not particularly limited. Usually, 10 ⁇ : about LOO is used.
  • the production method of norafine hydrocarbon is not particularly limited, and various paraffinic hydrocarbons such as petroleum and synthetic can be used.
  • Particularly preferred paraffinic hydrocarbons include gas to liquid (GTL) process, etc.
  • synthetic waxes Fischer-Tropsch wax (FT wax), GTL nitrogen, etc.
  • FT wax is preferred.
  • the synthetic wax is preferably a glass containing a normal paraffin having 15 to 80 carbon atoms, more preferably 20 to 50 carbon atoms as a main component.
  • the kinematic viscosity of the paraffinic hydrocarbon used in the preparation of the raw material oil can be appropriately selected according to the kinematic viscosity of the target lubricating base oil, but the lubricating base oil according to the first embodiment as to the production of low-viscosity base oil is 100 kinematic viscosity at ° C is 2 to 25 mm 2 Zs, preferably about 2. 5 to 20 mm 2 Zs, more preferably about about 3 to 15 mm 2 Zs, relatively low Viscosity paraffinic hydrocarbons are desirable.
  • the melting point is preferably 35 to 80 ° C, more preferably 50 to 80 ° C. ° C, more preferably 60 to 80 ° C.
  • the oil content of the synthetic wax is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less.
  • the sulfur content of the synthetic wax is preferably 0.01% by mass or less, more preferably 0.001% by mass or less, and further preferably 0.001% by mass or less.
  • the raw material oil is a mixed oil of the above-described synthetic wax and other raw material oils
  • the other raw material oils are particularly those in which the proportion of the synthetic wax in the total amount of the mixed oil is 50% by volume or more.
  • crude oil heavy atmospheric distillation oil and mixed oil of Z or vacuum distillation oil are preferably used.
  • the proportion of the synthetic wax in the mixed oil is 70% by volume from the viewpoint of producing a base oil having a high viscosity index. More preferably 75% by volume or more is even more preferable. If the ratio is less than 70% by volume, the oil base such as aromatics and naphthenes in the obtained lubricating base oil tends to increase, and the viscosity index of the lubricating base oil tends to decrease.
  • heavy atmospheric distillation distillate and Z or vacuum distillation distillate of crude oil used in combination with synthetic wax are 300 to 570 ° in order to keep the viscosity index of the lubricating base oil produced high.
  • a fraction having a distillate component of 60% by volume or more in the distillation temperature range of C is preferable.
  • the catalyst used in production method B is not particularly limited, but is a catalyst in which one or more selected from group VI metal and group VIII metal force of the periodic table are supported as active metal components on a support containing aluminosilicate. Is preferably used.
  • Aluminosilicate is a metal oxide composed of three elements of aluminum, silicon and oxygen. Say things.
  • other metal elements can coexist within a range not impeding the effects of the present invention.
  • the amount of the other metal element is preferably 3% by mass or less, preferably 5% by mass or less of the total amount of alumina and silica as the oxide.
  • metal elements that can coexist include titanium, lanthanum, manganese, and the like.
  • the crystallinity of aluminosilicate can be estimated by the proportion of tetracoordinate aluminum atoms in all aluminum atoms, and this proportion can be measured by 27 A1 solid state NMR.
  • the ratio of tetracoordinated aluminum to the total amount of aluminum is preferably 50% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass or more. More preferred.
  • the proportion of 4-coordinate aluminum to aluminum total amount 50 mass 0/0 or more aluminosilicate referred to as "crystalline aluminosilicate".
  • zeolite As crystalline aluminosilicate, so-called zeolite can be used.
  • Preferred LVs include, for example, Y-type zeolite, ultra-stable Y-type zeolite (USY-type zeolite), ⁇ -type zeolite, mordenite, ZSM-5, etc. Among them, USY zeolite is particularly preferred.
  • one kind of crystalline aluminosilicate may be used alone, or two or more kinds may be used in combination.
  • Examples of a method for preparing a carrier containing crystalline aluminosilicate include a method of molding a mixture of crystalline aluminosilicate and a binder and firing the molded body.
  • the binder to be used is not particularly limited, but alumina is particularly preferable among alumina, silica, silica alumina, titer and magnesia.
  • the use ratio of the binder is not particularly limited, but usually 5 to 99% by mass is preferable based on the total amount of the molded body, and 20 to 99% by mass is more preferable.
  • the firing time is not particularly limited, but is usually 1 minute to 24 hours, preferably 10 minutes to 20 hours, more preferably 30 minutes to 10 hours. Firing may be performed in an air atmosphere, but is preferably performed in an oxygen-free atmosphere such as a nitrogen atmosphere.
  • the Group VI b metal supported on the carrier is chromium, molybdenum, tungsten.
  • Specific examples of the group VIII metal include cobalt, nickel, rhodium, palladium, iridium, platinum and the like. These metals may be used alone or in combination of two or more. When combining two or more types of metals, you can combine precious metals such as platinum and palladium, or you can combine base metals such as nickel, cobalt, tungsten, and molybdenum, or you can combine precious metals and base metals. Moyo.
  • the loading of the metal on the carrier can be performed by information such as impregnation of the carrier into the solution containing the metal, ion exchange and the like.
  • the amount of the metal supported can be selected as appropriate, but is usually 0.05 to 2% by mass, preferably 0.1 to 1% by mass, based on the total amount of the catalyst.
  • a feedstock containing paraffinic hydrocarbon is hydrocracked and hydroisomerized in the presence of the catalyst.
  • Powerful hydrocracking and hydroisomerization processes can be performed using a fixed bed reactor.
  • Hydrocracking ⁇ As conditions for hydroisomerization, for example, the temperature is 250 to 400 ° C, the hydrogen pressure is 0.5 to: LOMPa, the liquid space velocity (LHSV) of the feedstock is 0.5 to LOh _1 is preferred respectively.
  • the lubricating oil fraction is distilled and separated from the cracked product oil obtained by the hydrocracking Z hydroisomerization process.
  • the distillation separation process in the manufacturing method B is the same as the distillation separation process in the manufacturing method A, the overlapping description is omitted here.
  • the lubricating oil fraction fractionated from the cracked product oil is removed.
  • the intensive dewaxing step can be performed using a conventionally known dewaxing process such as solvent dewaxing or catalytic dewaxing.
  • substances having a boiling point of 370 ° C or less present in the cracked Z isomerized product oil are separated before the dewaxing, and in this case, depending on the use of the cracked Z anisotropy product oil You can dewax all hydrogenated isomers or you can remove fractions with boiling points above 370 ° C!
  • the product oil is further cooled to precipitate the wax. Separation from the raffinate by filtration, membrane or centrifugation. Thereafter, the solvent is removed from the raffinate, and the raffinate is fractionated to obtain the target lubricating base oil.
  • catalytic dewaxing catalyst dewaxing
  • the cracked Z isomerization product oil is reacted with hydrogen in the presence of a suitable dewaxing catalyst under conditions effective to lower the pour point.
  • a suitable dewaxing catalyst under conditions effective to lower the pour point.
  • catalytic dewaxing a part of the high-boiling substances in the cracked Z-isomer product is converted into low-boiling substances, and the low-boiling substances are separated into heavier base oil fractions. Fractionation is performed to obtain two or more lubricant base oils. Separation of low-boiling substances can be carried out before obtaining the target lubricating base oil or during fractional distillation.
  • the dewaxing catalyst is not particularly limited as long as it can lower the pour point of the cracked Z isomeric product oil. What can obtain an oil base oil is preferable.
  • shape-selective molecular sieves molecular sieves
  • ferrierite, mordenite, ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM- 22 also called Theta One or TON
  • SAPO silicoaluminophosphates
  • the dewaxing conditions are not particularly limited, but the temperature is preferably 200 to 500 ° C, and the hydrogen pressure is preferably 10 to 200 bar (lMPa to 20 MPa).
  • the H treatment rate is 0.1 to: LOkgZlZhr is preferred LHSV is preferably 0.1 to 10 _1
  • Dewaxing is a product contained in cracked / isomerized product oil, usually 40% by mass or less, preferably 30% by mass or less and having an initial boiling point of 350 to 400 ° C. It is preferable to carry out the conversion to a substance having a boiling point below this initial boiling point.
  • the production method for the lubricating base oil according to the first embodiment is not limited thereto. It is not limited.
  • synthetic waxes such as FT wax and GTL wax may be used instead of slack wax.
  • a raw material oil containing slack wax preferably slack wax A, B
  • slack wax preferably slack wax A and B
  • synthetic wax preferably FT wax and GTL wax
  • the raw material oil used when producing the lubricating base oil according to the first embodiment is a mixed oil of the above-mentioned slack wax and Z or synthetic wax and raw oil other than these waxes.
  • the content of slack wax and Z or synthetic wax is preferably 50% by mass or more based on the total amount of feedstock oil.
  • the raw material oil for producing the lubricating base oil according to the first embodiment is a raw material oil containing slack wax and Z or synthetic wax, and the oil content is preferably 60% by mass or less. More preferably, the feedstock is 50% by mass or less, more preferably 25% by mass or less.
  • the content of the saturated component in the lubricating base oil according to the first embodiment is 90% by mass or more, preferably 93% by mass or more, as described above, based on the total amount of the lubricating base oil. More preferably, it is 95 mass% or more, more preferably 96 mass% or more, and still more preferably 97 mass% or more. Further, the content of the saturated component may be 100% by mass, but is preferably 99.9% by mass or less, more preferably 99.5% by mass or less from the viewpoint of production cost and solubility of the additive. More preferably, it is 99 mass% or less, and particularly preferably 98.5 mass% or less.
  • the ratio of the cyclic saturated component to the saturated component is 40% by mass or less, preferably 0.1 to 40% by mass, 2 to 30% by mass, more preferably 5 to 25% by mass. More preferably, it is 10 to 21% by mass.
  • Saturation content and percentage of cyclic saturation in the saturation force S Each of the above conditions is satisfied, and the viscosity index and iodine value satisfy specific conditions, respectively, thereby achieving viscosity temperature characteristics and thermal oxidation stability.
  • the additive function should be expressed at a higher level while the additive is sufficiently stably dissolved and retained in the lubricant base oil. Is possible.
  • the friction characteristics of the lubricant base oil itself can be improved, and as a result, the improvement of the friction reduction effect and, consequently, the improvement of energy saving can be achieved. Can do.
  • the content of the saturate is less than 90% by mass, the viscosity-temperature characteristics, thermal oxidation stability and friction characteristics become insufficient. If the ratio of the cyclic saturated component in the saturated component exceeds 40% by mass, the effectiveness of the additive will be reduced when the additive is added to the lubricating base oil. Furthermore, when the ratio of the cyclic saturated component to the saturated component is less than 0.1% by mass, when the additive is added to the lubricating base oil, the solubility of the additive is reduced and the lubricating oil base is reduced. The effective amount of the additive dissolved and retained in the oil tends to decrease, and the function of the additive cannot be effectively obtained.
  • the content of the saturated component may be 100% by mass, but is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, from the viewpoint of reducing the production cost and improving the solubility of the additive. More preferably, it is 99% by mass or less, and particularly preferably 98.5% by mass or less.
  • the ratio of the cyclic saturated component in the saturated component is 0% by mass or less, which means that the non-cyclic saturated component in the saturated component is 60% by mass or more.
  • the non-cyclic saturated component includes both a linear paraffin component and a branched paraffin component.
  • the proportion of each paraffin component in the lubricating base oil according to the first embodiment is not particularly limited, but the proportion of the branched paraffin component is preferably 55 to 99% by mass, more preferably based on the total amount of the lubricating oil base oil.
  • the ratio of the branched paraffin component in the lubricating base oil satisfies the above conditions, the viscosity-temperature characteristics and the heat / acid stability can be further improved, and an additive can be added to the lubricating base oil. Is added, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held.
  • the proportion of linear paraffin in the lubricating base oil is preferably 1% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.2% by mass based on the total amount of the lubricating oil base oil. % Or less. Linear paraffin When the proportion of ins satisfies the above conditions, a lubricating base oil having better low-temperature viscosity characteristics can be obtained.
  • the contents of the saturated one-ring component and the saturated component of two or more rings in the saturated component are particularly limited as long as their total force is 0% by mass or less.
  • the ratio of the saturated component of two or more rings to the saturated component is preferably 0.1% by mass or more, more preferably 1% by mass or more, and more preferably 3% by mass or more. More preferably 5% by mass or more, more preferably 6% by mass or more, particularly preferably 40% by mass or less, and 20% by mass or less. More preferably, it is more preferably 15% by mass or less, and even more preferably 11% by mass or less.
  • the percentage of saturated one ring in the saturated portion may be 0% by mass, but preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, particularly It is preferably 4% by mass or more, preferably 40% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 11% by mass or less.
  • the ratio of the mass of one ring saturated component (M) contained in the cyclic saturated component to the mass (M) of the saturated component of two or more rings (M / M) is preferably 20
  • M / M may be 0, but is preferably 0.1 or more, more preferably 0.3 or more, and further
  • the ratio (M ZM) of the mass (M) of the monocyclic saturated component (M) and the bicyclic saturated component (M) contained in the cyclic saturated component is , Preferably 3 or less
  • M / M may be 0, but is preferably 0.1 or more, more preferably 0.3 or more, and more
  • the saturated content in the present invention means a value (unit: mass%) measured in accordance with ASTM D 2007-93.
  • the cyclic saturated component, the single ring saturated component, the saturated component of two or more rings in the saturated component The ratio of saturates and non-cyclic saturates is measured according to ASTM D 2786-91, respectively (measurement target: 1-ring to 6-ring naphthene, unit: mass%) and alkane (unit: mass%). Means.
  • the linear paraffin content in the lubricating base oil referred to in the present invention is the ASTM D 2007 mentioned above.
  • the saturated components separated and fractionated by the method described in 93 are analyzed by gas chromatography under the following conditions, and the linear paraffin content in the saturated components is identified and quantified. It means a value converted based on the total amount of oil.
  • identification and quantification a mixed sample of straight-chain paraffin having 5 to 50 carbon atoms is used as a standard sample, and the straight-chain paraffin content in the saturated portion is the total peak area value of the chromatogram (diluent). The total peak area value corresponding to each straight-chain paraffin relative to each other) is calculated.
  • Carrier gas Helium (Linear speed: 40cmZmin)
  • Sample injection volume 0.5 L (injection volume of sample diluted 20-fold with carbon dioxide)
  • the ratio of the branched paraffin content in the lubricating base oil refers to the difference between the non-cyclic saturated content in the saturated content and the linear paraffin content in the saturated content, and the total amount of the lubricating base oil. It means the value converted as a standard.
  • the aromatic content in the lubricating base oil according to the first embodiment is such that the content of the saturated component, the ratio of the cyclic saturated component in the saturated component, the viscosity index and the iodine value satisfy the above conditions. If it is not particularly limited, preferably based on the total amount of the lubricating base oil Is 7% by mass or less, more preferably 5% by mass or less, further preferably 4% by mass or less, particularly preferably 3% by mass or less, and preferably 0.1% by mass or more, more preferably 0.5% by mass. % Or more, more preferably 1% by mass or more, and particularly preferably 1.5% by mass or more.
  • the lubricating base oil according to the first embodiment may not contain an aromatic component, but the solubility of the additive can be improved by setting the aromatic content to the above lower limit value or more. It can be further increased.
  • the aromatic content in the present invention means a value measured according to ASTM D 2007-93.
  • the aromatic component usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene and alkylated products thereof, and compounds in which a benzene ring is condensed by four or more rings, pyridines, quinolines, phenols, naphthols, and the like. Aromatic compounds having heteroatoms are included.
  • the viscosity index of the lubricating base oil according to the first embodiment is 110 or more as described above.
  • the preferred range of the viscosity index of the lubricating base oil according to the first embodiment depends on the viscosity grade of the lubricating base oil, and will be described in detail later.
  • the iodine value of the lubricating base oil according to the first embodiment is 2.5 or less, preferably 1.5 or less, more preferably 1 or less, and still more preferably 0.8 or less. In addition, it may be less than 0.01, but in view of the small effect that is commensurate with it and the relationship with economy, it is preferably 0.01 or more, more preferably 0.1 or more, and still more preferably 0.5 or more.
  • the “iodine value” in the present invention means the iodine value measured by the indicator titration method of JIS K 0070 “acid value, saponification value, iodine value, hydroxyl value and unsaponification value of chemical products”. To do.
  • lubricating base oil according to the first embodiment include the content of the saturated component and the saturation.
  • the lubricating base oil according to the first embodiment has the following various properties, although it is not particularly limited as long as the ratio of the cyclic saturated component in the sum, the viscosity index and the iodine value satisfy the above conditions. Preferred.
  • the lubricating base oil according to the first embodiment preferably satisfies the condition represented by the following formula (2).
  • n is the refractive index of the lubricant base oil at 20 ° C, and kvlOO is 10
  • the lubricating base oil according to the first embodiment contains 95% by mass or more of the saturated component, and the ratio of the cyclic saturated component to the saturated component is 0.1 to 15% by mass, preferably 1 to Is it 10% by mass? If it is oil, it is n-0.002 X kvl00i, preferably ⁇ 1. 435-1.450, or more
  • ⁇ or 1.440 to 1.449 Preferably ⁇ or 1.440 to 1.449, more preferably ⁇ or 1. 442 to 1.448, particularly preferably ⁇ or 1.444: L 447.
  • raw materials mainly composed of the above-described synthetic wax and soot or slack wax are used as raw materials to be introduced into the hydrolysis and soot or hydroisomerization process. It is more preferable to use a raw material mainly composed of the above-described synthetic lacquer and cocoon or slack wax cocoon.
  • the proportion of the branched paraffin in the lubricating base oil is more preferably 95 to 99% by mass, and still more preferably 97 to 99% by mass.
  • the slack wax A is used as a raw material.
  • the proportion of branched paraffin in the lubricating base oil is more preferably 82 to 98% by mass, and still more preferably 90 to 95% by mass.
  • the lubricating base oil according to the first embodiment contains 90% by mass or more of the saturated component, and the ratio of the cyclic saturated component to the saturated component is 5 to 40% by mass, preferably 10 to 25%. If it is a lubricant base oil that is mass%, n-0.002 X kvl00 is 1.435 to 1.453, preferred
  • a lubricating base oil having such properties raw materials mainly composed of the above-mentioned synthetic wax and Z or slack wax are used as raw materials to be introduced into the hydrocracking and Z or hydroisomerization processes. It is more preferable to use a raw material mainly composed of the aforementioned slack box B which is preferably used. Also, in this case, The proportion of branched paraffin in the lubricating base oil is more preferably 54 to 95% by mass, still more preferably 58 to 92% by mass, further preferably 70 to 90% by mass, and particularly preferably 80 to 90% by mass. %.
  • n By setting 0.0.002 X kvl00 within the above range, viscosity-temperature characteristics and heat / acid
  • the refractive index (n) at 20 ° C in the present invention is based on ASTM D1218-92.
  • the refractive index measured at 20 ° C. Further, the kinematic viscosity (kvlOO) at 100 ° C. referred to in the present invention is 100 in accordance with JIS K 2283-1993. It means the kinematic viscosity measured at C.
  • The% C of the lubricating base oil according to the first embodiment is preferably 80 or more, more preferably
  • the stability and friction characteristics tend to be reduced, and further, when an additive is added to the lubricating base oil, the effectiveness of the additive tends to be reduced. Further, when the% c P of the lubricating base oil exceeds the above upper limit, the solubility of the additive tends to decrease.
  • The% C of the lubricating base oil according to the first embodiment is preferably 3 to 19, more preferably
  • The% C of the lubricating base oil according to the first embodiment is preferably 5 or less, more preferably
  • % C of the lubricating base oil according to the first embodiment may be 0,
  • the ratio of% C to% in the lubricating base oil according to the first embodiment is% C /%.
  • More than 6 C power is preferred More than 6 is more preferred More than 7
  • % C /% C is less than the above lower limit, viscosity temperature characteristics, thermal oxidation
  • PN is preferably 35 or less, more preferably 20 or less, and even more preferably 14 or less, even more preferably 13 or less. Set% C /% C below the above upper limit.
  • % C,% C and% C are respectively ASTM D 3238-85.
  • the preferred range is based on the value obtained by the above method. For example, even a lubricating base oil that does not contain a naphthene component has a value exceeding the% C force ⁇ obtained by the above method.
  • the content of sulfur in the lubricating base oil according to the first embodiment depends on the content of sulfur in the raw material.
  • a raw material that does not substantially contain sulfur like a synthetic wax component obtained by a Fischer-Tropsch reaction or the like
  • a lubricating base oil that is substantially free of sulfur can be obtained.
  • raw materials containing sulfur such as slack wax obtained in the refining process of lubricating base oil and micro wax obtained in the refinement process are used.
  • the sulfur content in the obtained lubricating base oil is usually 100 ppm by mass or more.
  • the sulfur content is 100 mass ppm or less from the viewpoint of further improving thermal stability and reducing sulfur, 50 mass pp. More preferably, it is 10 mass ppm or less, more preferably 5 mass ppm or less.
  • the sulfur content in the obtained lubricating base oil is preferably 50 mass ppm or less.
  • the sulfur content in the present invention means a sulfur content measured according to JIS K 254 1-1996.
  • the nitrogen content in the lubricating base oil according to the first embodiment is not particularly limited, but is preferably 5 ppm by mass or less, more preferably 3 ppm by mass or less, and even more preferably 1 ppm by mass. It is as follows. When the nitrogen content exceeds 5 ppm by mass, the thermal and oxidation stability tends to decrease.
  • the nitrogen content in the present invention means a nitrogen content measured according to JIS K 2609-1990.
  • the kinematic viscosity of the lubricating base oil according to the first embodiment is not limited as long as the content of the saturated component, the ratio of the cyclic saturated component in the saturated component, the viscosity index, and the iodine value satisfy the above conditions, respectively.
  • the kinematic viscosity at 100 ° C. is preferably 1.5 to 20 mm 2 Zs, more preferably 2.0 to: L lmm 2 Zs.
  • the kinematic viscosity at 100 ° C of the lubricating base oil is less than 1.5 mm 2 Zs, it is not preferable in terms of evaporation loss.
  • a lubricating base oil having a kinematic viscosity at 100 ° C in the following range is fractionated by distillation or the like.
  • (I) 100 kinematic viscosity at ° C is 1. 5 mm 2 Zs least 3. 5 mm less than 2 Zs, more preferably 2. 0 ⁇ 3. 0mm 2 Zs lubricating base oil
  • Lubricating base oil having a kinematic viscosity at 100 ° C of 3.0 mm 2 Zs or more and less than 4.5 mm 2 Zs, more preferably 3.5 to 4.
  • lmm 2 Zs (m) A lubricating base oil having a kinematic viscosity at 100 ° C of 4.5 to 20 mm 2 Zs, more preferably 4.8 to: L lmm 2 Zs, particularly preferably 5.5 to 8.0 mm 2 Zs.
  • the kinematic viscosity at 40 ° C of the lubricating base oil according to the first embodiment is preferably 6.0 to 80 mm 2 Zs, more preferably 8.0 to 50 mm 2 Zs.
  • a lubricating oil fraction having a kinematic viscosity at 40 ° C. within the following range is fractionated by distillation or the like and used.
  • Lubricating base oil having a kinematic viscosity at 40 ° C of 6.0 mm 2 Zs or more and less than 12 mm 2 Zs, more preferably 8.0 to 12 mm 2 Zs
  • Lubricating base oil having a kinematic viscosity at 40 ° C of 12 mm 2 Zs or more and less than 28 mm 2 Zs, more preferably 13 to 19 mm 2 Zs
  • the lubricating base oils (I) and (IV) have a viscosity content by satisfying the above conditions for the saturated content, the ratio of the cyclic saturated content in the saturated content, the viscosity index, and the iodine value, respectively. Compared with conventional lubricating base oils of the same grade, in particular, it has excellent low-temperature viscosity characteristics and can significantly reduce viscosity resistance and stirring resistance. In addition, by adding a pour point depressant, the BF viscosity at 40 ° C can be reduced to 2000 mPa's or less. The BF viscosity at 40 ° C means the viscosity measured according to JPI-5S-26-99.
  • the lubricating base oils (() and (V) satisfy the above conditions in terms of the content of the saturated component, the ratio of the cyclic saturated component in the saturated component, the viscosity index, and the iodine value, respectively.
  • the low-temperature viscosity characteristics, volatilization prevention properties and lubricity are particularly excellent.
  • the CCS viscosity at ⁇ 35 ° C. can be 3000 mPa's or less.
  • the lubricating base oils (III) and (VI) must satisfy the above conditions in terms of the saturated content, the ratio of the cyclic saturated component in the saturated component, the viscosity index, and the iodine value, respectively. Compared with conventional lubricating base oils with the same viscosity grade, it has excellent low-temperature viscosity characteristics, volatilization prevention, thermal and acid stability, and lubricity.
  • the viscosity index of the lubricating base oil according to the first embodiment is a force depending on the viscosity grade of the lubricating base oil. In any of the above lubricating base oils (I) to (VI), the viscosity index Can be 110 or more.
  • the viscosity index of the lubricating oils (I) and (IV) is preferably 110 to 135, more preferably 115 to 130, and still more preferably 120 to 130.
  • the viscosity index of the lubricating base oils ( ⁇ ) and (V) is preferably 125 to 160, more preferably 130 to 150, and still more preferably 135 to 150.
  • the viscosity index of the lubricating base oils (III) and (VI) is preferably 135 to 180, more preferably 140 to 160.
  • the viscosity index referred to in the present invention means a viscosity index measured in accordance with JIS K 2283-1993.
  • the refractive index of the lubricating base oil according to the first embodiment at 20 ° C depends on the viscosity grade of the lubricating base oil.
  • the lubricating base oil (I) and (IV ) At 20 ° C. is preferably 1.440 to 1.461, more preferably 1.442 to 1.460, and still more preferably 1.445 to 1.459.
  • the refractive index of the lubricating base oils ( ⁇ ) and (V) at 20 ° C. is preferably 1.450 to 1.465, more preferably 1.452 to 1.463, and still more preferably 1.453. ⁇ 1.462.
  • the refractive index at 20 ° C of the lubricating base oils ( ⁇ ) and (VI) is preferably 1.455 to 1.469, more preferably 1.456 to 1.468, and still more preferably 1. 457 to 1.467. If the refractive index exceeds the above upper limit, the viscosity temperature characteristics and thermal / oxidation stability of the lubricating base oil tend to deteriorate, and further, the volatilization prevention characteristics and low temperature viscosity characteristics tend to deteriorate. When an additive is blended with the additive, the effectiveness of the additive tends to decrease.
  • the pour point of the lubricating base oil according to the first embodiment depends on the viscosity grade of the lubricating base oil.
  • the pour point of the lubricating base oil (I) and (IV) is It is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 12.5 ° C. or lower, and further preferably ⁇ 15 ° C. or lower.
  • the pour points of the lubricating base oils ( ⁇ ) and (V) are preferably ⁇ 10 ° C. or lower, more preferably ⁇ 15 ° C. or lower, and further preferably 17.5 ° C. or lower.
  • the pour points of the lubricating base oils ( ⁇ ) and (VI) are preferably ⁇ 10 ° C.
  • the pour point in the present invention means a pour point measured according to JIS K 2269-1987.
  • the CCS viscosity of the lubricating base oil according to the first embodiment at -35 ° C is a force depending on the viscosity grade of the lubricating base oil.
  • the lubricating base oils (I) and (IV) The CCS viscosity at 35 ° C is preferably lOOOOmPa's or less.
  • the CCS viscosity of the above lubricating base oils ( ⁇ ) and (V) at ⁇ 35 ° C. is preferably 3000 mPa's or less, more preferably 2400 mPa's or less, still more preferably ⁇ or 2200 mPa's, particularly It is preferably ⁇ or less than 2000 mPa's.
  • the CCS viscosity of the lubricating base oils (III) and (VI) at 35 ° C is preferably 15,000 mPa's or less, more preferably lOOOOmPa's or less, and more preferably 80 OOmPa's or less. It is.
  • the CCS viscosity at ⁇ 35 ° C exceeds the above upper limit, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease.
  • the CCS viscosity at 35 ° C. means a viscosity measured according to JIS K 2010-1993.
  • kvlOO represents the kinematic viscosity (mm 2 Zs) of the lubricating base oil at 100 ° C.
  • the stopping properties and low-temperature viscosity characteristics tend to decrease, and when an additive is added to the lubricating base oil, the effectiveness of the additive tends to decrease.
  • p of the lubricating base oils (I) and (IV) is preferably 0.825 gZcm 3 or less
  • lubricating base oils (III) and (VI) is preferably 0.840 gZcm 3 or less, more preferably.
  • the density at 15 ° C referred to in the present invention is 15 according to JIS K 2249-1995. Means the density measured at ° C!
  • the aniline point (AP (° C)) of the lubricating base oil according to the first embodiment is a force depending on the viscosity grade of the lubricating base oil. It is preferable that AP ⁇ A.
  • kvlOO represents the kinematic viscosity (mm 2 Zs) of the lubricating base oil at 100 ° C.
  • the AP of the lubricating base oils (I) and (IV) is preferably 108 ° C or higher, more preferably 110 ° C or higher, and still more preferably 112 ° C or higher.
  • the AP of the lubricating base oils ( ⁇ ) and (V) is preferably 113 ° C or higher, more preferably 116 ° C or higher, still more preferably 118 ° C or higher, and particularly preferably 120 ° C or higher.
  • the AP of the lubricating base oils (III) and (VI) is preferably 125 ° C or higher, more preferably 127 ° C or higher, and still more preferably 128 ° C or higher.
  • the "falling point" as used in the present invention means the falling point measured according to JIS K 2256-1985.
  • the NOACK evaporation amount of the lubricating base oil according to the first embodiment is not particularly limited.
  • the NOACK evaporation amount of the lubricating base oils (I) and (IV) is preferably 20 masses. % Or more, more preferably 25% by mass or more, still more preferably 30 or more, and preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 42% by mass or less.
  • the NOACK evaporation amount of the lubricating base oils ( ⁇ ) and (V) is preferably 6% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, and preferably It is 20% by mass or less, more preferably 16% by mass or less, still more preferably 15% by mass or less, and particularly preferably 14% by mass or less.
  • the NOAC K evaporation amount of the lubricating base oils ( ⁇ ) and (VI) is preferably 1% by mass or more, more preferably 2% by mass or more, and preferably 8% by mass or less, more preferably Is 6% by mass or less, more preferably 4% by mass or less.
  • the NO ACK evaporation amount in the present invention means an evaporation loss amount measured according to ASTM D 5800-95.
  • the distillation properties of the lubricating base oil according to the first embodiment are gas chromatography distillation, and the initial boiling point (IBP) force is 290 to 440 ° C, and the end point (FBP) is 430 to 580 ° C. It is preferable that the distillate power in the distillation range is selected by rectifying one or more distillate fractions selected from the lubricating base oils (I)-( III) and (IV) to (VI) can be obtained.
  • the initial boiling point (IBP) is preferably 260 to 360. C, more preferably 300-350. C, more preferably 310 to 350.
  • the 10% distillation temperature (T10) is preferably 320 to 400 ° C, more preferably 340 to 390 ° C, and further preferably 350 to 380 ° C.
  • the 50% distilling point (T50) is preferably 350-430. C, more preferably 360-410. C, more preferably 370-400.
  • the 90% distilling point (T90) is preferably 380-460. C, more preferably 390-450. C, more preferably 400 to 440 ° C.
  • the end point (FBP) is preferably 420 to 520 ° C, more preferably 430 to 500. C, more preferably 440-480.
  • T90-T10 is preferably 50 to 100 ° C, more preferably 55 to 85 ° C, still more preferably 60 to 70 ° C.
  • FBP-IBP is preferably 100 to 250 ° C, more preferably 110 to 220 ° C, and further preferably 120 to 200 ° C.
  • T10-IBP is preferably 10 to 80 ° C, more preferably 15 to 60 ° C, and further preferably 20 to 50 ° C.
  • FBP-T90 is preferably 10 to 80 ° C, more preferably 15 to 70 ° C, and further preferably 20 to 60 ° C.
  • the initial boiling point (IBP) is preferably 300 to 380. C, more preferably 320-370. C, more preferably 330-360. C.
  • the 10% distillation temperature (T10) is preferably 340 to 420 ° C, more preferably 350 to 410 ° C, and still more preferably 360 to 400 ° C.
  • the 50% distillation point (T50) is preferably 380 to 460. C, more preferably 390-450. C, more preferably 400-460. C.
  • the 90% distillation point (T90) is preferably 440 to 500 ° C, more preferably 450 to 490 ° C, and further preferably 460 to 480 ° C.
  • the end point (FBP) is preferably 460-540 ° C, More preferably, 470-530. C, more preferably 480-520. C.
  • T90-T10 is preferably 50 to 100 ° C, more preferably 60 to 95 ° C, still more preferably 80 to 90 ° C.
  • the FBP-IBP is preferably 100 to 250 ° C, more preferably 120 to 180 ° C, still more preferably 130 to 160 ° C.
  • T10-IBP is preferably 10 to 70 ° C, more preferably 15 to 60 ° C, and further preferably 20 to 50 ° C.
  • FBP-T90 is preferably 10 to 50 ° C, more preferably 20 to 40 ° C, and further preferably 25 to 35 ° C.
  • the initial boiling point (IBP) is preferably 320 to 480. C, more preferably 350-460. C, more preferably 380-440. C.
  • the 10% distillation temperature (T10) is preferably 420 to 500 ° C, more preferably 430 to 480 ° C, and further preferably 440 to 460 ° C.
  • the 50% distillation point (T50) is preferably 440 to 520. C, more preferably 450-510. C, more preferably 460-490. C.
  • the 90% distillation point (T90) is preferably 470 to 550 ° C, more preferably 480 to 540 ° C, and further preferably 490 to 520 ° C.
  • the end point (FBP) is preferably 500 to 580 ° C, more preferably 510 to 570. C, more preferably 520-560.
  • T90-T10 is preferably 50 to 120 ° C, more preferably 55 to 100 ° C, and still more preferably 55 to 90 ° C.
  • FBP-IBP is preferably 100 to 250 ° C, more preferably 110 to 220 ° C, and further preferably 115 to 200 ° C.
  • T10-IBP is preferably 10 to 100 ° C, more preferably 15 to 90 ° C, and still more preferably 20 to 50 ° C.
  • FBP-T90 is preferably 10 to 50 ° C, more preferably 20 to 40 ° C, and further preferably 25 to 35 ° C.
  • Nana in the present invention, IBP, T10, T50, T90 and FBP are respectively ASTM D
  • the residual metal content in the lubricating base oil according to the first embodiment is a surplus in the manufacturing process. Although it is derived from the catalyst and the metal contained in the raw material, it is preferable that the residual metal is sufficiently removed.
  • the contents of Al, Mo, and Ni are each preferably 1 mass ppm or less. If the content of these metals exceeds the above upper limit, the function of the additive blended with the lubricating base oil tends to be impaired.
  • the residual metal content in the present invention means a metal content measured according to JPI-5S-38-2003.
  • the content of the saturated component, the ratio of the cyclic saturated component in the saturated component, the viscosity index, and the iodine value satisfy the above conditions, respectively.
  • Excellent thermal oxidation stability can be achieved, but it is preferable to exhibit the following RBOT life depending on the kinematic viscosity.
  • the RBOT life of the lubricating base oils (I) and (IV) is preferably 300 min or more, more preferably 320 min or more, and further preferably 330 min or more.
  • the RBOT life of the lubricating base oils ( ⁇ ) and (V) is preferably 350 min or more, more preferably 370 min or more, and further preferably 380 min or more.
  • the RBOT life of the lubricating base oils (III) and (VI) is preferably 400 min or more, more preferably 410 min or more, and further preferably 420 min or more. If the RBOT life is less than the lower limit value, the viscosity temperature characteristics and thermal oxidation stability of the lubricating base oil tend to be reduced, and if an additive is added to the lubricating base oil, The effectiveness of the additive tends to decrease.
  • the RBOT life referred to in the present invention the lubricant base oil in the phenol-based Sani spoon inhibitor (2, 6 - di - tert - butyl p Tarezoru; DBPC) a 0.2 mass 0/0 added It means the RBOT value measured according to JIS K 2514-1996 for the selected composition.
  • the freezing point of the lubricating base oil according to the first embodiment depends on the viscosity grade of the lubricating base oil
  • a preferred example of the lubricating base oil according to the first embodiment is 100 ° C.
  • the freezing point is more preferably 26 ° C. or less, and further preferably ⁇ 28 ° C. or less.
  • the low temperature performance can be improved by lowering the freezing point of the lubricating base oil, but the freezing point is preferably ⁇ 45 ° C or higher, more preferably ⁇ 40 ° C or higher, from the viewpoint of lowering the viscosity index and economy. More preferably, it is ⁇ 35 ° C. or higher.
  • the freezing point of the lubricating base oil is set to ⁇ 35 to ⁇ 26 ° C., a high viscosity index and low temperature characteristics can be achieved at a higher level, and the lubricating oil is excellent in economic efficiency.
  • a base oil can be obtained, which is particularly preferable.
  • the lubricating base oil having a freezing point of -25 ° C or less is the force obtained by performing the dewaxing process such as the solvent dewaxing method or the contact dewaxing method described above. Any removal method may be employed as long as the freezing point can be 25 ° C or lower.
  • the freezing point in the present invention is a sample measured by setting the pour point measurement interval (2.5 ° C) in JIS K 2269-1987 (JIS method pour point) to 1 ° C. It means a temperature 1 ° C lower than the lowest temperature at which flow is observed.
  • the force that gives results at intervals of 2.5 ° C with the JIS method pour point Considering the measurement error and reproducibility of this method, it is not appropriate for the present invention that strictly controls the critical point of the low temperature characteristics. Nah ...
  • the MRV viscosity at 40 ° C is preferably 60000 mPa's or less, more preferably 30000 mPas or less, and further preferably Can be 20000 mPa's or less, particularly preferably 15000 mPa's or less, and the yield stress can also be OPa (no yield stress).
  • the MRV viscosity and yield stress at 40 ° C in the present invention mean the viscosity and yield stress measured according to ASTM D 4684, respectively.
  • the lubricating base oil according to the second embodiment of the present invention has a kinematic viscosity at 100 ° C of 3.5 to 6 mm 2 Zs, a viscosity index of 130 or more, and a freezing point of 25 ° C or less. It is characterized by this.
  • the lubricating base oil according to the second embodiment is not particularly limited as long as the kinematic viscosity, viscosity index, and freezing point at 100 ° C satisfy the above conditions.
  • crude oil is distilled at atmospheric pressure And z or a lubricant fraction obtained by distillation under reduced pressure is subjected to solvent removal, solvent extraction, hydrolysis, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid washing, clay treatment, etc.
  • paraffinic mineral oils normal paraffinic base oils, isoparaffinic base oils, etc.
  • lubricating base oils may be used alone or in combination of two or more.
  • the base oils (1) to (8) exemplified in the description of the first embodiment are used as raw materials.
  • purifying the lubricating oil fraction collect
  • the base oil (9) or (10) exemplified in the description of the first embodiment may be mentioned.
  • the kinematic viscosity at 100 ° C of the lubricating base oil according to the second embodiment is 3.5 to 6 mm 2 Zs, preferably 3.7 to 4.5 mm 2 Zs, more preferably as described above. Is between 3.9 and 4.2 mm 2 Zs. If the kinematic viscosity of the lubricating base oil at 100 ° C is less than 3.5 mm 2 Zs, the evaporation loss will increase, and if it exceeds 6 mm 2 Zs, the low-temperature viscosity characteristics at 40 ° C will be significantly worse. .
  • the kinematic viscosity of the lubricating base oil according to the second embodiment at 40 ° C is not particularly limited.
  • 1S is preferably 12 to 32 mm 2 Zs, more preferably 13 to 19 mm 2 Zs, and further preferably 15 to 17 5mm 2 Zs.
  • the kinematic viscosity of the lubricating base oil at 40 ° C is less than 12 mm 2 Zs, the evaporation loss tends to increase, and when it exceeds 32 mm 2 Zs, the low temperature viscosity at 40 ° C tends to deteriorate. is there.
  • the viscosity index of the lubricating base oil according to the second embodiment is 130 or more as described above. Preferably it is 135 or more, More preferably, it is 138 or more. When the viscosity index is less than 130, the viscosity-temperature characteristics are insufficient.
  • the viscosity index of the lubricating base oil according to the second embodiment is preferably 160 or less, more preferably 150 or less. When the viscosity index exceeds 160, the low temperature viscosity property tends to be insufficient.
  • the freezing point of the lubricating base oil according to the second embodiment is 25 ° C or lower, preferably -26 ° C or lower, more preferably -28 ° C or lower. Under the temperature condition of about 30 ° C, sufficient low-temperature characteristics may be obtained even when the freezing point of the lubricating base oil exceeds -25 ° C. In order to realize a lubricant with excellent low-temperature viscosity characteristics (C CS viscosity, MRV viscosity, BF viscosity), especially a lubricant with greatly improved MRV viscosity at 40 ° C, the freezing point should be -25 ° C or lower.
  • the temperature be ⁇ 26 ° C. or lower.
  • the low temperature performance can be improved by lowering the freezing point of the lubricating base oil, but the freezing point is preferably 45 ° C or higher, more preferably 40 ° C from the viewpoint of lowering the viscosity index and economy. Above, more preferably 35 ° C or higher.
  • the freezing point of the lubricating base oil by setting the freezing point of the lubricating base oil to ⁇ 35 to ⁇ 26 ° C., it is possible to achieve both a high viscosity index and a low temperature characteristic at a higher level, and an economically superior lubricating base oil. Is particularly preferable.
  • a lubricant base oil having a freezing point of -25 ° C or lower can be obtained by performing a dewaxing process such as the solvent dewaxing method or the contact dewaxing method described above. Any dewaxing method may be employed as long as the freezing point of the oil can be 25 ° C or lower.
  • the CCS viscosity of a lubricating base oil at -35 ° C is preferably 2800 mPa's or less, more preferably 2200 mPa's or less, and even more preferably 2000 mPa's. It can be as follows.
  • the MRV viscosity at 40 ° C is preferably 60000 mPa's or less, more preferably 30000 mPas or less, and even more preferably.
  • BF viscosity in C is preferably 20000 mPa's or less, more preferably 15000 mPa- s or less, more preferably lOOOOmPa's or less, particularly preferably 8000 mPa's or less.
  • kinematic viscosity, viscosity index and freezing point at 100 ° C are not particularly limited as long as the above conditions are satisfied, the physical properties and compositions described in the section of the lubricating base oil according to the first embodiment may be used. preferable. Here, overlapping description is omitted.
  • the refractive index of the lubricating base oil according to the second embodiment at 20 ° C satisfies the above formula (2). More preferably, it is 1.452 to 1.463, more preferably 1.453 to 1.462.
  • the pour point of the lubricating base oil according to the second embodiment is preferably -20 ° C or lower, more preferably 22.5 ° C or lower, more preferably 25 ° C or lower, and still more preferably. Is 27.5 ° C or less, particularly preferably -30 ° C or less.
  • the pour point exceeds the upper limit, the low temperature viscosity characteristics at 35 ° C or lower of the lubricating base oil and the lubricating oil composition containing the lubricating base oil tend to be lowered.
  • the NOACK evaporation amount of the lubricating base oil according to the second embodiment is not particularly limited, but is preferably 20% by mass or less, more preferably 16% by mass or less, and further preferably 15% by mass or less. Further, it is preferably 6% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more.
  • the NOACK evaporation amount is the lower limit, it tends to be difficult to improve the low temperature viscosity characteristics. Also, the NOACK evaporation amount exceeds the upper limit value. Then, when the lubricating base oil is used as a lubricating oil for an internal combustion engine or the like, the evaporation loss amount of the lubricating oil increases, and accordingly, catalyst poisoning is promoted.
  • the bearing point (AP (° C)) of the lubricating base oil according to the second embodiment is preferably 113 ° C or higher, more preferably 116 ° C or higher, and still more preferably 118 ° C. Above, particularly preferably 120 ° C or higher.
  • the initial boiling point (IBP) force of gas chromatography distillation is preferably 300 to 380 ° C, more preferably 320 to 370 ° C. More preferably, it is 330 to 360 ° C.
  • the 10% distillation temperature (T10) is preferably 340 to 420. C, more preferably 350-410. C, more preferably 360-400. C.
  • the 50% distillation temperature (T50) is preferably 380 to 460 ° C, more preferably 390 to 450 ° C, and further preferably 400 to 460 ° C.
  • the 90% distillation temperature (T90) is preferably 440 to 500 ° C., more preferably ⁇ to 450 to 490 ° C., and further preferably ⁇ to 460 to 480 ° C. (FBP) ⁇ , preferably ⁇ 460 to 540 ° C, more preferably ⁇ to 470 to 530 ° C, and still more preferably ⁇ to 480 to 520 ° C. C.
  • T90-T10 is preferably 50-100. C, more preferably 60 to 95 ° C, still more preferably 80 to 90 ° C.
  • FBP—IBP is preferably 100 to 250. C, more preferably 120-180. C, more preferably 130-160. . It is.
  • T10-I BP is preferably 10 to 70 ° C, more preferably 15 to 60 ° C, still more preferably 20 to 50 ° C.
  • FBP-T90 is preferably 10 to 50 ° C, more preferably 20 to 40 ° C, and further preferably 25 to 35. C.
  • the lubricating base oil according to the second embodiment excellent thermal oxidation stability can be achieved when the kinematic viscosity, viscosity index, and freezing point at 100 ° C satisfy the above conditions.
  • the RBOT life is preferably 350 min or more, more preferably 370 min or more, and further preferably 380 min or more. If the RBOT life is less than the lower limit value, the viscosity temperature characteristics and the thermal stability of the lubricating base oil tend to decrease. Furthermore, when an additive is added to the lubricating base oil, the effectiveness of the additive tends to be reduced.
  • the lubricating oil composition according to the second embodiment is able to greatly improve the BF viscosity and MRV viscosity at 40 ° C or lower, and therefore, among the above additives, the pour point depressant and Z or viscosity index improver. It is preferable to contain.
  • the pour point of a lubricating oil composition containing a pour point depressant and Z or a viscosity index improver is preferably ⁇ 60 to ⁇ 35 ° C. ⁇ 50 to 40 ° C. Is more preferable.
  • the lubricating base oil according to the first embodiment and the second embodiment is excellent in viscosity temperature characteristics and thermal and oxidation stability, and improved in friction characteristics of the lubricating base oil itself. It is possible to achieve an improvement in the friction reduction effect and thus an improvement in energy saving.
  • the function of the additive (the effect of improving the heat
  • the friction reducing effect of the adjusting agent and the wear resistance improving effect of the antiwear agent can be expressed at a higher level. Therefore, the lubricating base oil according to the first and second embodiments can be suitably used as a base oil for various lubricating oils.
  • the lubricant base oil according to the first embodiment and the second embodiment can be applied to gasoline engines for passenger cars, gasoline engines for motorcycles, diesel engines, gas engines, gas heat pump engines, marine engines.
  • Lubricating oil used in internal combustion engines such as power generation engines (lubricating oil for internal combustion engines), automatic transmissions, manual transmissions, continuously variable transmissions, final reduction gears, etc. Oil), shock absorbers, hydraulic fluids used in hydraulic equipment such as construction machinery, compressor oil, turbine oil, industrial gear oil, refrigeration oil, rust prevention oil, heat medium oil, gas holder seal oil, bearing oil, Paper machine oil, machine tool oil, sliding guide surface oil, electrical insulation oil, cutting oil, press oil, rolling oil, heat treatment oil, etc., and these applications include the first and second embodiments.
  • the improvement of the viscosity temperature characteristics, thermal / oxidation stability, energy savings, fuel savings, etc. of each lubricating oil, and the long life and environmental load of each lubricating oil are achieved. Substance reduction can be achieved at a high level.
  • the lubricant base oil according to the first embodiment and the second embodiment is used as the base oil of the lubricant
  • the lubricating base oil according to the first embodiment or the second embodiment may be used alone, or the lubricating base oil according to the first embodiment or the second embodiment may be used as one of the other base oils. Or you may use together with 2 or more types.
  • the lubricating base oil according to the first embodiment or the second embodiment is used in combination with another base oil, the lubricating base according to the first embodiment or the second embodiment in the mixed base oil is used.
  • the ratio of oil is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more.
  • base oils used in combination with the lubricating base oil according to the first embodiment or the second embodiment are not particularly limited, but as a mineral oil base oil, for example, a kinematic viscosity at 100 ° C is 1 ⁇ 100 mm 2 Zs solvent refined mineral oil, hydrocracked mineral oil, hydrorefined mineral oil, solvent dewaxed base oil, and the like.
  • Synthetic base oils include poly-aolefin and hydride thereof, isobutene oligomer or hydride thereof, isoparaffin, alkylbenzene, alkylnaphthalene, diester (ditridecylglutarate, di-2-ethylhexyl).
  • the poly- a- olefin is typically an a- olefin oligomer or co-oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms (1 octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.) and the like.
  • a- olefin oligomer or co-oligomer having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms (1 octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.
  • the production method of poly-aolefin is not particularly limited.
  • a complex of trisalt ⁇ aluminum or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester is used.
  • the additive blended in the lubricating base oil according to the first embodiment and the second embodiment is not particularly limited, and any additive conventionally used in the field of lubricating oil is blended. be able to.
  • Specific examples of powerful lubricant additives include antioxidants, ashless dispersants, gold Genus detergent, extreme pressure agent, antiwear agent, viscosity index improver, pour point depressant, friction modifier, oiliness agent, corrosion inhibitor, antifungal agent, demulsifier, metal deactivator, seal swelling agent , Antifoaming agents, coloring agents and the like. These additives can be used alone or in combination of two or more.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment of the present invention comprises (A-1) phosphorus based on the lubricating base oil according to the first embodiment or the second embodiment and the total amount of the composition.
  • A-1) phosphorus based on the lubricating base oil according to the first embodiment or the second embodiment and the total amount of the composition.
  • B-1) 0.5 to 3 mass% ashless antioxidant
  • ji-1) 3 to 12 Containing an ashless dispersant by mass%.
  • the overlapping description of the lubricating base oil according to the first embodiment or the second embodiment is omitted.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment includes the mineral oil-based base exemplified in the description of the first embodiment, in addition to the lubricating base oil according to the first embodiment or the second embodiment.
  • Oil, synthetic base oil, and the like can be further contained, but redundant descriptions of mineral oil base oil, synthetic base oil, etc. are also omitted here.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment contains a phosphorus-based antiwear agent as the component (A-1).
  • phosphorus-based antiwear agents include phosphorus-based antiwear agents that do not contain sulfur as a constituent element, and antiwear agents that include both phosphorus and sulfur (phosphorous sulfur-based antiwear agents).
  • phosphorus-based antiwear agent that does not contain sulfur as a constituent element
  • phosphoric acid phosphorous acid
  • phosphoric acid esters including phosphoric acid monoesters, phosphoric acid diesters, and phosphoric acid triesters
  • Phosphites including phosphite monoesters, phosphite diesters and phosphite triesters
  • salts thereof ammine salts or metal salts.
  • the phosphoric acid esters and phosphites those having a hydrocarbon group usually having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms are used.
  • Phosphorus sulfur-based extreme pressure agents include thiophosphoric acid, thiophosphorous acid, thiophosphate esters (including thiophosphate monoesters, thiophosphate diesters, thiophosphate triesters), thiophosphite Acid esters (including thiophosphite monoesters, thiophosphite diesters, thiophosphite triesters), and their salts, and dithiophosphate Lead etc. are mentioned.
  • thiophosphates and thiophosphites those having a hydrocarbon group usually having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms are used.
  • Phosphorus wear inhibitors include phosphorus compounds represented by the following general formula (4a),
  • R 1 represents a hydrocarbon group having 1 to 30 carbon atoms
  • R 2 and R 3 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms
  • X 1 , X 2 and X 3 represents an oxygen atom or a sulfur atom, respectively
  • p represents 0 or 1.
  • R 4 represents a hydrocarbon group having 1 to 30 carbon atoms
  • R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms
  • X 4 , X 5 , X 6 and X 7 each represent an oxygen atom or a sulfur atom
  • q represents 0 or 1.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, and a tridecyl group.
  • Examples of the cycloalkyl group include cycloalkyl groups having 5 to 7 carbon atoms such as a cyclopentyl group, a cyclohexyl group, and a cyclopentyl group.
  • Examples of the alkylcycloalkyl group include methylcyclopentyl group, dimethylcyclopentyl group, methylethylcyclopentyl group, jetylcyclopentyl group, methylcyclohexyl group, dimethylcyclohexyl group, and methylethylcyclohexyl.
  • Alkyl group having 6 to 11 carbon atoms such as a group, a jetyl cyclohexyl group, a methylcycloheptyl group, a dimethylcycloheptyl group, a methylethylcycloheptyl group, and a jetylcycloheptyl group (an alkyl group to a cycloalkyl group).
  • the substitution position is also arbitrary.
  • alkenyl group examples include, for example, butyr, pentenyl, hexenyl, heptenyl, otaenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl
  • An alkenyl group such as a hexadecenyl group, a heptadecyl group, and an octadecyl group (the alkenyl group may be linear or branched, and the position of the double bond is arbitrary). Can be mentioned.
  • Examples of the aryl group include aryl groups such as a phenyl group and a naphthyl group.
  • Examples of the alkylaryl group include tolyl group, xylyl group, ethylphenyl group, propylphenol group, butylphenol group, pentylphenol group, hexylphenol group, heptylphenol group, C 7 -C 18 alkylaryl groups such as octylphenol, norphenyl, decylfur, undecyl, dodecyl, etc. (alkyl groups can be linear or branched) The substitution position on the aryl group is also arbitrary.
  • Examples of the arylalkyl group include 7 to 12 carbon atoms such as a benzyl group, a phenyl group, a phenylpropyl group, a phenylbutyl group, a phenylpentyl group, and a phenylhexyl group.
  • Examples thereof include reel alkyl groups (these alkyl groups may be linear or branched).
  • the hydrocarbon group having 1 to 30 carbon atoms represented by the above is an alkyl having 1 to 30 carbon atoms. It is preferably a group or an aryl group having 6 to 24 carbon atoms, more preferably an alkyl group having 3 to 18 carbon atoms, and more preferably an alkyl group having 4 to 12 carbon atoms.
  • Examples of the phosphorus compound represented by the general formula (4a) include, for example, phosphorous acid monoester, monothiophosphorous acid monoester, dithiophosphorus having one hydrocarbon group having 1 to 30 carbon atoms.
  • Acid monoester (hydrocarbyl) phosphonous acid, (hydrocarbyl) monothiophosphonic acid, (hydrocarbyl) dithiophosphonic acid; phosphorous acid diester having two hydrocarbon groups having 1 to 30 carbon atoms, monothiophosphorous acid diester , Dithiophosphorous diester, (hydrocarbyl) phosphonous acid monoester, (hydrocarbyl) monothiophosphonic acid monoester, (hydrocarbyl) dithiophosphonic acid monoester; having 3 hydrocarbon groups having 1 to 30 carbon atoms Phosphite triester, monothiophosphite triester, dithiophosphite triester, ( (Drocarbyl) phosphonous acid diester, ( (hydr
  • the compound represented by the general formula (4-a) is preferably a compound in which at least one of ⁇ 3 is an oxygen atom.
  • R 1 represents a hydrocarbon group having 1 to 30 carbon atoms
  • R 2 and R 3 are the same or different.
  • Each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms
  • p represents 0 or 1.
  • Examples of the phosphorus compound represented by the general formula (4b) include phosphoric acid monoester, monothiophosphoric acid monoester, and dithiophosphoric acid monoester having one hydrocarbon group having 1 to 30 carbon atoms. , (Hydrocarbyl) phosphonic acid, (hydrocarbyl) monothiophosphonic acid, (hydrocarbyl) dithiophosphonic acid; phosphoric acid diester, monothiophosphoric acid diester, dithiophosphoric acid diester having two hydrocarbon groups having 1 to 30 carbon atoms, Hydrocarbyl) phosphonic acid monoester, (hydrocarbyl) monothiophosphonic acid monoester, (hydrocarbyl) dithiophosphonic acid monoester; phosphoric acid triester having three hydrocarbon groups having 1 to 30 carbon atoms, monothiophosphoric acid triester , Dithiophosphoric acid triester, (hydrocarbyl) phosphonic acid diester , (Hydrocarbyl)
  • the compound represented by the general formula (4- b) X 4 at least two all oxygen atoms of the compound is preferably instrument x 4 ⁇ x 7 is an oxygen atom to X 7 More specifically, a compound represented by the following general formula (4d) is more preferable.
  • R 4 represents a hydrocarbon group having 1 to 30 carbon atoms
  • R 5 and R 6 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, q Indicates 0 or 1.
  • the metal salt or amine salt of the phosphorus compound represented by the general formula (4a) or (4b) is a phosphorus compound represented by the general formula (4a) or (4b).
  • Metal oxides such as metal oxides, metal hydroxides, metal carbonates, metal chlorides, etc., ammonia, hydrocarbon groups having 1 to 30 carbon atoms or hydroxyl group-containing hydrocarbon groups in the molecule It can be obtained by neutralizing a part or all of the remaining acidic hydrogen by the action of a nitrogen compound such as.
  • the metal in the above metal base include alkali metals such as lithium, sodium, potassium, and cesium, alkaline earth metals such as calcium, magnesium, and sodium, zinc, copper, iron, lead, Examples include heavy metals such as nickel, silver, molybdenum, and manganese. Of these, zinc, which is preferable to alkaline earth metals such as calcium and magnesium, molybdenum and zinc, is particularly preferable.
  • the structure of the metal salt of the phosphorus compound differs depending on the valence of the metal or the number of OH groups or SH groups of the phosphorus compound. Therefore, the structure of the metal salt of the phosphorus compound is not limited at all. Not. For example, when 1 mol of acid zinc 1 mol and 2 mol of phosphoric acid diester (compound with one OH group) are reacted, a compound having the structure represented by the following formula (4 e) is considered to be obtained as the main component Polymer It is thought that some molecules exist.
  • R shows a hydrogen atom or a C1-C30 hydrocarbon group each independently.
  • R shows a hydrogen atom or a C1-C30 hydrocarbon group each independently.
  • R represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • nitrogen compound examples include monoamines, diamines, polyamines and alkanolamines exemplified in the description of the tungsten amine complex.
  • heterocyclic compounds such as N-hydroxyethyl laurylimidazoline, amine amine oxide adducts to amine compounds, and the like can also be used.
  • aliphatic amines having an alkyl or alkyl group having 10 to 20 carbon atoms such as decylamine, dodecylamine, tridecylamine, heptadecylamine, octadecylamine, oleylamine and stearylamine (these Are preferably linear or branched, and can be mentioned as examples.
  • the phosphorus-based antiwear agent may be used alone or in combination of two or more.
  • the phosphorus compound represented by the above general formula (4c) or (4-d) or a metal salt thereof is preferable.
  • the (hydrocarbyl) (sub) phosphonic acid, metal salt thereof, (hydrocarbyl) (sub) phosphonic acid monoester, metal salt thereof, and (hydrocarbyl) (sub) phosphonic acid diester are oils.
  • the total carbon number of the hydrocarbon group is preferably 12-30, more preferably 14-24, and even more preferably 16-20.
  • the content of the phosphorus-based antiwear agent is 0.02 to 0.08 as described above in terms of phosphorus element based on the total amount of the composition. is the mass%, preferably ⁇ or 0. 02-0. 06 mass 0/0, particularly preferably ⁇ or 0. 04-0. 05 mass 0/0.
  • the phosphorus antiwear agent content is less than 0.02% by mass in terms of phosphorus element, the antiwear property tends to be insufficient.
  • the content of phosphorus-based antiwear agent exceeds 0.08 mass% in terms of elemental conversion, it will be difficult to maintain the performance of the exhaust gas aftertreatment device for a long time.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment contains an ashless antioxidant as the component ( ⁇ -1).
  • an ashless antioxidant chain-stopping ashless antioxidants generally used in lubricating oils such as phenolic antioxidants and amine antioxidants can be used.
  • phenolic antioxidants include 4,4'-methylenebis (2,6 di tert butylphenol), 4,4,1 bis (2,6 di tert butylphenol), 4,4,1 bis. (2-methyl 6-tert-butylphenol), 2, 2, monomethylene bis (4-ethyl 6-tert butyl phenol), 2, 2, -methylene bis (4-methyl-6-tert butyl phenol), 4, 4, butylidene bis (3- Methyl-6-tertbutylphenol), 4, 4, monoisopropylidenebis (2, 6 ditertbutylbutylphenol), 2,2, -methylenebis (4-methyl-6 nourphenol), 2, 2'-isobutylidenebis (4,6 dimethylphenol), 2,2, monomethylenebis (4-methyl-6cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethyl Phenols, 2, 4 Dimethyl-6- tert
  • amine-based antioxidants include ferro- a naphthylamine, alkyl phen- a naphthylamine, and dialkyldiphenylamine. These may be used alone or in combination of two or more.
  • phenolic acid antioxidant and amine acid antioxidant may be used in combination.
  • the content of the ashless acid wrinkle inhibitor in the lubricating oil composition for an internal combustion engine according to the third embodiment is 0.5 to 3% by mass as described above, preferably based on the total amount of the composition. Is 0.8-2 mass%.
  • the content of the ashless antioxidant is less than 0.5% by mass, the oxidation life becomes insufficient.
  • the content of the ashless acid detergent exceeds 3% by mass, the effect of improving the oxidation life corresponding to the content cannot be obtained.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment contains an ashless dispersant as the component (C-1). It is preferable to further contain an ashless dispersant.
  • ashless dispersants examples include polyolefin alkenyl succinimide and alkyl succinic acid And their derivatives. Typical succinimides are high molecular weight alkenes.
  • the high molecular weight alkenyl or alkyl group is preferably polybutene (polyisobutene) having a number average molecular weight of 700 to 5,000, more preferably polybutene (polyisobutene) having a number average molecular weight of 900 to 300,000. ,.
  • Polybuteruno and succinimide preferably used in the lubricating oil composition for internal combustion engines according to the third embodiment are represented by, for example, the following general formula (5-a) or (5-b) Compounds.
  • PIB in the general formula (5-a) or (5-b) represents a polybutur group, and a high-purity isobutene or a mixture of 1-butene and isobutene is converted to a boron fluoride catalyst or a salt-aluminum system.
  • a polybutene obtained by polymerizing with a catalyst is obtained, and in the polybutene mixture, those having a vinylidene structure at the terminal are usually contained in 5 to LOOmol%.
  • n is an integer of 2 to 5, preferably 3 to 4 from the viewpoint of excellent sludge suppression effect.
  • the method for producing the succinimide represented by the general formula (5-a) or (5-b) is not particularly limited.
  • the polybutene is chlorinated, preferably the high-purity isobutene is used.
  • Butursuccinic acid can be obtained by reacting with polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine. When producing piscosuccinimide, it is sufficient to react the polybutyrcono and succinic acid twice as much as the polyamine (molar ratio).
  • polybutyrsuccinic acid and polyamine are sufficient. May be reacted in equivalent amounts (molar ratio).
  • polybutyrup succinimide is preferable from the viewpoint of excellent sludge dispersibility.
  • the polybutene used in the above production method may contain a trace amount of fluorine and chlorine due to the catalyst in the production process. Therefore, the polybutene can be obtained by an appropriate method such as an adsorption method or sufficient water washing. It is preferable to use polybutene from which the content and chlorine content have been sufficiently removed.
  • the content of fluorine or chlorine is preferably 50 mass ppm or less, more preferably 10 mass ppm or less, still more preferably 5 mass ppm or less, and particularly preferably 1 mass ppm or less.
  • the above chlorination method is not used, the above method using the highly reactive polybutene and the Z or thermal reaction method. It is preferable to use the obtained polybutyrsuccinic anhydride.
  • the compounds represented by the above general formula (5-a) or (5-b) may be boron compounds such as boric acid, alcohols, aldehydes, ketones.
  • Oxygen-containing organic compounds such as alkylphenols, cyclic carbonates and organic acids
  • it can be used as a so-called modified succinimide in which a part or all of the remaining amino groups and z or imino groups are neutralized or amidated.
  • boron-containing alcohol (or alkyl) succinimide obtained by reaction with a boron compound such as boric acid is advantageous in terms of thermal and oxidation stability.
  • Examples of the boron compound that acts on the compound represented by the general formula (5-a) or (5-b) include boric acid, borates, and borate esters.
  • Specific examples of boric acid include orthoboric acid, metaboric acid, and tetraboric acid.
  • Examples of borates include alkali metal salts, alkaline earth metal salts, and ammonium salts of fluoric acid. More specifically, for example, lithium metaborate, lithium tetraborate, lithium pentaborate, and the like.
  • Lithium borate such as lithium perborate; sodium metaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate, sodium octaborate, etc .; sodium metaborate , Potassium tetraborate, potassium pentaborate, potassium hexaborate, potassium octaborate, etc .; calcium metaborate, calcium diborate, tricalcium tetraborate, pentacalcium tetraborate, hexaborate Calcium borate such as calcium; magnesium metaborate, magnesium diborate, trimagnesium tetraborate, pentatetraborate Magnesium, magnesium borate such as magnesium hexaborate; and ammonium phosphates such as ammonium metaborate, ammonium tetraborate, ammonium pentaborate, and ammonium octaborate.
  • boric acid ester examples include esters of boric acid and preferably an alkyl alcohol having 1 to 6 carbon atoms. More specifically, examples thereof include monomethyl borate, dimethyl borate, trimethyl borate, borate. Examples thereof include monoethyl acid, diethyl borate, triethyl borate, monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, dibutyl borate, tributyl borate and the like.
  • the succinimide derivative in which the boron compound is allowed to act is preferably used because of its excellent heat resistance and oxidation stability.
  • oxygen-containing organic compound that acts on the compound represented by the general formula (5-a) or (5-b) include formic acid, acetic acid, glycolic acid, and propionic acid. , Lactic acid, butyric acid, valeric acid, caproic acid, enanthic acid, force prillic acid, pelargonic acid, force puric acid, undecyl acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, C1-C30 monocarboxylic acids such as lugalic acid, stearic acid, oleic acid, nonadecanoic acid, eicosanoic acid, and poly-carbons having 2-30 carbon atoms such as oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid Examples thereof include carboxylic acids or their anhydrides, or ester compounds, alkylene oxides having 2 to 6 carbon atoms
  • R 7 in the above general formula (5-c) is a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkyl group having 1 to 24 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, or —
  • a hydroxy (poly) oxyalkylene group represented by O— (R s O) H is shown
  • R 8 is an alkylene group having 1 to 4 carbon atoms
  • m is an integer of 1 to 5.
  • polybuturpicosuccinimide which is mainly composed of those in which these oxygen-containing organic compounds are allowed to act on all amino groups or imino groups, is preferably used because of its excellent sludge dispersibility.
  • Such a compound can be obtained, for example, by allowing (n-1) mol of an oxygen-containing organic compound to act on 1 mol of the compound represented by the general formula (5-a).
  • the succinimide derivative to which such an oxygen-containing organic compound is allowed to act is excellent in sludge dispersibility, and in particular, the one to which hydroxy (poly) oxyalkylene carbonate is allowed to act.
  • the weight average molecular weight of the polybutyric succinimide and / or derivative thereof as the ashless dispersant used in the present invention is preferably 3000 or more, more preferably 5000 or more, and even more preferably 6500 or more, even more. Preferably it is 7000 or more, particularly preferably 8000 or more. If the weight average molecular weight is less than 5000, the molecular weight of the non-polar polybutenyl group is small, the sludge dispersibility is poor, and there is a relatively large number of polar amine groups that can act as an active site for acid degradation. As a result, it is inferior in acid stability, so the effect of extending the life as in the present invention is It is thought that it cannot be obtained. On the other hand, from the viewpoint of preventing deterioration of low temperature viscosity characteristics,
  • the weight average molecular weight of succinimide and Z or its derivative is preferably 20000 or less, particularly preferably 15000 or less.
  • the weight average molecular weight referred to here means that two columns of Tosoh GMHHR-M (7.8 mm ID x 30 cm) are used in series with Waters 150-CALCZGPC equipment, and the solvent is tetrahydrofuran, temperature 23 ° C, flow rate lmLZ min, sample concentration 1% by mass, sample injection volume 75 L, means polystyrene-reduced weight average molecular weight measured with a detector differential refractive index (RI).
  • RI detector differential refractive index
  • an alkyl or alkyl polyamine in addition to the succinimide and Z or a derivative thereof, an alkyl or alkyl polyamine, an alkyl or alkenyl pendylamine, an alkyl or alkenyl succinate, Mannich bases and their derivatives can be used.
  • the content of the ashless dispersant in the lubricating oil composition for an internal combustion engine according to the third embodiment is 3 to 12% by mass, preferably 4 to 10% by mass, as described above, based on the total amount of the composition. It is. If the content of the ashless dispersant is less than 3% by mass, the dispersibility of the combustion product will be insufficient, and if it exceeds 12% by mass, the viscosity-temperature characteristics will be insufficient.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment may have only the above-mentioned lubricating base oil, phosphorus-based antiwear agent, ashless acid / fog inhibitor, and ashless dispersant. Although it is good, in order to further improve the performance, if necessary, it may further contain various additives shown below.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment preferably contains a friction modifier from the viewpoint that the friction characteristics can be further improved.
  • a friction modifier any compound usually used as a friction modifier for lubricating oils can be used, for example, an alkyl group or a alkenyl group having 6 to 30 carbon atoms, particularly a straight chain having 6 to 30 carbon atoms.
  • Amine compound fatty acid ester, fatty acid amide, fatty acid, fatty alcohol, aliphatic ether, hydrazide (such as olehydrazide), semicarbazide, urea, having at least one chain alkyl group or straight chain alkenyl group in the molecule Ashless friction modifiers such as ureido and biuret.
  • the content of the friction modifier in the lubricating oil composition for an internal combustion engine according to the third embodiment is: On the basis of the total amount of the composition, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.3% by mass or more, and preferably 3% by mass or less. It is preferably 2% by mass or less, more preferably 1% by mass or less. If the content of the friction modifier is less than the lower limit, the effect of reducing friction due to the additive tends to be insufficient, and if the content exceeds the upper limit, an effect such as a phosphorus-based antiwear agent is obtained. Immediately upon inhibition or the solubility of the additive tends to be poor.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment preferably further contains a metallic detergent from the viewpoint of cleanliness. It is preferable to use at least one alkaline earth metal detergent selected from alkaline earth metal sulfonates, alkaline earth metal phenates and alkaline earth metal salicylates as the strong metal detergent.
  • an alkaline earth metal salt of an alkyl aromatic sulfonic acid obtained by sulfonating an alkyl aromatic compound having a molecular weight of 300 to 1,500, preferably 400 to 700, particularly Magnesium salt and z or calcium salt, and calcium salt is preferably used.
  • Specific examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid.
  • the arsenic oil sulfonic acid generally used is a sulfonated alkyl aromatic compound of a lubricating oil fraction of mineral oil, or so-called mahoganic acid produced as a by-product during the production of white oil.
  • the synthetic sulfonic acid for example, it can be obtained as a by-product from an alkylbenzene production plant used as a raw material for detergents, or obtained by alkylating polyolefin with benzene, and sulfonated alkylbenzene having linear or branched alkyl groups. Or sulfonated alkylnaphthalene such as di-naphthalene is used.
  • the sulfonating agent for sulfonating these alkyl aromatic compounds is not particularly limited, but usually fuming sulfuric acid or anhydrous sulfuric acid is used.
  • Alkaline earth metal phenates include alkylphenols, alkylphenol sulfides, alkaline earth metal salts of alkylphenol Manchurch reactants, particularly magnesium salts and Z or calcium salts, such as: And compounds represented by the general formulas (6-a), (6-b), and (6-c).
  • R 9 , R 10 , R 12 , R 13 and R ′′ may be the same or different and each represents a linear or branched alkyl group having 4 to 30 carbon atoms, preferably 6 to 18 carbon atoms, M 2 and M 3 each represent an alkaline earth metal, preferably calcium and / or magnesium, and X represents 1 or 2.
  • R 9 , R 10 , 1 , R 12 , R 13 and R 14 specifically, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, Undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, hencosyl, docosyl, tricosyl, tetracosyl, pentacosyl, Examples include a xacosyl group, a heptacosyl group, an octacosyl group, a nonacosyl group, and a triaconcyl group, which may be linear or branched. These may also be primary alkyl groups, secondary alkyl groups or tertiary alkyl group, which may be linear
  • alkaline earth metal salicylate an alkaline earth metal salt of arylkisalicylic acid,
  • magnesium salts and Z or calcium salts are exemplified, and examples thereof include those represented by the following general formula (6-d).
  • R 15 represents a linear or branched alkyl group having 1 to 30, preferably 6 to 18 carbon atoms, and n is an integer of 1 to 4, preferably 1.
  • M 4 represents an alkaline earth metal, preferably calcium and / or magnesium.
  • R 15 examples include butyl, pentyl, hexyl, heptyl, octyl, nor, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, Xadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, hencosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triaconyl group, etc. These may be linear or branched. These may also be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups.
  • alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate the above-mentioned alkyl aromatic sulfonic acid, alkyl phenol, alkyl phenol sulfide, alkyl phenol man-rich reaction product, Alkylic salicylic acid can be directly reacted with alkaline earth metal bases such as magnesium and Z or calcium alkaline earth metal oxides and hydroxides, or once as alkali metal salts such as sodium and potassium salts Neutral (normal salt) alkaline earth metal sulfonate, neutral (normal salt) alkaline earth metal phenate and neutral (normal salt) alkaline earth metal obtained by substituting with alkaline earth metal salt, etc.
  • alkaline earth metal bases such as magnesium and Z or calcium alkaline earth metal oxides and hydroxides
  • Neutral alkaline earth metal sulfonate and neutral alkaline earth metal sulfonate with salicylate alone Basic alkaline earth metal sulfonates and basic alkaline earths obtained by caloric heating of alkaline earth metal salicylates and excess alkaline earth metal salts and alkaline earth metal bases in the presence of water
  • Overbasic (superbasic) alkaline earth metal sulfonate, overbased (superbasic) alkaline earth metal sulfonate and overbasic (superbasic) obtained by reacting carbon dioxide with boric acid or boric acid ) Alkaline earth metal salicylates are also included.
  • the above-mentioned neutral alkaline earth metal salts, basic alkaline earth metal salts, overbased (superbasic) alkaline earth metal salts, and mixtures thereof can be used.
  • Metal-based detergents are usually commercially available in a state diluted with a light lubricating base oil or the like, and are also available, but generally the metal content is 1.0 to 20% by mass, It is preferable to use 2.0 to 16% by mass.
  • the total base number of the alkaline earth metal detergent used in the present invention is arbitrary, it is usually desirable to use a total base number of 500 mgKOHZg or less, preferably 150 to 450 mgKOHZg.
  • the total base number here means the total base number by the perchloric acid method measured according to 7 of JISK2501 (1992) “Method for testing the neutralization number of petroleum products and lubricants”. Yes.
  • the content of the metallic detergent in the lubricating oil composition for an internal combustion engine according to the third embodiment is arbitrary. Based on the total amount of the composition, 0.1 to 10 mass%, preferably 0.5 to 8 It is desirable to contain 1% by mass, more preferably 1-5% by mass. When the content exceeds 10% by mass, an effect corresponding to the content cannot be obtained, which is not preferable.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment preferably contains a viscosity index improver from the viewpoint of further improving the viscosity-temperature characteristics.
  • a viscosity index improver from the viewpoint of further improving the viscosity-temperature characteristics.
  • powerful viscosity index improvers include non-dispersed or dispersed polymetatalylates, dispersed ethylene (X-olefin copolymer or a hydride thereof, polyisobutylene or a hydride thereof, a styrene-hydrogenated copolymer, Styrene maleic anhydride copolymer and polyalkyl Styrene and the like are mentioned, among which the weight average molecular weight is 10,000 to 1,000,000, preferably 100,000 to 900,000, more preferred ⁇ is 150,000 to 500,000, more preferred is ⁇ 1
  • non-dispersion type viscosity index improver examples include monomers selected from the compounds represented by the following general formulas (7-a), (7-b) and (7-c). Examples thereof include a homopolymer (hereinafter referred to as “monomer (M-1)” and V ⁇ ⁇ ), two or more copolymers of monomer (M-1), or a hydride thereof.
  • the dispersion type viscosity index improver specifically, a monomer selected from among the compounds represented by the general formulas (7-d) and (7-e) (hereinafter referred to as “monomer (M-2)”) Selected from the compounds represented by the general formulas (7-a) to (7-c), which are obtained by introducing an oxygen-containing group into two or more types of copolymers or their hydrides.
  • monomer (M-2) Selected from the compounds represented by the general formulas (7-a) to (7-c)
  • R 16 represents a hydrogen atom or a methyl group
  • R 17 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
  • Specific examples of the alkyl group having 1 to 18 carbon atoms represented by R 17 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Decyl group decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, etc. (These alkyl groups may be linear or branched. Ii) etc.
  • R 18 represents a hydrogen atom or a methyl group
  • R 19 represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.
  • Specific examples of the hydrocarbon group represented by R 19 having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, Alkyl groups such as nonyl, decyl, undecyl, dodecyl, etc. (these alkyl groups may be straight or branched!
  • Alkenyl groups such as butyr, pentyl, hexyl, heptul, otatur, nonel, decel, undecenyl, dodecyl, etc.
  • the position of the double bond which may be chain-like or branched, is arbitrary);
  • Aryl group such as phenyl group, naphthyl group, etc .: carbon number such as tolyl group, xylyl group, ethylphenyl group, propylphenol group, butylphenol group, pentylphenol group, hexylphenol group, etc.
  • To 12 alkylaryl groups (these alkyl groups may be linear or branched, and the position of substitution with the aryl group is also optional); benzylyl, phenyl, phenylpropyl, phenol Examples thereof include arylalkyl groups having 7 to 12 carbon atoms such as butyl group, pentyl group, and hexyl group (these alkyl groups may be linear or branched);
  • X 8 and X 9 are each independently a hydrogen atom or an alkoxy group having 1 to 18 carbon atoms (—OR 2G : R 2G is an alkyl having 1 to 18 carbon atoms). Group) or a monoalkylamino group having 1 to 18 carbon atoms (—NHR 21 : R 21 is an alkyl group having 1 to 18 carbon atoms).
  • R 22 represents a hydrogen atom or a methyl group
  • R 23 represents an alkylene group having 1 to 18 carbon atoms
  • Y 1 represents 1 to 2 nitrogen atoms
  • oxygen An amine residue or a heterocyclic residue containing 0 to 2 atoms
  • m is 0 or 1.
  • Specific examples of the alkylene group having 1 to 18 carbon atoms represented by R 23 include an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, and a nolene group.
  • Decylene group undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group, etc. (these alkylene groups may be linear or branched), etc. it can.
  • Y 1 Specific examples of the group represented by Y 1 include a dimethylamino group, a jetylamino group, a dipropylamino group, a dibutylamino group, an ⁇ -lino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group.
  • pyrrolyl group pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidyl group, piperidyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, and birazino group.
  • R 24 represents a hydrogen atom or a methyl group
  • Y 2 represents an amine residue or heterocyclic ring containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. Indicates residue.
  • Specific examples of the group represented by Y 2 include a dimethylamino group, a jetylamino group, a dipropylamino group, a dibutylamino group, an arlino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group.
  • Pyrrolyl group pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, and birazino group.
  • Preferable examples of the monomer (M-1) are specifically alkyl alkylates having 1 to 18 carbon atoms, alkyl metatalates having 1 to 18 carbon atoms, olefins having 2 to 20 carbon atoms, and styrene. , Methylstyrene, maleic anhydride ester, maleic anhydride amide, and mixtures thereof.
  • Preferable examples of the monomer (M-2) include dimethylaminomethyl methacrylate, jetylaminomethyl methacrylate, dimethylaminoethyl methacrylate, jetaminoethyl methacrylate.
  • Examples thereof include tallylate, 2-methyl-5 vinyl pyridine, morpholinomethyl methacrylate, morpholinoethyl methacrylate, N-bulurpyrrolidone, and mixtures thereof.
  • the power of the production method is also arbitrary.
  • the copolymer can be easily formed by radical solution polymerization of monomer (M-1) and monomer (M-2) in the presence of a polymerization initiator such as benzoyl baroxide. can get.
  • polymethacrylate-based viscosity index improvers are preferable because they are excellent in low-temperature fluidity.
  • the blending amount of the viscosity index improver in the lubricating oil composition for internal combustion engines according to the third embodiment is preferably 0.1 to 15% by mass, more preferably 0.5 to 5%, based on the total amount of the composition. % By mass.
  • the content of the viscosity index improver is less than 0.1% by mass, the effect of improving the viscosity-temperature characteristics due to its addition tends to be insufficient, and when the content exceeds 15% by mass, The initial extreme pressure tends to be maintained for a long period.
  • Antiwear agents other than the component (A-1) include sulfur type antiwear agents such as dithiocarbamate, zinc dithiocarbamate, molybdenum dithiocarbamate, disulfides, sulfide olefins, and sulfurized oils and fats.
  • Examples of the anti-oxidation agent other than the component (B-1) include copper-based and molybdenum-based metal anti-oxidants.
  • corrosion inhibitor examples include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.
  • antifungal agent examples include petroleum sulfonate, alkylbenzene sulfonate, di-naphthalene sulfonate, alkyl succinate, and polyhydric alcohol ester.
  • anti-milky agents examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
  • Examples of the metal deactivator include imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothiazole, benzotriazole or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiaasia.
  • Examples include zoriluo 2,5-bisdialkyl dithiocarbamate, 2- (alkyldithio) benzimidazole, and j8- (o-carboxybenzylthio) propion-tolyl.
  • a known pour point depressant can be arbitrarily selected according to the properties of the lubricating base oil.
  • Weight average molecular weight is more than 50,000 and less than 150, 000, preferably ⁇ , 80,000 to 120,000 polymetatalite rate power!
  • any compound usually used as an antifoaming agent for lubricating oil can be used.
  • examples thereof include silicones such as dimethyl silicone and fluorosilicone.
  • One or two or more compounds selected arbitrarily can be blended in any amount.
  • any compound that is usually used can be used, and the power that can be added in any amount.
  • the amount is 0.001 to 1.0 mass based on the total amount of the composition. %.
  • the content is based on the total amount of the composition, and 0.01 to 2% by mass for the anti-wear agent other than the component (A-1).
  • B-1) 0.01-2 mass% for antioxidants other than component, 0.005-5 mass% for corrosion inhibitors, antifungal agents, and demulsifiers, and 0.005 mass% for metal deactivators.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment may contain an additive containing sulfur as a constituent element as described above, but the total sulfur content of the lubricating oil composition (the lubricating oil).
  • the total amount of sulfur due to the base oil and additives is preferably from the viewpoint of suppressing the solubility of the additives and the base number consumption due to the formation of sulfur oxides under high-temperature oxidation conditions. 0.05 to 0. a 3 mass 0/0, more preferably 0.08 to 0.25 mass 0/0, more preferably from 0.1 to 0.2% by weight, particularly preferably 0.12 to 0 18% by weight.
  • the kinematic viscosity at 100 ° C of the lubricating oil composition for an internal combustion engine according to the third embodiment is usually 4 to 24 mm 2 Zs, but the oil film thickness that suppresses seizure and wear is maintained. point to an increase in stirring resistance to the parallel beauty of suppressing point, preferably 5 ⁇ 18mm 2 Zs, more preferably 6 ⁇ 15 mm 2 Zs, more preferably. 7 to 12 mm 2 Zs.
  • the sulfated ash content of the lubricating oil composition for an internal combustion engine according to the third embodiment is preferably 1.2% by mass or less, more preferably from the viewpoint of maintaining the performance of the exhaust gas aftertreatment device. Is 1.0% by mass or less, more preferably 0.9% by mass or less, and in order to maintain a high level of engine cleanliness and acidity stability, preferably 0.1% by mass or more and more
  • the content is preferably 0.4% by mass or more, more preferably 0.7% by mass or more, and particularly preferably 0.8% by mass or more.
  • the sulfated ash referred to in the present invention means “crude oil and petroleum It means the amount of sulfated ash measured in accordance with “5. Test method for sulfated ash” in “Method for testing ash and sulfated ash of products”.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment having the above-described configuration has a sufficiently long oxidant life and can sufficiently maintain the performance of the exhaust gas aftertreatment device over a long period of time. In addition, it has excellent viscosity-temperature characteristics, friction characteristics, and volatilization prevention properties.
  • the lubricating oil composition for an internal combustion engine according to the third embodiment having such excellent characteristics is a gasoline engine for two-wheeled vehicles, four-wheeled vehicles, power generation, marine vessels, etc., a diesel engine, an oxygen-containing compound-compatible engine, It is suitably used as a lubricating oil for internal combustion engines such as gas engines, and in particular, an internal combustion engine equipped with an exhaust gas aftertreatment device, specifically a gasoline engine lubricating oil for vehicles equipped with a three-way catalyst, diesel Excellent effect in applications such as lubricants for diesel engines in vehicles equipped with particulate filters (DPF).
  • DPF particulate filters
  • low sulfur fuel for example, gasoline, light oil or kerosene having a sulfur content of 50 mass ppm or less, more preferably 30 mass ppm or less, particularly preferably 10 mass ppm or less, or fuel having a sulfur content of 1 mass ppm or less ( LPG, natural gas, hydrogen that does not substantially contain sulfur, dimethyl ether, alcohol, GTL (gas to liquid) fuel, etc.) can be used particularly preferably as a lubricating oil for internal combustion engines.
  • LPG natural gas, hydrogen that does not substantially contain sulfur, dimethyl ether, alcohol, GTL (gas to liquid) fuel, etc.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment of the present invention includes the lubricant base oil according to the first embodiment or the second embodiment, and (A-2) a composition that does not contain sulfur as a constituent element. It contains an ash antioxidant, (B-2) an ashless acid soot inhibitor containing sulfur as a constituent element, and at least one selected from organic molybdenum compounds.
  • the overlapping description about the lubricating base oil according to the first embodiment or the second embodiment is omitted here.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment includes the mineral oil base oil exemplified in the description of the first embodiment, in addition to the lubricating base oil according to the first embodiment or the second embodiment. Synthetic base oils and the like can be further contained, but redundant description of mineral base oils, synthetic base oils and the like is also omitted here.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment contains an ashless antioxidant that does not contain sulfur as a constituent element as the component (A-2).
  • an ashless antioxidant that does not contain sulfur as a constituent element
  • phenol-based or amine-based ashless acid soot inhibitors that do not contain sulfur as a constituent element are suitable.
  • phenol-based ashless acid inhibitor that does not include sulfur as a constituent element
  • phenol-based ashless acid soot inhibitors that do not include sulfur as a constituent element.
  • hydroxyphenyl group-substituted ester-based antioxidants are esters of hydroxyphenyl group-substituted fatty acids and alcohols having 4 to 12 carbon atoms. 4-hydroxyphenol) propionate, octyl-3- (3-methyl-5-tert-butyl-4-hydroxyphenyl) propionate, etc.) and bisphenol-based antioxidation agents are preferred. An anti-oxidation agent is more preferred.
  • phenolic compounds with a molecular weight of 240 or more are effective even at higher temperatures than when the decomposition temperature is high. Since it is volatilized, it is preferable.
  • amine-based ashless acid inhibitors that do not contain sulfur as a constituent element
  • specific examples include phenyl- a -naphthylamine, alkylphenol- ⁇ -naphthylamine, alkyldiphenylamine, dialkyldialkylamine. Phenolamine, ⁇ , ⁇ , —Diphenyl ⁇ —Phenolamine, and mixtures thereof.
  • the alkyl group possessed by these amine-based ashless antioxidants is a linear or branched alkyl group having 4 to 12 carbon atoms, which is preferably a linear or branched alkyl group having 1 to 20 carbon atoms. More preferred.
  • the content of the component ( ⁇ -2) in the lubricating oil composition for internal combustion engines according to the fourth embodiment is not particularly limited, but is preferably 0.01% by mass or more, more preferably, based on the total amount of the composition. 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 1.0% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, particularly preferably 2% by mass or less.
  • the content is less than 0.01% by mass, the heat and acid stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time. is there.
  • the content of component ( ⁇ -2) exceeds 5% by mass, the effect commensurate with the content is not further improved, and the storage stability of the lubricating oil composition tends to decrease.
  • phenol-based ashless acid wrinkle inhibitor 0.4 to 2% by mass based on the total amount of the composition
  • amine-based ashless acid inhibitor 0.4 to 2% by mass or amine-based acid / anti-oxidant 0.5 to 2% by mass, more preferably 0.6 to 1.5% by mass It is particularly preferable to use 1% alone, whereby excellent cleanliness can be maintained over a long period of time.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment includes ( ⁇ -2) as an ingredient ( ⁇ -2), an ashless acid soot prevention agent containing sulfur as a constituent element, and ⁇ —2-2—Contains at least one selected from 2) organic molybdenum compounds.
  • Ashesic acid and soot inhibitors containing sulfur as a constituent element include sulfur and fat oil, sulfurized olefin, dihydrocarbyl polysulfide, dithiocarbamates, thiadiazoles, And phenol-based ashless antioxidants containing sulfur as a constituent element are suitable.
  • sulfur oils and fats include sulfurized lard, sulfurized rapeseed oil, sulfurized castor oil, sulfurized soybean oil, and sulfurized rice bran oil; disulfurized fatty acids such as sulfurized oleic acid; and Mention may be made of sulfur esters such as methyl sulfate.
  • sulfur olefin examples include compounds represented by the following general formula (8).
  • R 25 represents an alkyl group having 2 to 15 carbon atoms
  • R 26 represents an alkyl group or an alkyl group having 2 to 15 carbon atoms
  • X represents an integer of 1 to 8 Indicates.
  • the compound represented by the general formula (8) can be obtained by reacting olefins having 2 to 15 carbon atoms or 2 to 4 monomers thereof with a sulfurizing agent such as sulfur or salty sulfur.
  • a sulfurizing agent such as sulfur or salty sulfur.
  • propylene, isobutene, diisobutene and the like are preferably used as the polyolefin.
  • Dihydrocarbyl polysulfide is a compound represented by the following general formula (6).
  • R 27 and R 28 are each independently an alkyl group having 1 to 20 carbon atoms (including a cycloalkyl group), an aryl group having 6 to 20 carbon atoms, and an alkyl group having 7 to 20 carbon atoms. Represents a reel alkyl group, which may be the same or different from each other. Y represents an integer of 2 to 8. ]
  • R 27 and R 28 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • dihydrocarbyl polysulfide examples include dibenzyl polysulfide, di-tert-norpolysulfide, didodecyl polysulfide, di-tert-butyl polysulfide, dioctyl police. Rufide, di-polypolysulfide, dicyclohexylpolysulfide and the like.
  • R 29 , R 3 °, R 31 , R 32 , R 33 and R 34 are each individually carbonized carbon atoms having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
  • R 35 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, a is an integer of 0 to 4, b is 0 to 6 Indicates an integer.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkyl group, an aryl group, an alkylaryl group, and an arylalkyl group. be able to.
  • thiadiazoles examples include 1,3,4-thiadiazole compounds represented by the following general formula (12), 1,2,4-thiadiazole compounds represented by the general formula (13), and general formula (14). 1, 4, 5-thiadiazole compounds represented by
  • R 1, R d R d R d R 4U and R 41 may be the same or different, and each independently represents a hydrogen atom or a carbon number of 1 to 30 And c, d, e, f, g and h each independently represent an integer of 0 to 8.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkyl group, an aryl group, an alkylaryl group, and an arylalkyl group. be able to.
  • phenol-based ashless acid inhibitors containing sulfur as a constituent element include 4, 4'-thiobis (2-methinole 6-tert butinorephenol), 4, 4, thiobis (3 —Methylenoyl 6-tert butylphenol), 2, 2, -thiobis (4-methyl-6-tert butylphenol), bis (3-methyl-4-hydroxy-5-tert butylbenzyl) sulfide, bis (3,5 di tert-butyl-4 -Hydroxybenzyl) sulfide, 2,2, -diethylene bis [3- (3,5-di-tert-butyl-4-hydroxyphenol) propionate] and the like.
  • dihydrocarbyl polysulfide, dithiocarbamates and thiadiazoles are preferably used from the standpoint that superior thermal oxidation stability can be obtained.
  • the content is not particularly limited, but the total amount of the composition As a standard, in terms of elemental sulfur, it is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, still more preferably 0.01% by mass or more, and preferably 0.2% by mass. Hereinafter, it is more preferably 0.1% by mass or less, and particularly preferably 0.04% by mass or less.
  • the content is less than the lower limit, the thermal oxidation stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time.
  • the above upper limit is exceeded, the high sulfur content of the lubricating oil composition is harmful to the exhaust gas purification device. The effect tends to be large.
  • the (B-2-2) organomolybdenum compound as the (B-2) component includes (B-2-2-2a) an organomolybdenum compound containing sulfur as a constituent element, and (B-2-2-2b). ) Both organic molybdenum compounds not containing sulfur as a constituent element are included.
  • organic molybdenum complex containing sulfur as a constituent element examples include organic molybdenum complexes such as molybdenum dithiophosphate and molybdenum dithiocarbamate.
  • molybdenum dithiophosphate include compounds represented by the following general formula (15).
  • R 42 , R 43 , R 44 and R 45 may be the same or different and each have 2 to 30 carbon atoms, preferably 5 to 18 carbon atoms, more preferably A hydrocarbon group such as an alkyl group having 5 to 12 carbon atoms or a (alkyl) aryl group having 6 to 18 carbon atoms, preferably 10 to 15 carbon atoms is shown.
  • ⁇ 2 , ⁇ 3 and ⁇ ⁇ ⁇ ⁇ 4 represent a sulfur atom or an oxygen atom, respectively.
  • alkyl group examples include ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Examples include tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, etc. These may be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups, and may be linear or branched. Yo!
  • Preferable examples of the (alkyl) aryl group include a phenyl group, a tolyl group, an ethylphenol group, a propylphenol group, a butylphenol group, a pentylphenol group, a hexylphenol group, and an octylphenyl group.
  • Group, nonylphenyl group, decylphenyl group, undecylphenyl group, dodecylphenyl group, etc., and its alkyl group is primary alkyl group, secondary alkyl group, etc. It may be a kill group or a tertiary alkyl group, and may be linear or branched.
  • these (alkyl) aryl groups include all substituted isomers in which the substitution position of the alkyl group on the aryl group is different.
  • Preferable molybdenum dithiophosphates include, specifically, sulfurized molybdenum dimethyldithiophosphate, molybdenum dipropyldithiophosphate, molybdenum dibutyldithiophosphate, molybdenum dipentyldithiophosphate, and molybdenum dihexyl sulfide.
  • Dithiophosphate Molybdenum sulfide dioctyldithiophosphate, Molybdenum di (butylphenol) dithiophosphate, Molybdenum sulfide (Noelphenol) dithiophosphate, Oxymolybdenum sulfide Jetyldithiophosphate, Sulfide Xymolybdenum dipropyldithiophosphate, oxymolybdenum dibutyldithiophosphate, oxymolybdenum dipentyldithiophosphate, oxymolybdenum dihexyl sulfide Di Chio phosphate, sulfurized O carboxymethyl molybdenum O click chill di Chio phosphate, sulfurized O carboxymethyl molybdenum decyl di Chio phosphate, sulfurized O
  • molybdenum dithiocarbamate specifically, for example, a compound represented by the following general formula (16) can be used.
  • R 46 , R 47 , R 48 and R 49 may be the same or different. It represents a hydrocarbon group such as an alkyl group having 2 to 24 carbon atoms, preferably 4 to 13 carbon atoms, or an (alkyl) aryl group having 6 to 24 carbon atoms, preferably 10 to 15 carbon atoms.
  • Y 5 , ⁇ 6 , ⁇ 7 and ⁇ 8 represent a sulfur atom or an oxygen atom, respectively.
  • alkyl group Preferred as an alkyl group! /, For example, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group , Tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, etc., and these may be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups, and may be linear It may be branched!
  • (alkyl) aryl groups! / For example, a phenyl group, a tolyl group, an ethylphenol group, a propylphenol group, a butylphenol group, a pentylphenol group, a hexylphenol Group, octylphenyl group, nonylphenyl group, decylphenyl group, undecylphenyl group, dodecylphenyl group, etc.
  • the alkyl group may be a primary alkyl group, secondary alkyl group or tertiary alkyl group. Further, it may be linear or branched.
  • these (alkyl) aryl groups include all substituted isomers in which the substitution position of the alkyl group on the aryl group is different.
  • molybdenum dithiocarbamate other than the above structure there is WO98 / 26030! /! ⁇ ma, W099 / 31113 [Dithiocarbamate group such as disclosed here is a dithiocarbamate group. Examples thereof include those having a coordinated structure.
  • molybdenum dithiocarbamate is, specifically, molybdenum sulfide dimethyl dithiocarbamate, molybdenum dipropyldithiocarbamate sulfide, molybdenum molybdenum didibutyldithiocarbamate, molybdenum dipentyldithiocarbamate, molybdenum dihexyl sulfide.
  • Dithiocarbamate Molybdenum sulfide Dioctyldithiocarbacarbamate, Molybdenum sulfide di (butylphenyl) dithiocarbamate, Molybdenum sulfide (nonylphenyl) dithiocarbamate, Oxymolybdenum sulfide Jetyldithiocarbamate, Sulfoxy Molybdenum dipropyldithiocarbamate, sulfuroxymolybdendibutyldithiocarbamate, sulfurized molybdenumdipentyldithiocarbamate, sulfurized molybdenum Xyldithiocarbamate, sulfur oxymolybde Dioctyl dithiocarbamate, sulfurized molybdenum didecyldithiocarbamate, sulfurylmolybdenum didodecyldithiocarbamate, sulfurylmolybdenum
  • molybdenum dioxide acid molybdenum such as triacid-molybdenum, orthomolybdic acid, normolybdic acid
  • molybdic acid such as (poly) sulfuriummolybdic acid, metal salts of these molybdic acids, ammonia -Molybdate such as humic salt, molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, molybdenum sulfide such as polysulfurium molybdenum, molybdenum sulfide acid, metal of sulfurous molybdenum acid Salt or amine salt, halogen-molybdenum such as molybdenum, etc.
  • sulfur-containing organic compounds eg, alkyl (thio) xanthate, thiadiazol, mercaptothiadiazole, thiocarbonate, tetrahydred carbylthiuram disulfide
  • organic molybdenum compounds that do not contain sulfur as a constituent element include, specifically, molybdenum-amine complexes, molybdenum-succinimide complexes, and organic acid molybdenums. Salts, molybdenum salts of alcohols, and the like. Among them, molybdenum-amine complexes, molybdenum salts of organic acids and molybdenum salts of alcohols are preferred.
  • molybdenum trioxide As the molybdenum compound constituting the molybdenum amine complex, molybdenum trioxide is used. Or its hydrate (MoO ⁇ ⁇ 0), molybdic acid ( ⁇ ⁇ ), aluminum molybdate
  • Li metal salt ( ⁇ ⁇ 04; ⁇ indicates alkali metal), ammonium molybdate (( ⁇ )
  • Molybdenum compounds that do not contain sulfur such as Mo O CI.
  • hexavalent molybdenum compounds are preferable from the viewpoint of the yield of the molybdenum amine complex. Furthermore, from the viewpoint of availability, among the hexavalent molybdenum compounds, molybdenum trioxide or a hydrate thereof, molybdic acid, alkali metal molybdate, and ammonium molybdate are preferable.
  • the nitrogen compound constituting the molybdenum-amine complex is not particularly limited, and examples thereof include ammonia, monoamine, diamine, and polyamine. More specifically, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, noramine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecyl Amine, heptadecylamine, Octadecylamine, Dimethylamine, Jetylamine, Dipropylamine, Dibutylamine, Dipentylamine, Dihexylamine, Diheptylamine, Dioctylamine, Dino-lamine, Didecylamine, Didecylamine, Zidodecylamine, Ditridecylamine, dite
  • the alkanolamines may be linear or branched); alkylenediamines having 1 to 30 carbon atoms such as methylenediamine, ethylenediamine, propylenediamine and butylenediamine; diethylene Polyamines such as triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine; undecyljetylamine, undecyljetanolamine, dodecyldipropanolamine, oleyljetanolamine, oleylpropylenediamine A compound having an alkyl group or alkyl group having 8 to 20 carbon atoms in the above monoamine, diamine, or polyamine such as amine or stearyltetraethylenepentamine, or a heterocyclic compound such as N-hydroxyethyl reiylimidazoline; The alkyleneoxy And adducts thereof; and mixtures thereof.
  • primary amine, secondary amine and alkanolamine having
  • the number of carbon atoms of the hydrocarbon group of the amine compound constituting the molybdenum amine complex is preferably 4 or more, more preferably 4 to 30, and particularly preferably 8 to 18. If it is less than the carbon number of the hydrocarbon group of the amine compound, the solubility tends to be poor. Further, by setting the number of carbon atoms of the amine compound to 30 or less, the molybdenum pigment in the molybdenum amine complex can be rapidly increased, and the effect of the present invention can be further enhanced with a small amount.
  • the molybdenum-succinimide complex a sulfur compound that does not contain sulfur as exemplified in the description of the molybdenum amine complex, and an alkyl group or alkenyl group having 4 or more carbon atoms may be used.
  • a complex with succinimide As the succinic acid imide, succinimide having at least one alkyl group or alkyl group having 40 to 400 carbon atoms or a alkenyl group in the molecule, or a derivative thereof, 4 to 39 carbon atoms, preferably 8 to 18 carbon atoms. And succinimide having an alkyl group or a alkenyl group.
  • the alkyl group or alkenyl group in the succinimide is less than the carbon number, the solubility tends to deteriorate.
  • the ability to use a succinimide having an alkyl group or alkenyl group having more than 30 carbon atoms and not more than 400 carbon atoms By making the alkyl group or alkenyl group carbon number 30 or less, a molybdenum-succinimide complex
  • the molybdenum content in can be relatively increased, and the effects of the present invention can be further enhanced with a small amount.
  • Examples thereof include salts of molybdenum bases such as the exemplified molybdates or molybdenum hydroxides, molybdenum carbonates or molybdenum salts with organic acids.
  • organic acid the phosphorus compound represented by the general formula (4c) or (4d) exemplified in the description of the third embodiment and a carboxylic acid are preferable.
  • the carboxylic acid constituting the molybdenum salt of carboxylic acid may be either a monobasic acid or a polybasic acid.
  • a fatty acid having usually 2 to 30, preferably 4 to 24 carbon atoms is used, and the fatty acid may be linear or branched, or saturated or unsaturated. Things can be used. Specifically, for example, acetic acid, propionic acid, linear or branched butanoic acid, linear or branched pentanoic acid, linear or branched hexanoic acid, linear or branched Heptanoic acid, linear or branched octanoic acid, linear or branched nonanoic acid, linear or branched decanoic acid, linear or branched undecanoic acid, linear or branched Dodecanoic acid, linear or branched tridecanoic acid, linear or branched tetradecanoic acid, linear or branched pentadecanoic acid, linear or branched hexadecanoic acid, linear or branched Linear heptadecanoic acid, linear or
  • a monocyclic or polycyclic carboxylic acid (which may have a hydroxyl group) may be used. More preferably, it is 7-30.
  • Monocyclic or polycyclic carboxylic acids are aromatic carboxylic acids having 0 to 3, preferably 1 to 2 linear or branched alkyl groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
  • cycloalkyl carboxylic acid and the like can be mentioned, and more specifically, (alkyl) benzene carboxylic acid, (alkyl) naphthalene carboxylic acid, (alkyl) cycloalkyl carboxylic acid and the like can be exemplified.
  • Preferable examples of the monocyclic or polycyclic carboxylic acid include benzoic acid, salicylic acid, alkylbenzoic acid, alkylsalicylic acid, cyclohexanecarboxylic acid and the like.
  • Examples of the polybasic acid include dibasic acids, tribasic acids, and tetrabasic acids.
  • the polybasic acid may be a chain polybasic acid or a cyclic polybasic acid. In the case of a chain polybasic acid, it may be either linear or branched, and may be either saturated or unsaturated.
  • As the chain polybasic acid a chain dibasic acid having 2 to 16 carbon atoms is preferred.
  • ethanenic acid propanedioic acid, linear or branched butanedioic acid, linear Or branched pentanedioic acid, linear or branched hexanedioic acid, linear or branched heptanedioic acid, linear or branched octanedioic acid, linear or branched nonane Diacid, linear or branched decanedioic acid, linear or branched undecanedioic acid, linear or branched dodecanedioic acid, linear or branched tridecanedioic acid, linear Or branched tetradecanedioic acid, linear or branched heptadecanedioic acid, linear or branched hexadecanedioic acid, linear or branched hexenedioic acid, linear or branched Heptene diacid, linear or branched otatenedi
  • Cyclic polybasic acids include 1,2-cyclohexanedicarboxylic acid, 4-cyclohexene.
  • Examples include 1,2-dicarboxylic acid alicyclic dicarboxylic acid, aromatic dicarboxylic acid such as phthalic acid, aromatic tricarboxylic acid such as trimellitic acid, and aromatic tetracarboxylic acid such as pyromellitic acid.
  • the molybdenum salt of the alcohol includes a salt of a molybdenum compound and an alcohol that does not contain sulfur as exemplified in the description of the molybdenum amine complex. Any of a monohydric alcohol, a polyhydric alcohol, a partial ester or partial ester compound of a polyhydric alcohol, a nitrogen compound having a hydroxyl group (such as an alkenolamine) may be used.
  • Molybdic acid is a strong acid and forms an ester by reaction with alcohol. The ester of molybdic acid and alcohol is also included in the molybdenum salt of alcohol in the present invention.
  • the monohydric alcohol those having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms are used. Such alcohols may be linear or branched. Further, it may be saturated or unsaturated.
  • alcohol having 1 to 24 carbon atoms include methanol, ethanol, linear or branched propanol, linear or branched butanol, linear or branched pentanol, Linear or branched hexanol, linear or branched heptanol, linear or branched octanol, linear or branched nonanol, linear or branched decanol, linear Linear or branched undecanol, linear or branched dodecanol, linear or branched tridecanol, linear or branched tetradecanol, linear or branched pentadecanol, straight Linear or branched hexadedecanol, linear or branched octadecanol, linear or branched nonadeforce, linear or branched Iko Examples include sanol, linear or branched hencicosanol, linear or branched tricosanol, linear or branche
  • polyhydric alcohol those having 2 to 10 valences, preferably 2 to 6 valences are usually used.
  • Specific examples of the polyhydric alcohol of 2 to 10 include ethylene glycol, diethylene glycol, polyethylene glycol (ethylene glycol 3 to 15 mer), propylene glycol, dipropylene glycol, and polypropylene glycol (propylene glycol).
  • polyhydric alcohol examples include compounds in which some of the hydroxyl groups of the polyhydric alcohols exemplified above are hydrocarbyl esterified, among which glycerol monooleate, glycerol diolate, sorbitan monooleate, sorbitan Dioleate, pentaerythritol monooleate, polyethylene glycol monooleate, and polyglycerin monooleate are preferred.
  • the partial ether of the polyhydric alcohol a compound in which a part of the hydroxyl group of the polyhydric alcohol exemplified in the above description of the polyhydric alcohol is hydrocarbyl etherified, or by condensation of polyhydric alcohols.
  • examples include compounds with ether bonds (such as sorbitan condensates). Among them, 3-octadecyloxy 1,2-propandiol, 3-octadec-loxy-1,2-propanediol, polyethylene glycol Alkyl ethers are preferred.
  • nitrogen compound having a hydroxyl group refer to the description of the molybdenum amine complex! And alkanolamines exemplified above, and alkanolamides (such as diethanolamide) in which the amino group of the alkanol is amidated.
  • alkanolamines such as diethanolamide
  • alkanolamides such as diethanolamide
  • Ethanolamine, polyethylene glycol stearylamine, polyethylene glycol diolamine, hydroxyethyl laurylamine, oleic acid diethanolamide and the like are preferred.
  • the high-temperature cleanliness and base of the lubricating oil composition It is preferable in that the value retention can be increased and the initial friction reducing effect can be maintained for a long time, and a molybdenum-amine complex is particularly preferable.
  • (B-2-2a) an organic molybdenum compound containing sulfur as a constituent element and (B2-2-2b) an organic molybdenum compound containing sulfur as a constituent element are: You may use together.
  • the content thereof is not particularly limited, but is preferably 0 in terms of molybdenum element based on the total amount of the composition. 001% by mass or more, more preferably 0.005% by mass or more, further preferably 0.01% by mass or more, preferably 0.2% by mass or less, more preferably 0.1% by mass or less, particularly Preferably it is 0.04 mass% or less.
  • the content is less than 0.001% by mass, the thermal oxidation stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time.
  • the content exceeds 0.2% by mass an effect commensurate with the content cannot be obtained, and the storage stability of the lubricating oil composition tends to decrease.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment may have only the above-mentioned lubricating base oil and (A-2), (B-2) components, but its performance
  • various additives shown below may be further contained as required.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment preferably further contains an antiwear agent from the viewpoint of further improving the wear resistance.
  • an antiwear agent a phosphorus extreme pressure agent, a phosphorus sulfur extreme pressure agent and the like are preferably used.
  • Phosphorus extreme pressure agents include phosphoric acid, phosphorous acid, phosphoric acid esters (including phosphoric acid monoesters, phosphoric acid diesters and phosphoric acid triesters), phosphorous acid esters (sublimation Phosphoric acid monoesters, phosphorous acid diesters and phosphorous acid triesters), and These salts (ammine salt or metal salt) can be mentioned.
  • phosphoric acid esters and phosphite esters those having a hydrocarbon group usually having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms are used.
  • phosphorus-based extreme pressure agents include thiophosphoric acid, thiophosphorous acid, thiophosphate esters (including thiophosphate monoesters, thiophosphate diesters, thiophosphate triesters), thiophosphite Acid esters (including thiophosphite monoesters, thiophosphite diesters, and thiophosphite triesters), and salts thereof, and lead dithiophosphate.
  • thiophosphates and thiophosphites those having a hydrocarbon group usually having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms are used.
  • the content of the extreme pressure agent is not particularly limited, but is preferably 0.
  • zinc dithiophosphate is particularly preferable among the extreme pressure agents.
  • zinc dithiophosphate for example, the following general formula (
  • the compound represented by 17) can be illustrated.
  • R & u , 1 , R and R in the general formula (17) each independently represent a hydrocarbon group having 1 to 24 carbon atoms.
  • these hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkenyl groups having 3 to 24 carbon atoms, and cycloalkyl groups having 5 to 13 carbon atoms.
  • the alkyl group or alkenyl group may be any of primary, secondary and tertiary.
  • R 5 , R 51 , R 52 and R 53 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Decyl group u Ndecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, hencosyl, docosyl, tricosyl and tetracosyl Group, iso-propyl group, butyr group, butagel group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecyl group Decenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl
  • Alkaryl groups such as octyl and nonyl groups, nonadecyl groups, icosyl groups, hencosel groups, docosyl groups, tricosyl groups and tetracosyl groups
  • Cycloalkyl group such as cyclopentyl group, cyclohexyl group and cycloheptyl group, methylcyclopentyl group, dimethylcyclopentyl group, ethylcyclopentyl group, propylenecyclopentyl group, ethylmethylcyclopentyl group, trimethylcyclopentyl group, jetylcyclopentyl Group, ethyldimethylcyclopentyl group, propylmethylcyclopentyl group, propylethylcyclopentyl group, jeep mouth building cyclopentyl group, propylethylmethylcyclopentyl group, methylcyclohexyl group, dimethylcyclohexyl group, ethylcyclohexyl group , Provircyclohexyl, Ethylmethylcyclohexyl, Trimethylcyclohexyl, Jetylcyclohexyl, Ethyldimethyl Cy
  • the hydrocarbon group includes all possible linear and branched structures, and also includes the position of the double bond of the alkenyl group, the position of the bond of the alkyl group to the cycloalkyl group, The bonding position of the alkyl group to the aryl group and the bonding position of the aryl group to the alkyl group are arbitrary.
  • the zinc dithiophosphate include, for example, zinc diisopropyldithiophosphate, zinc diisobutyldithiophosphate, zinc sec-butyldithiophosphate, zinc-pentecyldithiophosphate, zinc- Zinc Hexyldithiophosphate, Zinc sec Hexyldithiophosphate, Zinc Dioctyldithiophosphate, G-2-Ethylhexyldithiophosphate, Zinc n-decyldithiophosphate, Zinc n-dodecyldithiophosphate, Diisotridecyldi Examples thereof include zinc thiophosphate and a mixture of any combination thereof.
  • the method for producing the zinc dithiophosphate is not particularly limited, and any conventional method can be employed. Specifically, for example, an alcohol or phenol having a hydrocarbon group corresponding to R 5 °, R 51 , R 52 and R 53 in the above formula (17) is reacted with pentasulfuryl-phosphorus to give dithioline. It can be synthesized by forming an acid and neutralizing it with acid zinc. The structure of zinc dithiophosphate varies depending on the raw material alcohol used.
  • the content of the zinc dithiophosphate is not particularly limited, but from the viewpoint of suppressing catalyst poisoning of the exhaust gas purification apparatus, it is preferably 0.2 in terms of phosphorus element based on the total amount of the composition. It is preferably at most 0.1% by mass, more preferably at most 0.1% by mass, even more preferably at most 0.08% by mass, particularly preferably at most 0.06% by mass. It is preferable that it is 0.06% or less.
  • the content of zinc dithiophosphate is a phosphorus element conversion amount based on the total amount of the composition, preferably 0.01, from the viewpoint of formation of a metal phosphate that exerts the effect of the antiwear additive.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment has cleanliness and sludge dispersion. From the viewpoint of properties, it is preferable to further contain an ashless dispersant. Specific examples and, preferably, examples of the ashless dispersant are the same as those of the ashless dispersant exemplified as the component (C-1) in the description of the third embodiment, and a duplicate description is omitted here. To do.
  • the content of the ashless dispersant in the lubricating oil composition for an internal combustion engine according to the fourth embodiment is preferably 0.005 mass% or more, more preferably, in terms of nitrogen, based on the total amount of the composition. 0.01% by mass or more, more preferably 0.05% by mass or more, preferably 0.3% by mass or less, more preferably 0.2% by mass or less, still more preferably 0.015% by mass or less. is there. If the content of the ashless dispersant is less than the above lower limit value, sufficient cleaning effect cannot be exhibited, while if the content exceeds the above upper limit value, the low temperature viscosity characteristics are deteriorated and the anti-emulsifying property is not achieved.
  • succinimide-based ashless dispersant with a weight average molecular weight of 6 500 or more, it exhibits sufficient sludge dispersibility and excellent low-temperature viscosity characteristics, and its content is based on the total amount of the composition. as, in the nitrogen terms of element, that a force preferably to 0.005 to 0.05 mass 0/0, 0.01 to 0.04 mass 0/0 and be Rukoto more preferably! /,.
  • a high molecular weight ashless dispersant when used, its content is preferably 0.005 mass% or more, more preferably 0.01 mass, in terms of nitrogen, based on the total amount of the composition. % Or more, preferably 0.1% by mass or less, more preferably 0.05% by mass or less. If the content of the high molecular weight ashless dispersant is less than the above lower limit value, sufficient cleansing effect cannot be exerted, whereas if the content exceeds the above upper limit value, the low temperature viscosity characteristics are deteriorated and the resistance is reduced. Since the emulsifying properties deteriorate, each is not preferable.
  • an ashless dispersant modified with a boron compound When an ashless dispersant modified with a boron compound is used, its content is preferably 0.005 mass% or more, more preferably 0.01 in terms of boron element, based on the total amount of the composition. It is at least mass%, more preferably at least 0.02 mass%, preferably at most 0.2 mass%, more preferably at most 0.1 mass%.
  • the content of the ashless dispersant modified with the boron compound is less than the above lower limit value, a sufficient cleansing effect cannot be exhibited, whereas when the content exceeds the above upper limit value, the viscosity at low temperature Deterioration of properties and anti-emulsification properties are preferable, respectively.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment further improves the friction characteristics thereof. From the point which can be done, it is preferable to contain an ashless friction modifier. Specific examples, preferred examples, and contents of the ashless friction modifier are the same as those of the ashless friction modifier in the third embodiment, and a duplicate description is omitted here.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment preferably further contains a metallic detergent from the viewpoint of cleanliness.
  • a metallic detergent from the viewpoint of cleanliness. Specific examples, preferred examples, and contents of the metallic detergent are the same as those of the metallic detergent in the third embodiment, and redundant description is omitted here.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment preferably contains a viscosity index improver from the viewpoint of further improving the viscosity-temperature characteristics.
  • a viscosity index improver from the viewpoint of further improving the viscosity-temperature characteristics.
  • Specific examples and contents of the viscosity index improver are the same as the viscosity index improver in the third embodiment, but in the fourth embodiment, the weight average molecular weight is 50,000 or less, preferably 40,000 or less.
  • non-dispersed viscosity index improvers and Z or dispersed viscosity index improvers of 10,000 to 35,000 are preferably used.
  • a polymetatalate-based viscosity index improver is preferred because it is superior in low-temperature fluidity.
  • a corrosion inhibitor for an internal combustion engine according to the fourth embodiment, for the purpose of further improving its performance, in addition to the above-mentioned additives, a corrosion inhibitor, an antifungal agent, an anti-antifoam, as necessary.
  • Various additives such as a milky agent, a metal deactivator, a pour point depressant, a rubber swelling agent, an antifoaming agent and a coloring agent may be blended alone or in combination. Specific examples of these additives are the same as in the case of the third embodiment, and a duplicate description is omitted here.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment may contain an additive containing sulfur as a constituent element.
  • the total sulfur content of the lubricating oil composition (the lubricating base oil and the additive include The total sulfur content is preferably 0.05 to 0.3 mass in terms of the solubility of the additive and the suppression of base number consumption due to the formation of sulfur oxides under high-temperature oxidation conditions. %, More preferably 0.1 to 0.2% by mass, particularly preferably 0.12 to 0.18% by mass.
  • the kinematic viscosity at 100 ° C of the lubricating oil composition for internal combustion engines according to the fourth embodiment is usually 4 to 24 mm 2 Zs, but the oil film thickness that suppresses seizure and wear is maintained. From the viewpoint of suppressing the increase in stirring resistance, and preferably from 5 to 18 mm 2 Zs, more preferably 6 -15 mm 2 Zs, more preferably 7-12 mm 2 Zs.
  • the lubricating oil composition for an internal combustion engine according to the fourth embodiment having the above-described configuration is excellent in thermal oxidation stability or further in viscosity temperature characteristics, friction characteristics, and volatilization prevention properties. Sufficiently realize long drain and energy saving when used as a lubricant for internal combustion engines such as gasoline engines for cars, power generation and marine use, diesel engines, engines that contain oxygenated compounds, and gas engines. Can do.
  • the lubricating oil composition for wet clutches according to the fifth embodiment of the present invention is based on the lubricating base oil according to the first embodiment or the second embodiment and the total amount of the composition (A-3) 0. 5-3 mass% ashless antioxidant and ⁇ -3) 3-12 mass% ashless dispersant.
  • redundant description of the lubricating base oil according to the first embodiment or the second embodiment is omitted.
  • the lubricating oil composition for an internal combustion engine according to the fifth embodiment includes the mineral oil exemplified in the description of the first embodiment, in addition to the lubricating base oil according to the first embodiment or the second embodiment.
  • System base oils, synthetic base oils and the like can be further contained, but redundant description of mineral base oils, synthetic base oils and the like is also omitted here.
  • the ashless acid deterrent agent includes a phenolic acid deterrent agent, a amine acid deterrent agent, etc.
  • a chain-stopping type ashless acid inhibitor generally used in other lubricating oils can be used.
  • Specific examples of the phenol-based antioxidant and the amine-based antioxidant are the same as those in the third embodiment and the like, and redundant description is omitted here.
  • the content of the ashless acid wrinkle inhibitor in the lubricating oil composition for wet clutches according to the fifth embodiment is 0.5 to 3% by mass as described above, preferably based on the total amount of the composition. Is 0.8-2% by mass.
  • the content of the ashless antioxidant is less than 0.5% by mass, the heat / oxidation stability becomes insufficient, and it becomes difficult to suppress generation of sludge varnish and the like due to deterioration. Further, even if the content of the ashless antioxidant exceeds 3% by mass, the effect of improving the heat and oxidation stability commensurate with the content cannot be obtained.
  • the wet clutch lubricating oil composition according to the fifth embodiment contains an ashless dispersant as the component (B-3).
  • Specific examples of the ashless dispersant are the same as those in the third embodiment. Therefore, a duplicate description is omitted here.
  • the content of the ashless dispersant in the lubricating oil composition for wet clutches according to the fifth embodiment is 3 to 12% by mass, preferably 4 to 10% by mass, as described above, based on the total amount of the composition. It is.
  • the content of the ashless dispersant is less than 3% by mass, the dispersibility of the combustion product is insufficient, and when it exceeds 12% by mass, the viscosity-temperature characteristics are insufficient.
  • the lubricating oil composition for wet clutches according to the fifth embodiment includes the lubricant base oil according to the first embodiment or the second embodiment, (A-3) an ashless antioxidant, and (B-3). Although it may consist of an ashless dispersant alone, in order to further improve its performance, it may further contain various additives shown below as required.
  • the lubricating oil composition for wet clutches according to the fifth embodiment contains a phosphorus-based antiwear agent (including a phosphorus-based extreme pressure agent) from the viewpoint of further improving fatigue life, extreme pressure properties, and wear resistance. It is preferable to do this.
  • a phosphorus-based anti-wear agent containing no sulfur as a constituent element and an anti-wear agent containing both phosphorus and sulfur (phosphorous sulfur-based anti-wear agent) are preferably used.
  • Phosphorous antiwear agents include phosphoric acid, phosphorous acid, phosphoric acid esters having 1 to 30 carbon atoms, preferably 3 to 20 carbon atoms, phosphorous acid esters, and the like. Salt.
  • Examples of the phosphorus-sulfur antiwear agent include thiophosphoric acid, thiophosphorous acid, thiophosphoric acid esters having a hydrocarbon group having 1 to 30 carbon atoms, preferably 3 to 20 carbon atoms, and thiophosphorous acid esters. , And salts thereof, and zinc dithiophosphate
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkyl group, an aryl group, an alkylaryl group, and an arylalkyl group. Can be mentioned.
  • alkyl group examples include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, and the like.
  • alkyl groups such as pentadecyl group, hexadecyl group, heptadecyl group, and octadecyl group (these alkyl groups may be linear or branched).
  • Examples of the cycloalkyl group include cycloalkyl groups having 5 to 7 carbon atoms such as a cyclopentyl group, a cyclohexyl group, and a cyclopentyl group.
  • alkylcycloalkyl group examples include a methylcyclopentyl group, a dimethylcyclopentyl group, a methylethylcyclopentyl group, a jetylcyclopentyl group, a methylcyclohexyl group, a dimethylcyclohexyl group, and a methylethylcyclohexyl group.
  • alkenyl group examples include a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an otaenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, And alkenyl groups such as a xadecenyl group, a heptadecyl group, and an octadecyl group (these alkenyl groups may be linear or branched, and the position of the double bond is arbitrary). .
  • aryl groups include aryl groups such as a phenol group and a naphthyl group.
  • alkylaryl group examples include a tolyl group, a xylyl group, an ethyl furol group, a puffy furl group, a butyl fell group, a pentyl fell group, a hexyl fell group, and a heptyl furl.
  • Alkyl group having 7 to 18 carbon atoms such as a group, octyl furol group, nor furfur group, decyl furol group, undecyl phenyl group, dodecyl phenyl group (the alkyl group may be linear) It may be branched, and the position of substitution with the aryl group is also arbitrary.
  • arylalkyl group examples include 7 to 12 carbon atoms such as a benzyl group, a phenyl group, a phenolic pill group, a phenylbutyl group, a phenylpentyl group, and a phenylhexyl group. And arylalkyl groups (these alkyl groups may be linear or branched).
  • phosphorous acid, phosphorous acid monoesters, phosphorous acid diesters, phosphorous acid triesters as phosphorus-based antiwear agents It is preferable to use at least one selected from the above classes and their salt strength.
  • Phosphorus and sulfur-based antiwear agents include thiophosphorous acid, thiophosphite monoesters, thiophosphite diesters, thiophosphite triesters, dithiophosphite, dithiophosphite.
  • Acid monoesters dithiophosphite diesters, dithiophosphite triesters, trithiophosphite, trithiophosphite monoesters, trithiophosphite diesters, trithiophosphite triesters, And at least one selected from these salt strengths is preferred.
  • the phosphorus-based antiwear agent include, specifically, monobutyl phosphate, monooctyl phosphate, monolauryl phosphate, dibutyl phosphate, dioctyl phosphate, dilaurino phosphate, diphenenophosphate, tributy Norephosphate, trioctyl phosphate, trilauryl phosphate, triphenyl phosphate; monobutyryl phosphate, monooctyl phosphite, monolauryl phosphite, dibutyl phosphate, dioctyl phosphate, dilauryl phosphate, diphenyl phosphate, Tributyl phosphite, trioctyl phosphite, trilauryl phosphite, triphenyl phosphite; and their salts, among others, phosphite ester wear Sealant, particularly preferably ants phosphat
  • the phosphorus-sulfur antiwear agent include, specifically, monobutylthiophosphate having 1 to 3, preferably 2 or 3, especially 3 sulfur atoms in the molecule, mono Octyl thiophosphate, monolauryl thiophosphate, dibutyl thiophosphate, dioctyl thiophosphate, dilauryl thiophosphate, diphenyl thiophosphate, tributyl thiophosphate, trioctyl thiophosphate, tributyl thiophosphate, trilauryl thio Phosphate: monobutylthiophosphite, monooctylthiophosphite, monolaurylthiophosphite, dibutylthiophosphite, dioctylthiophosphite, dilaurylthiophosphite, dibutylthiophosphate, tributylthiophosphate, tributylthi
  • salts of (thio) phosphate esters and (thio) phosphite esters include (thio B) Phosphoric acid monoester, (Chi) phosphoric acid diester, (Chi) phosphorous acid monoester, (Cho) phosphorous acid diester, etc.
  • a salt or the like that neutralizes part or all of the remaining acidic hydrogen by the action of a nitrogen compound such as an amine compound containing only hydrogen groups in the molecule or a metal base such as acid zinc or zinc chloride. can be mentioned.
  • nitrogen compound examples include ammonia; monomethylamine, monoethylamine, monopropylamine, monobutylamine, monopentylamine, monohexylamine, monoheptylamine, monooctylamine, dimethylamine. , Methylethylamine, jetylamine, methylpropylamine, ethylpropylamine, dipropylamine, methylbutyramine, ethylbutylamine, propylbutylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, etc.
  • Alkyl group may be linear or branched); monomethanolamine, monoethanolamine, monopropanolamine, monobutanolamine, monopentanolamine, monohexanolamine , Monoheptanolamine, monooctanolamine, monononanolamine, dimethanolamine, methanolethanolamine, diethanolamine, methanolpropanolamine, ethanolpropanolamine, dipropanolamine, methanolbutane Alkanolamines such as noramine, ethanolbutanolamine, propanolbutanolamine, dibutanolamine, dipentanolamine, dihexanolamine, diheptanolamine, dioctanolamine, etc. And a mixture thereof.
  • a phosphite diester antiwear agent such as di-2-ethylhexyl phosphate is effective for fatigue life and thermal stability.
  • a trithiophosphite triester antiwear agent such as trilauryl trithiophosphite, which is preferable in terms of improving the durability, is preferable in terms of improving the fatigue life.
  • zinc dialkyldithiophosphate it is preferable to use zinc dialkyldithiophosphate because it can improve wear resistance.
  • the content of the phosphorus-based antiwear agent in the present invention is not particularly limited, but in terms of fatigue life, extreme pressure properties, wear resistance, acid-acid stability, etc., the phosphorus element is based on the total amount of the composition. In terms of conversion, it is preferably 0.01 to 0.2% by mass, more preferably 0.02-0.15% by mass.
  • a sulfur-based antiwear agent may be used without containing phosphorus as a constituent element.
  • powerful sulfur-based antiwear agents include sulfurized fats and oils, sulfurized olefins, dihydrocarbyl polysulfides, dithiocarmates, thiadiazoles, and benzothiazoles.
  • sulfur oils and fats, Olefin sulfides, dihydrocarbyl polysulfides, dithiocarbamates, thiadiazoles, and benzothiazoles At least one sulfur type antiwear agent selected is preferred.
  • the content of the sulfur-based antiwear agent in the lubricating oil composition for wet clutches according to the fifth embodiment is not particularly limited, but from the viewpoint of fatigue life, extreme pressure, wear resistance, oxidation stability, and the like. Based on the total amount of the composition, in terms of elemental sulfur, it is preferably 0.01 to 3% by mass, more preferably 0.1 to 3% by mass, and still more preferably 0.5 to 2.5% by mass. It is particularly preferably 1.5 to 2.5% by mass.
  • the lubricating oil composition for wet clutches according to the fifth embodiment preferably contains a friction modifier from the viewpoint that the friction characteristics can be further improved.
  • a friction modifier from the viewpoint that the friction characteristics can be further improved.
  • Specific examples of the friction modifier are the same as those in the third embodiment, and a duplicate description is omitted here.
  • the content of the friction modifier in the lubricating oil composition for wet clutches according to the fifth embodiment is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the composition. More preferably, it is 0.3% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less. If the content of the friction modifier is less than the lower limit value, the friction reducing effect due to the additive tends to be insufficient, and if the content exceeds the upper limit value, effects such as a phosphorus-based antiwear agent are obtained. It tends to be inhibited or the solubility of additives tends to be poor.
  • the lubricating oil composition for wet clutches according to the fifth embodiment is a metal from the viewpoint of cleanliness. It is preferable to further contain a system cleaner. Specific examples, preferable examples, and contents of the powerful metal-based detergent are the same as those in the third embodiment, and a duplicate description is omitted here.
  • the lubricating oil composition for wet clutches according to the fifth embodiment preferably contains a viscosity index improver from the viewpoint of further improving the viscosity-temperature characteristics.
  • a viscosity index improver from the viewpoint of further improving the viscosity-temperature characteristics.
  • Specific examples, preferred examples, and contents of the viscosity index improver are the same as in the case of the third embodiment, and redundant description is omitted here.
  • components other than the component (A-3) Formulated with various additives such as antioxidants, corrosion inhibitors, antifungal agents, antiemulsifiers, metal deactivators, pour point depressants, rubber inflating agents, antifoaming agents, and colorants, alone or in combination. It's okay.
  • antioxidants such as copper-based and molybdenum-based agents.
  • Specific examples of the other additives are the same as in the case of the third embodiment, and a duplicate description is omitted here.
  • the content is based on the total amount of the composition, and the antioxidant other than the component (A-3) is 0.01 to 2% by mass, 0.005 to 5% by mass for corrosion inhibitors, antifungal agents, and demulsifiers, 0.005 to 1% by mass for metal deactivators, 0.05 to 1% by mass for pour point depressants, defoaming It is usually selected in the range of 0.0005 to 1% by mass for the colorant and 0.001 to 0% by mass for the colorant.
  • the kinematic viscosity at 100 ° C of the lubricating oil composition for wet clutches according to the fifth embodiment is preferably 2 to 20 mm 2 / s, more preferably 4 to 15 mm 2 / s, and still more preferably 5 ⁇ 1 Omm Z s.
  • the lubricating oil composition for wet clutches according to the fifth embodiment having the above-described configuration has sufficiently high heat-oxidation stability, and is further excellent in viscosity-temperature characteristics, friction characteristics, and volatilization prevention properties. .
  • the wet clutch lubricating oil composition according to the fifth embodiment having such excellent characteristics sufficiently generates insoluble components such as sludge varnish and the like due to deterioration and is clogged in the wet clutch due to the insoluble components. Therefore, it is suitable as a lubricating oil for a four-stroke internal combustion engine for a two-wheeled vehicle having a wet clutch mechanism.
  • the lubricating oil for wet clutches of the invention can be suitably used for transmissions such as automatic transmissions, continuously variable transmissions, and dual clutch transmissions.
  • the lubricating oil composition for a drive transmission device includes the lubricating base oil according to the first embodiment or the second embodiment, and (A-4) a poly (meth) acrylate-based viscosity index improver. And (B-4) a phosphorus-containing compound.
  • the overlapping description about the lubricating base oil according to the first embodiment or the second embodiment is omitted here.
  • the lubricating oil composition for an internal combustion engine according to the fifth embodiment includes the mineral oil-based base exemplified in the description of the first embodiment, in addition to the lubricating base oil according to the first embodiment or the second embodiment. Oil, synthetic base oil, and the like can be further contained, but redundant description of mineral oil base oil, synthetic base oil, etc. is also omitted here.
  • (A-4) a poly (meth) acrylate aryl viscosity improver and the lubricant according to the first embodiment or the second embodiment.
  • the effect of improving the viscosity index, suppressing the increase in viscosity at a low temperature, and lowering the pour point is effective. Therefore, a high level of low temperature characteristics can be achieved.
  • the poly (meth) acrylate-based viscosity index improver used in the sixth embodiment is not particularly limited, and is a non-dispersed or dispersed poly (meta) used as a viscosity index improver for lubricating oils. ) Atre relay toy compound can be used.
  • Non-dispersed poly (meth) talylate viscosity index improvers include polymers of compounds represented by the following general formula (18).
  • R 54 represents an alkyl group having 1 to 30 carbon atoms.
  • the alkyl group represented by R 54 may be linear or branched. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nor group, decyl group Group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group
  • Examples include a sacosyl group, a heptacosyl group, an octacosyl group, a nonacosyl group, a triacontyl group and the like (these alkyl groups may be linear or branched).
  • dispersion-type poly (meth) acrylate-based viscosity index improver specifically, for example, one or more selected from among the compounds represented by the above general formula (18) Preferred is a copolymer obtained by copolymerizing one monomer of the above and one or more nitrogen-containing monomers selected from among the compounds represented by the following general formula (19) or (20) It is mentioned as.
  • R 5a and R 57 each independently represent a hydrogen atom or a methyl group.
  • R 56 represents an alkylene group having 1 to 30 carbon atoms, and specifically includes a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a norylene group, and a decylene group.
  • a represents an integer of 0 or 1
  • X 1 and X 2 each independently represent an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms, respectively.
  • Specific examples of X 1 and X 2 include a dimethylamino group, a jetylamino group, a dipropylamino group, a dibutylamino group, an amino-toluino group, a toluidino group, a xylidino group, an acetylamino group, a benzilamino group, a morpholino group, and a pyrrolyl group.
  • Preferred examples include a quinolino group, a pyridyl group, a methylpyridyl group, a pyrrolidyl group, a piperidinyl group, a quinonyl group, a pyrrolidonyl group, a pyrrolidono group, an imidazolino group, and a birazino group.
  • Preferable examples of the nitrogen-containing monomer represented by the general formula (19) or (20) include dimethylaminomethyl metatalylate, jetylaminomethyl metatalylate, and dimethylamino. Examples thereof include ethyl metatalylate, jetylaminoethyl metatalylate, 2-methyl-5-butylpyridine, morpholinomethyl metatalylate, morpholinoethyl metatalylate, N-bipyrrolidone, and mixtures thereof.
  • the poly (meth) acrylate-based viscosity index improver used in the sixth embodiment may be either a dispersion type or a non-dispersion type as described above, but a non-dispersion type poly (meth)
  • the following (A—4-1) to (A—4-3), which preferably use an acrylic viscosity index improver, are more preferable.
  • (8-4 2) A polymer containing as a main component a monomer of the general formula (18) which is a 4- hydroxyl group or a linear alkyl group having 12 to 15, 16, or 18 carbon atoms.
  • the polymers (A-4-1) to (A- 4-3) from the viewpoint of improving fatigue life, the polymers (A-4-2) and (A-4-3) ) Is particularly preferred.
  • the polymer (A-4-3) a monomer in which R 54 in the general formula (18) is a branched alkyl group having 22 to 28 carbon atoms (more preferably a 2-decyltetradecyl group) is used. It is preferable to include it as a structural unit.
  • the weight-average molecular weight of the poly (meth) acrylate-based viscosity index improver used in the sixth embodiment is not particularly limited, but is preferably 5,000-100,000, more preferably 1.
  • the weight average molecular weight of the positive (meth) acrylate viscosity index improver is less than 5,000, the thickening effect of the viscosity index improver due to added calories will be insufficient, and if it exceeds 100,000, the fatigue life will be increased. Insufficient wear resistance and shear stability.
  • the weight average molecular weight means that two columns GMHHR-M (7.8 mm ID X 30 cm) manufactured by Tosoh Corporation are set in series on a Waters 150-C ALCZGPC apparatus and tetrahydrofuran is used as a solvent.
  • the content of the poly (meth) acrylate-based viscosity index improver in the lubricating oil composition for a drive transmission device according to the sixth embodiment is preferably 0.1 to 20% by mass based on the total amount of the composition. More preferably, it is 1 to 15% by mass. If the content of the poly (meth) acrylate viscosity index improver is less than 0.1% by mass, the effect of increasing the viscosity and improving the low-temperature fluidity tend to be insufficient, and 20% by mass. If it exceeds 100%, the viscosity of the lubricating oil composition will increase, making it difficult to save fuel, and shear stability will tend to be reduced.
  • poly (meth) acrylate viscosity index improver when adding a poly (meth) acrylate viscosity index improver to the lubricating base oil, 5 to 95 mass of the poly (meth) acrylate viscosity index improver is required to improve lubricity and handling properties. 0/0 were dissolved in the diluent and the mixture is for addition to the lubricating base oil is generally, the content of the referred to here poly (meth) Atari rate based viscosity index improver, poly (Meth) Atalylate The total amount of the system viscosity index improver and diluent.
  • the lubricating oil composition for a drive transmission device contains a phosphorus-containing compound as the component (B-4).
  • a phosphorus extreme pressure agent and a phosphorus-sulfur extreme pressure agent are preferably used.
  • Specific examples and preferred examples of the phosphorus-based extreme pressure agent and the phosphorus-sulfur-based extreme pressure agent are the same as those exemplified as the phosphorus-based antiwear agent in the description of the fifth embodiment. Then, the overlapping description is omitted.
  • the content of the phosphorus-containing compound in the sixth embodiment is not particularly limited, but in terms of fatigue life, extreme pressure properties, wear resistance, acid-acid stability, etc., based on the total amount of the composition, Yuan Lin It is preferably 0.01 to 0.2% by mass, more preferably 0.02 to 0.15% by mass, in terms of elementary.
  • Yuan Lin It is preferably 0.01 to 0.2% by mass, more preferably 0.02 to 0.15% by mass, in terms of elementary.
  • the lubricity tends to be insufficient.
  • the synchro characteristics lubricating so that gears with different reduction ratios mix well and perform their functions
  • the fatigue life tends to be insufficient.
  • the lubricating oil composition is used as a lubricating oil for a manual transmission, the heat / acid / acid stability tends to be insufficient.
  • a lubricating oil composition for a drive transmission device includes the above-described lubricating base oil, a poly (A-4) (meth) acrylated viscosity index improver, and (B-4) phosphorus. However, it may further contain various additives as described below, if necessary.
  • the lubricating oil composition for a drive transmission device is a sulfur-based extreme pressure agent other than the above-described phosphorus-sulfur extreme pressure agent because it can further improve fatigue life, extreme pressure property, and wear resistance. It is preferable to contain further. Specific examples and preferred examples of the sulfur-based extreme pressure agent are the same as those exemplified as the sulfur-based antiwear agent in the fifth embodiment, and a duplicate description is omitted here.
  • the content of the sulfur-based extreme pressure agent in the lubricating oil composition for a drive transmission device according to the sixth embodiment is not particularly limited, but from the viewpoint of fatigue life, extreme pressure, wear resistance, oxidation stability, and the like. Based on the total amount of the composition, in terms of elemental sulfur, it is preferably 0.01 to 3% by mass, more preferably 0.1 to 3% by mass, and still more preferably 0.5 to 2.5% by mass. It is particularly preferably 1.5 to 2.5% by mass. When the content of the sulfur-based extreme pressure agent is less than the lower limit value, the lubricity tends to be insufficient.
  • the lubricating oil composition when used as a lubricating oil for manual transmissions, there is a tendency that the synchro characteristics (lubricating so that gears with different reduction ratios mix well and perform their functions) are insufficient. It is in. On the other hand, if the content of the sulfur-based extreme pressure agent exceeds the upper limit, the fatigue life tends to be insufficient. In addition, when the lubricating oil composition is used as a lubricating oil for a manual transmission, the thermal and acid stability tends to be insufficient. In addition, when the lubricating oil composition for a drive transmission device according to the sixth embodiment is used particularly as a lubricating oil for a final reduction gear, it is necessary to further enhance the extreme pressure property.
  • the amount is 0.5 to 3% by mass in terms of elemental sulfur based on the total amount of the composition. It is more preferable to set it as 1.5 to 2.5 mass%.
  • the lubricating oil composition for a drive transmission device has a force (A-4) containing a poly (meth) acrylate-based viscosity index improver (A -4) It may further contain a viscosity index improver other than the poly (meth) acrylate-based viscosity index improver (hereinafter sometimes referred to as (C-4) component).
  • Component (C-4) includes dispersed ethylene a-olefin copolymer or hydrogenated product thereof, polyisobutylene or hydrogenated product thereof, styrene-hydrogenated copolymer, styrene maleic anhydride ester copolymer and polyalkylstyrene, etc. Is mentioned.
  • component (C-4) When component (C-4) is used, its content is usually selected in the range of 0.1 to 10% by mass based on the total amount of the composition.
  • the lubricating oil composition for a drive transmission device has the following advantages: (D-4) Ashless dispersant It is preferable to further contain.
  • (D-4) ashless dispersants include the following nitrogen compounds (D-4-1) to (D-4-3). These can be used alone or in combination of two or more.
  • (D-4 2) Benzylamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof
  • examples of the succinimide include compounds represented by the following general formula (15) or (16).
  • R represents an alkyl group or a alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350, and j represents an integer of 1 to 5, preferably 2 to 4.
  • R 59 and R 6 each independently represent an alkyl group or a alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and k is 0 to 4 , Preferably an integer of 1 to 3.
  • the above succinimide has a so-called monotype succinimide represented by the general formula (21) in which succinic anhydride is added to one end of the polyamine by imidization, and succinic anhydride on both ends of the polyamine.
  • the bisuccinic succinimide represented by the general formula (22) in the form attached with a ⁇ ⁇ is included, but in the lubricating oil composition for a drive transmission device according to the sixth embodiment, A mixture of these can also be used.
  • the above benzylamine is obtained by reacting, for example, polyolefin (for example, propylene oligomer, polybutene, ethylene a-olefin copolymer, etc.) with phenol to form alkylphenol, and then adding formaldehyde and polyamine (for example, diethylenetriamine).
  • formaldehyde and polyamine for example, diethylenetriamine
  • Triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc. can be obtained from the Mannich reaction mixture.
  • polyamine of (D-4 3) examples include a compound represented by the following general formula (24).
  • R 62 represents an alkyl group or a alkenyl group having 40 to 400 carbon atoms, preferably 60 to 350 carbon atoms, and m is 1 to 5, preferably 2. Indicates an integer of ⁇ 4.
  • the polyamine is, for example, chlorinated polyolefin (for example, propylene oligomer, polybutene, ethylene a- olefin copolymer, etc.), and then ammonia or polyamine (for example, ethylenediamine, diethylenetriamine, triethylene). Tetramine, tetraethylenepentamine, pentaethylenehexamine, etc.) can be obtained by reaction.
  • chlorinated polyolefin for example, propylene oligomer, polybutene, ethylene a- olefin copolymer, etc.
  • ammonia or polyamine for example, ethylenediamine, diethylenetriamine, triethylene.
  • Tetramine, tetraethylenepentamine, pentaethylenehexamine, etc. can be obtained by reaction.
  • the nitrogen content in the nitrogen compound is arbitrary, but from the viewpoint of wear resistance, oxidation stability, frictional properties, etc., the nitrogen content is usually from 0.01 to LO mass%. It is more preferable to use 0.1 to 10% by mass.
  • Examples of the derivative of the nitrogen compound include, for example, monocarboxylic acids having 2 to 30 carbon atoms (fatty acids, etc.), oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid, and the like.
  • a so-called acid-modified compound obtained by neutralizing or amidating some or all of the remaining amino groups and Z or imino groups by the action of 30 to 30 polycarboxylic acids;
  • the content is not particularly limited, but is 0.5 to It is preferably 1% by mass, more preferably 1% by mass to 8.0% by mass.
  • the content of the ashless dispersant is less than 0.5% by mass, the effect of improving fatigue life and extreme pressure properties is insufficient, and when it exceeds 10.0% by mass, the low-temperature fluidity of the composition is greatly increased. Since it gets worse, it is not preferable respectively.
  • the content of the ashless dispersant is determined based on the total amount of the composition. It is preferable to set it as 1-6 mass% on the basis.
  • the content of the ashless dispersant is 0. It is preferably 5 to 6% by mass, more preferably 0.5 to 2% by mass.
  • the lubricating oil composition for a drive transmission device preferably further contains a metallic detergent from the viewpoint of further improving the friction characteristics.
  • a metallic detergent from the viewpoint of further improving the friction characteristics.
  • Specific examples and preferred examples of the metal-based detergent are the same as in the case of the third embodiment, and a duplicate description is omitted here.
  • the content thereof is not particularly limited, but preferably in terms of metal elements based on the total amount of the composition. from 0.005 to 0.5 mass 0/0, more preferably from 0.008 to 0.3 mass 0/0, further preferred properly is 0.01 to 0.2 wt%.
  • the metal detergent content is less than 0.005% by mass in terms of metal elements, the effect of improving frictional characteristics tends to be insufficient.
  • the content exceeds 0.5% by mass, the friction of wet clutches tends to be insufficient. There are concerns about adverse effects on materials.
  • the content of the metallic detergent is determined according to the composition. based on the total amount, in terms of metal elements, 0.005 to 0. it forces preferably to 2 mass 0/0, 0.008 to 0. it is more preferable that 02 mass%.
  • the content of the metallic detergent is determined based on the total amount of the metal element. In terms of conversion, 0.05 to 0.5 mass% is preferable, and 0.1 to 0.4 mass% is more preferable. 0.2 to 0.35 mass% is preferable. Further preferred.
  • the lubricating oil composition for a drive transmission device preferably contains an antioxidant from the viewpoint of further improving the thermal oxidation stability.
  • an antioxidant it is preferable to use a phenol-based acid antioxidant and a Z- or amine-based acid antioxidant that are generally used in the lubricating oil field and can be used. It is particularly preferable to use a combination of a phenolic acid inhibitor and an amine acid inhibitor. Specific examples of the phenol-based antioxidant and the amine-based antioxidant are the same as those in the third embodiment and the like, and redundant description is omitted here.
  • the content of the anti-oxidation agent in the lubricating oil composition for a drive transmission device according to the sixth embodiment is not particularly limited, but is preferably 0.01 to 5.0% by mass based on the total amount of the composition. is there.
  • the lubricating oil composition for a drive transmission device further includes a friction modifier because it can further improve the friction characteristics of the wet clutch in the transmission.
  • a friction modifier any compound that is usually used as a friction modifier in the lubricating oil field can be used.
  • an amine compound, an imide compound, a fatty acid ester, a fatty acid amide, a fatty acid metal salt, or the like having at least one group or a linear alkenyl group in the molecule is used.
  • the amine compound is a linear or branched, preferably linear aliphatic monoamine having 6 to 30 carbon atoms, linear or branched, preferably linear aliphatic. Examples thereof include polyamines and alkylene oxide adducts of these aliphatic amines.
  • the imide compound include succinimide having a linear or branched alkyl group or alkenyl group having 6 to 30 carbon atoms and Z or its modified carboxylic acid, boric acid, phosphoric acid, sulfuric acid, etc. Compound etc. are mentioned.
  • Examples of the fatty acid ester include esters of linear or branched, preferably linear fatty acids having 7 to 31 carbon atoms and aliphatic monohydric alcohols or aliphatic polyhydric alcohols.
  • Examples of the fatty acid amide include amides of linear or branched, preferably linear fatty acids having 7 to 31 carbon atoms, and aliphatic monoamines or aliphatic polyamines.
  • Examples of the fatty acid metal salt include linear or branched, preferably linear fatty acid, alkaline earth metal salts (magnesium salt, calcium salt, etc.) Examples include lead salts.
  • one or two selected from an amine friction modifier, an ester friction modifier, an amide friction modifier, and a fatty acid friction modifier are contained. It is preferable that it contains one or more selected from amine-based friction modifiers, fatty acid-based friction modifiers, and amide-based friction modifiers in that the fatigue life can be further improved. Is particularly preferred. Further, when the lubricating oil composition for a drive transmission device according to the sixth embodiment is used as a lubricating oil for an automatic transmission or a continuously variable transmission, the anti-shudder life can be remarkably improved. It is particularly preferable to contain a system friction modifier.
  • one kind or two or more kinds of compounds arbitrarily selected from the friction modifiers can be contained in any amount.
  • the content of the friction modifier is preferably 0.01 to 5.0% by mass, more preferably 0.03 to 3.0% by mass, based on the total amount of the composition.
  • the content of the friction modifier is preferably 0.5 to 5% by mass, more preferably 2 to 4% by mass, based on the total amount of the composition.
  • the content of the friction modifier is 0 based on the total amount of the composition. It is preferably 1 to 3% by mass, and more preferably 0.5 to 1.5% by mass.
  • a corrosion inhibitor for a drive transmission device according to the sixth embodiment, for the purpose of further improving the performance, in addition to the above-mentioned additives, a corrosion inhibitor, an antifungal agent, an anti-resistant as necessary.
  • Various additives such as a milky agent, a metal deactivator, a pour point depressant, a rubber swelling agent, an antifoaming agent and a coloring agent may be blended alone or in combination. Specific examples of these additives are the same as in the case of the third embodiment, and a duplicate description is omitted here.
  • the content is based on the total amount of the composition, and is not a corrosion inhibitor, antifungal agent or demulsifier. 0.005 to 5% by weight, 0.05 to 1% by weight for metal deactivator, 0.05 to 1% by weight for pour point depressant, 0.0005 to 1% by weight for antifoaming agent, coloring In the case of agent, 0.001 ⁇ 1. Usually selected in the range of 0% by weight.
  • the lubricating oil composition for a drive transmission device having the above-described configuration, even when the viscosity is lowered, the wear resistance, seizure resistance, and fatigue life are extended over a long period of time. Therefore, it can be achieved at a high level, and it is possible to achieve both fuel saving and durability in the drive transmission device and to improve startability at low temperatures.
  • the driving force transmission device to which the lubricating oil composition according to the sixth embodiment can be applied is not particularly limited, but specifically, transmissions such as an automatic transmission, a continuously variable transmission, and a manual transmission. , Final reduction gear, power distribution adjustment mechanism, etc.
  • the kinematic viscosity at 100 ° C of the lubricating base oil according to the first embodiment or the second embodiment is preferably 2 to 8 mm 2 Zs, more preferably 2.6 to 4.5 mm 2 Zs, still more preferably 2.8 to 4.3 mm Vs, and particularly preferably 3.3 to 3.8 mm 2 Zs. If the kinematic viscosity is less than the lower limit, the lubricity tends to be insufficient, and if it exceeds the upper limit, the low temperature fluidity tends to be insufficient.
  • the kinematic viscosity at 40 ° C of the lubricating base oil according to the first embodiment or the second embodiment is preferably 15 to 50 mm 2 Zs, more preferably 20 to 40 mm 2 Zs, more preferably from 25 to 35 mm 2 Zs. If the kinematic viscosity is less than the lower limit, lubricity tends to be insufficient, and if the kinematic viscosity exceeds the upper limit, fuel consumption tends to be insufficient due to an increase in stirring resistance.
  • the viscosity index of the lubricating base oil according to the first embodiment or the second embodiment is preferably 120 to 160, More preferably, it is 125 to 150, and more preferably 130 to 145. When the viscosity index is within the above range, the viscosity temperature characteristic can be further improved.
  • Phosphorus, phosphoric acid esters, phosphorous acid, phosphorous acid ester may be used as the phosphorus-containing compound contained in the lubricating oil composition for automatic transmission or continuously variable transmission.
  • Thiophosphoric acid, thiophosphoric acid esters, thiophosphorous acid and thiophosphorous acid esters and their salts Phosphoric acid, phosphate esters, phosphorous acid and phosphite esters, and their salt strength, which are preferably at least one selected, are more preferably at least one selected. At least selected from esters and phosphites and their salts
  • the content of the phosphorus-containing compound in the lubricating oil composition for automatic transmissions or continuously variable transmissions is preferably 0.005-0, in terms of phosphorus element, based on the total amount of the composition. . 1 mass 0/0, more preferably ⁇ or 0. 01-0. 05 mass 0/0, more preferably ⁇ or 0. 02-0. 04 mass 0/0. If the content of the phosphorus-containing compound is less than the lower limit, the lubricity tends to be insufficient, and if the content exceeds the upper limit, the wet friction characteristics and fatigue life tend to be insufficient. is there.
  • BF viscosity exceeds the upper limit, the startability at low temperatures tends to be insufficient.
  • the viscosity index of the lubricating oil composition for automatic transmission or continuously variable transmission is preferably 100 to 250, more preferably 150 to 250, and still more preferably 170 to 250. If the viscosity index is less than the lower limit, fuel economy tends to be insufficient. In addition, a composition exceeding the upper limit has a content of a poly (meth) acrylate-based viscosity index improver, and tends to have insufficient shear stability.
  • the kinematic viscosity at 100 ° C of the lubricating base oil according to the first embodiment or the second embodiment is preferably 3.0 to 20 mm 2. zs, more favorable Mashiku 3. 3 to 15 mm 2 Zs, more preferably 3. 3 to 8 mm 2 Zs, more preferably 3. 8 ⁇ 6mm 2 Zs, particularly preferably 4. 3 ⁇ 5. 5mm 2 Zs is there.
  • the kinematic viscosity is less than the lower limit, the lubricity tends to be insufficient, and when the upper limit is exceeded, the low temperature fluidity tends to be insufficient.
  • the kinematic viscosity at 40 ° C of the lubricating base oil according to the first embodiment or the second embodiment is preferably 10 to 200 mm 2 Zs, Better Mashiku is 15 ⁇ 80mm 2 Zs, more preferably 20 to 70 mm 2 Zs, particularly preferably 23 ⁇ 6 0mm 2 Zs. If the kinematic viscosity is less than the lower limit value, the lubricity tends to be insufficient, and if the kinematic viscosity exceeds the upper limit value, fuel economy tends to be insufficient due to an increase in stirring resistance.
  • the viscosity index of the lubricating base oil according to the first embodiment or the second embodiment is preferably 130 to 170, more preferably 135 to 165. More preferably, it is 140-160. When the viscosity index is within the above range, the viscosity-temperature characteristics can be further improved.
  • thiophosphoric acid As a phosphorus-containing compound contained in the lubricating oil composition for manual transmission, thiophosphoric acid, thiophosphoric acid esters, thiophosphorous acid, and thiophosphorous acid esters are selected. Particularly preferred is zinc dithiophosphate, which is more preferably at least one selected from the group consisting of thiophosphates and thiophosphite esters that are preferably at least one selected from the group consisting of
  • the content of the phosphorus-containing compound in the (II) lubricating oil composition for manual transmission is preferably 0.01 to 0.2 mass in terms of phosphorus element based on the total amount of the composition. %, More preferably 0.05-0.15% by mass, still more preferably 0.09-0.14% by mass. If the content of the phosphorus-containing compound is less than the lower limit, the lubricity and the synchro characteristics tend to be insufficient, and if the content exceeds the upper limit, the heat / acid stability and fatigue life are insufficient. It tends to be.
  • the BF viscosity at ⁇ 40 ° C. of the lubricating oil composition for manual transmission is preferably 20, OOOmPa * s or less, more preferably 15, OOOmPa * s or less, and further preferably 10 , OOOm Pa's or less, more preferably 9, OOOmPa's or less, and particularly preferably 8, OOOmPa's or less.
  • the BF viscosity exceeds the upper limit, the startability at low temperatures tends to be insufficient.
  • the viscosity index of the lubricating oil composition for manual transmission is preferably 100 to 250, more preferably 140 to 250, and still more preferably 150 to 250. If the viscosity index is less than the lower limit, fuel economy tends to be insufficient. In addition, a composition that exceeds the above upper limit value does not contain too much poly (meth) acrylate viscosity index improver. The stability tends to be insufficient.
  • the kinematic viscosity at 100 ° C of the lubricating base oil according to the first embodiment or the second embodiment is preferably 3.0 to 20 mm 2 zs, more preferred properly 3. 3 to 15 mm 2 zs, more preferably 3. 3 to 8 mm 2 zs, more preferably 3. 8 ⁇ 6mm 2 Zs, particularly preferably is 4. 3 ⁇ 5. 5mm 2 Zs .
  • the kinematic viscosity is less than the lower limit, the lubricity tends to be insufficient, and when the upper limit is exceeded, the low temperature fluidity tends to be insufficient.
  • the kinematic viscosity at 40 ° C of the lubricating base oil according to the first embodiment or the second embodiment is preferably 15 to 200 mm 2 Zs, more preferably rather it is 20 to 150 mm 2 Zs, further preferably 23 ⁇ 80mm 2 Zs. If the kinematic viscosity is less than the lower limit value, the lubricity tends to be insufficient, and if the kinematic viscosity exceeds the upper limit value, the fuel economy tends to be insufficient due to an increase in stirring resistance.
  • the viscosity index of the lubricating base oil according to the first embodiment or the second embodiment is preferably 130 to 170, more preferably 135 to 165. More preferably, it is 140-160. When the viscosity index is within the above range, the viscosity-temperature characteristics can be further improved.
  • Phosphorus-containing compounds contained in the lubricating oil composition for the final reduction gear include phosphoric esters, phosphites, thiophosphates, and thiophosphites. It is more preferable that at least one selected from phosphoric acid esters, phosphites, and their amine salts is preferable. More preferably, the phosphoric acid ester, its amine salt and phosphoric acid ester are at least one selected.
  • the content of the phosphorus-containing compound in the (III) lubricating oil composition for the final reduction gear is preferably 0.01 to 0.2 mass in terms of phosphorus element based on the total amount of the composition. %, More preferably 0.05-0.15% by mass, and still more preferably 0.1-0.14% by mass.
  • the content of the phosphorus-containing compound is less than the lower limit, the lubricity tends to be insufficient, and when the content exceeds the upper limit, the fatigue life tends to be insufficient.
  • the BF viscosity at ⁇ 40 ° C. of the lubricating oil composition for the final reduction gear is preferably 10 0, OOOmPa's or less, more preferably 50, OOOmPa's or less, still more preferably 20,000 mPa's or less, and even more preferably 10, OOOmPa's or less. If the BF viscosity exceeds the upper limit, the startability at low temperatures tends to be insufficient.
  • the viscosity index of the lubricating oil composition for automatic transmission or continuously variable transmission is preferably 100 to 250, more preferably 120 to 250, and still more preferably 125 to 250. If the viscosity index is less than the lower limit, fuel economy tends to be insufficient. In addition, a composition exceeding the upper limit has a content of a poly (meth) acrylate-based viscosity index improver, and tends to have insufficient shear stability.
  • the fraction separated by distillation under reduced pressure during the process of refining the solvent refined base oil was subjected to a hydrogenation treatment after solvent extraction with furfural and then dewaxed with a methyl ethyl ketone-toluene mixed solvent.
  • the wax component (hereinafter referred to as “WAX1”) obtained by further deoiling the slack wax removed during the powerful solvent dewaxing was used as a raw material for the lubricant base oil.
  • Table 1 shows the properties of WAX1.
  • a raw material oil is obtained by distillation under reduced pressure of the decomposition product obtained by the above hydrocracking. 26% by volume of the lubricating oil fraction was obtained.
  • This lubricating oil fraction was subjected to solvent dewaxing using a methyl ethyl ketone toluene mixed solvent at a solvent Z oil ratio of 4 times and a filtration temperature of 25 ° C, and the lubricating oil bases of Examples 1 to 3 having different viscosity grades were used. Oils (D1-D3) were obtained.
  • the cracked Z isomerization product oil obtained in the hydrocracking Z hydroisomerization step was distilled under reduced pressure to obtain a lubricating oil fraction.
  • This lubricating oil fraction was subjected to solvent dewaxing using methyl ethyl ketone / toluene mixed solvent under the conditions of solvent Z oil ratio 4 times and filtration temperature 25 ° C, and the lubricating oil bases of Examples 4 to 6 having different viscosity grades. Oil (D4 to D6) was obtained.
  • Tables 4 to 6 show the properties and performance evaluation test results for the lubricating base oils of Examples 1 to 15.
  • Tables 7 to 9 show various properties and performance evaluation test results for conventional high viscosity index base oils R1 to R9.
  • Non-cyclic saturates Mass 3 ⁇ 4 95.4 98.8 86.3 87.8 63.9
  • Non-cyclic saturates content Linear paraffin content% 0.1 0.1 0.1 0.1 0.2
  • Acyclic saturated content Linear paraffin mass% 0.1 0.1 0.1 0.1 0.2
  • each lubricating base oil or composition was irradiated with light in the wavelength region of 400 to 750 nm for 70 hours so that the average temperature was 40 ° C.
  • the hue of each lubricating base oil before and after light irradiation was evaluated by the Seybolt hue specified in ASTM D156-000. Gain The results obtained are shown in Tables 5-7.
  • Example 16 WAX1 was hydrocracked in the presence of a hydrocracking catalyst under the conditions of a hydrogen partial pressure of 5 MPa, an average reaction temperature of 350 ° C., and LHSVlhr- 1 .
  • the cracked product obtained by the above hydrocracking was distilled under reduced pressure to obtain a lubricating oil fraction having a kinematic viscosity of 4 mm 2 Zs at 100 ° C.
  • This lubricating oil fraction was subjected to solvent dewaxing using a methyl ketone-toluene mixed solvent, the solvent / oil ratio was quadrupled, and the resulting solvent dewaxed oil had a freezing point of -29 ° C.
  • the lubricating base oil (D16) of Example 1 was obtained.
  • the dewaxing temperature at this time was 32 ° C.
  • the cracked product obtained by the above hydrocracking was distilled under reduced pressure to obtain a lubricating oil fraction having a kinematic viscosity of 4 mm 2 Zs at 100 ° C.
  • This lubricating oil fraction was subjected to solvent dewaxing using a methyl ketone-toluene mixed solvent with a solvent / oil ratio of 4 times and the resulting solvent dewaxed oil having a freezing point of -25 ° C.
  • the lubricating base oil (D17) of Example 2 was obtained.
  • the dewaxing temperature at this time was -25 ° C.
  • Example 18 hydrocracking of WAX3 was performed in the presence of a hydrocracking catalyst under the conditions of a hydrogen partial pressure of 5 MPa, an average reaction temperature of 350 ° C., and LHSVlhr- 1 .
  • the cracked product obtained by the above hydrocracking was distilled under reduced pressure to obtain a lubricating oil fraction having a kinematic viscosity of 4 mm 2 Zs at 100 ° C.
  • This lubricating oil fraction was subjected to solvent dewaxing using a methyl ketone-toluene mixed solvent, the solvent / oil ratio was quadrupled, and the resulting solvent dewaxed oil had a freezing point of -29 ° C.
  • the lubricating base oil (D18) of Example 3 was obtained.
  • the dewaxing temperature at this time was 32 ° C.
  • Table 13 shows various properties and performance evaluation test results for the lubricating base oils of Examples 16 to 18.
  • Table 14 shows various properties and results of performance evaluation tests for conventional high viscosity index base oils R10 to R12.
  • the lubricant base oils of Examples 16 to 18 have a low viscosity characteristic (one 35 ° C) with a higher viscosity index than the lubricant base oils of Comparative Examples 10 to 12. It can be seen that the CCS viscosity is excellent.
  • the lubricant base oils of the examples 16 to 18 have a longer life, It turns out that it is excellent in the point of stability and the addition effect of an acid-proof agent.
  • Lubricating oil compositions having the compositions shown in Tables 15 and 16 were prepared using the agent PKG). Various properties of the resulting lubricating oil composition are shown in Tables 15 and 16. (Pour point depressant)
  • D1-1 alkenyl succinimide and boric acid modified alk succinimide
  • F1-1 Alkyldiphenylamine and molybdenum amine complexes.
  • the lubricating oil compositions of Examples 20 to 22 had a high viscosity index — a low MRV viscosity at 40 ° C and a yield stress of OPa. Viscosity characteristics are remarkably excellent, and it is extremely difficult.
  • the hydrocracking of WAX1 shown in Table 1 was carried out under the conditions of a hydrogen partial pressure of 5 MPa, an average reaction temperature of 350 ° C, and LHSVlhr " 1.
  • the hydrocracking catalyst was amorphous.
  • lubricating oil compositions having the compositions shown in Table 18 were prepared using the base oil D19 and the additives shown below.
  • a lubricating oil composition having the composition shown in Table 18 was prepared using the base oil R4 and the additives shown below.
  • A2-2 Zinc mono and dialkyl phosphates (phosphorus content: 10.0% by mass, alkyl group: primary octyl group)
  • H2—1 Package containing viscosity index improver, pour point depressant, defoamer, etc.
  • the lubricating oil compositions of Examples 23 to 25 are lubricating oil compositions that have a sufficiently long oxidation life and can sufficiently maintain the performance of the exhaust gas aftertreatment device over a long period of time. I understand.
  • the lubricating oil compositions of Comparative Examples 16 and 17 showed larger values for both the sulfated ash content and the amount of increase in oxidation as compared with the lubricating oil compositions of Examples 23 to 25.
  • the amount of sulfated ash is high, and the content of zinc dithiophosphate (A2-1) having an acid and acid prevention function is higher than in Examples 23 and 24. It can be seen that the acid value increase amount is increasing, and sufficient acid-proofing property is not obtained.
  • lubricating oil compositions having the compositions shown in Table 19 were prepared using the base oil D19 and the additives shown below.
  • lubricating oil compositions having the compositions shown in Table 20 were prepared using the base oil R4 and the additives shown below.
  • A3—1 Alkyldiphenylamine (alkyl group: butyl group or octyl group)
  • C3-1 Zinc dialkyldithiophosphate (phosphorus content: 7.2% by mass, alkyl group: secondary butyl group or secondary hexyl group mixture)
  • C3-2 Zinc dialkyl phosphate (phosphorus content: 10.0% by mass, alkyl group: primary octyl group)
  • D3- 2 boric acid-modified polybutyrsuccinimide (number average molecular weight of polybutur group: 1300, nitrogen content: 1.8% by mass, boron content: 0.77% by mass)
  • (Defoamer) G3-1 Package containing viscosity index improver, pour point depressant, defoamer, etc.
  • Tables 19 and 20 show the ratio (value obtained by dividing the kinematic viscosity at 100 ° C after 168 hours by the kinematic viscosity at 100 ° C of the new oil) and the acid value increase.
  • the table shows that the smaller the kinematic viscosity ratio and the smaller the increase in the acid value, the longer the oxidation life in the presence of NOx as used in internal combustion engines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

 本発明は、飽和分を90質量%以上含有し、且つ該飽和分に占める環状飽和分の割合が40質量%以下であり、粘度指数が110以上であり、ヨウ素価が2.5であることを特徴とする潤滑油基油を提供する。本発明の潤滑油基油によれば、粘度-温度特性及び熱・酸化安定性に優れるとともに、添加剤が配合された場合には当該添加剤の機能をより高水準で発現させることが可能となる。また、本発明の潤滑油基油は、様々な潤滑油分野で好適に用いることができ、特に、当該潤滑油基油が適用される装置におけるエネルギー損失を低減し、省エネルギー化を達成できる点で非常に有用である。

Description

明 細 書 潤滑油基油及びその製造方法並びに潤滑油組成物 技術分野
[0001] 本発明は、潤滑油基油及びその製造方法、潤滑油組成物、内燃機関用潤滑油組 成物、湿式クラッチ用潤滑油組成物、並びに、駆動伝達装置用潤滑油組成物に関 する。
背景技術
[0002] 従来、潤滑油の分野では、高度精製鉱油等の潤滑油基油に各種添加剤を配合す ることによって、潤滑油の粘度 温度特性や熱 ·酸ィ匕安定性などの特性の改善が図 られている(例えば、特許文献 1〜9を参照)。
[0003] 例えば、自動車用エンジンなどの内燃機関に使用される潤滑油には、苛酷な条件 下での長期の使用に耐え得るための熱 ·酸ィ匕安定性が求められている。そこで、従 来の内燃機関用潤滑油においては、熱'酸化安定性を確保するために、水素化分 解鉱油等の高度精製基油又は合成油などの高性能基油を用い、当該基油にジチォ リン酸亜鉛 (ZDTP)、ジチォカルノミン酸モリブデン(MoDTC)等のパーオキサイド 分解能を有する硫黄含有化合物、あるいはフエノール系又はアミン系酸化防止剤等 の無灰酸ィ匕防止剤を配合することが一般的になされている。
[0004] 一方、 4ストローク内燃機関が搭載された二輪自動車においては、内燃機関、トラン スミッション及び湿式クラッチの潤滑が同じ潤滑油を用いて行われる。そのため、使用 される潤滑油には、自動車用潤滑油として一般的に要求される性能に加えて、トラン スミッション及び湿式クラッチの潤滑に適した特性を有することが求められる。したが つて、上記二輪自動車に使用される潤滑油として四輪自動車に用いられる潤滑油を そのまま適用することは好ましくなぐ二輪自動車用 4ストローク内燃機関に好適な潤 滑油の改良研究が行われている(例えば、特許文献 7を参照)。
[0005] また、近年、炭酸ガス排出量の削減等の環境問題への対応から、自動車、建設機 械、農業機械等の省エネルギー化、すなわち省燃費化が急務となっており、変速機 、終減速機等の駆動伝達装置には省エネルギーへの寄与が強く求められている。駆 動伝達装置において省燃費化を図る手段としては、潤滑油を低粘度化して摺動面に おける撹拌抵抗や摩擦抵抗を低減する方法がある。例えば、変速機のうち自動車用 自動変速機や無段変速機はトルクコンバータ、湿式クラッチ、歯車軸受機構、オイル ポンプ、重圧制御機構などを有し、また、手動変速機や終減速機は歯車軸受機構を 有しており、これらに使用される潤滑油を低粘度化して撹拌抵抗や摩擦抵抗を低減 することにより、動力の伝達効率を向上させて省燃費化を図ることができる。しかしな がら、カゝかる潤滑油の低粘度化は、潤滑性 (耐摩耗性、焼付き防止性、疲労寿命な ど)の低下を伴うため、変速機等に不具合が生じることがある。また、低粘度化した潤 滑油の耐摩耗性等を確保するためにリン系極圧剤を添加すると、疲労寿命が著しく 悪ィ匕してしまう。また、硫黄系極圧剤は疲労寿命の改善に有効ではあるが、低粘度 の潤滑油基油にお 、ては添加剤よりも潤滑油基油の粘度の影響が大き 、ことが一般 的に知られている。そこで、省燃費化を目的として潤滑油を低粘度化するにあたり、 潤滑性を確保するための手段として、潤滑油基油に配合されるリン系極圧剤と硫黄 系極圧剤との組合せの最適化が検討されている (例えば、特許文献 8、 9を参照。 )0 特許文献 1 :特開平 4— 36391号公報
特許文献 2:特開昭 63— 223094号公報
特許文献 3:特開平 8 - 302378号公報
特許文献 4:特開平 9 - 003463号公報
特許文献 5 :特開平 4— 68082号公報
特許文献 6:特開平 4 - 120193号公報
特許文献 7:特開 2003—41283号公報
特許文献 8:特開 2004— 262979号公報
特許文献 9:特開 2004 - 262980号公報
発明の開示
発明が解決しょうとする課題
し力しながら、近時、潤滑油の要求特性は益々高くなつており、上記特許文献 1〜9 に記載されて ヽるような潤滑油基油は粘度 温度特性及び熱 ·酸化安定性の点で 必ずしも十分とは言えない。また、これら従来の潤滑油基油を用いる場合、添加剤の 配合による上記特性の改善には限界がある。
[0007] 本発明はこのような実情に鑑みてなされたものであり、その目的は、粘度 温度特 性及び熱'酸化安定性に優れるとともに、添加剤が配合された場合には当該添加剤 の機能をより高水準で発現させることが可能な潤滑油基油及びその製造方法、並び に潤滑油組成物を提供することにある。
課題を解決するための手段
[0008] 上記課題を解決するために、本発明は、飽和分を 90質量%以上含有し、且つ該飽 和分に占める環状飽和分の割合が 40質量%以下であり、粘度指数が 110以上であ り、ヨウ素価が 2. 5以下であることを特徴とする潤滑油基油(以下、便宜的に「第 1の 潤滑油基油」という。)を提供する。
[0009] 上記第 1の潤滑油基油においては、飽和分の含有量及び当該飽和分に占める環 状飽和分の割合、並びに粘度指数及びヨウ素価がそれぞれ上記条件を満たすこと によって、優れた粘度 温度特性及び熱 ·酸ィ匕安定性を達成することができるように なる。また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油 基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現 させることがでさる。
[0010] 更に、上記第 1の潤滑油基油によれば、上述した優れた粘度 温度特性により実 用温度領域における粘度抵抗や撹拌抵抗を低減することができ、また、摩擦調整剤 等が配合された場合にはその効果を最大限に発揮させることができる。したがって、 第 1の潤滑油基油は、当該潤滑油基油が適用される装置におけるエネルギー損失を 低減し、省エネルギー化を達成できる点で非常に有用である。
[0011] 上記第 1の潤滑油基油においては、環状飽和分に含まれる 1環飽和分と 2環以上 の飽和分との質量比が下記式(1)で表される条件を満たすことが好まし 、。
M /M ≤3 (1)
A B
(式中、 Mは 1環飽和分の質量を示し、 Mは 2環以上の飽和分を示す。 )
A B
[0012] また、上記第 1の潤滑油基油においては、飽和分に占める 2環以上の飽和分の割 合が 0. 1質量%以上であることが好ましい。 [0013] 更に、上記第 1の潤滑油基油は、芳香族分を 0. 1〜7質量%含有することが好まし い。
[0014] 更に、上記第 1の潤滑油基油においては、 100°Cにおける動粘度が 3. 5〜6mm2
であり、粘度指数が 130以上であり、且つ凝固点が 25°C以下であることが好ま しい。
[0015] また、本発明は、 100°Cにおける動粘度が 3. 5〜6mm2Zsであり、粘度指数が 13 0以上であり、且つ凝固点が 25°C以下であることを特徴とする潤滑油基油(以下、 便宜的に「第 2の潤滑油基油」という。)を提供する。
[0016] 上記第 2の潤滑油基油においては、 100°Cにおける動粘度、粘度指数及び凝固点 がそれぞれ上記条件を満たすことによって、優れた粘度 温度特性及び熱 ·酸化安 定性を達成することができるようになる。そして、第 2の潤滑油基油によれば、 135以 上の高粘度指数と— 35°C以下における低温粘度との両立が可能となり、特に、 -40 °Cにおける MRV粘度を著しく低下させることができるようになる。また、第 2の潤滑油 基油中に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定 的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。
[0017] 更に、上記第 2の潤滑油基油によれば、上述した優れた粘度 温度特性により実 用温度領域における粘度抵抗や撹拌抵抗を低減することができ、また、摩擦調整剤 等が配合された場合にはその効果を最大限に発揮させることができる。したがって、 第 2の潤滑油基油は、当該潤滑油基油が適用される装置におけるエネルギー損失を 低減し、省エネルギー化を達成できる点で非常に有用である。
[0018] なお、近時、潤滑油の要求特性は益々高くなつており、上記特許文献 1〜9に記載 されて!/ヽるような潤滑油基油は粘度 温度特性及び熱 ·酸化安定性の点で必ずしも 十分とは言えない。特に、 SAE10クラスの潤滑油基油あるいはこれを主成分として 含有する潤滑油組成物においては、高粘度指数と、 35°C以下での低温粘度 (CC S粘度、 MRV粘度、 BF粘度等)を高いレベルで両立することは困難であり、ポリ oc 一才レフイン系基油やエステル系基油等の合成油や低粘度鉱油系基油などの低温 粘度に優れる潤滑油基油を併用する必要がある。しかし、上記合成油は高価であり、 低粘度鉱油系基油は一般的に粘度指数が低く NOACK蒸発量が高いため、それら の潤滑油基油を配合すると、潤滑油の製造コストが増加し、また、高粘度指数化及び 低蒸発性を達成することが困難となる。また、これら従来の潤滑油基油を用いる場合 、添加剤の配合による上記特性の改善には限界がある。
[0019] 一方、上記第 1又は第 2の潤滑油基油によれば、粘度 温度特性及び熱'酸化安 定性に優れ、ポリ OC一才レフイン系基油やエステル系基油等の合成油や低粘度鉱 油系基油を用いずとも、高粘度指数と 35°C以下における低温粘度とを両立するこ とができ、特に潤滑油の 40°Cにおける MRV粘度を著しく改善できる潤滑油基油 が実現可能となる。
[0020] また、本発明は、 100°Cにおける動粘度が 3. 5〜6mm2Zsであり、粘度指数が 13 0以上である潤滑油基油の製造方法にぉ 、て、凝固点が― 25°C以下となるように脱 ろう処理することを特徴とする潤滑油基油の製造方法を提供する。
[0021] このように、潤滑油基油の凝固点が 25°C以下となるように脱ろう処理することによ つて、粘度 温度特性及び熱'酸化安定性に優れ、ポリ OC一才レフイン系基油や エステル系基油等の合成油や低粘度鉱油系基油を用いずとも、高粘度指数と 35 °C以下における低温粘度とを両立することができ、特に潤滑油の 40°Cにおける M RV粘度を著しく改善できる潤滑油基油を有効に得ることができるようになる。
[0022] また、本発明は、上記第 1又は第 2の潤滑油基油を含有し、且つ—40°Cにおける MRV粘度が 20, OOOmPa' s以下であることを特徴とする潤滑油組成物を提供する
[0023] 本発明の潤滑油組成物によれば、上記の優れた性能を有する第 1又は第 2の潤滑 油基油を含有することで、粘度 温度特性及び熱 ·酸ィ匕安定性を高 、レベルで両立 させることができ、ポリ aーォレフイン系基油やエステル系基油等の合成油や低粘 度鉱油系基油を配合せずとも、高粘度指数と 35°C以下における低温粘度とを両 立することができるようになる。その結果、 40°Cにおける MRV粘度が 20, OOOmP a ' s以下という従来の潤滑油では達成が困難であった低温性能が有効に実現可能と なる。
[0024] また、本発明は、上記第 1又は第 2の潤滑油基油と、組成物全量を基準として、リン 元素換算で 0. 02-0. 08質量%のリン系摩耗防止剤と、 0. 5〜3質量%の無灰酸 化防止剤と、 3〜12質量%の無灰分散剤とを含有することを特徴とする内燃機関用 潤滑油組成物 (以下、便宜的に「第 1の内燃機関用潤滑油組成物」という。)を提供 する。
[0025] 上記第 1の内燃機関用潤滑油組成物に含まれる第 1又は第 2の潤滑油基油は、そ れ自体が熱'酸化安定性に優れる。更に、当該第 1又は第 2の潤滑油基油は、添カロ 剤が配合された場合に、当該添加剤を安定に溶解保持しつつその機能をより高水準 で発現させることができるものである。そして、このように優れた特性を有する潤滑油 基油に、リン系摩耗防止剤 (以下、場合により「(A—1)成分」という。)、無灰酸ィ匕防 止剤 (以下、場合により「(B—1)成分」という。)及び無灰分散剤 (以下、場合により「( C— 1)成分」という。)をそれぞれ上記範囲内となるように配合することによって、十分 に長い酸ィ匕寿命を達成することができると共に、排気ガス後処理装置の性能を長期 にわたつて十分に維持することができるようになる。
[0026] また、上記第 1の内燃機関用組成物に含まれる第 1又は第 2の潤滑油基油は、それ 自体が粘度 温度特性及び摩擦特性に優れている。更に、第 1又は第 2の潤滑油 基油は、上述のように添加剤の溶解性及び効き目の点で優れており、摩擦調整剤が 配合された場合には摩擦低減効果を高水準で得ることができるものである。したがつ て、このように優れた潤滑油基油を含む第 1の内燃機関用潤滑油組成物によれば、 摺動部における摩擦抵抗や撹拌抵抗などに起因するエネルギー損失を低減し、十 分な省エネルギー化を図ることができる。
[0027] 更に、従来の潤滑油基油の場合は低温粘度特性の改善と揮発防止性の確保との 両立が困難であつたが、本発明にかかる潤滑油基油によれば低温粘度特性と揮発 防止性との双方を高水準でバランスよく達成することができる。したがって、本発明の 内燃機関用潤滑油組成物は、酸ィ匕寿命の向上、排気ガス後処理装置の性能の維持 及び省エネルギー化に加えて、低温時始動性の改善の点でも有用である。
[0028] なお、内燃機関を搭載する車両には、排気ガス中の硫黄酸化物やパティキュレート マター等の有害物質を净化 ·捕集する目的で、三元触媒やパティキュレートフィルタ 一等の排ガス後処理装置が取り付けられているが、従来の潤滑油を用いた場合には 、その一部が燃焼室に入り、その燃焼物が排気ガスに混入して排気ガス後処理装置 の性能を低下させることがある。特に、アルキルジチォリン酸亜鉛は、リン及び亜鉛を 含む化合物であるため、リン分が三元触媒を被毒させ、また、亜鉛分が硫酸灰分とな つてフィルターを閉塞させるという負の効果も持っている。また、排気ガス後処理装置 の性能低下を抑制する手段として、内燃機関用潤滑油におけるリン系摩耗防止剤の 配合量を低減する方法が考えられる。しかし、従来の潤滑油において、アルキルジチ ォリン酸亜鉛のように酸化防止剤としての機能を併せ持つ添加剤を減量すると、潤滑 油の酸ィ匕寿命の低下により更油期間が短縮され、廃油量が増大するという地球環境 保全の点力 望ましくない問題が生じる。
[0029] 上記第 1の内燃機関用潤滑油糸且成物は、上記のように優れた性能を有するため、 排気ガス後処理装置が搭載された車両の内燃機関の潤滑油として好適に使用され る。ここで、本発明の内燃機関用潤滑油組成物の硫酸灰分が 1. 2質量%以下である と、排気ガス後処理装置の性能をより長期にわたって維持することができるため好ま しい。
[0030] また、本発明は、上記第 1又は第 2の潤滑油基油と、硫黄を構成元素として含まな V、無灰酸化防止剤と、硫黄を構成元素として含む無灰酸化防止剤及び有機モリブ デン化合物力 選ばれる少なくとも 1種とを含有することを特徴とする内燃機関用潤 滑油組成物 (以下、便宜的に「第 2の内燃機関用潤滑油組成物」という。)を提供する
[0031] 上記第 2の内燃機関用潤滑油組成物に含まれる第 1又は第 2の潤滑油基油は、そ れ自体が熱 ·酸化安定性及び揮発防止性に優れる。更に、第 1又は第 2の潤滑油基 油は、添加剤が配合された場合に、当該添加剤を安定に溶解保持しつつその機能 をより高水準で発現させることができるものである。そして、このように優れた特性を有 する潤滑油基油に、硫黄を構成元素として含まない無灰酸ィ匕防止剤 (以下、場合に より「 (A— 2)成分」と 、う)と、硫黄を構成元素として含む無灰酸化防止剤及び有機 モリブデンィ匕合物から選ばれる少なくとも 1種 (以下、場合により「(B— 2)成分」と 、う )との双方を含有せしめることで、(A— 2)、(B— 2)成分の相乗作用による熱'酸ィ匕 安定性の向上効果を最大限に発揮させることができるようになる。したがって、第 2の 内燃機関用潤滑油糸且成物によって、十分なロングドレインィ匕を達成することが可能と なる。
[0032] また、上記第 2の内燃機関用組成物に含まれる第 1又は第 2の潤滑油基油は、それ 自体が粘度 温度特性及び摩擦特性に優れている。更に、第 1又は第 2の潤滑油 基油は、上述のように添加剤の溶解性及び効き目の点で優れており、摩擦調整剤が 配合された場合には摩擦低減効果を高水準で得ることができるものである。したがつ て、このように優れた潤滑油基油を含む第 2の内燃機関用潤滑油組成物によれば、 摺動部における摩擦抵抗や撹拌抵抗などに起因するエネルギー損失を低減し、十 分な省エネルギー化を図ることができる。
[0033] 更に、従来の潤滑油基油の場合は低温粘度特性の改善と揮発防止性の確保との 両立が困難であつたが、第 1又は第 2の潤滑油基油によれば低温粘度特性と揮発防 止性との双方を高水準でバランスよく達成することができる。したがって、第 2の内燃 機関用潤滑油組成物は、内燃機関のロングドレインィ匕及び省エネルギー化に加えて 、低温時始動性の改善の点でも有用である。
[0034] また、上記第 2の内燃機関用潤滑油糸且成物において、第 1又は第 2の潤滑油基油 は、芳香族分を 0. 1〜5質量%含有することが好ましい。
[0035] また、本発明は、上記第 1又は第 2の潤滑油基油と、組成物全量を基準として、
0. 5〜3質量%の無灰酸ィ匕防止剤と、 3〜12質量%の無灰分散剤とを含有すること を特徴とする湿式クラッチ用潤滑油組成物を提供する。
[0036] 本発明の湿式クラッチ用潤滑油組成物に含まれる第 1又は第 2の潤滑油基油は、 それ自体が熱 ·酸化安定性、粘度 温度特性及び摩擦特性に優れる。更に、当該 潤滑油基油は、添加剤が配合された場合に、当該添加剤を安定に溶解保持しつつ その機能をより高水準で発現させることができるものである。そして、このように優れた 特性を有する第 1又は第 2の潤滑油基油に、無灰酸化防止剤 (以下、場合により「(A —3)成分」という。)及び無灰分散剤 (以下、場合により「(B— 3)成分」という。)をそ れぞれ上記範囲内となるように配合することによって、二輪自動車用 4ストローク内燃 機関に使用した場合であっても、劣化によるスラッジゃワニス等の不溶解分の発生及 び当該不溶分による湿式クラッチの目詰まりを抑制し、湿式クラッチの摩擦特性及び 動力伝達性能を長期にわたって十分に維持することが可能となる。 [0037] なお、従来の潤滑油の場合、潤滑油が窒素酸化物等の燃焼ガスと接触するなど潤 滑油の使用条件が非常に厳しい二輪自動車用 4ストローク内燃機関においては、潤 滑油の劣化によるワニスゃスラッジ等の不溶解分の発生を十分に抑制することができ ず、熱'酸化安定性が不十分となる。潤滑油の劣化により不溶解分が発生すると、湿 式クラッチの摩擦材として一般的に使用される多孔質材料の空孔を目詰まりさせ、摩 擦特性の悪化や湿式クラッチでの動力伝達性能の低下を引き起こすおそれがある。
[0038] また、本発明は、上記第 1又は第 2の潤滑油基油と、ポリ (メタ)アタリレート系粘度指 数向上剤と、リン含有化合物とを含有することを特徴とする駆動伝達装置用潤滑油 組成物を提供する。
[0039] 本発明の駆動伝達装置用潤滑油組成物に含まれる第 1又は第 2の潤滑油基油は、 粘度グレードが同程度である従来の潤滑油基油と比較して、粘度 温度特性、熱 · 酸化安定性、更には摩擦特性に優れる。更に、第 1又は第 2の潤滑油基油は、添カロ 剤が配合された場合に、当該添加剤を安定に溶解保持しつつその機能をより高水準 で発現させることができるものである。そして、このように優れた特性を有する潤滑油 基油に、ポリ (メタ)アタリレート系粘度指数向上剤 (以下、場合により「(A— 4)成分」と V、う)とリン含有化合物 (以下、場合により「 (B— 4)成分」と ヽぅ)とを含有せしめること によって、低粘度化した場合であっても、これらの相乗作用による耐摩耗性、摩擦特 性、焼付き防止性及び疲労寿命の向上効果、更にはせん断安定性の向上効果を最 大限に発揮させることができる。したがって、本発明の駆動伝達装置用潤滑油組成 物によって、駆動伝達装置の省燃費性と耐久性とを両立することが可能となる。
[0040] 更に、従来の潤滑油基油の場合は低温粘度特性の改善と揮発防止性の確保との 両立が困難であつたが、本発明にかかる潤滑油基油によれば低温粘度特性と揮発 防止性との双方を高水準でバランスよく達成することができる。したがって、本発明の 駆動装置用潤滑油組成物は、駆動伝達装置の省燃費化と耐久性との両立に加えて 、低温時始動性の改善の点でも有用である。
[0041] また、本発明の駆動伝達用潤滑油糸且成物に含まれる第 1又は第 2の潤滑油基油に おいては、飽和分に占める 2環以上の飽和分の割合が 3質量%以上であることが好 ましい。 [0042] また、本発明の駆動伝達用潤滑油糸且成物において、第 1又は第 2の潤滑油基油は 、芳香族分を 0. 1〜5質量%含有することが好ましい。
発明の効果
[0043] 本発明によれば、粘度 温度特性及び熱'酸化安定性に優れるとともに、添加剤 が配合された場合には当該添加剤の機能をより高水準で発現させることが可能な潤 滑油基油が提供される。本発明の潤滑油基油は、様々な潤滑油分野で好適に用い ることができ、特に、当該潤滑油基油が適用される装置におけるエネルギー損失を低 減し、省エネルギー化を達成できる点で非常に有用である。
[0044] また、本発明によれば、粘度—温度特性及び熱 ·酸ィ匕安定性を高いレベルで両立 し、ポリ aーォレフイン系基油やエステル系基油等の合成油や低粘度鉱油系基油 を用いずとも、高粘度指数と— 35°C以下における低温粘度とを両立することができ、 特に潤滑油の 40°Cにおける MRV粘度を著しく改善することが可能な潤滑油基油 及び潤滑油組成物が提供される。また、本発明の潤滑油基油の製造方法によれば、 上述のように優れた性能を有する本発明の潤滑油基油を有効に得ることができるよう になる。
[0045] また、本発明によれば、酸化寿命が十分に長ぐ且つ排気ガス後処理装置の性能 を長期にわたって十分に維持することが可能な内燃機関用潤滑油組成物が実現さ れる。
[0046] また、本発明によれば、熱 ·酸化安定性あるいは更に粘度 温度特性、摩擦特性 及び揮発防止性に優れた内燃機関用潤滑油組成物が実現される。そして、本発明 の内燃機関用潤滑油組成物を内燃機関に適用することにより、ロングドレインィ匕及び 省エネルギー化を達成することができるようになり、更には低温始動性を改善すること ができるようになる。
[0047] また、本発明によれば、二輪自動車用 4ストローク内燃機関に使用した場合であつ ても、劣化によるスラッジゃワニス等の不溶解分の発生及び当該不溶解分による湿 式クラッチの目詰まりを抑制し、湿式クラッチの摩擦特性及び動力伝達性能を長期に わたって十分に維持することが可能な湿式クラッチ用潤滑油組成物が提供される。
[0048] また、本発明によれば、低粘度化した場合であっても、耐摩耗性、焼付き防止性及 び疲労寿命を長期にわたって高水準で達成することが可能な駆動伝達装置用潤滑 油組成物が実現される。そして、本発明の駆動伝達装置用潤滑油組成物を用いるこ とによって、駆動伝達装置の省燃費性と耐久性とを両立することができ、更には低温 時始動性を改善することができるようになる。
発明を実施するための最良の形態
[0049] 以下、本発明の好適な実施形態について詳細に説明する。
[0050] (第 1実施形態)
本発明の第 1実施形態に係る潤滑油基油は、飽和分を 90質量%以上含有し、且 っ該飽和分に占める環状飽和分の割合が 40質量%以下であり、粘度指数が 110以 上であり、ヨウ素価が 2. 5以下であることを特徴とする。
[0051] 第 1実施形態に係る潤滑油基油は、飽和分の含有量及び当該飽和分に占める環 状飽和分の割合、並びに粘度指数及びヨウ素価が上記条件を満たすものであれば 特に制限されない。具体的には、原油を常圧蒸留及び Z又は減圧蒸留して得られた 潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素 化精製、硫酸洗浄、白土処理等の精製処理のうちの 1種を単独で又は 2種以上を組 み合わせて精製したパラフィン系鉱油、あるいはノルマルパラフィン系基油、イソパラ フィン系基油などのうち、飽和分の含有量及び当該飽和分に占める環状飽和分の割 合、並びに粘度指数及びヨウ素価が上記条件を満たすものが挙げられる。これらの 潤滑油基油は、 1種を単独で用いてもよぐまた、 2種以上を組み合わせて用いてもよ い。
[0052] 第 1実施形態に係る潤滑油基油の好ま 、例としては、以下に示す基油(1)〜(8) を原料とし、この原料油及び Z又はこの原料油から回収された潤滑油留分を、所定 の精製方法によって精製し、潤滑油留分を回収することによって得られる基油を挙げ ることがでさる。
(1)パラフィン基系原油及び Z又は混合基系原油の常圧蒸留による留出油
(2)パラフィン基系原油及び Z又は混合基系原油の常圧蒸留残渣油の減圧蒸留に よる留出油 (WVGO)
(3)潤滑油脱ろう工程により得られるワックス (スラックワックス等)及び Z又はガストウリ キッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス、 GTLワックス等)
(4)基油(1)〜(3)力 選ばれる 1種又は 2種以上の混合油及び Z又は当該混合油 のマイルドハイド口クラッキング処理油
(5)基油(1)〜 (4)から選ばれる 2種以上の混合油
(6)基油(1)、(2)、(3)、 (4)又は(5)の脱れき油 (DAO)
(7)基油(6)のマイルドハイド口クラッキング処理油(MHC)
(8)基油(1)〜(7)力 選ばれる 2種以上の混合油。
[0053] なお、上記所定の精製方法としては、水素化分解、水素化仕上げなどの水素化精 製;フルフラール溶剤抽出などの溶剤精製;溶剤脱ろうや接触脱ろうなどの脱ろう;酸 性白土や活性白土などによる白土精製;硫酸洗浄、苛性ソーダ洗浄などの薬品 (酸 又はアルカリ)洗浄などが好ましい。本発明では、これらの精製方法のうちの 1種を単 独で行ってもよぐ 2種以上を組み合わせて行ってもよい。また、 2種以上の精製方法 を組み合わせる場合、その順序は特に制限されず、適宜選定することができる。
[0054] 更に、第 1実施形態に係る潤滑油基油としては、上記基油(1)〜(8)から選ばれる 基油又は当該基油から回収された潤滑油留分について所定の処理を行うことにより 得られる下記基油(9)又は(10)が特に好ま 、。
(9)上記基油(1)〜(8)から選ばれる基油又は当該基油から回収された潤滑油留分 を水素化分解し、その生成物又はその生成物から蒸留等により回収される潤滑油留 分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理 をした後に蒸留することによって得られる水素化分解鉱油
(10)上記基油(1)〜(8)力も選ばれる基油又は当該基油から回収された潤滑油留 分を水素化異性化し、その生成物又はその生成物力 蒸留等により回収される潤滑 油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または、当該脱ろ う処理をしたあとに蒸留することによって得られる水素化異性化鉱油。
[0055] また、上記(9)又は(10)の潤滑油基油を得るに際して、好都合なステップで、必要 に応じて溶剤精製処理及び Z又は水素化仕上げ処理工程を更に設けてもよい。
[0056] また、上記水素化分解'水素化異性ィ匕に使用される触媒は特に制限されないが、 分解活性を有する複合酸化物(例えば、シリカアルミナ、アルミナポリア、シリカジルコ ユアなど)又は当該複合酸ィ匕物の 1種類以上を組み合わせてバインダーで結着させ たものを担体とし、水素化能を有する金属 (例えば周期律表第 Via族の金属や第 VII I族の金属などの 1種類以上)を担持させた水素化分解触媒、あるいはゼォライト (例 えば ZSM— 5、ゼォライトベータ、 SAPO— 11など)を含む担体に第 VIII族の金属 のうち少なくとも 1種類以上を含む水素化能を有する金属を担持させた水素化異性 化触媒が好ましく使用される。水素化分解触媒及び水素化異性化触媒は、積層又 は混合などにより組み合わせて用いてもょ 、。
[0057] 水素化分解'水素化異性ィ匕の際の反応条件は特に制限されないが、水素分圧 0. l〜20MPa、平均反応温度 150〜450°C、 LHSVO. 1〜3. Ohr— 1、水素 Z油比 5 0〜20000scfZbとすることが好まし!/、。
[0058] 第 1実施形態に係る潤滑油基油の製造方法の好ましい例としては、以下に示す製 造方法 Aが挙げられる。
[0059] すなわち、本発明にかかる製造方法 Aは、
NH脱着温度依存性評価において NHの全脱着量に対する 300〜800°Cでの N
3 3
Hの脱着量の分率が 80%以下である担体に、周期律表第 Via族金属のうち少なくと
3
も 1種類と、第 VIII族金属のうち少なくとも 1種類とが担持された水素化分解触媒を準 備する第 1工程と、
水素化分解触媒の存在下、スラックワックスを 50容量%以上含む原料油を、水素 分圧 0. l〜14MPa、平均反応温度 230〜430°C、 LHSVO. 3〜3.
Figure imgf000014_0001
水素油 比 50〜14000scfZbで水素化分解する第 2工程と、
第 2工程で得られた分解生成油を蒸留分離して潤滑油留分を得る第 3工程と、 第 3工程で得られた潤滑油留分を脱ろう処理する第 4工程と
を備える。
[0060] 以下、上記製造方法 Aについて詳述する。
[0061] (原料油)
上記製造方法 Aにお 、ては、スラックワックスを 50容量%以上含有する原料油が用 いられる。なお、本発明でいう「スラックワックスを 50容量%以上含有する原料油」と は、スラックワックスのみ力 なる原料油と、スラックワックスと他の原料油との混合油で あってスラックワックスを 50容量%以上含有する原料油との双方が包含される。
[0062] スラックワックスは、パラフィン系潤滑油留分から潤滑油基油を製造する際、溶剤脱 ろう工程で副生するワックス含有成分であり、本発明にお!/ヽては該ワックス含有成分 をさらに脱油処理したものもスラックワックスに包含される。スラックワックスの主成分は n—パラフィン及び側鎖の少ない分岐パラフィン (イソパラフィン)であり、ナフテン分 や芳香族分は少ない。原料油の調製に使用するスラックワックスの動粘度は、 目的と する潤滑油基油の動粘度に応じて適宜選定することができるが、第 1実施形態に係 る潤滑油基油として低粘度基油を製造するには、 100°Cにおける動粘度が 2〜25m m2Zs程度、好ましくは 2. 5〜20mm2Zs程度、より好ましくは 3〜15mm2Zs程度 の、比較的低粘度のスラックワックスが望ましい。また、スラックワックスのその他の性 状も任意であるが、融点は、好ましくは 35〜80°C、より好ましくは 45〜70°C、さらに 好ましくは 50〜60°Cである。また、スラックワックスの油分は、好ましくは質量%以下 、より好ましくは 50質量%以下、さらに好ましくは 25質量%以下、特に好ましくは 10 質量%以下であり、また、好ましくは 0. 5質量%以上、より好ましくは 1質量%以上で ある。また、スラックワックスの硫黄分は、好ましくは 1質量0 /0以下、より好ましくは 0. 5 質量%以下であり、また、好ましくは 0. 001質量%以上である。
[0063] ここで、十分に脱油処理されたスラックワックス(以下、「スラックワックス A」 t 、う。) の油分は、好ましくは 0. 5〜10質量0 /0、より好ましくは 1〜8質量%である。また、スラ ックワックス Aの硫黄分は、好ましくは 0. 001〜0. 2質量0 /0、より好ましくは 0. 01〜0 . 15質量%、さらに好ましくは 0. 05-0. 12質量%である。一方、脱油処理されない 力 あるいは脱油処理が不十分であるスラックワックス(以下、「スラックワックス B」とい う。)の油分は、好ましくは 10〜60質量%、より好ましくは 12〜50質量%、さらに好ま しくは 15〜25質量%である。また、スラックワックス Bの硫黄分は、好ましくは 0. 05〜 1質量0 /0、より好ましくは 0. 1〜0. 5質量0 /0、さらに好ましくは 0. 15〜0. 25質量% である。なお、これらスラックワックス A、 Bは、水素化分解 Z異性化触媒の種類ゃ特 性に応じて、脱硫処理が施されたものであってもよぐその場合の硫黄分は、好ましく は 0. 01質量%以下、より好ましくは 0. 001質量%以下である。 [0064] 上記製造方法 Aにお ヽては、上記スラックワックス Aを原料として用いることで、飽和 分の含有量及び当該飽和分に占める環状飽和分の割合、並びに粘度指数及びヨウ 素価が上記条件を満たす第 1実施形態に係る潤滑油基油を好適に得ることができる 。また、上記製造方法 Aによれば、油分や硫黄分が比較的高ぐ比較的粗悪で安価 なスラックワックス Bを原料として用いても、粘度指数が高ぐ低温特性及び熱'酸ィ匕 安定性に優れた付加価値の高い潤滑油基油を得ることができる。
[0065] 原料油がスラックワックスと他の原料油との混合油である場合、当該他の原料油とし ては、混合油全量に占めるスラックワックスの割合が 50容量%以上であれば特に制 限されないが、原油の重質常圧蒸留留出油及び Z又は減圧蒸留留出油の混合油 が好ましく用いられる。
[0066] また、原料油がスラックワックスと他の原料油との混合油である場合、高粘度指数の 基油を製造するという観点から、混合油に占めるスラックワックスの割合は、 70容量 %以上がより好ましぐ 75容量%以上が更により好ましい。当該割合が 50容量%未 満では、得られる潤滑油基油において芳香族分、ナフテン分などの油分が増大し、 潤滑油基油の粘度指数が低下する傾向にある。
[0067] 一方、スラックワックスと併用される原油の重質常圧蒸留留出油及び Z又は減圧蒸 留留出油は、製造される潤滑油基油の粘度指数を高く保っため、 300〜570°Cの蒸 留温度範囲に 60容量%以上の留出成分を有する留分であることが好ましい。
[0068] (水素化分解触媒)
上記製造方法 Aでは、 NH脱着温度依存性評価において NHの全脱着量に対す
3 3
る 300〜800°Cでの NHの脱着量の分率が 80%以下である担体に、周期律表第 VI
3
a族金属のうち少なくとも 1種類と、第 VIII族金属のうち少なくとも 1種類とが担持され た水素化分解触媒が用いられる。
[0069] ここで、「NH脱着温度依存'性評価」とは、文献(Sawa M. , Niwa M. , Mu
3
rakami Y. , Zeolites 1990, 10, 532、 Karge H. G. , Dondur V. , J. Phys. Chem. 1990, 94, 765など)【こ紹介されて!ヽる方法であり、以下のよう【こし て行われる。先ず、触媒担体を、窒素気流下 400°C以上の温度で 30分以上前処理 し、吸着分子を除去した後に、 100°Cで NHを飽和するまで吸着させる。次いで、そ の触媒担体を 100〜800°Cまで 10°CZ分以下の昇温速度で昇温して NHを脱着さ
3 せ、脱着により分離された NHを所定温度ごとにモニターする。そして、 NHの全脱
3 3 着量(100〜800°Cでの脱着量)に対する、 300°C〜800°Cでの NHの脱着量の分
3
率を求める。
[0070] 上記製造方法 Aで用いられる触媒担体は、上記の NH脱着温度依存性評価にお
3
いて NHの全脱着量に対する 300〜800°Cでの NHの脱着量の分率が 80%以下
3 3
のものであり、好ましくは 70%以下、より好ましくは 60%以下である。かかる担体を用 Vヽて水素化分解触媒を構成することで、分解活性を支配する酸性質が十分に抑制さ れるので、水素化分解により原料油中のスラックワックス等に由来する高分子量 n— ノラフィンの分解異性ィ匕によるイソパラフィンの生成を効率よく且つ確実に行うことが でき、且つ、生成したイソパラフィンィ匕合物の過度の分解を充分に抑制することがで きるようになる。その結果、適度に枝分かれした化学構造を有する粘度指数の高い分 子を、適度な分子量範囲で十分量与えることができる。
[0071] このような担体としては、アモルファス系であり且つ酸性質を有する二元酸ィ匕物が 好ましぐ例えば、文献(「金属酸ィ匕物とその触媒作用」、清水哲郎、講談社、 1978 年)などに例示されている二元酸ィ匕物が挙げられる。
[0072] 中でも、アモルファス系複合酸化物であって Al、 B、 Ba、 Bi、 Cd、 Ga、 La、 Mg、 Si 、 Ti、 W、 Y、 Znおよび Zr力 選ばれる元素の酸ィ匕物 2種類の複合による酸性質二 元酸化物を含有することが好まし 、。これらの酸性質二元酸ィ匕物の各酸ィ匕物の比率 などを調整することにより、前記の NH吸脱着評価において、本目的に適した酸性
3
質の担体を得ることができる。なお、当該担体を構成する酸性質二元酸化物は上記 のうちの 1種類であっても 2種類以上の混合物であってもよい。また、当該担体は、上 記酸性質二元酸ィ匕物からなるものであってもよぐあるいは当該酸性質二元酸ィ匕物 をバインダーで結着させた担体であってもよ 、。
[0073] さらに、当該担体は、アモルファス系シリカ'アルミナ、アモルファス系シリカ'ジルコ 二了、アモルファス系シリカ'マグネシア、アモルファス系シリカ'チタ-ァ、ァモルファ ス系シリカ 'ポリア、アモルファス系アルミナ'ジルコユア、アモルファス系アルミナ 'マ グネシァ、アモルファス系アルミナ 'チタ-ァ、アモルファス系アルミナ'ボリア、ァモル ファス系ジルコ -ァ'マグネシア、アモルファス系ジルコ-ァ 'チタ-ァ、アモルファス 系ジルコユア.ポリア、アモルファス系マグネシア 'チタ-ァ、アモルファス系マグネシ ァ ·ボリアおよびアモルファス系チタニア ·ポリアから選ばれる少なくとも 1種類の酸性 質二元酸化物を含有することが好ま ヽ。当該担体を構成する酸性質二元酸化物は 上記のうちの 1種類であっても 2種類以上の混合物であってもよい。また、当該担体 は、上記酸性質二元酸ィ匕物力 なるものであってもよぐあるいは当該酸性質二元酸 化物をバインダーで結着させた担体であってもよい。かかるバインダーとしては、一般 に触媒調製に使用されるものであれば特に制限はないが、シリカ、アルミナ、マグネ シァ、チタ二了、ジルコユア、クレー力も選ばれるかまたはそれらの混合物などが好ま しい。
[0074] 上記製造方法 Aにお 、ては、上記の担体に、周期律表第 Via族の金属(モリブデン 、クロム、タングステンなど)のうち少なくとも 1種類と、第 VIII族の金属(ニッケル、コバ ルト、パラジウム、白金など)のうち少なくとも 1種類とが担持されて水素化分解触媒が 構成される。これらの金属は、水素化能を担うものであり、酸性質担体によってバラフ イン化合物が分解または枝分かれする反応を終結させ、適度な分子量と枝分かれ構 造を有するイソパラフィンの生成に重要な役割を担っている。
[0075] 水素化分解触媒における金属の担持量としては、第 Via族金属の担持量が金属 1 種類当たり 5〜30質量%であり、第 VIII族金属の担持量が金属 1種類当たり 0. 2〜 10質量%であることが好まし 、。
[0076] さらに、上記製造方法 Aで用いられる水素化分解触媒においては、第 Via族金属 の 1種類以上の金属としてモリブデンを 5〜30質量%の範囲で含み、また、第 VIII族 金属の 1種類以上の金属としてニッケルを 0. 2〜 10質量%の範囲で含むことがより 好ましい。
[0077] 上記の担体と第 Via族金属の 1種類以上と第 VIII属金属の 1種類以上の金属とで 構成される水素化分解触媒は、硫化した状態で水素化分解に用いることが好ましい 。硫ィ匕処理は公知の方法により行うことができる。
[0078] (水素化分解工程)
上記製造方法 Aにおいては、上記の水素化分解触媒の存在下、スラックワックスを 50容量%以上含む原料油を、水素分圧が 0. l〜14MPa、好ましくは l〜14MPa、 より好ましくは 2〜7MPa;平均反応温度が 230〜430°C、好ましくは 330〜400°C、 ょり好ましくは350〜390。。;1^3¥カ 0. 3〜3. Ohr_1、好ましくは 0. 5〜2. Ohr"1 ; 水素油比が 50〜14000scfZb、好ましくは 100〜5000scfZbで水素化分解する。
[0079] 力かる水素化分解工程においては、原料油中のスラックワックスに由来する n—パ ラフィンを分解する過程でイソパラフィンへの異性ィ匕を進行させることにより、流動点 が低ぐかつ粘度指数の高いイソパラフィン成分を生ぜしめるのであるが、同時に、原 料油に含まれている高粘度指数化の阻害因子である芳香族化合物を単環芳香族化 合物、ナフテンィ匕合物及びパラフィン化合物に分解し、また、高粘度指数化の阻害 因子である多環ナフテンィ匕合物を単環ナフテンィ匕合物やパラフィンィ匕合物に分解す ることができる。なお、高粘度指数ィ匕の点力 は、原料油中に高沸点で粘度指数の 低 、ィ匕合物が少な 、方が好ま 、。
[0080] また、反応の進行度合!/、を評価する分解率を下記式:
(分解率 (容量%) ) = 100—(生成物中の沸点が 360°C以上の留分の割合 (容量% ) )
のように定義すると、分解率は 3〜90容量%であることが好ましい。分解率が 3容量 %未満では、原料油中に含まれる流動点の高 、高分子量 n—パラフィンの分解異性 化によるイソパラフィンの生成や、粘度指数の劣る芳香族分や多環ナフテン分の水 素化分解が不十分となり、また、分解率が 90容量%を超えると潤滑油留分の収率が 低くなり、それぞれ好ましくない。
[0081] (蒸留分離工程)
次いで、上記の水素化分解工程により得られる分解生成油から潤滑油留分を蒸留 分離する。この際、軽質分として燃料油留分も得られる場合がある。
[0082] 燃料油留分は脱硫、脱窒素が十分に行われ、また、芳香族の水素化も十分に行わ れた結果得られる留分である。このうち、ナフサ留分はイソパラフィン分が多ぐ灯油 留分は煙点が高ぐまた、軽油留分はセタン価が高い等、燃料油としていずれも高品 質である。
[0083] 一方、潤滑油留分における水素化分解が不十分である場合には、その一部を再度 水素化分解工程に供してもよい。また、所望の動粘度の潤滑油留分を得るため、潤 滑油留分を更に減圧蒸留してもよい。なお、この減圧蒸留分離は次に示す脱ろう処 理後に行ってもよい。
[0084] 蒸発分離工程にぉ ヽて、水素化分解工程で得られる分解生成油を減圧蒸留する ことにより、 70Pale、 SAE10、 SAE20と呼ばれる潤滑油基油を好適に得ることがで きる。
[0085] 原料油としてより低粘度のスラックワックスを使用した系は、 70Paleや SAE10留分 を多く生成するのに適しており、原料油として上記範囲で高粘度のスラックワックスを 使用した系は SAE20を多く生成するのに適している。しかし、高粘度のスラックヮック スを用いても、分解反応の進行程度によっては 70Pale、 SAE10を相当量生成する 条件を選ぶこともできる。
[0086] (脱ろう工程)
上記の蒸留分離工程にお!、て、分解生成油から分留した潤滑油留分は流動点が 高いので、所望の流動点を有する潤滑油基油を得るために脱ろうする。脱ろう処理は 溶剤脱ろう法又は接触脱ろう法などの通常の方法で行うことができる。このうち、溶剤 脱ろう法は一般に MEK、トルエンの混合溶剤が用いられる力 ベンゼン、アセトン、 MIBK等の溶剤を用いてもよい。脱ろう油の流動点を 10°C以下にするために溶剤 Z油比 1〜6倍、ろ過温度ー5〜一 45°C、好ましくは 10〜一 40°Cの条件で行うこと が好ましい。なお、本発明の第 1実施形態又は後述する第 2実施形態の潤滑油基油 において、 SAE10クラスの留分の脱ろう油の凝固点を— 25°C以下とするためには、 溶剤 Z油比を 1〜6倍とすることが好ましぐまた、ろ過温度を一 25°C以下とすること が好ましぐ 26〜一 45°Cとすることがより好ましぐ 27〜一 40°Cとすることがさら に好ましぐ 28〜一 35°Cとすることが特に好ましい。なお、ここで除去されるろう分 は、スラックワックスとして、水素化分解工程に再び供することができる。
[0087] 上記製造方法にお!、ては、脱ろう処理に溶剤精製処理及び Z又は水素化精製処 理を付加してもよ!ヽ。これらの付加する処理は潤滑油基油の紫外線安定性や酸化安 定性を向上させるために行うもので、通常の潤滑油精製工程で行われて ヽる方法で 行うことができる。 [0088] 溶剤精製の際には、溶剤として一般にフルフラール、フエノール、 N—メチルピロリ ドン等を使用し、潤滑油留分中に残存している少量の芳香族化合物、特に多環芳香 族化合物を除去する。
[0089] また、水素化精製はォレフインィ匕合物や芳香族化合物を水素化するために行うもの で、特に触媒を限定するものではないが、モリブデン等の第 Via族金属のうち少なく とも 1種類と、コノ レト、ニッケル等の第 VIII族金属のうち、少なくとも 1種類を担持し たアルミナ触媒を用いて、反応圧力(水素分圧) 7〜16MPa、平均反応温度 300〜3 90°C、 LHSVO. 5〜4. Ohr_1の条件下で行うことができる。
[0090] また、第 1実施形態に係る潤滑油基油の製造方法の好ましい例としては、以下に示 す製造方法 Bが挙げられる。
[0091] すなわち、本発明にかかる製造方法 Bは、
触媒の存在下、パラフィン系炭化水素を含有する原料油を水素化分解及び Z又は 水素化異性ィヒする第 5工程と、
第 5工程で得られる生成物又はその生成物力 蒸留等により回収される潤滑油留 分を脱ろう処理する第 6工程と、
を備える。
[0092] 以下、上記製造方法 Bについて詳述する。
[0093] (原料油)
上記製造方法 Bにおいては、パラフィン系炭化水素を含有する原料油が用いられ る。なお、本発明でいう「パラフィン系炭化水素」とは、パラフィン分子の含有率が 70 質量%以上の炭化水素をいう。パラフィン系炭化水素の炭素数は特に制限されない 力 通常、 10〜: LOO程度のものが用いられる。また、ノラフィン系炭化水素の製法は 特に制限されず、石油系及び合成系の各種パラフィン系炭化水素を用いることがで きるが、特に好ましいパラフィン系炭化水素としては、ガストウリキッド (GTL)プロセス 等により得られる合成ワックス(フィッシャートロプシュワックス(FTワックス)、 GTLヮッ タス等)が挙げられ、中でも FTワックスが好ましい。また、合成ワックスは、炭素数が好 ましくは 15〜80、より好ましくは 20〜50のノルマルパラフィンを主成分として含むヮッ タスが好適である。 [0094] 原料油の調製に使用するパラフィン系炭化水素の動粘度は、目的とする潤滑油基 油の動粘度に応じて適宜選定することができるが、第 1実施形態に係る潤滑油基油 として低粘度基油を製造するには、 100°Cにおける動粘度が 2〜25mm2Zs程度、 好ましくは 2. 5〜20mm2Zs程度、より好ましくは 3〜15mm2Zs程度の、比較的低 粘度のパラフィン系炭化水素が望ましい。また、パラフィン系炭化水素のその他の性 状も任意であるが、パラフィン系炭化水素が FTワックス等の合成ワックスである場合、 その融点は、好ましくは 35〜80°C、より好ましくは 50〜80°C、さらに好ましくは 60〜 80°Cである。また、合成ワックスの油分は、好ましくは 10質量%以下、より好ましくは 5質量%以下、さらに好ましくは 2質量%以下である。また、合成ワックスの硫黄分は、 好ましくは 0. 01質量%以下、より好ましくは 0. 001質量%以下、さらに好ましくは 0. 0001質量%以下である。
[0095] 原料油が上記合成ワックスと他の原料油との混合油である場合、当該他の原料油と しては、混合油全量に占める合成ワックスの割合が 50容量%以上であれば特に制 限されないが、原油の重質常圧蒸留留出油及び Z又は減圧蒸留留出油の混合油 が好ましく用いられる。
[0096] また、原料油が上記合成ワックスと他の原料油との混合油である場合、高粘度指数 の基油を製造するという観点から、混合油に占める合成ワックスの割合は、 70容量% 以上がより好ましぐ 75容量%以上が更により好ましい。当該割合が 70容量%未満 では、得られる潤滑油基油において芳香族分、ナフテン分などの油分が増大し、潤 滑油基油の粘度指数が低下する傾向にある。
[0097] 一方、合成ワックスと併用される原油の重質常圧蒸留留出油及び Z又は減圧蒸留 留出油は、製造される潤滑油基油の粘度指数を高く保っため、 300〜570°Cの蒸留 温度範囲に 60容量%以上の留出成分を有する留分であることが好ましい。
[0098] (触媒)
製造方法 Bで用いられる触媒は特に制限されないが、アルミノシリケートを含有する 担体に、活性金属成分として周期律表第 VI属 b金属及び第 VIII属金属力 選ばれ る 1種以上が担持された触媒が好ましく用いられる。
[0099] アルミノシリケートとは、アルミニウム、珪素及び酸素の 3元素で構成される金属酸化 物をいう。また、本発明の効果を妨げない範囲で他の金属元素を共存させることもで きる。この場合、他の金属元素の量はその酸ィ匕物としてアルミナ及びシリカの合計量 の 5質量%以下が好ましぐ 3質量%以下がより好ましい。共存可能な金属元素として は、例えばチタン、ランタン、マンガン等を挙げることができる。
[0100] アルミノシリケートの結晶性は、全アルミニウム原子中の 4配位のアルミニウム原子 の割合で見積もることができ、この割合は27 A1固体 NMRにより測定することができる 。本発明で用いられるアルミノシリケートとしては、アルミニウム全量に対する 4配位ァ ルミ-ゥムの割合が 50質量%以上のものが好ましぐ 70質量%以上のものがより好ま しぐ 80質量%以上のものがさらに好ましい。以下、アルミニウム全量に対する 4配位 アルミニウムの割合が 50質量0 /0以上のアルミノシリケートを「結晶性アルミノシリケート 」という。
[0101] 結晶性アルミノシリケートとしては、いわゆるゼォライトを使用することができる。好ま LV、例としては、 Y型ゼオライト、超安定性 Y型ゼオライト (USY型ゼオライト)、 β型ゼ オライト、モルデナイト、 ZSM— 5などが挙げられ、中でも USYゼォライトが特に好ま しい。本発明では結晶性アルミノシリケートの 1種類を単独で用いてもよぐ 2種類以 上を組み合わせて用いてもょ 、。
[0102] 結晶性アルミノシリケートを含有する担体の調製方法としては、結晶性アルミノシリ ケート及びバインダーの混合物を成型し、その成型体を焼成する方法が挙げられる。 使用するバインダーについては特に制限はないが、アルミナ、シリカ、シリカアルミナ 、チタ-ァ、マグネシアが好ましぐ中でもアルミナが特に好ましい。バインダーの使 用割合は特に制限されないが、通常、成型体全量基準で 5〜99質量%が好ましぐ 20〜99質量%がより好ましい。結晶性アルミノシリケート及びバインダーを含有する 成型体の焼成温度 ίま、 430〜470oC力 S好ましく、 440〜460oC力 り好ましく、 445 〜455°Cがさらに好ましい。また、焼成時間は特に制限されないが、通常 1分〜 24時 間、好ましくは 10分から 20時間、より好ましくは 30分〜 10時間である。焼成は空気 雰囲気下で行ってもよいが、窒素雰囲気下などの無酸素雰囲気下で行うことが好ま しい。
[0103] また、上記担体に担持される第 VI属 b金属としてはクロム、モリブデン、タングステン 等力 第 VIII属金属としては、具体的には、コバルト、ニッケル、ロジウム、パラジウム 、イリジウム、白金等がそれぞれ挙げられる。これらの金属は、 1種類を単独で用いて もよぐあるいは 2種類以上を組み合わせて用いてもよい。 2種類以上の金属を組み 合わせる場合、白金、パラジウム等の貴金属同士を組み合わせてもよぐニッケル、コ バルト、タングステン、モリブデン等の卑金属同士を組み合わせてもよぐあるいは貴 金属と卑金属とを組み合わせてもよ 、。
[0104] また、金属の担体への担持は、金属を含む溶液への担体の含浸、イオン交換等の 情報により行うことができる。金属の担持量は、適宜選択することができるが、触媒全 量基準で、通常 0. 05〜2質量%であり、好ましくは 0. 1〜1質量%である。
[0105] (水素化分解 Ζ水素化異性化工程)
上記製造方法 Βにおいては、上記触媒の存在下、パラフィン系炭化水素を含有す る原料油を水素化分解 Ζ水素化異性化する。力かる水素化分解 Ζ水素化異性ィ匕ェ 程は、固定床反応装置を用いて行うことができる。水素化分解 Ζ水素化異性化の条 件としては、例えば温度は 250〜400°C、水素圧は 0. 5〜: LOMPa、原料油の液空 間速度(LHSV)は 0. 5〜: LOh_ 1がそれぞれ好ましい。
[0106] (蒸留分離工程)
次いで、上記の水素化分解 Z水素化異性ィヒ工程により得られる分解生成油から潤 滑油留分を蒸留分離する。なお、製造方法 Bにおける蒸留分離工程は製造方法 A における蒸留分離工程と同様であるため、ここでは重複する説明を省略する。
[0107] (脱ろう工程)
次!、で、上記の蒸留分離工程にお!、て分解生成油から分留した潤滑油留分を脱 ろうする。力かる脱ろう工程は、溶剤脱ろう又は接触脱ろう等の従来公知の脱ろうプロ セスを用いて行うことができる。ここで、分解 Z異性化生成油中に存在する沸点 370 °C以下の物質が脱ろうに先立ち高沸点物質力 分離されて 、な 、場合、分解 Z異 性ィ匕生成油の用途に応じて、全水素化異性ィ匕物を脱ろうしてもよぐあるいは沸点 37 0°C以上の留分を脱ろうしてもよ!、。
[0108] 溶剤脱ろうにお 、ては、水素化異性ィ匕物を冷却ケトン及びアセトン、並びに MEK、 MIBKなどのその他の溶剤と接触させ、さらに冷却して高流動点物質をワックス質固 体として沈殿させ、その沈殿をラフィネートである溶剤含有潤滑油留分力 分離する 。さらに、ラフィネートをスクレープトサーフィス深冷器で冷却してワックス固形分を除 去することができる。また、プロパン等の低分子量炭化水素類も脱ろうに使用可能で あるが、この場合は分解 Z異性化生成油と低分子量炭化水素とを混合し、少なくとも その一部を気化して分解 Z異性ィ匕生成油をさらに冷却してワックスを沈殿させる。ヮ ックスは、ろ過、メンブランまたは遠心分離等によりラフイネートから分離する。その後 、溶剤をラフィネートから除去し、ラフィネートを分留して、目的の潤滑油基油を得るこ とがでさる。
[0109] また、接触脱ろう (触媒脱ろう)の場合は、分解 Z異性化生成油を、適当な脱ろう触 媒の存在下、流動点を下げるのに有効な条件で水素と反応させる。接触脱ろうでは、 分解 Z異性ィ匕生成物中の高沸点物質の一部を低沸点物質へと転化させ、その低沸 点物質をより重い基油留分力 分離し、基油留分を分留し、 2種以上の潤滑油基油 を得る。低沸点物質の分離は、目的の潤滑油基油を得る前に、あるいは分留中に行 うことができる。
[oiio] 脱ろう触媒としては、分解 Z異性ィ匕生成油の流動点を低下させることが可能なもの であれば特に制限されないが、分解 z異性ィ匕生成油力 高収率で目的の潤滑油基 油を得ることができるものが好ましい。このような脱ろう触媒としては、形状選択的分子 篩 (モレキュラーシーブ)が好ましぐ具体的には、フェリエライト、モルデナイト、 ZSM —5、 ZSM— 11、 ZSM— 23、 ZSM— 35、 ZSM— 22 (シータワン又は TONとも呼 ばれる)、シリコアルミノホスフェート類(SAPO)などが挙げられる。これらのモレキユラ 一シーブは、触媒金属成分と組み合わせて使用することが好ましぐ貴金属と組み合 わせることがより好ましい。好ましい組合せとしては、例えば白金と H—モルデナイトと を複合ィ匕したものが挙げられる。
[0111] 脱ろう条件は特に制限されないが、温度は 200〜500°Cが好ましぐ水素圧は 10 〜200バール(lMPa〜20MPa)がそれぞれ好ましい。また、フロースルー反応器の 場合、 H処理速度は 0. 1〜: LOkgZlZhrが好ましぐ LHSVは 0. 1〜10_1が好まし
2
ぐ 0. 2〜2. 0h_1がより好ましい。また、脱ろうは、分解/異性化生成油に含まれる 、通常 40質量%以下、好ましくは 30質量%以下の、初留点が 350〜400°Cである物 質をこの初留点未満の沸点を有する物質へと転換するように行うことが好まし 、。
[0112] 以上、第 1実施形態に係る潤滑油基油の好ましい製造方法である製造方法 A及び 製造方法 Bについて説明したが、第 1実施形態に係る潤滑油基油の製造方法はこれ らに限定されない。例えば、上記製造方法 Aにおいて、スラックワックスの代わりに FT ワックス、 GTLワックス等の合成ワックスを用いてもよい。また、上記製造方法 Bにお いて、スラックワックス (好ましくはスラックワックス A、 B)を含有する原料油を用いても よい。さらに、製造方法 A、 Bのそれぞれにおいて、スラックワックス (好ましくはスラック ワックス A、 B)と、合成ワックス(好ましくは FTワックス、 GTLワックス)とを併用してもよ い。
[0113] なお、第 1実施形態に係る潤滑油基油を製造する際に使用される原料油が、上記 のスラックワックス及び Z又は合成ワックスと、これらのワックス以外の原料油との混合 油である場合、スラックワックス及び Z又は合成ワックスの含有量は原料油全量基準 で 50質量%以上であることが好まし 、。
[0114] また、第 1実施形態に係る潤滑油基油を製造するための原料油としては、スラックヮ ックス及び Z又は合成ワックスを含有する原料油であって、油分が好ましくは 60質量 %以下、より好ましくは 50質量%以下、さらに好ましくは 25質量%以下である原料油 が好ましい。
[0115] また、第 1実施形態に係る潤滑油基油における飽和分の含有量は、潤滑油基油全 量を基準として、前述の通り 90質量%以上であり、好ましくは 93質量%以上、より好 ましくは 95質量%以上、更に好ましくは 96質量%以上、一層好ましくは 97質量%以 上である。また、飽和分の含有量は 100質量%であってもよいが、製造コスト及び添 加剤の溶解性の点から、好ましくは 99. 9質量%以下、より好ましくは 99. 5質量%以 下、更に好ましくは 99質量%以下、特に好ましくは 98. 5質量%以下である。また、 当該飽和分に占める環状飽和分の割合は、前述の通り 40質量%以下であり、好まし くは 0. 1〜40質量%、 2〜30質量%、より好ましくは 5〜25質量%、更に好ましくは 1 0〜21質量%である。飽和分の含有量及び当該飽和分に占める環状飽和分の割合 力 Sそれぞれ上記条件を満たし、更に粘度指数及びヨウ素価がそれぞれ特定条件を 満たすことにより、粘度 温度特性及び熱'酸化安定性を達成することができ、また、 当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十 分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることが できる。更に、第 1実施形態に係る潤滑油基油によれば、潤滑油基油自体の摩擦特 性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー 性の向上を達成することができる。
[0116] なお、飽和分の含有量が 90質量%未満であると、粘度 温度特性、熱'酸化安定 性及び摩擦特性が不十分となる。また、飽和分に占める環状飽和分の割合が 40質 量%を超えると、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が 低下してしまう。更に、飽和分に占める環状飽和分の割合が 0. 1質量%未満である と、潤滑油基油に添加剤が配合された場合に、当該添加剤の溶解性が低下して潤 滑油基油中に溶解保持される当該添加剤の有効量が低下し、当該添加剤の機能を 有効に得ることができなくなる傾向にある。また、飽和分の含有量は 100質量%でも よいが、製造コストの低減及び添加剤の溶解性の向上の点から、好ましくは 99. 9質 量%以下、より好ましくは 99. 5質量%以下、更に好ましくは 99質量%以下、特に好 ましくは 98. 5質量%以下である。
[0117] 第 1実施形態に係る潤滑油基油において、その飽和分に占める環状飽和分の割 合力 0質量%以下であることは、飽和分に占める非環状飽和分が 60質量%以上で あることと等価である。ここで、非環状飽和分には直鎖パラフィン分及び分枝パラフィ ン分の双方が包含される。第 1実施形態に係る潤滑油基油に占める各パラフィン分 の割合は特に制限されないが、分枝パラフィン分の割合は、潤滑油基油全量基準で 、好ましくは 55〜99質量%、より好ましくは 57. 5〜96質量%、更に好ましくは 60〜 95質量%、一層好ましくは 70〜92質量%、特に好ましくは 80〜90質量%である。 潤滑油基油に占める分枝パラフィン分の割合が前記条件を満たすことにより、粘度 —温度特性及び熱 ·酸ィ匕安定性をより向上させることができ、また、当該潤滑油基油 に添加剤が配合された場合には、当該添加剤を十分に安定的に溶解保持しつつ、 当該添加剤の機能を一層高水準で発現させることができる。また、潤滑油基油に占 める直鎖パラフィン分の割合は、潤滑油基油全量基準で、好ましくは 1質量%以下、 より好ましくは 0. 5質量%以下、さらに好ましくは 0. 2質量%以下である。直鎖パラフ イン分の割合が上記条件を満たすことで、より低温粘度特性に優れた潤滑油基油を 得ることができる。
[0118] また、第 1実施形態に係る潤滑油基油において、飽和分に占める 1環飽和分及び 2 環以上の飽和分の含有量はそれらの合計力 0質量%以下である限りにおいて特に 制限されないが、飽和分に占める 2環以上の飽和分の割合は、 0. 1質量%以上であ ることが好ましぐ 1質量%以上であることがより好ましぐ 3質量%以上であることがさ らに好ましぐ 5質量%以上であることが一層好ましぐ 6質量%以上であることが特に 好ましぐまた、 40質量%以下であることが好ましぐ 20質量%以下であることがより 好ましぐ 15質量%以下であることが更に好ましぐ 11質量%以下であることが特に 好ましい。また、飽和分に占める 1環飽和分の割合は 0質量%であってもよいが、好 ましくは 1質量%以上、より好ましくは 2質量%以上、更に好ましくは 3質量%以上、特 に好ましくは 4質量%以上であり、また、好ましくは 40質量%以下、より好ましくは 20 質量%以下、更に好ましくは 15質量%以下、特に好ましくは 11質量%以下である。
[0119] また、第 1実施形態に係る潤滑油基油において、環状飽和分に含まれる 1環飽和 分の質量(M )と 2環以上の飽和分の質量(M )との比(M /M )は、好ましくは 20
A B A B
以下、より好ましくは 3以下、更に好ましくは 2以下、特に好ましくは 1以下である。また 、M /Mは 0であってもよいが、好ましくは 0. 1以上、より好ましくは 0. 3以上、更に
A B
好ましくは 0. 5以上である。 M /Mが上記条件を満たすことにより、粘度 温度特
A B
性と熱 ·酸化安定性とを一層高水準で両立することができる。
[0120] また、第 1実施形態に係る潤滑油基油において、環状飽和分に含まれる 1環飽和 分の質量 (M )と 2環飽和分の質量 (M )との比(M ZM )は、好ましくは 3以下、よ
A c A c
り好ましくは 1. 5以下、更に好ましくは 1. 3以下、特に好ましくは 1. 2以下である。ま た、 M /Mは 0であってもよいが、好ましくは 0. 1以上、より好ましくは 0. 3以上、更
A c
に好ましくは 0. 5以上である。 M /Mが上記条件を満たすことにより、粘度 温度
A c
特性と熱 ·酸化安定性とを一層高水準で両立することができる。
[0121] なお、本発明でいう飽和分の含有量とは、 ASTM D 2007— 93に準拠して測定 される値 (単位:質量%)を意味する。
[0122] また、本発明で 、う飽和分に占める環状飽和分、 1環飽和分、 2環以上の飽和分及 び非環状飽和分の割合とは、それぞれ ASTM D 2786— 91に準拠して測定され るナフテン分 (測定対象: 1環〜 6環ナフテン、単位:質量%)及びアルカン分 (単位: 質量%)を意味する。
[0123] また、本発明でいう潤滑油基油中の直鎖パラフィン分とは、前記 ASTM D 2007
93に記載された方法により分離 ·分取された飽和分について、以下の条件でガス クロマトグラフィ分析を行い、当該飽和分に占める直鎖パラフィン分を同定 ·定量した ときの測定値を、潤滑油基油全量を基準として換算した値を意味する。なお、同定' 定量の際には、標準試料として炭素数 5〜50の直鎖パラフィンの混合試料が用いら れ、飽和分に占める直鎖パラフィン分は、クロマトグラムの全ピーク面積値 (希釈剤に 由来するピークの面積値を除く)に対する各直鎖パラフィンに相当に相当するピーク 面積値の合計の割合として求められる。
(ガスクロマトグラフィ条件)
カラム:液相無極性カラム(長さ 25mm、内径 0. 3mm φ、液相膜厚さ 0. Ι μ τη) 昇温条件: 50°C〜400°C (昇温速度: 10°C/min)
キャリアガス:ヘリウム(線速度: 40cmZmin)
スプリット比: 90Z1
試料注入量: 0. 5 L (二硫ィ匕炭素で 20倍に希釈した試料の注入量)
[0124] また、潤滑油基油中の分枝パラフィン分の割合とは、前記飽和分に占める非環状 飽和分と前記飽和分に占める直鎖パラフィン分との差を、潤滑油基油全量を基準と して換算した値を意味する。
[0125] なお、飽和分の分離方法、あるいは環状飽和分、非環状飽和分等の組成分析の 際には、同様の結果が得られる類似の方法を使用することができる。例えば、上記の 他、 ASTM D 2425— 93【こ記載の方法、 ASTM D 2549— 91【こ記載の方法、 高速液体クロマトグラフィ (HPLC)による方法、あるいはこれらの方法を改良した方法 等を挙げることができる。
[0126] また、第 1実施形態に係る潤滑油基油における芳香族分は、飽和分の含有量及び 当該飽和分に占める環状飽和分の割合、並びに粘度指数及びヨウ素価が上記条件 を満たすものであれば特に制限されないが、潤滑油基油全量を基準として、好ましく は 7質量%以下、より好ましくは 5質量%以下、さらに好ましくは 4質量%以下、特に 好ましくは 3質量%以下であり、また、好ましくは 0. 1質量%以上、より好ましくは 0. 5 質量%以上、更に好ましくは 1質量%以上、特に好ましくは 1. 5質量%以上である。 芳香族分の含有量が上記上限値を超えると、粘度 温度特性、熱,酸化安定性及 び摩擦特性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、更に、 潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にあ る。また、第 1実施形態に係る潤滑油基油は芳香族分を含有しないものであってもよ いが、芳香族分の含有量を上記下限値以上とすることにより、添加剤の溶解性を更 に高めることができる。
[0127] なお、本発明でいう芳香族分とは、 ASTM D 2007— 93に準拠して測定された 値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、 アントラセン、フエナントレン及びこれらのアルキル化物、更にはベンゼン環が四環以 上縮合した化合物、ピリジン類、キノリン類、フエノール類、ナフトール類等のへテロ原 子を有する芳香族化合物などが含まれる。
[0128] また、第 1実施形態に係る潤滑油基油の粘度指数は、前述の通り 110以上である。
粘度指数が前記下限値未満であると、粘度 温度特性及び熱 ·酸化安定性、更に は揮発防止性が低下する傾向にある。なお、第 1実施形態に係る潤滑油基油の粘度 指数の好ましい範囲は潤滑油基油の粘度グレードによるため、その詳細については 後述する。
[0129] また、第 1実施形態に係る潤滑油基油のヨウ素価は、前述の通り 2. 5以下であり、 好ましくは 1. 5以下、より好ましくは 1以下、更に好ましくは 0. 8以下であり、また、 0. 01未満であってもよいが、それに見合うだけの効果が小さい点及び経済性との関係 から、好ましくは 0. 01以上、より好ましくは 0. 1以上、さらに好ましくは 0. 5以上であ る。潤滑油基油のヨウ素価を 2. 5以下とすることで、熱 ·酸ィ匕安定性を飛躍的に向上 させることができる。なお、本発明でいう「ヨウ素価」とは、 JIS K 0070「化学製品の 酸価、ケン化価、ヨウ素価、水酸基価及び不ケン化価」の指示薬滴定法により測定し たヨウ素価を意味する。
[0130] 第 1実施形態に係る潤滑油基油のその他の性状は、飽和分の含有量及び当該飽 和分に占める環状飽和分の割合、並びに粘度指数及びヨウ素価が上記条件を満た すものであれば特に制限されないが、第 1実施形態に係る潤滑油基油は以下に示す 各種性状を有することが好ま 、。
[0131] 第 1実施形態に係る潤滑油基油は、下記式 (2)で表される条件を満たすことが好ま しい。
1. 435≤n -0. 002 X kvl00≤l. 453 (2)
20
[式中、 n は潤滑油基油の 20°Cにおける屈折率を示し、 kvlOOは潤滑油基油の 10
20
0°Cにおける動粘度 (mm2Zs)を示す。 ]
[0132] 更に、第 1実施形態に係る潤滑油基油が飽和分を 95質量%以上含有し、且つ該 飽和分に占める環状飽和分の割合が 0. 1〜15質量%、好ましくは 1〜10質量%で ある?閏滑油である場合、 n -0. 002 X kvl00iま、好ましく ίま 1. 435〜1. 450、より
20
好ましく ίま 1. 440〜1. 449、更【こ好ましく ίま 1. 442〜1. 448、特【こ好ましく ίま 1. 4 44〜: L 447である。このような性状を有する潤滑油基油を製造するには、水素化分 解及び Ζ又は水素化異性化工程に導入する原料として、前記した合成ワックス及び Ζ又はスラックワックスを主成分とする原料を使用することが好ましぐ前記した合成ヮ ックス及び Ζ又はスラックワックス Αを主成分とする原料を使用することがより好ましい 。また、この場合、前記した潤滑油基油に占める分枝パラフィンの割合は、より好まし くは 95〜99質量%、さらに好ましくは 97〜99質量%であり、前記したスラックワックス Aを原料として得られる潤滑油基油の場合、潤滑油基油に占める分枝パラフィンの割 合は、より好ましくは 82〜98質量%、さらに好ましくは 90〜95質量%である。
[0133] また、第 1実施形態に係る潤滑油基油が飽和分を 90質量%以上含有し、且つ該飽 和分に占める環状飽和分の割合が 5〜40質量%、好ましくは 10〜25質量%である 潤滑油基油である場合、 n -0. 002 X kvl00は、 1. 435〜1. 453であり、好まし
20
くは 1. 440〜1. 452、より好ましくは 1. 442〜1. 451、更に好ましくは 1. 444〜1. 450である。このような性状を有する潤滑油基油を製造するには、水素化分解及び Z又は水素化異性ィ匕工程に導入する原料として、前記した合成ワックス及び Z又は スラックワックスを主成分とする原料を使用することが好ましぐ前記したスラックヮック ス Bを主成分とする原料を使用することがより好ましい。また、この場合、前記した潤 滑油基油に占める分枝パラフィンの割合は、より好ましくは 54〜95質量%、さらに好 ましくは 58〜92質量%、さらに好ましくは 70〜90質量%、特に好ましくは 80〜90質 量%である。
[0134] n — 0. 002 X kvl00を前記範囲内とすることにより、粘度—温度特性及び熱 ·酸
20
化安定性を一層高水準で両立することができ、また、当該潤滑油基油に添加剤が配 合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ 、当該添加剤の機能をより高水準で発現させることができる。更に、 n -0. 002 X k
20
vlOOを前記範囲内とすることにより、潤滑油基油自体の摩擦特性を改善することが でき、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成する ことができる。
[0135] なお、 n — 0. 002 X kvl00が前記上限値を超えると、粘度—温度特性、熱 ·酸ィ匕
20
安定性及び摩擦特性が不十分となり、更には、潤滑油基油に添加剤が配合された 場合に当該添加剤の効き目が低下する傾向にある。また、 n -0. 002 X kvl00力 S
20
前記下限値未満であると、潤滑油基油に添加剤が配合された場合に、当該添加剤 の溶解性が不十分となり、潤滑油基油中に溶解保持される当該添加剤の有効量が 低下するため、当該添加剤の機能を有効に得ることができなくなる傾向にある。
[0136] なお、本発明でいう 20°Cにおける屈折率(n )とは、 ASTM D1218— 92に準拠
20
して 20°Cにおいて測定される屈折率を意味する。また、本発明でいう 100°Cにおけ る動粘度(kvlOO)とは、 JIS K 2283— 1993に準拠して 100。Cにおいて測定され る動粘度を意味する。
[0137] また、第 1実施形態に係る潤滑油基油の%Cは、好ましくは 80以上、より好ましくは
P
82〜99、更【こ好ましく ίま 85〜95、一層好ましく ίま 87〜93、特【こ好ましく ίま 90〜93 である。潤滑油基油の%Cが上記下限値未満の場合、粘度 温度特性、熱'酸ィ匕
P
安定性及び摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合さ れた場合に当該添加剤の効き目が低下する傾向にある。また、潤滑油基油の%c P が上記上限値を超えると、添加剤の溶解性が低下する傾向にある。
[0138] また、第 1実施形態に係る潤滑油基油の%C は、好ましくは 3〜19、より好ましくは
N
5〜15、更に好ましくは 7〜13、特に好ましくは 7. 5〜12である。潤滑油基油の%C が上記上限値を超えると、粘度 温度特性、熱,酸化安定性及び摩擦特性が低下
N
する傾向にある。また、 %Cが上記下限値未満であると、添加剤の溶解性が低下す
N
る傾向にある。
[0139] また、第 1実施形態に係る潤滑油基油の%Cは、好ましくは 5以下、より好ましくは
A
2以下、より好ましくは 1. 5以下、更に好ましくは 1以下である。潤滑油基油の%Cが
A
上記上限値を超えると、粘度 温度特性、熱 ·酸化安定性及び摩擦特性が低下する 傾向にある。また、第 1実施形態に係る潤滑油基油の%C は 0であってもよいが、 %
A
Cを 0. 1以上とすることにより、添加剤の溶解性を更に高めることができる。
A
[0140] 更に、第 1実施形態に係る潤滑油基油における%Cと%じ との比率は、%C /%
P N P
C 力 以上であることが好ましぐ 6以上であることがより好ましぐ 7以上であることが
N
更に好ましい。 %C /%Cが上記下限値未満であると、粘度 温度特性、熱'酸化
P N
安定性及び摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合さ れた場合に当該添加剤の効き目が低下する傾向にある。また、%C /%C
P Nは、 35 以下であることが好ましぐ 20以下であることがより好ましぐ 14以下であることがさら に好ましぐ 13以下であることが特に好ましい。 %C /%Cを上記上限値以下とす
P N
ることにより、添加剤の溶解性を更に高めることができる。
[0141] なお、本発明でいう%C、%C及び%Cとは、それぞれ ASTM D 3238— 85
P N A
に準拠した方法 (n—d—M環分析)により求められる、パラフィン炭素数の全炭素数 に対する百分率、ナフテン炭素数の全炭素数に対する百分率、及び芳香族炭素数 の全炭素数に対する百分率を意味する。つまり、上述した%C、 %C及び%C の
P N A
好ましい範囲は上記方法により求められる値に基づくものであり、例えばナフテン分 を含まない潤滑油基油であっても、上記方法により求められる%C力 ^を超える値を
N
示すことがある。
[0142] また、第 1実施形態に係る潤滑油基油における硫黄分の含有量は、その原料の硫 黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成 ワックス成分のように実質的に硫黄を含まな 、原料を用いる場合には、実質的に硫 黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られ るスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用い る場合には、得られる潤滑油基油中の硫黄分は通常 100質量 ppm以上となる。第 1 実施形態に係る潤滑油基油においては、熱'酸化安定性の更なる向上及び低硫黄 化の点から、硫黄分の含有量が 100質量 ppm以下であることが好ましぐ 50質量 pp m以下であることがより好ましぐ 10質量 ppm以下であることが更に好ましぐ 5質量 p pm以下であることが特に好まし 、。
[0143] また、コスト低減の点からは、原料としてスラックワックス等を使用することが好ましく 、その場合、得られる潤滑油基油中の硫黄分は 50質量 ppm以下が好ましぐ 10質 量 ppm以下であることがより好ましい。なお、本発明でいう硫黄分とは、 JIS K 254 1— 1996に準拠して測定される硫黄分を意味する。
[0144] また、第 1実施形態に係る潤滑油基油における窒素分の含有量は、特に制限され ないが、好ましくは 5質量 ppm以下、より好ましくは 3質量 ppm以下、更に好ましくは 1 質量 ppm以下である。窒素分の含有量が 5質量 ppmを超えると、熱 ·酸化安定性が 低下する傾向にある。なお、本発明でいう窒素分とは、 JIS K 2609— 1990に準拠 して測定される窒素分を意味する。
[0145] また、第 1実施形態に係る潤滑油基油の動粘度は、飽和分の含有量及び当該飽和 分に占める環状飽和分の割合、並びに粘度指数及びヨウ素価がそれぞれ上記条件 を満たす限りにおいて特に制限されないが、その 100°Cにおける動粘度は、好ましく は 1. 5〜20mm2Zs、より好ましくは 2. 0〜: L lmm2Zsである。潤滑油基油の 100°C における動粘度が 1. 5mm2Zs未満の場合、蒸発損失の点で好ましくない。また、 1 00°Cにおける動粘度が 20mm2Zsを超える潤滑油基油を得ようとする場合、その収 率が低くなり、原料として重質ワックスを用いる場合であっても分解率を高めることが 困難となるため好ましくない。
[0146] 第 1実施形態においては、 100°Cにおける動粘度が下記の範囲にある潤滑油基油 を蒸留等により分取し、使用することが好ましい。
(I) 100°Cにおける動粘度が 1. 5mm2Zs以上 3. 5mm2Zs未満、より好ましくは 2. 0〜3. 0mm2Zsの潤滑油基油
(II) 100°Cにおける動粘度が 3. 0mm2Zs以上 4. 5mm2Zs未満、より好ましくは 3. 5〜4. lmm2Zsの潤滑油基油 (m) 100°Cにおける動粘度が 4. 5〜20mm2Zs、より好ましくは 4. 8〜: L lmm2Zs 、特に好ましくは 5. 5〜8. 0mm2Zsの潤滑油基油。
[0147] また、第 1実施形態に係る潤滑油基油の 40°Cにおける動粘度は、好ましくは 6. 0 〜80mm2Zs、より好ましくは 8. 0〜50mm2Zsである。第 1実施形態においては、 4 0°Cにおける動粘度が下記の範囲にある潤滑油留分を蒸留等により分取し、使用す ることが好ましい。
(IV) 40°Cにおける動粘度が 6. 0mm2Zs以上 12mm2Zs未満、より好ましくは 8. 0 〜 12mm2Zsの潤滑油基油
(V) 40°Cにおける動粘度が 12mm2Zs以上 28mm2Zs未満、より好ましくは 13〜 1 9mm2Zsの潤滑油基油
(VI) 40°Cにおける動粘度が 28〜50mm2Zs、より好ましくは 29〜45mm2Zs、特 に好ましくは 30〜40mm2Zsの潤滑油基油。
[0148] 上記潤滑油基油 (I)及び (IV)は、飽和分の含有量及び当該飽和分に占める環状 飽和分の割合、並びに粘度指数及びヨウ素価がそれぞれ上記条件を満たすことで、 粘度グレードが同じ従来の潤滑油基油と比較して、特に、低温粘度特性に優れ、粘 性抵抗や撹拌抵抗を著しく低減することができる。また、流動点降下剤を配合するこ とにより、 40°Cにおける BF粘度を 2000mPa' s以下とすることができる。なお、 4 0°Cにおける BF粘度とは、 JPI- 5S - 26- 99に準拠して測定された粘度を意味す る。
[0149] また、上記潤滑油基油 (Π)及び (V)は、飽和分の含有量及び当該飽和分に占める 環状飽和分の割合、並びに粘度指数及びヨウ素価がそれぞれ上記条件を満たすこ とで、粘度グレードが同じ従来の潤滑油基油と比較して、特に、低温粘度特性、揮発 防止性及び潤滑性に優れる。例えば、潤滑油基油(Π)及び (V)においては、 - 35 °Cにおける CCS粘度を 3000mPa' s以下とすることができる。
[0150] また、上記潤滑油基油 (III)及び (VI)は、飽和分の含有量及び当該飽和分に占め る環状飽和分の割合、並びに粘度指数及びヨウ素価がそれぞれ上記条件を満たす ことで、粘度グレードが同じ従来の潤滑油基油と比較して、低温粘度特性、揮発防止 性、熱.酸ィ匕安定性及び潤滑性に優れる。 [0151] 第 1実施形態に係る潤滑油基油の粘度指数は、潤滑油基油の粘度グレードにもよ る力 上記潤滑油基油(I)〜 (VI)のいずれの場合にも粘度指数を 110以上とするこ とができる。上記潤滑油(I)及び (IV)の粘度指数は、好ましくは 110〜135、より好ま しくは 115〜130、さらに好ましくは 120〜130である。また、上記潤滑油基油(Π)及 び (V)の粘度指数は、好ましくは 125〜160、より好ましくは 130〜150、更に好まし くは 135〜150である。また、上記潤滑油基油(III)及び (VI)の粘度指数は、好まし くは 135〜180、より好ましくは 140〜160である。粘度指数が前記下限値未満であ ると、粘度 温度特性及び熱 ·酸化安定性、更には揮発防止性が低下する傾向にあ る。また、粘度指数が前記上限値を超えると、低温粘度特性が低下する傾向にある。
[0152] なお、本発明でいう粘度指数とは、 JIS K 2283— 1993に準拠して測定された粘 度指数を意味する。
[0153] また、第 1実施形態に係る潤滑油基油の 20°Cにおける屈折率は、潤滑油基油の粘 度グレードにもよるが、例えば、上記潤滑油基油(I)及び (IV)の 20°Cにおける屈折 率は、好ましくは 1. 440〜1. 461、より好ましくは 1. 442〜1. 460、更に好ましくは 1. 445〜1. 459である。また、上記潤滑油基油(Π)及び (V)の 20°Cにおける屈折 率は、好ましくは 1. 450〜1. 465、より好ましくは 1. 452〜1. 463、更に好ましくは 1. 453〜1. 462である。また、上記潤滑油基油(ΠΙ)及び (VI)の 20°Cにおける屈 折率は、好ましくは 1. 455〜1. 469、より好ましくは 1. 456〜1. 468、更に好ましく は 1. 457〜1. 467である。屈折率が前記上限値を超えると、その潤滑油基油の粘 度 温度特性及び熱 ·酸化安定性、更には揮発防止性及び低温粘度特性が低下 する傾向にあり、また、当該潤滑油基油に添加剤が配合された場合に当該添加剤の 効き目が低下する傾向にある。
[0154] また、第 1実施形態に係る潤滑油基油の流動点は、潤滑油基油の粘度グレードに もよるが、例えば、上記潤滑油基油(I)及び (IV)の流動点は、好ましくは— 10°C以 下、より好ましくは— 12. 5°C以下、更に好ましくは— 15°C以下である。また、上記潤 滑油基油(Π)及び (V)の流動点は、好ましくは— 10°C以下、より好ましくは— 15°C 以下、更に好ましくは 17. 5°C以下である。また、上記潤滑油基油(ΠΙ)及び (VI) の流動点は、好ましくは—10°C以下、より好ましくは 12. 5°C以下、更に好ましくは 15°C以下である。流動点が前記上限値を超えると、その潤滑油基油を用いた潤 滑油全体の低温流動性が低下する傾向にある。なお、本発明でいう流動点とは、 JIS K 2269— 1987に準拠して測定された流動点を意味する。
[0155] また、第 1実施形態に係る潤滑油基油の— 35°Cにおける CCS粘度は、潤滑油基 油の粘度グレードにもよる力 例えば、上記潤滑油基油(I)及び (IV)の 35°Cにお ける CCS粘度は、好ましくは lOOOmPa' s以下である。また、上記潤滑油基油(Π)及 び (V)の— 35°Cにおける CCS粘度は、好ましくは 3000mPa' s以下、より好ましくは 2400mPa' s以下、更に好ましく ίま 2200mPa' s以下、特に好ましく ίま 2000mPa' s 以下である。また、上記潤滑油基油(III)及び (VI)の— 35°Cにおける CCS粘度は、 好ましく ίま 15000mPa' s以下、より好ましく ίま lOOOOmPa' s以下、更に好ましく ίま 80 OOmPa' s以下である。—35°Cにおける CCS粘度が前記上限値を超えると、その潤 滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。なお、本発明 でいう— 35°Cにおける CCS粘度とは、 JIS K 2010— 1993に準拠して測定された 粘度を意味する。
[0156] また、第 1実施形態に係る潤滑油基油の 15°Cにおける密度 、単位: gZcm3)
15
は、潤滑油基油の粘度グレードによるが、下記式(3)で表される pの値以下であるこ と、すなわち p ≤ p
15 であることが好まし!、。
p =0. 0025 X kvlOO + 0. 820 (3)
[式中、 kvlOOは潤滑油基油の 100°Cにおける動粘度 (mm2Zs)を示す。 ]
[0157] なお、 p となる場合、粘度 温度特性及び熱'酸化安定性、更には揮発防
15
止性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合さ れた場合に当該添加剤の効き目が低下する傾向にある。
[0158] 例えば、上記潤滑油基油(I)及び (IV)の p は、好ましくは 0. 825gZcm3以下、
15
より好ましくは 0. 820gZcm3以下である。また、上記潤滑油基油(Π)及び (V)の p
15 は、好ましくは 0. 835gZcm3以下、より好ましくは 0. 830gZcm3以下である。また、 上記潤滑油基油(III)及び (VI)の p は、好ましくは 0. 840gZcm3以下、より好まし
15
くは 0. 835gZcm3以下である。
[0159] なお、本発明でいう 15°Cにおける密度とは、 JIS K 2249— 1995に準拠して 15 °Cにお!/、て測定された密度を意味する。
[0160] また、第 1実施形態に係る潤滑油基油のァニリン点 (AP (°C) )は、潤滑油基油の粘 度グレードによる力 下記式 (4)で表される Aの値以上であること、すなわち AP≥A であることが好ましい。
A=4. l X kvlOO + 97 (4)
[式中、 kvlOOは潤滑油基油の 100°Cにおける動粘度 (mm2Zs)を示す。 ]
[0161] なお、 AP<Aとなる場合、粘度 温度特性及び熱'酸化安定性、更には揮発防止 性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合され た場合に当該添加剤の効き目が低下する傾向にある。
[0162] 例えば、上記潤滑油基油(I)及び (IV)の APは、好ましくは 108°C以上、より好まし くは 110°C以上、更に好ましくは 112°C以上である。また、上記潤滑油基油(Π)及び (V)の APは、好ましくは 113°C以上、より好ましくは 116°C以上、更に好ましくは 118 °C以上、特に好ましくは 120°C以上である。また、上記潤滑油基油(III)及び (VI)の APは、好ましくは 125°C以上、より好ましくは 127°C以上、更に好ましくは 128°C以 上である。なお、本発明でいうァ-リン点とは、 JIS K 2256— 1985に準拠して測 定されたァ-リン点を意味する。
[0163] また、第 1実施形態に係る潤滑油基油の NOACK蒸発量は、特に制限されないが 、例えば、上記潤滑油基油(I)及び (IV)の NOACK蒸発量は、好ましくは 20質量% 以上、より好ましくは 25質量%以上、更に好ましくは 30以上であり、また、好ましくは 50質量%以下、より好ましくは 45質量%以下、更に好ましくは 42質量%以下である 。また、上記潤滑油基油(Π)及び (V)の NOACK蒸発量は、好ましくは 6質量%以 上、より好ましくは 8質量%以上、更に好ましくは 10質量%以上であり、また、好ましく は 20質量%以下、より好ましくは 16質量%以下、更に好ましくは 15質量%以下、特 に好ましくは 14質量%以下である。また、上記潤滑油基油(ΠΙ)及び (VI)の NOAC K蒸発量は、好ましくは 1質量%以上、より好ましくは 2質量%以上であり、また、好ま しくは 8質量%以下、より好ましくは 6質量%以下、更に好ましくは 4質量%以下であ る。 NOACK蒸発量が前記下限値の場合、低温粘度特性の改善が困難となる傾向 にある。また、 NOACK蒸発量がそれぞれ前記上限値を超えると、潤滑油基油を内 燃機関用潤滑油等に用いた場合に、潤滑油の蒸発損失量が多くなり、それに伴い 触媒被毒が促進されるため好ましくない。なお、本発明でいう NO ACK蒸発量とは、 ASTM D 5800— 95に準拠して測定された蒸発損失量を意味する。
[0164] また、第 1実施形態に係る潤滑油基油の蒸留性状は、ガスクロマトグラフィ蒸留で、 初留点(IBP)力 290〜440°C、終点(FBP)が 430〜580°Cであることが好ましぐか 力る蒸留範囲にある留分力 選ばれる 1種又は 2種以上の留分を精留することにより 、上述した好ま 、粘度範囲を有する潤滑油基油(I)〜 (III)及び (IV)〜 (VI)を得る ことができる。
[0165] 例えば、上記潤滑油基油(I)及び (IV)の蒸留性状に関し、その初留点 (IBP)は、 好ましくは 260〜360。C、より好ましくは 300〜350。C、更に好ましくは310〜350で である。また、 10%留出温度 (T10)は、好ましくは 320〜400°C、より好ましくは 340 〜390°C、更に好ましくは 350〜380°Cである。また、 50%留出点(T50)は、好まし くは 350〜430。C、より好ましくは 360〜410。C、更に好ましくは 370〜400。Cである oまた、 90%留出点(T90)は、好ましくは 380〜460。C、より好ましくは 390〜450。C 、更に好ましくは 400〜440°Cである。また、終点(FBP)は、好ましくは 420〜520°C 、より好ましくは 430〜500。C、更に好ましくは 440〜480。Cである。また、 T90— T1 0は、好ましくは 50〜100°C、より好ましくは 55〜85°C、更に好ましくは 60〜70°Cで ある。また、 FBP— IBPは、好ましくは 100〜250°C、より好ましくは 110〜220°C、更 に好ましくは 120〜200°Cである。また、 T10— IBPは、好ましくは 10〜80°C、より好 ましくは 15〜60°C、更に好ましくは 20〜50°Cである。また、 FBP— T90は、好ましく は 10〜80°C、より好ましくは 15〜70°C、更に好ましくは 20〜60°Cである。
[0166] また、上記潤滑油基油 (Π)及び (V)の蒸留性状に関し、その初留点 (IBP)は、好 ましくは 300〜380。C、より好ましくは 320〜370。C、更に好ましくは 330〜360。Cで ある。また、 10%留出温度 (T10)は、好ましくは 340〜420°C、より好ましくは 350〜 410°C、更に好ましくは 360〜400°Cである。また、 50%留出点(T50)は、好ましく は 380〜460。C、より好ましくは 390〜450。C、更に好ましくは 400〜460。Cである。 また、 90%留出点(T90)は、好ましくは 440〜500°C、より好ましくは 450〜490°C、 更に好ましくは 460〜480°Cである。また、終点(FBP)は、好ましくは 460〜540°C、 より好ましくは 470〜530。C、更に好ましくは 480〜520。Cである。また、 T90— T10 は、好ましくは 50〜100°C、より好ましくは 60〜95°C、更に好ましくは 80〜90°Cであ る。また、 FBP—IBPは、好ましくは 100〜250°C、より好ましくは 120〜180°C、更に 好ましくは 130〜160°Cである。また、 T10— IBPは、好ましくは 10〜70°C、より好ま しくは 15〜60°C、更に好ましくは 20〜50°Cである。また、 FBP— T90は、好ましくは 10〜50°C、より好ましくは 20〜40°C、更に好ましくは 25〜35°Cである。
[0167] また、上記潤滑油基油 (III)及び (VI)の蒸留性状に関し、その初留点 (IBP)は、好 ましくは 320〜480。C、より好ましくは 350〜460。C、更に好ましくは 380〜440。Cで ある。また、 10%留出温度 (T10)は、好ましくは 420〜500°C、より好ましくは 430〜 480°C、更に好ましくは 440〜460°Cである。また、 50%留出点(T50)は、好ましく は 440〜520。C、より好ましくは 450〜510。C、更に好ましくは 460〜490。Cである。 また、 90%留出点(T90)は、好ましくは 470〜550°C、より好ましくは 480〜540°C、 更に好ましくは 490〜520°Cである。また、終点(FBP)は、好ましくは 500〜580°C、 より好ましくは 510〜570。C、更に好ましくは 520〜560。Cである。また、 T90— T10 は、好ましくは 50〜120°C、より好ましくは 55〜100°C、更に好ましくは 55〜90°Cで ある。また、 FBP— IBPは、好ましくは 100〜250°C、より好ましくは 110〜220°C、更 に好ましくは 115〜200°Cである。また、 T10— IBPは、好ましくは 10〜100°C、より 好ましくは 15〜90°C、更に好ましくは 20〜50°Cである。また、 FBP— T90は、好まし くは 10〜50°C、より好ましくは 20〜40°C、更に好ましくは 25〜35°Cである。
[0168] 潤滑油基油(I)〜(VI)のそれぞれにお!/、て、 IBP、 T10、 T50、 T90、 FBP、 Τ90 — Τ10、 FBP -IBP, T10— IBP、 FBP— T90を上記の好ましい範囲に設定するこ とで、低温粘度の更なる改善と、蒸発損失の更なる低減とが可能となる。なお、 T90 — T10、 FBP -IBP, T10— IBP及び FBP— T90のそれぞれについては、それらの 蒸留範囲を狭くしすぎると、潤滑油基油の収率が悪化し、経済性の点で好ましくない
[0169] なぉ、本発明でぃぅ、IBP、T10、T50、T90及びFBPとは、それぞれASTM D
2887— 97に準拠して測定される留出点を意味する。
[0170] また、第 1実施形態に係る潤滑油基油における残存金属分は、製造プロセス上余 儀なく混入する触媒や原料に含まれる金属分に由来するものであるが、かかる残存 金属分は十分除去されることが好ましい。例えば、 Al、 Mo、 Niの含有量は、それぞ れ 1質量 ppm以下であることが好ま 、。これらの金属分の含有量が上記上限値を 超えると、潤滑油基油に配合される添加剤の機能が阻害される傾向にある。
[0171] なお、本発明でいう残存金属分とは、 JPI— 5S— 38— 2003に準拠して測定される 金属分を意味する。
[0172] また、第 1実施形態に係る潤滑油基油によれば、飽和分の含有量及び当該飽和分 に占める環状飽和分の割合、並びに粘度指数及びヨウ素価がそれぞれ上記条件を 満たすことにより、優れた熱'酸化安定性を達成することができるが、その動粘度に応 じて以下に示す RBOT寿命を示すことが好ましい。例えば、上記潤滑油基油(I)及 び(IV)の RBOT寿命は、好ましくは 300min以上、より好ましくは 320min以上、更 に好ましくは 330min以上である。また、上記潤滑油基油(Π)及び (V)の RBOT寿命 は、好ましくは 350min以上、より好ましくは 370min以上、更に好ましくは 380min以 上である。また、上記潤滑油基油(III)及び (VI)の RBOT寿命は、好ましくは 400mi n以上、より好ましくは 410min以上、更に好ましくは 420min以上である。 RBOT寿 命がそれぞれ前記下限値未満の場合、潤滑油基油の粘度 温度特性及び熱'酸化 安定性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合には当 該添加剤の効き目が低下する傾向にある。
[0173] なお、本発明でいう RBOT寿命とは、潤滑油基油にフエノール系酸ィ匕防止剤(2, 6 —ジ— tert -ブチル p タレゾール; DBPC)を 0. 2質量0 /0添カ卩した組成物につい て、 JIS K 2514— 1996に準拠して測定された RBOT値を意味する。
[0174] また、第 1実施形態に係る潤滑油基油の凝固点は、潤滑油基油の粘度グレードに もよるが、第 1実施形態に係る潤滑油基油の好ましい例として、 100°Cにおける動粘 度が 3. 5〜6mm2Zsであり、粘度指数が 130以上であり、且つ凝固点が 25°C以 下である潤滑油基油を挙げることができる。この場合の凝固点は、より好ましくは 2 6°C以下、更に好ましくは— 28°C以下である。なお、 30°C程度の温度条件下にお いては、潤滑油基油の凝固点が— 25°Cを超える場合であっても十分な低温特性を 得ることができることがあるが、 35°C以下における低温粘度特性 (CCS粘度、 MR V粘度、 BF粘度)に優れる潤滑油、特に 40°Cにおける MRV粘度が大幅に改善さ れた潤滑油を実現するためには、凝固点を 25°C以下とすることが重要であり、 - 2 6°C以下とすることが好ましい。また、潤滑油基油の凝固点を低くすることで低温性能 を改善できるが、粘度指数の低下及び経済性の点から、凝固点は、好ましくは—45 °C以上、より好ましくは— 40°C以上、更に好ましくは— 35°C以上である。本発明にお いては、潤滑油基油の凝固点を— 35〜― 26°Cとすることで、高粘度指数と低温特 性とを一層高水準で両立でき、かつ経済性に優れた潤滑油基油を得ることができる ため特に好ましい。ここで、凝固点が— 25°C以下の潤滑油基油は、上記した溶剤脱 ろう法又は接触脱ろう法などの脱ろう処理を行うことにより得られる力 脱ろう処理後 の潤滑油基油の凝固点を 25°C以下とすることができるものであればいずれの脱ろ う処理方法を採用してもよい。
[0175] なお、本発明でいう凝固点とは、 JIS K 2269— 1987 (JIS法流動点)における流 動点測定間隔 (2. 5°C)を 1°Cに設定して測定された、試料の流動が観察される最低 温度よりも 1°C低い温度を意味する。なお、 JIS法流動点では 2. 5°C間隔の結果が得 られる力 この方法の測定誤差、再現精度を考慮すると、低温特性の臨界点を厳密 に制御する本発明にお 、ては妥当ではな 、。
[0176] また、第 1実施形態に係る潤滑油基油を含有する潤滑油組成物においては、 40 °Cにおける MRV粘度を、好ましくは 60000mPa' s以下、より好ましくは 30000mPa •s以下、さらに好ましくは 20000mPa' s以下、特に好ましくは 15000mPa' s以下と することができ、降伏応力も OPa (ィールドストレスなし)とすることもできる。なお、本発 明でいう 40°Cにおける MRV粘度及び降伏応力とは、それぞれ ASTM D 4684 に準拠して測定される粘度及び降伏応力を意味する。
[0177] (第 2実施形態)
本発明の第 2実施形態に係る潤滑油基油は、 100°Cにおける動粘度が 3. 5〜6m m2Zsであり、粘度指数が 130以上であり、且つ凝固点が 25°C以下であることを特 徴とする。
[0178] 第 2実施形態に係る潤滑油基油は、 100°Cにおける動粘度、粘度指数及び凝固点 が上記条件を満たすものであれば特に制限されない。具体的には、原油を常圧蒸留 及び z又は減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分 解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理のうち の 1種を単独で又は 2種以上を組み合わせて精製したパラフィン系鉱油、あるいはノ ルマルパラフィン系基油、イソパラフィン系基油などのうち、 100°Cにおける動粘度、 粘度指数及び凝固点が上記条件を満たすものが挙げられる。これらの潤滑油基油 は、 1種を単独で用いてもよぐまた、 2種以上を組み合わせて用いてもよい。
[0179] 第 2実施形態に係る潤滑油基油の好ましい例としては、上記第 1実施形態の説明 において例示された基油(1)〜(8)を原料とし、この原料油及び Z又はこの原料油 から回収された潤滑油留分を、所定の精製方法によって精製し、潤滑油留分を回収 すること〖こよって得られる基油を挙げることができる。また、特に好ましい潤滑油基油 としては、上記第 1実施形態の説明において例示された基油(9)又は(10)が挙げら れる。
[0180] また、第 2実施形態に係る潤滑油基油の製造方法、処理方法についての説明は上 記第 1実施形態の場合と同様であるため、ここでは重複する説明を省略する。第 2実 施形態に係る潤滑油基油を製造する際には、上記第 1実施形態における製造方法 A、 Bを好ましく適用することができる。
[0181] 以下、第 2実施形態に係る潤滑油基油についてさらに詳述する。
[0182] 第 2実施形態に係る潤滑油基油の 100°Cにおける動粘度は、前述の通り 3. 5〜6 mm2Zsであり、好ましくは 3. 7〜4. 5mm2Zs、より好ましくは 3. 9〜4. 2mm2Zsで ある。潤滑油基油の 100°Cにおける動粘度が 3. 5mm2Zs未満の場合、蒸発損失量 が増大し、また、 6mm2Zsを超えると 40°Cにおける低温粘度特性が大幅に悪ィ匕 する。
[0183] また、第 2実施形態に係る潤滑油基油の 40°Cにおける動粘度は特に制限されない 1S 好ましくは 12〜32mm2Zs、より好ましくは 13〜19mm2Zs、更に好ましくは 15 〜17. 5mm2Zsである。潤滑油基油の 40°Cにおける動粘度が 12mm2Zs未満の場 合、蒸発損失量が増大する傾向にあり、また、 32mm2Zsを超えると 40°Cにおける 低温粘度特性が悪化する傾向にある。
[0184] また、第 2実施形態に係る潤滑油基油の粘度指数は、前述の通り 130以上であり、 好ましくは 135以上、より好ましくは 138以上である。粘度指数が 130未満の場合、粘 度 温度特性が不十分となる。また、第 2実施形態に係る潤滑油基油の粘度指数は 、好ましくは 160以下、より好ましくは 150以下である。粘度指数が 160を超えると、低 温粘度特性が不十分となる傾向にある。
[0185] また、第 2実施形態に係る潤滑油基油の凝固点は、前述の通り 25°C以下であり、 好ましくは— 26°C以下、より好ましくは— 28°C以下である。なお、 30°C程度の温 度条件下においては、潤滑油基油の凝固点が— 25°Cを超える場合であっても十分 な低温特性を得ることができることがあるが、 - 35°C以下における低温粘度特性 (C CS粘度、 MRV粘度、 BF粘度)に優れる潤滑油、特に 40°Cにおける MRV粘度が 大幅に改善された潤滑油を実現するためには、凝固点を— 25°C以下とすることが重 要であり、—26°C以下とすることが好ましい。また、潤滑油基油の凝固点を低くするこ とで低温性能を改善できるが、粘度指数の低下及び経済性の点から、凝固点は、好 ましくは 45°C以上、より好ましくは 40°C以上、更に好ましくは 35°C以上である 。本発明においては、潤滑油基油の凝固点を— 35〜― 26°Cとすることで、高粘度指 数と低温特性とを一層高水準で両立でき、かつ経済性に優れた潤滑油基油を得るこ とができるため特に好ましい。ここで、凝固点が— 25°C以下の潤滑油基油は、上記し た溶剤脱ろう法又は接触脱ろう法などの脱ろう処理を行うことにより得られるが、脱ろう 処理後の潤滑油基油の凝固点を 25°C以下とすることができるものであればいずれ の脱ろう処理方法を採用してもよい。
[0186] 第 2実施形態によれば、例えば、潤滑油基油の— 35°Cにおける CCS粘度を、好ま しくは 2800mPa' s以下、より好ましくは 2200mPa' s以下、更に好ましくは 2000mP a ' s以下とすることができる。
[0187] また、第 2実施形態に係る潤滑油基油を含有する潤滑油組成物においては、 40 °Cにおける MRV粘度を、好ましくは 60000mPa' s以下、より好ましくは 30000mPa •s以下、さらに好ましくは 20000mPa' s以下、特に好ましくは 15000mPa' s以下と することができ、降伏応力も OPa (ィールドストレスなし)とすることもできる。
[0188] 更に、第 2実施形態に係る潤滑油基油を含有する潤滑油組成物においては、 4 0。Cにおける BF粘度を、好ましくは 20000mPa' s以下、より好ましくは 15000mPa- s以下、さらに好ましくは lOOOOmPa' s以下、特に好ましくは 8000mPa' s以下とする ことができる。
[0189] 第 2実施形態に係る潤滑油基油の、その他の各物性及び組成 (潤滑油基油におけ る飽和分の含有量、その飽和分に占める環状飽和分の割合、潤滑油基油に占める 分枝パラフィン分及び直鎖パラフィン分の割合、飽和分に占める 1環飽和分及び 2環 飽和分の含有量、飽和分に含まれる 1環飽和分の質量 (M )、 2環以上の飽和分の
A
質量 (M )、 2環飽和分の質量 (M )の比(M ZM、M ZM )、潤滑油基油に占
B C A B A C
める芳香族分の含有量、潤滑油基油のヨウ素価、前記式 (2)で表される条件、潤滑 油基油の%C、 %C 、 %C %、 C Z%C 、硫黄分の含有量、窒素分の含有量)は
P N A P N
、 100°Cにおける動粘度、粘度指数及び凝固点が上記条件を満たす限り特に制限さ れな 、が、第 1実施形態に係る潤滑油基油の項で説明した各物性及び組成とするこ とが好ましい。ここでは、重複する説明は省略する。
[0190] また、第 2実施形態に係る潤滑油基油の 20°Cにおける屈折率は、前記式(2)を満 たすため【こ ίま、好ましく ίま 1. 450〜1. 465、より好ましく ίま 1. 452〜1. 463、さら【こ 好ましくは 1. 453〜1. 462である。
[0191] また、第 2実施形態に係る潤滑油基油の流動点は、好ましくは— 20°C以下、より好 ましくは 22. 5°C以下、さらに好ましくは 25°C以下、一層好ましくは 27. 5°C以 下、特に好ましくは— 30°C以下である。流動点が前記上限値を超えると、潤滑油基 油並びに当該潤滑油基油を含有する潤滑油組成物の 35°C以下における低温粘 度特性が低下する傾向にある。
[0192] また、第 2実施形態に係る潤滑油基油の 15°Cにおける密度 、単位: gZcm3)
15
は、好ましくは 0. 835gZcm3以下、より好ましくは 0. 830gZcm3以下、更に好ましく は 0. 825gZcm3以下であり、また、好ましくは 0. 810gZcm3以上である。
[0193] また、第 2実施形態に係る潤滑油基油の NOACK蒸発量は、特に制限されないが 、好ましくは 20質量%以下、より好ましくは 16質量%以下、更に好ましくは 15質量% 以下であり、また、好ましくは 6質量%以上、より好ましくは 8質量%以上、更に好まし くは 10質量%以上である。 NOACK蒸発量が前記下限値の場合、低温粘度特性の 改善が困難となる傾向にある。また、 NOACK蒸発量がそれぞれ前記上限値を超え ると、潤滑油基油を内燃機関用潤滑油等に用いた場合に、潤滑油の蒸発損失量が 多くなり、それに伴い触媒被毒が促進されるため好ましくない。
[0194] また、第 2実施形態に係る潤滑油基油のァ-リン点 (AP (°C) )は、好ましくは 113°C 以上、より好ましくは 116°C以上、更に好ましくは 118°C以上、特に好ましくは 120°C 以上である。
[0195] また、第 2実施形態に係る潤滑油基油の蒸留性状に関し、ガスクロマトグラフィ蒸留 で、その初留点(IBP)力 好ましくは 300〜380°C、より好ましくは 320〜370°C、更 に好ましくは 330〜360°Cである。また、 10%留出温度 (T10)は、好ましくは 340〜 420。C、より好ましくは 350〜410。C、更に好ましくは 360〜400。Cである。また、 50 %留出温度 (T50)は、好ましくは 380〜460°C、より好ましくは 390〜450°C、更に 好ましくは 400〜460°Cである。また、 90%留出温度 (T90)は、好ましくは 440〜50 0°C、より好ましく ίま 450〜490°C、更に好ましく ίま 460〜480°Cである。また、終^; ( FBP) ίま、好ましく ίま 460〜540°C、より好ましく ίま 470〜530°C、更に好ましく ίま 480 〜520。Cである。また、 T90— T10は、好ましくは 50〜100。C、より好ましくは 60〜9 5°C、更に好ましくは 80〜90°Cである。また、 FBP— IBPは、好ましくは 100〜250 。C、より好ましくは 120〜180。C、更に好ましくは130〜160。。でぁる。また、 T10— I BPは、好ましくは 10〜70°C、より好ましくは 15〜60°C、更に好ましくは 20〜50°Cで ある。また、 FBP— T90は、好ましくは 10〜50°C、より好ましくは 20〜40°C、更に好 ましくは 25〜35。Cである。 IBP、 T10、 T50、 T90、 FBP、 Τ90— Τ10、 FBP -IBP 、 T10— IBP、 FBP— T90を上記の好ましい範囲に設定することで、低温粘度の更 なる改善と、蒸発損失の更なる低減とが可能となる。なお、 T90—T10、 FBP -IBP 、 T10— IBP及び FBP— T90のそれぞれについては、それらの蒸留範囲を狭くしす ぎると、潤滑油基油の収率が悪化し、経済性の点で好ましくない。
[0196] また、第 2実施形態に係る潤滑油基油によれば、 100°Cにおける動粘度、粘度指 数及び凝固点が上記条件を満たすことにより、優れた熱'酸化安定性を達成すること ができる力 その RBOT寿命は、好ましくは 350min以上、より好ましくは 370min以 上、更に好ましくは 380min以上である。 RBOT寿命がそれぞれ前記下限値未満の 場合、潤滑油基油の粘度 温度特性及び熱'酸ィヒ安定性が低下する傾向にあり、 更に、潤滑油基油に添加剤が配合された場合には当該添加剤の効き目が低下する 傾向にある。
[0197] 第 2実施形態に係る潤滑油組成物は、 40°C以下における BF粘度や MRV粘度 を大幅に改善できる点から、上記の添加剤の中でも流動点降下剤及び Z又は粘度 指数向上剤を含有することが好ましい。また、流動点降下剤及び Z又は粘度指数向 上剤を含有する潤滑油組成物の流動点は、—60〜― 35°Cとすることが好ましぐ - 50〜一 40°Cとすることがより好ましい。
[0198] 第 1実施形態及び第 2実施形態に係る潤滑油基油は、粘度 温度特性及び熱 ·酸 化安定性に優れるとともに、潤滑油基油自体の摩擦特性が改善されたものであり、摩 擦低減効果の向上、ひいては省エネルギー性の向上を達成することができるもので ある。また、第 1実施形態及び第 2実施形態に係る潤滑油基油に添加剤が配合され た場合には当該添加剤の機能 (酸ィ匕防止剤による熱 ·酸ィ匕安定性向上効果、摩擦 調整剤による摩擦低減効果、摩耗防止剤による耐摩耗性向上効果など)をより高水 準で発現させることができる。そのため、第 1実施形態及び第 2実施形態に係る潤滑 油基油は、様々な潤滑油の基油として好適に用いることができる。第 1実施形態及び 第 2実施形態に係る潤滑油基油の用途としては、具体的には、乗用車用ガソリンェン ジン、二輪車用ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ガスヒートポン プ用エンジン、船舶用エンジン、発電エンジンなどの内燃機関に用いられる潤滑油( 内燃機関用潤滑油)、自動変速機、手動変速機、無断変速機、終減速機などの駆動 伝達装置に用いられる潤滑油 (駆動伝達装置用油)、緩衝器、建設機械等の油圧装 置に用いられる油圧作動油、圧縮機油、タービン油、工業用ギヤ油、冷凍機油、さび 止め油、熱媒体油、ガスホルダーシール油、軸受油、抄紙機用油、工作機械油、す ベり案内面油、電気絶縁油、切削油、プレス油、圧延油、熱処理油などが挙げられ、 これらの用途に第 1実施形態及び第 2実施形態に係る潤滑油基油を用いることによ つて、各潤滑油の粘度 温度特性、熱 ·酸化安定性、省エネルギー性、省燃費性な どの特性の向上、並びに各潤滑油の長寿命化及び環境負荷物質の低減を高水準 で達成することができるようになる。
[0199] 第 1実施形態及び第 2実施形態に係る潤滑油基油を潤滑油の基油として用いる場 合、第 1実施形態又は第 2実施形態に係る潤滑油基油を単独で用いてもよぐまた、 第 1実施形態又は第 2実施形態に係る潤滑油基油を他の基油の 1種又は 2種以上と 併用してもよい。なお、第 1実施形態又は第 2実施形態に係る潤滑油基油と他の基 油とを併用する場合、それらの混合基油中に占める第 1実施形態又は第 2実施形態 に係る潤滑油基油の割合は、 30質量%以上であることが好ましぐ 50質量%以上で あることがより好ましぐ 70質量%以上であることが更に好ましい。
[0200] 第 1実施形態又は第 2実施形態に係る潤滑油基油と併用される他の基油としては、 特に制限されないが、鉱油系基油としては、例えば 100°Cにおける動粘度が 1〜10 0mm2Zsの溶剤精製鉱油、水素化分解鉱油、水素化精製鉱油、溶剤脱ろう基油な どが挙げられる。
[0201] また、合成系基油としては、ポリ aーォレフイン又はその水素化物、イソブテンオリゴ マー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジ エステル(ジトリデシルグルタレート、ジ一 2—ェチルへキシルアジペート、ジイソデシ ルアジペート、ジトリデシルアジペート、ジー2—ェチルへキシルセバケート等)、ポリ ォーノレエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴ ネート、ペンタエリスリトーノレ 2—ェチノレへキサノエート、ペンタエリスリトーノレペラノレゴ ネート等)、ポリオキシアルキレングリコール、ジアルキルジフエ-ルエーテル、ポリフ ェ-ルエーテル等が挙げられ、中でも、ポリ aーォレフインが好ましい。ポリ aーォレ フィンとしては、典型的には、炭素数 2〜32、好ましくは 6〜16の a—ォレフインのォ リゴマー又はコオリゴマー(1 オタテンオリゴマー、デセンオリゴマー、エチレンープ ロピレンコオリゴマー等)及びそれらの水素化物が挙げられる。
[0202] ポリ aーォレフインの製法は特に制限されないが、例えば、三塩ィ匕アルミニウム又 は三フッ化ホウ素と、水、アルコール(エタノール、プロパノール、ブタノール等)、カル ボン酸またはエステルとの錯体を含むフリーデル 'クラフツ触媒のような重合触媒の 存在下、 OC一才レフインを重合する方法が挙げられる。
[0203] また、第 1実施形態及び第 2実施形態に係る潤滑油基油に配合される添加剤として は、特に制限されず、潤滑油の分野で従来使用される任意の添加剤を配合すること ができる。力かる潤滑油添加剤としては、具体的には、酸化防止剤、無灰分散剤、金 属系清浄剤、極圧剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、摩擦調整剤 、油性剤、腐食防止剤、防鲭剤、抗乳化剤、金属不活性化剤、シール膨潤剤、消泡 剤、着色剤などが挙げられる。これらの添加剤は、 1種を単独で用いてもよぐまた、 2 種以上を組み合わせて用いてもょ 、。
[0204] (第 3実施形態)
本発明の第 3実施形態に係る内燃機関用潤滑油組成物は、上記第 1実施形態又 は第 2実施形態に係る潤滑油基油と、組成物全量を基準として、(A— 1)リン元素換 算で 0. 02〜0. 08質量%のリン系摩耗防止剤と、(B— 1) 0. 5〜3質量%の無灰酸 化防止剤と、(じー1) 3〜12質量%の無灰分散剤とを含有する。なお、ここでは、上 記第 1実施形態又は第 2実施形態に係る潤滑油基油についての重複する説明は省 略する。また、第 3実施形態に係る内燃機関用潤滑油組成物は、第 1実施形態又は 第 2実施形態に係る潤滑油基油以外に、上記第 1実施形態の説明において例示さ れた鉱油系基油、合成系基油等を更に含有することができるが、鉱油系基油、合成 系基油等についての重複説明もここでは省略する。
[0205] 第 3実施形態に係る内燃機関用潤滑油組成物は、(A— 1)成分として、リン系摩耗 防止剤を含有する。リン系摩耗防止剤としては、構成元素として硫黄を含まないリン 系摩耗防止剤、リン及び硫黄の双方を含む摩耗防止剤 (リン 硫黄系摩耗防止剤) などが挙げられる。
[0206] 構成元素として硫黄を含まな 、リン系摩耗防止剤としては、リン酸、亜リン酸、リン酸 エステル類 (リン酸モノエステル類、リン酸ジエステル類及びリン酸トリエステル類を含 む)、亜リン酸エステル類(亜リン酸モノエステル類、亜リン酸ジエステル類及び亜リン 酸トリエステル類を含む)、及びこれらの塩 (ァミン塩又は金属塩)が挙げられる。リン 酸エステル類及び亜リン酸エステル類としては、通常炭素数 2〜30、好ましくは炭素 数 3〜20の炭化水素基を有するものが用いられる。
[0207] また、リン 硫黄系極圧剤としては、チォリン酸、チォ亜リン酸、チォリン酸エステル 類 (チォリン酸モノエステル類、チォリン酸ジエステル類、チォリン酸トリエステル類を 含む)、チォ亜リン酸エステル類 (チォ亜リン酸モノエステル類、チォ亜リン酸ジエステ ル類、チォ亜リン酸トリエステル類を含む)、及びこれらの塩、並びにジチォリン酸亜 鉛等が挙げられる。チォリン酸エステル類及びチォ亜リン酸エステル類としては、通 常炭素数 2〜30、好ましくは炭素数 3〜20の炭化水素基を有するものが用いられる
[0208] リン系摩耗防止剤としては、下記一般式 (4 a)で表されるリンィ匕合物、下記一般式
(4 b)で表されるリンィ匕合物、及びそれらの金属塩 (但し、タングステン塩は除く)又 はァミン塩、およびこれらの誘導体力 なる群より選ばれる少なくとも 1種のリン系摩耗 防止剤が好ましい。
[0209] [化 1]
R1一 (X1)p— P X3—— R3
| (4-a)
X2— R2
[式中、 R1は炭素数 1〜30の炭化水素基を示し、 R2及び R3はそれぞれ独立に水素 原子又は炭素数 1〜30の炭化水素基を示し、 X1、 X2及び X3はそれぞれ酸素原子又 は硫黄原子を示し、 pは 0又は 1を示す。 ]
[0210] [化 2]
Figure imgf000050_0001
[式中、 R4は炭素数 1〜30の炭化水素基を示し、 R5及び R6はそれぞれ独立に水素 原子又は炭素数 1〜30の炭化水素基を示し、 X4、 X5、 X6及び X7はそれぞれ酸素原 子又は硫黄原子を示し、 qは 0又は 1を示す。 ]
[0211] 上記一般式 (4— a)、 (4-b)中、!^〜 で表される炭素数 1〜30の炭化水素基と しては、具体的には、アルキル基、シクロアルキル基、ァルケ-ル基、アルキル置換 シクロアルキル基、ァリール基、アルキル置換ァリール基、及びァリールアルキル基を 挙げることができる。
[0212] 上記アルキル基としては、例えばメチル基、ェチル基、プロピル基、ブチル基、ペン チル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、 ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、ヘプ タデシル基、ォクタデシル基等のアルキル基 (これらアルキル基は直鎖状でも分枝状 でもよ 、)を挙げることができる。
[0213] 上記シクロアルキル基としては、例えば、シクロペンチル基、シクロへキシル基、シク 口へプチル基等の炭素数 5〜7のシクロアルキル基を挙げることができる。また上記ァ ルキルシクロアルキル基としては、例えば、メチルシクロペンチル基、ジメチルシクロ ペンチル基、メチルェチルシクロペンチル基、ジェチルシクロペンチル基、メチルシク 口へキシル基、ジメチルシクロへキシル基、メチルェチルシクロへキシル基、ジェチル シクロへキシル基、メチルシクロへプチル基、ジメチルシクロへプチル基、メチルェチ ルシクロへプチル基、ジェチルシクロへプチル基等の炭素数 6〜11のアルキルシク 口アルキル基(アルキル基のシクロアルキル基への置換位置も任意である)を挙げる ことができる。
[0214] 上記ァルケ-ル基としては、例えば、ブテュル基、ペンテ-ル基、へキセニル基、 ヘプテニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセニル基、ドデセニル 基、トリデセニル基、テトラデセニル基、ペンタデセニル基、へキサデセニル基、ヘプ タデセ-ル基、ォクタデセ -ル基等のアルケニル基 (これらァルケ-ル基は直鎖状で も分枝状でもよぐまた二重結合の位置も任意である)を挙げることができる。
[0215] 上記ァリール基としては、例えば、フエニル基、ナフチル基等のァリール基を挙げる ことができる。また上記アルキルァリール基としては、例えば、トリル基、キシリル基、ェ チルフエ-ル基、プロピルフエ-ル基、ブチルフエ-ル基、ペンチルフエ-ル基、へキ シルフェ-ル基、ヘプチルフエ-ル基、ォクチルフエ-ル基、ノ-ルフエ-ル基、デシ ルフヱ-ル基、ゥンデシルフヱ-ル基、ドデシルフヱ-ル基等の炭素数 7〜 18のアル キルァリール基 (アルキル基は直鎖状でも分枝状でもよく、またァリール基への置換 位置も任意である)を挙げることができる。
[0216] 上記ァリールアルキル基としては、例えばべンジル基、フエ-ルェチル基、フエニル プロピル基、フエ-ルブチル基、フエ-ルペンチル基、フエ-ルへキシル基等の炭素 数 7〜 12のァリールアルキル基 (これらアルキル基は直鎖状でも分枝状でもよい)を 挙げることができる。
[0217] 上記 〜 で表される炭素数 1〜30の炭化水素基は、炭素数 1〜30のアルキル 基又は炭素数 6〜24のァリール基であることが好ましぐ更に好ましくは炭素数 3〜1 8、更に好ましくは炭素数 4〜 12のアルキル基である。
[0218] 一般式 (4 a)で表されるリン化合物としては、例えば、上記炭素数 1〜30の炭化 水素基を 1つ有する亜リン酸モノエステル、モノチォ亜リン酸モノエステル、ジチォ亜 リン酸モノエステル、 (ヒドロカルビル)亜ホスホン酸、 (ヒドロカルビル)モノチォ亜ホス ホン酸、(ヒドロカルビル)ジチォホスホン酸;上記炭素数 1〜30の炭化水素基を 2つ 有する亜リン酸ジエステル、モノチォ亜リン酸ジエステル、ジチォ亜リン酸ジエステル 、 (ヒドロカルビル)亜ホスホン酸モノエステル、 (ヒドロカルビル)モノチォ亜ホスホン酸 モノエステル、(ヒドロカルビル)ジチォ亜ホスホン酸モノエステル;上記炭素数 1〜30 の炭化水素基を 3つ有する亜リン酸トリエステル、モノチォ亜リン酸トリエステル、ジチ ォ亜リン酸トリエステル、 (ヒドロカルビル)亜ホスホン酸ジエステル、 (ヒドロカルビル) モノチォ亜ホスホン酸ジエステル、(ヒドロカルビル)ジチォ亜ホスホン酸ジエステルお よびこれらの誘導体、すなわち N、 0、 S等のへテロ元素を炭化水素基中に含有する 化合物、トリ(へキシルチオエトキシ)亜リン酸エステル、トリ(ォクチルチオエトキシ)亜 リン酸エステル、トリ(ドデシルチオエトキシ)亜リン酸エステル、トリ(へキサデシルチオ エトキシ)亜リン酸エステル、ジ(へキシルチオエトキシ)亜リン酸エステル、ジ(ォクチ ルチオエトキシ)亜リン酸エステル、ジ(ドデシルチオエトキシ)亜リン酸エステル、ジ( へキサデシルチオエトキシ)亜リン酸エステル、モノ(へキシルチオエトキシ)亜リン酸 エステル、モノ(ォクチルチオエトキシ)亜リン酸エステル、モノ(ドデシルチオエトキシ )亜リン酸エステル、モノ(へキサデシルチオエトキシ)亜リン酸エステル;及びこれらの 混合物などが挙げられる。
[0219] 本発明において、一般式 (4— a)で表される化合物としては、 〜 3の少なくとも 1 つが酸素原子である化合物が好ましぐ ェ〜 3の全てが酸素原子である化合物、す なわち下記一般式 (4 c)で表される化合物がより好ましい。
[0220] [化 3]
Figure imgf000052_0001
[式中、 R1は炭素数 1〜30の炭化水素基を示し、 R2及び R3は同一でも異なっていて もよぐそれぞれ水素原子又は炭素数 1〜30の炭化水素基を示し、 pは 0又は 1を示 す。]
[0221] 一般式 (4 b)で表されるリンィ匕合物としては、例えば、上記炭素数 1〜30の炭化 水素基を 1つ有するリン酸モノエステル、モノチォリン酸モノエステル、ジチォリン酸モ ノエステル、(ヒドロカルビル)ホスホン酸、(ヒドロカルビル)モノチォホスホン酸、(ヒド 口カルビル)ジチォホスホン酸;上記炭素数 1〜30の炭化水素基を 2つ有するリン酸 ジエステル、モノチォリン酸ジエステル、ジチォリン酸ジエステル、(ヒドロカルビル)ホ スホン酸モノエステル、(ヒドロカルビル)モノチォホスホン酸モノエステル、(ヒドロカル ビル)ジチォホスホン酸モノエステル;上記炭素数 1〜30の炭化水素基を 3つ有する リン酸トリエステル、モノチォリン酸トリエステル、ジチォリン酸トリエステル、(ヒドロカル ビル)ホスホン酸ジエステル、(ヒドロカルビル)モノチォホスホン酸ジエステル(ヒドロ力 ルビル)ジチォホスホン酸ジエステルおよびこれらの誘導体、すなわち N、 0、 S等の ヘテロ元素を炭化水素基中に含有する化合物、トリ(へキシルチオエトキシ)リン酸ェ ステル、トリ(ォクチルチオエトキシ)リン酸エステル、トリ(ドデシルチオエトキシ)リン酸 エステル、トリ(へキサデシルチオエトキシ)リン酸エステル、ジ(へキシルチオエトキシ )リン酸エステル、ジ (ォクチルチオエトキシ)リン酸エステル、ジ(ドデシルチオェトキ シ)リン酸エステル、ジ(へキサデシルチオエトキシ)リン酸エステル、モノ(へキシルチ ォエトキシ)リン酸エステル、モノ(ォクチルチオエトキシ)リン酸エステル、モノ(ドデシ ルチオエトキシ)リン酸エステル、モノ(へキサデシルチオエトキシ)リン酸エステル;及 びこれらの混合物などが挙げられる。
[0222] 本発明において、一般式 (4— b)で表される化合物としては、 X4〜X7の少なくとも 2 つが酸素原子である化合物が好ましぐ x4〜x7の全てが酸素原子である化合物、す なわち下記一般式 (4 d)で表される化合物がより好ましい。
[0223] [化 4]
Figure imgf000053_0001
[式中、 R4は炭素数 1〜30の炭化水素基を示し、 R5及び R6は同一でも異なっていて もよぐそれぞれ水素原子又は炭素数 1〜30の炭化水素基を示し、 qは 0又は 1を示 す。 ]
[0224] また、一般式 (4 a)又は (4 b)で表されるリンィ匕合物の金属塩又はアミン塩は、 一般式 (4 a)又は (4 b)で表されるリン化合物に、金属酸化物、金属水酸化物、 金属炭酸塩、金属塩化物等の金属塩基、アンモニア、炭素数 1〜30の炭化水素基 又はヒドロキシル基含有炭化水素基のみを分子中に有するアミンィ匕合物等の窒素化 合物などを作用させて、残存する酸性水素の一部又は全部を中和することにより得る ことができる。
[0225] 上記金属塩基における金属としては、具体的には、リチウム、ナトリウム、カリウム、 セシウム等のアルカリ金属、カルシウム、マグネシウム、ノ リウム等のアルカリ土類金 属、亜鉛、銅、鉄、鉛、ニッケル、銀、モリブデン、マンガン等の重金属等が挙げられ る。これらの中ではカルシウム、マグネシウム等のアルカリ土類金属、モリブデン及び 亜鉛が好ましぐ亜鉛が特に好ましい。
[0226] なお、上記リン化合物の金属塩は、金属の価数あるいはリン化合物の OH基又は S H基の数に応じてその構造が異なり、したがって、リン化合物の金属塩の構造につい ては何ら限定されない。例えば、酸ィ匕亜鉛 lmolとリン酸ジエステル (OH基が 1つの 化合物) 2molを反応させた場合、下記式 (4 e)で表わされる構造の化合物が主成 分として得られると考えられる力 ポリマー化した分子も存在して ヽると考えられる。
[0227] [化 5]
Figure imgf000054_0001
[式中、 Rはそれぞれ独立に水素原子又は炭素数 1〜30の炭化水素基を示す。 ] [0228] また、例えば、酸化亜鉛 lmolとリン酸モノエステル(OH基が 2つの化合物) lmolと を反応させた場合、下記式 (4 f)で表わされる構造の化合物が主成分として得られ ると考えられるが、ポリマー化した分子も存在して 、ると考えられる。 [0229] [化 6]
Figure imgf000055_0001
[式中、 Rは水素原子又は炭素数 1〜30の炭化水素基を示す。 ]
[0230] また、上記窒素化合物としては、具体的には、上記タングステン アミン錯体の説 明において例示されたモノアミン、ジァミン、ポリアミン、アルカノールァミン等が挙げ られる。また、 N—ヒドロキシェチルォレイルイミダゾリン等の複素環化合物、アミンィ匕 合物へのァミンアルキレンォキシド付加物等を用いることもできる。
[0231] これら窒素化合物の中でもデシルァミン、ドデシルァミン、トリデシルァミン、ヘプタ デシルァミン、ォクタデシルァミン、ォレイルァミン及びステアリルァミン等の炭素数 10 〜20のアルキル基又はァルケ-ル基を有する脂肪族ァミン (これらは直鎖状でも分 枝状でもよ 、)が好まし 、例として挙げることができる。
[0232] 本発明において、上記リン系摩耗防止剤は、 1種を単独で用いてもよぐまた、 2種 以上を組み合わせて用いてもょ 、。
[0233] 本発明にかかるリン系摩耗防止剤としては、上記一般式 (4 c)又は (4— d)で表さ れるリンィ匕合物又はその金属塩が好ましぐ中でも、炭素数 3〜18のアルキル基又は ァリール基を 2個有する亜リン酸ジエステルと亜鉛又はカルシウムとの塩、炭素数 3〜 18のアルキル基又はァリール基、好ましくは炭素数 6〜 12のアルキル基を 3個有す る亜リン酸トリエステル、炭素数 3〜18のアルキル基又はァリール基を 1個有するリン 酸のモノエステルと亜鉛又はカルシウムとの塩、炭素数 3〜18のアルキル基又はァリ 一ル基を 2個有するリン酸のジエステルと亜鉛又はカルシウムとの塩、あるいは炭素 数 3〜 18のアルキル基又はァリール基、好ましくは炭素数 6〜 12のアルキル基を 3個 有するリン酸トリエステル、炭素数 1〜18のアルキル基又はァリール基を 1個有する( ヒドロカルビル)亜ホスホン酸と亜鉛又はカルシウムとの塩、炭素数 1〜18のアルキル 基又はァリール基を 2個有する(ヒドロカルビル)亜ホスホン酸モノエステルと亜鉛又は カルシウムとの塩、炭素数 1〜18のアルキル基又はァリール基を 3個有する(ヒドロ力 ルビル)亜ホスホン酸ジエステル、炭素数 1〜18のアルキル基又はァリール基を 1個 有する(ヒドロカルビル)ホスホン酸と亜鉛又はカルシウムとの塩、炭素数 1〜18のァ ルキル基又はァリール基を 2個有する(ヒドロカルビル)ホスホン酸モノエステルと亜鉛 又はカルシウムとの塩、炭素数 1〜18のアルキル基又はァリール基を 3つ有する(ヒド 口カルビル)ホスホン酸ジエステルが好まし 、。
[0234] 上記の(ヒドロカルビル)(亜)ホスホン酸、その金属塩、 (ヒドロカルビル)(亜)ホスホ ン酸モノエステル、その金属塩、並びに(ヒドロカルビル)(亜)ホスホン酸ジエステルと しては、油溶性及び極圧性の点から、炭化水素基の合計炭素数が 12〜30であるこ と力 子ましく、 14〜24であることがより好ましぐ 16〜20であることが更に好ましい。
[0235] 第 3実施形態に係る内燃機関用潤滑油組成物において、リン系摩耗防止剤の含有 量は、組成物全量を基準として、リン元素換算で、前述の通り 0. 02〜0. 08質量% であり、好ましく ίま 0. 02-0. 06質量0 /0、特に好ましく ίま 0. 04-0. 05質量0 /0である 。リン系摩耗防止剤の含有量が、リン元素換算で 0. 02質量%未満の場合は、摩耗 防止性が不十分となる傾向にある。他方、リン系摩耗防止剤の含有量カ^ン元素換 算で 0. 08質量%を超えると、排気ガス後処理装置の性能を長期間維持することが 困難となる。
[0236] また、第 3実施形態に係る内燃機関用潤滑油組成物は、(Β— 1)成分として、無灰 酸化防止剤を含有する。無灰酸化防止剤としては、フエノール系酸化防止剤やアミ ン系酸化防止剤等の潤滑油に一般的に使用されている連鎖停止型の無灰酸化防 止剤が使用可能である。
[0237] フエノール系酸化防止剤としては、例えば、 4, 4'ーメチレンビス(2, 6 ジ tert ブチルフエノール)、 4, 4, 一ビス(2, 6 ジ tert ブチルフエノール)、 4, 4, 一 ビス(2—メチル 6— tert—ブチルフエノール)、 2, 2, 一メチレンビス(4 ェチルー 6 tert ブチルフエノール)、 2, 2,ーメチレンビス(4ーメチルー 6—tert ブチル フエノール)、 4, 4,ーブチリデンビス(3—メチルー 6—tert ブチルフエノール)、 4, 4,一イソプロピリデンビス(2, 6 ジ tert ブチルフエノール)、 2, 2,ーメチレンビ ス(4ーメチルー 6 ノユルフェノール)、 2, 2 ' —イソブチリデンビス(4, 6 ジメチル フエノール)、 2, 2, 一メチレンビス(4—メチル 6 シクロへキシルフェノール)、 2, 6 ージー tert—ブチルー 4 メチルフエノール、 2, 6 ジー tert—ブチルー 4 ェチル フエノール、 2, 4 ジメチルー 6— tert—ブチルフエノール、 2, 6 ジ一 tert— - ジメチルアミノー p クレゾール、 2, 6 ジ tert—ブチルー 4 (N, N'—ジメチルアミ ノメチルフエノール)、 4, 4'ーチォビス(2—メチルー 6 tert ブチルフエノール)、 4 , 4,ーチォビス(3—メチルー 6 tert ブチルフエノール)、 2, 2,ーチォビス(4ーメ チル 6— tert -ブチルフエノール)、ビス( 3 -メチル 4—ヒドロキシ 5— tert - ブチルベンジル)スルフイド、ビス(3, 5—ジ tert ブチルー 4ーヒドロキシベンジル )スルフイド、 2, 2,ーチォージエチレンビス [3— (3, 5 ジ—tert ブチルー 4ーヒド ロキシフエ-ル)プロピオネート]、トリデシルー 3— (3, 5—ジ一 tert—ブチル 4—ヒ ドロキシフエ-ル)プロピオネート、ペンタエリスリチルーテトラキス [3— (3, 5—ジ te rtーブチルー 4ーヒドロキシフエ-ル)プロピオネート]、ォクチルー 3— (3, 5—ジ—t ert—ブチル 4—ヒドロキシフエ-ル)プロピオネート、ォクタデシルー 3— (3, 5—ジ - tert -ブチル— 4—ヒドロキシフエ-ル)プロピオネート、 3 -メチル— 5— tert -ブ チルー 4ーヒドロキシフヱ-ル置換脂肪酸エステル類等を好ましい例として挙げること ができる。これらは 1種を単独で用いてもよぐあるいは 2種以上を混合して用いてもよ い。
[0238] アミン系酸化防止剤としては、例えば、フエ-ルー a ナフチルァミン、アルキルフ ェ-ルー a ナフチルァミン、及びジアルキルジフエ-ルァミンを挙げることができる 。これらは 1種を単独で用いてもよぐあるいは 2種以上を混合して用いてもよい。
[0239] 更に、上記フエノール系酸ィ匕防止剤とアミン系酸ィ匕防止剤は組み合せて使用して ちょい。
[0240] 第 3実施形態に係る内燃機関用潤滑油組成物における無灰酸ィ匕防止剤の含有量 は、組成物全量を基準として、前述の通り 0. 5〜3質量%であり、好ましくは 0. 8〜2 質量%である。無灰酸化防止剤の含有量が 0. 5質量%未満であると、酸化寿命が 不十分となる。また、無灰酸ィ匕防止剤の含有量が 3質量%を超えても、含有量に見 合う酸化寿命の向上効果が得られない。
[0241] また、第 3実施形態に係る内燃機関用潤滑油組成物は、(C— 1)成分として、無灰 分散剤を含有する。無灰分散剤を更に含有することが好ましい。カゝかる無灰分散剤と しては、ポリオレフインカ 誘導されるァルケ-ルコハク酸イミド、アルキルコハク酸イミ ド及びそれらの誘導体が挙げられる。代表的なコハク酸イミドは、高分子量のアルケ
-ル基もしくはアルキル基で置換されたコハク酸無水物と、 1分子当り平均 4〜10個( 好ましくは 5〜7個)の窒素原子を含むポリアルキレンポリアミンとの反応により得ること ができる。高分子量のアルケニル基もしくはアルキル基は、数平均分子量が 700〜5 000のポリブテン (ポリイソブテン)であることが好ましぐ数平均分子量が 900〜300 0のポリブテン (ポリイソブテン)であることがより好まし 、。
[0242] 第 3実施形態に係る内燃機関用潤滑油組成物において好ましく用いられるポリブテ -ルコノ、ク酸イミドとしては、例えば、下記一般式(5— a)又は(5— b)で表される化合 物が挙げられる。
[0243] [化 7]
Figure imgf000058_0001
[0244] [化 8]
Figure imgf000058_0002
[0245] 一般式(5— a)又は(5— b)における PIBはポリブテュル基を示し、高純度イソブテ ンあるいは 1ーブテンとイソブテンの混合物をフッ化ホウ素系触媒あるいは塩ィ匕アルミ -ゥム系触媒で重合させて得られるポリブテンカ 得られるものであり、ポリブテン混 合物中において末端にビ-リデン構造を有するものが通常 5〜: LOOmol%含有され る。また、スラッジ抑制効果に優れる点から nは 2〜5の整数、好ましくは 3〜4の整数 であることが望ましい。 [0246] 一般式(5— a)又は(5— b)で表されるコハク酸イミドの製造法としては特に制限は ないが、例えば、上記ポリブテンを塩素化したもの、好ましくは上記高純度イソブテン をフッ化ホウ素系触媒で重合させた高反応性ポリブテン (ポリイソブテン)、より好まし くは塩素やフッ素が充分除去されたポリブテンを無水マレイン酸と 100〜200°Cで反 応させて得られるポリブテュルコハク酸を、ジエチレントリァミン、トリエチレンテトラミン 、テトラエチレンペンタミン、ペンタエチレンへキサミン等のポリアミンと反応させること により得ることができる。なお、ピスコハク酸イミドを製造する場合は、該ポリブテュルコ ノ、ク酸をポリアミンの 2倍量 (モル比)反応させれば良ぐモノコハク酸イミドを製造する 場合は、該ポリブテュルコハク酸とポリアミンを等量 (モル比)で反応させれば良い。こ れらの中では、スラッジ分散性に優れる点から、ポリブテュルピスコハク酸イミドである ことが好ましい。
[0247] なお、上記製造法において用いられるポリブテンには、製造過程の触媒に起因す る微量のフッ素分や塩素分が残留し得るので、吸着法や十分な水洗等の適切な方 法によりフッ素分や塩素分が十分除去されたポリブテンを用いることが好ましい。フッ 素や塩素の含有量としては、好ましくは 50質量 ppm以下、より好ましくは 10質量 pp m以下、更に好ましくは 5質量 ppm以下、特に好ましくは 1質量 ppm以下である。
[0248] また、ポリブテンと無水マレインとの反応によりポリブテュルコハク酸無水物を得るェ 程では、従来、塩素を用いる塩素化法が適用されることが多い。しかし、この方法で は、コハク酸イミド最終製品中に多量の塩素(例えば約 2000〜3000ppm)が残留 する結果となる。一方、塩素を用いない方法、例えば上記高反応性ポリブテンを用い た場合及び Z又は熱反応法では、最終製品中に残る塩素を極めて低 ヽレベル (例 えば 0〜30ppm)に抑えることができる。従って、潤滑油組成物中の塩素含有量を 0 〜30重量 ppmの範囲の量に抑えるためには、上記塩素化法を用いず、上記高反応 性ポリブテンを用いる方法及び Z又は熱反応法によって得られたポリブテュルコハク 酸無水物を用いることが好まし 、。
[0249] また、ポリブテュルコハク酸イミドの誘導体としては、上記一般式(5— a)又は(5— b )で表される化合物に、ホウ酸等のホウ素化合物や、アルコール、アルデヒド、ケトン、 アルキルフエノール、環状カーボネート、有機酸等の含酸素有機化合物を作用させ て、残存するァミノ基及び z又はイミノ基の一部又は全部を中和又はアミド化した、い わゆる変性コハク酸イミドとして用いることができる。特に、ホウ酸等のホウ素化合物と の反応で得られるホウ素含有ァルケ-ル (もしくはアルキル)コハク酸イミドは、熱 ·酸 化安定性の面で有利である。
[0250] 一般式(5— a)又は(5— b)で表される化合物に作用させるホウ素化合物としては、 ホウ酸、ホウ酸塩、ホウ酸エステル類等が挙げられる。ホウ酸としては、具体的には例 えばオルトホウ酸、メタホウ酸及びテトラホウ酸等が挙げられる。ホウ酸塩としては、ホ ゥ酸のアルカリ金属塩、アルカリ土類金属塩又はアンモ-ゥム塩等が挙げられ、より 具体的には、例えばメタホウ酸リチウム、四ホウ酸リチウム、五ホウ酸リチウム、過ホウ 酸リチウム等のホウ酸リチウム;メタホウ酸ナトリウム、二ホウ酸ナトリウム、四ホウ酸ナト リウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム等のホウ酸ナトリウ ム;メタホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、八ホウ 酸カリウム等のホウ酸カリウム;メタホウ酸カルシウム、二ホウ酸カルシウム、四ホウ酸 三カルシウム、四ホウ酸五カルシウム、六ホウ酸カルシウム等のホウ酸カルシウム;メ タホウ酸マグネシウム、二ホウ酸マグネシウム、四ホウ酸三マグネシウム、四ホウ酸五 マグネシウム、六ホウ酸マグネシウム等のホウ酸マグネシウム;及びメタホウ酸アンモ -ゥム、四ホウ酸アンモ-ゥム、五ホウ酸アンモ-ゥム、八ホウ酸アンモ-ゥム等のホ ゥ酸アンモ-ゥム等が挙げられる。また、ホウ酸エステルとしては、ホウ酸と好ましくは 炭素数 1〜6のアルキルアルコールとのエステル等が挙げられ、より具体的には例え ば、ホウ酸モノメチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モノエチル、ホウ酸ジ ェチル、ホウ酸トリエチル、ホウ酸モノプロピル、ホウ酸ジプロピル、ホウ酸トリプロピル 、ホウ酸モノブチル、ホウ酸ジブチル、ホウ酸トリブチル等が挙げられる。上記ホウ素 化合物を作用させたコハク酸イミド誘導体は、耐熱性、酸化安定性に優れることから 好ましく用いられる。
[0251] また、一般式 (5— a)又は(5— b)で表される化合物に作用させる含酸素有機化合 物としては、具体的には、例えば、ギ酸、酢酸、グリコール酸、プロピオン酸、乳酸、 酪酸、吉草酸、カプロン酸、ェナント酸、力プリル酸、ペラルゴン酸、力プリン酸、ゥン デシル酸、ラウリン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、マ ルガリン酸、ステアリン酸、ォレイン酸、ノナデカン酸、エイコサン酸等の炭素数 1〜3 0のモノカルボン酸や、シユウ酸、フタル酸、トリメリット酸、ピロメリット酸等の炭素数 2 〜30のポリカルボン酸若しくはこれらの無水物、又はエステル化合物、炭素数 2〜6 のアルキレンオキサイド、ヒドロキシ(ポリ)ォキシアルキレンカーボネート等が挙げら れる。このような含酸素有機化合物を作用させることで、例えば、一般式(5— a)又は (5— b)で表される化合物におけるアミノ基又はイミノ基の一部又は全部が次の一般 式 (5— c)で示す構造になると推定される。
[0252] [化 9]
Figure imgf000061_0001
[0253] 上記一般式(5— c)中の R7は水素原子、炭素数 1〜24のアルキル基、炭素数 1〜2 4のァルケ-ル基、炭素数 1〜24アルコキシ基、又は—O—(RsO) Hで表されるヒド ロキシ(ポリ)ォキシアルキレン基を示し、 R8は炭素数 1〜4のアルキレン基、 mは 1〜 5の整数を示す。これらの中ではァミノ基又はイミノ基の全てにこれら含酸素有機化 合物を作用させたものを主成分とするポリブテュルピスコハク酸イミドがスラッジ分散 性に優れるため好ましく用いられる。そのような化合物は、例えば一般式(5— a)で表 される化合物 1モルに対し (n— 1)モルの含酸素有機化合物を作用させることで得ら れる。このような含酸素有機化合物を作用させたコハク酸イミド誘導体は、スラッジ分 散性に優れ、特にヒドロキシ (ポリ)ォキシアルキレンカーボネートを作用させたものが 好ましい。
[0254] 本発明で用いられる無灰分散剤としてのポリブテュルコハク酸イミド及び/又はそ の誘導体の重量平均分子量は、好ましくは 3000以上、より好ましくは 5000以上、更 に好ましくは 6500以上、一層好ましくは 7000以上、特に好ましくは 8000以上である 。重量平均分子量が 5000未満では、非極性基のポリブテニル基の分子量が小さく スラッジの分散性に劣り、また、酸ィ匕劣化の活性点となる恐れのある極性基のアミン 部分が相対的に多くなつて酸ィ匕安定性に劣るため、本発明のような長寿命化効果は 得られないと考えられる。一方、低温粘度特性の悪化を防止する観点から、ポリブテ
-ルコハク酸イミド及び Z又はその誘導体の重量平均分子量は、 20000以下である ことが好ましぐ 15000以下であることが特に好ましい。なお、ここでいう重量平均分 子量とは、ウォーターズ製の 150— CALCZGPC装置に東ソー製の GMHHR— M (7. 8mmID X 30cm)のカラムを 2本直列に使用し、溶媒としてはテトラヒドロフラン、 温度 23°C、流速 lmLZ分、試料濃度 1質量%、試料注入量 75 L、検出器示差屈 折率計 (RI)で測定したポリスチレン換算の重量平均分子量を意味する。
[0255] なお、本発明では、無灰分散剤として、上記のコハク酸イミド及び Z又はその誘導 体の他、アルキル又はァルケ-ルポリアミン、アルキル又はァルケ-ルペンジルアミ ン、アルキル又はァルケ-ルコハク酸エステル、マン-ッヒ塩基及びこれらの誘導体 等を使用することができる。
[0256] 第 3実施形態に係る内燃機関用潤滑油組成物における無灰分散剤の含有量は、 組成物全量を基準として、前述の通り 3〜12質量%であり、好ましくは 4〜10質量% である。無灰分散剤の含有量が 3質量%未満であると燃焼生成物の分散性が不十 分となり、また、 12質量%を超えると粘度 温度特性が不十分となる。
[0257] 第 3実施形態に係る内燃機関用潤滑油組成物は、上記の潤滑油基油、リン系摩耗 防止剤、無灰酸ィ匕防止剤及び無灰分散剤のみ力もなるものであってもよいが、その 性能を更に向上させるために、必要に応じて以下に示す各種添加剤を更に含有して ちょい。
[0258] また、第 3実施形態に係る内燃機関用潤滑油組成物は、その摩擦特性を更に改善 できる点から、摩擦調整剤を含有することが好ましい。摩擦調整剤としては、潤滑油 用の摩擦調整剤として通常用いられる任意の化合物が使用可能であり、例えば、炭 素数 6〜30のアルキル基又はァルケ-ル基、特に炭素数 6〜30の直鎖アルキル基 又は直鎖アルケニル基を分子中に少なくとも 1個有する、アミンィ匕合物、脂肪酸エス テル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ヒドラジド (ォレイ ルヒドラジド等)、セミカルバジド、ゥレア、ウレイド、ビウレット等の無灰摩擦調整剤等 が挙げられる。
[0259] 第 3実施形態に係る内燃機関用潤滑油組成物における摩擦調整剤の含有量は、 組成物全量を基準として、好ましくは 0. 01質量%以上、より好ましくは 0. 1質量%以 上、更に好ましくは 0. 3質量%以上であり、また、好ましくは 3質量%以下、より好まし くは 2質量%以下、更に好ましくは 1質量%以下である。摩擦調整剤の含有量が前記 下限値未満であると、その添カ卩による摩擦低減効果が不十分となる傾向にあり、また 、前記上限値を超えると、リン系摩耗防止剤などの効果が阻害されやすぐあるいは 添加剤の溶解性が悪ィ匕する傾向にある。
[0260] また、第 3実施形態に係る内燃機関用潤滑油組成物は、清浄性の点から、金属系 清浄剤を更に含有することが好ましい。力かる金属系清浄剤としては、アルカリ土類 金属スルホネート、アルカリ土類金属フエネート及びアルカリ土類金属サリシレートか ら選ばれる少なくとも 1種のアルカリ土類金属系清浄剤を用いることが好ましい。
[0261] アルカリ土類金属スルホネートとしては、分子量 300〜1, 500、好ましくは 400〜7 00のアルキル芳香族化合物をスルホンィ匕することによって得られるアルキル芳香族 スルホン酸のアルカリ土類金属塩、特にマグネシウム塩及び z又はカルシウム塩で あり、カルシウム塩が好ましく用いられる。上記アルキル芳香族スルホン酸としては、 具体的には 、わゆる石油スルホン酸や合成スルホン酸等が挙げられる。ここで 、う石 油スルホン酸としては、一般に鉱油の潤滑油留分のアルキル芳香族化合物をスルホ ン化したものやホワイトオイル製造時に副生する、いわゆるマホガニー酸等が用いら れる。また合成スルホン酸としては、例えば洗剤の原料となるアルキルベンゼン製造 プラントから副生したり、ポリオレフインをベンゼンにアルキルィ匕することにより得られる 、直鎖状や分枝状のアルキル基を有するアルキルベンゼンをスルホン化したもの、あ るいはジノ-ルナフタレン等のアルキルナフタレンをスルホン化したもの等が用いられ る。またこれらアルキル芳香族化合物をスルホンィ匕する際のスルホン化剤としては特 に制限はないが、通常、発煙硫酸や無水硫酸が用いられる。
[0262] アルカリ土類金属フエネートとしては、アルキルフエノール、アルキルフエノールサル ファイド、アルキルフエノールのマン-ッヒ反応物のアルカリ土類金属塩、特にマグネ シゥム塩及び Z又はカルシウム塩が挙げられ、例えば下記の一般式(6— a)、(6— b )、 (6— c)で表される化合物を挙げることができる。
[0263] [化 10]
Figure imgf000064_0001
[0264] [化 11]
Figure imgf000064_0002
[0265] [化 12]
Figure imgf000064_0003
[0266] 上記一般式 (6— a)〜(6— c)中、 R9、 R10,
Figure imgf000064_0004
R12、 R13及び R"は同一でも異な つていてもよぐそれぞれ炭素数 4〜30、好ましくは 6〜18の直鎖又は分枝のアルキ ル基を示し、
Figure imgf000064_0005
M2及び M3はそれぞれアルカリ土類金属、好ましくはカルシウム及 び/又はマグネシウムを示し、 Xは 1又は 2を示す。上式中、 R9、 R10, 1、 R12、 R13 及び R14としては、具体的には、ブチル基、ペンチル基、へキシル基、ヘプチル基、 ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基、トリデシル基、テトラデ シル基、ペンタデシル基、へキサデシル基、ヘプタデシル基、ォクタデシル基、ノナ デシル基、ィコシル基、ヘンィコシル基、ドコシル基、トリコシル基、テトラコシル基、ぺ ンタコシル基、へキサコシル基、ヘプタコシル基、ォクタコシル基、ノナコシル基、トリ アコンチル基等が挙げられ、これらは直鎖でも分枝でもよい。これらはまた 1級アルキ ル基、 2級アルキル基又は 3級アルキル基でもよ!/、。
[0267] アルカリ土類金属サリシレートとしては、ァリキルサリチル酸のアルカリ土類金属塩、 特にマグネシウム塩及び Z又はカルシウム塩が挙げられ、例えば下記の一般式(6— d)で表されるものを挙げることができる。
[0268] [化 13]
Figure imgf000065_0001
[0269] 上記一般式 (6— d)中、 R15は炭素数 1〜30、好ましくは 6〜18の直鎖又は分枝の アルキル基を示し、 nは 1〜4の整数、好ましくは 1又は 2を示し、 M4はアルカリ土類金 属、好ましくはカルシウム及び/又はマグネシウムを示す。 R15としては、具体的には 、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノ-ル基、デシル 基、ゥンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、へキ サデシル基、ヘプタデシル基、ォクタデシル基、ノナデシル基、ィコシル基、ヘンィコ シル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、へキサコシル基、 ヘプタコシル基、ォクタコシル基、ノナコシル基、トリアコンチル基等が挙げられ、これ らは直鎖でも分枝でもよい。これらはまた 1級アルキル基、 2級アルキル基又は 3級ァ ルキル基でもよい。
[0270] また、アルカリ土類金属スルホネート、アルカリ土類金属フエネート及びアルカリ土 類金属サリシレートとしては、上記のアルキル芳香族スルホン酸、アルキルフエノール 、アルキルフエノールサルファイド、アルキルフエノールのマン-ッヒ反応物、ァリキル サリチル酸等を直接、マグネシウム及び Z又はカルシウムのアルカリ土類金属の酸 化物や水酸ィ匕物等のアルカリ土類金属塩基と反応させたり、又は一度ナトリウム塩や カリウム塩等のアルカリ金属塩として力 アルカリ土類金属塩と置換させること等によ り得られる中性 (正塩)アルカリ土類金属スルホネート、中性 (正塩)アルカリ土類金属 フエネート及び中性 (正塩)アルカリ土類金属サリシレートだけでなぐ中性アルカリ土 類金属スルホネート、中性アルカリ土類金属フ ネート及び中性アルカリ土類金属サ リシレートと過剰のアルカリ土類金属塩やアルカリ土類金属塩基を水の存在下でカロ 熱することにより得られる塩基性アルカリ土類金属スルホネート、塩基性アルカリ土類 金属フエネート及び塩基性アルカリ土類金属サリシレートや、中性アルカリ土類金属 スルホネート、中性アルカリ土類金属フエネート及び中性アルカリ土類金属サリシレ ートの存在下で、アルカリ土類金属の水酸化物と炭酸ガス又はホウ酸とを反応させる ことにより得られる過塩基性 (超塩基性)アルカリ土類金属スルホネート、過塩基性 ( 超塩基性)アルカリ土類金属フ ネート及び過塩基性 (超塩基性)アルカリ土類金属 サリシレートも含まれる。
[0271] 本発明においては、上記の中性アルカリ土類金属塩、塩基性アルカリ土類金属塩 、過塩基性 (超塩基性)アルカリ土類金属塩及びこれらの混合物等を用いることがで きる。これらの中でも、長期間に渡る清浄性を維持する観点から、過塩基性カルシゥ ムスルホネートと過塩基性カルシウムフエネートとを組み合わせたもの、あるいは過塩 基性カルシウムサリシレートを使用することが好ましぐ過塩基性カルシウムサリシレ ートを使用することが特に好ましい。金属系清浄剤は、通常、軽質潤滑油基油等で 希釈された状態で市販されており、また入手可能であるが、一般的に、その金属含 有量が 1. 0〜20質量%、好ましくは 2. 0〜16質量%のものを用いるのが望ましい。 本発明で用いるアルカリ土類金属系清浄剤の全塩基価は任意であるが、通常、全塩 基価が 500mgKOHZg以下、好ましくは 150〜450mgKOHZgのものを用いるの が望ましい。なおここでいう全塩基価は、 JISK2501 (1992)の「石油製品及び潤滑 油一中和価試験方法」の 7.に準拠して測定される過塩素酸法による全塩基価を意 味している。
[0272] 第 3実施形態に係る内燃機関用潤滑油組成物における金属系清浄剤の含有量は 任意である力 組成物全量基準で、 0. 1〜10質量%、好ましくは 0. 5〜8質量%、よ り好ましくは 1〜5質量%含有するのが望ましい。この含有量が 10質量%を超える場 合は、その含有量に見合うだけの効果が得られないため好ましくない。
[0273] また、第 3実施形態に係る内燃機関用潤滑油組成物は、粘度 温度特性を更に改 善できる点から、粘度指数向上剤を含有することが好ましい。力かる粘度指数向上剤 としては、非分散型又は分散型ポリメタタリレート類、分散型エチレン (Xーォレフィ ン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレンージェ ン水素化共重合体、スチレン 無水マレイン酸エステル共重合体及びポリアルキル スチレン等が挙げられ、中でも重量平均分子量が 10, 000〜1, 000, 000、好ましく は 100, 000〜900, 000、より好まし <は 150, 000〜500, 000、さらに好まし <は 1 80, 000〜400, 000の非分散型粘度指数向上剤及び Zまたは分散型粘度指数向 上剤が好ましく用いられる。
[0274] 非分散型粘度指数向上剤としては、具体的には、下記一般式 (7— a)、(7— b)及 び(7— c)で表される化合物の中力 選ばれるモノマー(以下、「モノマー(M— 1)」と Vヽぅ)の単独重合体又はモノマー(M— 1)の 2種以上の共重合体あるいはその水素 化物等が例示できる。一方、分散型粘度指数向上剤としては、具体的には、一般式 ( 7— d)及び(7— e)で表される化合物の中力 選ばれるモノマー(以下、「モノマー( M— 2)」と 、う)の 2種以上の共重合体又はその水素化物に酸素含有基を導入した ものや、一般式(7— a)〜(7— c)で表される化合物の中力 選ばれるモノマー(M— 1)の 1種又は 2種以上と一般式(7— d)及び(7— e)で表される化合物の中から選ば れるモノマー(M— 2)の 1種又は 2種以上との共重合体、あるいはその水素化物等が 例示できる。
[0275] [化 14]
Figure imgf000067_0001
[0276] 上記一般式 (7— a)中、 R16は水素原子又はメチル基を示し、 R17は水素原子又は 炭素数 1〜18のアルキル基を示す。 R17で表される炭素数 1〜18のアルキル基として は、具体的には、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシ ル基、ヘプチル基、ォクチル基、ノニル基、デシル基、デシル基、ゥンデシル基、ドデ シル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、ヘプタデ シル基、及びォクタデシル基等 (これらアルキル基は直鎖状でも分枝状でもよ ヽ)等 が例示できる。
[0277] [化 15] R18
CH2 = (7-b)
[0278] 上記一般式 (7— b)中、 R18は水素原子又はメチル基を示し、 R19は水素原子又は 炭素数 1〜12の炭化水素基を示す。 R19で表される炭素数 1〜12の炭化水素基とし ては、具体的には、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキ シル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基 等のアルキル基 (これらアルキル基は直鎖状でも分枝状でもよ!/ヽ);シクロペンチル基 、シクロへキシル基、シクロへプチル基等の炭素数 5〜7のシクロアルキル基;メチル シクロペンチル基、ジメチルシクロペンチル基、メチルェチルシクロペンチル基、ジェ チルシクロペンチル基、メチルシクロへキシル基、ジメチルシクロへキシル基、メチル ェチルシクロへキシル基、ジェチルシクロへキシル基、メチルシクロへプチル基、ジメ チルシクロへプチル基、メチルェチルシクロへプチル基、ジェチルシクロへプチル基 等の炭素数 6〜: L 1のアルキルシクロアルキル基(これらアルキル基のシクロアルキル 基への置換位置は任意である);
ブテュル基、ペンテ-ル基、へキセ-ル基、ヘプテュル基、オタテュル基、ノネ-ル 基、デセ-ル基、ゥンデセニル基、ドデセ -ル基等のアルケニル基 (これらァルケ- ル基は直鎖状でも分枝状でもよぐ二重結合の位置も任意である);
フエ-ル基、ナフチル基等のァリール基:トリル基、キシリル基、ェチルフエ-ル基、プ 口ピルフエ-ル基、ブチルフエ-ル基、ペンチルフエ-ル基、へキシルフエ-ル基等 の炭素数 7〜 12のアルキルァリール基 (これらアルキル基は直鎖状でも分枝状でもよ ぐまたァリール基への置換位置も任意である);ベンシル基、フエ-ルェチル基、フ ェ-ルプロピル基、フエ-ルブチル基、フエ-ルペンチル基、フエ-ルへキシル基等 の炭素数 7〜 12のァリールアルキル基 (これらアルキル基は直鎖状でも分枝状でもよ い);等が例示できる。
[0279] [化 16] CH = CH
/ \ (7 c)
0^=C ,C^=0 (' "c)
X8 X9
[0280] 上記一般式 (7— c)中、 X8及び X9は、それぞれ個別に、水素原子、炭素数 1〜18 のアルコキシ基(― OR2G: R2Gは炭素数 1〜 18のアルキル基)又は炭素数 1〜 18のモ ノアルキルアミノ基(― NHR21: R21は炭素数 1〜 18のアルキル基)を示す。
[0281] [化 17]
Figure imgf000069_0001
[0282] 上記一般式 (7— d)中、 R22は水素原子又はメチル基を示し、 R23は炭素数 1〜18 のアルキレン基を示し、 Y1は窒素原子を 1〜2個、酸素原子を 0〜2個含有するァミン 残基又は複素環残基を示し、 mは 0又は 1である。 R23で表される炭素数 1〜18のァ ルキレン基としては、具体的には、エチレン基、プロピレン基、ブチレン基、ペンチレ ン基、へキシレン基、ヘプチレン基、オタチレン基、ノ-レン基、デシレン基、ゥンデシ レン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、へキサ デシレン基、ヘプタデシレン基、及びォクタデシレン基等(これらアルキレン基は直鎖 状でも分枝状でもよい)等が例示できる。また、 Y1で表される基としては、具体的には 、ジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ァ-リノ 基、トルイジノ基、キシリジノ基、ァセチルァミノ基、ベンゾィルァミノ基、モルホリノ基、 ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジ -ル基、ピベリジ-ル 基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及びビラジノ基等が例示 できる。
[0283] [化 18]
Figure imgf000069_0002
[0284] 上記一般式 (7— e)中、 R24は水素原子又はメチル基を示し、 Y2は窒素原子を 1〜 2個、酸素原子を 0〜2個含有するァミン残基又は複素環残基を示す。 Y2で表される 基としては、具体的には、ジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジ ブチルァミノ基、ァ-リノ基、トルイジノ基、キシリジノ基、ァセチルァミノ基、ベンゾィル アミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジ -ル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及 びビラジノ基等が例示できる。
[0285] モノマー(M—1)の好ましい例としては、具体的には、炭素数 1〜18のアルキルァ タリレート、炭素数 1〜18のアルキルメタタリレート、炭素数 2〜20のォレフィン、スチ レン、メチルスチレン、無水マレイン酸エステル、無水マレイン酸アミド及びこれらの混 合物等が例示できる。
[0286] モノマー(M— 2)の好ましい例としては、具体的には、ジメチルァミノメチルメタクリレ ート、ジェチルァミノメチルメタタリレート、ジメチルアミノエチルメタタリレート、ジェチ ルアミノエチルメタタリレート、 2—メチルー 5 ビニルピリジン、モルホリノメチルメタク リレート、モルホリノェチルメタタリレート、 N ビュルピロリドン及びこれらの混合物等 が例示できる。
[0287] なお、上記(M— 1)化合物の中力も選ばれる 1種又は 2種以上のモノマーと(M— 2 )化合物の中力 選ばれる 1種又は 2種以上のモノマーとの共重合体の共重合モル 比は、一般に、モノマー(M—1) :モノマー(M— 2) =80 : 20〜95 : 5程度でぁる。ま たその製法も任意である力 通常、ベンゾィルバーオキシド等の重合開始剤の存在 下でモノマー(M— 1)とモノマー(M— 2)をラジカル溶液重合させることにより容易に 共重合体が得られる。
[0288] 上述した粘度指数向上剤の中でも、低温流動性により優れる点から、ポリメタクリレ ート系粘度指数向上剤が好ましい。
[0289] 第 3実施形態に係る内燃機関用潤滑油組成物における粘度指数向上剤の配合量 は、組成物全量基準で、好ましくは 0. 1〜15質量%、より好ましくは 0. 5〜5質量% である。粘度指数向上剤の含有量が 0. 1質量%未満の場合、その添加による粘度 温度特性の改善効果が不十分となる傾向にあり、また、 15質量%を超える場合、 初期の極圧性を長期間維持しに《なる傾向にある。
[0290] 第 3実施形態に係る内燃機関用潤滑油組成物においては、その性能をさらに向上 させる目的で、必要に応じて、上記添加剤の他にさらに、(A— 1)成分以外の摩耗防 止剤、(B— 1)成分以外の酸化防止剤、腐食防止剤、防鲭剤、抗乳化剤、金属不活 性化剤、流動点降下剤、ゴム膨潤剤、消泡剤、着色剤等の各種添加剤を単独で又 は数種類組み合わせて配合しても良 ヽ。
[0291] (A— 1)成分以外の摩耗防止剤としては、ジチォカーバメート、亜鉛ジチォカーバ メート、モリブデンジチォカーバメート、ジスルフイド類、硫化ォレフィン類、硫化油脂 類等の硫黄系摩耗防止剤が挙げられる。
[0292] (B— 1)成分以外の酸ィ匕防止剤としては、例えば、銅系、モリブデン系等の金属系 酸ィ匕防止剤が挙げられる。
[0293] 腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリァゾール系、チアジア ゾール系、及びイミダゾール系化合物等が挙げられる。
[0294] 防鲭剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノ- ルナフタレンスルホネート、ァルケ-ルコハク酸エステル、及び多価アルコールエステ ル等が挙げられる。
[0295] 抗乳ィ匕剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシェチ レンアルキルフエニルエーテル、及びポリオキシエチレンアルキルナフチルエーテル 等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。
[0296] 金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジ ァゾール、メルカプトべンゾチアゾール、ベンゾトリアゾール又はその誘導体、 1, 3, 4 ーチアジアゾールポリスルフイド、 1, 3, 4ーチアジアゾリルー 2, 5—ビスジアルキル ジチォカーバメート、 2- (アルキルジチォ)ベンゾイミダゾール、及び j8—(o—カル ボキシベンジルチオ)プロピオン-トリル等が挙げられる。
[0297] 流動点降下剤としては、潤滑油基油の性状に応じて公知の流動点降下剤を任意 に選択することができる力 重量平均分子量が 50, 000を超え 150, 000以下、好ま しく ίま、 80, 000〜120, 000のポリメタタリレート力好まし!/ヽ。
[0298] 消泡剤としては、潤滑油用の消泡剤として通常用いられる任意の化合物が使用可 能であり、例えば、ジメチルシリコーン、フルォロシリコーン等のシリコーン類が挙げら れる。これらの中力 任意に選ばれた 1種類あるいは 2種類以上の化合物を任意の 量で配合することができる。
[0299] 着色剤としては、通常用いられる任意の化合物が使用可能であり、また任意の量を 配合することができる力 通常その配合量は、組成物全量基準で 0. 001〜1. 0質量 %である。
[0300] これらの添加剤を本発明の潤滑油組成物に含有させる場合、その含有量は組成物 全量基準で、(A— 1)成分以外の摩耗防止剤では 0. 01〜2質量%、(B— 1)成分 以外の酸化防止剤では 0. 01〜2質量%、腐食防止剤、防鲭剤、抗乳化剤ではそれ ぞれ 0. 005〜5質量%、金属不活性化剤では 0. 005〜1質量%、流動点降下剤で は、 0. 05〜1質量%、消泡剤では 0. 0005〜1質量%、着色剤では 0. 001〜1. 0 質量%の範囲で通常選ばれる。
[0301] また、第 3実施形態に係る内燃機関用潤滑油組成物は、上述の通り硫黄を構成元 素として含む添加剤を含有し得るが、潤滑油組成物の全硫黄含有量 (潤滑油基油及 び添加剤に起因する硫黄分の合計量)は、添加剤の溶解性、並びに高温酸化条件 における硫黄酸ィ匕物の生成に起因する塩基価の消耗を抑制する点から、好ましくは 0. 05〜0. 3質量0 /0であり、より好ましくは 0. 08〜0. 25質量0 /0、さらに好ましくは 0. 1〜0. 2質量%、特に好ましくは 0. 12〜0. 18質量%である。
[0302] また、第 3実施形態に係る内燃機関用潤滑油組成物の 100°Cにおける動粘度は、 通常、 4〜24mm2Zsであるが、焼付きや磨耗を抑制する油膜厚さを保持する点、並 びに撹拌抵抗の増加を抑制する点から、好ましくは 5〜18mm2Zs、より好ましくは 6 〜 15mm2Zs、さらに好ましくは 7〜 12mm2Zsである。
[0303] また、第 3実施形態に係る内燃機関用潤滑油組成物の硫酸灰分は、排気ガス後処 理装置の性能の維持の点から、好ましくは 1. 2質量%以下であり、より好ましくは 1. 0質量%以下、更に好ましくは 0. 9質量%以下であり、また、エンジン清浄性や酸ィ匕 安定性を高いレベルで維持するために、好ましくは 0. 1質量%以上、より好ましくは 0 . 4質量%以上、さらに好ましくは 0. 7質量%以上、特に好ましくは 0. 8質量%以上 である。なお、本発明でいう硫酸灰分とは、 JIS K 2272— 1985の「原油及び石油 製品の灰分並びに硫酸灰分試験方法」の「5.硫酸灰分の試験方法」に準拠して測 定される硫酸灰分量を意味する。
[0304] 上記の構成を有する第 3実施形態に係る内燃機関用潤滑油組成物は、酸ィ匕寿命 が十分に長ぐ且つ排気ガス後処理装置の性能を長期にわたって十分に維持するこ とが可能なものであり、更に粘度 温度特性、摩擦特性及び揮発防止性に優れるも のである。このように優れた特性を有する第 3実施形態に係る内燃機関用潤滑油組 成物は、二輪車、四輪車、発電用、舶用等のガソリンエンジン、ディーゼルエンジン、 含酸素化合物含有燃料対応エンジン、ガスエンジン等の内燃機関用潤滑油として好 適に用いられ、特に、排気ガス後処理装置を装着した内燃機関、具体的には、三元 触媒が搭載された車両のガソリンエンジン用潤滑油、ディーゼルパティキュレートフィ ルター(DPF)が搭載された車両のディーゼルエンジン用潤滑油などの用途におい て優れた効果を発揮する。また、低硫黄燃料、例えば、硫黄分が 50質量 ppm以下、 さらに好ましくは 30質量 ppm以下、特に好ましくは 10質量 ppm以下のガソリンや軽 油や灯油、あるいは硫黄分が 1質量 ppm以下の燃料 (LPG、天然ガス、硫黄分を実 質的に含有しない水素、ジメチルエーテル、アルコール、 GTL (ガストウリキッド)燃料 等)を用いる内燃機関用潤滑油として特に好ましく使用することができる。
[0305] (第 4実施形態)
本発明の第 4実施形態に係る内燃機関用潤滑油組成物は、上記第 1実施形態又 は第 2実施形態に係る潤滑油基油と、(A— 2)硫黄を構成元素として含まない無灰 酸化防止剤と、(B— 2)硫黄を構成元素として含む無灰酸ィ匕防止剤及び有機モリブ デン化合物力 選ばれる少なくとも 1種とを含有する。なお、ここでは、第 1実施形態 又は第 2実施形態に係る潤滑油基油についての重複する説明は省略する。また、第 4実施形態に係る内燃機関用潤滑油組成物は、第 1実施形態又は第 2実施形態に 係る潤滑油基油以外に、上記第 1実施形態の説明において例示された鉱油系基油 、合成系基油等を更に含有することができるが、鉱油系基油、合成系基油等につい ての重複説明もここでは省略する。
[0306] また、第 4実施形態に係る内燃機関用潤滑油組成物は、(A— 2)成分として、硫黄 を構成元素として含まない無灰酸化防止剤を含有する。かかる (A— 2)成分としては 、硫黄を構成元素として含まないフエノール系又はアミン系の無灰酸ィ匕防止剤が好 適である。
硫黄を構成元素として含まな 、フエノール系無灰酸ィ匕防止剤としては、硫黄を構成 元素として含まないフエノール系無灰酸ィ匕防止剤としては、具体的には、例えば、 4, 4'—メチレンビス(2, 6 ジ一 tert—ブチルフエノール)、 4, 4'—ビス(2, 6 ジ一 te rt ブチルフエノール)、 4, 4 ' —ビス(2—メチルー 6—tert ブチルフエノール)、 2 , 2, 一メチレンビス(4 ェチル 6— tert ブチルフエノール)、 2, 2'—メチレンビ ス(4ーメチルー 6—tert ブチルフエノール)、 4, 4'ーブチリデンビス(3—メチルー 6 tert ブチルフエノール)、 4, 4 ' —イソプロピリデンビス(2, 6 ジ—tert—ブチ ルフエノール)、 2, 2, 一メチレンビス(4—メチル 6 ノ-ルフエノール)、 2, 2, 一ィ ソブチリデンビス(4, 6 ジメチルフエノール)、 2, 2, 一メチレンビス(4—メチル 6 ーシクロへキシルフェノール)、 2, 6 ジ tert—ブチルー 4 メチルフエノール、 2, 6 ジー tert—ブチルー 4 ェチルフエノール、 2, 4 ジメチルー 6 tert ブチル フエノール、 2, 6 ジ一 tert— a—ジメチルァミノ一 p クレゾール、 2, 6 ジ一 tert ーブチルー 4 (N, N,ージメチルァミノメチルフエノール)、ォクチルー 3— (3, 5—ジ —tert—ブチル—4—ヒドロキシフエ-ル)プロピオネート、トリデシルー 3—(3, 5— ジ—tert—ブチルー 4ーヒドロキシフエ-ル)プロピオネート、ペンタエリスリチルーテト ラキス [3— (3, 5—ジ—tert—ブチルー 4ーヒドロキシフエ-ル)プロピオネート]、ォ クタデシルー 3— (3, 5—ジ— tert—ブチル—4—ヒドロキシフエ-ル)プロピオネート 、ォクチルー 3— (3, 5—ジ— tert—ブチル—4—ヒドロキシフエ-ル)プロピオネート 、ォクチルー 3—(3—メチルー 5—tert ブチルー 4ーヒドロキシフエ-ル)プロピオ ネート、及びこれらの混合物等が挙げられる。これらの中でも、ヒドロキシフヱニル基 置換脂肪酸と炭素数 4〜 12のアルコールとのエステルであるヒドロキシフエ-ル基置 換エステル系酸化防止剤(ォクチルー 3— (3, 5—ジ—tert—ブチルー 4ーヒドロキシ フエ-ル)プロピオネート、ォクチルー 3—(3—メチルー 5—tert—ブチルー 4ーヒドロ キシフエ-ル)プロピオネート等)及びビスフエノール系酸ィ匕防止剤が好ましぐヒドロ キシフエ-ル基置換エステル系酸ィ匕防止剤がより好ましい。また、分子量が 240以上 のフエノール系化合物は、分解温度が高ぐより高温条件においてもその効果が発 揮されるため、好ましい。
[0308] また、硫黄を構成元素として含まないアミン系無灰酸ィ匕防止剤としては、具体的に は、フエ二ルー a—ナフチルァミン、アルキルフエ-ルー α—ナフチルァミン、アルキ ルジフエ-ルァミン、ジアルキルジフエ-ルァミン、 Ν, Ν,—ジフエ二ルー ρ—フエ-レ ンジァミン及びこれらの混合物が挙げられる。これらのアミン系無灰酸化防止剤が有 するアルキル基としては、炭素数 1〜20の直鎖又は分枝のアルキル基が好ましぐ炭 素数 4〜12の直鎖又は分枝のアルキル基がより好ましい。
[0309] 第 4実施形態に係る内燃機関用潤滑油組成物における (Α— 2)成分の含有量は 特に制限されないが、組成物全量基準で、好ましくは 0. 01質量%以上、より好ましく は 0. 1質量%以上、更に好ましくは 0. 5質量%以上、特に好ましくは 1. 0質量%以 上であり、また、好ましくは 5質量%以下、より好ましくは 3質量%以下、特に好ましく は 2質量%以下である。その含有量が 0. 01質量%未満の場合、潤滑油組成物の熱 •酸ィ匕安定性が不十分となり、特に、長期間に渡って優れた清浄性を維持させること ができなくなる傾向にある。一方、(Α— 2)成分の含有量が 5質量%を超える場合、 含有量に見合う効果の更なる向上が見られず、また、潤滑油組成物の貯蔵安定性が 低下する傾向にある。
[0310] 第 4実施形態に係る内燃機関用潤滑油組成物においては、(Α— 2)成分として、組 成物全量基準で、フエノール系無灰酸ィ匕防止剤 0. 4〜2質量%とアミン系無灰酸ィ匕 防止剤 0. 4〜2質量%とを併用する力 あるいは、アミン系酸ィ匕防止剤 0. 5〜2質量 %、より好ましくは 0. 6〜1. 5質量%を単独で用いることが特に好ましぐこれにより 長期に渡り優れた清浄性を維持させることができる。
[0311] また、第 4実施形態に係る内燃機関用潤滑油組成物は、(Β— 2)成分として、(Β— 2— 1)硫黄を構成元素として含む無灰酸ィ匕防止剤及び (Β— 2— 2)有機モリブデン 化合物から選ばれる少なくとも 1種を含有する。
[0312] (Β— 2—1)硫黄を構成元素として含有する無灰酸ィ匕防止剤としては、硫ィ匕油脂、 硫化ォレフィン、ジヒドロカルビルポリスルフイド、ジチォカーバメート類、チアジアゾー ル類、及び硫黄を構成元素として含有するフエノール系無灰酸化防止剤などが好適 である。 [0313] 硫ィ匕油脂としては、例えば、硫化ラード、硫ィ匕なたね油、硫化ひまし油、硫化大豆 油、硫ィ匕米ぬか油などの油;硫ィ匕ォレイン酸などの二硫ィ匕脂肪酸;及び硫ィ匕ォレイン 酸メチルなどの硫ィ匕エステルを挙げることができる。
[0314] 硫ィ匕ォレフインとしては、例えば下記一般式 (8)で示される化合物を挙げることがで きる。
R25 - S -R26 (8)
[式(8)中、 R25は炭素数 2〜 15のァルケ-ル基を示し、 R26は炭素数 2〜 15のアルキ ル基またはァルケ-ル基を示し、 Xは 1〜8の整数を示す。 ]
[0315] 上記一般式 (8)で示される化合物は、炭素数 2〜15のォレフィン又はその 2〜4量 体を硫黄、塩ィ匕硫黄等の硫化剤と反応させることによって得ることができる。ォレフィ ンとしては、例えば、プロピレン、イソブテン、ジイソブテンなどが好ましく用いられる。
[0316] ジヒドロカルビルポリスルフイドは、下記一般式(6)で示される化合物である。
R27— S— R28 (9)
y
[式(9)中、 R27及び R28は、それぞれ個別に、炭素数 1〜20のアルキル基 (シクロア ルキル基も含む)、炭素数 6〜20のァリール基、炭素数 7〜20のァリールアルキル基 を示し、それらは互いに同一であっても異なっていてもよぐ yは 2〜8の整数を示す。 ]
[0317] 上記 R27及び R28の例としては、具体的には、メチル基、ェチル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、イソブチル基、 sec—ブチル基、 tert—ブチル基、各 種ペンチル基、各種へキシル基、各種へプチル基、各種ォクチル基、各種ノニル基 、各種デシル基、各種ドデシル基、シクロへキシル基、フ -ル基、ナフチル基、トリ ル基、キシリル基、ベンジル基、及びフエネチル基などを挙げることができる。
[0318] ジヒドロカルビルポリスルフイドの例の好ましいものとしては、具体的には、ジベンジ ルポリスルフイド、ジー tert—ノ-ルポリスルフイド、ジドデシルポリスルフイド、ジー ter tーブチルポリスルフイド、ジォクチルポリスルフイド、ジフ -ルポリスルフイド、及びジ シクロへキシルポリスルフイドなどが挙げられる。
[0319] ジチォカーバメート類としては、下記一般式(10)又は(11)で示される化合物が好 まし 、具体例として挙げられる。 [0320] [化 19]
Figure imgf000077_0001
[0321] [化 20]
Figure imgf000077_0002
[0322] 一般式(10)及び(11)において、 R29、 R3°、 R31、 R32、 R33及び R34はそれぞれ個別 に、炭素数 1〜30、好ましくは 1〜20の炭化水素基を示し、 R35は水素原子又は炭素 数 1〜30の炭化水素基、好ましくは水素原子又は 1〜20の炭化水素基を示し、 aは 0 〜4の整数を、 bは 0〜6の整数を示す。
[0323] 上記炭素数 1〜30の炭化水素基としては、例えば、アルキル基、シクロアルキル基 、アルキルシクロアルキル基、ァルケ-ル基、ァリール基、アルキルァリール基、及び ァリールアルキル基を挙げることができる。
[0324] チアジアゾール類としては、例えば、下記一般式(12)で示される 1, 3, 4ーチアジ ァゾール化合物、一般式(13)で示される 1, 2, 4ーチアジアゾール化合物及び一般 式(14)で示される 1, 4, 5—チアジアゾール化合物を挙げることができる。
[0325] [化 21]
Figure imgf000077_0003
[0326] [化 22]
Figure imgf000077_0004
[0327] [化 23]
Figure imgf000078_0001
[0328] 一般式(12)〜(14)において、 R , Rd Rd Rd R4U及び R41は各々同一でも異 なっていてもよぐそれぞれ個別に、水素原子又は炭素数 1〜30の炭化水素基を表 し、 c、 d、 e、 f、 g及び hはそれぞれ個別に、 0〜8の整数を表す。
[0329] 上記炭素数 1〜30の炭化水素基としては、例えば、アルキル基、シクロアルキル基 、アルキルシクロアルキル基、ァルケ-ル基、ァリール基、アルキルァリール基、及び ァリールアルキル基を挙げることができる。
[0330] また、硫黄を構成元素として含むフエノール系無灰酸ィ匕防止剤としては、 4, 4'— チォビス(2—メチノレー 6—tert ブチノレフエノーノレ)、 4, 4,ーチォビス(3—メチノレー 6—tert ブチルフエノール)、 2, 2,ーチォビス(4ーメチルー 6—tert ブチルフエ ノール)、ビス(3—メチルー 4ーヒドロキシー 5— tert ブチルベンジル)スルフイド、ビ ス(3, 5 ジ tert—ブチルー 4ーヒドロキシベンジル)スルフイド、 2, 2,ーチォージ エチレンビス [3— (3, 5—ジ—tert—ブチルー 4ーヒドロキシフエ-ル)プロピオネー ト]などが挙げられる。
[0331] 上記 (B— 2— 1)成分の中でも、より優れた熱'酸化安定性が得られる点から、ジヒド ロカルビルポリスルフイド、ジチォカーバメート類及びチアジアゾール類が好ましく用 いられる。
[0332] 第 4実施形態における(B— 2)成分として (B— 2— 1)硫黄を構成元素として含む無 灰酸化防止剤を用いる場合、その含有量は特に制限されないが、組成物全量を基 準として、硫黄元素換算で、好ましくは 0. 001質量%以上、より好ましくは 0. 005質 量%以上、更に好ましくは 0. 01質量%以上であり、また、好ましくは 0. 2質量%以 下、より好ましくは 0. 1質量%以下、特に好ましくは 0. 04質量%以下である。その含 有量が前記下限値未満の場合、潤滑油組成物の熱'酸化安定性が不十分となり、特 に、長期間に渡って優れた清浄性を維持させることができなくなる傾向にある。一方、 前記上限値を超える場合、潤滑油組成物の高硫黄ィ匕による排ガス浄ィ匕装置への悪 影響が大きくなる傾向にある。
[0333] また、(B— 2)成分としての(B— 2— 2)有機モリブデン化合物には、 (B- 2- 2a) 硫黄を構成元素として含む有機モリブデン化合物、及び (B— 2— 2b)硫黄を構成元 素として含まない有機モリブデン化合物の双方が包含される。
[0334] (B- 2- 2a)硫黄を構成元素として含む有機モリブデンィ匕合物としては、例えば、 モリブデンジチォホスフェート、モリブデンジチォカーバメート等の有機モリブデン錯 体が挙げられる。
[0335] モリブデンジチォホスフェートとしては、具体的には例えば、下記一般式(15)で表 される化合物が挙げられる。
[0336]
Figure imgf000079_0001
[0337] 上記一般式(12)中、 R42、 R43、 R44及び R45は、それぞれ同一でも異なっていてもよ ぐ炭素数 2〜30、好ましくは炭素数 5〜18、より好ましくは炭素数 5〜12のアルキル 基、又は炭素数 6〜18、好ましくは炭素数 10〜15の(アルキル)ァリール基等の炭 化水素基を示す。また 、 Υ2、 Υ3及び Υ4は、それぞれ硫黄原子または酸素原子を 示す。
[0338] アルキル基として好ましい例としては、ェチル基、プロピル基、ブチル基、ペンチル 基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデ シル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、ヘプタデ シル基、ォクタデシル基等が挙げられ、これらは 1級アルキル基、 2級アルキル基又 は 3級アルキル基でも良ぐまた直鎖状でも分枝状でもよ!/ヽ。
[0339] (アルキル)ァリール基の好ましい例としては、フヱ-ル基、トリル基、ェチルフヱ-ル 基、プロピルフエ-ル基、ブチルフエ-ル基、ペンチルフエ-ル基、へキシルフエ-ル 基、ォクチルフヱニル基、ノニルフヱニル基、デシルフヱニル基、ゥンデシルフヱニル 基、ドデシルフヱ-ル基等が挙げられ、そのアルキル基は 1級アルキル基、 2級アル キル基又は 3級アルキル基でも良ぐまた直鎖状でも分枝状でもよい。さらにこれら( アルキル)ァリール基には、ァリール基へのアルキル基の置換位置が異なる、全ての 置換異性体が含まれる。
[0340] 好ましいモリブデンジチォホスフェートとしては、具体的には、硫化モリブデンジェ チルジチォホスフェート、硫化モリブデンジプロピルジチォホスフェート、硫化モリブ デンジブチルジチォホスフェート、硫化モリブデンジペンチルジチォホスフェート、硫 化モリブデンジへキシルジチォホスフェート、硫化モリブデンジォクチルジチォホスフ ォホスフェート、硫化モリブデンジ(ブチルフエ-ル)ジチォホスフェート、硫化モリブ デンジ(ノエルフエ-ル)ジチォホスフェート、硫化ォキシモリブデンジェチルジチォホ スフエート、硫化ォキシモリブデンジプロピルジチォホスフェート、硫化ォキシモリブデ ンジブチルジチォホスフェート、硫化ォキシモリブデンジペンチルジチォホスフェート 、硫化ォキシモリブデンジへキシルジチォホスフェート、硫化ォキシモリブデンジォク チルジチォホスフェート、硫化ォキシモリブデンジデシルジチォホスフェート、硫化ォ
-ル)ジチォホスフェート、硫化ォキシモリブデンジ(ノ -ルフエ-ル)ジチォホスフエ ート(アルキル基は直鎖状でも分枝状でも良ぐまた、アルキルフエニル基のアルキル 基の結合位置は任意である)、及びこれらの混合物等が例示できる。なお、これらモリ ブデンジチォホスフェートとしては、 1分子中に異なる炭素数及び Zまたは構造の炭 化水素基を有する化合物も、好ましく用いることができる。
[0341] モリブデンジチォカーバメートとしては、具体的には例えば、下記一般式(16)で表 される化合物を用いることができる。
[0342] [化 25]
Figure imgf000080_0001
[0343] 上記一般式(16)中、 R46、 R47、 R48及び R49は、それぞれ同一でも異なっていてもよ ぐ炭素数 2〜24、好ましくは炭素数 4〜 13のアルキル基、又は炭素数 6〜24、好ま しくは炭素数 10〜15の(アルキル)ァリール基等の炭化水素基を示す。また Y5、 Υ6、 Υ7及び Υ8は、それぞれ硫黄原子または酸素原子を示す。
[0344] アルキル基として好まし!/、例としては、ェチル基、プロピル基、ブチル基、ペンチル 基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデ シル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、ヘプタデ シル基、ォクタデシル基等が挙げられ、これらは 1級アルキル基、 2級アルキル基又 は 3級アルキル基でも良ぐまた直鎖状でも分枝状でもよ!/ヽ。
[0345] (アルキル)ァリール基の好まし!/、例としては、フエ-ル基、トリル基、ェチルフヱ-ル 基、プロピルフエ-ル基、ブチルフエ-ル基、ペンチルフエ-ル基、へキシルフエ-ル 基、ォクチルフヱニル基、ノニルフヱニル基、デシルフヱニル基、ゥンデシルフヱニル 基、ドデシルフヱ-ル基等が挙げられ、そのアルキル基は 1級アルキル基、 2級アル キル基又は 3級アルキル基でも良ぐまた直鎖状でも分枝状でもよい。さらにこれら( アルキル)ァリール基には、ァリール基へのアルキル基の置換位置が異なる、全ての 置換異性体が含まれる。また、上記構造以外のモリブデンジチォカーバメートとして ίま、 WO98/26030ある!/ヽ ίま、 W099/31113【こ開示されるようなチ才又 ίまポリチ ォ一三核モリブデンにジチォカーバメート基が配位した構造を有するもの等が挙げら れる。
[0346] 好ましいモリブデンジチォカーバメートとしては、具体的には、硫化モリブデンジェ チルジチォカーバメート、硫化モリブデンジプロピルジチォカーバメート、硫化モリブ デンジブチルジチォカーバメート、硫化モリブデンジペンチルジチォカーバメート、硫 化モリブデンジへキシルジチォカーバメート、硫化モリブデンジォクチルジチォカー チォカーバメート、硫化モリブデンジ (プチルフエ-ル)ジチォカーバメート、硫化モリ ブデンジ(ノニルフエニル)ジチォカーバメート、硫化ォキシモリブデンジェチルジチ ォカーバメート、硫ィ匕ォキシモリブデンジプロピルジチォカーバメート、硫ィ匕ォキシモ リブデンジブチルジチォカーバメート、硫化ォキシモリブデンジペンチルジチォカー バメート、硫ィ匕ォキシモリブデンジへキシルジチォカーバメート、硫ィ匕ォキシモリブデ ンジォクチルジチォカーバメート、硫化ォキシモリブデンジデシルジチォカーバメート 、硫ィ匕ォキシモリブデンジドデシルジチォカーバメート、硫ィ匕ォキシモリブデンジ (ブ チルフエ-ル)ジチォカーバメート、硫化ォキシモリブデンジ(ノエルフエ-ル)ジチォ カーバメート (アルキル基は直鎖状でも分枝状でも良ぐまた、アルキルフエ-ル基の アルキル基の結合位置は任意である)、及びこれらの混合物等が例示できる。なお、 これらモリブデンジチォカーノメートとしては、 1分子中に異なる炭素数及び Zまたは 構造の炭化水素基を有する化合物も、好ましく用いることができる。
[0347] また、これら以外の硫黄を含有する有機モリブデン錯体としては、モリブデンィ匕合物
(例えば、二酸化モリブデン、三酸ィ匕モリブデン等の酸ィ匕モリブデン、オルトモリブデ ン酸、ノ ラモリブデン酸、(ポリ)硫ィ匕モリブデン酸等のモリブデン酸、これらモリブデ ン酸の金属塩、アンモ-ゥム塩等のモリブデン酸塩、二硫ィ匕モリブデン、三硫化モリ ブデン、五硫ィ匕モリブデン、ポリ硫ィ匕モリブデン等の硫ィ匕モリブデン、硫化モリブデン 酸、硫ィ匕モリブデン酸の金属塩又はアミン塩、塩ィ匕モリブデン等のハロゲンィ匕モリブ デン等)と、硫黄含有有機化合物 (例えば、アルキル (チォ)キサンテート、チアジアゾ ール、メルカプトチアジアゾール、チォカーボネート、テトラハイド口カルビルチウラム ジスルフイド、ビス(ジ(チォ)ハイド口カルビルジチォホスホネート)ジスルフイド、有機 (ポリ)サルファイド、硫ィ匕エステル等)あるいはその他の有機化合物との錯体等、ある いは、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアル ケニルコハク酸イミドとの錯体等を挙げることができる。
[0348] 第 4実施形態における(B 2)成分として (B 2— 2a)硫黄を構成元素として含む 有機モリブデンィ匕合物を用いると、熱 ·酸ィ匕安定性の向上効果に加えて摩擦低減効 果を得ることができるので好ましぐ中でもモリブデンジチォカーバメートが特に好まし い。
[0349] また、(B— 2— 2b)硫黄を構成元素として含まない有機モリブデンィ匕合物としては、 具体的には、モリブデン—アミン錯体、モリブデン—コハク酸イミド錯体、有機酸のモ リブデン塩、アルコールのモリブデン塩などが挙げられ、中でも、モリブデンーァミン 錯体、有機酸のモリブデン塩及びアルコールのモリブデン塩が好まし 、。
[0350] 上記モリブデン アミン錯体を構成するモリブデンィ匕合物としては、三酸化モリブデ ン又はその水和物(MoO ·ηΗ 0)、モリブデン酸(Η ΜοΟ )、モリブデン酸アル力
3 2 2 4
リ金属塩(Μ Μο04 ;Μはアルカリ金属を示す)、モリブデン酸アンモ-ゥム((ΝΗ )
2 4
2ΜοΟ又は(ΝΗ ) [Mo O ] ·4Η Ο)、 MoCl、 MoOCl、 MoO CI、 MoO Br
4 4 6 7 24 2 5 4 2 2 2 2
、 Mo O CI等の硫黄を含まないモリブデンィ匕合物が挙げられる。こららのモリブデン
2 3 6
化合物の中でも、モリブデン アミン錯体の収率の点から、 6価のモリブデン化合物 が好ましい。更に、入手性の点から、 6価のモリブデンィ匕合物の中でも、三酸化モリブ デン又はその水和物、モリブデン酸、モリブデン酸アルカリ金属塩、及びモリブデン 酸アンモニゥムが好まし 、。
また、モリブデン—アミン錯体を構成する窒素化合物としては、特に制限されないが 、アンモニア、モノアミン、ジァミン、ポリアミンが挙げられる。より具体的には、メチルァ ミン、ェチルァミン、プロピルァミン、ブチルァミン、ペンチルァミン、へキシルァミン、 ヘプチルァミン、ォクチルァミン、ノ-ルァミン、デシルァミン、ゥンデシルァミン、ドデ シルァミン、トリデシルァミン、テトラデシルァミン、ペンタデシルァミン、へキサデシル ァミン、ヘプタデシルァミン、ォクタデシルァミン、ジメチルァミン、ジェチルァミン、ジ プロピルァミン、ジブチルァミン、ジペンチルァミン、ジへキシルァミン、ジヘプチルァ ミン、ジォクチルァミン、ジノ -ルァミン、ジデシルァミン、ジゥンデシルァミン、ジドデ シルァミン、ジトリデシルァミン、ジテトラデシルァミン、ジペンタデシルァミン、ジへキ サデシルァミン、ジヘプタデシルァミン、ジォクタデシルァミン、メチルェチルァミン、メ チルプロピルァミン、メチルブチルァミン、ェチルプロピルアミン、ェチルブチルァミン 、及びプロピルブチルァミン等の炭素数 1〜30のアルキル基(これらのアルキル基は 直鎖状でも分枝状でもよ ヽ)を有するアルキルアミン;ェテニルァミン、プロべ-ルアミ ン、ブテュルァミン、オタテュルァミン、及びォレイルァミン等の炭素数 2〜30のアル ケニル基 (これらのァルケ-ル基は直鎖状でも分枝状でもよ ヽ)を有するァルケ-ル ァミン;メタノールァミン、エタノールァミン、プロパノールァミン、ブタノールァミン、ぺ ンタノールァミン、へキサノールァミン、ヘプタノールアミン、ォクタノールァミン、ノナノ ールァミン、メタノールエタノールァミン、メタノールプロパノールァミン、メタノールブ タノールァミン、エタノールプロパノールァミン、エタノールブタノールァミン、及びプロ パノールブタノールァミン等の炭素数 1〜30のアル力ノール基(これらのアルカノー ル基は直鎖状でも分枝状でもよい)を有するアルカノールァミン;メチレンジァミン、ェ チレンジァミン、プロピレンジァミン、及びブチレンジァミン等の炭素数 1〜30のアル キレン基を有するアルキレンジァミン;ジエチレントリァミン、トリエチレンテトラミン、テト ラエチレンペンタミン、ペンタエチレンへキサミン等のポリアミン;ゥンデシルジェチル ァミン、ゥンデシルジェタノールァミン、ドデシルジプロパノールァミン、ォレイルジェ タノールァミン、ォレイルプロピレンジァミン、ステアリルテトラエチレンペンタミン等の 上記モノアミン、ジァミン、ポリアミンに炭素数 8〜20のアルキル基又はァルケ-ル基 を有する化合物や N ヒドロキシェチルォレイルイミダゾリン等の複素環化合物;これ らの化合物のアルキレンォキシド付加物;及びこれらの混合物等が例示できる。これ らの中でも、第 1級ァミン、第 2級ァミン及びアルカノールァミンが好ましい。
[0352] モリブデン アミン錯体を構成するアミンィ匕合物が有する炭化水素基の炭素数は、 好ましくは 4以上であり、より好ましくは 4〜30であり、特に好ましくは 8〜18である。ァ ミンィ匕合物の炭化水素基の炭素数力 未満であると、溶解性が悪ィ匕する傾向にある。 また、アミンィ匕合物の炭素数を 30以下とすることにより、モリブデン アミン錯体にお けるモリブデン顔料を早退的に高めることができ、少量の配合で本発明の効果をより 高めることができる。
[0353] また、モリブデンーコハク酸イミド錯体としては、上記モリブデン アミン錯体の説明 にお 、て例示されたような硫黄を含まな 、モリブデン化合物と、炭素数 4以上のアル キル基又はアルケニル基を有するコハク酸イミドとの錯体が挙げられる。コハク酸イミ ドとしては、炭素数 40〜400のアルキル基又はァルケ-ル基を分子中に少なくとも 1 個有するコハク酸イミド、あるいはその誘導体や、炭素数 4〜39、好ましくは炭素数 8 〜18のアルキル基又はァルケ-ル基を有するコハク酸イミド等が挙げられる。コハク 酸イミドにおけるアルキル基又はアルケニル基の炭素数力 未満であると溶解性が悪 化する傾向にある。また、炭素数 30を超え 400以下のアルキル基又はアルケニル基 を有するコハク酸イミドを使用することもできる力 当該アルキル基又はアルケニル基 の炭素数を 30以下とすることにより、モリブデンーコハク酸イミド錯体におけるモリブ デン含有量を相対的に高めることができ、少量の配合で本発明の効果をより高めるこ とがでさる。 [0354] また、有機酸のモリブデン塩としては、上記モリブデン アミン錯体の説明にお!/、て 例示されたモリブデン酸ィ匕物あるいはモリブデン水酸ィ匕物、モリブデン炭酸塩又はモ リブデン塩ィ匕物等のモリブデン塩基と、有機酸との塩が挙げられる。有機酸としては、 上記第 3実施形態の説明にお 、て例示された一般式 (4 c)又は (4 d)で表される リンィ匕合物、及びカルボン酸が好ましい。
[0355] カルボン酸のモリブデン塩を構成するカルボン酸としては、一塩基酸又は多塩基酸 のいずれであってもよい。
[0356] 一塩基酸としては、炭素数が通常 2〜30、好ましくは 4〜24の脂肪酸が用いられ、 その脂肪酸は直鎖のものでも分岐のものでもよぐまた飽和のものでも不飽和のもの でもよい。具体的には、例えば、酢酸、プロピオン酸、直鎖状又は分岐状のブタン酸 、直鎖状又は分岐状のペンタン酸、直鎖状又は分岐状のへキサン酸、直鎖状又は 分岐状のヘプタン酸、直鎖状又は分岐状のオクタン酸、直鎖状又は分岐状のノナン 酸、直鎖状又は分岐状のデカン酸、直鎖状又は分岐状のゥンデカン酸、直鎖状又は 分岐状のドデカン酸、直鎖状又は分岐状のトリデカン酸、直鎖状又は分岐状のテトラ デカン酸、直鎖状又は分岐状のペンタデカン酸、直鎖状又は分岐状のへキサデカン 酸、直鎖状又は分岐状のへプタデカン酸、直鎖状又は分岐状のォクタデカン酸、直 鎖状又は分岐状のヒドロキシォクタデカン酸、直鎖状又は分岐状のノナデカン酸、直 鎖状又は分岐状のィコサン酸、直鎖状又は分岐状のへンィコサン酸、直鎖状又は分 岐状のドコサン酸、直鎖状又は分岐状のトリコサン酸、直鎖状又は分岐状のテトラコ サン酸等の飽和脂肪酸、アクリル酸、直鎖状又は分岐状のブテン酸、直鎖状又は分 岐状のペンテン酸、直鎖状又は分岐状のへキセン酸、直鎖状又は分岐状のへプテ ン酸、直鎖状又は分岐状のオタテン酸、直鎖状又は分岐状のノネン酸、直鎖状又は 分岐状のデセン酸、直鎖状又は分岐状のゥンデセン酸、直鎖状又は分岐状のドデ セン酸、直鎖状又は分岐状のトリデセン酸、直鎖状又は分岐状のテトラデセン酸、直 鎖状又は分岐状のペンタデセン酸、直鎖状又は分岐状のへキサデセン酸、直鎖状 又は分岐状のへプタデセン酸、直鎖状又は分岐状のォクタデセン酸、直鎖状又は分 岐状のヒドロキシォクタデセン酸、直鎖状又は分岐状のノナデセン酸、直鎖状又は分 岐状のィコセン酸、直鎖状又は分岐状のへンィコセン酸、直鎖状又は分岐状のドコ セン酸、直鎖状又は分岐状のトリコセン酸、直鎖状又は分岐状のテトラコセン酸等の 不飽和脂肪酸、及びこれらの混合物等が挙げられる。
[0357] また、一塩基酸としては、上記脂肪酸の他に、単環又は多環カルボン酸 (水酸基を 有していてもよい)を用いてもよぐその炭素数は、好ましくは 4〜30、より好ましくは 7 〜30である。単環又は多環カルボン酸としては、炭素数 1〜30、好ましくは炭素数 1 〜20の直鎖状又は分岐状のアルキル基を 0〜3個、好ましくは 1〜2個有する芳香族 カルボン酸又はシクロアルキルカルボン酸等が挙げられ、より具体的には、(アルキ ル)ベンゼンカルボン酸、(アルキル)ナフタレンカルボン酸、(アルキル)シクロアルキ ルカルボン酸等が例示できる。単環又は多環カルボン酸の好ましい例としては、安息 香酸、サリチル酸、アルキル安息香酸、アルキルサリチル酸、シクロへキサンカルボン 酸等が挙げられる。
[0358] また、多塩基酸としては、二塩基酸、三塩基酸、四塩基酸等が挙げられる。多塩基 酸は鎖状多塩基酸、環状多塩基酸のいずれであってもよい。また、鎖状多塩基酸の 場合、直鎖状、分岐状のいずれであってもよぐまた、飽和、不飽和のいずれであつ てもよい。鎖状多塩基酸としては、炭素数 2〜16の鎖状二塩基酸が好ましぐ具体的 には例えば、エタンニ酸、プロパン二酸、直鎖状又は分岐状のブタン二酸、直鎖状 又は分岐状のペンタン二酸、直鎖状又は分岐状のへキサン二酸、直鎖状又は分岐 状のヘプタン二酸、直鎖状又は分岐状のオクタン二酸、直鎖状又は分岐状のノナン 二酸、直鎖状又は分岐状のデカン二酸、直鎖状又は分岐状のゥンデカン二酸、直 鎖状又は分岐状のドデカン二酸、直鎖状又は分岐状のトリデカン二酸、直鎖状又は 分岐状のテトラデカン二酸、直鎖状又は分岐状のへプタデカン二酸、直鎖状又は分 岐状のへキサデカン二酸、直鎖状又は分岐状のへキセン二酸、直鎖状又は分岐状 のヘプテン二酸、直鎖状又は分岐状のオタテン二酸、直鎖状又は分岐状のノネンニ 酸、直鎖状又は分岐状のデセン二酸、直鎖状又は分岐状のゥンデセン二酸、直鎖 状又は分岐状のドデセン二酸、直鎖状又は分岐状のトリデセン二酸、直鎖状又は分 岐状のテトラデセン二酸、直鎖状又は分岐状のへプタデセン二酸、直鎖状又は分岐 状のへキサデセン二酸、ァルケ-ルコハク酸及びこれらの混合物等が挙げられる。ま た、環状多塩基酸としては、 1、 2—シクロへキサンジカルボン酸、 4ーシクロへキセン 1, 2—ジカルボン酸の脂環式ジカルボン酸、フタル酸等の芳香族ジカルボン酸、 トリメリット酸等の芳香族トリカルボン酸、ピロメリット酸等の芳香族テトラカルボン酸等 が挙げられる。
[0359] また、上記アルコールのモリブデン塩としては、上記モリブデン アミン錯体の説明 にお!/、て例示されたような硫黄を含まな 、モリブデン化合物と、アルコールとの塩が 挙げられ、アルコールは 1価アルコール、多価アルコール、多価アルコールの部分ェ ステルもしくは部分エステルイ匕合物、水酸基を有する窒素化合物(アル力ノールアミ ン等)などのいずれであってもよい。なお、モリブデン酸は強酸であり、アルコールと の反応によりエステルを形成するが、当該モリブデン酸とアルコールとのエステルも 本発明でいうアルコールのモリブデン塩に包含される。
[0360] 一価アルコールとしては、通常炭素数 1〜24、好ましくは 1〜12、より好ましくは 1〜 8のものが用いられ、このようなアルコールとしては直鎖のものでも分岐のものでもよく 、また飽和のものであっても不飽和のものであってもよい。炭素数 1〜24のアルコー ルとしては、具体的には例えば、メタノール、エタノール、直鎖状又は分岐状のプロ パノール、直鎖状又は分岐状のブタノール、直鎖状又は分岐状のペンタノール、直 鎖状又は分岐状のへキサノール、直鎖状又は分岐状のへプタノール、直鎖状又は 分岐状のォクタノール、直鎖状又は分岐状のノナノール、直鎖状又は分岐状のデカ ノール、直鎖状又は分岐状のゥンデ力ノール、直鎖状又は分岐状のドデカノール、 直鎖状又は分岐状のトリデカノール、直鎖状又は分岐状のテトラデカノール、直鎖状 又は分岐状のペンタデカノール、直鎖状又は分岐状のへキサデ力ノール、直鎖状又 は分岐状のヘプタデカノール、直鎖状又は分岐状のォクタデカノール、直鎖状又は 分岐状のノナデ力ノール、直鎖状又は分岐状のィコサノール、直鎖状又は分岐状の ヘンィコサノール、直鎖状又は分岐状のトリコサノール、直鎖状又は分岐状のテトラコ サノール及びこれらの混合物等が挙げられる。
[0361] また、多価アルコールとしては、通常 2〜10価、好ましくは 2〜6価のものが用いら れる。 2〜10の多価アルコールとしては、具体的には例えば、エチレングリコール、ジ エチレングリコール、ポリエチレングリコール(エチレングリコールの 3〜15量体)、プ ロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール(プロピレングリ コールの 3〜 15量体)、 1, 3 プロパンジオール、 1, 2 プロパンジオール、 1, 3— ブタンジオール、 1, 4 ブタンジオール、 2—メチルー 1, 2 プロパンジオール、 2— メチルー 1, 3 プロパンジオール、 1, 2 ペンタンジオール、 1, 3 ペンタンジォー ル、 1, 4 ペンタンジオール、 1, 5 ペンタンジオール、ネオペンチルグリコール等 の 2価アルコール;グリセリン、ポリグリセリン(グリセリンの 2〜8量体、例えばジグリセリ ン、トリグリセリン、テトラグリセリン等)、トリメチロールアルカン(トリメチロールェタン、ト リメチロールプロパン、トリメチロールブタン等)及びこれらの 2〜8量体、ペンタエリスリ トール及びこれらの 2〜4量体、 1, 2, 4 ブタントリオール、 1, 3, 5 ペンタントリオ ール、 1, 2, 6 へキサントリオール、 1, 2, 3, 4 ブタンテトロール、ソルビトール、ソ ルビタン、ソルビトールグリセリン縮合物、アド-トール、ァラビトール、キシリトール、マ ン-トール等の多価アルコール;キシロース、ァラビノース、リボース、ラムノース、グル コース、フノレクトース、ガラクトース、マンノース、ソノレボース、セロビオース、マノレトース 、イソマルトース、トレハロース、スクロース等の糖類、及びこれらの混合物等が挙げら れる。
[0362] また、多価アルコールの部分エステルとしては、上記多価アルコールの説明にお!/ヽ て例示された多価アルコールが有する水酸基の一部がヒドロカルビルエステルイ匕さ れたィ匕合物等が挙げられ、中でもグリセリンモノォレート、グリセリンジォレート、ソルビ タンモノォレート、ソルビタンジォレート、ペンタエリスリトーノレモノォレート、ポリエチレ ングリコールモノォレート、ポリグリセリンモノォレートが好ましい。
[0363] また、多価アルコールの部分エーテルとしては、上記多価アルコールの説明にお いて例示された多価アルコールが有する水酸基の一部がヒドロカルビルエーテル化 された化合物、多価アルコール同士の縮合によりエーテル結合が形成されたィ匕合物 (ソルビタン縮合物等)などが挙げられ、中でも 3—ォクタデシルォキシ 1, 2 プロ パンジオール、 3—ォクタデセ -ルォキシー 1, 2 プロパンジオール、ポリエチレング リコールアルキルエーテル等が好まし 、。
[0364] また、水酸基を有する窒素化合物としては、上記モリブデン アミン錯体の説明に お!、て例示されたアルカノールァミン、並びに当該アル力ノールのアミノ基がアミドィ匕 されたアル力ノールアミド(ジエタノールアミド等)などが挙げられ、中でもステラリルジ エタノールァミン、ポリエチレングリコールステアリルァミン、ポリエチレングリコールジ ォレイルァミン、ヒドロキシェチルラウリルァミン、ォレイン酸ジエタノールアミド等が好 ましい。
[0365] 第 4実施形態における(B— 2)成分として (B— 2— 2b)硫黄を構成元素として含ま な ヽ有機モリブデンィ匕合物を用いると、潤滑油組成物の高温清浄性や塩基価保持 性を高めることができ、また、初期の摩擦低減効果を長時間維持できる点で好ましく 、中でもモリブデン—アミン錯体が特に好ま 、。
[0366] また、第 4実施形態においては、(B— 2— 2a)硫黄を構成元素として含む有機モリ ブデン化合物と (B— 2— 2b)硫黄を構成元素として含まな ヽ有機モリブデン化合物 とを併用してもよい。
[0367] 第 4実施形態における(B— 2)成分として有機モリブデンィ匕合物を用いる場合、そ の含有量は特に制限されないが、組成物全量を基準として、モリブデン元素換算で、 好ましくは 0. 001質量%以上、より好ましくは 0. 005質量%以上、更に好ましくは 0. 01質量%以上であり、また、好ましくは 0. 2質量%以下、より好ましくは 0. 1質量% 以下、特に好ましくは 0. 04質量%以下である。その含有量が 0. 001質量%未満の 場合、潤滑油組成物の熱'酸化安定性が不十分となり、特に、長期間に渡って優れ た清浄性を維持させることができなくなる傾向にある。一方、当該含有量が 0. 2質量 %を超える場合、含有量に見合う効果が得られず、また、潤滑油組成物の貯蔵安定 性が低下する傾向にある。
[0368] 第 4実施形態に係る内燃機関用潤滑油組成物は、上述の潤滑油基油及び (A— 2 ) , (B— 2)成分のみ力もなるものであってもよいが、その性能を更に向上させるため に、必要に応じて以下に示す各種添加剤を更に含有してもよい。
[0369] 第 4実施形態に係る内燃機関用潤滑油組成物は、耐摩耗性の更なる向上の点カゝら 、摩耗防止剤を更に含有することが好ましい。力かる極圧剤としては、リン系極圧剤、 リン 硫黄系極圧剤などが好ましく用いられる。
[0370] リン系極圧剤としては、リン酸、亜リン酸、リン酸エステル類 (リン酸モノエステル類、 リン酸ジエステル類及びリン酸トリエステル類を含む)、亜リン酸エステル類 (亜リン酸 モノエステル類、亜リン酸ジエステル類及び亜リン酸トリエステル類を含む)、及びこ れらの塩 (ァミン塩又は金属塩)が挙げられる。リン酸エステル類及び亜リン酸エステ ル類としては、通常炭素数 2〜30、好ましくは炭素数 3〜20の炭化水素基を有するも のが用いられる。
[0371] また、リン 硫黄系極圧剤としては、チォリン酸、チォ亜リン酸、チォリン酸エステル 類 (チォリン酸モノエステル類、チォリン酸ジエステル類、チォリン酸トリエステル類を 含む)、チォ亜リン酸エステル類 (チォ亜リン酸モノエステル類、チォ亜リン酸ジエステ ル類、チォ亜リン酸トリエステル類を含む)、及びこれらの塩、並びにジチォリン酸亜 鉛等が挙げられる。チォリン酸エステル類及びチォ亜リン酸エステル類としては、通 常炭素数 2〜30、好ましくは炭素数 3〜20の炭化水素基を有するものが用いられる
[0372] 上記の極圧剤の含有量は特に制限されないが、組成物全量基準で、好ましくは 0.
01〜5質量%、より好ましくは 0. 1〜3質量%である。
[0373] 第 4実施形態に係る内燃機関用潤滑油組成物においては、上記の極圧剤の中で もジチォリン酸亜鉛が特に好ましい。ジチォリン酸亜鉛としては、例えば下記一般式(
17)で表される化合物を例示できる。
[0374] [化 26]
Figure imgf000090_0001
[0375] 上記一般式(17)中の R&u1、 R 及び R は、それぞれ別個に炭素数 1〜24の 炭化水素基を示す。これら炭化水素基としては、炭素数 1〜24の直鎖状又は分枝状 のアルキル基、炭素数 3〜24の直鎖状又は分枝状のアルケニル基、炭素数 5〜13 のシクロアルキル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素 数 6〜 18のァリール基又は直鎖状若しくは分枝状のアルキルァリール基、及び炭素 数 7〜 19のァリールアルキル基等のいずれかであることが望ましい。また、アルキル 基やアルケニル基は、第 1級、第 2級及び第 3級のいずれであってもよい。
[0376] R5、 R51、 R52及び R53としては、具体的には、メチル基、ェチル基、プロピル基、ブ チル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥ ンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、へキサデ シル基、ヘプタデシル基、ォクタデシル基、ノナデシル基、ィコシル基、ヘンィコシル 基、ドコシル基、トリコシル基及びテトラコシル基等のアルキル基、プロべ-ル基、イソ プロべ-ル基、ブテュル基、ブタジェ-ル基、ペンテ-ル基、へキセ-ル基、ヘプテ ニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセニル基、ドデセニル基、トリ デセニル基、テトラデセニル基、ペンタデセニル基、へキサデセニル基、ヘプタデセ
-ル基及びォレイル基等のォクタデセ-ル基、ノナデセ-ル基、ィコセ-ル基、ヘン ィコセ-ル基、ドコセ-ル基、トリコセ -ル基及びテトラコセ-ル基等のァルケ-ル基
、シクロペンチル基、シクロへキシル基及びシクロへプチル基等のシクロアルキル基、 メチルシクロペンチル基、ジメチルシクロペンチル基、ェチルシクロペンチル基、プロ ビルシクロペンチル基、ェチルメチルシクロペンチル基、トリメチルシクロペンチル基、 ジェチルシクロペンチル基、ェチルジメチルシクロペンチル基、プロピルメチルシクロ ペンチル基、プロピルェチルシクロペンチル基、ジープ口ビルシクロペンチル基、プロ ピルェチルメチルシクロペンチル基、メチルシクロへキシル基、ジメチルシクロへキシ ル基、ェチルシクロへキシル基、プロビルシクロへキシル基、ェチルメチルシクロへキ シル基、トリメチルシクロへキシル基、ジェチルシクロへキシル基、ェチルジメチルシク 口へキシル基、プロピルメチルシクロへキシル基、プロピルェチルシクロへキシル基、 ジープ口ビルシクロへキシル基、プロピルェチルメチルシクロへキシル基、メチルシク 口へプチル基、ジメチルシクロへプチル基、ェチルシクロへプチル基、プロビルシクロ ヘプチル基、ェチルメチルシクロへプチル基、トリメチルシクロへプチル基、ジェチル シクロへプチル基、ェチルジメチルシクロへプチル基、プロピルメチルシクロへプチル 基、プロピルェチルシクロへプチル基、ジープ口ビルシクロへプチル基及びプロピル ェチルメチルシクロへプチル基等のアルキルシクロアルキル基、フエ-ル基及びナフ チル基等のァリール基、トリル基、キシリル基、ェチルフエ-ル基、プロピルフエ-ル 基、ェチルメチルフエ-ル基、トリメチルフエ-ル基、ブチルフエ-ル基、プロピルメチ ルフエ-ル基、ジェチルフエ-ル基、ェチルジメチルフエ-ル基、テトラメチルフエ- ル基、ペンチルフエ-ル基、へキシルフエ-ル基、ヘプチルフエ-ル基、ォクチルフ ェニル基、ノニルフ 二ル基、デシルフヱニル基、ゥンデシルフヱニル基及びドデシル フエ-ル基等のアルキルァリール基、ベンジル基、メチルベンジル基、ジメチルベン ジル基、フエネチル基、メチルフエネチル基及びジメチルフエネチル基等のァリール アルキル基等が例示できる。などを挙げることができる。なお、上記炭化水素基には 、考えられる全ての直鎖状構造及び分枝状構造が含まれ、また、ァルケ-ル基の二 重結合の位置、アルキル基のシクロアルキル基への結合位置、アルキル基のァリー ル基への結合位置、及びァリール基のアルキル基への結合位置は任意である。
[0377] 上記ジチォリン酸亜鉛の好適な具体例としては、例えば、ジイソプロピルジチォリン 酸亜鉛、ジイソブチルジチォリン酸亜鉛、ジー sec ブチルジチォリン酸亜鉛、ジー s ec ペンチルジチォリン酸亜鉛、ジー n—へキシルジチォリン酸亜鉛、ジー sec へ キシルジチオリン酸亜鉛、ジ ォクチルジチオリン酸亜鉛、ジー 2—ェチルへキシル ジチォリン酸亜鉛、ジー n デシルジチォリン酸亜鉛、ジー n—ドデシルジチォリン酸 亜鉛、ジイソトリデシルジチォリン酸亜鉛、及びこれらの任意の組合せに係る混合物 等が挙げられる。
[0378] 上記ジチォリン酸亜鉛の製造方法は特に限定されず、任意の従来方法を採用して 製造することができる。具体的には、例えば、上記式(17)中の R5°、 R51、 R52及び R53 に対応する炭化水素基を有するアルコール又はフエノールを五硫ィ匕-リンと反応さ せてジチォリン酸とし、これを酸ィ匕亜鉛で中和させることにより合成できる。なお、使 用する原料アルコール等によって、上記ジチォリン酸亜鉛の構造は異なる。
[0379] また、上記ジチォリン酸亜鉛の含有量は、特に制限されないが、排ガス浄化装置の 触媒被毒を抑制する点から、組成物全量を基準として、リン元素換算量で、好ましく は 0. 2質量%以下、より好ましくは 0. 1質量%以下、更に好ましくは 0. 08質量%以 下、特に好ましくは 0. 06質量%以下である。であることが好ましぐまた 0. 06%以下 であることがより好ましい。また、ジチォリン酸亜鉛の含有量は、耐摩耗性添加剤の作 用効果を及ぼすリン酸金属塩の形成の点から、組成物全量を基準として、リン元素換 算量で、好ましくは 0. 01質量%以上、より好ましくは 0. 02質量%以上、更に好まし くは 0. 04質量%以上である。ジチォリン酸亜鉛の含有量が前記下限値未満であると 、その添カ卩による耐摩耗性向上効果が不十分となる傾向にある。
[0380] また、第 4実施形態に係る内燃機関用潤滑油組成物は、清浄性及びスラッジ分散 性の点から、無灰分散剤を更に含有することが好ましい。無灰分散剤の具体例及び 好ま 、例は、上記第 3実施形態の説明にお 、て (C— 1)成分として例示された無 灰分散剤の場合と同様であり、ここでは重複する説明を省略する。
[0381] 第 4実施形態に係る内燃機関用潤滑油組成物における無灰分散剤の含有量は、 組成物全量を基準として、窒素元素換算で、好ましくは 0. 005質量%以上、より好ま しくは 0. 01質量%以上、更に好ましくは 0. 05質量%以上であり、また、好ましくは 0 . 3質量%以下、より好ましくは 0. 2質量%以下、更に好ましくは 0. 015質量%以下 である。無灰分散剤の含有量が上記下限値に満たない場合は、十分な清浄性効果 が発揮できず、一方、その含有量が上記上限値を超える場合は、低温粘度特性の悪 化及び抗乳化性が悪ィヒするためそれぞれ好ましくない。なお、重量平均分子量が 6 500以上のコハク酸イミド系無灰分散剤を使用する場合、十分なスラッジ分散性を発 揮し、低温粘度特性に優れる点で、その含有量は、組成物全量を基準として、窒素 元素換算で、 0. 005〜0. 05質量0 /0とすること力好ましく、 0. 01〜0. 04質量0 /0とす ることがより好まし!/、。
[0382] また、高分子量の無灰分散剤を用いる場合、その含有量は、組成物全量を基準と して、窒素元素換算で、好ましくは 0. 005質量%以上、より好ましくは 0. 01質量% 以上であり、また、好ましくは 0. 1質量%以下、より好ましくは 0. 05質量%以下であ る。高分子量の無灰分散剤の含有量が上記下限値に満たない場合は、十分な清浄 性効果が発揮できず、一方、その含有量が上記上限値を超える場合は、低温粘度 特性の悪化及び抗乳化性が悪化するためそれぞれ好ましくない。
[0383] また、ホウ素化合物で変性された無灰分散剤を用いる場合、その含有量は、組成 物全量を基準として、ホウ素元素換算で、好ましくは 0. 005質量%以上、より好ましく は 0. 01質量%以上、更に好ましくは 0. 02質量%以上であり、また、好ましくは 0. 2 質量%以下、より好ましくは 0. 1質量%以下である。ホウ素化合物で変性された無灰 分散剤の含有量が上記下限値に満たな ヽ場合は、十分な清浄性効果が発揮できず 、一方、その含有量が上記上限値を超える場合は、低温粘度特性の悪化及び抗乳 化性が悪ィ匕するためそれぞれ好ましくな 、。
[0384] また、第 4実施形態に係る内燃機関用潤滑油組成物は、その摩擦特性を更に改善 できる点から、無灰摩擦調整剤を含有することが好ましい。無灰摩擦調整剤の具体 例、好まし ヽ例及び含有量は上記第 3実施形態における無灰摩擦調整剤の場合と 同様であり、ここでは重複する説明を省略する。
[0385] また、第 4実施形態に係る内燃機関用潤滑油組成物は、清浄性の点から、金属系 清浄剤を更に含有することが好ましい。金属系清浄剤の具体例、好ましい例及び含 有量は上記第 3実施形態における金属系清浄剤の場合と同様であり、ここでは重複 する説明を省略する。
[0386] また、第 4実施形態に係る内燃機関用潤滑油組成物は、粘度 温度特性を更に改 善できる点から、粘度指数向上剤を含有することが好ましい。粘度指数向上剤の具 体例及び含有量は上記第 3実施形態における粘度指数向上剤と同様であるが、第 4 実施形態においては、重量平均分子量が 50, 000以下、好ましくは 40, 000以下、 最も好ましくは 10, 000〜35, 000の非分散型粘度指数向上剤及び Zまたは分散 型粘度指数向上剤が好ましく用いられる。また、低温流動性により優れる点から、ポリ メタタリレート系粘度指数向上剤が好ましい。
[0387] 第 4実施形態に係る内燃機関用潤滑油組成物においては、その性能をさらに向上 させる目的で、必要に応じて、上記添加剤の他にさらに、腐食防止剤、防鲭剤、抗乳 ィ匕剤、金属不活性化剤、流動点降下剤、ゴム膨潤剤、消泡剤、着色剤等の各種添 加剤を単独で又は数種類組み合わせて配合しても良 ヽ。これらの添加剤の具体例 は上記第 3実施形態の場合と同様であり、ここでは重複する説明を省略する。
[0388] 第 4実施形態に係る内燃機関用潤滑油組成物は、硫黄を構成元素として含む添加 剤を含有し得るが、潤滑油組成物の全硫黄含有量 (潤滑油基油及び添加剤に起因 する硫黄分の合計量)は、添加剤の溶解性、並びに高温酸化条件における硫黄酸 化物の生成に起因する塩基価の消耗を抑制する点から、好ましくは 0. 05-0. 3質 量%であり、より好ましくは 0. 1〜0. 2質量%、特に好ましくは 0. 12〜0. 18質量% である。
[0389] また、第 4実施形態に係る内燃機関用潤滑油組成物の 100°Cにおける動粘度は、 通常、 4〜24mm2Zsであるが、焼付きや磨耗を抑制する油膜厚さを保持する点、並 びに撹拌抵抗の増加を抑制する点から、好ましくは 5〜18mm2Zs、より好ましくは 6 〜 15mm2Zs、さらに好ましくは 7〜 12mm2Zsである。
[0390] 上記の構成を有する第 4実施形態に係る内燃機関用潤滑油組成物は、熱'酸化安 定性あるいは更に粘度 温度特性、摩擦特性及び揮発防止性に優れるものであり、 二輪車、四輪車、発電用、舶用等のガソリンエンジン、ディーゼルエンジン、含酸素 化合物含有燃料対応エンジン、ガスエンジン等の内燃機関用潤滑油として用いた場 合に、ロングドレイン化及び省エネルギー化を十分に実現することができる。
[0391] (第 5実施形態)
本発明の第 5実施形態に係る湿式クラッチ用潤滑油組成物は、上記第 1実施形態 又は第 2実施形態に係る潤滑油基油と、組成物全量を基準として、(A— 3) 0. 5〜3 質量%の無灰酸化防止剤と、 ^ー3) 3〜12質量%の無灰分散剤とを含有する。な お、ここでは、第 1実施形態又は第 2実施形態に係る潤滑油基油についての重複す る説明は省略する。また、第 5実施形態に係る内燃機関用潤滑油組成物は、第 1実 施形態又は第 2実施形態に係る潤滑油基油以外に、上記第 1実施形態の説明にお いて例示された鉱油系基油、合成系基油等を更に含有することができるが、鉱油系 基油、合成系基油等についての重複説明もここでは省略する。
[0392] 第 5実施形態に係る湿式クラッチ用潤滑油組成物において、(A— 3)無灰酸ィ匕防 止剤としては、フエノール系酸ィ匕防止剤ゃァミン系酸ィ匕防止剤等の潤滑油に一般的 に使用されている連鎖停止型の無灰酸ィ匕防止剤が使用可能である。フエノール系酸 化防止剤及びアミン系酸化防止剤の具体例は上記第 3実施形態等の場合と同様で あり、ここでは重複する説明を省略する。
[0393] 第 5実施形態に係る湿式クラッチ用潤滑油組成物における無灰酸ィ匕防止剤の含有 量は、組成物全量を基準として、前述の通り 0. 5〜3質量%であり、好ましくは 0. 8〜 2質量%である。無灰酸化防止剤の含有量が 0. 5質量%未満であると、熱 ·酸化安 定性が不十分となり、劣化によるスラッジゃワニス等の発生の抑制が困難となる。また 、無灰酸化防止剤の含有量が 3質量%を超えても、含有量に見合う熱 ·酸化安定性 の向上効果が得られない。
[0394] また、第 5実施形態に係る湿式クラッチ用潤滑油組成物は、(B— 3)成分として、無 灰分散剤を含有する。無灰分散剤の具体例は上記第 3実施形態の場合と同様であ り、ここでは重複する説明を省略する。
[0395] 第 5実施形態に係る湿式クラッチ用潤滑油組成物における無灰分散剤の含有量は 、組成物全量を基準として、前述の通り 3〜12質量%であり、好ましくは 4〜 10質量 %である。無灰分散剤の含有量が 3質量%未満であると燃焼生成物の分散性が不 十分となり、また、 12質量%を超えると粘度 温度特性が不十分となる。
[0396] 第 5実施形態に係る湿式クラッチ用潤滑油組成物は、第 1実施形態又は第 2実施 形態に係る潤滑油基油、(A— 3)無灰酸化防止剤及び (B— 3)無灰分散剤のみから なるものであってもよいが、その性能を更に向上させるために、必要に応じて以下に 示す各種添加剤を更に含有してもよ ヽ。
[0397] 第 5実施形態に係る湿式クラッチ用潤滑油組成物は、疲労寿命、極圧性及び耐摩 耗性を更に向上できる点から、リン系摩耗防止剤(リン系極圧剤を含む)を含有するこ とが好ましい。力かるリン系摩耗防止剤としては、構成元素として硫黄を含まないリン 系摩耗防止剤及びリン及び硫黄の双方を含む摩耗防止剤 (リン 硫黄系摩耗防止 剤)が好ましく用いられる。
[0398] リン系摩耗防止剤としては、リン酸、亜リン酸、炭素数 1〜30、好ましくは炭素数 3〜 20の炭化水素基を有するリン酸エステル類、亜リン酸エステル類、及びこれらの塩が 挙げられる。また、リン—硫黄系摩耗防止剤としては、チォリン酸、チォ亜リン酸、炭 素数 1〜30、好ましくは炭素数 3〜20の炭化水素基を有するチォリン酸エステル類、 チォ亜リン酸エステル類、及びこれらの塩、並びにジチォリン酸亜鉛等が挙げられる
[0399] 上記炭素数 1〜30の炭化水素基の例としては、アルキル基、シクロアルキル基、ァ ルキルシクロアルキル基、ァルケ-ル基、ァリール基、アルキルァリール基、及びァリ ールアルキル基を挙げることができる。
[0400] アルキル基としては、例えば、ェチル基、プロピル基、ブチル基、ペンチル基、へキ シル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基、 トリデシル基、テトラデシル基、ペンタデシル基、へキサデシル基、ヘプタデシル基、 及びォクタデシル基等のアルキル基 (これらアルキル基は直鎖状でも分枝状でもよ 、 )を挙げることがでさる。 [0401] シクロアルキル基としては、例えば、シクロペンチル基、シクロへキシル基、及びシク 口へプチル基等の炭素数 5〜7のシクロアルキル基を挙げることができる。
[0402] アルキルシクロアルキル基としては、例えば、メチルシクロペンチル基、ジメチルシク 口ペンチル基、メチルェチルシクロペンチル基、ジェチルシクロペンチル基、メチルシ クロへキシル基、ジメチルシクロへキシル基、メチルェチルシクロへキシル基、ジェチ ルシクロへキシル基、メチルシクロへプチル基、ジメチルシクロへプチル基、メチルェ チルシクロへプチル基、及びジェチルシクロへプチル基等の炭素数 6〜11のアルキ ルシクロアルキル基(アルキル基のシクロアルキル基への置換位置も任意である)を 挙げることができる。
[0403] アルケニル基としては、例えば、ブテニル基、ペンテニル基、へキセニル基、ヘプテ ニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセニル基、ドデセニル基、トリ デセニル基、テトラデセニル基、ペンタデセニル基、へキサデセニル基、ヘプタデセ -ル基、及びォクタデセ -ル基等のアルケニル基 (これらァルケ-ル基は直鎖状でも 分枝状でもよぐまた二重結合の位置も任意である)を挙げることができる。
[0404] ァリール基としては、例えば、フエ-ル基、ナフチル基等のァリール基を挙げること ができる。
[0405] アルキルァリール基としては、例えば、トリル基、キシリル基、ェチルフヱ-ル基、プ 口ピルフエ-ル基、ブチルフエ-ル基、ペンチルフエ-ル基、へキシルフエ-ル基、へ プチルフヱ-ル基、ォクチルフヱ-ル基、ノ -ルフヱ-ル基、デシルフヱ-ル基、ゥン デシルフェニル基、及びドデシルフェ-ル基等の炭素数 7〜18のアルキルァリール 基 (アルキル基は直鎖状でも分枝状でもよぐまたァリール基への置換位置も任意で ある)を挙げることがでさる。
[0406] ァリールアルキル基としては、例えば、ベンジル基、フエ-ルェチル基、フエ-ルプ 口ピル基、フエ-ルブチル基、フエ-ルペンチル基、フエ-ルへキシル基等の炭素数 7〜 12のァリールアルキル基 (これらアルキル基は直鎖状でも分枝状でもよい)等を 挙げることができる。
[0407] 第 5実施形態に係る湿式クラッチ用潤滑油組成物においては、リン系摩耗防止剤と して、亜リン酸、亜リン酸モノエステル類、亜リン酸ジエステル類、亜リン酸トリエステル 類、及びこれらの塩力も選ばれる少なくとも 1種を用いることが好ましい。また、リン一 硫黄系摩耗防止剤としては、並びにチォ亜リン酸、チォ亜リン酸モノエステル類、チ ォ亜リン酸ジエステル類、チォ亜リン酸トリエステル類、ジチォ亜リン酸、ジチォ亜リン 酸モノエステル類、ジチォ亜リン酸ジエステル類、ジチォ亜リン酸トリエステル類、トリ チォ亜リン酸、トリチォ亜リン酸モノエステル類、トリチォ亜リン酸ジエステル類、トリチ ォ亜リン酸トリエステル類、及びこれらの塩力 選ばれる少なくとも 1種を用いることが 好ましい。
[0408] リン系摩耗防止剤の好ましい例としては、具体的には、モノブチルホスフェート、モ ノォクチルホスフェート、モノラウリルホスフェート、ジブチルホスフェート、ジォクチル ホスフェート、ジラウリノレホスフェート、ジフエ二ノレホスフェート、トリブチノレホスフェート 、トリオクチルホスフェート、トリラウリルホスフェート、トリフエ-ルホスフェート;モノブチ ルホスフアイト、モノォクチルホスファイト、モノラウリルホスファイト、ジブチルホスフアイ ト、ジォクチルホスフアイト、ジラウリルホスファイト、ジフエ-ルホスフアイト、トリブチル ホスファイト、トリオクチルホスフアイト、トリラウリルホスファイト、トリフエ-ルホスファイト ;およびこれらの塩等が挙げられ、中でも、亜リン酸エステル系摩耗防止剤、特に亜リ ン酸ジエステル系摩耗防止剤であることが好ましい。
[0409] また、リン 硫黄系摩耗防止剤の好ましい例としては、具体的には、分子中に硫黄 原子を 1〜3個、好ましくは 2または 3個、特に 3個有するモノブチルチオホスフェート 、モノォクチルチオホスフェート、モノラウリルチオホスフェート、ジブチルチオホスフエ ート、ジォクチルチオホスフェート、ジラウリルチオホスフェート、ジフエ-ルチオホスフ エート、トリブチルチオホスフェート、トリオクチルチオホスフェート、トリフ 二ルチオホ スフヱート、トリラウリルチオホスフェート;モノブチルチオホスファイト、モノォクチルチ ォホスフアイト、モノラウリルチオホスファイト、ジブチルチオホスファイト、ジォクチルチ ォホスフアイト、ジラウリルチオホスファイト、ジフ 二ルチオホスフェート、トリブチルチ ォホスフアイト、トリオクチルチオホスファイト、トリフエ二ルチオホスファイト、トリラウリノレ チォホスファイト;およびこれらの塩等が挙げられ、中でもチォ亜リン酸エステル系摩 耗防止剤、特にトリチォ亜リン酸エステル系摩耗防止剤であることが好ま U、。
[0410] なお、(チォ)リン酸エステル類、(チォ)亜リン酸エステル類の塩の例としては、(チ ォ)リン酸モノエステル、 (チォ)リン酸ジエステル、 (チォ)亜リン酸モノエステル、 (チ ォ)亜リン酸ジエステル等に、アンモニアや炭素数 1〜8の炭化水素基又は水酸基含 有炭化水素基のみを分子中に含有するアミンィ匕合物等の窒素化合物あるいは酸ィ匕 亜鉛、塩化亜鉛等の金属塩基を作用させて、残存する酸性水素の一部又は全部を 中和した塩等を挙げることができる。
[0411] 上記窒素化合物としては、具体的には、アンモニア;モノメチルァミン、モノェチルァ ミン、モノプロピルァミン、モノブチルァミン、モノペンチルァミン、モノへキシルァミン、 モノへプチルァミン、モノォクチルァミン、ジメチルァミン、メチルェチルァミン、ジェチ ルァミン、メチルプロピルァミン、ェチルプロピルァミン、ジプロピルァミン、メチルブチ ルァミン、ェチルブチルァミン、プロピルブチルァミン、ジブチルァミン、ジペンチルァ ミン、ジへキシルァミン、ジヘプチルァミン、ジォクチルァミン等のアルキルアミン(ァ ルキル基は直鎖状でも分枝状でもよい);モノメタノールァミン、モノエタノールァミン、 モノプロパノールァミン、モノブタノールァミン、モノペンタノールァミン、モノへキサノ ールァミン、モノへプタノールァミン、モノォクタノールァミン、モノノナノールァミン、ジ メタノールァミン、メタノールエタノールァミン、ジエタノールァミン、メタノールプロパノ ールァミン、エタノールプロパノールァミン、ジプロパノールァミン、メタノールブタノー ルァミン、エタノールブタノールァミン、プロパノールブタノールァミン、ジブタノールァ ミン、ジペンタノールァミン、ジへキサノールァミン、ジヘプタノールアミン、ジォクタノ ールァミン等のアルカノールァミン (アル力ノール基は直鎖状でも分枝状でもよ 、); 及びこれらの混合物等を挙げることができる。
[0412] 本発明で用いられるリン系摩耗防止剤としては、ジー 2—ェチルへキシルホスフアイ トのような亜リン酸ジエステル系摩耗防止剤を使用することが疲労寿命及び熱'酸ィ匕 安定性を向上できる点で好ましぐトリラウリルトリチォホスファイトのようなトリチォ亜リ ン酸トリエステル系摩耗防止剤を使用することが疲労寿命を向上できる点で好ましく
、ジアルキルジチォリン酸亜鉛を使用することが耐摩耗性を向上できる点で好ま ヽ
[0413] 本発明におけるリン系摩耗防止剤の含有量は特に制限されないが、疲労寿命、極 圧性、耐摩耗性および酸ィ匕安定性等の点から、組成物全量を基準として、リン元素 換算で、好ましくは 0. 01〜0. 2質量%であり、より好ましくは 0. 02-0. 15質量% である。
[0414] また、第 5実施形態に係る湿式クラッチ用潤滑油組成物においては、構成元素とし てリンを含有しな 、硫黄系摩耗防止剤を用いてもょ 、。力かる硫黄系摩耗防止剤とし ては、硫化油脂類、硫化ォレフィン類、ジヒドロカルビルポリスルフイド類、ジチォカー ノメート類、チアジアゾール類、ベンゾチアゾール類などが挙げられ、中でも、硫ィ匕油 脂類、硫化ォレフィン類、ジヒドロカルビルポリスルフイド類、ジチォカーバメート類、 チアジアゾール類、及びべンゾチアゾール類力 選ばれる少なくとも 1種の硫黄系摩 耗防止剤が好ましい。
[0415] 硫化油脂類、硫化ォレフィン、ジヒドロカルビルポリスルフイド、ジチォカーバメート 類、チアジアゾール類の具体例はそれぞれ第 4実施形態の場合と同様であり、ここで は重複する説明を省略する。
[0416] 第 5実施形態に係る湿式クラッチ用潤滑油組成物における硫黄系摩耗防止剤の含 有量は特に制限されないが、疲労寿命、極圧性、耐摩耗性および酸化安定性等の 点から、組成物全量を基準として、硫黄元素換算で、好ましくは 0. 01〜3質量%で あり、より好ましくは 0. 1〜3質量%であり、更に好ましくは 0. 5〜2. 5質量%であり、 特に好ましくは 1. 5〜2. 5質量%である。
[0417] また、第 5実施形態に係る湿式クラッチ用潤滑油組成物は、その摩擦特性を更に改 善できる点から、摩擦調整剤を含有することが好ましい。摩擦調整剤の具体例は第 3 実施形態の場合と同様であり、ここでは重複する説明を省略する。
[0418] 第 5実施形態に係る湿式クラッチ用潤滑油組成物における摩擦調整剤の含有量は 、組成物全量を基準として、好ましくは 0. 01質量%以上、より好ましくは 0. 1質量% 以上、更に好ましくは 0. 3質量%以上であり、また、好ましくは 3質量%以下、より好 ましくは 2質量%以下、更に好ましくは 1質量%以下である。摩擦調整剤の含有量が 前記下限値未満であると、その添カ卩による摩擦低減効果が不十分となる傾向にあり、 また、前記上限値を超えると、リン系摩耗防止剤などの効果が阻害されやすぐある いは添加剤の溶解性が悪ィ匕する傾向にある。
[0419] また、第 5実施形態に係る湿式クラッチ用潤滑油組成物は、清浄性の点から、金属 系清浄剤を更に含有することが好ましい。力かる金属系清浄剤の具体例、好ましい 例及び含有量は上記第 3実施形態の場合と同様であり、ここでは重複する説明を省 略する。
[0420] また、第 5実施形態に係る湿式クラッチ用潤滑油組成物は、粘度 温度特性を更 に改善できる点から、粘度指数向上剤を含有することが好ましい。粘度指数向上剤 の具体例、好ましい例及び含有量は上記第 3実施形態の場合と同様であり、ここでは 重複する説明を省略する。
[0421] 第 5実施形態に係る湿式クラッチ用潤滑油組成物においては、その性能をさらに向 上させる目的で、必要に応じて、上記添加剤の他にさらに、(A— 3)成分以外の酸化 防止剤、腐食防止剤、防鲭剤、抗乳化剤、金属不活性化剤、流動点降下剤、ゴム膨 潤剤、消泡剤、着色剤等の各種添加剤を単独で又は数種類組み合わせて配合して も良い。(A— 3)成分以外の酸ィ匕防止剤としては、例えば、銅系、モリブデン系等の 金属系酸化防止剤が挙げられる。その他の添加剤の具体例は上記第 3実施形態の 場合と同様であり、ここでは重複する説明を省略する。
[0422] これらの添加剤を本発明の潤滑油組成物に含有させる場合、その含有量は組成物 全量基準で、(A— 3)成分以外の酸化防止剤では 0. 01〜2質量%、腐食防止剤、 防鲭剤、抗乳化剤ではそれぞれ 0. 005〜5質量%、金属不活性化剤では 0. 005〜 1質量%、流動点降下剤では、 0. 05〜1質量%、消泡剤では 0. 0005〜1質量%、 着色剤では 0. 001-1. 0質量%の範囲で通常選ばれる。
[0423] また、第 5実施形態に係る湿式クラッチ用潤滑油組成物の 100°Cにおける動粘度 は、好ましくは 2〜20mm2/s、より好ましくは 4〜15mm2/s、さらに好ましくは 5〜1 Omm Z sである。
[0424] 上記の構成を有する第 5実施形態に係る湿式クラッチ用潤滑油組成物は、熱-酸 化安定性が十分に高ぐ更に粘度 温度特性、摩擦特性及び揮発防止性に優れる ものである。このように優れた特性を有する第 5実施形態に係る湿式クラッチ用潤滑 油組成物は、劣化によるスラッジゃワニス等の不溶解分の発生及び当該不溶解分に よる湿式クラッチでの目詰まりを十分に抑制することができることから、湿式クラッチ機 構を有する二輪自動車用 4ストローク内燃機関用潤滑油として好適である。また、本 発明の湿式クラッチ用潤滑油は、自動変速機、無段変速機、デュアルクラッチトラン スミッション等の変速機にも好適に用いることができる。
[0425] (第 6実施形態)
第 6実施形態に係る駆動伝達装置用潤滑油組成物は、上記第 1実施形態又は第 2 実施形態に係る潤滑油基油と、(A— 4)ポリ (メタ)アタリレート系粘度指数向上剤と、 (B— 4)リン含有化合物とを含有する。なお、ここでは、第 1実施形態又は第 2実施形 態に係る潤滑油基油についての重複する説明は省略する。また、第 5実施形態に係 る内燃機関用潤滑油組成物は、第 1実施形態又は第 2実施形態に係る潤滑油基油 以外に、上記第 1実施形態の説明において例示された鉱油系基油、合成系基油等 を更に含有することができるが、鉱油系基油、合成系基油等についての重複説明も ここでは省略する。
[0426] 第 6実施形態に係る駆動伝達装置用潤滑油組成物においては、(A— 4)ポリ (メタ) アタリレート系粘度指数向上剤と上記第 1実施形態又は第 2実施形態に係る潤滑油 基油とを組み合わせることで、潤滑油基油が本来的に有する優れた粘度 温度特性 に加えて、粘度指数の向上効果、低温での増粘の抑制効果、及び流動点降下作用 などが有効に奏されるため、高水準の低温特性を達成することができる。
[0427] 第 6実施形態で用いられるポリ (メタ)アタリレート系粘度指数向上剤としては、特に 制限されず、潤滑油の粘度指数向上剤として使用される非分散型又は分散型のポリ (メタ)アタリレートイ匕合物が使用可能である。非分散型のポリ (メタ)タリレート系粘度 指数向上剤としては下記一般式(18)で表わされる化合物の重合体が挙げられる。
[0428] [化 27]
Figure imgf000102_0001
[0429] 上記一般式(18)中、 R54は炭素数 1〜30のアルキル基を示す。 R54で示されるアル キル基は直鎖状でも分枝状でも良い。具体的には、メチル基、ェチル基、プロピル基 、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノ-ル基、デシル 基、デシル基、ゥンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシ ル基、へキサデシル基、ヘプタデシル基、ォクタデシル基、ノナデシル基、ィコシル
C
H
基、ヘ 2ンィコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、へキ
C X——
サコシル基、ヘプタコシル基、ォクタコシル基、ノナコシル基、トリアコンチル基等(こ れらアルキル基は直鎖状でも分枝状でも良い)が例示できる。
[0430] また分散型のポリ (メタ)アタリレート系粘度指数向上剤としては、具体的には例えば 、上記の一般式(18)で表される化合物の中力 選ばれる 1種又は 2種以上のモノマ 一と、下記の一般式(19)又は(20)で表される化合物の中力 選ばれる 1種又は 2種 以上の含窒素モノマーを共重合して得られる共重合体等が好ましいものとして挙げら れる。
[0431] [化 28]
R55
CHクニ C (19)
COO— (R56)。—— X1
[0432] [化 29]
R 57
(20)
[0433] 上記一般式(19)、 (20)中、 R5a及び R57は、それぞれ個別に、水素原子又はメチ ル基を示す。 R56は炭素数 1〜30のアルキレン基を示し、具体的には、メチレン基、 エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基 、オタチレン基、ノ-レン基、デシレン基、ゥンデシレン基、ドデシレン基、トリデシレン 基、テトラデシレン基、ペンタデシレン基、へキサデシレン基、ヘプタデシレン基、オタ タデシレン基、ノナデシレン基、ィコシレン基、ヘンィコシレン基、ドコシレン基、トリコ シレン基、テトラコシレン基、ペンタコシレン基、へキサコシレン基、ヘプタコシレン基、 ォクタコシレン基、ノナコシレン基、トリアコンチレン基等 (これらアルキレン基は直鎖 状でも分枝状でも良い)が例示できる。 aは 0又は 1の整数を示し、 X1及び X2は、それ ぞれ個別に、窒素原子を 1〜2個、酸素原子を 0〜2個含有するァミン残基又は複素 環残基をそれぞれ示している。この X1及び X2としては、具体的には、ジメチルァミノ 基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ァ-リノ基、トルイジノ 基、キシリジノ基、ァセチルァミノ基、ベンゾィルァミノ基、モルホリノ基、ピロリル基、ピ 口リノ基、ピリジル基、メチルピリジル基、ピロリジ -ル基、ピペリジニル基、キノニル基 、ピロリドニル基、ピロリドノ基、イミダゾリノ基、ビラジノ基等が好ましいものとして例示 できる。
[0434] 一般式(19)又は(20)で表わされる含窒素モノマーとして好ましいものとしては、具 体的には、ジメチルァミノメチルメタタリレート、ジェチルァミノメチルメタタリレート、ジメ チルアミノエチルメタタリレート、ジェチルアミノエチルメタタリレート、 2—メチルー 5— ビュルピリジン、モルホリノメチルメタタリレート、モルホリノェチルメタタリレート、 N—ビ -ルピロリドン及びこれらの混合物等が例示できる。
[0435] 第 6実施形態において用いられるポリ (メタ)アタリレート系粘度指数向上剤は、上述 のように分散型又は非分散型のいずれであってもよいが、非分散型のポリ(メタ)ァク リレート系粘度指数向上剤を用いることが好ましぐ下記 (A— 4— 1)〜 (A— 4— 3) に示すものがより好ましい。
( A— 4 1 )一般式( 18)中の R54カ^チル基又は炭素数 12〜 15の直鎖アルキル基 であるモノマーを主成分とする重合体
(八ー4 2)—般式(18)中の 4カ^チル基又は炭素数12〜15、 16、 18の直鎖ァ ルキル基であるモノマーを主成分とする重合体
(八ー4 3)—般式(18)中の 4カ^チル基又は炭素数12〜15、 16、 18の直鎖ァ ルキル基であるモノマーと、一般式(18)中の R54が炭素数 20〜30の直鎖又は分枝 アルキル基であるモノマーとの重合体。
[0436] 更に、上記重合体 (A— 4—1)〜(A— 4— 3)の中でも、疲労寿命の向上の点から、 重合体 (A— 4— 2)及び (A— 4— 3)が特に好ましい。また、重合体 (A— 4— 3)にお いては、一般式(18)中の R54が炭素数 22〜28の分岐アルキル基 (より好ましくは 2 —デシルテトラデシル基)であるモノマーを構成単位として含むことが好まし 、。 [0437] 第 6実施形態で用いられるポリ (メタ)アタリレート系粘度指数向上剤の重量平均分 子量は、特に制限されないが、好ましくは 5, 000-100, 000であり、より好ましくは 1 0, 000〜60, 000、更に好ましくは 15, 000〜24, 000である。ポジ(メタ)ァクジレー ト系粘度指数向上剤の重量平均分子量が 5, 000未満であると、粘度指数向上剤の 添カロによる増粘効果が不十分となり、また、 100, 000を超えると疲労寿命、耐摩耗 性、せん断安定性が不十分となる。なお、ここでいう重量平均分子量とは、ヲーター ズ社製 150— C ALCZGPC装置に東ソ一社製カラム GMHHR— M (7. 8mmID X 30cm)を 2本直列にセットし、溶媒としてテトラヒドロフランを、検出器として示唆屈 折率計 (RI)用い、温度 23°C、流速 lmLZ分、試料濃度 1質量%、試料注入量 75 Lの条件下で測定したポリスチレン換算の重量平均分子量を意味する。
[0438] 第 6実施形態に係る駆動伝達装置用潤滑油組成物におけるポリ (メタ)アタリレート 系粘度指数向上剤の含有量は、組成物全量を基準として、好ましくは 0. 1〜20質量 %、より好ましくは 1〜15質量%である。ポリ (メタ)アタリレート系粘度指数向上剤の 含有量が 0. 1質量%未満であるとその添加による増粘効果及び低温流動性の改善 効果が不十分となる傾向にあり、また、 20質量%を超えると潤滑油組成物の粘度が 増カロして省燃費化が困難となり、また、せん断安定性が低下する傾向にある。なお、 ポリ (メタ)アタリレート系粘度指数向上剤を潤滑油基油に添加する場合、潤滑性ゃハ ンドリング性の向上のため、ポリ (メタ)アタリレート系粘度指数向上剤を 5〜95質量0 /0 の希釈剤に溶解させてその混合物を潤滑油基油に添加するのが一般的であるが、こ こでいうポリ (メタ)アタリレート系粘度指数向上剤の含有量とは、ポリ(メタ)アタリレート 系粘度指数向上剤と希釈剤との合計量を意味する。
[0439] また、第 6実施形態に係る駆動伝達装置用潤滑油組成物は、(B— 4)成分として、 リン含有化合物を含有する。力かるリン含有ィ匕合物としては、リン系極圧剤及びリン— 硫黄系極圧剤が好ましく用いられる。リン系極圧剤及びリン 硫黄系極圧剤の具体 例及び好まし 、例は、上記第 5実施形態の説明にお 、てリン系摩耗防止剤として例 示されたものと同様であり、ここでは重複する説明を省略する。
[0440] 第 6実施形態におけるリン含有ィ匕合物の含有量は特に制限されないが、疲労寿命 、極圧性、耐摩耗性および酸ィ匕安定性等の点から、組成物全量を基準として、リン元 素換算で、好ましくは 0. 01〜0. 2質量%であり、より好ましくは 0. 02-0. 15質量 %である。リン含有化合物の含有量が前記下限値未満であると、潤滑性が不十分と なる傾向にある。また、潤滑油組成物を手動変速機用潤滑油として用いた場合に、 シンクロ特性 (減速比の違うギヤがうまく嚙み合って機能を発揮するように潤滑させる こと)が不十分となる傾向にある。他方、リン含有化合物の含有量が前記上限値を超 えると、疲労寿命が不十分となる傾向にある。また、潤滑油組成物を手動変速機用潤 滑油として用いた場合に、熱 ·酸ィ匕安定性が不十分となる傾向にある。
[0441] 第 6実施形態に係る駆動伝達装置用潤滑油組成物は、上記の潤滑油基油とポリ ( A-4) (メタ)アタリレート系粘度指数向上剤と (B— 4)リン含有ィ匕合物とのみ力 なる ものであってもよいが、必要に応じて以下に示す各種添加剤を更に含有してもよい。
[0442] 第 6実施形態に係る駆動伝達装置用潤滑油組成物は、疲労寿命、極圧性及び耐 摩耗性を更に向上できる点から、上述したリン 硫黄系極圧剤以外の硫黄系極圧剤 を更に含有することが好まし 、。硫黄系極圧剤の具体例及び好まし 、例は上記第 5 実施形態において硫黄系摩耗防止剤として例示されたものと同様であり、ここでは重 複する説明を省略する。
[0443] 第 6実施形態に係る駆動伝達装置用潤滑油組成物における硫黄系極圧剤の含有 量は特に制限されないが、疲労寿命、極圧性、耐摩耗性および酸化安定性等の点 から、組成物全量を基準として、硫黄元素換算で、好ましくは 0. 01〜3質量%であり 、より好ましくは 0. 1〜3質量%であり、更に好ましくは 0. 5〜2. 5質量%であり、特 に好ましくは 1. 5〜2. 5質量%である。硫黄系極圧剤の含有量が前記下限値未満 であると、潤滑性が不十分となる傾向にある。また、潤滑油組成物を手動変速機用潤 滑油として用いた場合に、シンクロ特性 (減速比の違うギヤがうまく嚙み合って機能を 発揮するように潤滑させること)が不十分となる傾向にある。他方、硫黄系極圧剤の含 有量が前記上限値を超えると、疲労寿命が不十分となる傾向にある。また、潤滑油組 成物を手動変速機用潤滑油として用いた場合に、熱'酸ィ匕安定性が不十分となる傾 向にある。また、第 6実施形態に係る駆動伝達装置用潤滑油組成物を、特に終減速 機用潤滑油として使用する場合には、極圧性をより高める必要があることから、硫黄 系極圧剤の含有量を、組成物全量を基準として、硫黄元素換算で、 0. 5〜3質量% とすることが好ましぐ 1. 5〜2. 5質量%とすることがより好ましい。
[0444] また、第 6実施形態に係る駆動伝達装置用潤滑油組成物は、前述の通り、(A— 4) ポリ (メタ)アタリレート系粘度指数向上剤を含有するものである力 (A-4)ポリ(メタ) アタリレート系粘度指数向上剤以外の粘度指数向上剤 (以下、場合により(C— 4)成 分という。)を更に含有してもよい。(C— 4)成分としては、分散型エチレン aーォレ フィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン ジェン水素化共重合体、スチレン 無水マレイン酸エステル共重合体及びポリアル キルスチレン等が挙げられる。
[0445] (C— 4)成分を用いる場合、その含有量は、組成物全量基準で、通常 0. 1〜10質 量%の範囲力 選ばれる。
[0446] また、第 6実施形態に係る駆動伝達装置用潤滑油組成物は、耐摩耗性、熱 ·酸ィ匕 安定性及び摩擦特性を更に向上できる点から、 (D-4)無灰分散剤を更に含有する ことが好ましい。(D— 4)無灰分散剤としては、例えば、下記の窒素化合物(D— 4— 1)〜(D— 4— 3)を挙げることができる。これらは、単独であるいは二種以上を組み合 わせて使用することができる。
(D— 4 1)炭素数 40〜400のアルキル基又はアルケ-ル基を分子中に少なくとも 1 個有するコハク酸イミド、あるいはその誘導体
(D— 4 2)炭素数 40〜400のアルキル基又はアルケ-ル基を分子中に少なくとも 1 個有するベンジルァミン、あるいはその誘導体
(D— 4 3)炭素数 40〜400のアルキル基又はアルケ-ル基を分子中に少なくとも 1 個有するポリアミン、あるいはその誘導体。
[0447] (D— 4 1)コハク酸イミドとしては、より具体的には、下記一般式(15)又は(16)で 示される化合物等が例示できる。
[0448] [化 30]
Figure imgf000108_0001
Figure imgf000108_0002
[0450] 一般式(21)において、 R は炭素数 40〜400、好ましくは 60〜350のアルキル基 又はァルケ-ル基を示し、 jは 1〜5、好ましくは 2〜4の整数を示す。
[0451] 一般式(22)において、 R59及び R6は、それぞれ個別に、炭素数 40〜400、好まし くは 60〜350のアルキル基又はァルケ-ル基を示し、 kは 0〜4、好ましくは 1〜3の 整数を示す。
[0452] 上記コハク酸イミドには、イミド化により、ポリアミンの一端に無水コハク酸が付加した 形態の一般式(21)で示される所謂モノタイプのコハク酸イミドと、ポリアミンの両端に 無水コハク酸が付カ卩した形態の一般式(22)で示される 、わゆるビスタイプのコハク 酸イミドが含まれるが、第 6実施形態に係る駆動伝達装置用潤滑油組成物において は、そのいずれでも、またこれらの混合物でも使用可能である。
[0453] (D— 4 2)ベンジルァミンとしては、より具体的には、下記一般式(17)で表される 化合物等が例示できる。
[0454] [化 32]
(23)
Figure imgf000108_0003
[0455] 一般式(23)【こお!/、て、 R61iま、炭素数 40〜400、好ましく ίま 60〜350のァノレキノレ 基又はァルケ-ル基を示し、 mは 1〜5、好ましくは 2〜4の整数を示す。
[0456] 上記ベンジルァミンは、例えば、ポリオレフイン(例えば、プロピレンオリゴマー、ポリ ブテン、エチレン aーォレフイン共重合体等)をフエノールと反応させてアルキルフ ェノールとした後、これにホルムアルデヒドとポリアミン(例えば、ジエチレントリァミン、 トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンへキサミン等)をマン ニッヒ反応〖こより反応させること〖こより得ることができる。
[0457] (D— 4 3)のポリアミンとしては、より具体的には、下記一般式(24)で示される化 合等が例示できる。
R62— NH— (CH CH NH) H (24)
2 2 n
[0458] 一般式(24)にお!/、て、 R62は、炭素数 40〜400、好ましくは 60〜350のアルキル 基又はァルケ-ル基を示し、 mは 1〜5、好ましくは 2〜4の整数を示す。
[0459] 上記ポリアミンは、例えば、ポリオレフイン (例えば、プロピレンオリゴマー、ポリブテ ン、エチレン aーォレフイン共重合体等)を塩素化した後、これにアンモニアやポリ ァミン (例えば、エチレンジァミン、ジエチレントリァミン、トリエチレンテトラミン、テトラ エチレンペンタミン、ペンタエチレンへキサミン等)を反応させること〖こより得ることがで きる。
[0460] 上記窒素化合物における窒素含有量は任意であるが、耐摩耗性、酸化安定性及 び摩擦特性等の点から、通常その窒素含有量が 0. 01〜: LO質量%であることが好ま しぐより好ましくは 0. 1〜10質量%のものを用いることが望ましい。
[0461] 上記窒素化合物の誘導体としては、例えば、前述の窒素化合物に炭素数 2〜30の モノカルボン酸 (脂肪酸等)ゃシユウ酸、フタル酸、トリメリット酸、ピロメリット酸等の炭 素数 2〜30のポリカルボン酸を作用させて、残存するァミノ基及び Z又はイミノ基の 一部又は全部を中和したり、アミドィ匕した、いわゆる酸変性ィ匕合物;前述の窒素化合 物にホウ酸を作用させて、残存するァミノ基及び Z又はイミノ基の一部又は全部を中 和したり、アミドィ匕した、いわゆるホウ素変性ィ匕合物;前述の窒素化合物に硫黄ィ匕合 物を作用させた硫黄変性化合物;及び前述の窒素化合物に酸変性、ホウ素変性、硫 黄変性力 選ばれた 2種以上の変性を組み合わせた変性ィ匕合物;等が挙げられる。 [0462] 第 6実施形態に係る駆動伝達装置用潤滑油組成物に (D— 4)無灰分散剤を含有 させる場合、その含有量は特に限定されないが、組成物全量基準で、 0. 5〜10. 0 質量%であるのが好ましぐ 1〜8. 0質量%であるのがより好ましい。無灰分散剤の 含有量が 0. 5質量%未満の場合は、疲労寿命および極圧性の向上効果が不十分 であり、 10. 0質量%を越える場合は、組成物の低温流動性が大幅に悪化するため 、それぞれ好ましくない。また、第 6実施形態に係る駆動伝達装置用潤滑油組成物を 、特に自動変速機用又は無段変速機用潤滑油として使用する場合には、無灰分散 剤の含有量を、組成物全量基準で、 1〜6質量%とすることが好ましい。また、第 6実 施形態に係る駆動伝達装置用潤滑油組成物を、特に手動変速機用潤滑油として使 用する場合には、無灰分散剤の含有量を、組成物全量基準で、 0. 5〜6質量%とす ることが好ましぐ 0. 5〜2質量%とすることがより好ましい。
[0463] また、第 6実施形態に係る駆動伝達装置用潤滑油組成物は、摩擦特性を更に向上 できる点から、金属系清浄剤を更に含有することが好ましい。金属系清浄剤の具体 例及び好ましい例は上記第 3実施形態の場合と同様であり、ここでは重複する説明 を省略する。
[0464] 第 6実施形態に係る駆動伝達装置用潤滑油組成物に金属系清浄剤を含有させる 場合、その含有量は特に限定されないが、組成物全量を基準として、金属元素換算 で、好ましくは 0. 005〜0. 5質量0 /0、より好ましくは 0. 008〜0. 3質量0 /0、更に好ま しくは 0. 01〜0. 2質量%である。金属系清浄剤の含有量が金属元素換算で 0. 00 5質量%未満の場合は摩擦特性向上効果が不十分となる傾向にあり、一方、 0. 5質 量%を超えると湿式クラッチの摩擦材への悪影響が懸念される。また、第 6実施形態 に係る駆動伝達装置用潤滑油組成物を、特に自動変速機用又は無段変速機用潤 滑油として使用する場合には、金属系清浄剤の含有量を、組成物全量を基準として 、金属元素換算で、 0. 005〜0. 2質量0 /0とすること力好ましく、 0. 008〜0. 02質量 %とすることがより好ましい。また、第 6実施形態に係る駆動伝達装置用潤滑油組成 物を、特に手動変速機用潤滑油として使用する場合には、金属系清浄剤の含有量 を、組成物全量を基準として、金属元素換算で、 0. 05〜0. 5質量%とすることが好 ましぐ 0. 1〜0. 4質量%とすることがより好ましぐ 0. 2〜0. 35質量%とすることが 更に好ましい。
[0465] また、第 6実施形態に係る駆動伝達装置用潤滑油組成物は、熱'酸化安定性を更 に向上できる点から、酸化防止剤を含有することが好ましい。酸化防止剤としては、 潤滑油分野で一般的に使用されて 、るものであれば使用可能である力 フ ノール 系酸ィ匕防止剤及び Z又はアミン系酸ィ匕防止剤を用いることが好ましぐフエノール系 酸ィ匕防止剤とアミン系酸ィ匕防止剤とを併用することが特に好ましい。フエノール系酸 化防止剤及びアミン系酸化防止剤の具体例は上記第 3実施形態等の場合と同様で あり、ここでは重複する説明を省略する。
[0466] 第 6実施形態に係る駆動伝達装置用潤滑油組成物における酸ィ匕防止剤の含有量 は特に制限されないが、組成物全量基準で、好ましくは 0. 01〜5. 0質量%である。
[0467] また、第 6実施形態に係る駆動伝達装置用潤滑油組成物は、変速機における湿式 クラッチの摩擦特性を更に向上できる点から、摩擦調整剤を更に含有することが好ま しい。摩擦調整剤としては、潤滑油分野で摩擦調整剤として通常用いられる任意の 化合物が使用可能である力 炭素数 6〜30のアルキル基又はァルケ-ル基、特に炭 素数 6〜30の直鎖アルキル基又は直鎖ァルケ-ル基を分子中に少なくとも 1個有す る、ァミン化合物、イミド化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸金属塩等が 好ましく用いられる。
[0468] アミンィ匕合物としては、炭素数 6〜30の直鎖状若しくは分枝状、好ましくは直鎖状 の脂肪族モノアミン、直鎖状若しくは分枝状、好ましくは直鎖状の脂肪族ポリアミン、 又はこれら脂肪族ァミンのアルキレンォキシド付加物等が例示できる。イミド化合物と しては、炭素数 6〜30の直鎖状若しくは分岐状のアルキル基又はアルケニル基を有 するコハク酸イミド及び Z又はそのカルボン酸、ホウ酸、リン酸、硫酸等による変性ィ匕 合物等が挙げられる。脂肪酸エステルとしては、炭素数 7〜31の直鎖状又は分枝状 、好ましくは直鎖状の脂肪酸と、脂肪族 1価アルコール又は脂肪族多価アルコールと のエステル等が例示できる。脂肪酸アミドとしては、炭素数 7〜31の直鎖状又は分枝 状、好ましくは直鎖状の脂肪酸と、脂肪族モノアミン又は脂肪族ポリアミンとのアミド等 が例示できる。脂肪酸金属塩としては、炭素数 7〜31の直鎖状又は分枝状、好ましく は直鎖状の脂肪酸の、アルカリ土類金属塩 (マグネシウム塩、カルシウム塩等)や亜 鉛塩等が挙げられる。
[0469] 第 6実施形態においては、これらのうち、アミン系摩擦調整剤、エステル系摩擦調 整剤、アミド系摩擦調整剤、脂肪酸系摩擦調整剤から選ばれる 1種又は 2種を含有さ せることが好ましぐ更に、疲労寿命をより向上させることができる点で、アミン系摩擦 調整剤、脂肪酸系摩擦調整剤及びアミド系摩擦調整剤から選ばれる 1種又は 2種以 上を含有させることが特に好ましい。また、第 6実施形態に係る駆動伝達装置用潤滑 油組成物を、特に自動変速機用又は無段変速機用潤滑油として使用する場合には 、シャダ一防止寿命を著しく向上できる点から、イミド系摩擦調整剤を含有させること が特に好ましい。
[0470] 第 6実施形態においては、上記摩擦調整剤の中から任意に選ばれた 1種類あるい は 2種類以上の化合物を任意の量で含有させることができる。摩擦調整剤の含有量 は、組成物全量基準で、好ましくは 0. 01〜5. 0質量%、より好ましくは 0. 03〜3. 0 質量%である。また、第 6実施形態に係る駆動伝達装置用潤滑油組成物を、特に自 動変速機用又は無段変速機用潤滑油として使用する場合には、摩擦特性をより向 上させる必要がある点から、摩擦調整剤の含有量を、組成物全量基準で、 0. 5〜5 質量%とすることが好ましぐ 2〜4質量%とすることがより好ましい。また、第 6実施形 態に係る駆動伝達装置用潤滑油組成物を、特に手動変速機用潤滑油組成物として 使用する場合には、摩擦調整剤の含有量を、組成物全量基準で、 0. 1〜3質量%と することが好ましく、 0. 5〜1. 5質量%とすることがより好ましい。
[0471] 第 6実施形態に係る駆動伝達装置用潤滑油組成物においては、その性能をさらに 向上させる目的で、必要に応じて、上記添加剤の他に、腐食防止剤、防鲭剤、抗乳 ィ匕剤、金属不活性化剤、流動点降下剤、ゴム膨潤剤、消泡剤、着色剤等の各種添 加剤を単独で又は数種類組み合わせて配合しても良 ヽ。これらの添加剤の具体例 は上記第 3実施形態の場合と同様であり、ここでは重複する説明を省略する。
[0472] これらの添加剤を第 6実施形態に係る駆動伝達装置用潤滑油組成物に含有させる 場合には、その含有量は組成物全量基準で、腐食防止剤、防鲭剤、抗乳化剤では それぞれ 0. 005〜5質量%、金属不活性化剤では 0. 005〜1質量%、流動点降下 剤では、 0. 05〜1質量%、消泡剤では 0. 0005〜1質量%、着色剤では 0. 001〜 1. 0質量%の範囲で通常選ばれる。
[0473] 上記構成を有する第 6実施形態に係る駆動伝達装置用潤滑油組成物によれば、 低粘度化した場合であっても、耐摩耗性、焼付き防止性及び疲労寿命を長期にわた つて高水準で達成することができ、駆動伝達装置における省燃費性と耐久性との両 立、更には低温時始動性の改善が可能となる。第 6実施形態に係る駆動伝達装置用 潤滑油組成物が適用可能な駆動力伝達装置としては、特に制限されないが、具体 的には自動変速機、無段変速機、手動変速機などの変速機、終減速機、動力分配' 調整機構などが挙げられる。以下、本発明の好ましい実施形態として、 (I)自動変速 機用又は無段変速機用潤滑油組成物、(Π)手動変速機用潤滑油組成物、及び (III )終減速機用潤滑油組成物について詳述する。
[0474] (I)自動変速機用又は無段変速機用潤滑油組成物において、第 1実施形態又は 第 2実施形態に係る潤滑油基油の 100°Cにおける動粘度は、好ましくは 2〜8mm2 Zs、より好ましくは 2. 6〜4. 5mm2Zs、更に好ましくは 2. 8〜4. 3mmVs,特に 好ましくは 3. 3〜3. 8mm2Zsである。当該動粘度が前記下限値未満であると潤滑 性が不十分となる傾向にあり、また、前記上限値を超えると低温流動性が不十分とな る傾向にある。
[0475] また、 (I)自動変速機用又は無段変速機用潤滑油組成物において、第 1実施形態 又は第 2実施形態に係る潤滑油基油の 40°Cにおける動粘度は、好ましくは 15〜50 mm2Zs、より好ましくは 20〜40mm2Zs、更に好ましくは 25〜35mm2Zsである。 当該動粘度が前記下限値未満であると潤滑性が不十分となる傾向にあり、また、前 記上限値を超えると撹拌抵抗の増大により省燃費性が不十分となる傾向にある。
[0476] また、 (I)自動変速機用又は無段変速機用潤滑油組成物において、第 1実施形態 又は第 2実施形態に係る潤滑油基油の粘度指数は、好ましくは 120〜160、より好ま しくは 125〜150、更に好ましくは 130〜 145である。当該粘度指数が前記範囲内で あると、粘度 温度特性を一層向上できる。
[0477] また、 (I)自動変速機用又は無段変速機用潤滑油組成物に含まれるリン含有ィ匕合 物としては、リン酸、リン酸エステル類、亜リン酸、亜リン酸エステル類、チォリン酸、チ ォリン酸エステル類、チォ亜リン酸及びチォ亜リン酸エステル類及びそれらの塩から 選ばれる少なくとも 1種であることが好ましぐリン酸、リン酸エステル類、亜リン酸及び 亜リン酸エステル類及びそれらの塩力も選ばれる少なくとも 1種であることがより好まし く、リン酸エステル類及び亜リン酸エステル類及びそれらの塩カゝら選ばれる少なくとも
1種であることが更に好ましい。
[0478] また、 (I)自動変速機用又は無段変速機用潤滑油組成物におけるリン含有化合物 の含有量は、組成物全量を基準として、リン元素換算で、好ましくは 0. 005-0. 1質 量0 /0、より好ましく ίま 0. 01-0. 05質量0 /0、更に好ましく ίま 0. 02-0. 04質量0 /0で ある。リン含有ィ匕合物の含有量が前記下限値未満であると潤滑性が不十分となる傾 向にあり、また、前記上限値を超えると湿式摩擦特性及び疲労寿命が不十分となる 傾向にある。
[0479] また、(I)自動変速機用又は無段変速機用潤滑油組成物の— 40°Cにおける BF粘 度 ίま、好ましく ίま 20, OOOmPa' s以下、より好ましく ίま 15, OOOmPa' s以下、更に好 ましくは 10, OOOmPa' s以下、一層好ましくは 8, OOOmPa' s以下、特に好ましくは 7 , OOOmPa' s以下である。当該 BF粘度が前記上限値を超えると、低温時始動性が 不十分となる傾向にある。
[0480] また、 (I)自動変速機用又は無段変速機用潤滑油組成物の粘度指数は、好ましく は 100〜250、より好ましくは 150〜250、更に好ましくは 170〜250である。粘度指 数が前記下限値未満であると省燃費性が不十分となる傾向ある。また、前記上限値 を超えるような組成物は、ポリ (メタ)アタリレート系粘度指数向上剤の含有量が多すぎ るものであり、せん断安定性が不十分となる傾向にある。
[0481] また、(Π)手動変速機用潤滑油組成物において、第 1実施形態又は第 2実施形態 に係る潤滑油基油の 100°Cにおける動粘度は、好ましくは 3. 0〜20mm2Zs、より好 ましくは 3. 3〜15mm2Zs、さらに好ましくは 3. 3〜8mm2Zs、一層好ましくは 3. 8 〜6mm2Zs、特に好ましくは 4. 3〜5. 5mm2Zsである。当該動粘度が前記下限値 未満であると潤滑性が不十分となる傾向にあり、また、前記上限値を超えると低温流 動性が不十分となる傾向にある。
[0482] また、(Π)手動変速機用潤滑油組成物において、第 1実施形態又は第 2実施形態 に係る潤滑油基油の 40°Cにおける動粘度は、好ましくは 10〜200mm2Zs、より好 ましくは 15〜80mm2Zs、さらに好ましくは 20〜70mm2Zs、特に好ましくは 23〜6 0mm2Zsである。当該動粘度が前記下限値未満であると潤滑性が不十分となる傾 向にあり、また、前記上限値を超えると撹拌抵抗の増大により省燃費性が不十分とな る傾向にある。
[0483] また、(Π)手動変速機用潤滑油組成物において、第 1実施形態又は第 2実施形態 に係る潤滑油基油の粘度指数は、好ましくは 130〜170、より好ましくは 135〜165、 更に好ましくは 140〜160である。当該粘度指数が前記範囲内であると、粘度 温 度特性を一層向上できる。
[0484] また、(Π)手動変速機用潤滑油組成物に含まれるリン含有ィ匕合物としては、チオリ ン酸、チォリン酸エステル類、チォ亜リン酸及びチォ亜リン酸エステル類力 選ばれ る少なくとも 1種であることが好ましぐチォリン酸エステル類及びチォ亜リン酸エステ ル類カも選ばれる少なくとも 1種であることがより好ましぐジチォリン酸亜鉛が特に好 ましい。
[0485] また、 (II)手動変速機用潤滑油組成物におけるリン含有ィ匕合物の含有量は、組成 物全量を基準として、リン元素換算で、好ましくは 0. 01〜0. 2質量%、より好ましくは 0. 05-0. 15質量%、更に好ましくは 0. 09-0. 14質量%である。リン含有化合物 の含有量が前記下限値未満であると潤滑性及びシンクロ特性が不十分となる傾向に あり、また、前記上限値を超えると熱 ·酸ィ匕安定性及び疲労寿命が不十分となる傾向 にある。
[0486] また、(Π)手動変速機用潤滑油組成物の— 40°Cにおける BF粘度は、好ましくは 2 0, OOOmPa* s以下、より好ましくは 15, OOOmPa* s以下、更に好ましくは 10, OOOm Pa' s以下、一層好ましくは 9, OOOmPa' s以下、特に好ましくは 8, OOOmPa' s以下 である。当該 BF粘度が前記上限値を超えると、低温時始動性が不十分となる傾向に ある。
[0487] また、 (II)手動変速機用潤滑油組成物の粘度指数は、好ましくは 100〜250、より 好ましくは 140〜250、更に好ましくは 150〜250である。粘度指数が前記下限値未 満であると省燃費性が不十分となる傾向ある。また、前記上限値を超えるような組成 物は、ポリ(メタ)アタリレート系粘度指数向上剤の含有量が多すぎるものであり、せん 断安定性が不十分となる傾向にある。
[0488] また、(III)終減速機用潤滑油組成物において、第 1実施形態又は第 2実施形態に 係る潤滑油基油の 100°Cにおける動粘度は、好ましくは 3. 0〜20mm2Zs、より好ま しくは 3. 3〜15mm2Zs、さらに好ましくは 3. 3〜8mm2Zs、一層好ましくは 3. 8〜 6mm2Zs、特に好ましくは 4. 3〜5. 5mm2Zsである。当該動粘度が前記下限値未 満であると潤滑性が不十分となる傾向にあり、また、前記上限値を超えると低温流動 性が不十分となる傾向にある。
[0489] また、(III)終減速機用潤滑油組成物において、第 1実施形態又は第 2実施形態に 係る潤滑油基油の 40°Cにおける動粘度は、好ましくは 15〜200mm2Zs、より好まし くは 20〜150mm2Zs、更に好ましくは 23〜80mm2Zsである。当該動粘度が前記 下限値未満であると潤滑性が不十分となる傾向にあり、また、前記上限値を超えると 撹拌抵抗の増大により省燃費性が不十分となる傾向にある。
[0490] また、(III)終減速機用潤滑油組成物において、第 1実施形態又は第 2実施形態に 係る潤滑油基油の粘度指数は、好ましくは 130〜170、より好ましくは 135〜165、 更に好ましくは 140〜160である。当該粘度指数が前記範囲内であると、粘度 温 度特性を一層向上できる。
[0491] また、(III)終減速機用潤滑油組成物に含まれるリン含有ィ匕合物としては、リン酸ェ ステル類、亜リン酸エステル類、チォリン酸エステル類、チォ亜リン酸エステル類及び それらの塩力 選ばれる少なくとも 1種であることが好ましぐリン酸エステル類、亜リン 酸エステル類及びそれらのアミン塩カも選ばれる少なくとも 1種であることがより好まし く、亜リン酸エステル類、そのアミン塩及びリン酸エステル類カゝら選ばれる少なくとも 1 種であることが更に好ましい。
[0492] また、(III)終減速機用潤滑油組成物におけるリン含有ィ匕合物の含有量は、組成物 全量を基準として、リン元素換算で、好ましくは 0. 01〜0. 2質量%、より好ましくは 0 . 05-0. 15質量%、更に好ましくは 0. 1〜0. 14質量%である。リン含有化合物の 含有量が前記下限値未満であると潤滑性が不十分となる傾向にあり、また、前記上 限値を超えると疲労寿命が不十分となる傾向にある。
[0493] また、 (III)終減速機用潤滑油組成物の— 40°Cにおける BF粘度は、好ましくは 10 0, OOOmPa' s以下、より好ましくは 50, OOOmPa' s以下、更に好ましくは 20, 000m Pa' s以下、一層好ましくは 10, OOOmPa' s以下である。当該 BF粘度が前記上限値 を超えると、低温時始動性が不十分となる傾向にある。
[0494] また、 (III)自動変速機用又は無段変速機用潤滑油組成物の粘度指数は、好ましく は 100〜250、より好ましくは 120〜250、更に好ましくは 125〜250である。粘度指 数が前記下限値未満であると省燃費性が不十分となる傾向ある。また、前記上限値 を超えるような組成物は、ポリ (メタ)アタリレート系粘度指数向上剤の含有量が多すぎ るものであり、せん断安定性が不十分となる傾向にある。
実施例
[0495] 以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は 以下の実施例に何ら限定されるものではない。
[0496] [実施例 1〜3]
溶剤精製基油を精製する工程にぉ ヽて減圧蒸留で分離した留分を、フルフラール で溶剤抽出した後で水素化処理し、次いで、メチルェチルケトン—トルエン混合溶剤 で溶剤脱ろうした。力かる溶剤脱ろうの際に除去されたスラックワックスをさらに脱油し て得られたワックス分 (以下、「WAX1」という。)を、潤滑油基油の原料として用いた。 WAX1の性状を表 1に示す。
[0497] [表 1]
Figure imgf000117_0001
[0498] 次に、水素化分解触媒の存在下、水素分圧 5MPa、平均反応温度 350°C、 LHSV lhr_1の条件下で、 WAX1の水素化分解を行った。水素化分解触媒としては、ァモ ルファス系シリカ ·アルミナ担体(シリカ:アルミナ = 20: 80 (質量比) )にニッケル 3質 量%及びモリブデン 15質量%が担持された触媒を硫ィ匕した状態で用いた。
[0499] 次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより原料油 に対して 26容量%の潤滑油留分を得た。この潤滑油留分について、メチルェチルケ トン トルエン混合溶剤を用いて、溶剤 Z油比 4倍、ろ過温度 25°Cの条件で溶剤 脱ろうを行い、粘度グレードの異なる実施例 1〜3の潤滑油基油(D1〜D3)を得た。
[0500] [実施例 4〜6]
USY型ゼオライト 800gとアルミナバインダー 200gとを混合混練し、直径 1Z16ィ ンチ (約 1. 6mm)、高さ 6mmの円柱状に成型した。得られた成型体を 450°Cで 3時 間焼成して担体を得た。この担体に、白金換算値で担体の 0. 8質量%となる量のジ クロロテトラアミン白金 (Π)の水溶液を含浸し、 120°Cで 3時間乾燥させ、 400°Cで 1 時間焼成することにより、目的の触媒を得た。
[0501] 次に、得られた触媒 200mlを固定証の流通式反応器に充填し、この反応器を用い て、パラフィン系炭化水素を含む原料油の水素化分解 Z水素化異性ィ匕を行った。本 工程では、原料油として、パラフィン含量が 95質量%であり、 20から 80までの炭素数 分布を有する FTワックス(以下、「WAX2」という。)を用いた。 WAX2の性状を表 2に 示す。また、水素化分解の条件は、水素圧 3MPa、反応温度 350°C、 LHSV2. Oh" 1とし、原料に対し沸点 380°C以下の留分 (分解生成物)が 30質量% (分解率 30%) となる分解,異性化生成油を得た。
[0502] [表 2]
Figure imgf000118_0001
[0503] 次に、上記の水素化分解 Z水素化異性化工程で得られた分解 Z異性化生成油を 減圧蒸留することにより、潤滑油留分を得た。この潤滑油留分について、メチルェチ ルケトン トルエン混合溶剤を用いて、溶剤 Z油比 4倍、ろ過温度 25°Cの条件で 溶剤脱ろうを行い、粘度グレードの異なる実施例 4〜6の潤滑油基油(D4〜D6)を得 た。
[0504] [実施例 7〜15]
溶剤精製基油を精製する工程にぉ ヽて減圧蒸留で分離した留分を、フルフラール で溶剤抽出した後で水素化処理し、次いで、メチルェチルケトン—トルエン混合溶剤 で溶剤脱ろうした。力かる溶剤脱ろうの際に除去されたスラックワックスをさらに脱油し て得られたワックス分 (以下、「WAX3」という。)を、潤滑油基油の原料として用いた。 WAX3の性状を表 3に示す。
[0505] [表 3]
Figure imgf000119_0001
[0506] 次に、水素化分解触媒の存在下、水素分圧 5MPa、平均反応温度 350°C、 LHSV lhr_1の条件下で、 WAX3の水素化分解を行った。水素化分解触媒としては、ァモ ルファス系シリカ ·アルミナ担体(シリカ:アルミナ = 20: 80 (質量比) )にニッケル 3質 量%及びモリブデン 15質量%が担持された触媒を硫ィ匕した状態で用いた。
[0507] 次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより原料油 に対して 26容量%の潤滑油留分を得た。この潤滑油留分について、メチルェチルケ トン トルエン混合溶剤を用いて、溶剤 Z油比 4倍、ろ過温度 25°Cの条件で溶剤 脱ろうを行い、粘度グレードの異なる実施例 7〜9、 10〜12、 13〜15の潤滑油基油 (D7〜D9、 D10〜D12、 D13〜D15)を得た。
[0508] 実施例 1〜 15の潤滑油基油について、各種性状及び性能評価試験結果を表 4〜 6に示す。また、比較例 1〜9として、従来の高粘度指数基油 R1〜R9についての各 種性状及び性能評価試験結果を表 7〜9に示す。
[0509] [表 4]
Figure imgf000120_0001
5]
実施例 実施例 実施例 実施例 実施例
2 5 10 11 12 基油名 D2 D5 D10 D11 D12 原料ワックスの名称 WAX1 WAX2 WAX3 WAX3 WAX3 基油組成 飽和分 質量% 98.6 99. 97.7 98.2 95.2
(基油全量基準) 芳香族分 質量% 0.8 0.2 2.1 1.0 3.4 極性化合物分 質量 ¾ 0.6 0.3 0.2 0.8 1.2 飽和分の内訳 環状飽和分 5.6 1.2 13.7 12.2 36.1
(飽和分全量基準) 非環状飽和分 質量 ¾ 95.4 98.8 86.3 87.8 63.9 非環状飽和分の含有量 直鎖パラフィン分 質量% 0.1 0.1 0.1 0.1 0.2
(基油全量基準) 分枝 ラフィン分 質量% 94.0 98.2 84.2 86.1 59.9
EI- S飽和分分析 1 環飽和分 質量% 2.1 0.0 4.8 3.3 10.9 環状飽和分の内訳 2環飽和分 質量 1.9 0.4 4.0 3.1 9.8
(飽和分全量基準) 2環以上の飽和分 質量% 3.5 1.2 8.9 8.9 25.2
1 環飽和分 /2環飽和分
1.1 0.0 1.2 1.0 1.1 (質量比)
1 環飽和分 /2環以上の
0.6 0.0 0.5 0.4 0.4 飽和分(質量比)
n-d- 環分析 %CP 89.1 93.3 91.3 95.0 89.6
10.6 6.7 8.7 5.0 7.3
0.3 0.0 0.0 0.0 3.1
8.4 13.9 10.5 19.0 12.3 硫黄分 質 ppm 2 <1 <1 <1 <1 窒素分 質 ppm <3 ぐ 3 <3 <3 <3 屈折率(20°C) n2D 1.4537 1.4538 1.4565 1.452 1.4605 動粘度(40°C) m m - / s 17.3 16.7 16.6 17.6 16.89 動粘度(100 C) kvl 00 m m "/ s 4.1 3.9 4.0 4.1 4.0 粘度指数 143 131 144 140 140 n20-0.002 kv100 1.445 1.446 1.449 1.444 1.452 密度(15°C) g/cm3 0.825 0.815 0.821 0.811 0.827 流動点 C -20 -20 -22.5 -22.5 -25 ヨウ素価 0.63 0.21 1.35 1.57 1.73 ァニリン点 C 120 121 121 119 124 蒸留性状 IBP[UC] °c 353 350 356 353 350
T10[°C] c 386 384 398 386 390
T50[°C] c 432 431 431 433 435
T90[°C] c 470 467 479 469 471
FBP[°C] °c 499 495 508 500 508
CCS粘度 C-35°C) m Pa■ s 1890 1970 1810 2060 2100
NOACK蒸発量(250 1時間) 質量% 13.5 1 .9 12.5 13.5 13.8
RBOT寿命(150 C) m i n 380 398 390 385 375 残存金属分 Al 質 ppm <1 <1 <1 <1 <1
Mo 質 ppm <1 <1 <1 <1 <1
Ni 質 ppm <1 <1 <1 <1 <1 6]
実施例 実施例 実施例 実施例 実施例
3 6 13 14 15 基油名 D3 D6 D13 D14 Dl 5 原料ワックスの名称 WAX1 WAX2 WAX3 WAX3 WAX3 基油組成 飽和分 質量% 97.8 99.3 95.7 97.4 92.2
(基油全量基準) 芳香族分 質量% 1.3 0.2 4.0 1.5 6.1 極性化合物分 質量 ¾ 1.1 0.5 0.3 1.1 1.7 飽和分の内訳 環状飽和分 質量 ¾ 13.0 1.4 24.1 20.1 35.8
(飽和分全量基準) 非環状飽和分 質量 % 87.0 98.6 75.9 79.9 64.2 非環状飽和分の含有量 直鎖パラフィン分 質量% 0.1 0.1 0.1 0.1 0.2
(基油全量基準) 分枝パラフィン分 質量% 84.8 97.8 72.5 77.7 59.0
E1-MS飽和分分析 1 環飽和分 質量1 ½ 5.9 0.0 11.8 7.6 12.7 環状飽和分の内訳 2環飽和分 質量1 ¾ 4.8 0.6 8.5 5.8 10.9
(飽和分全量基準) 2環以上の飽和分 質量% 7.1 1.4 12.3 12.5 23.1
1 環飽和分 /2環飽和分
0.0 1.4 1.3 1.2
(質量比)
1 環飽和分 /2環以上の
0.8 0.0 1.0 0.6 0.5 飽和分(質量比)
n-d-M璟分析 %C 94.9 95.3 88.1 95.00 88.9
%c 5.1 4.7 11.8 5.0 8.3
%c 0.0 0.0 0.1 0.0 2.8
% C p / % c H 18.6 20.3 7.5 19.0 10.7 硫黄分 質 ppm 2 <1 2 ぐ 1 <1 窒素分 質 S ppm <3 <3 く 3 ぐ 3 <3 屈折率(20°C) n20 1.4583 1.4593 1.4600 1.4590 1.4660 動粘度(40 C) m m /s 38.2 37.2 30.4 35.0 33.9 動粘度 (100°C) kv100 m m 2 / s 7.2 7.0 6.0 6.8 6.5 粘度指数 155 152 148 154 148 n20-0.002 kv100 1.444 1.445 1.448 1.446 1.453 密度(15°C) cm3 0.826 0.826 0.833 0.825 0.837 流動点 。C - 15 -15 -15 -17.5 -20 ヨウ素価 0.56 0.19 0.77 0.95 1.03 ァニリン点 。C 133 133 128 131 125 蒸留性状 I B P [。C ] 。C 424 421 416 425 421
T10[°C] 。c 453 450 446 449 445
T50[°C] 。C 485 483 473 473 472
T90[°C] °C 513 510 508 493 492
F B P [。C ] 。C 541 537 536 539 546
CCS粘度(_35 C) m P a■ s 9900 14500 7200 8800 9200
NOACK蒸発量(250°C、 1時間) 質量 。 2.0 2.0 3.7 3.2 3.5
RBOT寿命(150。C) m i n 440 433 430 435 418 残存金属分 Al 質更 ppm <1 <1 <1 <1 <1
Mo ppm <1 <1 <1 <1 <1
Ni 質 ΐ ppm <1 <1 <1 ぐ 1 <1 7]
Figure imgf000123_0001
表 8]
Figure imgf000124_0001
9]
Figure imgf000125_0001
[光安定性評価試験]
先ず、測定試料として、実施例 1〜3及び比較例 1、 2、 4、 5、 7、 8の各潤滑油基油 、及び各潤滑油基油にフエノール系酸化防止剤(2, 6—ジー tert—ブチルー p—ク レゾール; DBPC)を 0. 2質量0 /0添カロした組成物を用意した。次に、サンシャインゥェ ザ一メーター試験装置を用いて、各潤滑油基油又は組成物に、平均温度が 40°Cと なるように波長域 400〜750nmの光を 70時間照射した。光照射前後の各潤滑油基 油の色相を、 ASTM D 156— 00に規定されているセィボルト色相で評価した。得 られた結果を表 5〜7に示す。
[0516] [表 10]
[0517] [表 11
[0518] [表 12
Figure imgf000126_0001
[0519] 表 4〜9に示した結果から、実施例 1〜15の潤滑油基油は、比較例 1〜9の潤滑油 基油と比較して、粘度指数が高ぐ粘度 温度特性に優れていることがわかる。また 、表 4〜9に示した RBOT寿命の実施例 1、 4、 7〜9と比較例 1〜3との比較、実施例 2、 5、 10〜12と匕較(列4〜6との_1:匕較、実施 f列 3、 6、 13〜15と匕較(列7〜9との_1:匕 較、並びに表 10〜12に示した光安定性試験の実施例 1と比較例 1、 2、実施例 2と比 較例 4、 5、実施例 3と比較例 7、 8の比較により、各粘度グレードにおいて実施例 1〜 15の潤滑油基油はより長寿命であり、熱 ·酸ィ匕安定性及び酸ィ匕防止剤の添加効果 の点で優れて 、ることがわ力る。
[0520] [実施例 16]
実施例 16においては、水素化分解触媒の存在下、水素分圧 5MPa、平均反応温 度 350°C、 LHSVlhr—1の条件下で、 WAX1の水素化分解を行った。水素化分解 触媒としては、アモルファス系シリカ ·アルミナ担体 (シリカ:アルミナ = 20: 80 (質量比 ) )にニッケル 3質量%及びモリブデン 15質量%が担持された触媒を硫化した状態で 用いた。
[0521] 次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより 100°C における動粘度が 4mm2Zsの潤滑油留分を得た。この潤滑油留分について、メチ ルェチルケトン—トルエン混合溶剤を用いて、溶剤/油比を 4倍とし、得られる溶剤 脱ろう油の凝固点が— 29°Cとなるように溶剤脱ろうを行い、実施例 1の潤滑油基油( D16)を得た。なお、このときの脱ろう温度は 32°Cであった。
[0522] [実施例 17]
USY型ゼオライト 800gとアルミナバインダー 200gとを混合混練し、直径 1Z16ィ ンチ (約 1. 6mm)、高さ 6mmの円柱状に成型した。得られた成型体を 450°Cで 3時 間焼成して担体を得た。この担体に、白金換算値で担体の 0. 8質量%となる量のジ クロロテトラアミン白金 (Π)の水溶液を含浸し、 120°Cで 3時間乾燥させ、 400°Cで 1 時間焼成することにより、目的の触媒を得た。
[0523] 次に、得られた触媒 200mlを固定証の流通式反応器に充填し、この反応器を用い て、パラフィン系炭化水素を含む原料油の水素化分解 Z水素化異性ィ匕を行った。本 工程では、原料油として WAX2を用いた。また、水素化分解の条件は、水素圧 3MP a、反応温度 350°C、 LHSV2. Oh_1とし、原料に対し沸点 380°C以下の留分 (分解 生成物)が 30質量% (分解率 30%)となる分解 Z異性化生成油を得た。
[0524] 次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより 100°C における動粘度が 4mm2Zsの潤滑油留分を得た。この潤滑油留分について、メチ ルェチルケトン—トルエン混合溶剤を用いて、溶剤/油比を 4倍とし、得られる溶剤 脱ろう油の凝固点が— 25°Cとなるように溶剤脱ろうを行い、実施例 2の潤滑油基油( D17)を得た。なお、このときの脱ろう温度は— 25°Cであった。
[0525] [実施例 18]
実施例 18においては、水素化分解触媒の存在下、水素分圧 5MPa、平均反応温 度 350°C、 LHSVlhr—1の条件下で、 WAX3の水素化分解を行った。水素化分解 触媒としては、アモルファス系シリカ ·アルミナ担体 (シリカ:アルミナ = 20: 80 (質量比 ) )にニッケル 3質量%及びモリブデン 15質量%が担持された触媒を硫化した状態で 用いた。
[0526] 次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより 100°C における動粘度が 4mm2Zsの潤滑油留分を得た。この潤滑油留分について、メチ ルェチルケトン—トルエン混合溶剤を用いて、溶剤/油比を 4倍とし、得られる溶剤 脱ろう油の凝固点が— 29°Cとなるように溶剤脱ろうを行い、実施例 3の潤滑油基油( D18)を得た。なお、このときの脱ろう温度は 32°Cであった。
[0527] 実施例 16〜18の潤滑油基油について、各種性状及び性能評価試験結果を表 13 に示す。また、比較例 10〜12として、従来の高粘度指数基油 R10〜R12について の各種性状及び性能評価試験結果を表 14に示す。
[0528] [表 13]
Figure imgf000129_0001
14]
Figure imgf000130_0001
表 13、 14に示した結果から、実施例 16〜18の潤滑油基油は、比較例 10〜12の 潤滑油基油と比較して、粘度指数が高ぐ低温粘度特性(一 35°Cにおける CCS粘度 )に優れていることがわかる。また、表 13、 14に示した RBOT寿命の実施例 16〜 18 と比較例 10〜12との比較により、実施例 16〜18の潤滑油基油はより長寿命であり、 熱'酸ィ匕安定性及び酸ィ匕防止剤の添加効果の点で優れていることがわかる。 [0531] [実施例 20〜22、比較例 13〜15]
実施例 20〜22及び比較例 13〜15においては、それぞれ潤滑油基油 D16〜D1 8、 R10〜R12、並びに以下に示す添加剤を含む OW— 20エンジン油用パッケージ 添加剤(OW— 20添加剤 PKG)を用いて、表 15、 16に示す組成を有する潤滑油組 成物を調製した。得られた潤滑油組成物の各種性状を表 15、 16に併せて示す。 (流動点降下剤)
A1— 1:ポリメタタリレート
(粘度指数向上剤)
B1— 1:分散型ポリメタタリレート
(金属系清浄剤)
C1-1:カルシウムスルホネート
(分散剤)
D1-1:ァルケ-ルコハク酸イミド及びホウ酸変性ァルケ-ルコハク酸イミド
(摩耗防止剤)
E 1— 1:セカンダリーアルキル型ジチオリン酸亜鉛
(酸化防止剤)
F1— 1:アルキルジフエ-ルァミン及びモリブデン アミン錯体。
[0532] [表 15] 実施例 実施例 実施例
20 21 22
D16 100 - - 基油の組成
D17 - 100 -
[質量 ¾]
D 18 100
基油 残部 残部 残部
潤滑油組成物
0W-20
の組成
添加剤 18.0 18.0 18.0
[質量%]
PKG
100¾における動粘度
8.9 8.8 8.7
[mm2/ s ]
粘度指数 220 218 225
凝固点 [°c] -45 -42.5 -45
- 40 °Cにおける MRV粘度
11000 12000 10600
[mPa · s]
_40°Cにおける降伏応力
0 0 0
[Pa] [0533] [表 16]
Figure imgf000132_0001
[0534] 表 15、 16に示す結果から、実施例 20〜22の潤滑油組成物は、粘度指数が高ぐ — 40°Cにおける MRV粘度が低ぐ降伏応力が OPaであったことから、低温粘度特性 に格段に優れて 、ることがわ力る。
[0535] [潤滑油基油の製造]
(基油 D19)
水素化分解触媒の存在下、水素分圧 5MPa、平均反応温度 350°C、 LHSVlhr"1 の条件下で、表 1に示す WAX1の水素化分解を行った。水素化分解触媒としては、 アモルファス系シリカ ·アルミナ担体(シリカ:アルミナ = 20: 80 (質量比) )にニッケル 3質量%及びモリブデン 15質量%が担持された触媒を硫ィ匕した状態で用いた。
[0536] 次に、上記の水素化分解で得られた分解生成物を常圧蒸留することにより潤滑油 留分 26容量%を得た。この潤滑油留分について、メチルェチルケトン トルエン混 合溶剤を用いて、溶剤 Z油比 4倍、ろ過温度— 25°Cの条件で溶剤脱ろうを行い、目 的の潤滑油基油(以下、「基油 D19」という。)を得た。基油 D19の各種性状及び性 能評価試験結果を表 17に示す。また、従来の高粘度指数基油である基油 R4につい ての各種性状及び性能評価試験結果を表 17に併せて示す。
[0537] [表 17]
Figure imgf000133_0001
[実施例 23〜25、比較例 16、 17]
実施例 23〜25においては、基油 D19、並びに以下に示す添加剤を用いて、表 18 に示す組成を有する潤滑油組成物を調製した。また、比較例 16、 17においては、基 油 R4、並びに以下に示す添加剤を用いて、表 18に示す組成を有する潤滑油組成 物を調製した。
(リン系摩耗防止剤)
A2— 1 :ジアルキルジチォリン酸亜鉛(リン含有量: 7. 2質量%、アルキル基:第 2級 ブチル基又は第 2級へキシル基の混合物)
A2— 2:モノ及びジアルキルリン酸亜鉛(リン含有量: 10.0質量%、アルキル基:第 1 級ォクチル基)
(無灰酸化防止剤)
B2-1:アルキルジフエ-ルァミン(アルキル基:ブチル基又はォクチル基)
B2— 2:4, 4, 一メチレンビス(2, 6—ジ一 tert—ブチルフエノール)
(無灰分散剤)
C2—1:ポリブテニルコハク酸イミド(ポリブテニル基の数平均分子量: 1300、窒素含 有量 :1.8質量%)
C2-2:ホウ酸変性ポリブテニルコハク酸イミド(ポリブテニル基の数平均分子量: 13
00、窒素含有量: 1.8質量%、ホウ素含有量: 0.77質量%)
(金属系清浄剤)
D2—1:カルシウムサリシレート
D2-2:カルシウムスルホネート
( (A)成分以外の摩耗防止剤)
E2— 1:モリブデンジチォカーバメート
(摩擦調整剤)
F2— 1:グリセリンモノォレート
(腐食防止剤)
G2-1:ベンゾトリァゾーノレ
(その他)
H2— 1:粘度指数向上剤、流動点降下剤、消泡剤等を含むパッケージ
[0539] [硫酸灰分の測定]
実施例 23〜25及び比較例 16、 17の潤滑油糸且成物について、 JIS K 2272-1 985に準拠して硫酸灰分を測定した。得られた結果を表 18に示す。
[0540] [NOx吸収試験]
日本トライボロジー会議予稿集 1992、 10、 465に準拠した方法にて試験油に NO X含有ガスを吹き込み、強制劣化させたとき塩基価 (塩酸法)及び酸価の経時変化を 測定した。本試験における試験温度は 140°C、 NOx含有ガス中の NOx濃度は 120 Oppm、 O濃度は 85%とした。 NOxガスの吹き込み開始から 96時間後の酸価増加
2
量を表 18に示す。表中、酸価増加量が小さいものほど、内燃機関で使用されるよう な NOx存在下にお 、ても酸ィ匕寿命が長 、ことを示して!/、る。
[0541] [表 18]
Figure imgf000135_0001
[0542] 表 18に示したように、実施例 23〜25の潤滑油組成物は、硫酸灰分及び酸価増加 量がいずれも小さい値を示した。これらの結果から、実施例 23〜25の潤滑油組成物 は、酸化寿命が十分に長ぐ且つ排気ガス後処理装置の性能を長期にわたって十分 に維持することが可能な潤滑油組成物であることがわかる。
[0543] 一方、比較例 16、 17の潤滑油組成物は、実施例 23〜25の潤滑油組成物と比較 して、硫酸灰分及び酸化増加量のいずれも大きい値を示した。比較例 16の潤滑油 組成物の場合、硫酸灰分が多ぐまた、酸ィ匕防止機能を有するジチォリン酸亜鉛 (A 2— 1)の含有量が実施例 23、 24よりも多いにもかかわらず酸価増加量が大きくなつ ており、十分な酸ィ匕防止性が得られていないことがわかる。また、ジチォリン酸亜鉛( A2- 1)の含有量が実施例 23、 24の潤滑油組成物と同様である比較例 17の潤滑 油組成物の場合は、硫酸灰分は同程度であるが、酸価増加量が大きぐ十分な酸化 防止性が得られて 、な 、ことがわかる。
[実施例 26〜29、比較例 18〜21]
実施例 26〜29においては、基油 D19、並びに以下に示す添加剤を用いて、表 19 に示す組成を有する潤滑油組成物を調製した。また、比較例 18〜21においては、 基油 R4、並びに以下に示す添加剤を用いて、表 20に示す組成を有する潤滑油組 成物を調製した。
(硫黄を構成元素として含まな ヽ無灰酸化防止剤)
A3— 1:アルキルジフエ-ルァミン(アルキル基:ブチル基又はォクチル基)
A3— 2 :4, 4, 一メチレンビス(2, 6—ジ一 tert—ブチルフエノール)
(硫黄を構成元素として含む無灰酸ィ匕防止剤及び有機モリブデンィ匕合物)
B3— 1:無灰ジチォカーバメート (硫黄含有量: 29. 4質量%)
B3- 2 :モリブデンのジトリデシルアミン錯体(モリブデン含有量:10. 0質量0 /0)
(摩耗防止剤)
C3- 1 :ジアルキルジチォリン酸亜鉛(リン含有量: 7. 2質量%、アルキル基:第 2級 ブチル基又は第 2級へキシル基の混合物)
C3— 2 :ジアルキルリン酸亜鉛(リン含有量: 10. 0質量%、アルキル基:第 1級ォクチ ル基)
(無灰分散剤)
D3— 1:ポリブテュルコハク酸イミド (ポリブテュル基の数平均分子量: 1300、窒素含 有量 : 1. 8質量%)
D3- 2 :ホウ酸変性ポリブテュルコハク酸イミド (ポリブテュル基の数平均分子量: 13 00、窒素含有量: 1. 8質量%、ホウ素含有量: 0. 77質量%)
(金属系清浄剤)
E3— 1 :カルシウムサリシレート
E3- 2 :カルシウムスルホネート
(腐食防止剤)
F3- 1 :ベンゾトリァゾーノレ
(消泡剤) G3— 1 :粘度指数向上剤、流動点降下剤、消泡剤等を含むパッケージ
[0545] [NOx吸収試験]
日本トライボロジー会議予稿集 1992、 10、 465に準拠した方法にて試験油に NO X含有ガスを吹き込み、強制劣化させたとき塩基価 (塩酸法)及び酸価の経時変化を 測定した。本試験における試験温度は 140°C、 NOx含有ガス中の NOx濃度は 120 Oppm、 O濃度は 85%とした。 NOxガスの吹き込み開始から 168時間後の動粘度
2
比( 168時間後の 100°Cにおける動粘度を新油の 100°Cにおける動粘度で除した値 )及び酸価増加量を表 19、 20に示す。表中、動粘度比が小さいものほど、また、酸 価増加量が小さいものほど、内燃機関で使用されるような NOx存在下においても酸 化寿命が長 、ことを示して 、る。
[0546] [表 19]
Figure imgf000137_0001
[0547] [表 20] 比較例 比較例 比較例 比較例
18 19 20 21 組成 基油 D 19
(質量 ) 基油 R4 残部 残部 残部 残部
A3 - 1 1.5 1.5
A3 - 2 1.0
B3-1 (モリブデン元素換算値) (0.07) (0.07) (0.07)
B3- 2 (モリブデン元素換算値)
C3-1 (リン元素換算値) (0.10) (0.10) (0.10) (0.10)
C3- 2 (リン元素換算値)
D3-1 2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0
E3-1 (カルシウム元素換算値) (0.2) (0.2) (0.2) (0.2)
E3-2(カルシウム元素換算値)
F3-1
G3-1 6.0 6.0 6.0 6.0
100°Cにおける動粘度(mm2/s) 8.7 8.7 8.7 8.7 粘度指数 211 211 211 211 動粘度比
2.7 3.0
(試験中止) (試験中止)
Itffi If カロ » (mgKOH/g) >20 >20
14.2 15.8
(試験中止) (試験中止)
[0548] 表 19に示したように、実施例 26〜29の潤滑油組成物は、 NOx吸収試験における 動粘度比及び酸価増加量が 、ずれも小さ 、値を示したことから、ロングドレイン性に 優れていることがわ力る。
[0549] 一方、比較例 18〜21の潤滑油組成物は、実施例 26〜29の潤滑油組成物と比較 して、 NOx吸収試験における動粘度比及び酸ィ匕増加量カ^、ずれも大き!/、値を示し た。特に、比較例 20、 21の潤滑油組成物の場合、 NOx存在下での劣化が著しかつ たため、 NOxガスの吹き込み開始から 168時間が経過する前に試験を中断した。
[0550] [実施例 30、比較例 22]
実施例 30においては、基油 D19、並びに以下に示す添加剤を用いて、表 21に示 す組成を有する潤滑油組成物を調製した。また、比較例 22においては、基油 R4、並 びに以下に示す添加剤を用いて、表 21に示す組成を有する潤滑油組成物を調製し た。
(無灰酸化防止剤)
A4-1:アルキルジフエ-ルァミン(アルキル基:ブチル基又はォクチル基)
A4— 2:4, 4, 一メチレンビス(2, 6—ジ一 tert—ブチルフエノール)
(無灰分散剤) B4— 1:ポリブテュルコハク酸イミド (ポリブテュル基の数平均分子量: 1300、窒素含 有量 : 1. 8質量%)
B4- 2 :ホウ酸変性ポリブテュルコハク酸イミド (ポリブテュル基の数平均分子量: 13 00、窒素含有量: 1. 8質量%、ホウ素含有量: 0. 77質量%)
(リン 硫黄系摩耗防止剤)
C4—1 :ジアルキルジチォリン酸亜鉛(リン含有量: 7. 2質量%、アルキル基:第 2級 ブチル基又は第 2級へキシル基の混合物)
(金属系清浄剤)
D4- 1 :カルシウムスルホネート
(硫黄系摩耗防止剤)
E4— 1:モリブデンジチォカーバメート
(摩擦調整剤)
F4— 1 :グリセリンモノォレート
(消泡剤)
G4— 1 :粘度指数向上剤、流動点降下剤、消泡剤等を含むパッケージ
[0551] [NOx吸収試験]
日本トライボロジー会議予稿集 1992、 10、 465に準拠した方法にて試験油に NO X含有ガスを吹き込み、強制劣化させたときの不溶解分の発生量の経時変化を測定 した。本試験における試験温度は 140°C、 NOx含有ガス中の NOx濃度は 1200pp m、 O濃度は 85%とした。 NOxガスの吹き込み開始から 168時間後の不溶解分の
2
発生量を表 21に示す。
[0552] [表 21] 実施例 比較例
30 22
組成 基油 D 19 残部
(質量 ¾) 基油 R4 - 残部
A4-1 0.5 0.5
A4-2 0.8 0.8
B4-1 2.0 2.0
3.0 3.0
C4- 1 (リン元素換算値) (0.08) (0.08)
D4-1 (カルシウム元素換算値) (0.2) (0.2)
E4-1 0.07 0.07
F4-1 0.5 0.5
G4-1 5.0 5.0
不溶解分の発生量 (質量 °/。) 0.04 3.53
[0553] 表 21に示したように、実施例 30の潤滑油組成物は、 NOx吸収試験における不溶 解分の発生量が少なぐ二輪車用 4ストローク内燃機関等の用途において十分な熱' 酸化安定性を有して ヽることがわかる。
[0554] [潤滑油基油の製造]
水素化分解触媒の存在下、水素分圧 5MPa、平均反応温度 350°C、 LHSVlhr"1 の条件下で、表 1に示す WAX1の水素化分解を行った。水素化分解触媒としては、 アモルファス系シリカ ·アルミナ担体(シリカ:アルミナ = 20: 80 (質量比) )にニッケル 3質量%及びモリブデン 15質量%が担持された触媒を硫ィ匕した状態で用いた。
[0555] 次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより潤滑油 留分 26容量%を得た。この潤滑油留分について、メチルェチルケトン トルエン混 合溶剤を用いて、溶剤 Z油比 4倍、ろ過温度— 25°Cの条件で溶剤脱ろうを行い、粘 度グレードの異なる潤滑油基油(基油 D20、 D21及び D22)を得た。各潤滑油基油 の各種性状及び性能評価試験結果を表 22に示す。
[0556] [表 22]
Figure imgf000141_0001
[実施例 31〜33、比較例 24〜26:自動変速機用潤滑油組成物の調製] 実施例 31〜33においては、上記基油 D20、 D21、並びに下記の基油 R13及び添 加剤 A5— l、 A5— 2、 B5— l、 C5— 1を用いて、表 23に示す組成を有する潤滑油 組成物を調製した。また、比較例 24〜26においては、上記表 7に示す基油 R1及び 上記表 8に示す基油 R4、並びに下記の基油 R13及び添加剤 A5— 1、 A5— 2、 B5 1、 C5— 1を用いて、表 24に示す組成を有する潤滑油組成物を調製した。得られ た潤滑油組成物の 40°C及び 100°Cにおける動粘度、粘度指数及びリン含有量を表 23、 24に示す。
(基油)
基油 R13 :パラフィン系溶剤精製基油 (飽和分 : 60. 1質量%、芳香族分: 35. 7質量 %、榭脂分: 4. 2質量%、硫黄分: 0. 51質量%、 100°Cにおける動粘度: 32mm2Z s、粘度指数: 95)
(粘度指数向上剤)
A5— 1 :非分散型ポリメタタリレート(一般式(18)における R54カ チル基、炭素数 12 〜 15の直鎖アルキル基であるモノマーを主成分とするモノマー混合物の共重合体、 重量平均分子量: 25, 000)
A5— 2 :分散型ポリメタタリレート(一般式(18)における R54カ チル基、炭素数 12、 1 4、 16、 18の直鎖アルキル基であるモノマーを主成分とし、一般式(55)又は(56)で 表される含窒素モノマーを含むモノマー混合物の共重合体、重量平均分子量: 40, 000)
(リン含有化合物)
B5— 1 :亜リン酸と亜リン酸エステルとの混合物
(パッケージ添加剤)
C5— 1:パッケージ添加剤 (潤滑油組成物への添加量: 12. 5質量%、潤滑油組成 物中、無灰分散剤: 4. 0質量%、アルカリ土類金属スルホネート: 0. 01質量%(アル カリ土類金属元素換算値)、腐食防止剤: 0. 1質量%、酸化防止剤: 0. 2質量%、摩 擦調整剤: 3. 5質量%、ゴム膨潤剤:1. 0質量%、消泡剤 : 0. 003質量%、希釈剤: 残部)。
[0558] 次に、実施例 31〜33及び比較例 24〜26の自動変速機用潤滑油組成物を用いて 以下の評価試験を行った。
[0559] [低温流動性試験]
ASTM D 2983に準拠し、各潤滑油組成物の— 40°Cにおける BF粘度を測定し た。得られた結果を表 23、 24に示す。本試験においては、 BF粘度の値が小さいも のほど低温流動性に優れていることを意味する。
[0560] [せん断安定性試験] JASO M347— 95〖こ準拠し、下記条件で超音波せん断試験を行い、試験後の各 潤滑油組成物の 100°Cにおける動粘度を測定した。得られた結果を表 23、 24に示 す。本試験においては、超音波せん断を受けた後の粘度低下が小さぐ 100°Cにお ける動粘度が高 、値を示すものほどせん断安定性に優れて 、ることを意味する。
(試験条件)
試験油量: 30ml
超音波周波数: 10kHz
試験油温度: 40°C
試験時間: 1時間。
[0561] [耐摩耗性試験]
JPI— 5S— 32— 90に準拠し、下記条件で四球試験を行い、試験後の摩耗痕径を 測定した。得られた結果を表 23、 24に示す。本試験においては、摩耗痕径が小さい ものほど耐摩耗性に優れていることを意味する。
(試験条件)
回転数: 1800rpm
荷重: 392N
試験油量: 75°C
試験時間: 1時間。
[0562] [熱'酸化安定性試験]
先ず、各潤滑油組成物の酸価を測定した。次に、 JIS K 2514に準拠し、 ISOT にて 165°C、 144時間の条件で各潤滑油組成物を強制劣化させてその酸価を測定 し、試験前後の酸価の測定値力も酸価の増加量を求めた。得られた結果を表 23、 2
4に示す。本試験においては、酸価の増加量が小さいものほど熱 ·酸ィ匕安定性に優 れていることを意味する。
[0563] [表 23] 実施例 実施例 実施例
31 32 33 潤滑油基油 基油 D 20 35 35 75 の組成 基油 D 21 65 65 15
[質量%] 基油 R 13 - - 10 潤滑油基油の 40°C 14.1 14.1 14.3 動粘度 [mm2/s] 1 oo°c 3.6 3.6 3.6 潤滑油基油の粘度指数 138 138 136 基油 残部 残部 残部
A5-1 6.9 - 6.5 潤滑油組成物
A5-2 - 7.0 - の組成
B5-1
[質量 94] 0.03 0.03 0.03
(リン元素換算値)
C5-1 12.5 12.5 12.5 潤滑油組成物 40。C 25.3 28.8 25.8 の動粘度
100°C 5.8 6.8 5.8
[mm'/ s]
潤滑油組成物の粘度指数 183 209 180 潤滑油組成物のリン含有量
0.03 0.03 0.03
[質量 %]
低温流動性
5800 6800 7600 (-40¾における BF 粘度 [mPa ' s])
せん断安定性
5.6 6.5 5.6 (100°Cにおける動粘度 [mm2/s])
耐摩耗性
0.44 0.44 0.45 (摩耗痕径 [mm])
熱 ·酸化安定性
1.24 1.26 1.35
(酸価の増加量 [mgKOH/g])
比較例 比較例 比較例
24 25 26
潤滑油基油 基油 R 13 10 の組成 基油 R 1 25 25 55
[質量%] 基油 R4 75 75 35 潤滑油基油の 40。C 15.5 15.5 15.8
動粘度 [mmVs] 1 oo°c 3.6 3.6 3.6
潤滑油基油の粘度指数 118 118 115
基油 残部 残部 残部
A5-1 6.6 - 5.9
潤滑油組成物
- 6.8 - の組成
B5-1
[質量?'。] 0.03 0.03 0.03
(リン元素換算値)
C5-1 12.5 12.5 12.5
潤滑油組成物 40°C 27.2 30.8 27.6
の動粘度
100°C 5.8 6.8 5.8
[mm2/ s j
潤滑油組成物の粘度指数 162 190 159 潤滑油組成物のリン含有量
0.03 0.03 0.03
低温流動性
10500 13200 14300
(_40°Cにおける BF 粘度 [mPa ' s])
せん断安定性
5.4 6.3 5.5
(100°Cにおける動粘度 [mm2/s])
耐摩耗性
0.52 0.50 0.49
(摩耗痕径 [mm])
熱 ·酸化安定性
1.82 1.68 2.01
(酸価の增加量 [mgKOH/g]) [実施例 34、 35、比較例 27、 28:手動変速機用潤滑油組成物の調製]
実施例 34、 35においては、上記基油 D21、 D22及び添加剤 A5— 1、並びに下記 添加剤 A5— 3、 B5— 2、 C5— 2を用いて表 25に示す組成を有する潤滑油組成物を 調製した。また、比較例 27、 28においては、上記表 8に示した基油 R4及び添加剤 A 1、並びに前記表 9に示した基油 R7及び添加剤 A5— 3、 B5— 2、 C5— 2を用いて表 25に示す組成を有する潤滑油組成物を調製した。得られた潤滑油組成物の 40°C及 び 100°Cにおける動粘度、粘度指数及びリン含有量を表 6に示す。
(粘度指数向上剤)
A5— 3:非分散型ポリメタタリレート(一般式(5)における R1がメチル基、炭素数 12、 1 4、 16、 18の直鎖アルキル基であるモノマーを主成分とするモノマー混合物の共重 合体、重量平均分子量: 60, 000)
(リン含有化合物) B5- 2 :ジアルキルジチォリン酸亜鉛(Pri— ZDTPと Sec— ZDTPとの混合物) (パッケージ添加剤)
C5— 2 :パッケージ添加剤 (潤滑剤組成物への添加量: 6. 0質量%、潤滑油組成物 中、アルカリ土類金属スルホネート: 0. 25質量%(アルカリ土類金属元素換算値)、 腐食防止剤 : 0. 1質量%、酸化防止剤: 0. 5質量%、摩擦調整剤:1. 0質量%、ゴム 膨潤剤: 0. 5質量%、消泡剤 : 0. 001質量%、希釈剤:残部)。
[0566] 次に、実施例 34、 35及び比較例 27、 28の手動変速機用潤滑油組成物について 、実施例 31〜33及び比較例 24〜26の自動変速機用潤滑油組成物の場合と同様 の試験を行い、低温流動性、せん断安定性及び耐摩耗性を評価した。得られた結果 を表 6に示す。
[0567] [表 25]
Figure imgf000146_0001

Claims

請求の範囲
[1] 飽和分を 90質量%以上含有し、且つ該飽和分に占める環状飽和分の割合力 0 質量%以下であり、粘度指数が 110以上であり、ヨウ素価が 2. 5以下であることを特 徴とする潤滑油基油。
[2] 前記環状飽和分に含まれる 1環飽和分と 2環以上の飽和分との質量比が下記式(1 )で表される条件を満たすことを特徴とする、請求項 1に記載の潤滑油基油。
M /M ≤3 (1)
A B
(式中、 Mは 1環飽和分の質量を示し、 Mは 2環以上の飽和分を示す。 )
A B
[3] 前記飽和分に占める 2環以上の飽和分の割合が 0. 1質量%以上であることを特徴 とする、請求項 1又は 2に記載の潤滑油基油。
[4] 芳香族分を 0. 1〜7質量%含有することを特徴とする、請求項 1〜3のうちのいずれ か一項に記載の潤滑油基油。
[5] 前記潤滑油基油に占める分岐パラフィンの割合が 54〜99質量%であることを特徴 とする、請求項 1〜4のうちのいずれか一項に記載の潤滑油基油。
[6] 100°Cにおける動粘度が 3. 5〜6mm2Zsであり、粘度指数が 130以上であり、且 つ凝固点が— 25°C以下であることを特徴とする、請求項 1〜5のうちのいずれか一項 に記載の潤滑油基油。
[7] 100°Cにおける動粘度が 3. 5〜6mm2Zsであり、粘度指数が 130以上であり、且 つ凝固点が 25°C以下であることを特徴とする潤滑油基油。
[8] 100°Cにおける動粘度が 3. 5〜6mm2Zsであり、粘度指数が 130以上である潤滑 油基油の製造方法にぉ 、て、凝固点が― 25°C以下となるように脱ろう処理することを 特徴とする潤滑油基油の製造方法。
[9] 請求項 1〜7のうちのいずれか一項に記載の潤滑油基油を含有し、且つ 40°Cに おける MRV粘度が 20, OOOmPa' s以下であることを特徴とする潤滑油組成物。
[10] 請求項 1〜7のうちのいずれか一項に記載の潤滑油基油と、
組成物全量を基準として、
リン元素換算で 0. 02〜0. 08質量%のリン系摩耗防止剤と、
0. 5〜3質量%の無灰酸ィ匕防止剤と、 3〜12質量%の無灰分散剤と
を含有することを特徴とする内燃機関用潤滑油組成物。
[11] 排気ガス後処理装置が搭載された車両の内燃機関の潤滑油として使用され、且つ 硫酸灰分が 1. 2質量%以下であることを特徴とする、請求項 10に記載の内燃機関 用潤滑油組成物。
[12] 請求項 1〜7のうちのいずれか一項に記載の潤滑油基油と、
硫黄を構成元素として含まな!/、無灰酸化防止剤と、
硫黄を構成元素として含む無灰酸化防止剤及び有機モリブデン化合物から選ばれ る少なくとも 1種と
を含有することを特徴とする内燃機関用潤滑油組成物。
[13] 請求項 1〜7のうちのいずれか一項に記載の潤滑油基油と、
組成物全量を基準として、
0. 5〜3質量%の無灰酸ィ匕防止剤と、
3〜12質量%の無灰分散剤と
を含有することを特徴とする湿式クラッチ用潤滑油組成物。
[14] 二輪自動車用 4ストローク内燃機関に使用されることを特徴とする、請求項 13に記 載の湿式クラッチ用潤滑油組成物。
[15] 請求項 1〜7のうちのいずれか一項に記載の潤滑油基油と、
ポリ (メタ)アタリレート系粘度指数向上剤と、
リン含有化合物と
を含有することを特徴とする駆動伝達装置用潤滑油組成物。
[16] 前記潤滑油基油において、前記飽和分に占める 2環以上の飽和分の割合が 3質量 %以上であることを特徴とする、請求項 15に記載の駆動伝達装置用潤滑油組成物。
PCT/JP2007/056566 2006-03-31 2007-03-28 潤滑油基油及びその製造方法並びに潤滑油組成物 WO2007114132A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800198010A CN101454431B (zh) 2006-03-31 2007-03-28 润滑油基础油及其制备方法以及润滑油组合物
EP07740004.2A EP2009084B1 (en) 2006-03-31 2007-03-28 Lube base oil, process for production thereof, and lubricating oil composition
KR1020087026873A KR101100635B1 (ko) 2006-03-31 2007-03-28 윤활유 기유 및 이의 제조방법과 윤활유 조성물
US12/225,764 US8394745B2 (en) 2006-03-31 2007-03-28 Lube base oil, process for production thereof, and lubricating oil composition

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2006100175A JP5137314B2 (ja) 2006-03-31 2006-03-31 潤滑油基油
JP2006-100204 2006-03-31
JP2006-100175 2006-03-31
JP2006100204A JP2007270062A (ja) 2006-03-31 2006-03-31 潤滑油基油、潤滑油組成物及び潤滑油基油の製造方法
JP2006-187087 2006-07-06
JP2006187092A JP5498644B2 (ja) 2006-07-06 2006-07-06 駆動伝達装置用潤滑油組成物
JP2006187087A JP4945180B2 (ja) 2006-07-06 2006-07-06 湿式クラッチ用潤滑油組成物
JP2006187078A JP4945178B2 (ja) 2006-07-06 2006-07-06 内燃機関用潤滑油組成物
JP2006-187092 2006-07-06
JP2006187084A JP4945179B2 (ja) 2006-07-06 2006-07-06 内燃機関用潤滑油組成物
JP2006-187084 2006-07-06
JP2006-187078 2006-07-06

Publications (1)

Publication Number Publication Date
WO2007114132A1 true WO2007114132A1 (ja) 2007-10-11

Family

ID=38563401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056566 WO2007114132A1 (ja) 2006-03-31 2007-03-28 潤滑油基油及びその製造方法並びに潤滑油組成物

Country Status (3)

Country Link
EP (1) EP2009084B1 (ja)
KR (1) KR101100635B1 (ja)
WO (1) WO2007114132A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072526A1 (ja) * 2006-12-08 2008-06-19 Nippon Oil Corporation 内燃機関用潤滑油組成物
CN101497842A (zh) * 2008-01-31 2009-08-05 日本能源株式会社 低沉积省燃料消耗型发动机油组合物
WO2009116225A1 (ja) * 2008-03-21 2009-09-24 新日本石油株式会社 潤滑油用添加剤組成物
JP2009275171A (ja) * 2008-05-16 2009-11-26 Nippon Oil Corp 潤滑油添加剤組成物、潤滑油組成物及びこれらの製造方法
EP2241611A1 (en) * 2007-12-05 2010-10-20 Nippon Oil Corporation Lubricant oil composition
WO2010140391A1 (ja) * 2009-06-04 2010-12-09 新日本石油株式会社 潤滑油組成物およびその製造方法
JP2010280817A (ja) * 2009-06-04 2010-12-16 Jx Nippon Oil & Energy Corp 潤滑油組成物
JP2010280818A (ja) * 2009-06-04 2010-12-16 Jx Nippon Oil & Energy Corp 潤滑油組成物及びその製造方法
EP2264133A1 (en) * 2008-03-25 2010-12-22 JX Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
EP2264131A1 (en) * 2008-03-25 2010-12-22 JX Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
EP2264134A1 (en) * 2008-03-25 2010-12-22 JX Nippon Oil & Energy Corporation Lubricant oil composition for internal combustion engine
WO2011115265A1 (ja) * 2010-03-19 2011-09-22 出光興産株式会社 内燃機関用潤滑油組成物
JP2012131986A (ja) * 2010-11-29 2012-07-12 Chevron Japan Ltd 自動車エンジン潤滑用潤滑油組成物
WO2013136582A1 (ja) * 2012-03-13 2013-09-19 Jx日鉱日石エネルギー株式会社 変速機用潤滑油組成物
US8563486B2 (en) 2008-10-07 2013-10-22 Jx Nippon Oil & Energy Corporation Lubricant composition and method for producing same
US8648021B2 (en) 2008-10-07 2014-02-11 Jx Nippon Oil & Energy Corporation Lubricant base oil and a process for producing the same, and lubricating oil composition
US8703663B2 (en) 2008-10-07 2014-04-22 Jx Nippon Oil & Energy Corporation Lubricant base oil and a process for producing the same, and lubricating oil composition
US8754016B2 (en) 2007-03-30 2014-06-17 Jx Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
KR101420433B1 (ko) * 2007-11-29 2014-07-16 에스케이루브리컨츠 주식회사 유압작동유 조성물
JP2014517098A (ja) * 2011-05-04 2014-07-17 ザ ルブリゾル コーポレイション オートバイのエンジン用潤滑剤
US8796194B2 (en) 2009-09-01 2014-08-05 Jx Nippon Oil & Energy Corporation Lubricant composition
US9029303B2 (en) 2009-06-04 2015-05-12 Jx Nippon Oil & Energy Corporation Lubricant oil composition
US9404062B2 (en) 2009-06-04 2016-08-02 Jx Nippon Oil & Energy Corporation Lubricant oil composition
US9447359B2 (en) 2008-01-15 2016-09-20 Jx Nippon Oil & Energy Corporation Lubricant composition
JP2016216683A (ja) * 2015-05-26 2016-12-22 コスモ石油ルブリカンツ株式会社 動力伝達装置用潤滑油組成物
WO2018164258A1 (ja) * 2017-03-10 2018-09-13 出光興産株式会社 鉱油系基油、及び真空ポンプ油

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2280057B2 (en) 2008-02-20 2016-11-23 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine
JP5689239B2 (ja) * 2010-02-03 2015-03-25 昭和シェル石油株式会社 ガソリンエンジンおよびディーゼルエンジン油
US9074159B2 (en) 2010-10-06 2015-07-07 Uop Llc Process for improving a re-refined lube oil stream
EP2457985B1 (en) * 2010-11-29 2020-04-22 Chevron Japan Ltd. Lubricating oil composition for lubricating automotive engines
KR101890605B1 (ko) * 2011-09-30 2018-08-22 제이엑스티지 에네루기 가부시키가이샤 크로스헤드형 디젤 기관용 실린더 윤활유 조성물
JP5823329B2 (ja) * 2012-03-26 2015-11-25 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
JP5872946B2 (ja) 2012-03-30 2016-03-01 出光興産株式会社 潤滑油組成物

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223094A (ja) 1987-03-12 1988-09-16 Idemitsu Kosan Co Ltd 内燃機関用潤滑油基油および組成物
JPH0192295A (ja) * 1987-10-02 1989-04-11 Idemitsu Kosan Co Ltd 繊維加工機械用潤滑油組成物
JPH0436391A (ja) 1990-05-31 1992-02-06 Nippon Oil Co Ltd 内燃機関用潤滑油組成物
JPH0468082A (ja) 1990-07-09 1992-03-03 Nippon Oil Co Ltd 油圧作動油組成物
JPH04120193A (ja) 1990-09-10 1992-04-21 Nippon Oil Co Ltd 圧縮機用潤滑油組成物
JPH08302378A (ja) 1995-04-28 1996-11-19 Nippon Oil Co Ltd エンジン油組成物
JPH093463A (ja) 1995-06-15 1997-01-07 Nippon Oil Co Ltd エンジン油組成物
WO1998026030A1 (en) 1996-12-13 1998-06-18 Exxon Research And Engineering Company Lubricating oil compositions containing organic molybdenum complexes
JPH10510565A (ja) * 1994-12-07 1998-10-13 モービル・オイル・コーポレイション 高粘度指数潤滑剤の製造
WO1999031113A1 (en) 1997-12-12 1999-06-24 Infineum Usa L.P. Method for the preparation of trinuclear molybdenum-sulfur compounds and their use as lubricant additives
JP2003505533A (ja) * 1999-07-16 2003-02-12 インフィニューム インターナショナル リミテッド モリブデンを含有しない低揮発性潤滑油組成物
JP2003041283A (ja) 2001-07-31 2003-02-13 Nippon Oil Corp 潤滑油組成物
JP2004521976A (ja) * 2001-02-13 2004-07-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 基油組成物
JP2004522848A (ja) * 2001-03-05 2004-07-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 自動変速機流体
JP2004262980A (ja) 2003-02-21 2004-09-24 Nippon Oil Corp 変速機用潤滑油組成物
JP2004262979A (ja) 2003-02-21 2004-09-24 Nippon Oil Corp 変速機用潤滑油組成物
JP2005537383A (ja) * 2002-08-16 2005-12-08 エクソンモービル・ケミカル・パテンツ・インク 低ノアク蒸発基準原料流体を使用する機能性流体潤滑剤
JP2006502295A (ja) * 2002-10-08 2006-01-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油の水素異性化系
WO2006073198A1 (ja) * 2005-01-07 2006-07-13 Nippon Oil Corporation 潤滑油基油、内燃機関用潤滑油組成物及び駆動伝達装置用潤滑油組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923919A (en) * 1972-07-07 1975-12-02 Sun Ventures Inc Ethylene-propylene copolymer oil
US6706828B2 (en) * 2002-06-04 2004-03-16 Crompton Corporation Process for the oligomerization of α-olefins having low unsaturation

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223094A (ja) 1987-03-12 1988-09-16 Idemitsu Kosan Co Ltd 内燃機関用潤滑油基油および組成物
JPH0192295A (ja) * 1987-10-02 1989-04-11 Idemitsu Kosan Co Ltd 繊維加工機械用潤滑油組成物
JPH0436391A (ja) 1990-05-31 1992-02-06 Nippon Oil Co Ltd 内燃機関用潤滑油組成物
JPH0468082A (ja) 1990-07-09 1992-03-03 Nippon Oil Co Ltd 油圧作動油組成物
JPH04120193A (ja) 1990-09-10 1992-04-21 Nippon Oil Co Ltd 圧縮機用潤滑油組成物
JPH10510565A (ja) * 1994-12-07 1998-10-13 モービル・オイル・コーポレイション 高粘度指数潤滑剤の製造
JPH08302378A (ja) 1995-04-28 1996-11-19 Nippon Oil Co Ltd エンジン油組成物
JPH093463A (ja) 1995-06-15 1997-01-07 Nippon Oil Co Ltd エンジン油組成物
WO1998026030A1 (en) 1996-12-13 1998-06-18 Exxon Research And Engineering Company Lubricating oil compositions containing organic molybdenum complexes
WO1999031113A1 (en) 1997-12-12 1999-06-24 Infineum Usa L.P. Method for the preparation of trinuclear molybdenum-sulfur compounds and their use as lubricant additives
JP2003505533A (ja) * 1999-07-16 2003-02-12 インフィニューム インターナショナル リミテッド モリブデンを含有しない低揮発性潤滑油組成物
JP2004521976A (ja) * 2001-02-13 2004-07-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 基油組成物
JP2004521977A (ja) * 2001-02-13 2004-07-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 潤滑剤組成物
JP2004522848A (ja) * 2001-03-05 2004-07-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 自動変速機流体
JP2003041283A (ja) 2001-07-31 2003-02-13 Nippon Oil Corp 潤滑油組成物
JP2005537383A (ja) * 2002-08-16 2005-12-08 エクソンモービル・ケミカル・パテンツ・インク 低ノアク蒸発基準原料流体を使用する機能性流体潤滑剤
JP2006502295A (ja) * 2002-10-08 2006-01-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー 潤滑油の水素異性化系
JP2004262980A (ja) 2003-02-21 2004-09-24 Nippon Oil Corp 変速機用潤滑油組成物
JP2004262979A (ja) 2003-02-21 2004-09-24 Nippon Oil Corp 変速機用潤滑油組成物
WO2006073198A1 (ja) * 2005-01-07 2006-07-13 Nippon Oil Corporation 潤滑油基油、内燃機関用潤滑油組成物及び駆動伝達装置用潤滑油組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KARGE H.G.; DONDUR V., J. PHYS. CHEM., vol. 94, 1990, pages 765
SAWA M.; NIWA M.; MURAKAMI Y., ZEOLITES, vol. 10, 1990, pages 532
See also references of EP2009084A4 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072526A1 (ja) * 2006-12-08 2008-06-19 Nippon Oil Corporation 内燃機関用潤滑油組成物
US8258087B2 (en) 2006-12-08 2012-09-04 Nippon Oil Corporation Lubricating oil composition for internal combustion engine
US8754016B2 (en) 2007-03-30 2014-06-17 Jx Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
KR101420433B1 (ko) * 2007-11-29 2014-07-16 에스케이루브리컨츠 주식회사 유압작동유 조성물
EP2241611A1 (en) * 2007-12-05 2010-10-20 Nippon Oil Corporation Lubricant oil composition
US8642517B2 (en) 2007-12-05 2014-02-04 Nippon Oil Corporation Lubricant oil composition
EP2241611A4 (en) * 2007-12-05 2011-06-29 Nippon Oil Corp OIL COMPOSITION
US9447359B2 (en) 2008-01-15 2016-09-20 Jx Nippon Oil & Energy Corporation Lubricant composition
CN101497842A (zh) * 2008-01-31 2009-08-05 日本能源株式会社 低沉积省燃料消耗型发动机油组合物
WO2009116225A1 (ja) * 2008-03-21 2009-09-24 新日本石油株式会社 潤滑油用添加剤組成物
JP2009227769A (ja) * 2008-03-21 2009-10-08 Nippon Oil Corp 潤滑油用添加剤組成物
CN101978036A (zh) * 2008-03-25 2011-02-16 吉坤日矿日石能源株式会社 内燃机用润滑油组合物
EP2264133A1 (en) * 2008-03-25 2010-12-22 JX Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
CN101978035A (zh) * 2008-03-25 2011-02-16 吉坤日矿日石能源株式会社 润滑油基油及其制造方法以及润滑油组合物
CN101981166A (zh) * 2008-03-25 2011-02-23 吉坤日矿日石能源株式会社 润滑油基油及其制造方法和润滑油组合物
EP2264131A4 (en) * 2008-03-25 2011-06-22 Jx Nippon Oil & Energy Corp LUBRICANT GREASE OIL, MANUFACTURING METHOD AND LUBRICATING OIL COMPOSITION
EP2264133A4 (en) * 2008-03-25 2011-06-29 Jx Nippon Oil & Energy Corp LUBRICATING BASE OIL, PROCESS FOR PRODUCING THE SAME, AND LUBRICATING OIL COMPOSITION
EP2264131A1 (en) * 2008-03-25 2010-12-22 JX Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
EP2264134A4 (en) * 2008-03-25 2011-07-27 Jx Nippon Oil & Energy Corp LUBRICATING OIL COMPOSITION FOR INTERNAL COMBUSTION ENGINE
CN101978035B (zh) * 2008-03-25 2015-11-25 吉坤日矿日石能源株式会社 润滑油基油及其制造方法以及润滑油组合物
CN101978036B (zh) * 2008-03-25 2016-04-13 吉坤日矿日石能源株式会社 内燃机用润滑油组合物
EP2264134A1 (en) * 2008-03-25 2010-12-22 JX Nippon Oil & Energy Corporation Lubricant oil composition for internal combustion engine
US8227385B2 (en) 2008-03-25 2012-07-24 Jx Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
US8227384B2 (en) 2008-03-25 2012-07-24 Jx Nippon Oil & Energy Corporation Lubricant base oil, method for production thereof, and lubricant oil composition
JP2009275171A (ja) * 2008-05-16 2009-11-26 Nippon Oil Corp 潤滑油添加剤組成物、潤滑油組成物及びこれらの製造方法
US8703663B2 (en) 2008-10-07 2014-04-22 Jx Nippon Oil & Energy Corporation Lubricant base oil and a process for producing the same, and lubricating oil composition
US8563486B2 (en) 2008-10-07 2013-10-22 Jx Nippon Oil & Energy Corporation Lubricant composition and method for producing same
EP2497820B1 (en) 2008-10-07 2016-06-29 JX Nippon Oil & Energy Corporation Lubricant composition
US8648021B2 (en) 2008-10-07 2014-02-11 Jx Nippon Oil & Energy Corporation Lubricant base oil and a process for producing the same, and lubricating oil composition
JP2010280817A (ja) * 2009-06-04 2010-12-16 Jx Nippon Oil & Energy Corp 潤滑油組成物
WO2010140391A1 (ja) * 2009-06-04 2010-12-09 新日本石油株式会社 潤滑油組成物およびその製造方法
US9404062B2 (en) 2009-06-04 2016-08-02 Jx Nippon Oil & Energy Corporation Lubricant oil composition
US8999904B2 (en) 2009-06-04 2015-04-07 Jx Nippon Oil & Energy Corporation Lubricant oil composition and method for making the same
US9029303B2 (en) 2009-06-04 2015-05-12 Jx Nippon Oil & Energy Corporation Lubricant oil composition
JP2010280818A (ja) * 2009-06-04 2010-12-16 Jx Nippon Oil & Energy Corp 潤滑油組成物及びその製造方法
US8796194B2 (en) 2009-09-01 2014-08-05 Jx Nippon Oil & Energy Corporation Lubricant composition
JP2011195734A (ja) * 2010-03-19 2011-10-06 Idemitsu Kosan Co Ltd 内燃機関用潤滑油組成物
WO2011115265A1 (ja) * 2010-03-19 2011-09-22 出光興産株式会社 内燃機関用潤滑油組成物
JP2012131986A (ja) * 2010-11-29 2012-07-12 Chevron Japan Ltd 自動車エンジン潤滑用潤滑油組成物
JP2014517098A (ja) * 2011-05-04 2014-07-17 ザ ルブリゾル コーポレイション オートバイのエンジン用潤滑剤
US9340747B2 (en) 2012-03-13 2016-05-17 Jx Nippon Oil & Energy Corporation Lubricating oil composition for transmissions
JPWO2013136582A1 (ja) * 2012-03-13 2015-08-03 Jx日鉱日石エネルギー株式会社 変速機用潤滑油組成物
WO2013136582A1 (ja) * 2012-03-13 2013-09-19 Jx日鉱日石エネルギー株式会社 変速機用潤滑油組成物
JP2016216683A (ja) * 2015-05-26 2016-12-22 コスモ石油ルブリカンツ株式会社 動力伝達装置用潤滑油組成物
WO2018164258A1 (ja) * 2017-03-10 2018-09-13 出光興産株式会社 鉱油系基油、及び真空ポンプ油
JP2018150435A (ja) * 2017-03-10 2018-09-27 出光興産株式会社 鉱油系基油、及び真空ポンプ油
US11254889B2 (en) 2017-03-10 2022-02-22 Idemitsu Kosan Co., Ltd. Mineral oil type base oil, and vacuum pump oil
JP7040848B2 (ja) 2017-03-10 2022-03-23 出光興産株式会社 鉱油系基油、及び真空ポンプ油

Also Published As

Publication number Publication date
EP2009084A4 (en) 2011-01-12
KR20080108336A (ko) 2008-12-12
EP2009084B1 (en) 2013-08-28
EP2009084A1 (en) 2008-12-31
KR101100635B1 (ko) 2012-01-03

Similar Documents

Publication Publication Date Title
WO2007114132A1 (ja) 潤滑油基油及びその製造方法並びに潤滑油組成物
WO2006073198A1 (ja) 潤滑油基油、内燃機関用潤滑油組成物及び駆動伝達装置用潤滑油組成物
JP4945179B2 (ja) 内燃機関用潤滑油組成物
US8394745B2 (en) Lube base oil, process for production thereof, and lubricating oil composition
WO2007105769A1 (ja) 潤滑油基油、内燃機関用潤滑油組成物及び駆動伝達装置用潤滑油組成物
JP5114006B2 (ja) 内燃機関用潤滑油組成物
JP5806794B2 (ja) 内燃機関用潤滑油組成物
JP5525120B2 (ja) 内燃機関用潤滑油組成物
JP5087224B2 (ja) 駆動伝達装置用潤滑油組成物
CN101379171B (zh) 润滑油基础油、内燃机用润滑油组合物以及传动装置用润滑油组合物
US8026199B2 (en) Lubricating oil composition
JP5196726B2 (ja) 駆動伝達装置用潤滑油組成物
JP4965228B2 (ja) 潤滑油組成物
JP5041885B2 (ja) 内燃機関摩擦損失低減方法
JP2008120908A (ja) 潤滑油組成物
JP4945178B2 (ja) 内燃機関用潤滑油組成物
JP5498644B2 (ja) 駆動伝達装置用潤滑油組成物
JP5746671B2 (ja) 駆動伝達装置用潤滑油組成物
JP5512643B2 (ja) 内燃機関用潤滑油組成物
JP2014196519A (ja) 内燃機関用潤滑油組成物
JP4945180B2 (ja) 湿式クラッチ用潤滑油組成物
JP2012180532A (ja) 内燃機関用潤滑油組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019801.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 2007740004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12225764

Country of ref document: US