WO2007111080A1 - 極軟質高炭素熱延鋼板およびその製造方法 - Google Patents

極軟質高炭素熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2007111080A1
WO2007111080A1 PCT/JP2007/054110 JP2007054110W WO2007111080A1 WO 2007111080 A1 WO2007111080 A1 WO 2007111080A1 JP 2007054110 W JP2007054110 W JP 2007054110W WO 2007111080 A1 WO2007111080 A1 WO 2007111080A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
ferrite
particle size
carbide
Prior art date
Application number
PCT/JP2007/054110
Other languages
English (en)
French (fr)
Inventor
Hideyuki Kimura
Takeshi Fujita
Nobuyuki Nakamura
Naoya Aoki
Masato Sasaki
Satoshi Ueoka
Shunji Iizuka
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US12/294,639 priority Critical patent/US8048237B2/en
Priority to MX2008012337A priority patent/MX2008012337A/es
Priority to CA2646734A priority patent/CA2646734C/en
Priority to KR1020087023624A priority patent/KR101050698B1/ko
Priority to CN2007800114960A priority patent/CN101410544B/zh
Priority to EP07737722A priority patent/EP2000552A4/en
Publication of WO2007111080A1 publication Critical patent/WO2007111080A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to an extremely soft high carbon hot-rolled steel sheet, particularly to an extremely soft high-carbon hot rolled steel sheet excellent in workability and a method for producing the same.
  • High-carbon steel sheets used for tools or automobile parts (gears, missions), etc. are subjected to heat treatment such as quenching and tempering after stamping and forming.
  • one of the tool and component manufacturers that is, users of high-carbon steel sheets, has been able to reduce the cost by cutting the former forging materials and processing parts by hot forging, including the press forming of steel sheets (including cold forging).
  • Simplification of the machining process is being studied.
  • high carbon steel sheets as raw materials are required to have excellent ductility in order to form complex shapes and to have excellent burring performance in forming after punching.
  • This hole expansion workability is generally evaluated by stretch flangeability. For this reason, a material having excellent ductility and stretch flangeability is desired.
  • softness is also strongly demanded.
  • Patent Document 1 proposes a method for producing a high carbon steel strip in which after hot rolling, a two-phase region of ferrite and austenite is heated at a predetermined heating rate and annealed at a predetermined cooling rate. Yes.
  • a high-carbon steel strip is annealed in a two-phase region of ferrite to austenite above the Acl point, resulting in a structure in which coarse spheroidizing cementite is uniformly distributed in the ferrite matrix.
  • C 0.2 to 0.8%
  • Si 0.03 to 30%
  • Mn 0.20 to 1.50%
  • Sol Sol.
  • A1 0.01 to 0.1%
  • N After hot rolling, pickling and descaling of high carbon steel of 0.0020 to 0.0100% and Sol: Al / N: 5 to 10, from 95% by volume of hydrogen and the balance nitrogen
  • annealing in soaking time ::! ⁇ 20 hours
  • cooling rate cooling to room temperature at a cooling rate of lOOt / Hr or less.
  • 'Patent Document 2 proposes a method for producing a medium to high carbon steel sheet having excellent stretch flangeability in a process that has undergone cold rolling.
  • This technology is made of steel containing C: 0.1 to 0.8% by mass, and the metal structure is substantially a furaite + perlite weave. If necessary, the ferrite area ratio and the perlite tramler spacing can be adjusted.
  • the specified hot-rolled steel sheet is subjected to cold rolling of 15% or more, and then subjected to three-stage or two-stage annealing. .
  • Patent Document 3 describes a steel made of steel containing 'C: 0.1-0.8% by mass, and the ferrite area ratio (%) is equal to or greater than a predetermined value determined by the C content.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-157758
  • a high carbon steel strip is annealed in a two-phase region of ferrite toustenite with an Acl point or higher, resulting in a coarse spheroidizing cementite.
  • coarse cementite is a starting point for the generation of voids during processing and deteriorates the hardenability due to the slow dissolution rate.
  • the hardness after annealing is Hv 132-141 (HRB 72-75) for S35C material, which is not necessarily soft.
  • the ferrite structure is composed of ferrite, the ferrite does not substantially contain carbides, so it is soft and excellent in ductility, but stretched flangeability is not necessarily good. . It is deformed in the ferrite part near the punching end surface during punching, and the deformation is significantly different between ferrite and spheroidized carbide. As a result, stress concentrates in the vicinity of the grain boundaries of these grains with greatly different deformation amounts, and voids are generated. As this grows into cracks, Eventually, it is thought that stretch flangeability deteriorates.
  • the spheroidized carbides become coarse, and become the starting point of void generation during processing, and it becomes difficult for the carbides to dissolve in the heat treatment stage after processing, leading to a decrease in the quenching strength.
  • Patent Document 4 For the purpose of providing a high-carbon steel sheet that is less prone to cracking of the punched end face and has excellent stretch flangeability. With these technologies, it is now possible to produce high carbon hot rolled steel sheets with excellent stretch flangeability.
  • Patent Document 4 describes that steel containing 0.2 to 0.7 mass% of C is hot-rolled at a finishing temperature (Ar3 transformation point of 1 to 20 ° C) or more, and then has a cooling rate exceeding 120 ° C / second and It is a technology that cools at a cooling stop temperature of 650 ° C or lower, then picks up at a cutting temperature of 600 ° C or lower, and pickles and then anneals at an annealing temperature of 640 ° C or higher and below the Acl transformation point.
  • the metal structure is characterized by controlling the average particle size of carbide to 0.1 m or more and less than 1.2 in, and the ferrite particle volume ratio not containing carbide to 10% or less.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-157758
  • Patent Document 2 Japanese Patent Laid-Open No. 11-269552
  • Patent Document 3 Japanese Patent Laid-Open No. 11-269553
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-13145 Disclosure of Invention
  • the present invention can be manufactured without using a multi-stage annealing that requires a long time, and it is difficult for cracks at the punched end face to occur, and cracks due to press molding or cold forging are unlikely to occur.
  • the present invention was made in the course of diligent research on the effects of the composition of the composition and the production conditions on the ductility, stretch flangeability and hardness of high carbon steel sheets.
  • the composition and the shape and amount of carbides, but also the average particle size, morphology, dispersion state, ferrite average particle size, and fine ferrite particle volume are factors that have a large effect on the hardness of the steel sheet. It was found that the rate (volume fraction of ferrite grains having a particle size below a predetermined value) has a great influence.
  • the hardness of the high carbon steel sheet is significantly reduced and ductility and It was found that stretch flangeability is greatly improved.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the ultra-soft high carbon heat further comprising one or two kinds of cocoons: 0.0010-0.0050%, Cr: 0.005-0.30% in mass% Rolled steel sheet.
  • the mass is 0 /.
  • Mo 0.005 ⁇ 0.5%
  • Ti 0.00 5 ⁇ 0.05%
  • Nb 0.005 ⁇ 0 ⁇ 1% of one or the ultra soft high carbon hot-rolled steel sheet characterized by containing two or more kinds.
  • the finish rolling entry temperature is 1100 ° C or lower, and finally Finish rolling with a pass reduction ratio of 12% or more, and a finishing temperature of (Ar3-10) or more, and then within 1.8 seconds after finishing rolling, at a cooling rate exceeding 120 ° C / sec.
  • Perform primary cooling to the cooling stop temperature then hold it at a temperature of 6'00 ° C or lower by secondary cooling, scrape it at a temperature of 580 ° C or lower, pickle it, and then use a box-type annealing method.
  • finish rolling is performed in the temperature range of (Ar3-10) ° C to (Ar3 + 90 ° C), and then within 600 seconds at a cooling rate exceeding 120 ° C / second within 600 seconds.
  • Extremely soft high carbon characterized by performing spheroidizing annealing at a temperature below the transformation point and a soaking time of 20 hours or more A method for producing a hot-rolled steel sheet.
  • the carbides are equiaxed and uniformly dispersed after annealing, Furthermore, uniform coarsening of the ferrite grains is achieved. That is, it can be produced without requiring high-temperature annealing and without using multi-stage annealing. As a result, a high-carbon hot-rolled steel sheet that is extremely soft and has excellent ductility and stretch flangeability can be obtained, and the processing process can be simplified and the cost can be reduced. Best Mode for Carrying Out the Invention ⁇
  • the ultra-soft high carbon hot rolled steel sheet of the present invention is controlled to the following composition, and the volume fraction of ferrite grains having a ferrite average particle size of 20 Am or more and a particle size of 10 / zm or less is 20% or less ( (Hereinafter referred to as “fine ferrite grain volume ratio (particle size 10 / zm or less)”), carbide average particle size of 0.1 lO / zm or more and less than 2.0 / zm, aspect ratio of 5 or more It has a structure in which the carbide ratio is 15% or less and the ratio of contact between the carbides is 20% or less.
  • the volume fraction of ferrite grains having a ferrite average particle size exceeding 35 ⁇ and a particle size of 20 / xm or less is 20% or less (hereinafter referred to as “fine ferrite grain volume fraction (particle diameter of 20 ⁇ or less ) ”,
  • the average particle size of the carbide is not less than 0 ⁇ ⁇ ⁇ and less than 2.
  • ⁇ ⁇ ⁇ , and the ratio of carbides with an aspect ratio of 5 or more is 15% or less, and the proportion of carbides in contact is 20%.
  • the ultra-soft high carbon hot-rolled steel sheet is obtained by roughly rolling a steel having the composition described later, then finishing roll entering side temperature is 1100 ° C or less, and the final pass of the finish rolling mill is 12% or more. At the finishing temperature of (Ar3—10) ° C or higher, then hot rolled, and then after finish rolling 1. Within 8 seconds, at a cooling rate of more than 120 / sec.
  • finish rolling entry temperature is 1100 ° C or less
  • finish rolling Finish rolling in the following two temperature ranges at a reduction rate of 12% or more and (Ar3-10) or more and 3 + 90) respectively in the final two passes of the machine.
  • the object of the present invention is achieved by controlling the conditions from hot finish rolling, primary cooling, secondary cooling, and winding op- er annealing in total. '
  • C is the most basic alloying element in carbon steel.
  • the hardness after quenching and the amount of carbide in the annealed state will vary greatly.
  • the formation of ferrite becomes remarkable in the structure after hot rolling, and a stable coarse ferrite grain structure cannot be obtained after annealing, resulting in a mixed grain structure and stable softness. Cannot be achieved.
  • sufficient quenching hardness cannot be obtained for application to automotive parts.
  • the toughness after hot rolling decreases, and the manufacturability and handling properties of the steel strip deteriorate. Therefore, from the viewpoint of providing a steel sheet having both hardness after quenching and ductility and stretch flangeability, the C content is 0.2% or more and 0.7% or less.
  • Si is an element that improves hardenability. If the Si content is less than 0.01%, the hardness after quenching is insufficient. On the other hand, when the Si content exceeds 1.0%, the ferrite is hardened due to solid solution strengthening, and the ductility is lowered. In addition, carbides tend to be graphitized and inhibit hardenability. Therefore, from the viewpoint of providing a steel sheet having both hardness and ductility after quenching, the Si content is 0.01% or more and 1.0% or less, preferably 0.1% or more and 0.8% or less.
  • Mn is an element that improves the hardenability like S i. It is also an important element that fixes S as MnS and prevents hot cracking of the slab. If the Mn content is less than 0.1%, these effects cannot be obtained sufficiently, and the hardenability is greatly reduced. On the other hand, if the Mn content exceeds 1.0%, due to solid solution strengthening, the ferrite is cured and ductility is reduced. Therefore, from the viewpoint of providing a steel sheet having both hardness and ductility after quenching, the Mn content is 0.1% or more and 1.0% or less, preferably 0.3% or more and 0.8% or less. .
  • the P content is 0.03% or less, preferably 0.02% or less.
  • the S content is acceptable up to 0.035%, the S content is set to 0.035% or less, preferably 0.010% or less.
  • A1N precipitates in large quantities and reduces hardenability.
  • the amount should be 0.08% or less, preferably 0.06% or less.
  • N 0.01% or less
  • the steel of the present invention can achieve the desired characteristics, but in addition to the above essential additive elements, one or two of B and Cr may be added.
  • the preferred ranges when these elements are added are as follows, and either B or Cr may be added, but it is more preferable to add both B and Cr simultaneously.
  • B is an important element that suppresses the formation of light during cooling after hot rolling and produces uniform coarse ferrite grains after annealing. However, if the B content is less than 0.0010%, sufficient effects may not be obtained. On the other hand, if it exceeds 0.0050%, the effect is saturated, and the hot rolling load increases and the operability may be lowered. Therefore, when added, the B content is set to 0.0010% or more and 0.0050% or less.
  • the Cr content is less than 0.005%, sufficient effects may not be obtained. On the other hand, if it exceeds 0.30%, the suppression effect of funilite generation is saturated and the cost increases. Therefore, when Cr is added, the Cr content should be 0.005% or more and 0.30% or less. Preferably it is 0.05% or more and 0.30% or less.
  • Mo, Ti, and Nb may be added as needed in one or more types to suppress the formation of ferrite during hot rolling cooling and improve hardenability.
  • the addition amount is less than 0.005% for Mo, less than 0.005% for Ti, and less than 005% for Nb force, the effect of addition may not be sufficiently obtained.
  • Mo exceeds 0.53 ⁇ 4
  • Ti exceeds 0.05%
  • Nb exceeds 0.1%
  • the effect is saturated and the cost increases, and the strength increases greatly due to solid solution strengthening and precipitation strengthening. Therefore, the ductility may decrease.
  • Mo is 0.005% or more and 0.5% or less
  • Ti is 0.005% or more and 0.05% or less
  • Nb is 0.005% or more and 0.1% or less.
  • the remainder other than the above consists of Fe and inevitable impurities.
  • Cu, Ni, W, V, Zr, Sn, and Sb may be contained in the range of 0.13 ⁇ 4 or less as trace elements that do not impair the effects of the present invention.
  • the average ferrite particle size is an important factor governing ductility and hardness. F: By coarsening the wite grain, it becomes softer and ductility improves as strength decreases. Further, when the average particle size of the ferrite is more than 35 ⁇ , it becomes softer, the ductility is further improved, and more excellent workability can be obtained. Accordingly, the average ferrite particle size is 20 zm or more, preferably more than 35 ⁇ ⁇ , and more preferably 50 / zm or more.
  • volume ratio of fine ferrite particles (particle size or less or volume fraction of ferrite particles with a particle size of 20 / m or less): 20% or less
  • the volume fraction of ferrite grains having a particle size of 10 / zm or less or less than the grain size is defined as the fine ferrite grain volume fraction, and in the present invention, this fine filamentite grain volume fraction is 20% or less.
  • the volume fraction of fine ferrite grains When the volume fraction of fine ferrite grains exceeds 20%, a mixed grain structure is formed, and stable softening cannot be achieved. Therefore, in order to achieve stable and excellent ductility softening, the volume fraction of fine ferrite grains should be 20% or less, preferably 15% or less.
  • the fine ferrite grain volume ratio is determined based on the observation of the metal structure of the cross section of the steel sheet (approximately 10 times at approximately 200 times) and fine ferrite grains whose grain size is less than or equal to a prescribed value and ferritic grains whose grain size exceeds a prescribed value. It can be obtained by calculating the area ratio with the grain and considering this as the volume fraction.
  • steel sheets with coarse ferrite grains and fine ferrite grain volume ratios of 20% or less can be obtained by controlling the rolling reduction and temperature during finish rolling, as described later.
  • the ferrite average particle size is 20 m or more
  • a steel sheet with 20% or less can be obtained by finishing rolling the final pass of the finishing mill at a rolling reduction of 12% or more and a finishing temperature of (Ar3_10) ° C or more, as will be described later. .
  • the rolling reduction of the final pass to 12% or more, the grain growth driving force is increased and the ferrite grains are uniformly coarsened.
  • ⁇ and a fine ferrite particle volume fraction (particle size of 20 m or less) of 20% or less are used in the final two passes of the finish rolling mill as described later. It can be obtained by finish rolling in a temperature range where the rolling reduction is 12% or more and (Ar3-10) ° C or more (Ar3 + 90) ° C or less.
  • the reduction ratio of the final two passes is 12% or more, a large number of shear bands are introduced into the old austenite grains, and the nucleation site for transformation increases.
  • the lath-shaped ferrite grains that make up the bainite structure become finer, and the ferrite grains are uniformly coarsened using very high grain boundary energy as the driving force.
  • the rolling reduction is set to 15% or more, the ferrite grains are uniformly coarsened.
  • the carbide average particle size is an important requirement because it greatly affects the workability in general, punching workability, and quenching strength at the post-processing ripening stage.
  • the carbide becomes finer, the carbide easily dissolves in the heat treatment stage after processing, and a stable quenching hardness can be ensured.
  • the average particle size of the carbide is less than 0. ⁇ , the ductility decreases as the hardness increases.
  • stretch flangeability deteriorates.
  • the workability improves as the average particle size of carbide increases, but when it exceeds 2. O / m, the stretch flangeability deteriorates due to the generation of voids in the hole expanding process.
  • the carbide average particle size is set to 0.10; z m or more and less than 2.0 / m.
  • the carbide average particle size can be controlled by the manufacturing conditions, particularly the primary cooling stop temperature after hot rolling, the secondary cooling holding temperature, the scraping temperature, and the annealing conditions as described later.
  • the carbide form greatly affects the ductility and stretch flangeability. If the aspect ratio of carbides, that is, the aspect ratio is 5 or more, voids are generated by slight processing, resulting in cracks at the initial stage of processing, and ductility and stretch flangeability deteriorate. However, the effect is small if the ratio is 15% or less. Therefore, carbide with a ratio of 5 or more The ratio is controlled to 15% or less. Preferably it is 10% or less, more preferably 5% or less.
  • the aspect ratio of the carbide can be controlled by the production conditions, particularly the finishing rolling entry temperature. In the present invention, the aspect ratio of carbide is the ratio of the major axis to the minor axis of the carbide. '.
  • Carbide dispersion state The ratio of contact between carbides is 20% or less
  • Carbide dispersion also has a significant effect on ductility and stretch flangeability.
  • voids When carbides come into contact with each other, voids have already formed at the contact area, or voids are formed with a slight amount of processing, resulting in cracks at the initial stage of processing and reduced ductility and stretch flangeability.
  • the ratio is 20% or less, the impact is small. Therefore, the ratio of contact between carbides is controlled to 20% or less. Preferably it is 15% or less, more preferably 10% or less.
  • the dispersion state of the carbide can be controlled by the production conditions, particularly the cooling start time after finish rolling.
  • the proportion of carbides that are in contact with each other is the proportion of carbides that are in contact with the total number of carbides.
  • the ultra-soft high-carbon hot rolled steel sheet of the present invention is obtained by roughly rolling a steel adjusted to the above chemical component range, finish rolling under desired conditions, then cooling under desired cooling conditions, winding, pickling Thereafter, it is obtained by performing a desired spheroidizing annealing by a box-type annealing method. These are described in detail below. '.
  • the finish rolling entry side temperature 1100 ° C or less, the old austenite grain size becomes finer, and the aspect ratio of carbides in the lath is reduced at the same time as the fineness of the vinyl truss after finish rolling.
  • the proportion of carbide with an aspect ratio of 5 or more becomes 15% or less. This suppresses the formation of pores during processing and provides excellent ductility and stretch flangeability.
  • the finish rolling entry side temperature is set to ⁇ ⁇ or less, and from the viewpoint of reducing the aspect ratio of carbide, the following is preferable at 1050, more preferably 1000 ° C or less.
  • the final pass reduction ratio By setting the final pass reduction ratio to 12% or more, a large number of shear bands are introduced into the old austenite grains, and the nucleation site for transformation increases. As a result, the lath-like ferrite grains that make up the bainite become finer, and the ferrite average particle size is 20 ⁇ or more and the fine ferrite particle volume fraction (particle size) using high grain boundary energy as the driving force during spheroidizing annealing. Uniform coarse ferrite grain structure with ⁇ ⁇ or less) of 20% or less is obtained.
  • the final pass reduction ratio is 12. /. From the viewpoint of uniform coarsening, it is preferably 15% or more, more preferably 18% or more.
  • the upper limit of the final pass rolling reduction is preferably less than 40%.
  • Finishing temperature when rolling steel (Rolling temperature in the final pass) Force S (Ar3—10) If less than ° C, ferritic transformation proceeds in the — part, and the number of ferrite grains increases. After conversion annealing, a mixed grain ferrite structure is formed, and a ferrite grain structure with a ferrite average particle size of 20 ⁇ or more and a fine filler particle volume ratio (particle size of 10 ⁇ or less) of 20% or less cannot be obtained. Stable softening cannot be achieved. Therefore, the finishing temperature is (Ar3-10). The upper limit of the finishing temperature is not particularly specified, but if the soaking temperature exceeds 1'000 ° C, scaleability defects are likely to occur, so 1000 ° C or less is preferable.
  • the rolling reduction in the final pass should be 12% or more, and the finishing temperature should be (Ar3-10) or more.
  • the rolling reduction rate of the pre-final pass is set to 12% or more, so that many shear bands are introduced into the old austenite grains due to the strain accumulation effect, and the nucleation site of transformation Will increase.
  • the lath-like ferrite grains that make up the veinite become finer, and the average particle size of the finelite exceeds 35 m and the fine ferrite grain volume fraction is driven by high grain boundary energy during spheroidizing annealing.
  • a uniform coarse ferrite grain structure with a particle size of 20% or less (20 / im or less) can be obtained.
  • final 2 pass together When the rolling reduction of the last pass (hereinafter referred to as final 2 pass together) is less than 12%, the lath-like ferrite grains become coarse, so there is not enough grain growth drive However, after annealing, a ferrite grain structure with a fine ferrite average particle size exceeding 20% and a fine ferrite particle volume fraction (particle size of 20 mm or less) of 20% or less cannot be obtained, and stable softening cannot be achieved.
  • the final two pass reduction ratio is 12% or more, and the final two pass reduction ratio is 15 ° / each for more uniform coarsening. More preferably.
  • the rolling reduction rate of the final two passes is 40% or more, the rolling load increases. Therefore, the upper limit of the rolling reduction rate of the final two passes is preferably less than 40%.
  • the finishing temperature of the final two passes is in the temperature range of (Ar3_10) ° C or higher (Ar3 + 90) ° C or lower, the strain accumulation effect is maximized, and the fluite average particle size is increased during spheroidizing annealing.
  • a uniform coarse ferrite structure with a fine ferrite particle volume ratio (particle size of 20 ⁇ or less) of 20% or less exceeding 35 ⁇ can be obtained.
  • the final final two-pass rolling temperature is less than (Ar3-20) ⁇ , ferrite transformation progresses in part, and the number of ferrite grains increases, so that a mixed grain microstructure is formed after spheroidizing annealing.
  • a ferrite grain structure with an average particle size exceeding 35 / ⁇ and a fine ferrite grain volume fraction (fe diameter or less) of 20% or less cannot be obtained, and further stable softening cannot be achieved.
  • the final final two-pass rolling temperature exceeds (Ar3 + 90) ° C, the strain accumulation effect will be insufficient due to strain recovery, and the average ferrite grain size will exceed 35 m after annealing.
  • the temperature range of the final final two-pass rolling be (Ar3-10) ° C or higher and (Ar3 + 90) ° C or lower.
  • the Ar3 transformation point () can be obtained by actual measurement, but may be calculated by the following equation (1).
  • Ar3 910-310C-80Mn-15Cr-80Mo (1)
  • the element symbol in a formula represents content (mass%) of each element. .
  • the cooling rate of the primary cooling after hot rolling is over 120 ° C / sec.
  • it is 200 ° C / second or more, more preferably 300 ° C / second or more.
  • the upper limit of the cooling rate is not particularly limited, for example, assuming a plate thickness of 3.0 m: m, the current facility capacity is 700 ° C / sec. Also, if the time from finish rolling to the start of cooling exceeds 1.8 seconds, the distribution of carbides becomes non-uniform and the proportion of carbides in contact increases. This is thought to be due to partial recovery of the processed austenite grains and non-uniformity of the carbide in the painite, leading to contact between the carbides. Shinako Therefore, the time from the finish rolling to the start of cooling 1. within 8 seconds. In order to make the dispersion state of carbide more uniform, the time from finish rolling to the start of cooling is preferably within 1.5 seconds, more preferably within 1.0 seconds.
  • the primary cooling stop temperature after hot rolling exceeds 600 ° C, a lot of ferrite is generated. For this reason, the charcoal is unevenly dispersed after annealing, and a stable coarse fluorite grain structure cannot be obtained and softening cannot be achieved. Therefore, in order to stably obtain a bainitic structure after hot rolling, the primary cooling stop temperature after hot rolling is set to 600 ° C or lower, preferably 580 or lower, more preferably 550 or lower.
  • the lower limit temperature is not particularly specified, but the plate shape deteriorates as the temperature becomes lower, so it is preferably set to 300 or more.
  • the steel plate temperature may increase after the primary cooling due to the ferrite transformation, the pearlite transformation and the vein transformation, and even if the primary cooling stop temperature is 600 ° C or less, When the temperature rises from the end of the primary cooling to the time of collection, fly light is generated. For this reason, carbides are unevenly dispersed after annealing, and a stable coarse ferrite grain structure cannot be obtained, and softening cannot be achieved. Therefore, the secondary cooling is completed by the secondary cooling.
  • the secondary cooling should be maintained at a temperature of 600 ° C or less from the end of the primary cooling to the winding, preferably 580 or less, more preferably Shall be maintained at a temperature of 550 ° C or lower.
  • the secondary cooling can be performed by laminar cooling.
  • the milling after cooling exceeds 580 ° C, the lath-like ferrite grains that make up the veneer are slightly coarser, and the driving force for grain growth during annealing is insufficient, resulting in a stable coarse-grained ferrite grain structure. Cannot be softened.
  • the lath-like ferrite grains become finer, and a stable coarse ferrite grain structure can be obtained with high grain boundary energy as the driving force during annealing. Therefore, ⁇ temperature is less 5 8 0 ° C, preferably 550 ° C, more preferably at most 530 ° C.
  • the lower limit of the cutting temperature is not particularly specified, but it is preferably 200 or more because the shape of the steel sheet deteriorates as the temperature decreases.
  • Pickling Implementation-Hot-rolled steel sheets after cutting are pickled to remove scale before spheroidizing annealing. Pickling may be performed according to a conventional method.
  • Spheroidizing annealing Box annealing at a temperature of 680 ° C or more and Acl transformation point or less
  • annealing is performed to sufficiently coarse the ferrite grains and spheroidize the carbides.
  • Spheroidizing annealing can be broadly divided into (l) Heating to the temperature just above Acl and slow cooling, (2) Method to keep the temperature just below Acl for a long time, and (3) Heating and cooling at a temperature just above Acl and just below There is a way to repeat.
  • the method (2) by the method (2), the growth of ferrite grains and the spheroidization of carbides are simultaneously directed. For this reason, since spheroidizing annealing takes a long time, it is a box-type annealing.
  • the annealing temperature is less than 680, both the coarsening of the ferrite grains and the spheroidization of the carbide are insufficient, and the ferrite is not sufficiently softened, and the ductility and stretch flangeability are deteriorated.
  • the annealing temperature exceeds the Acl transformation point, part of it becomes austenitic, and again generates a pearlite during cooling, which also reduces ductility and stretch flangeability. Based on the above, the annealing temperature for spheroidizing annealing is 680 and below the Acl transformation point.
  • the average particle size is 35 m
  • the annealing (soaking) time is preferably 20 hours or more. ⁇ More preferably 40 hours or longer.
  • the Acl transformation point 0) can be obtained by actual measurement, but may be calculated by the following equation (2).
  • the element symbol in a formula represents content (mass%) of each element.
  • an extremely soft high carbon hot-rolled steel sheet excellent in workability of the present invention can be obtained. It is possible to use either a converter or an electric furnace to adjust the components of this high-carbon steel.
  • the high-carbon steel whose components are adjusted in this way is used as a steel slab, which is a steel material, by ingot lump rolling or continuous forging.
  • the slab heating temperature is preferably 1300 ° C. or less in order to avoid deterioration of the surface state due to scale generation.
  • direct rolling may be performed in which the continuous forged slab is rolled as it is or for the purpose of suppressing temperature drop.
  • finish rolling may be performed by omitting rough rolling during hot rolling. In order to ensure the finishing temperature, the rolled material can be heated by heating means such as a bar heater during hot rolling. Also, in order to promote spheroidization or reduce hardness, the coil can be kept warm by means such as a slow cooling cover after cutting.
  • temper rolling is performed as necessary. This temper rolling does not affect the hardness, ductility, and stretch flangeability, so there are no particular restrictions on the conditions.
  • the reason why the high carbon hot-rolled steel sheet thus obtained has extremely softness as well as excellent ductility and stretch flangeability is considered as follows.
  • the hardness is greatly affected by the average particle size of the ferrite, and becomes extremely soft when the ferrite particle size is uniform and coarse.
  • ductility and stretch flangeability are improved by uniform and coarse grain size distribution of ferrite grains and at the same time, uniform distribution of carbides on the same axis. From the above points, by defining the composition and metal structure (ferrite average particle size, furaite coarsening rate), carbonized carbide shape (carbide average particle size), morphology and distribution, and satisfying all An extremely soft high carbon hot rolled steel sheet with excellent ductility and stretch flangeability Obtainable.
  • the microstructure After polishing and corrosion of the sample thickness cross section, the microstructure is observed with an optical microscope, and the grains of all the ferrite grains that are less than 10 ⁇ (20 ⁇ ⁇ ) and those that exceed 10 #m (20 m) are observed. It was determined from the area ratio. However, the fine ferrite grain volume ratio is approximately 200 times, and the structure is observed over 10 fields of view! The average value was obtained.
  • the Miku mouth structure was photographed with a scanning electron microscope, and the carbide particle size was measured.
  • the average particle size was an average value of 500 or more carbides.
  • the mouth structure was photographed with a scanning electron microscope, and the ratio of the major axis to the minor axis of the carbide was measured.
  • the total number of carbides should be 500.
  • the proportion of carbides with a ratio of 5 or more was calculated.
  • the mouth structure was photographed with a scanning electron microscope, and the ratio of carbides in which the carbides were in contact with each other was calculated.
  • the total number of carbides was 500 or more.
  • the Vickers hardness (Hv) was measured at 5 points under the condition of a load of 500 gf at the center of the plate thickness to obtain the average hardness.
  • Total stretch was measured by a tensile test.
  • C direction with respect to the rolling direction: TIS No. 5 test specimens were collected and subjected to a tensile test at a tensile speed of lOmm / inin, and the total elongation (butt elongation) was measured.
  • the stretch flangeability was evaluated by a hole expansion test.
  • ⁇ (%) defined by the following equation was obtained.
  • Table 3 shows the results obtained from the above measurements.
  • the steel sheet No. 1 15 are the present invention ranges chemical components, ferrite average grain size, fine ferrite grains volume percentage (particle size 10 A m or less), the average carbide grain size, Asupeku DOO
  • the material hardness is low, the total elongation is 35 ° / 0 or more, the hole expansion ratio; I is 70 % or more.
  • Steel Plate No. 16-18 is a comparative example in which the chemical composition is outside the scope of the present invention.
  • Steel plate No. 16 17 has a fine ferrite grain volume fraction (particle size of 10/1 m or less) outside the scope of the present invention, and is inferior in total elongation and stretch flangeability.
  • Steel plate No. I 8 is carbide with aspect ratio of 5 or more The ratio is out of the scope of the present invention, and the total elongation and stretch flangeability are inferior.
  • Example 1 a sample is taken from the hot-rolled steel sheet obtained as described above, and the average particle size of fine particles, the volume fraction of fine particles of fine particles, the average particle size of carbides, the carbide aspect ratio, and the contact ratio of carbide members are determined.
  • the material hardness, total elongation, and hole expansion ratio were measured for performance evaluation. Each measurement method and conditions are the same as in Example 1.
  • Table 6 shows the results obtained from the above measurements.
  • the chemical composition of steel plates Nos. 19 to 29 is within the scope of the present invention.
  • Flite average particle size, fine ferrite particle volume ratio (particle size or less), carbide average particle size, aspect ratio This is an example of the present invention having a structure in which the ratio of carbide with a ratio of 5 or more and the ratio of contact between carbides within the scope of the present invention are included.
  • the material hardness is low
  • the total elongation is 35% or more
  • the hole expansion ratio is 70% or more.
  • steel plate No. 30 is a comparative example in which the chemical composition is outside the scope of the present invention. Since the fine ferrite grain volume ratio is outside the range of the present invention, the total elongation and stretch flangeability are inferior.
  • the production conditions of steel plates Nos. 31 to 47 are within the scope of the present invention, and the average particle size of the ferrite, the volume fraction of fine ferrite particles (particle size or less), the average particle size of carbide, and the aspect ratio.
  • This is an example of the present invention having a structure in which the proportion of carbides of 5 or more and the proportion of carbides contacting each other are within the scope of the present invention.
  • the material hardness is low, the total elongation is 35% or more, and the hole expansion ratio; L is 70% or more.
  • steel plate No. 36 has a finish temperature exceeding (Ar3 + 90) ° C, so the average ferrite particle size is slightly lower.
  • steel plates Nos. 48 to 54 are comparative examples in which the production conditions deviate from the scope of the present invention.
  • Steel sheets Nos. 48, 49, 50, 53, and 5 have a ferrite average grain size outside the scope of the present invention.
  • Steel plates Nos. 48, 49, 50, 52, 53, and 5 have a fine ferrite grain volume ratio (particle diameter of 20 m or less) outside the scope of the present invention.
  • Steel plates No. 48, 49, 52, 53 'and 54 have a carbide ratio of 5 or more in the aspect ratio.
  • Steel plates No. 49, 50, 51 and 52 have a carbide contact ratio of the carbide. It is outside the scope of the invention. As a result, the material hardness is high, or the total stretch and stretch flangeability are greatly deteriorated. Table 7
  • the steel with the chemical composition shown in Table 4 was forged and heated, and the resulting slab was heated to 1250 ° C, hot-rolled and annealed under the conditions shown in Table 9, resulting in a plate thickness of 3.0 mm. A hot-rolled steel sheet was produced.
  • Example 1 a sample is taken from the hot-rolled steel sheet obtained as described above, and the average ferrite particle size, fine ferrite particle volume fraction, average carbide particle size, carbide aspect ratio, and contact ratio of the same carbide are determined. The material hardness, total elongation, and hole expansion ratio were measured for performance evaluation. Each measurement method and conditions are the same as in Example 1.
  • Table 10 shows the results obtained from the above.
  • the manufacturing conditions of steel plates No. 55-68 are within the scope of the present invention.
  • Ferrite average particle size, fine ferrite particle volume fraction (below particle size), carbide average particle size, aspect ratio This is an example of the present invention having a structure in which the proportion of carbides of 5 or more and the proportion of carbides contacting each other are within the scope of the present invention. It can be seen that the examples of the present invention have excellent properties such as low material hardness, total elongation of 35% or more, and hole expansion ratio ⁇ of 70% or more.
  • steel plate No. 59 has a finishing temperature exceeding (Ar3 + 90) ° C, so the average ferrite particle size is slightly lower.
  • steel plates Nos. 69 to 75 are comparative examples in which the production conditions deviate from the scope of the present invention.
  • the ferrite average particle size is outside the scope of the invention.
  • Steel plates No. 69, 70, 72, 73, 74, and 75 have a fine ferrite grain volume ratio (particle diameter of 20 ⁇ m or less) outside the scope of the present invention.
  • Steel ⁇ ⁇ 6, 72, 73, 74, 75 is, aspect ratio is 5 or more carbide proportion
  • steel No. 69, 70, 7 1 the ratio of contact of the carbide with each other, is outside the scope the present invention .
  • the material hardness is high, or the total elongation and stretch elongation are significantly deteriorated. '' Industrial applicability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

加工性に優れた極軟質高炭素熱延鋼板を提供する。C:0.2~0.7 %の高炭素熱延鋼板であり、フェライト平均粒径が20μm以上、粒径10μm以下のフェライト粒の体積率が20%以下、炭化物平均粒径が0.10μm以上2.0μm未満、アスペクト比が5以上の炭化物割合が15%以下、炭化物同士が接触する割合が20%以下である組織を有する鋼板である。そして、粗圧延後、仕上圧延入り側温度が1100℃以下、最終パスの圧下率を12%以上、かつ仕上温度を(Ar3-10)℃以上とする仕上圧延を行い、次いで、仕上圧延後1.8秒以内に120℃/秒超えの冷却速度で600℃以下の冷却停止温度まで1次冷却を行い、次いで、2次冷却により600℃以下の温度に保持した後、580℃以下の温度で巻取り、酸洗後、箱型焼鈍法により、680℃以上Ac1変態点以下の温度で球状化焼鈍することで製造される。

Description

明細書 極軟質高炭素熱延鋼板およびその製造方法 技術分野
本発明は、 極軟質高炭素熱延鋼板、 特に加工性に優れた極軟質高炭素熱延鋼板 およびその製造方法に関する。 背景技術
工具あるいは自動車部品 (ギア、 ミッショ ン) 等に使用される高炭素鋼板は、 打抜き、 成形後、 焼入れ焼戻し等の熱処理が施される。 近年、 工具や部品メーカ 一、 即ち高炭素鋼板のユーザでは、 低コス ト化のため、 以前の鎳造材の切削加工 や熱間鍛造による部品加工から、 鋼板のプレス成形(冷間鍛造を含む)による加工 工程の簡略化が検討されている。それにともない、素材としての高炭素鋼板には、 複雑形状に成形するために延性が優れること、 および打ち抜き後の成形において 穴広げ加工 (バーリング) 性に優れることが要望されている。 この穴広げ加工性 は、 一般に伸びフランジ性で評価されている。 そのため、 延性と同時に伸ぴフラ ンジ性の優れた材料が望まれている。 また、 プレス機および金型の負荷低減の観 点からは、 軟質であることも強く求められている。
以上のような現状を踏まえて、 髙炭素鋼板の軟質化については、 いくつかの技 術が検討されている。 例えば、 特許文献 1には、 熱間圧延後、 所定の加熱速度で フェライ ト一オーステナイ トの二相域に加熱し、 所定の冷却速度で焼鈍処理する 高炭素鋼帯の製造方法が提案されている。 この技術では、 高炭素鋼帯を Acl点以 上のフェライ トーオーステナイトの二相域で焼鈍し、 フェライ トマトリクス中に 粗大な球状化セメンタイ トが均一に分布した組織としている。 詳細には、 C : 0. 2 〜0. 8%、 Si : 0. 03〜 30%、 Mn : 0. 20〜1. 50%、 Sol. A1: 0. 01 ~ 0. 10%、 N : 0. 0020〜 0. 0100%で、 かつ Sol: Al/N : 5〜10である高炭素鋼を、 熱間圧延、 酸洗、 脱スケー ルしたのち、 95容量%以上の水素と残部窒素からなる雰囲気炉で、 以上の温 度範囲で加勢速度 Tv(°C/Hr):500 X (0.01 -N(%)as A IN) ~2000 X (0.1- (%)as A1 ) , 均熱温度 TA ( ): Acl ^ ~222XC(¾)2-411XC (%) +912で、 均熱時間::!〜 20 時間で焼鈍し、 冷却速度: lOOt/Hr 以下の冷却速度で室温まで冷却するというも のである。
また、 高炭素鋼板の伸ぴフランジ性の向上についても、 いくつかの技術が検討 されている。 例えば、'特許文献 2には、 冷 圧延を経たプロセスにおいて、 .伸ぴ フランジ性に優れた中 ·高炭素鋼板の製造方法が提案されている。 この技術は、 C:0.1〜0· 8質量%を含有する鋼からなり、金属組織が実質的にフユライ ト +パー ライ ト 織であり、 必要に応じてフェライ ト面積率およびパーライ トラメラー間 隔を規定した熱延鋼板に、 15%以上の冷間圧延を施し、 次いで、 3段階又は 2段 階焼鈍を施すというものである。 .
特許文献 3には、' C: 0.1〜0.8質量%を含有する鋼からなり、.フェライ ト面積率 (%) が C含有量により決まる所定値以上である、 フェライ ト +パーライ ト組織 の熱延鋼板に焼鈍を施すに際し、 1段目の加熱保持と 2段目の加熱保持を連続し て行うという技術が開示されている。'
しかしながら、 これらの技術には、 次のような問題がある。
特許文献 1 (特開平 9— 157758号公報) 記載の技術は、 高炭素鋼帯を Acl点以上 のフェライ トーオーステナイ トの二相域で焼鈍し、 粗大な球状化セメンタイ.トと しているが、 このような粗大セメンタイ トは、 加工の際にポイ ド発生の起点とな るとともに溶解速度が遅いため焼入れ性を劣化させることは明らかである。また、 焼鈍後の硬度についても、 S35C材で Hv 132〜141 (HRB 72〜75) であり、 必ずし も軟質とは言えない。
特許文献 2、 3記載の技術では、 フヱライ ト組織がフェライ トからなるため、 フエ ライト中に炭化物を実質的に含まないために軟らかく延性に優れているが、 伸ぴ フランジ性は必ずしも良好ではない。 それは、 打抜き加工時に、 打抜き端面の近 傍でフェライ トの部分で変形するため、 フェライ トと球状化炭化物を含むフェラ イ トでは変形量が大きく異なる。 その結果、 これら変形量が大きく異なる粒の粒 界付近に応力が集中し、 ボイ ドが発生する。 これがクラックに成長するため、 結 果的には伸びフランジ性を劣化させると考えられる。
この対策として、 球状化焼鈍を強化することにより、 全体として軟質化させる ことが考えちれる。 しかし、 その場合は球状化した炭化物が粗大化し、 加工の際 にボイ ド発生の起点となるとともに、 加工後の熱処理段階で炭化物が溶解し難く なり、 焼入強度の低下につながる。
また、 最近では従来にもまして、 生産性向上の観点から加工レベルに対する要求 が厳しくなつている。 そのため、 高炭素鋼板の穴広げ加工についても、 加工度の 増加等により、 打抜き端面の割れが発生しやすくなつており、 高炭素鋼板にも高 い伸びフランジ性が要求されている。
本発明者らは、 かかる事情に鑑み、 打抜き端面の割れが発生しにくく、 伸ぴフ ランジ性に優れた高炭素鋼板を提供することを目的として、 特許文献 4記載の技 術を開発した。 これらの技術により、 伸びフランジ性に優れた髙炭素熱延鋼板が 製造できるようになった。
特許文献 4は、 Cを 0. 2〜0. 7質量%含有する鋼を、仕上温度 (Ar3変態点一 20°C) 以上で熱間圧延した後、 冷却速度 120°C/秒超かつ冷却停止温度 650°C以下で冷却 を行い、 次いで卷取温度 600°C以下で卷取り、 酸洗後、 焼鈍温度 640°C以上 Acl 変態点以下で焼鈍する技術である。 金属組織については、 炭化物平均粒径を 0. 1 m以上 1. 2 in未満、炭化物を含まないフェライ ト粒体積率を 10%以下に制御す ることを特徴としている。
特許文献 1 : 特開平 9一 157758号公報
特許文献 2 : 特開平 11一 269552号公報
特許文献 3 : 特開平 11— 269553号公報
特許文献 4 : 特開 2003— 13145号公報 発明の開示
最近では、 駆動系部品の製造コス ト低減のため、 プレスによる一体成形手法が 実用化されている。 これにともない、 素材である鋼板にはバーリング加工のみな らず、 張出し、 曲げなどの成形モードが複雑に組み合わされた成形がなされてお り、 伸びフランジ性と延性の両特性に優れることが要求されるようになってきて いる。 この点を考慮した場合、 上記特許文献 4の技術では、 延性については言及 していなかった。
本発明は、 かかる事情に鑑み、 長時間を要する多段階焼鈍を用いることなく製 造でき、 打抜き端面の割れが発生しにく く、 また、 プレス成形や冷間鍛造による 割れが発生しにくい、 すわなち、 穴広げ率えが 70%以上、 延性の評価指標のひと つである全伸びが 35%以上を有する加工性に優れた極軟質高炭素熱延鋼板および その製造方法を提供することを目的とする。
本発明は、 高炭素鋼板の延性および伸びフランジ性、 硬度におよぼす組成ゃミ ク口組織および製造条件の影響について鋭意研究を進める中でなされた。そして、 その結果、 鋼板の硬度に大きな影響をおよぼす因子は、 組成や炭化物の形状およ び量のみならず、 炭化物平均粒径、 形態、 分散状態およびフェライ ト平均粒径、 微細フェライ ト粒体積率 (所定値以下の粒径であるフェライ ト粒の体積率) が大 きな影響を及ぼしていることを見出した。 そして、 炭化物平均粒径、 形態、 分散 状態、 フェライ ト平均粒径および微細フェライ ト粒体積率をそれぞれ適正な範囲 に制御することにより、 高炭素鋼板の硬度を大幅に低下させるとともに延性およ ぴ伸びフランジ性が大幅に向上することがわかった。
さらに、 本発明では、 上記知見に基づき、 上記組織を制御するための製造方法を 検討し、 加工性に優れた極軟質高炭素熱延鋼板の製造方法を確立した。
本発明は、 以上の知見に基づきなされたもので、 その要旨は以下のとおりであ る。
[ 1 ] 質量%で、 C: 0. 2〜0. 7 %、 Si: 0. 01〜: L 0% Mn: 0. 1〜1. 0%、 P: 0. 03%以下、 S : 0. 035%以下、 A1 : 0. 08%以下、 N: 0. 01%以下を含有し、 残部が鉄および不可避 的不純物からなり、 フェライ ト平均粒径が 20 /z m以上、 粒 '径 ΙΟ μ πι以下のフェラ ィ ト粒の体積率が 20%以下、
炭化物平均粒径が 0. 10 /x m以上 2. Ο μ πι未満、ァスぺク ト比カ S 5以上の炭化物の割 合が 15%以下、炭化物同士が接触する割合が 20%以下である組織を有することを 特徴 fとする極軟質高炭素熱延鋼板。 [ 2 ] 質量。/。で、 C: 0.2〜0.7 %ゝ Si: 0.01〜: L 0%、 Mn: 0.1〜1· 0¾、 Ρ: 0.03%以下、 S.: 0.035%以下、 A1 : 0.08%以下、 Ν: 0.01%以下を含有し、 残部が鉄および不可避 的不純物からなり、 フェライ ト平均粒径が 超え、 粒径 20 m以下のフェラ ィ ト粒の体積率が 20%以下、 炭化物平均粒径が 0.10 πι以上 2.0^ 111未満、 ァスぺ ク ト比が 5以上の炭化物の割合が 15%以下、炭化物同士が接触する割合が 20%以 下である組織を有することを特徴とする極軟質髙炭素熱延鋼板。
[ 3 ]前記 [ 1 ] または [ 2 ] において、 さらに、 質量%で、 Β: 0.0010-0.0050%, Cr: 0.005〜0.30%の一種または二種を含有することを特徴とする極軟質高炭素熱 延鋼板。
[4 ] 前記 [ 1] または [2] において、 さらに、 質量 で、 B: 0.0010~0.0050% および Cr: 0.05-0.30%を含有することを特徴とする極軟質高炭素熱延鋼板。
[5丁前記[ 1 ]〜 [4]のいずれカ こおいて、 さらに、質量0/。で、 Mo:0.005〜0.5%、 Ti:0.005〜0.05% Nb:0.005〜0· 1%の一種または二種以上を含有することを特徴と する極軟質高炭素熱延鋼板。
[6] 前記 [ 1]、 [3]、· [4]、 [5} のいずれかに記载の組成を有する鋼を、 粗 圧延した後、 仕上圧延入り側温度が 1100°C以下、 最終パスの圧下率を 12%以上、' かつ仕上温度を(Ar3- 10)で以上とする仕上圧延を行い、 次いで、 仕上圧延後 1.8 秒以内に 120°C/秒超えの冷却速度で 600 以下の冷却停止温度まで 1次冷却を行 い、 次いで、 2次冷却により 6'00°C以下の温度に保持した後、 580°C以下の温度で 卷取り、 酸洗後、箱型焼鈍法により'、 680°C以上 Acl変態点以下の温度で球状化焼 鈍することを特徴とする極軟質高炭素熱延鋼板の製造方法。
[7]前記 [2] 〜 [: 5] のいずれかに記載の組成を有する鋼を、 粗圧延した後、 仕上圧延入り側温度が 1100 以下、 最終 2パスの圧下率をそれぞれ 12%以上、 か つ (Ar3- 10)°C以上(Ar3+90°C)以下の温度域で仕上圧延を行い、次いで、仕上圧延 後 1.8秒以内に 120°C/秒超えの冷却速度で 600で以卞の冷却停止温度まで 1次冷 却を行い、 次いで、 2次冷却により 600=0以下の温度に保持した後、 580 以下の 温度で卷取り、 酸洗後、 箱型焼鈍法により、 680 以上 Acl変態点以下の温度で、 かつ、 20時間以上の均熱時間で球状化焼鈍を行うことを特徴とする極軟質高炭素 熱延鋼板の製造方法。
[ 8 ] 前記 [ 7 ] において、 仕上圧延入り側温度が 1050°C以下、 最終 2パスの圧 下率がそれぞれ 15%以上で仕上げ圧延を行うことを特徴とする極軟質高炭素熱延 鋼板の製造方法。
なお、 本明細書において、 鋼の成分を示す%は、 すべて質量%である。
本発明によれば、 極めて軟質でかつ延性およぴ伸ぴフランジ性に優れた高炭素 熱延鋼板が得られる。
そして、 本発明では、 熱延後の球状化焼鈍条件のみならず、 燒鈍前の熱延鋼板組 織、 すなわち熱延条件を制御することにより、 焼鈍後に炭化物が等軸かつ均一分 散で、 さらに、 フェライ ト粒の均一粗大化を達成する。 すなわち、 高温焼鈍を必 要とせず、 また多段階焼鈍を用いることなく製造できる。 その結果、 極めて軟質 でかつ延性おょぴ伸びフランジ性に優れた高炭素熱延鋼板が得られ、 加工工程の 簡略化、 および低コス ト化が可能となる。 発明を実施するための最良の形態 ·
本発明の極軟質高炭素熱延鋼板は、 下記に示す成分組成に制御し、 フェライ ト 平均粒径が 20 A m以上、 粒径 10 /z m以下のフェライ ト粒の体積率が 20%以下 (以 下、 「微細フェライ ト粒体積率 (粒径 10 /z m 以下)」 と称す)、 炭化物平均粒径が 0. lO /z m以上 2. 0 /z m未満、ァスぺク ト比が 5以上の炭化物割合が 15%以下、炭化 物同士が接触する割合が 20%以下である組織を有することを特徴とする。好まし くは、 フヱライ ト平均粒径が 35 μ πι超え、 粒径 20 /x m以下のフェライ ト粒の体積 率が 20%以下 (以下、 「微細フェライ ト粒体積率 (粒径 20 μ ιη以下)」 と称す)、 炭化物平均粒径が 0. ΙΟ μ πι以上 2. Ο μ πι未満、ァスぺク ト比が 5以上の炭化物割合 が 15%以下、炭化物同士が接触する割合が 20%以下である組織である。 これらは 本発明において最も重要な要件である。 このように成分組成と金属組織 (フェラ ィ ト平均粒径、 微細フ ライ ト粒体積率)、 炭化物の形状 (炭化物平均粒径)、 形 態および分散状態を規定し、 全てを満足することにより、 加工性に優れた極めて 軟質な高炭素熱延鋼板を得ることがでぎる。 そして、 上記極軟質高炭素熱延鋼板は、 後述する組成を有する鋼を、 粗圧延した 後、 仕上圧延入り側温度が 1100°C以下、 仕上げ圧延機の最終パスを 12%以上の圧 下率で、 (Ar3— 10) °C以上の仕上げ温度で熱間圧.延し、 次いで、 仕上げ圧延後 1. 8 秒以内に 120 /秒超えの冷却速度で 600°C以下の冷却停止温度まで 1次冷却を行 い、 次いで、 2次冷却により 600°C以下の温度に保持した後、 580°C以下の温度で 巻取り、酸洗後、 箱型焼鈍法により、 '680°C以上 Acl変態点以下の温度で球状化焼 鈍を行うことにより製造される。
さら'に、 上記の好適な組織を有する極軟質高炭素熱延鋼板の場合は、 後述する組 成を有する鋼を.、 粗圧延した後、 仕上圧延入り側温度が 1100°C以下、 仕上げ圧延 機の最終 2パスの圧下率をそれぞれ 12%以上、かつ(Ar3— 10) 以上 3+90)で以 下の温度域で仕上圧延し、 次い .、 仕上圧延後 1. 8秒以内に 120°C /秒超えの冷却 速度で 600°C以下の冷却停止温度まで 1次冷却を行い、 次いで、 2次冷却により 600°C以下の温度に保持した後、 580T以下の温度で卷取り、 酸洗後、 箱型焼鈍法 により、 680°C以上 Acl変態点以下の温度で、 かつ、 20時間以上の均熱時間で球 状化焼鈍を行うことにより製造される。 より好ましくは、 仕上圧延入り側温度が 1050°C以下、仕上げ圧延機の最終 2パスの圧下率をそれぞれ 15%以上で、かつ(Ar3 — 10) 以上(Ar3+90) °C以下の温度域で仕上圧延を行い、前述のように仕上げ圧延 後の冷却および球状化焼鈍を行う。 このように、 熱間仕上圧延、 1次冷却、 2次冷 却、 巻取りおょぴ焼鈍までの条件をトータルで制御することにより、 本発明の目 的が達成される。 '
以下、 本発明を詳細に説明する。
まず、 本発明における鋼の化学成分の限定理由について説明する。
(1) C: 0. 2~0. 7%
C は、 炭素鋼において最も基本になる合金元素である。 その含有量によって、 焼 入れ後の硬さおよぴ焼鈍状態での炭化物量が大きく変動する。 C含有量が 0. 2%未 満の鋼では、 熱延後の組織においてフェライ トの生成が顕著となり、 焼鈍後に安 定した粗大フェライ ト粒組織が得られず、 混粒組織となり安定した軟質化が図れ ない。 また、 自動車用部品等に適用する上で十分な焼入れ硬さが得られない。 一 方、 C含有量が 0. 7%を超えると炭化物体積率が高く、 炭化物同士の接触が多くな り、 延性および伸びフランジ性が大幅に低下する。 また、 熱間圧延後の靭性が低 下して鋼帯の製造性、 ハンドリング性が悪くなる。 したがって、 焼入れ後の硬さ と延性および伸びフランジ性を兼ね備えた鋼板を提供する観点から、 C含有量は 0. 2%以上 0. 7%以下とする。
(2) S i: 0. 01 ~ 1. 0%
S iは、 焼入れ性を向上させる元素である。 S i含有量が 0. 01%未満では焼入れ後の 硬さが不足する。一方、 S i含有量が 1. 0%を超えると固溶強化により、 フェライ ト が硬化し、 延性が低下する。 さらに炭化物を黒鉛化し、 焼入れ性を阻害する傾向 がある。 したがって、 焼入れ後の硬さと延性を兼ね備えた鋼板を提供する観点か ら、 S i含有量は 0. 01 %以上 1. 0%以下、 好ましくは 0. 1%以上 0. 8%以下とする。
(3) Mn: 0 · 1〜1. 0%
Mnは、 S i と同様に焼入れ性を向上させる元素である。 また、 Sを MnSとして固定 し、 スラブの熱間割れを防止する重要な元素である。 Mn含有量が 0. 1%未満では、 これらの効果が十分に得られず、 また焼入れ性は大幅に低下する。 一方、 Mn含有 量が 1. 0%を超えると固溶強化によ,り、 フェライ トが硬化し、 延性の低下を招く。 したがって、 焼入れ.後の硬さと延性を兼ね備えた鋼板を提供する観点から、 Mn含 有量は 0. 1 %以上 1. 0%以下、 好ましくは 0. 3%以上 0. 8%以下とする。 .
(4) P: 0. 03%以下 '
Pは粒界に偏析し、 延性や靭性を劣化させるため、 P含有量は 0. 03%以下、 好まし くは 0. 02%以下とする。
(5) S: 0. 035°/。以下
Sは、 Mnと MnSを形成し、 延性およぴ伸ぴフランジ性、 焼入れ後の靱性を劣化さ せるため、 低減しなければならない元素であり、 少ない方が好ましい。 しカゝし、 S 含有量が 0. 035%までは許容できるため、 S含有量は 0. 035%以下、好ましくは 0. 010% 以下とする。
(6) A1: 0. 08%以下
A1は過剰に添加すると A1Nが多量に析出し、焼入れ性を低下させるため、 A1含有 量は 0. 08%以下とし、 好ましくは 0. 06%以下する。 ·
(7) N : 0. 01%以下
Nは過剰に含有している場合は延性の低下をもたらすため、 N含有量は 0. 01°/。以下 とす.る。
以上の必須添加元素で、 本発明鋼は目的とする特性が得られるが、 上記の必須 添加元素に加えて、 B、 Cr の一種または二種を添加してもよい。 これらの元素を 添加する場合の好ましい範囲は以下の通りであり、 B、 Cr のどちらか一方の添加 でもよいが、 B、 Crの両方を同時に添加することがより好ましい。
(8) B : 0. 0010〜0. 0050%
B は、 熱間圧延後の冷却中のフ ライ トの生成を抑制し、 焼鈍後に均一な粗大フ エライ ト粒を生成する重要な元素である。 しかし、 B含有量が 0. 0010%未満では、 十分な効果が得られない場合がある。 一方、 0. 0050%を超えると、 効果が飽和する とともに、 熱間圧延の負荷が高くなり操業性が低下する場合がある。 従って、 添 加す ¾場合、 B含有量は 0. 0010%以上 0. 0050%以下とする。
(9) Cr : 0. 005 ~ 0. 30 '
は、 熱間圧延後の冷却中のフヱライ トの生成を抑制し、 焼鈍後に均一な粗大フ エライ ト粒を生成する重要な元素である。 しかし、 Cr含有量が 0. 005%未満では、 十分な効果が得られない場合がある。一方、 0. 30%を超えるとフニライ ト生成の抑 制効果が飽和するとともに、 コス ト増となる。 従って、 添加する場合、 Cr含有量 は 0. 005%以上 0. 30%以下とする。 好ましくは 0. 05%以上 0. 30%以下とする。
また、 さらに、 熱延冷却時のフェライ ト生成を抑制し、 焼入れ性を向上させる ため Mo、Ti、Nbを必要に応じて 1種または 2種以上で添加してもよい。その場合、 それぞれの添加量が、 Moが 0. 005%未満、 Tiが 0. 005%未満、 Nb力 005%未満では 添加の効果が十分に得られない場合がある。 一方、 Mo が 0. 5¾超え、 Ti が 0. 05% 超え、 Nbが 0. 1%超えでは、 効果が飽和し、 コス ト増となり、 さらに固溶強化、 析 出強化等により強度上昇が大きくなるため、 延性が低下する場合がある。 したが つて、 Mo、 Ti、 Nbの 1種または 2種以上を添加する場合は、 Moは 0. 005%以上 0. 5% 以下、 Tiは 0. 005%以上 0. 05%以下、 Nbは 0. 005%以上 0. 1%以下とする。 なお、上記以外の残部は Fe及ぴ不可避的不純物からなる。不可避的不純物とし て、 例えば、 0は非金属介在物を形成し品質に悪影響を及ぼすため、 0. 003%以下 に低減するのが望ましい。 また、 本発明では、 本発明の作用効果を害さない微量 元素として、 Cu、 Ni、 W、 V、 Zr、 Sn、 Sbを 0. 1¾以下の範囲で含有してもよい。 次に、本発明の加工性に優れた極軟質高炭素熱延鋼板の組織について説明する。 (1)フェライ ト平均粒径: 20 μ ιη以上
フェライ ト平均粒径は延性および硬度を支配する重要な因子であり、 フ: ライ ト 粒を粗大化することにより、 軟質化し、 強度低下に伴い延性が向上する。 また、 フェライ ト平均粒径を 35 μ πι超えとすることにより、 さらに軟質となり、 延性も さらに向上し、 より優れた加工性が得られる。 したがって、 フェライ ト平均粒径 は 20 z m以上とし、好ましくは 35 ζ πι超え、さらに好ましくは 50 /z m以上とする。
(2)微細フェライ ト粒体積率(粒径 以下もしくは粒径 20 / m以下のフェラ ィ ト粒の体積率) : 20%以下
フェライ ト粒が粗大であるほど軟質化し、 軟質化を安定させるためには粒径が所 定値以下の微細なフェライ ト粒の占める割合が低いことが望まれる。 そのため、 粒径 10 /z m以下もしくは粒径 以下のフェライ ト粒の体積率を微細フェライ ト粒体積率と定義し、 本発明においては、 この微細フニライ ト粒体積率を 20%以 下とする。
微細フェライ ト粒体積率が 20%を超える場合、 混粒組織となるため、 安定した軟 質化が図れない。 したがって、 安定して優れた延性おょぴ軟質化を達成するため には微細フェライ ト粒体積率を 20%以下とし、 好ましくは 15%以下とする。
なお、 微細フェライ ト粒体積率は、 鋼板断面の金属組織観察(約 200倍で 10視野 以上)において、粒径が所定値以下の微細なフェライ ト粒と、粒径が所定値超えの フェライ ト粒との面積比を求め、 これを体積率とみなすことにより求めることが できる。
また、 粗大なフェライ ト粒および微細フェライ ト粒体積率 20%以下の鋼板は、 後 述するように、 仕上圧延時の圧下率と温度を制御することで得られる。 具体的に は、フェライ ト平均粒径が 20 ; m以上で微細フェライ ト粒体積率(粒径 ΙΟ μ πι以下) が 20%以下の鋼板は、後述のように、仕上げ圧延機の最終パスを 12%以上の圧下率 で、 かつ、 (Ar3 _ 10) °C以上の仕上げ温度で仕上げ圧延を行うことで得られる。 最 終パスの圧下率を 12%以上とすることで、 粒成長駆動力が増大し、 フェライ ト粒 が均一に粗大化する。 また、 フ ライ ト平均粒径が 35 !η超えで微細フ.エライ ト 粒体積率(粒径 20 m以下)が 20%以下の鋼板は、 後述のように、 仕上げ圧延機の 最終 2パスの圧下率をそれぞれ 12%以上で、 かつ、 (Ar3— 10) °C以上(Ar3+90) °C以 下の温度域で仕上圧延を行うことで得られる。最終 2パスの圧下率をそれぞれ 12% 以上とすることで、 旧オーステナイ ト粒内にせん断帯が多数導入され、 変態の核 生成サイ トが増大する。 このため、 べィナイ ト組織を構成するラス状のフェライ ト粒が微細となり、 非常に高い粒界エネルギーを駆動力として、 フユライ ト粒が 均一に粗大化する。 さらに、 圧下率をそれぞれ 15%以上とすることでよりフェラ ィ ト粒が均一に粗大化する。
(3)炭化物平均粒径: 0. 以上 未満
炭化物平均粒径は、 加工性一般や打抜き加工性および加工後の熟処理段階におけ る焼入れ強度に大きく影響するため、'重要な要件である。 炭化物が微細になると 加工後の熱処理段階で炭化物が溶解しやすく、 安定した焼入れ硬さが確保できる が、 炭化物平均粒径が 0. ΙΟ μ ηι未満では、 硬さの上昇に伴い延性が低下し、 同時 に伸びフランジ性も劣化する。 一方、 炭化物平均粒径の増加にともない加工性は 向上するが、 2. O / m以上になると、 穴広げ加工におけるボイドの発生により伸ぴ フランジ性が低下する。以上より、炭化物平均粒径は 0. 10 ;z m以上 2. 0 / m未満と する。 なお、 炭化物平均粒径は、 後述のように製造条件、 特に熱間圧延後の 1次 冷却停止温度、 2 次冷却保持温度、 卷取温度、 そして焼鈍条件により、 制御する ことができる。
(4)炭化物形態: ァスぺク ト比が 5以上の炭化物割合が 15%以下
炭化物形態は、 延性およぴ伸ぴフランジ性に大きく影饗する。 炭化物の形態すな わちァスぺク ト比が 5以上になると、 わずかな加工でボイ ドが生成するため、 加 ェの初期にクラックとなり延性およぴ伸ぴフランジ性が低下する。 しかし、 その 割合が 15%以下であれば影響が小さい。 従って、 ァスぺク,ト比が 5以上の炭化物 割合は 15%以下に制御する。 好ましくは 10%以下、 より好ましくは 5%以下とす る。 なお、 炭化物のァスぺク ト比は、 製造条件、 特に、 仕上圧延入り側温度によ り制御することができる。 また、 本発明において、 炭化物のアスペク ト比は炭化 物の長径と短径の比とする。 ' .
(5)炭化物分散状態:炭化物同士が接触する割合が 20%以下
炭化物分散状態も、 延性および伸びフランジ性に大きく影響する。 炭化物同士が 接触する場合、 その接触部では既にボイ.ドが生成しているあるいはわずかな加工 でボイ ドが生成するため、 加工の初期にクラックとなり延性およぴ伸ぴフランジ 性が低下する。 しかし、 その割合が 20%以下であれば影響が小さい。 従って、 炭 化物同士の接触する割合は 20%以下に制御する。好ましくは 15%以下、 より好ま しくは 10%以下とする。 なお、 炭化物の分散状態は、 製造条件、 特に、 仕上圧延 後の冷却開始時間により制御することができる。 また、 本発明において、 炭化物 同士が接触する炭化物の割合は、 全炭化物数に対する接触している炭化物の割合 である。
.次に、 本発明の加工性に優れた極軟質高炭素熱延鋼板の製造方法について説明 する。 ,
本発明の極軟質高炭素熱延鋼板は、 上記化学成分範囲に調整された鋼を、 粗圧延 し、 所望の条件で仕上圧延し、 次いで、 所望の冷却条件で冷却し、 巻取り、 酸洗 後、 箱型焼鈍法により所望の球状化焼鈍を行うことにより得られる。 これらにつ いて以下に詳細に説明する。 ' .
(1)仕上圧延入り側温度
仕上圧延入り側温度を 1100°C以下とすることで、 旧オーステナイ ト粒径が微細と なり、 仕上圧延後のべィナイ トラスの微細化と同時にラス中の炭化物のァスぺク ト比が小さくなり、焼鈍後にァスぺク ト比が 5以上の炭化物割合が 15%以下とな る。 これにより、 加工時のポイ ド生成が抑制され、 優れた延性およぴ伸ぴフラン ジ性が得られる。 しかし、 仕上圧延入り側温度が 1100°Cを超える場合、 十分な効 果が得られない。 以上の理由から、 仕上圧延入り側温度は ι ιοοΐ以下とし、 炭化 物のアスペク ト比低減の観点から、 1050で以下が好ましく、 より好ましくは 1000°C以下である。
(2)仕上圧延における圧下率および仕上温度 (圧延温度)
最終パス圧下率を 12%以上とすることで、 旧オーステナイ ト粒内にせん断帯が多 数導入され、 変態の核生成サイ トが増大する。 このため、 ベイナイ トを構成する ラス状フェライ ト粒が微細となり、 球状化焼鈍時に高い粒界エネルギーを駆動力 として、 フェライ ト平均粒径が 20 μ πι 以上でかつ微細フユライト粒体積率(粒径 ΙΟ μ πι以下)が 20%以下の均一粗大フェライ ト粒組織が得られることになる。一方、 最終パス圧下率が 12%未満では、 ラス状フェライ ト粒が粗大となるため、 粒成長 駆動力が不足し、 焼鈍後にフェライ ト平均粒径が 以上でかつ微細フェライ ト粒体積率(粒径 以下)が 20 %以下のフェライ ト粒組織が得られず、安定し た軟質化が図れない。 以上の理由から、 最終パス圧下率は 12。/。以上とし、 均一粗 大化の観点から、 好ましくは 15%以上、 さらに好ましくは 18%以上とする。 一方、 最終パスの圧下率が 40%以上では圧延負荷が増大するため、 最終パス圧下率の上 限は 40%未満とすること'が好ましい。
鋼を熱間圧延する際の仕上温度 (最終パスの圧延温度) 力 S (Ar3— 10)'°C未満では、 —部でフェライ.ト変態が進行し、 フェライ ト粒が増加するため、 球状化焼鈍後に 混粒フェライ ト組織となり、 フェライ ト平均粒径が 20 μ ιη以上でかつ微細フヱラ ィ ト粒体積率(粒径 10 μ ιη以下)が 20%以下のフユライ ト粒組織が得られず、安定 した軟質化が図れない。 したがって、仕上温度は(Ar3— 10)で以上とする。 仕上げ 温度の上限は特に規定しないが、 1'000°Cを超えるような髙温の場合、 スケール性 欠陥が発生し易くなるため、 1000°C以下が好ましい。
以上より、 最終パスの圧下率は 12%以上、 仕上温度は(Ar3— 10)で以上とする。 さらに、 上記最終パスの圧下率に加え、 最終前パスの圧下率も 12%以上とする ことで、 歪累積効果により、 旧オーステナイ ト粒内にせん断帯が多数導入され、 変態の核生成サイ トが増大する。 その結果、 べィナイ トを構成するラス状フェラ イ ト粒が微細となり、 球状化焼鈍時に高い粒界エネルギーを駆動力として、 フニ ライ ト平均粒径が 35 m超えでかつ微細フェライ ト粒体積率(粒径 20 /i m以下)が 20%以下の.均一粗大フェライ ト粒組織が得られることになる。 一方、 最終パスと 最終前パス (以下、 最終パスと最終前パスとをあわせて最終 2パスと称す) の圧 下率がそれぞれ 12%未満では、 ラス状フェライ ト粒が粗大となるため、 粒成長駆 動力が不足し、 焼鈍後にフヱライ ト平均粒径が 超えでかつ微細フェライ ト 粒体積率(粒径 20 ΠΙ以下)が 20%以下のフェライ ト粒組織が得られず、安定した 軟質化が図れない。 以上の理由から、 最終 2 パスの圧下率はそれぞれ 12%以上と することが好ましく、 より均一に.粗大化するためには最終 2パスの圧下率をそれ ぞれ 15°/。以上とすることがより好ましい。 一方、 最終 2 パスの圧下率がそれぞれ 40%以上では、 圧延負荷が増大するため、 最終 2 パスの圧下率の上限はそれぞれ 40%未満とすることが好ましい。
また、最終 2パスの仕上温度を(Ar3 _ 10) °C以上(Ar3+90) °C以下の温度域で行う ことにより、 歪累積効果が最大となり、 球状化焼鈍時にフユライ ト平均粒径が 35 μ ιη超えでかつ微細フェライ ト粒体積率(粒径 20 πι以下)が 20%以下の均一粗大 フェライ ト粒組織が得られる。 仕上最終 2パス圧延温度が(Ar3— 20) ^未満では、 一部でフェライ ト変態が進行し、 フェライ ト粒が増加するため、 球状化焼鈍後に 混粒フユライ ト組織になり、 焼鈍後にフェライ ト平均粒径が 35 / ιη超えでかつ微 細フェライ ト粒体積率(fe径 以下)が 20 %以下のフェライ ト粒組織が得られ ず、 より一層の安定した軟質化が図れない。 一方、 仕上最終 2 パス圧延温度が (Ar3+90) °Cを超えると、 歪の回復により歪累積効果が不足し、 焼鈍後にフェライ ト平均粒径が 35 m超えでか 0微細フェライ ト粒体積率(粒径 20 ;z m以下)が 20 % 以下のフェライ ト粒組織が得られず、 より一層の安定した軟質化が図れない場合 がある。 以上の理由から、 仕上最終 2 パス圧延の温度域は(Ar3— 10) °C以上 (Ar3+90) °C以下とすることが好ましい。
以上より、 仕上圧延において、 最終 2パスの圧下率は好ましくはそれぞれ 12%以 上、 より好ましくは 15 %以上 40 %未満、 温度域は好ましくは(Ar3— 10) °C以上 (ΑΓ3+90) =Ο以下である。
なお.、 Ar3変態点 (で) は実測により求めることができるが、 次の式 (1) により 算出しても差し支えない。
Ar3=910-310C-80Mn-15Cr-80Mo (1) ここで、 式中の元素記号はそれぞれの元素の含有量 (質量%) を表す。 .
(3) 1次冷却:仕上げ圧延後 1. 8秒以内に 120°C/秒超えの冷却速度
熱間圧延後の 1次冷却方法が徐冷であると、 オーステナイ トの過冷度が小さくフ ェライ トが多く生成する。 冷却速度が 120°C/秒以下の場合、 フヱライ トの生成が 顕著となり、 焼鈍後に炭化物が不均一に分散し、 安定した粗大フェライ ト粒組織 が得られず、 軟質化が図れない。 したがって、 熱間圧延後の 1次冷却の冷却速度 は 120°C/秒超えとする。 好ましくは 200°C/秒以上、 より好ましくは 300°C/秒以 上である。 なお、 冷却速度の上限は特に制限しないが、 例えば板厚 3. 0m :mの場 合を想定すると、 現状の設備上の能力からは 700°C/秒である。 また、 仕上げ圧延 から冷却開始までの時間が 1. 8秒超えでは、 炭化物の分布が不均一となり炭化物 同士の接触する割合が増大する。 これは、 加工オーステナイ ト粒が部分的に回復 し、 ペイナイ トの炭化物が不均一となるため炭化物同士の接触につながるものと 考えられる。 しナこがって、 仕上げ圧延から冷却開始までの時間を 1. 8秒以内とす る。 なお、 炭化物の分散状態をより均一化するためには、 仕上げ圧延から冷却'開 始までの時間は 1. 5秒以内が好ましく、 より好ましくは 1. 0秒以内である。
(4) 1次冷却停止温度: 600 C以下
熱間圧延後の 1次冷却停止温度が 600°C超えの場合、フェライ トが多く生成する。 そのため、 焼鈍後に炭.化物が不均一に分散し、 安定した粗大フユライト粒組織が 得られず、 軟質化が図れない。'したがって、 熱間圧延後にベイナイ ト組織を安定 して得るには、熱間圧延後の 1次冷却停止温度を 600°C以下とし、好ましくは 580で 以下、 より好ましくは 550 以下とする。 なお、 下限温度は特に規定しないが、 低温になるほど板形状が劣化するため、 300 以上とすることが好ましい。
(5) 2次冷却保持温度: 600で以下
高炭素鋼板の場合、 1 次冷却後に、 フェライ ト変態、 パーライ ト変態、 べィナイ ト変態に伴い、鋼板温度が上昇することがあり、 1次冷却停止温度が 600°C以下で あっても、 1 次冷却終了から、 卷取までに温度が上昇した場合、 フヱライ トが生 成する。 そのため、 焼鈍後に炭化物が不均一に分散し、 安定した粗大フェライ ト 粒組織が得られず、 軟質化が図れない。 したがって、 2次冷却により、 1次冷却終 了から巻取までの温度を制御することは重要であり、 2次冷却により、 1次冷却終 了から卷取まで 600°C以下の温度で保持することとし、好ましくは 580 以下、 よ り好ましくは 550°C以下の温度で保持することとする。 なお、 この場合の 2次冷 却はラミナ一冷却等により行うことができる。,
(6)卷取温度: 580°C以下
冷却後の卷取が 580°C超えの場合、 べィナイ トを構成するラス状フェライ ト粒が やや粗大となり、 焼鈍時の粒成長駆動力が不足し、 安定した粗大フユライ ト粒組 織が得られず、 軟質化が図れない。 一方、 冷却後の卷取を 580°C以下とすること により、 ラス状フェライ ト粒が微細となり、 焼鈍時に高い粒界エネルギーを駆動 力として、 安定した粗大フェライ ト粒組織が得られる。 したがって、 卷取温度は 580°C以下とし、好ましくは 550°C以下、より好ましくは 530°C以下とする。なお、 卷取温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、 200 以上とすることが好ましい。
(7)酸洗:実施 - 卷取後の熱延鋼板は、 球状化焼鈍を行う前にスケール除去のため、 酸洗を施す。 酸洗は常法にしたがって行えばよい。
(8)球状化焼鈍: 680°C以上 Acl変態点以下の温度で箱型焼鈍
熱延鋼板を酸洗した後、 フェライ ト粒を十分に粗大化させるとともに炭化物を球 状化するために焼鈍を行う。 球状化焼鈍は大きく分けて、 (l) Acl直上温度に加熱 後徐冷する方法、 (2) Acl直下温度 長時間保持する方法、 (3) Acl直上おょぴ直下 の温度で加熱 ·冷却を繰り返す方法がある。 このうち、 本発明では上記(2)の方法 により、 フェライ ト粒の粒成長と炭化物の球状化を同時に指向している。 このた め、 球状化焼鈍は長時間を有することから箱型焼鈍とする。 焼鈍温度が 680 未 満では、 フェライ ト粒の粗大化および炭化物の球状化がいずれも不十分となり、 十分に軟質化せず、 また延性および伸びフランジ性が低下する。 一方、 焼鈍温度 が Acl変態点を超える場合、 一部がオーステナイ ト化し、 冷却中に再度パーライ トを生成するため、 やはり延性および伸びフランジ性が低下する。 以上より、 球 状化焼鈍の焼鈍温度は 680で以上 Acl変態点以下とする。 なお、平均粒径が 35 m 超えでかつ微細フェライ ト粒体積率(粒径 20 m以下)が 20%以下のフェライ ト粒 組織を安定して得るには、燒鈍(均熱)時間は 20時間以上とすることが好ましく、 · 40時間以上とすることがさらに好ましい。 なお、 Acl変態点 0 )は実測により求 めることができるが、 次の式(2)により算出しても差し支えない。
Acl=754. 83 - 32. 25C+23. 32Si— 17. 76Mn+17. 13Cr+4. 51Mo (2)
ここで、 式中の元素記号はそれぞれの元素の含有量 (質量%) を表す。
以上により本発明の加工性に優れた極軟質高炭素熱延鋼板が得られる。 なお、 本癸明の高炭素鋼の成分調整には、 転炉あるいは電気炉のどちらでも使用可能で ある。 このように成分調整された高炭素鋼を、 造塊一分塊圧延または連続鑄造に より鋼素材である鋼スラブとする。 この鋼スラブについて熱間圧延を行う力^ そ の際、 スラブ加熱温度は、 スケール発生による表面状態の劣化を避けるため 1300°C以下とすることが好ましい。 また、 連続鎳造スラブをそのまま又は温度低 下を抑制する目的で保熱しつつ圧延する直送圧延を行ってもよい。 さらに、 熱間 圧延時に粗圧延を省略して仕上げ圧延を行ってもよい。 仕上げ温度確保のため'、 熱間圧延中にバーヒータ等の加熱手段により圧延材の加熱を行ってもょレ、。また、 球状化促進あるいは硬度低減のため、 卷取後にコイルを徐冷カバー等の手段で保 温してもよレ、。
焼鈍後、 必要に応じて調質圧延を行う。 この調質圧延については硬度、 延性、 お よび伸びフランジ性には影響を及ぼさないことから、 その条件に対して特に制限 はない。
このようにして得られた高炭素熱延鋼板が、 優れた延性および伸びフランジ性 とともに極軟質を有する理由は次のように考えられる。 硬度は、 フェライ ト平均 粒径が大きく影響し、フェライ ト粒径が均一でかつ、粗大な場合、極軟質となる。 また、 延性およぴ伸ぴフランジ性に関しては、 フェライ ト粒の粒度分布が均一で かつ粗大であると同時に、 炭化物が等軸で均一に分布することで向上する。 以上 の点から、 成分組成と金属組織 (フェライ ト平均粒径、 フユライ ト粗大化率)、 炭 '化物の形状 (炭化物平均粒径)、 形態および分布を規定し、 全てを満足することに より、 優れた延性および伸びフランジ性とともに極めて軟質な高炭素熱延鋼板を 得ることができる。 実施例
実施例 1
表 1 に示す化学成分を有する鋼を連続鑄造し、 得られたスラブを 1250°Cに加 熱し、 表 2に示す条件にて熱間圧延、 およぴ焼鈍を行い、 板厚 3.0mmの熱延鋼 板を製造した。
次に、 上記により得られた熱延鋼板からサンプルを揉取し、 フユライ ト平均粒 径、 微細フ ライ ト粒体積率、 炭化物平均粒径、 炭化物ァスぺク ト比、 炭化物同 士の接触割合を測定し、 性能評価のため、 素材硬度、 全伸びおよび穴広げ率を測 定した。 それぞれの測定方法、 および条件は以下の通りである。
くフェライ ト平均粒径' >
サンプルの板厚断面での光学顕微鏡組織から、 JIS G 0552に記载の切断法により 測定を行った。 なお、 平均粒径は、 フェライ ト粒が 3000個以上の平均値とした。 く微細フェライ ト粒体積率 > '
サンプルの板厚断面を研磨 ·腐食後、 光学顕微鏡でミクロ組織観察を行い、 全フ ヱライ ト粒における 10 πι (20 μ ιη)以下である粒と 10 # m (20 m)超えである粒の 面積比から求めた。 ただし、微細フェライ ト粒体積率は、約 200倍で 10視野以上 の組織観察を行!、、 平均値として求めた。
測定方法は、 JIS規格 G0552に規定されているフ ライ ト結晶粒度試験方法の中 の切断法に準拠して測定した。 ' ぐ炭化物平均粒径 >
サンプルの板厚断面を研磨'腐食後、走查型電子顕微鏡にてミク口組織を撮影し、 炭化物粒径の測定を行った。 なお、 平均粒径は、 炭化物総数が 500個以上の平均 値とした。
<炭化物ァスぺク ト比 >
サンプルの板厚断面を研磨.腐食後、走査型電子顕微鏡にてミク口組織を撮影し、 炭化物の長径と短径の比を測定した。 なお、 炭化物総数は 500.個以上とし、 ァス ぺク ト比が 5以上の炭化物の割合を算出した。
く炭化物同士の接触割合 >
サンプルの板厚断面を研磨'腐食後、走查型電子顕微鏡にてミク口組織を撮影し、 炭化物同士が接触している炭化物の割合を算出した。 なお、 炭化物総数は 500個 以上とした。
ぐ素材硬度 >
サンプルの切断面をパフ研磨仕上げ後、 板厚中央部にて荷重 500gf の条件下でヴ ィッカース硬さ(Hv)を 5点測定し、 平均硬度を求めた。
<全伸び: EL >
全伸ぴは引張試験により測定した。 圧延方向に対し、 90° 方向 (C 方向) に沿つ て: TIS 5号試験片を採取し、 引張速度 lOmm/ininで引張試験を行い、 全伸び(突合 せ伸び)を測定した。
く伸びフランジ性: 穴広げ率 λ >
伸ぴフランジ性は、 穴広げ試験により評価した。 サンプルをボンチ径 d。=10mm ダイス径 12mni (ク リアランス 20% ) の打抜き工具を用いて打抜き後、 穴広げ試験 を実施した。 穴広げ試験は、 円筒平底ポンチ (50 φ 5R (肩半径 5nim) ) にて押 し上げる方法で行い、 穴縁に板厚貫通クラックが発生した時点での穴径 d b (mm) を測定して、 次式で定義される穴広げ率 λ ( % ) を求めた。
λ (%) = (db-d0) /d0 X 100 ·
以上の測定により得られた結果を表 3に示す。
表 3において、鋼板 No. 1 15は化学成分が本発明範囲であり、 フェライ ト平均 粒径、 微細フェライ ト粒体積率(粒径 10 A m以下)、 炭化物平均粒径、 ァスぺク ト 比が 5以上の炭化物割合、 炭化物同士が接触する割合が本発明範囲である組織を 有する本発明例である。 本発明例では、 素材硬度が低く、 全伸びが 35°/0以上、 穴 広げ率; Iが 70%以上の優れた特性を有しているのがわかる。
一方、鋼板 No. 16- 18は化学成分が本発明範囲を外れた比較例である。鋼板 No. 16 17は微細フェライ ト粒体積率(粒径 10 /1 m以下)が本発明範囲外であり、全伸びお ょぴ伸びフランジ性が劣っている。 鋼板 No. I8はァスぺク ト比が 5以上の炭化物 割合が本発明範囲外であり、 全伸びおよぴ伸ぴフランジ性が劣っている
(質量0 /0)
Figure imgf000022_0001
表 2
Figure imgf000023_0001
表 3
Figure imgf000024_0001
実施例 2
表 4に示す化学成分を有する鋼を違続鎳造し、得られたスラブを 1250 に加熱 し、 表 5に示す条件にて熱間圧延、 および焼鈍を行い、 板厚 3. 0mmの熱延鋼板を 製造した。
次に、 上記により得られた熱延鋼板からサンプルを採取し、 フユライ ト平均粒 径、 微細フユライ ト粒体積率、 炭化物平均粒径、 炭化物ァスぺク ト比、 炭化物同 士の接触割合を測定し、 性能評価のため、 素材硬度、 全伸びおよび穴広げ率を測 定した。 それぞれの測定方法、 および条件は実施例 1 と同様である。
以上の測定により得られた結果を表 6に示す。
表 6において、 鋼板 No. 19〜29は化学成分が本発明範囲であり、 フ; ライ ト平 均粒径、 微細フェライ ト粒体積率(粒径 以下)、 炭化物平均粒径、 ァスぺク ト比が 5以上の炭化物割合、 炭化物同士が接触する割合が本発明範囲である組織 を有する本発明例である。 本発明例では、 素材硬度が低く、 全伸びが 35 %以上、 穴広げ率 が 70 %以上の優れた特性を有しているのがわかる。
一方、 鋼板 No. 30は化学成分が本発明範囲を外れた比較例である。 微細フェライ ト粒体積率が本発明範囲外のため、, 全伸びおよび伸びフランジ性が劣っている。
表 4
(質量%)
Figure imgf000026_0001
表 5
Figure imgf000027_0001
表 6
Figure imgf000028_0001
実施例 3 ·
表 1に示す化学成分を有する鋼を違続鑄造し、得られたスラブを 1250°Cに加熱 し、 表 7に示す条件にて熱間圧延、 および焼鈍を行い、 板厚 3. 0讓の熱延鋼板を 製造した。
次に、 上記により得られた熱延鋼板からサンプルを探取し、 フェライ ト平均粒 径、 微細フニライ ト粒体積率、 炭化物平均粒径、 炭化物ァスぺク ト比、 炭化物同 士の接触割合を測定し、 性能評価のため、 素材硬度、 全伸びおよび穴広げ率を測 定し 。 それぞれの測定方法、 および条件は実施例 1 と同様である。
以上より得られた結果を表 8に示す。
表 8において、 鋼板 No. 31〜47は製造条件が本発明範囲であり、 フヱライ ト平 均粒径、 微細フェライ ト粒体積率(粒径 以下)、 炭化物平均粒径、 ァスぺク ト比が 5以上の炭化物割合、 炭化物同士が接触する割合が本発明範囲である組織 を有している本発明例である。 本発明例では、 素材硬度が低く、 全伸びが 35 %以 上、 穴広げ率; Lが 70 %以上の優れた特性を有しているのがわかる。 ただし、 鋼板 No. 36 は仕上温度が(Ar3+90) °Cを超えているため、 フェライ ト平均粒径がやや低 めとなっている。 ,
一方、 鋼板 No. 48 ~ 54 は製造条件が本発明範囲を外れた比較例である。 鋼板 No. 48, 49、 50、 53、 5 の比較例はフェライ ト平均粒径が本発明範囲外である。 また、 鋼板 No. 48、 49、 50、 52、 53、 5 は微細フェライ ト粒体積率(粒径 20 ; m 以下)が本発明範囲外である。 鋼板' No. 48、 49、 52、 53'、 54は、 ァスぺク ト比カ 5 以上の炭化物割合が、 鋼板 No. 49、 50、 51、 52は、 炭化物同士の接触する割合が 本発明範囲外である。 これらの結果、 素材硬度が髙いか、 あるいは、 全伸ぴおよ び伸ぴフランジ性が大幅に劣化している。 表 7
Figure imgf000030_0001
表 8
O
Figure imgf000031_0001
実施例 4
表 4に示す化学成分を有する鋼の違続鑄造し、得られたスラブを 1250°Cに加熱 し、 表 9に示す条件にて熱間圧延、 および焼鈍を行い、 板厚 3. 0匪の熱延鋼板を 製造した。
次に、 上記により得られた熱延鋼板からサンプルを採取し、 フェライ ト平均粒 径、 微細フェライ ト粒体積率、 炭化物平均粒径、 炭化物ァスぺク ト比、 炭化物同 士の接触割合を測定し、 性能評価のため、 素材硬度、 全伸びおよび穴広げ率を測 定した。 それぞれの測定方法、 および条件は実施例 1 と同様である。
以上より得られた結果を表 10に示す。
表 10において、鋼板 No. 55 - 68は製造条件が本発明範囲であり、 フェライ ト平 均粒径、 微細フェライ ト粒体積率(粒径 以下)、 炭化物平均粒径、 ァスぺク ト比が 5以上の炭化物割合、 炭化物同士が接触する割合が本発明範囲である組織 を有している本発明例である。本発明例では、素材硬度が低く、全伸び 35 %以上、 穴広げ率 λ 70 %以上の優れた特性を有しているのがわかる。 ただし、 鋼板 No. 59 は仕上温度が(Ar3+90) °Cを超えているため、 フェライ ト平均粒径がやや低めとな つている。 ,
一方、 鋼板 No. 69〜75 は製造条件が本発明範囲を外れた比較例である。 鋼板 No. 69、 70、 72、 74、 75 の比較例はフェライ ト平均粒径が発明範囲外である。 ま た、 鋼板 No. 69、 70、 72、 73、 74、 75は微細フェライ ト粒体積率(粒径 20 μ m以下) が本発明範囲外である。 鋼板 Νο· 6 、 72、 73、 74、 75は、 アスペク ト比が 5以上 の炭化物割合が、 鋼板 No. 69、 70、 71は、 炭化物同士の接触する割合が、 本発明 範囲外である。 これらの結果、 素材硬度が高いかあるいは、 全伸びおょぴ伸びフ ランジ性が大幅に劣化している。 ' '' 産業上の利用可能性
本発明の高炭素熱延鋼板を用いることにより、 ギアに代表される変速機部品等 の複雑な形状の部品を低い荷重で容易に加工することができるため、 工具あるい は自動車部品 (ギア、 ミツ^ヨン) を中心に、多様な用途での使用が可能となる。 表 9
Figure imgf000033_0001
表 1 0
Figure imgf000034_0001

Claims

請求の範囲
1. 質量%で、 C: 0.2〜0.7 %、 Si: 0.01~1.0°/。、 Mn: 0.1〜1.0%、 P: 0.03%以下、 S: 0.035%以下、 A1 : 0.08%以下、 N : 0.01%以下を含有し、 残部が鉄および不可避 的不純物からなり、
フェライ ト平均粒径が 以上、
粒径 10 μπι以下のフェライ ト粒の体積率が 20%以下、
炭化物平均粒径が 0. ΙΟμπι以上 2. 未満、
ァスぺク ト比カ 5以上の炭化物の割合が 15%以下、
炭化物同士が接触する割合が 20%以下
である組織を有することを特徴とする極軟質高炭素熱延鋼板。
2 · 質量%で、 C: 0.2〜0.7 %、 Si: 0.01〜1.0%、 Mn: 0.1~1.0%、 P: 0.03%以下、
S : 0.035%以下、 A1 : 0.08%以下、 N: 0.01%以下を含有し、 残部が鉄および不可避 的不純物からなり、 '
フェライ ト平均粒径が 35 m超え、,
粒径 20μ πι以下のフェライ ト粒の体積率が 20%以下、
炭化物平均粒径が 0. ΙΟμιη以上 2. O^u m未満、 .
ァスぺク ト比が 5以上の炭化物の割合が 15%以下、 ·
炭化物同士が接触する割合が 20%以下
である組織を有することを特徴とする極軟質高炭素熱延鋼板。
3. さらに、 質量%で、 B: 0.0010〜0.0050%、 Cr: 0.005~0.30%の一種または二 種を含有することを特徴とする請求項 1または 2に記载の極軟質高炭素熱延鋼板。
4. さらに、 質量%で、 B: 0.0010~0· 0050%および Cr: 0.05~0· 30%を含有する ことを特徴とする請求項 1または 2に記載の極軟質高'炭素熱延鋼板。
5 . さらに、 質量%で、 Μο : 0. 005〜0· 5°/。、 Ti : 0. 005〜0. 05%、 Nb: 0. 005〜0· 1%の —種または二種以上を含有することを特徴とする請求項 1〜4 のいずれかに記载 の極軟質高炭素熱延鋼板。
6 .. 請求項 1、 3、 4、 5のいずれかに記载の組成を有する錮を、 粗圧延した後、 仕上圧延入り側温度が 1100°C以下、最終パスの圧下率を 12%以上、かつ仕上温度 を(Ar3 - 10) °C以上とする仕上圧延を行い、
次いで、 仕上圧延後 1. 8秒以内に 120°C /秒超えの冷却速度で 600°C以下の冷却停 止温度まで 1次冷却を行い、
次いで、 2次冷却により 600°C以下の温度に保持した後、
580°C以下の温度で卷取り、 酸洗後、
箱型焼鈍法により、680で以上 Ac l変態点以下の温度で球状化焼鈍することを特徴 とする極軟質高炭素熱延鋼板の製造方法。
7 . 請求項 2〜5のいずれかに記载の組成を有する鋼を、 粗圧延した後、 仕上圧延入り側温度が 1100°C以下、,最終 2パスの圧下率をそれぞれ 12%以上、 か つ (Ar3- 10) 以上 3+90° 以下の温度域で仕上圧延を行ぃ、
次いで、 仕上圧延後 1. 8秒以内に 120で/秒超えの冷却速度で 600°C以下の冷却停 止温度まで 1次冷却を行い、 '
次いで、 2次冷却により 600°C以下の温度に保持した後、
580°C以下の温度で卷取り、 酸洗後、
箱型焼鈍法により、 680°C以上 Ac l変態点以下の温度で、 かつ、 20時間以上の均 熱時間で球状化焼鈍を行うことを特徴とする極軟質高炭素熱延鋼板の製造方法。
8 . 仕上圧延入り側温度が 1050で以下、 最終 2パスの圧下率がそれぞれ 15%以 上で仕上げ圧延を行うことを特徴とする請求項 7に記載の極軟質高炭素熱延.鋼板 の製造方法。
PCT/JP2007/054110 2006-03-28 2007-02-26 極軟質高炭素熱延鋼板およびその製造方法 WO2007111080A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/294,639 US8048237B2 (en) 2006-03-28 2007-02-26 Ultra soft high carbon hot rolled steel sheet and method for manufacturing same
MX2008012337A MX2008012337A (es) 2006-03-28 2007-02-26 Chapa de acero ultra blanda laminada en caliente de carbono de alta calidad y metodo para fabricar la misma.
CA2646734A CA2646734C (en) 2006-03-28 2007-02-26 Ultra soft high carbon hot rolled steel sheet and method for manufacturing same
KR1020087023624A KR101050698B1 (ko) 2006-03-28 2007-02-26 극연질 고탄소 열연 강판 및 그 제조 방법
CN2007800114960A CN101410544B (zh) 2006-03-28 2007-02-26 极软高碳热轧钢板及其制造方法
EP07737722A EP2000552A4 (en) 2006-03-28 2007-02-26 ULTRA-SOFT STEEL SHEET WITH HIGH HOT-ROLLED CARBON CONTENT AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-087968 2006-03-28
JP2006-087969 2006-03-28
JP2006087968 2006-03-28
JP2006087969 2006-03-28
JP2007015724A JP5292698B2 (ja) 2006-03-28 2007-01-26 極軟質高炭素熱延鋼板およびその製造方法
JP2007-015724 2007-01-26

Publications (1)

Publication Number Publication Date
WO2007111080A1 true WO2007111080A1 (ja) 2007-10-04

Family

ID=38541007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054110 WO2007111080A1 (ja) 2006-03-28 2007-02-26 極軟質高炭素熱延鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US8048237B2 (ja)
EP (1) EP2000552A4 (ja)
JP (1) JP5292698B2 (ja)
KR (1) KR101050698B1 (ja)
CN (1) CN101410544B (ja)
CA (1) CA2646734C (ja)
MX (1) MX2008012337A (ja)
TW (1) TWI317761B (ja)
WO (1) WO2007111080A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027590A1 (en) * 2012-02-23 2015-01-29 Jfe Steel Corporation Method of producing electrical steel sheet
CN106102939A (zh) * 2014-03-19 2016-11-09 杰富意钢铁株式会社 高碳素钢的热轧方法
WO2016190370A1 (ja) * 2015-05-26 2016-12-01 新日鐵住金株式会社 鋼板及びその製造方法
WO2016190396A1 (ja) * 2015-05-26 2016-12-01 新日鐵住金株式会社 鋼板及びその製造方法
WO2019151048A1 (ja) * 2018-01-30 2019-08-08 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
WO2022239758A1 (ja) * 2021-05-13 2022-11-17 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050433B2 (ja) * 2005-10-05 2012-10-17 Jfeスチール株式会社 極軟質高炭素熱延鋼板の製造方法
JP5358914B2 (ja) * 2007-09-14 2013-12-04 Jfeスチール株式会社 極軟質高炭素熱延鋼板
JP5391589B2 (ja) * 2008-06-25 2014-01-15 Jfeスチール株式会社 冷間加工性に優れた鋼板およびその製造方法
JP4903839B2 (ja) * 2009-07-02 2012-03-28 新日本製鐵株式会社 打抜き性に優れた軟質高炭素鋼板及びその製造方法
JP5064525B2 (ja) * 2010-02-18 2012-10-31 新日本製鐵株式会社 異方性が小さく焼入性に優れた高炭素鋼板及びその製造方法
KR101242692B1 (ko) * 2010-12-28 2013-03-12 주식회사 포스코 고탄소 열연강판, 냉연강판 및 그 제조방법
JP5633426B2 (ja) * 2011-02-23 2014-12-03 新日鐵住金株式会社 熱処理用鋼材
TWI450975B (zh) * 2011-04-11 2014-09-01 China Steel Corp 柱狀化或球狀化鋼材波來鐵組織中雪明碳鐵之製程
JP5549640B2 (ja) * 2011-05-18 2014-07-16 Jfeスチール株式会社 高炭素薄鋼板およびその製造方法
JP5594226B2 (ja) * 2011-05-18 2014-09-24 Jfeスチール株式会社 高炭素薄鋼板およびその製造方法
CN102242315B (zh) * 2011-07-06 2014-03-26 北京科技大学 一种细化车轮钢组织的氧化物冶金方法
JP5682485B2 (ja) * 2011-07-07 2015-03-11 新日鐵住金株式会社 冷鍛窒化用鋼材
WO2013012103A1 (ko) * 2011-07-15 2013-01-24 주식회사 포스코 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법
KR101353552B1 (ko) * 2011-12-15 2014-01-23 주식회사 포스코 고탄소 열연강판, 냉연강판 및 그 제조방법
WO2013102986A1 (ja) * 2012-01-05 2013-07-11 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
KR101616222B1 (ko) * 2012-01-06 2016-04-27 제이에프이 스틸 가부시키가이샤 고탄소 열연 강판 및 그 제조 방법
KR101382675B1 (ko) 2012-03-19 2014-04-07 주식회사 포스코 내마모성과 가공성이 우수한 저합금 열연 강판 및 그 제조방법
JP5821794B2 (ja) * 2012-07-18 2015-11-24 新日鐵住金株式会社 焼入れ鋼材およびその製造方法ならびに焼入れ用鋼材
CN103194675A (zh) * 2013-04-08 2013-07-10 北京科技大学 低碳热轧全铁素体基超高强超高扩孔率钢及其制备方法
WO2015004902A1 (ja) * 2013-07-09 2015-01-15 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP5884781B2 (ja) * 2013-07-09 2016-03-15 Jfeスチール株式会社 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP6068291B2 (ja) * 2013-08-07 2017-01-25 株式会社神戸製鋼所 軟質高炭素鋼板
WO2015076384A1 (ja) * 2013-11-22 2015-05-28 新日鐵住金株式会社 高炭素鋼板及びその製造方法
JP6439248B2 (ja) * 2013-12-18 2018-12-19 新日鐵住金株式会社 打ち抜き性に優れる中・高炭素鋼板およびその製造方法
EP3091098B1 (en) * 2014-03-28 2018-07-11 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing same
DE102014112755B4 (de) * 2014-09-04 2018-04-05 Thyssenkrupp Ag Verfahren zum Umformen eines Werkstücks, insbesondere einer Platine, aus Stahlblech
US20180171445A1 (en) * 2015-06-17 2018-06-21 Nippon Steel & Sumitomo Metal Corporation Steel plate and method of production of same
JP6705275B2 (ja) * 2016-04-25 2020-06-03 日本製鉄株式会社 熱延鋼板及び熱延鋼板の製造方法
KR101889173B1 (ko) * 2016-12-13 2018-08-16 주식회사 포스코 고강도 저항복비형 미세 구상화 강판 및 그 제조방법
KR102010053B1 (ko) * 2017-11-07 2019-08-12 주식회사 포스코 파단 특성이 우수한 고강도, 저인성 냉연강판 및 그 제조 방법
KR102588222B1 (ko) * 2019-05-16 2023-10-13 닛폰세이테츠 가부시키가이샤 강선 및 열간 압연 선재
CN113866055A (zh) * 2021-09-01 2021-12-31 东方电气(广州)重型机器有限公司 一种调质钢晶粒度的检测方法
CN115449704B (zh) * 2022-07-29 2023-07-25 江阴兴澄特种钢铁有限公司 一种新能源汽车轮毂轴承用钢及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157758A (ja) 1995-12-05 1997-06-17 Sumitomo Metal Ind Ltd 加工性に優れた高炭素鋼帯の製造方法
JPH11269553A (ja) 1998-03-25 1999-10-05 Nisshin Steel Co Ltd 伸びフランジ性に優れた中・高炭素鋼板の製造方法
JPH11269552A (ja) 1998-03-25 1999-10-05 Nisshin Steel Co Ltd 伸びフランジ性に優れた中・高炭素鋼板の製造法
JP2003013145A (ja) 2001-06-28 2003-01-15 Nkk Corp 伸びフランジ性に優れた高炭素熱延鋼板の製造方法
JP2003013144A (ja) * 2001-06-28 2003-01-15 Nkk Corp 伸びフランジ性に優れた高炭素冷延鋼板の製造方法
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2005290547A (ja) * 2004-03-10 2005-10-20 Jfe Steel Kk 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180885A (ja) * 1997-09-08 1999-03-26 Nisshin Steel Co Ltd 局部延性に優れた高加工性中・高炭素鋼板
JP3909939B2 (ja) * 1997-09-08 2007-04-25 日新製鋼株式会社 伸びフランジ性に優れた中・高炭素鋼板の製造方法
JPH11256272A (ja) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd 局部延性と熱処理性に優れた鋼板
JP3460659B2 (ja) * 2000-02-03 2003-10-27 住友金属工業株式会社 軟質で熱処理歪みの小さい高炭素鋼帯とその製造方法
JP3879459B2 (ja) * 2001-08-31 2007-02-14 Jfeスチール株式会社 高焼入れ性高炭素熱延鋼板の製造方法
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP2005336560A (ja) * 2004-05-27 2005-12-08 Nisshin Steel Co Ltd 精密打抜き部品用高炭素鋼板および精密打抜き部品
JP5050433B2 (ja) * 2005-10-05 2012-10-17 Jfeスチール株式会社 極軟質高炭素熱延鋼板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157758A (ja) 1995-12-05 1997-06-17 Sumitomo Metal Ind Ltd 加工性に優れた高炭素鋼帯の製造方法
JPH11269553A (ja) 1998-03-25 1999-10-05 Nisshin Steel Co Ltd 伸びフランジ性に優れた中・高炭素鋼板の製造方法
JPH11269552A (ja) 1998-03-25 1999-10-05 Nisshin Steel Co Ltd 伸びフランジ性に優れた中・高炭素鋼板の製造法
JP2003013145A (ja) 2001-06-28 2003-01-15 Nkk Corp 伸びフランジ性に優れた高炭素熱延鋼板の製造方法
JP2003013144A (ja) * 2001-06-28 2003-01-15 Nkk Corp 伸びフランジ性に優れた高炭素冷延鋼板の製造方法
JP2003293083A (ja) * 2002-04-01 2003-10-15 Sumitomo Metal Ind Ltd 熱延鋼板並びに熱延鋼板及び冷延鋼板の製造方法
JP2005290547A (ja) * 2004-03-10 2005-10-20 Jfe Steel Kk 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2000552A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761359B2 (en) * 2012-02-23 2017-09-12 Jfe Steel Corporation Method of producing electrical steel sheet
US20150027590A1 (en) * 2012-02-23 2015-01-29 Jfe Steel Corporation Method of producing electrical steel sheet
CN106102939A (zh) * 2014-03-19 2016-11-09 杰富意钢铁株式会社 高碳素钢的热轧方法
CN106102939B (zh) * 2014-03-19 2018-02-13 杰富意钢铁株式会社 高碳素钢的热轧方法
WO2016190396A1 (ja) * 2015-05-26 2016-12-01 新日鐵住金株式会社 鋼板及びその製造方法
JP6119924B1 (ja) * 2015-05-26 2017-04-26 新日鐵住金株式会社 鋼板及びその製造方法
JP6119923B1 (ja) * 2015-05-26 2017-04-26 新日鐵住金株式会社 鋼板及びその製造方法
WO2016190370A1 (ja) * 2015-05-26 2016-12-01 新日鐵住金株式会社 鋼板及びその製造方法
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
WO2019151048A1 (ja) * 2018-01-30 2019-08-08 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP6569845B1 (ja) * 2018-01-30 2019-09-04 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
US11434542B2 (en) 2018-01-30 2022-09-06 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
WO2022239758A1 (ja) * 2021-05-13 2022-11-17 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
JP7549277B2 (ja) 2021-05-13 2024-09-11 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体

Also Published As

Publication number Publication date
KR101050698B1 (ko) 2011-07-20
CN101410544A (zh) 2009-04-15
MX2008012337A (es) 2008-10-09
JP2007291495A (ja) 2007-11-08
CA2646734A1 (en) 2007-10-04
CN101410544B (zh) 2010-09-08
CA2646734C (en) 2013-02-12
EP2000552A9 (en) 2009-03-18
US20100282376A1 (en) 2010-11-11
EP2000552A4 (en) 2009-11-11
EP2000552A2 (en) 2008-12-10
JP5292698B2 (ja) 2013-09-18
TW200741015A (en) 2007-11-01
US8048237B2 (en) 2011-11-01
TWI317761B (en) 2009-12-01
KR20080106314A (ko) 2008-12-04

Similar Documents

Publication Publication Date Title
WO2007111080A1 (ja) 極軟質高炭素熱延鋼板およびその製造方法
JP5050433B2 (ja) 極軟質高炭素熱延鋼板の製造方法
JP4650006B2 (ja) 延性および伸びフランジ性に優れた高炭素熱延鋼板およびその製造方法
JP5262012B2 (ja) 高炭素熱延鋼板およびその製造方法
KR101706485B1 (ko) 고강도 냉연 강판 및 그 제조 방법
TWI605133B (zh) Steel plate and its manufacturing method
JP4291860B2 (ja) 高強度鋼板およびその製造方法
JP5358914B2 (ja) 極軟質高炭素熱延鋼板
JP4600196B2 (ja) 加工性に優れた高炭素冷延鋼板およびその製造方法
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP4696853B2 (ja) 加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
WO2009008548A1 (ja) 降伏強度が低く、材質変動の小さい高強度冷延鋼板の製造方法
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
WO2007000954A1 (ja) 高炭素冷延鋼板の製造方法
JP3879446B2 (ja) 伸びフランジ性に優れた高炭素熱延鋼板の製造方法
JP3879459B2 (ja) 高焼入れ性高炭素熱延鋼板の製造方法
JP4380471B2 (ja) 高炭素熱延鋼板およびその製造方法
JP4696753B2 (ja) 打抜き加工性に優れた高炭素冷延鋼板の製造方法および高炭素冷延鋼板
JP3879447B2 (ja) 伸びフランジ性に優れた高炭素冷延鋼板の製造方法
CN115087756A (zh) 热轧钢板
JP4380469B2 (ja) 高炭素熱延鋼板およびその製造方法
JP4622609B2 (ja) 伸びフランジ性に優れた軟質高加工性高炭素熱延鋼板の製造方法
JP3797165B2 (ja) 面内異方性の小さい加工用高炭素鋼板およびその製造方法
JP4403925B2 (ja) 高炭素冷延鋼板およびその製造方法
JP5142158B2 (ja) 冷延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007737722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2646734

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/012337

Country of ref document: MX

Ref document number: 12294639

Country of ref document: US

Ref document number: 1020087023624

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780011496.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE