WO2013012103A1 - 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법 - Google Patents

열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법 Download PDF

Info

Publication number
WO2013012103A1
WO2013012103A1 PCT/KR2011/005242 KR2011005242W WO2013012103A1 WO 2013012103 A1 WO2013012103 A1 WO 2013012103A1 KR 2011005242 W KR2011005242 W KR 2011005242W WO 2013012103 A1 WO2013012103 A1 WO 2013012103A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
excluding
steel sheet
hot press
press forming
Prior art date
Application number
PCT/KR2011/005242
Other languages
English (en)
French (fr)
Inventor
이규영
오진근
김종상
한태교
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201180072328.9A priority Critical patent/CN103687973B/zh
Priority to US14/232,784 priority patent/US20140150930A1/en
Priority to JP2014520100A priority patent/JP2014520961A/ja
Priority to EP11869574.1A priority patent/EP2733228B1/en
Priority to PCT/KR2011/005242 priority patent/WO2013012103A1/ko
Publication of WO2013012103A1 publication Critical patent/WO2013012103A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/26Special arrangements with regard to simultaneous or subsequent treatment of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a steel sheet for hot press forming, a forming member using the same, and a method for manufacturing the same. More specifically, the strength and strength of the final product after hot pressing forming to be suitably used for not only automobile stratified members but also doldol members.
  • the present invention relates to a hot press steel sheet having excellent ductility, a molding member using the same, and a method of manufacturing the same. .
  • AHSS Advanced high strength steels
  • TRIP steel Trans format ion induced plasticity steel
  • the tensile strength of these steel sheets is 500 ⁇ 1000MPa level, which is currently required
  • a molding method called hot press forming has been commercialized as a method of solving such a problem and providing an ultra-high strength automobile part of lGPa grade or more. This forming method is performed by blanking the steel sheet, heating it to an austenite region of at least Ac 3 point, subsequently extracting and forming a press, and then performing die quenching to finally martensite or martensite and bay.
  • the conventional hot press molding method can provide rigidity and stable stability suitable for the weight reduction of automobile parts, but there is a problem that the ductility of the final product is very low because the elongation is less than 10%. That is, the parts manufactured by the conventional hot press molding method can be applied to the stratified member of the automobile, but there is a problem that is not suitable for the stratified member that must protect the passengers by hopping energy directly during a collision. Therefore, in order to suitably apply the hot press forming member to the masonry member of an automobile, it is a very important time for the study of a forming member having excellent ductility after hot press forming and a hot press forming steel sheet for the same.
  • the present invention provides, as one aspect, a steel sheet for hot press forming, which can manufacture a hot press forming member having excellent strength and ductility at the same time, a molding member using the same, and a manufacturing method thereof.
  • the present invention contains the weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, The remainder provides a steel sheet for hot press forming, which is characterized by consisting of Fe and other unavoidable impurities.
  • the present invention includes the weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less And, the rest is heated to 1100 ⁇ 1300 ° C steel slab made of Fe and other unavoidable impurities; Finishing hot rolling at an Ar 3 transformation point of 950 ° C .; And provides a process for the production of steel sheet for hot press forming comprising the steps of winding at M S ⁇ 720 ° C.
  • the present invention contains a weight of 3 ⁇ 4, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less And, the remainder is made of Fe and other unavoidable impurities, to provide a hot press forming member, characterized in that it has a microstructure of the dual (dual phase) consisting of bainite and residual austenite.
  • the present invention includes the weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less And, the rest of the step of heating the steel sheet consisting of Fe and other unavoidable impurities at a temperature of Ac 3 or more points; Hot press forming the heated steel sheet; Subjecting to a temperature of M s to 550 ° C. at an angular velocity of at least 20 ° C / sec; In a heating and provides a method for producing a hot press molded member comprising the steps of heat treating a M S ⁇ 550 ° C.
  • the present invention can provide a steel sheet for hot press forming excellent in strength and ductility, by using the microstructure consists of a dual phase of bainite and residual austenite, TS (MPa) * El (3 ⁇ 4)
  • TS a dual phase of bainite and residual austenite
  • El 3 ⁇ 4
  • Figure 1 shows the concept of the hot press forming member manufacturing process of the present invention as a graph of temperature versus time.
  • Figure 2 shows the microstructure according to the cooling rate after molding in the method of manufacturing a hot press molding member.
  • (a) is the angle of angular velocity of 30 ° C / sec
  • (b) is the case of angle of angular velocity of 5 ° C / sec
  • (c) is an enlarged photograph of (b).
  • the present invention is for producing a molded member having excellent ductility as well as strength that can be used for a masonry member of an automobile, and is also characterized in providing not only a molded member but also a steel sheet having excellent ductility to be suitable for manufacturing such a molded member. Accordingly, the present invention is composed of four categories: a hot press steel sheet having excellent ductility and a manufacturing method thereof, and a hot press forming member and a manufacturing method thereof.
  • the steel sheet for hot press forming is a steel sheet having excellent ductility as well as strength to be suitable for ensuring excellent strength and ductility of the final member after hot press forming, and has a weight y., C: 0.3-1.0%, Mn: 0.01- 4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, and the rest is characterized by consisting of Fe and other unavoidable impurities.
  • carbon (C) is a component added to secure the strength of the steel sheet.
  • carbon (C) also diffuses into residual austenite by Si or the like and stabilizes residual austenite, thereby preventing transformation into martensite.
  • the C is preferably included in the 0.3 ⁇ 1.0% by weight, if less than 0.3% of the amount of retained austenite after molding is reduced at the same time difficult to secure the strength and ductility of the parts, if exceeding 1.0% bainite transformation significantly By slowing down and facilitating the formation of the fillite, a problem arises in that the properties of the steel are lowered.
  • Manganese (Mn) is a component added in order to prevent red brittleness due to FeS combined with S, which is inevitably added during the manufacturing process of Fe and steel, and is preferably added at 0.01 to 4.0%.
  • Si is an essential component for securing the ductility of the final product according to the present invention, which promotes ferrite transformation and diffuses C into residual austenite, thereby stabilizing the martensite by increasing carbon in the residual austenite. Serves to prevent. It is preferable that the amount of Si added is 1.0 to 2.0% by weight.
  • A1 serves to stabilize the residual austenite by removing oxygen present in the steel to prevent the formation of non-metallic inclusions at the same time and to promote the diffusion of C into the residual austenite as in Si.
  • the amount of A1 is preferably 0.01 to 2.03 ⁇ 4>. If it is less than 0.01%, there is a limitation in removing oxygen from the steel. Therefore, it is difficult to prevent the formation of non-metallic inclusions.
  • S Sulfur
  • S is an ingredient inevitably added in the steel manufacturing process, and it is preferable to manage the amount of S as low as possible because it combines with Fe and causes a problem of red brittleness due to FeS formation. Therefore, the content of sulfur is preferably limited to 0.015% or less.
  • Nitrogen (N) is a component which is inevitably added in the steel manufacturing process, and it is preferable to manage it as low as possible. Therefore, the nitrogen content is preferably limited to 0.0 or less.
  • the steel sheet for hot press forming, as well as the composition Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005- It is preferable to further contain 1 type (s) or 2 or more types chosen from the group which consists of 0.1% and V: 0.005 to 0.1%.
  • Molybdenum (Mo) is a component added to suppress the production of pearlite, it is preferable to be added at 0.5% by weight or less in consideration of manufacturing cost in terms of high cost.
  • Chromium (Cr) is a component added to suppress the formation of ferrite and to expand the bainite transformation, and when added in excess of 1.5% by weight, Cr carbide is formed to reduce the amount of solid solution C, 1.5% by weight It is preferable to add below.
  • Nickel (Ni) is a component added to increase the fraction of austenite and to improve the hardenability, and is preferably added at 0.5% by weight or less in view of the high production cost.
  • Niobium (Nb) is a component added to increase the strength of the steel sheet and to improve grain refinement and toughness, and serves to delay the transformation of austenite into ferrite at the time of suppression by inhibiting the growth of the grain during reheating.
  • the Nb is preferably added in an amount of 0.005-0.1% by weight. If the amount is less than 0.005%, it is difficult to expect a grain refining effect. If the amount of Nb is added in excess of 0.13 ⁇ 4, carbonitride is excessively precipitated and delayed fracture occurs in the steel sheet. Problems may occur or workability is reduced.
  • Vanadium (V) is a component added to increase the strength of the steel sheet and to improve grain refinement and hardenability, and is preferably added at 0.005-0.1% by weight.
  • the steel sheet for hot press forming preferably further includes B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0).
  • B boron
  • Ti 0.06% or less
  • Titanium (Ti) is a component added to maximize the effect of the B, and binds to N present as an impurity in the steel to form a TiN compound to prevent B from combining with N to prevent the ferrite production suppressing function Play a role. This effect can be achieved with up to 0.06% by weight of Ti.
  • the steel sheet may be a hot rolled steel sheet or a cold rolled steel sheet, and in particular, a plated steel sheet having a plating layer formed on the surface of the cold rolled steel sheet may be used to improve corrosion resistance and suppress oxide formation on the surface.
  • the steel sheet for hot press forming according to the present invention has excellent strength and ductility at the same time by the above composition, and thus is used in the manufacture of the following hot press forming members to play an important role in obtaining a molding member having excellent strength and ductility. do.
  • the manufacturing method of the steel sheet for hot press forming of the present invention is by weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: including 0.01% or less, and the other comprises the steps of finishing the hot rolling in the Fe and other unavoidable impurities, the method comprising heating a steel slab made of a 1100 ⁇ 1300 ° C, Ar 3 transformation point ⁇ 950 ° C, And a step of winding at M S ⁇ 720 ° C.
  • the steel slab heating temperature is less than 1100 ° C, homogenization of the playing tissue is not sufficient, and it is difficult to secure the temperature during finish rolling. If the steel slab heating temperature is higher than 1300 ° C, the grain size increases and the surface oxidation occurs to decrease the strength. Since the problem of inferior surface properties may occur, the steel slab heating temperature is preferably 1100 ⁇ 1300 ° C. In addition, when the finishing rolling temperature is less than the Ar 3 transformation point, abnormal rolling is performed and hot rolled grains are generated. When the finishing rolling temperature exceeds 950 ° C., grains are coarsened and surface oxidation may occur during rolling. The temperature is preferably Ar 3 transformation point ⁇ 950 ° C.
  • the winding temperature is preferably M S ⁇ 720 ° C.
  • the manufacturing method of the steel sheet for hot press forming of the present invention is in weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% Or less, N: 0.01% or less, the remainder being heated to 1100-1300 ° C.
  • the steel slab made of Fe and other unavoidable impurities; Finishing hot rolling at an Ar 3 transformation point of 950 ° C .; Phase winding in M S ⁇ 720 ° C; Pickling; Rolling step; Continuous annealing at 750-900 ° C .; And performing an overaging heat treatment at M s to 550 ° C.
  • the pickling treatment refers to removing surface oxides generated in the heating and hot rolling steps. Thereafter, cold rolling is performed. If the annealing temperature of the hot-rolled steel sheet is less than 750 ° C., recrystallization is not sufficiently performed, thereby limiting workability. If it exceeds 90 CTC, heating is impossible due to equipment limitations.
  • the manufacturing method of the steel sheet for hot press forming of the present invention is 3 ⁇ 4 by weight, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% Or below, heating the steel slab comprising N: 0.01% or less and the remainder consisting of Fe and other unavoidable impurities to 1100-1300 ° C .; Finishing hot rolling at an Ar 3 transformation point of 950 ° C .; Phase winding in M S ⁇ 720 ° C; Pickling; Rolling step; Continuous annealing at 750-900 ° C .; Performing an overage heat treatment at M s 550 ° C .;
  • the surface of the over-aged heat-treated steel sheet may include a plating step of performing any one of hot dip galvanized, zinc alloyed galvanized or hot dip galvanized.
  • the hot dip galvanized steel sheet may be manufactured by immersing the hot rolled steel sheet in a zinc plating bath, and the zinc alloyed steel sheet may be manufactured by subjecting the hot rolled steel sheet to an alloy heat treatment after plating bath deposition, Electro-galvanized steel sheet may be produced by performing zinc electroplating or Zn-Fe electroplating in a continuous electroplating line using the cold-rolled steel sheet.
  • the molten aluminum plated steel sheet may be manufactured by heating the hot rolled steel sheet to 750-900 ° C and then immersing in an aluminum plating bath and then cooling to room temperature at a cooling rate of 5 ⁇ 15 ° C / sec.
  • the steel slab is Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0.1% and V: 0.005- It is preferable to further include one or two or more selected from the group consisting of 0.1%, more preferably B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0). .
  • the hot press forming member of the present invention Since the hot press forming member is intended to be an extremely high strength product having excellent ductility, in weight%, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S : 0.015% or less, N: 0.01% or less, the remainder is composed of Fe and other unavoidable impurities, it is preferred that the martensite is excluded and has a microstructure composed of bainite and residual austenite.
  • the molding member is Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0.1% and V: 0.005- It is preferable to further include one or two or more selected from the group consisting of 0.1%, and may further include B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0).
  • the present invention is a microstructure of the molding member In order to suppress the formation of martensite and increase the amount of retained austenite to achieve a dual phase of bainite and retained austenite.
  • the hot press molding member composed of the composition and the microstructure has a very good balance between strength and ductility, so that the TS (tension strength, MPa) * El (elongation,%) value is 25,000 or more, so that not only the stratified member of the automobile It is also applicable to the masonry member.
  • the method of manufacturing the hot press forming member is to provide an ultra-high strength automotive parts having excellent ductility after molding by hot pressing the steel sheet, and having a weight of 3 ⁇ 4, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: Heating the steel sheet comprising 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% or less, N: 0.01% or less, the remainder being Fe and other unavoidable impurities at a temperature of Ac 3 or more; Hot press molding; Angled to M s to 550 ° C.
  • the steel sheet is Mo: 0.5% or less (excluding 0), Cr: 1.5% or less (excluding 0), Ni: 0.5% or less (excluding 0), Nb: 0.005-0.1% and V: 0.005 to 0.1 It is preferable to further include one or two or more selected from the group consisting of%, B: 0.005% or less (excluding 0) and Ti: 0.06% or less (excluding 0) may be further included, the steel sheet
  • the silver may be one of a hot rolled steel sheet, a cold rolled steel sheet or a plated steel sheet having a plating layer formed on a surface of a ductile steel sheet.
  • the method of manufacturing the hot press forming member of the present invention controls the heat treatment step after hot press molding differently from the conventional method, so as to obtain a molded part having a different microstructure and improve the ductility of the product.
  • the heat treatment condition after the molding is a very important factor in determining the composition of the microstructure of the product, conventionally, by pressing the press-molded product to a temperature of less than M s to give martensite to the microstructure of the final product It was common to increase the strength by inclusion into the tissue.
  • final product instead of the present invention in order while maintaining a strength suitable for weight reduction to obtain good ductility final product is aimed at excluding the martensite in the microstructure eu therefore immediately nyaenggak to room temperature of below M s of the molded product M After cooling to S ⁇ 550 ° C first, heat treatment to M S ⁇ 550 ° C in the furnace You will be transformed into bainite.
  • the angle is less than or equal to M s , martensite is formed to cause ductility deterioration, and when it exceeds 550 ° C., a pearlite phase may occur, thereby deteriorating the physical properties of the steel. Therefore, by controlling the angle of angular velocity to M s ⁇ 550 ° C, the microstructure of the dual phase consisting of bainite and residual austenite is obtained. Fe 3 C carbide is not formed in the bainite produced in the above process, because Si is added to the composition of the steel used in the hot press molding, and C is diffused into the retained austenite.
  • the angular velocity is preferably 20 ° C / sec or more, if it is cooled at a lower rate of less than 20 ° C / sec is easy to transform into a pearlite structure may cause a problem of deterioration of the physical properties of the final product have. That is, as shown in (a) of FIG.
  • the bainite structure appears when the angle is reduced to 30 ° C / sec, while ferrite is reduced to 5 ° C / sec as shown in (b) and (c) of FIG. 2. It can be seen that the pearlite structure consisting of and Fe 3 C layered.
  • the steel ingots of the composition shown in Table 1 were prepared in a thickness of 90 mm and width 175 mm by vacuum induction melting, and re-heated at 1200 ° C. for 1 hour, and then hot rolled to 3 mm of hot rolled thickness.
  • the hot rolling finish temperature was above the Ar 3 transformation point. After hot rolling, it was charged into a preheated furnace at 60 C and maintained for 1 hour to simulate hot rolling. The hot rolled sheet was again reduced by 60%. After rolling at a rate of 1.2 mm to make 1.2 mm, annealing was carried out at 900 ° C., followed by bainite transformation at 400 ° C.
  • the unit of the following components was% and the units of S and N were ppm. .
  • the hot press forming process Heated at 900 ° C for 30 seconds to simulate the heat treatment of the furnace, cooled at 30 ° C / sec with an angular velocity, and put into a furnace to heat-treat for 400-10800 seconds at the same temperature.
  • the process conditions and mechanical properties of the final product are shown in Table 2.
  • the car was not suitable as a member of the car's masonry.
  • the composition of the steel was tested by dividing the invention steel 7 falling into the scope of the present invention at 30 ° C / sec and the case of 5 ° C / sec, and when cooled to 30 ° C / sec TS *
  • the EI value is high at 469233 ⁇ 4 ⁇ %, which is suitable for the collision member of the vehicle.
  • the TS * E1 value is low at 12480 ⁇ 3%, which is not suitable for the masonry member. I could't. This may be because the physical properties of the product is degraded by the appearance of pearlite due to the low angle of rotation as shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 중량%로, C: 0.3~1.0%, Mn: 0.01~4.0%, Si: 1.0~2.0%, Al: 0.01~2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 열간 프레스 성형용 강판을 제공한다. 또한, 본 발명은 상기 조성을 갖는 강 슬라브를 1100~1300℃로 가열하는 단계; Ar3변태점~950℃에서 마무리 열간압연하는 단계;및 MS~720℃에서 권취하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법을 제공한다. 또한, 본 발명은 상기 조성을 갖고, 베이나이트와 잔류 오스테나이트로 이루어진 이상(dual phase)의 미세조직을 갖는 것을 특징으로 하는 열간 프레스 성형부재를 제공한다. 또한, 본 발명은 상기 조성을 갖는 강판을 Ac3점 이상의 온도에서 가열하는 단계; 상기 가열된 강판을 열간 프레스 성형하는 단계; 20℃/sec 이상의 냉각속도로 MS~550℃의 온도까지 냉각하는 단계; 및 가열로에서 MS~550℃로 열처리하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형부재의 제조방법을 제공한다.

Description

【명세서】
【발명의 명칭】
열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법 【기술분야】
본 발명은 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법에 관한 것으로, 보다 상세하게는 자동차 층격부재 뿐만아니라 층돌부재에 까지 적합하게 사용 가능하도록 한 열간 프레스 성형후 최종제품의 강도 및 연성이 우수한 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법에 관한 것이다. .
【배경기술】
최근 자동차 승객 보호를 위한 안전법규나 지구 환경 보호를 위한 연비규제가 강화되면서 경량화에 대한 사회적 요구가 급증하고 있다. 이러한 자동차 부품의 경량화를 추구할 경우 강성과 층돌안정성을 동시에 확보하기 위해서 고강도강판의 채용이 불가피하다 . 그러나, 자동차강판의 고강도화는 필연적으로 항복강도의 상승과 연신율의 감소를 수반하게 되어 성형성이 현저하게 저하되는 문제점을 가지고 있다. 뿐만 아니라, 과도한 스프링백 (spring back)으로 인하여 성형후 부품의 치수 변동이 발생하는 등 형상 동결성도 나빠지게 된다. - 이와 같은 문제점을 해결하기 위하여 페라이트 (ferrite) 기지에 마르텐사이트 (martensite) 조직을 포함시킴으로써 저항복비 특성을 가지는 DP강 (dual phase)이나 페라이트 기지에 베이나이트 (bainite) 및 잔류 오스테나이트 (austenite) 상을 함유시킴으로써 강도-연신율 발란스가 극히 우수한 TRIP강 (Trans format ion induced plasticity steel) 등과 같은 첨단 고강도강판 (AHSS, Advanced high strength steel)이 개발되어 상용화되고 있다. 그러나 이들 강판의 인장강도는 500~1000MPa 수준으로서, 현재 요구되고 있는 자동차의 경량화에 부합하는 강성 및 층돌 안정성을 층족시키기에는 적합하지 못한 문제가 있었다. 따라서, 이와 같은 문제점을 해결하고, lGPa급 이상의 초고강도 자동차부품을 제공하는 방법으로서 열간 프레스 성형 (Hot press forming)이라고 불리는 성형법이 상용화되었다. 이 성형 방법은 강판을 블탱킹 (blanking)한 후 Ac3점 이상의 오스테나이트영역까지 가열하고, 연이어 추출하여 프레스로 성형한 후 다이 켄칭 (die quenching)을 행함으로써 최종적으로 마르텐사이트 혹은 마르텐사이트와 베이나이트 (bainite)가 흔재된 미세조직을 형성시켜 lGPa 이상의 초고강도 부재를 얻을 수 있을 뿐만 아니라 고온에서 성형하기 때문에 부품의 치수 정밀도 역시 매우 우수할 수 있다. 그러나, 이러한 종래의 열간 프레스 성형방법으로는 자동차 부품의 경량화에 적합한 강성 및 층돌안정성은 제공할 수 있지만, 연신율이 10% 미만이어서 최종제품의 연성이 매우 낮은 문제가 있었다. 즉, 종래의 열간 프레스 성형법으로 제조된 부품은 자동차의 층격부재에는 적용이 가능하였으나, 충돌시 직접적으로 에너지를 홉수함으로써 승객을 보호해야 하는 층돌부재에는 적합하지 않은 문제가 있었다. 따라서, 열간 프레스 성형부재를 자동차의 층돌부재에까지 적합하게 적용시키기 위해 열간 프레스 성형후 연성이 우수한 성형부재 및 이를 위한 열간 프레스 성형용 강판에 대한 연구가 매우 필요한 시점이다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은 일측면으로서, 우수한 강도 및 연성을 동시에 갖는 열간 프레스 성형부재를 제조할 수 있는 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법을 제공하는 것이다.
【기술적 해결방법】 본 발명은 중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 것을 특징으로 하는 열간 프레스 성형용 강판을 제공한다. 또한, 본 발명은 중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~1300°C로 가열하는 단계; Ar3변태점 ~950°C에서 마무리 열간압연하는 단계; 및 MS~720°C에서 권취하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법을 제공한다. 또한, 본 발명은 중량 ¾로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지며, 베이나이트와 잔류 오스테나이트로 이루어진 이상 (dual phase)의 미세조직올 갖는 것을 특징으로 하는 열간 프레스 성형부재를 제공한다. 또한, 본 발명은 중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강판을 Ac3점 이상의 온도에서 가열하는 단계; 상기 가열된 강판을 열간 프레스 성형하는 단계; 20°C/sec 이상의 넁각속도로 MS~550°C의 온도까지 넁각하는 단계; 및 가열로에서 MS~550°C로 열처리하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형부재의 제조방법을 제공한다.
【유리한 효과】
본 발명은 강도 및 연성이 우수한 열간 프레스 성형용 강판을 제공할 수 있고, 이를 이용하여 미세조직이 베이나이트와 잔류 오스테나이트의 이상 (dual phase)으로 이루어지고, TS(MPa)*El (¾)값이 25,000MPa% 이상인 성형부재를 제공함으로써 강도 뿐만아니라 연성이 우수하여 자동차의 층돌부재에 까지 적합하게 사용할 수 있다. 【도면의 간단한 설명】
도 1은 본 발명의 열간 프레스 성형부재 제조과정의 개념을 시간에 대한 온도의 그래프로 나타낸 것이다.
도 2는 열간 프레스 성형부재의 제조방법에 있어서 성형후 냉각속도에 따른 미세조직을 나타낸 것이다. (a)는 넁각속도가 30°C/sec인 경우이고, (b)는 넁각속도가 5°C/sec인 경우이며, (c)는 (b)를 확대한 사진이다.
【발명의 실시를 위한 최선의 형태】
본 발명은 자동차의 층돌부재에 사용할 수 있는 강도 뿐만아니라 연성이 우수한 성형부재를 제조하기 위한 것으로, 성형부재 뿐만 아니라 그러한 성형부재 제조에 적합하도록 연성이 우수한 강판을 제공하는 데에도 특징이 있다. 따라서, 본 발명은 연성이 우수한 열간 프레스용 강판 및 그 제조방법, 그리고 열간 프레스 성형부재 및 그 제조방법의 4가지 카테고리로 구성된다.
(열간 프레스 성형용 강판)
이하에서, 먼저 본 발명의 열간 프레스 성형용 강판에 대해서 상세히 설명한다. 상기 열간 프레스 성형용 강판은 열간 프레스 성형후 최종부재의 강도 및 연성을 우수하게 확보하는 데 적합하도록 강도 뿐만 아니라 연성이 우수한 강판으로서, 중량 y。로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 것올 특징으로 한다. 먼저, 탄소 (C)는 강판의 강도 확보를 위해 첨가되는 성분으로서, 본 발명에서는 Si 등에 의해 잔류 오스테나이트로 확산되어 잔류 오스테나이트를 안정화시킴으로써 마르텐사이트로의 변태를 방지하는 역할도 한다. 상기 C는 0.3~1.0중량 %로 포함되는 것이 바람직한데, 만약 0.3% 미만이면 성형후 잔류 오스테나이트의 양이 줄어들어 부품의 강도 및 연성을 동시에 확보하기 어렵고, 1.0%를 초과하면 베이나이트 변태가 현격히 느려지고 필라이트의 생성이 촉진됨에 의하여 오히려 강의 물성이 저하되는 문제가 생긴다. 망간 (Mn)은 Fe와 강의 제조공정 중 불가피하게 첨가되는 S가 결합한 FeS에 의한 적열취성을 방지하기 위해 첨가되는 성분으로서, 0.01~4.0%로 첨가되는 것이 바람직하다. 만약, 상기 첨가량이 0.01% 미만이면 FeS에 의한 적열취성이 발생하는 문제가 있고, 상기 첨가량이 4.0%를 초과하면 베이나이트 변태속도를 느리게 함으로써 열간 프레스 성형시 열처리 과정에 많은 시간을 소요하게 되어 생산성을 저해할 뿐만 아니라 제강원가가 상승하게 된다. 규소 (Si)는 본 발명에 따른 최종제품의 연성확보를 위해 필수적인 성분으로서, 페라이트 변태를 촉진시키고 잔류 오스테나이트로 C를 확산시켜 잔류 오스테나이트 내의 탄소 증가에 의한 안정화를 추구함으로써 마르텐사이트로의 변태를 방지하는 역할을 한다. 상기 Si의 첨가량은 1.0 ~ 2.0중량 %인 것이 바람직한데, 만약 1.0% 미만이면 상기 잔류 오스테나이트의 안정화 효과가 미약하고, 2.0%를 초과하면 강판의 압연과정에 있어서 크랙이 발생하는 등 압연성이 저하되는 문제가 있기 때문에 상한을 2.0%로 제한한 것이다. 알루미늄 (A1)은 강 중에 존재하는 산소를 제거하여 웅고시 비금속 개재물이 형성되는 것을 방지하고, 상기 Si와 같이 C의 잔류 오스테나이트로의 확산을 촉진시켜 잔류 오스테나이트를 안정화시키는 역할을 한다. 상기 A1의 첨가량은 0.01~2.0¾>인 것이 바람직한데, 만약 0.01% 미만이면 강 중의 산소 제거에 한계가 있어 비금속 개재물 형성 방지가 곤란하고, 2.0%를 초과하면 제강 원단위 상승의 문제가 생긴다. 황 (S)은 강의 제조공정에 있어서 불가피하게 첨가되는 성분으로서, Fe와 결합하여 FeS형성에 의하여 적열취성의 문제를 유발하므로 S의 양을 가능한 한 낮게 관리하는 것이 바람직하다. 따라서 상기 황의 함량은 0.015% 이하로 한정하는 것이 바람직하다.
질소 (N)은 강의 제조공정에 있어서 불가피하게 첨가되는 성분으로서, 가능한한 낮게 관리하는 것이 바람직하다. 따라서 상기 질소의 함량은 0.0 이하로 한정하는 것이 바람직하다. 또한, 상기 열간 프레스 성형용 강판은 상기 조성 뿐만 아니라 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005~0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것이 바람직하다.
몰디브덴 (Mo)은 펄라이트의 생성을 억제하기 위해 첨가되는 성분으로서, 비용이 고가라는 점에서 제조원가를 고려할 때 0.5중량 % 이하로 첨가되는 것이 바람직하다. 크롬 (Cr)은 페라이트의 생성을 억제하고 베이나이트 변태를 확대하기 위해 첨가되는 성분으로서, 1.5중량%를 초과하여 첨가되게 되면 Cr탄화물이 형성되어 고용 C량을 감소시키는 문제가 있으므로, 1.5중량 % 이하로 첨가되는 것이 바람직하다. 니켈 (Ni)은 오스테나이트의 분율을 증가시키고 소입성을 향상시키기 위해 첨가되는 성분으로서, 비용이 고가라는 점에서 제조원가를 고려할 때 0.5중량 % 이하로 첨가되는 것이 바람직하다. 니오븀 (Nb)는 강판의 강도를 증가시키고, 결정립 미세화 및 인성 향상을 위해 첨가되는 성분으로서, 재가열 과정에서 결정립의 성장을 억제하여 넁각시에 오스테나이트가 페라이트로 변태되는 것을 지연시키는 역할을 한다. 상기 Nb는 0.005-0.1중량 %로 첨가되는 것이 바람직한데, 만약 상기 첨가량이 0.005% 미만이면 결정립 미세화 효과를 기대하기 어렵고, 0.1¾를 초과하여 첨가되면 탄질화물이 과다하게 석출되어 강판에 지연파괴가 발생하거나 가공성이 저하되는 문제가 생길 수 있다. 바나듐 (V)은 강판의 강도를 상승시키고, 결정립 미세화 및 소입성 향상을 위해 첨가되는 성분으로서, 0.005-0.1중량 %로 첨가되는 것이 바람직하다. 만약, 상기 첨가량이 0.005% 미만이면 상기 효과를 달성할 수 없고, 상기 첨가량이 0.1%를 초과하면 탄질화물이 과다하게 석출되어 강판에 지연파괴가 발생하거나 가공성이 저하되는 문제가 생길 수 있다. 또한, 상기 열간 프레스 성형용 강판은 B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것이 바람직하다. 먼저, 붕소 (B)는 페라이트의 생성을 억제하기 위해 첨가되는 성분으로서, 그 첨가량이 0.005중량 ¾를 초과하게 되면 Fe, C와 결합하여 화합물을 생성시킴으로써 페라이트 생성을 오히려 촉진시키는 문제가 있기 때문에, 0.005중량 % 이하로 첨가되는 것이 바람직하다. 티타늄 (Ti)은 상기 B의 효과를 극대화시키기 위해 첨가되는 성분으로서, 강 내에 불순물로 존재하는 N과 결합하여 TiN 화합물을 생성시킴으로써 B가 N과 결합하여 페라이트 생성 억제 기능을 발휘하지 못하는 것을 방지하는 역할을 한다. 이러한 효과는 Ti의 0.06중량 % 이하 첨가로 달성할 수 있다. 한편, 상기 강판은 열연강판 또는 냉연강판일 수 있고, 특히 내식성 향상 및 표면의 산화물 형성을 억제하기 위해 냉연강판의 표면에 도금층이 형성된 도금강판을 사용할 수도 있다. 이와 같이, 본 발명의 열간 프레스 성형용 강판은 상기 조성에 의해 우수한 강도 및 연성을 동시에 가지므로, 하기의 열간 프레스 성형부재의 제조시에 사용되어 강도 및 연성이 우수한 성형부재를 얻는 데 중요한 역할을 한다.
(열간 프레스 성형용 강판의 제조방법)
이하에서, 본 발명의 열간 프레스 성형용 강판의 제조방법에 대해서 상세히 설명하지만, 이는 연성이 우수한 열간 프레스 성형부재를 얻기 위해 바람직한 강판의 제조방법의 일례를 제시한 것이다. 먼저, 본 발명의 열간 프레스 성형용 강판의 제조방법은 중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~1300°C로 가열하는 단계, Ar3변태점 ~950°C에서 마무리 열간압연하는 단계, MS~720°C에서 권취하는 단계를 포함한다. 상기 강 슬라브 가열온도가 1100 °C 미만이면 연주조직의 균질화가 층분하지 못하고 마무리 압연시 온도확보가 어려운 문제가 생기고, 1300°C를 초과하면 결정입도가 증가하고 표면산화가 발생하여 강도가 감소하거나 표면특성이 열위되는 문제가 발생할 수 있기 때문에, 상기 강 슬라브 가열온도는 1100~1300°C가 바람직하다. 또한, 상기 마무리 압연온도가 Ar3변태점 미만이면 이상역 압연이 되어 열연흔립이 발생하고, 950°C를 초과하면 결정립이 조대화되고 압연시 표면 산화가 발생하는 문제가 생길 수 있으므로, 상기 마무리 압연온도는 Ar3변태점〜 950°C가 바람직하다. 또한, 상기 권취온도가 Ms 미만이면 오스테나이트가 마르텐사이트로 변태되어 강판의 연성을 악화시켜서 열간 권취조업성을 매우 열취하게 만들고, 720°C를 초과하면 강판 표면에 두꺼운 산화막과 내부산화가 일어나기 때문에, 상기 권취온도는 MS~720°C가 바람직하다. 또한, 본 발명의 열간 프레스 성형용 강판의 제조방법은 중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~1300°C로 가열하는 단계; Ar3변태점 ~950°C에서 마무리 열간압연하는 단계; MS~720°C에서 권취하는 단계; 산세처리하는 단계; 넁간압연하는 단계; 750-900 °C에서 연속소둔하는 단계 ; 및 MS~550°C에서 과시효 열처리를 행하는 단계를 포함할 수 있다. 상기 산세처리는 상기 가열 및 열간압연단계에서 생성된 표면 산화물을 제거하는 것을 말한다. 그 후 냉간압연을 실시하며, 상기 넁간압연된 강판의 소둔온도가 750 °C 미만이면 재결정이 층분히 이루어지지 않아 가공성 확보에 한계가 있고, 90CTC를 초과하면 설비의 한계로 인해 가열이 불가능해진다. 또한, 상기 과시효 열처리 온도가 Ms 이하이면 마르텐사이트가 얻어져서 강판의 강도가 너무 높아지고 연성에 나쁜 영향을 주게 되어 열간 프레스 성형 전 블탱크 조업시에 조업성을 열위하게 만들고, 550°C를 초과하면 소둔로의 롤 표면 열화를 통하여 조업성에 악영향을 주며, 탄화물 석출 및 베이나이트 변태를 위한 과시효대의 기능에 맞지 않는 문제가 있다. 또한, 본 발명의 열간 프레스 성형용 강판의 제조방법은 중량 ¾로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~1300°C로 가열하는 단계; Ar3변태점 ~950°C에서 마무리 열간압연하는 단계; MS~720°C에서 권취하는 단계; 산세처리하는 단계; 넁간압연하는 단계; 750-900 °C에서 연속소둔하는 단계; MS~550°C에서 과시효 열처리를 행하는 단계; 상기 과시효 열처리된 강판의 표면에 용융아연 도금처리, 합금화아연 도금처리 전기아연 도금처리 또는 용융알루미늄 도금처리 중 어느 하나를 행하는 도금단계를 포함할 수 있다. 상기 용융아연 도금강판은 상기 넁간압연된 강판을 아연도금욕에 침적함으로써 제조될 수 있고, 상기 합금화아연 도금강판은 상기 넁간압연된 강판을 도금욕 침적 후에 합금화 열처리를 거침으로써 제조될 수 있으며, 상기 전기아연 도금강판은 상기 냉연강판을 이용하여 연속 전기도금라인에서 아연전기도금 또는 Zn-Fe 전기도금을 행하여 제조될 수 있다. 또한, 상기 용융알루미늄 도금강판은 상기 넁간압연된 강판을 750-900 °C로 가열한후 알루미늄 도금욕에 침적시킨 후 5~15°C/sec의 냉각속도로 상온까지 넁각함으로써 제조될 수 있다. 또한, 상기 강 슬라브는 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005-0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것이 바람직하고, B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것이 보다 바람직하다.
(열간 프레스 성형부재)
이하, 본 발명의 열간 프레스 성형부재에 대해서 상세히 설명한다. 상기 열간 프레스 성형부재는 연성이 우수한 초고강도 제품인 것을 목적으로 하므로, 중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지며, 마르텐사이트가 배제되고 베이나이트와 잔류 오스테나이트로 이루어진 미세조직을 갖는 것이 바람직하다. 또한, 상기 성형부재는 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005-0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것이 바람직하고, B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함할 수 있다. 종래의 열간 프레스 성형부재는 초고강도를 갖는 것을 목적으로 하였기 때문에 마르텐사이트를 필수적으로 포함하였으나, 이는 연성이 떨어져 자동차의 충돌부재에는 적합하지 않은 문제가 있었기 때문에, 본 발명은 성형부재의 미세조직에 있어서 마르텐사이트의 생성을 억제하고 잔류 오스테나이트의 양을 증가시킴으로써 베이나이트와 잔류 오스테나이트의 이상 (dual phase)으로 이루어지도록 한 것이다. 상기 조성과 미세조직으로 이루어진 열간 프레스 성형부재는 강도 및 연성의 균형 (balance)이 매우 뛰어나기 때문에 TS (인장강도, MPa)*El (연신율, %)값이 25,000 이상이 되어 자동차의 층격부재 뿐만 아니라 층돌부재에도 적합하게 적용할 수 있는 것이다.
(열간 프레스 성형부재의 제조방법)
이하에서, 본 발명의 열간 프레스 성형부재의 제조방법에 대해서 상세히 설명한다. 상기 열간 프레스 성형부재의 제조방법은 상기 강판을 열간 프레스 성형하여 성형후 연성이 우수한 초고강도 자동차 부품을 제공하는 것으로서, 중량 ¾로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강판을 Ac3점 이상의 온도에서 가열하는 단계; 열간 프레스 성형하는 단계; 20°C/sec 이상의 냉각속도로 MS~550°C까지 넁각하는 단계; 및 MS~550°C의 온도로 가열되어 있는 가열로에서 열처리하는 단계를 포함한다. 또한, 상기 강판은 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005~0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것이 바람직하고, B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함할 수 있으며, 상기 강판은 열연강판, 냉연강판 또는 넁연강판의 표면에 도금층이 형성된 도금강판 중 하나일 수 있다. 본 발명의 상기 열간 프레스 성형부재의 제조방법은 열간 프레스 성형 후 열처라 단계를 종래의 방법과 다르게 제어함으로써, 종래와는 다른 미세조직의 구성을 가진 성형부품을 얻어 그 제품의 연성을 향상시키는 데에 목적이 있다. 즉, 종래에는 초고강도의 부품올 얻는 것이 최종적인 목표였기 때문에 마르텐사이트를 주조직으로 포함시키기 위한 열처리 조건을 부여하였으나, 본 발명자들은 이러한 종래의 기술로는 우수한 연성을 얻을 수 없어 자동차의 층돌부재에는 적용할 수 없는 문제가 있었기 때문에 마르텐사이트를 배제하고 베이나이트와 잔류 오스테나이트만으로 이루어진 조직으로 구성시키기 위한 열처리 조건을 부여하기에 이른 것이다. 먼저, Ac3점 이상으로 가열하는 것은 오스테나이트로의 변태를 위한 것이고, 이후 오스테나이트 영역으로 가열된 강판을 열간 프레스 성형하는 과정을 거친다. 또한, 상기 성형후 열처리 조건이 제품의 미세조직의 구성을 결정하는 데 매우 중요한 요소인데, 종래에는 프레스 성형된 제품을 바로 Ms이하의 온도로 다이뭔칭함으로써 최종제품의 미세조직에 마르텐사이트를 주조직으로 포함시켜 강도를 증가시키는 것이 일반적이었다. 그러나, 본 발명은 경량화에 적합한 강도를 유지시키면서도 연성이 우수한 최종제품을 얻기 위해서는 마르텐사이트를 미세조직에서 배제시키는 것을 목적으로 한다ᅳ 따라서 성형된 제품을 바로 Ms 이하의 상온까지 넁각시키는 것이 아니라 MS~550°C로 먼저 냉각을 한 후, 가열로에서 MS~550°C로 열처리를 행함으로써 베이나이트로 변태하는 과정을 거치게 된다. 만약, Ms 이하로 넁각되면 마르텐사이트가 생성되어 연성이 저하되는 문제가 생기고, 550 °C를 초과하면 펄라이트상이 생길 수 있어 강의 물성이 저하된다. 따라서, 넁각속도를 MS~550°C로 제어함으로써ᅳ 베이나이트와 잔류 오스테나이트로 이루어진 이상 (dual phase)의 미세조직을 얻게 되는 것이다. 상기 과정에서 생성된 베이나이트에는 Fe3C 탄화물이 형성되지 않는데, 이는 상기 열간 프레스 성형에 사용되는 강의 조성에 Si 등이 층분히 첨가되었기 때문에 C가 잔류 오스테나이트로 확산됨에 기인하는 것이다. 즉, C가 베이나이트에서 탄화물을 형성하는 데 사용되지 않고, 잔류 오스테나이트에 고용되어 잔류 오스테나이트를 안정화시킴으로써 Ms를 낮추어 이후 넁각과정에서 마르텐사이트로의 변태를 방지하는 역할을 한다. 이에 따라, 최종제품에 마르텐사이트로 변태되지 않은 잔류 오스테나이트가 남아있어 우수한 연성을 확보할 수 있다. 이때, 상기 넁각속도는 20°C/sec 이상으로 하는 것이 바람직한데, 만약 20°C/sec 미만의 낮은 속도로 냉각되게 되면 펄라이트 조직으로 변태되기 쉽기 때문에 최종제품의 물성이 저하되는 문제가 생길 수 있다. 즉, 도 2의 (a)에서 보는 바와 같이 30°C/sec로 넁각시키면 베이나이트 조직이 나타나는 반면에, 도 2의 (b) 및 (c)에서와 같이 5°C/sec로 넁각시키면 페라이트와 Fe3C가 층상으로 이루어진 펄라이트 조직이 나타남을 확인할 수 있다. 전술한 본 발명의 열간 프레스 성형부재의 제조과정의 일례를 도 1을 바탕으로 간략히 정리하면, 먼저 강판을 가열로 내 주입하여 오스테나이트 형성을 위해 Ac3점 이상의 온도로 가열한 후, 열간 프레스 성형을 행한다. 성형 후에는 필라이트가 생기지 않도특 20°C/sec 이상의 냉각속도로 넁각시키되 그 넁각온도를 MS~550°C로 하고, 마찬가지로 가열로에서 MS~550°C로 열처리를 행한다. 이는 베이나이트로의 변태를 위한 것으로, 이 과정에서 C의 오스테나이트로의 확산에 의해 Ms가 낮아진다. 상기의 과정에 따라 제조된 성형제품은 인위적인 제어없이 상온까지 넁각되더라도 마르텐사이트로 변태되지 않고, 베이나이트와 잔류 오스테나이트의 이상의 미세조직을 얻을 수 있게 된다. 이하에서, 실시예를 통하여 본 발명을 구체적으로 기술한다. 다만, 이는 본 발명의 보다 완전한 설명을 위한 것일 뿐 하기 개별실시예에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
(실시예)
진공 유도용해에 의해 표 1에 나타낸 조성의 강괴를 두께 90mm, 폭 175隱로 제조하고 1200°C에서 1시간 재가열을 실시한 후 열연 두깨 3mm가 되도록 열간압연을 하였다. 열간압연 마무리 온도는 Ar3 변태점 이상으로 하였으며, 넁각후에 60( C로 미리 가열된 가열로에 장입하여 1시간 유지후 노넁시킴에 의하여 열연권취를 모사하였으며, 열간압연된 판재를 다시 60%의 압하율로 넁간압연을 행하여 1.2mm로 만든 후에 900°C에서 소둔을 실시하고, 이어서 400°C에서 베이나이트 변태를 실시하였다. 하기 성분의 단위는 %로 하고, S, N의 단위는 ppm으로 한다.
【표 1】
Figure imgf000015_0001
위와 같은 방법으로 제조된 1.2mm 강재를 활용하여, 열간 프레스 성형공정의 가열로 열처리 모사를 위하여 900°C로 가열하여 30초간 유지후 30°C/초의 넁각속도로 냉각하고 가열로에 투입하여 넁각온도와 같은 온도에서 400-10800초간 열처리를 행하고 공넁하여 열간 프레스 성형부품을 얻었다. 상기 공정 조건과 최종 제품의 기계적 성질을 표 2에 나타내었다.
【표 2】
Figure imgf000016_0001
먼저, 비교강 1에서 냉각속도가 400°C인 경우 TS*E1값이 16785¾0½%로 낮게 나타나 자동차의 층돌부재로서는 적합하지 않은 것으로 확인되었는데, 이는 조성에 있어서 C가 충분히 포함되지 않아 잔류 오스테나이트의 안정화가 잘 이루어지지 않았기 때문인 것으로 분석할 수 있고, 비교강 1에서 넁각속도를 250°C로 한 경우는 Ms이하로 넁각되어 마르텐사이트로 많이 변태됨으로써, 인장강도는 상당히 높지만 연신율이 매우 낮아 TS*E1값이 9066¾0¾%로 자동차의 층돌부재로서는 더 적합하지 않은 성질을 가지고 있었다. 그리고, 비교강 2에서도 C가 층분히 못하고 Si도 부족해 잔류 오스테나이트의 안정화가 잘 이루어지지 않았고, 넁각온도도 Ms이하여서 마르텐사이트로 변태가 이루어져 연신율이 매우 낮아 TS*E1값이 10150^3%로 좋지 못하게 나타난 것으로 분석할 수 있다. 또한, 비교강 3에서도 C가 충분히 못하고, 넁각온도도 Ms이하여서 TS*E1값이 89401« %로 자동차의 충돌부재로서 적합하지 못함을 알 수 있다. 또한, 비교강 4에서는 C는 충분히 들어갔으나 Si가 부족해 C의 잔류 오스테나이트로의 확산을 층분히 시켜주지 못하였기 때문에, TS*E1값이 19216¾0¾¾로 다른 비교강들보다는 상대적으로 높았으나 여전히 25000¾0 %를 넘지 못해 자동차의 층돌부재로서 적합하지 못했음을 확인할 수 있었다. 또한, 강의 조성은 본 발명의 범위에 들어가는 발명강 7을 30°C/sec로 넁각한 경우와 5°C/sec로 넁각한 경우를 나누어 실험하였는데, 30°C/sec로 냉각한 경우는 TS*EI값이 46923¾^ %로 높게 나타나 자동차의 충돌부재에 적합한 성질을 가졌으나, 5°C/sec로 넁각한 경우는 TS*E1값이 12480^3%로 낮게 나타나 자동차의 층돌부재로 적합하지 못했다. 이는 도 2에 나타난 것과 같이 낮은 넁각속도로 인해 펄라이트 조직이 나타남으로써 제품의 물성이 저하되었기 때문인 것으로 분석할 수 있다.

Claims

【특허청구범위】
【청구항 1】
중량 %로, C: 0.3~1.0¾, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 것을 특징으로 하는 열간 프레스 성형용 강판.
【청구항 2]
청구항 1에 있어서,
Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외),
Nb: 0.005-0.1% 및 V: 0.005-0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것을 특징으로 하는 열간프레스 성형용 강판.
【청구항 3】
청구항 1또는 청구항 2에 있어서,
B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판.
【청구항 4]
청구항 1또는 청구항 2에 있어서,
상기 강판은 열연강판, 넁연강판 또는 냉연강판의 표면에 도금층이 형성된 도금강판 중 하나인 것을 특징으로 하는 열간 프레스 성형용 강판.
【청구항 5】
중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~130(rC로 가열하는 단계; Ar3변태점〜 950°C에서 마무리 열간압연하는 단계; 및 MS~720°C에서 권취하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 6】 청구항 5에 있어서,
상기 강 슬라브는 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005~0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 71
청구항 5 또는 청구항 6에 있어서,
상기 강 슬라브는 B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 8]
중량 ¾로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~1300°C로 가열하는 단계; Ar3변태점〜 95CTC에서 마무리 열간압연하는 단계; MS~720°C에서 권취하는 단계; 산세처리하는 단계; 넁간압연하는 단계; 750~900°C에서 연속소둔하는 단계; 및 MS~550°C에서 과시효 열처리를 행하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 9】
청구항 8에 있어서,
상기 강 슬라브는 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005-0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 10】
청구항 8 또는 청구항 9에 있어서,
상기 강 슬라브는 B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 11】
중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강 슬라브를 1100~1300°C로 가열하는 단계; Ar3변태점 ~950°C에서 마무리 열간압연하는 단계 ; MS~720°C에서 권취하는 단계 ; 산세처리하는 단계; 넁간압연하는 단계; 750~900°C에서 연속소둔하는 단계; MS~550°C에서 과시효 열처리를 행하는 단계; 상기 과시효 열처리된 강판의 표면에 용융아연 도금처리, 합금화아연 도금처리, 전기아연 도금처리 또는 용융알루미늄 도금처리 중 어느 하나를 행하는 도금단계를 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 12]
청구항 11에 있어서,
상기 강 슬라브는 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005-0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 13]
청구항 11또는 청구항 12에 있어서,
상기 강 슬라브는 B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것을 특징으로 하는 열간 프레스 성형용 강판의 제조방법.
【청구항 14]
중량 %로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지며, 베이나이트와 잔류 오스테나이트로 이루어진 이상 (dual phase)의 미세조직을 갖는 것을 특징으로 하는 열간 프레스 성형부재.
【청구항 15】 청구항 14에 있어서,
Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005-0.1%로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것을 특징으로 하는 열간 프레스 성형부재.
【청구항 16]
청구항 14또는 청구항 15에 있어서,
B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것을 특징으로 하는 열간 프레스 성형부재.
【청구항 17】
청구항 14또는 청구항 15에 있어서,
TS(MPa)*El(¾))값이 25,000MPa¾> 이상인 것을 특징으로 하는 열간프레스 성형부재.
【청구항 18]
청구항 16에 있어서,
TS(MPa)*El(%)값이 25,000MPa% 이상인 것을 특징으로 하는 열간프레스 성형부재.
【청구항 19]
중량 ¾로, C: 0.3-1.0%, Mn: 0.01-4.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.015% 이하, N: 0.01% 이하를 포함하고, 나머지는 Fe 및 기타 불가피한 불순물로 이루어지는 강판을 Ac3점 이상의 온도에서 가열하는 단계; 상기 가열된 강판을 열간 프레스 성형하는 단계; 20°C/sec 이상의 냉각속도로 MS~550°C의 온도까지 넁각하는 단계; 및 가열로에서 MS~550°C로 열처리하는 단계를 포함하는 것을 특징으로 하는 열간 프레스 성형부재의 제조방법.
【청구항 20]
청구항 19에 있어서,
상기 강판은 Mo: 0.5% 이하 (0은 제외), Cr: 1.5% 이하 (0은 제외), Ni: 0.5% 이하 (0은 제외), Nb: 0.005-0.1% 및 V: 0.005~0.1¾)로 이루어진 군으로부터 선택된 1종 또는 2종 이상을 더 포함하는 것을 특징으로 하는 열간 프레스 성형부재의 제조방법.
【청구항 21】
청구항 19 또는 청구항 20에 있어서,
상기 강판은 B: 0.005% 이하 (0은 제외) 및 Ti: 0.06% 이하 (0은 제외)를 더 포함하는 것을 특징으로 하는 열간 프레스 성형부재의 제조방법.
【청구항 22]
청구항 19 또는 청구항 20에 있어서 ,
상기 강판은 열연강판, 넁연강판 또는 넁연강판의 표면에 도금층이 형성된 도금강판 중 하나인 것을 특징으로 하는 열간 프레스 성형부재의 제조방법.
PCT/KR2011/005242 2011-07-15 2011-07-15 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법 WO2013012103A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180072328.9A CN103687973B (zh) 2011-07-15 2011-07-15 热压成形钢板、使用其的成型部件以及制造该钢板和部件的方法
US14/232,784 US20140150930A1 (en) 2011-07-15 2011-07-15 Hot press forming steel plate, formed member using same, and method for manufacturing the plate and member
JP2014520100A JP2014520961A (ja) 2011-07-15 2011-07-15 熱間プレス成形用鋼板、それを用いた成形部材及びそれらの製造方法
EP11869574.1A EP2733228B1 (en) 2011-07-15 2011-07-15 Hot press formed member and method for manufacturing the member
PCT/KR2011/005242 WO2013012103A1 (ko) 2011-07-15 2011-07-15 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005242 WO2013012103A1 (ko) 2011-07-15 2011-07-15 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2013012103A1 true WO2013012103A1 (ko) 2013-01-24

Family

ID=47558269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005242 WO2013012103A1 (ko) 2011-07-15 2011-07-15 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법

Country Status (5)

Country Link
US (1) US20140150930A1 (ko)
EP (1) EP2733228B1 (ko)
JP (1) JP2014520961A (ko)
CN (1) CN103687973B (ko)
WO (1) WO2013012103A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358718A (zh) * 2013-06-28 2016-02-24 戴姆勒股份公司 用于制造加压淬火的钢板构件的方法和设备
EP3045550A4 (en) * 2013-09-10 2017-05-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing press-molded article, and press-molded article
US10100383B2 (en) * 2013-07-09 2018-10-16 National Institute For Materials Science Martensitic steel and method for producing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569508B1 (ko) * 2014-12-24 2015-11-17 주식회사 포스코 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
KR101665819B1 (ko) * 2014-12-24 2016-10-13 주식회사 포스코 열처리 강재, 내구특성이 우수한 초고강도 성형품 및 그 제조방법
JP6361902B2 (ja) * 2015-07-13 2018-07-25 Jfeスチール株式会社 プレス成形方法およびプレス成形部品の製造方法
WO2017196965A1 (en) 2016-05-10 2017-11-16 United States Steel Corporation High strength steel products and annealing processes for making the same
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
KR101858863B1 (ko) * 2016-12-23 2018-05-17 주식회사 포스코 내식성 및 가공성이 우수한 용융 알루미늄계 도금강재
CN106947907B (zh) * 2017-03-03 2018-12-07 北京科技大学 一种石墨化易切削钢高速线材的制备方法
KR102021200B1 (ko) 2017-06-27 2019-09-11 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법
JP7319570B2 (ja) * 2020-01-09 2023-08-02 日本製鉄株式会社 ホットスタンプ成形体
WO2021141097A1 (ja) * 2020-01-09 2021-07-15 日本製鉄株式会社 ホットスタンプ成形体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113100A (ja) * 2005-10-24 2007-05-10 Nippon Steel Corp 熱間プレス用鋼板
WO2007129676A1 (ja) * 2006-05-10 2007-11-15 Sumitomo Metal Industries, Ltd. 熱間プレス成形鋼板部材およびその製造方法
KR20090101684A (ko) * 2008-03-24 2009-09-29 주식회사 포스코 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품
KR20100091243A (ko) * 2004-09-15 2010-08-18 신닛뽄세이테쯔 카부시키카이샤 고강도 부품 및 그 제조 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718332B2 (ja) * 1992-09-29 1998-02-25 住友金属工業株式会社 成形性の良好な高炭素鋼帯の製造方法
US20040074529A1 (en) * 2002-10-21 2004-04-22 Robert Levy Self-contained and ventilated temporary shelter
JP2006104546A (ja) * 2004-10-08 2006-04-20 Nippon Steel Corp 高強度自動車部材および熱間プレス方法
JP4771745B2 (ja) * 2004-10-13 2011-09-14 新日本製鐵株式会社 高強度等速ジョイント中間シャフト用鋼材ならびに高強度等速ジョイント中間シャフト
JP4630188B2 (ja) * 2005-12-19 2011-02-09 株式会社神戸製鋼所 スポット溶接部の接合強度および熱間成形性に優れた熱間成形用鋼板並びに熱間成形品
CN101346482B (zh) * 2005-12-26 2011-11-16 Posco公司 易成型性优良的碳钢板及其制备方法
JP5292698B2 (ja) * 2006-03-28 2013-09-18 Jfeスチール株式会社 極軟質高炭素熱延鋼板およびその製造方法
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP4766186B2 (ja) * 2009-08-21 2011-09-07 Jfeスチール株式会社 ホットプレス部材、ホットプレス部材用鋼板、ホットプレス部材の製造方法
WO2011081392A2 (ko) * 2009-12-29 2011-07-07 주식회사 포스코 표면특성이 우수한 열간 프레스용 아연도금강판, 이를 이용한 열간 프레스 성형부품 및 그 제조방법
JP5327106B2 (ja) * 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
JP5024407B2 (ja) * 2010-03-24 2012-09-12 Jfeスチール株式会社 超高強度部材の製造方法
US9475112B2 (en) * 2011-06-10 2016-10-25 Kobe Steel, Ltd. Hot press-formed product and process for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100091243A (ko) * 2004-09-15 2010-08-18 신닛뽄세이테쯔 카부시키카이샤 고강도 부품 및 그 제조 방법
JP2007113100A (ja) * 2005-10-24 2007-05-10 Nippon Steel Corp 熱間プレス用鋼板
WO2007129676A1 (ja) * 2006-05-10 2007-11-15 Sumitomo Metal Industries, Ltd. 熱間プレス成形鋼板部材およびその製造方法
KR20090101684A (ko) * 2008-03-24 2009-09-29 주식회사 포스코 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358718A (zh) * 2013-06-28 2016-02-24 戴姆勒股份公司 用于制造加压淬火的钢板构件的方法和设备
US10100383B2 (en) * 2013-07-09 2018-10-16 National Institute For Materials Science Martensitic steel and method for producing same
EP3045550A4 (en) * 2013-09-10 2017-05-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing press-molded article, and press-molded article

Also Published As

Publication number Publication date
CN103687973B (zh) 2016-08-31
JP2014520961A (ja) 2014-08-25
EP2733228A1 (en) 2014-05-21
US20140150930A1 (en) 2014-06-05
EP2733228A4 (en) 2015-08-12
CN103687973A (zh) 2014-03-26
EP2733228B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2013012103A1 (ko) 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법
JP7275137B2 (ja) 靭性、延性及び強度に優れた鋼板及びその製造方法
TWI472627B (zh) 加工性優良的高強度鋼板的製造方法
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR101010971B1 (ko) 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품
JP7150022B2 (ja) 加工性に優れた高強度鋼板及びその製造方法
KR101758567B1 (ko) 강도 및 성형성이 우수한 클래드 강판 및 그 제조방법
JP2023011853A (ja) 冷間圧延熱処理鋼板及びその製造方法
KR101225246B1 (ko) 성형성이 우수한 자동차용 고강도 냉연 복합조직강판 및 그 제조 방법
KR20200075991A (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
KR20160078840A (ko) 항복 강도 및 성형성이 우수한 고강도 고망간강 및 그 제조방법
US20190218639A1 (en) Twip steel sheet having an austenitic matrix
KR101228711B1 (ko) 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법
JP2022535254A (ja) 冷間圧延及び被覆された鋼板並びにその製造方法
KR101778404B1 (ko) 강도 및 성형성이 우수한 클래드 강판 및 그 제조방법
KR20130143278A (ko) 도금성 및 굽힘성이 우수한 고강도 강판 제조 방법
JP5953695B2 (ja) めっき密着性と成形性に優れた高強度溶融亜鉛めっき鋼板とその製造方法
JP2023547102A (ja) 延性に優れた超高強度鋼板及びその製造方法
CN114846165A (zh) 加工性优异的高强度钢板及其制造方法
JP2023071938A (ja) 延性及び加工性に優れた高強度鋼板、及びその製造方法
KR101403262B1 (ko) 초고강도 용융도금강판 및 그의 제조방법
KR101360486B1 (ko) 연성 및 도금품질이 우수한 초고강도 아연도금강판 및 그 제조방법
KR20150050001A (ko) 가공성이 우수한 복합조직강판 및 그 제조방법
KR101452052B1 (ko) 도금밀착성이 우수한 고강도 합금화 용융아연도금강판 및 그 제조방법
KR101003254B1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520100

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011869574

Country of ref document: EP