WO2013102986A1 - 高炭素熱延鋼板およびその製造方法 - Google Patents

高炭素熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013102986A1
WO2013102986A1 PCT/JP2012/008318 JP2012008318W WO2013102986A1 WO 2013102986 A1 WO2013102986 A1 WO 2013102986A1 JP 2012008318 W JP2012008318 W JP 2012008318W WO 2013102986 A1 WO2013102986 A1 WO 2013102986A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolled steel
carbon hot
ferrite
Prior art date
Application number
PCT/JP2012/008318
Other languages
English (en)
French (fr)
Inventor
中村 展之
崇 小林
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR20147021554A priority Critical patent/KR20140110994A/ko
Priority to CN201280066106.0A priority patent/CN104040000B/zh
Priority to JP2013552352A priority patent/JP5590254B2/ja
Priority to IN1297KON2014 priority patent/IN2014KN01297A/en
Priority to EP12864620.5A priority patent/EP2801636B1/en
Priority to US14/370,314 priority patent/US10077491B2/en
Publication of WO2013102986A1 publication Critical patent/WO2013102986A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a high carbon hot-rolled steel sheet having excellent cold workability and hardenability and a method for producing the same.
  • Patent Document 2 by mass%, C: 0.15 to 0.40%, Si: 0.35% or less, Mn: 0.6 to 1.50%, P: 0.030% or less, S: 0.020% or less, sol.Al: 0.01 to 0.20% , N: 0.0020-0.012%, Ti: 0.005-0.1%, B: 0.0003-0.0030% and B ⁇ 0.0032-0.014 ⁇ sol.Al-0.029 ⁇ Ti are satisfied, and the balance is Fe and inevitable impurities.
  • a method for producing a tempering-free Ti-B high carbon steel sheet excellent in cold workability, hardenability and toughness after heat treatment is disclosed.
  • Patent Document 3 includes mass%, C: 0.20 to 0.48%, Si: 0.1% or less, Mn: 0.20 to 0.60%, P: 0.02% or less, S: 0.01% or less, sol.Al: 0.1% or less, N: 0.005% or less, Ti: 0.005-0.05%, B: 0.0005-0.003%, Cr: 0.05-0.3%, Ti- (48/14) N ⁇ 0.005, balance Fe and inevitable impurities composition and ferrite average High carbon hot rolling with excellent cold workability with a grain size of 6 ⁇ m or less, carbide average particle size of 0.1 ⁇ m or more and less than 1.20 ⁇ m, and a volume fraction of ferrite grains substantially free of carbides of 5% or less.
  • a steel sheet is disclosed.
  • Patent Documents 1 to 3 have a problem that stable and excellent cold workability and hardenability cannot be obtained.
  • An object of the present invention is to provide a high carbon hot-rolled steel sheet that can stably obtain excellent cold workability and hardenability, and a method for producing the same.
  • Stable and excellent cold workability can be obtained by using a microstructure composed of ferrite and cementite, an average particle diameter of ferrite of 10 to 20 ⁇ m, and a spheroidization rate of cementite of 90% or more.
  • sol.Al By making the amount of sol.Al more than 0.10%, the effect of solid solution B (solute B) that improves hardenability can be effectively expressed, and stable hardenability can be obtained.
  • the present invention has been made based on such findings, and in mass%, C: 0.20 to 0.48%, Si: 0.1% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.01% Below, sol.Al: more than 0.10% and 1.0% or less, N: 0.005% or less, B: 0.0005-0.0050%, the balance is composed of Fe and inevitable impurities, and the microstructure consists of ferrite and cementite A high carbon hot rolled steel sheet in which the average particle diameter of the ferrite is 10 to 20 ⁇ m and the spheroidization rate of the cementite is 90% or more is provided.
  • At least one of Cu and Ni is 2% or less in total, and at least one of Cr and Mo in total It is preferable to add 1.0% or less and at least one of Sb and Sn in total or 0.1% or less together or individually.
  • the high carbon hot rolled steel sheet of the present invention is a steel having the above composition, after rough rolling, finish rolling at a finishing temperature of 850 ° C. or higher, winding at a winding temperature of 600 ° C. or higher, It can be manufactured by annealing at an annealing temperature of 1 transformation point or less.
  • the present invention it has become possible to produce a high carbon hot-rolled steel sheet capable of stably obtaining excellent cold workability and hardenability.
  • the high carbon hot rolled steel sheet of the present invention is suitable for automobile gears, transmissions, seat recliners and the like.
  • % which is a unit of component content, means “% by mass”.
  • Composition C 0.20 ⁇ 0.48% C is an important element for obtaining strength after quenching.
  • the C amount needs to be at least 0.20% or more.
  • the C content is 0.20 to 0.48%.
  • the C content is preferably 0.26% or more.
  • Si 0.1% or less Si is an element that increases the strength by solid solution strengthening. However, if the Si content exceeds 0.1%, it hardens and cold workability deteriorates. Therefore, the Si content is 0.1% or less. There is no problem even if the amount of Si is zero.
  • Mn 0.5% or less Mn is an element that increases the strength by solid solution strengthening. However, if the amount of Mn exceeds 0.5%, the hard workability or the band structure resulting from segregation is formed, so that the cold workability is deteriorated. Therefore, the Mn content is 0.5% or less, preferably 0.4% or less. There is no problem even if the amount of Mn is zero, but if Mn is reduced, graphite precipitates easily, so the amount of Mn is preferably 0.2% or more.
  • P 0.03% or less
  • P is an element that increases the strength by solid solution strengthening.
  • the P content exceeds 0.03%, grain boundary embrittlement is caused and the toughness after quenching deteriorates. Therefore, the P content is 0.03% or less.
  • the P content is preferably 0.02% or less.
  • S 0.01% or less S is an element that must be reduced because it forms sulfides and degrades cold workability and toughness after quenching.
  • the S content exceeds 0.01%, the cold workability and the toughness after quenching are remarkably deteriorated. Therefore, the S content is 0.01% or less.
  • the S content is preferably 0.005% or less. There is no problem even if the amount of S is zero.
  • sol.Al more than 0.10% and not more than 1.0% sol.Al promotes spheroidization of cementite and improves cold workability.
  • the amount of sol.Al is 0.10% or less, it is heated in an atmosphere gas containing N 2 gas mixed to control the C potential in carburizing quenching or bright quenching.
  • N 2 gas mixed to control the C potential in carburizing quenching or bright quenching.
  • BN is easily formed, and the solid solution B that improves hardenability decreases, and the hardenability of the steel sheet surface layer portion may be significantly reduced.
  • the amount of sol.Al exceeds 0.10%, AlN is preferentially formed and suppresses the formation of BN, so the austenite grains are refined by AlN formation, but the amount of solid solution B is secured, The hardenability can be expressed stably.
  • the amount of sol.Al exceeds 1.0%, it becomes excessively hard due to solid solution strengthening and cold workability deteriorates.
  • N 0.005% or less
  • the N amount exceeds 0.005%, the amount of dissolved B decreases due to the formation of BN during heating in the quenching process, and austenite grains become too fine due to the formation of a large amount of BN and AlN, cooling. Sometimes the formation of ferrite is accelerated and the toughness after quenching deteriorates. Therefore, the N content is 0.005% or less. There is no problem even if the amount of N is zero.
  • B 0.0005-0.0050%
  • B is an important element that enhances hardenability. However, if the amount of B is less than 0.0005%, the effect of enhancing the sufficient hardenability is not recognized. On the other hand, if the amount of B exceeds 0.0050%, the hot rolling load becomes high, the operability is lowered, and the cold workability is deteriorated. Therefore, the B content is 0.0005 to 0.0050%.
  • the balance is Fe and inevitable impurities, but in order to promote spheroidization of cementite and further improve cold workability and hardenability, a total of at least one of Cu and Ni is 2% or less, Cr In addition, it is preferable that at least one of Mo in total is 1.0% or less and at least one of Sb and Sn is contained in total or 0.1% or less together or individually. In addition, about Sb and Sn, the effect which improves hardenability by suppressing the nitridation of B was newly confirmed like the above-mentioned sol.Al. Therefore, it is particularly preferable to add these elements for the purpose of more surely improving the hardenability.
  • Microstructure To obtain stable and excellent cold workability, it is necessary to use a microstructure composed of ferrite and cementite, to have an average ferrite grain size of 10 to 20 ⁇ m, and a cementite spheroidization ratio of 90% or more. There is. This is because when the average particle diameter of ferrite is less than 10 ⁇ m, it becomes hard, and when the average particle diameter of ferrite exceeds 20 ⁇ m, or when the spheroidization rate of cementite is less than 90%, ductility decreases even when softened. This is because the inter-workability deteriorates.
  • the average grain size of the ferrite after polishing the plate thickness cross section in the rolling direction of the steel plate, corrodes nital, observe 10 locations near the center of the plate thickness with a scanning electron microscope at 1000 times, JIS The average particle diameter of ferrite at each location was determined by a cutting method based on G0552: 1998, and the average particle size at 10 locations was further averaged. At this time, the phase structure of the microstructure can be confirmed at the same time.
  • the spheroidization rate of cementite is calculated by calculating the ratio a / b of the maximum diameter a and the minimum diameter b of each cementite by the above-mentioned structure observation, and the ratio of the number of cementites whose ratio is 3 or less to the total number of cementites (% ).
  • the maximum diameter a and the minimum diameter b can be determined as shown in FIGS.
  • the high carbon hot-rolled steel sheet of the present invention is obtained by hot rolling a steel having the above composition comprising rough rolling and finish rolling to obtain a steel sheet having a desired thickness.
  • the finishing temperature is less than 850 ° C.
  • the austenite grains become fine, and the average grain size of ferrite formed in the subsequent cooling process becomes less than 10 ⁇ m. Therefore, the finishing temperature is 850 ° C. or higher.
  • the upper limit of the finishing temperature is not particularly specified, but if it is excessively high, the microstructure is likely to be mixed and unevenness in the hardenability is likely to occur.
  • Winding temperature 600 ° C. or more
  • the average grain size of ferrite is less than 10 ⁇ m. Therefore, the coiling temperature is 600 ° C. or higher.
  • the upper limit of the coiling temperature is not particularly specified, but is preferably 750 ° C. in order to avoid deterioration of the surface properties due to the scale.
  • Annealing temperature 680 ° C or more and Ac 1 transformation point or less
  • the steel sheet after winding does not generate pearlite after pickling. Therefore, it is necessary to perform annealing at an annealing temperature not lower than 680 ° C. and not higher than the Ac 1 transformation point. If the annealing temperature is less than 680 ° C, the spheroidization rate of cementite cannot be increased to 90% or more, and if it exceeds the Ac 1 transformation point, austenite is generated during heating, pearlite is generated during cooling, and cold workability deteriorates. . Moreover, it is preferable that the annealing time maintained at said temperature is 20 hours or more and 40 hours or less.
  • the annealing time is 20 hours or more, it is preferable because the spheroidization rate of the cementite is easily adjusted to a desired range, and if it is 40 hours or less, the effect of annealing is sufficiently obtained and the annealing is performed for a long time. This is preferable because an increase in manufacturing cost can be suppressed.
  • the Ac 1 transformation point can be obtained, for example, by obtaining a thermal expansion curve in a formastar experiment at a heating rate of 100 ° C./hr and using the change point.
  • Both converters and electric furnaces can be used to melt the high carbon steel of the present invention.
  • the high carbon steel thus melted is made into a slab by ingot-bundling rolling or continuous casting.
  • the slab is usually heated and then hot rolled.
  • slab heating temperature 1280 degrees C or less in order to avoid the deterioration of the surface state by a scale.
  • the material to be rolled may be heated by a heating means such as a sheet bar heater during hot rolling.
  • the high carbon steel having the composition of steel numbers A to O shown in Table 1 is melted, then hot-rolled according to the hot rolling conditions shown in Table 2, pickled, and annealed at the annealing temperature shown in Table 2, Hot rolled annealed sheets (steel plates No. 1 to 18) with a thickness of 4.0 mm were manufactured.
  • the phase structure of the microstructure, the average particle diameter of ferrite, and the spheroidization rate of cementite were determined by the above-described methods.
  • JIS No. 5 test specimens were collected parallel to the rolling direction, and tensile strength and elongation were determined in accordance with JIS Z Z2201.
  • hardenability was evaluated by the following method.
  • Hardenability In an atmospheric gas in which a flat plate test piece (width 50 mm x length 50 mm) is taken from a steel plate, and the carbon potential is controlled to be equal to the amount of C in the steel by mixing air with RX gas Then, after heating and holding at 900 ° C. for 1 hour, a quenching test was conducted by a controlled atmosphere hardening in which the oil was immediately put into 50 ° C. oil and stirred, and the Rockwell hardness (H RC ) was measured. According to the amount of C in the steel, the hardenability is excellent when C: 0.20% and H RC ⁇ 42, C: 0.35% and H RC ⁇ 54, and C: 0.48% and H RC ⁇ 58.
  • the steel sheet of the present invention has a microstructure composed of ferrite and cementite, the average grain size of ferrite is 10 to 20 ⁇ m, the spheroidization rate of cementite is 90% or more, high elongation and excellent cold workability. Moreover, after hardening, sufficient hardness is obtained according to the amount of C, and it turns out that it is excellent also in hardenability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

安定して優れた冷間加工性と焼入れ性の得られる高炭素熱延鋼板およびその製造方法を提供する。 質量%で、C:0.20~0.48%、Si:0.1%以下、Mn:0.5%以下、P:0.03%以下、S:0.01%以下、sol.Al:0.10%超え1.0%以下、N:0.005%以下、B:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライトとセメンタイトからなるミクロ組織を有し、上記フェライトの平均粒径が10~20μmであり、上記セメンタイトの球状化率が90%以上である高炭素熱延鋼板。

Description

高炭素熱延鋼板およびその製造方法
 本発明は、冷間加工性(cold workability)と焼入れ性に優れる高炭素熱延鋼板およびその製造方法に関する。
 現在、ギア、トランスミッション、シートリクライナーなどの自動車用部品は、JIS G 4051に規定された機械構造用炭素鋼鋼材である熱延鋼板を冷間加工によって所望の形状に加工した後、所望の硬さを確保するために焼入れ処理を施して製造されている。そのため、素材の熱延鋼板には、優れた冷間加工性や焼入れ性が要求されており、これまでに種々の鋼板が提案されている。
 例えば、特許文献1には、鋼成分として、質量%で、C:0.10~0.37%、Si:1%以下、Mn:1.4%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01~0.1%、N:0.0005~0.0050%、Ti:0.005~0.05%、B:0.0003~0.0050%を含有し、B-(10.8/14)N*≧0.0005%、N*=N-(14/48)Ti、但し、右辺≦0の場合、N*=0を満足し、残部Feおよび不可避的不純物からなり、鋼中析出物であるTiNの平均粒径が0.06~0.30μmであり、かつ焼入れ後の旧オーステナイト粒径が2~25μmである焼入れ後の靭性に優れる熱延鋼板が開示されている。
 特許文献2には、質量%で、C:0.15~0.40%、Si:0.35%以下、Mn:0.6~1.50%、P:0.030%以下、S:0.020%以下、sol.Al:0.01~0.20%、N:0.0020~0.012%、Ti:0.005~0.1%、B:0.0003~0.0030%を含み、かつ、B≦0.0032-0.014×sol.Al-0.029×Tiを満足し、残部Feおよび不可避的不純物からなる冷間加工性、焼入れ性、熱処理後の靭性に優れた焼戻し省略型Ti-B系高炭素鋼板の製造方法が開示されている。
 特許文献3には、質量%で、C:0.20~0.48%、Si:0.1%以下、Mn:0.20~0.60%、P:0.02%以下、S:0.01%以下、sol.Al:0.1%以下、N:0.005%以下、Ti:0.005~0.05%、B:0.0005~0.003%、Cr:0.05~0.3%、Ti-(48/14)N≧0.005、残部Feおよび不可避的不純物である組成とフェライト平均粒径が6μm以下、炭化物平均粒径が0.1μm以上1.20μm未満、炭化物を実質的に含まないフェライト粒の体積率が5%以下である組織を有する冷間加工性に優れた高炭素熱延鋼板が開示されている。
特許第4265582号公報 特開平5-98356号公報 特開2005-97740号公報
 しかしながら、特許文献1から3に記載の高炭素鋼板では、安定して冷間加工性と焼入れ性がともに優れたものが得られないという問題がある。
 本発明は、安定して優れた冷間加工性と焼入れ性の得られる高炭素熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、Bを添加した高炭素熱延鋼板の冷間加工性と焼入れ性について検討した結果、以下のことを見出した。
 i) フェライトとセメンタイトからなるミクロ組織とし、かつフェライトの平均粒径を10~20μm、セメンタイトの球状化率を90%以上にすることにより安定して優れた冷間加工性が得られる。
 ii) sol.Al量を0.10%超えにすることにより焼入れ性を向上させる固溶B(solute B)の効果を有効に発現でき、安定して優れた焼入れ性が得られる。
 iii) 焼入れ性向上効果を有効に発現できることから、固溶強化元素であるSi、Mn量の低減が可能となり、熱延ままでも安定した冷間加工性が得られる。
 本発明は、このような知見に基づいてなされたものであり、質量%で、C:0.20~0.48%、Si:0.1%以下、Mn:0.5%以下、P:0.03%以下、S:0.01%以下、sol.Al:0.10%超え1.0%以下、N:0.005%以下、B:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライトとセメンタイトからなるミクロ組織を有し、前記フェライトの平均粒径が10~20μmであり、前記セメンタイトの球状化率が90%以上である高炭素熱延鋼板を提供する。
 本発明の高炭素熱延鋼板では、上記の組成に加え、さらに、質量%で、Cu、Niのうちの少なくとも1種を合計で2%以下、Cr、Moのうちの少なくとも1種を合計で1.0%以下、Sb、Snのうちの少なくとも1種を合計で0.1%以下を、一緒に、あるいは個別に含有させることが好ましい。
 本発明の高炭素熱延鋼板は、上記の組成を有する鋼を、粗圧延後、850℃以上の仕上温度で仕上圧延し、600℃以上の巻取温度で巻取った後、680℃以上Ac1変態点以下の焼鈍温度で焼鈍することにより製造可能である。
 本発明により、安定して優れた冷間加工性と焼入れ性の得られる高炭素熱延鋼板を製造できるようになった。本発明の高炭素熱延鋼板は、自動車のギア、トランスミッション、シートリクライナーなどに好適である。

図1は、セメンタイトの最大径aおよび最小径bを、a/b≦3であるa/b=1.5の場合について示した図である 図2は、セメンタイトの最大径aおよび最小径bを、a/b>3であるa/b=6の場合について示した図である
 以下に、本発明である高炭素熱延鋼板およびその製造方法について詳細に説明する。なお、成分の含有量の単位である「%」は特に断らない限り「質量%」を意味するものとする。
 1) 組成
 C:0.20~0.48%
 Cは、焼入れ後の強度を得るために重要な元素である。部品に冷間加工した後、熱処理によって所望の硬さを得るため、C量は少なくとも0.20%以上にする必要がある。しかし、C量が0.48%を超えると硬質化し、冷間加工性が劣化する。したがって、C量は0.20~0.48%とする。十分な熱処理後の硬さを得るには、C量は0.26%以上にすることが好ましい。
 Si:0.1%以下
 Siは、固溶強化により強度を上昇させる元素である。しかし、Si量が0.1%を超えると、硬質化し、冷間加工性が劣化する。したがって、Si量は0.1%以下とする。Si量はゼロであっても問題ない。
 Mn:0.5%以下
 Mnは、固溶強化により強度を上昇させる元素である。しかし、Mn量が0.5%を超えると、硬質化したり、偏析に起因するバンド組織(band structure)が形成されるため、冷間加工性が劣化する。したがって、Mn量は0.5%以下、好ましくは0.4%以下とする。Mn量はゼロであっても問題ないが、Mnを低減するとグラファイト析出しやすくなるため、Mn量を0.2%以上にすることが好ましい。
 P:0.03%以下
 Pは、固溶強化により強度を上昇させる元素である。しかし、P量が0.03%を超えると粒界脆化を招き、焼入れ後の靭性が劣化する。したがって、P量は0.03%以下とする。優れた焼入れ後の靭性を得るには、P量は0.02%以下にすることが好ましい。P量はゼロであっても問題ないが、過剰な低減は製造コストを高めるためコスト面を考慮するとP量を0.005%%以上にすることが好ましい。
 S:0.01%以下
 Sは、硫化物を形成し、冷間加工性および焼入れ後の靭性を劣化させるため、低減しなければならない元素である。S量が0.01%を超えると、冷間加工性および焼入れ後の靭性が著しく劣化する。したがって、S量は0.01%以下とする。優れた冷間加工性および焼入れ後の靭性を得るには、S量は0.005%以下が好ましい。S量はゼロであっても問題ない。
 sol.Al:0.10%超え1.0%以下
 sol.Alは、セメンタイトの球状化を促進し、冷間加工性を向上させる。しかし、Bを含有した鋼の場合、sol.Al量が0.10%以下だと、浸炭焼入れや光輝焼入れにおいてCポテンシャルを制御するために混合されたNガスを含むような雰囲気ガス中で加熱する時にBNが形成されやすく、焼入れ性を向上させる固溶Bが減少して鋼板表層部の焼入れ性が著しく低下する場合がある。sol.Al量を0.10%超えにすれば、AlNが優先的に形成されてBNの形成を抑制するので、AlN形成によりオーステナイト粒は微細化するが、固溶B量が確保されているため、焼入れ性を安定して発現できることになる。一方、sol.Al量が1.0%を超えると、固溶強化により過度に硬質化し、冷間加工性が劣化する。
 N:0.005%以下
 N量が0.005%を超えると、焼入れ処理の加熱時に、BNの形成により固溶B量が低下し、また、多量のBNやAlNの形成によりオーステナイト粒が微細化し過ぎ、冷却時にフェライトの生成が促進され、焼入れ後の靭性が劣化する。したがって、N量は0.005%以下とする。N量はゼロであっても問題ない。
 B:0.0005~0.0050%
 Bは、焼入れ性を高める重要な元素である。しかし、B量が0.0005%未満では、十分な焼入れ性を高める効果が認められない。一方、B量が0.0050%を超えると、熱間圧延の負荷が高くなり操業性が低下するととともに、冷間加工性の劣化も招く。したがって、B量は0.0005~0.0050%とする。
 残部はFeおよび不可避的不純物とするが、セメンタイトの球状化を促進し、冷間加工性や焼入れ性のさらなる向上のために、Cu、Niのうちの少なくとも1種を合計で2%以下、Cr、Moのうちの少なくとも1種を合計で1.0%以下、Sb、Snのうちの少なくとも1種を合計で0.1%以下を、一緒に、あるいは個別に含有させることが好ましい。なお、Sb及びSnについては、前述のsol.Alと同様に、Bの窒化を抑制することにより焼入れ性を改善する効果が新たに確認された。したがって、焼入れ性のより確実な向上を目的としてこれらの元素を添加することが特に好ましい。
 2) ミクロ組織
 安定して優れた冷間加工性を得るには、フェライトとセメンタイトからなるミクロ組織とし、かつフェライトの平均粒径を10~20μm、セメンタイトの球状化率を90%以上にする必要がある。これは、フェライトの平均粒径が10μm未満では硬質化する、また、フェライトの平均粒径が20μmを超えたり、セメンタイトの球状化率が90%未満では軟質化しても延性が低下するので、冷間加工性が劣化するためである。
 ここで、フェライトの平均粒径は、鋼板の圧延方向の板厚断面を研磨後、ナイタール(nital)腐食し、走査電子顕微鏡を用いて板厚中央部近辺10箇所を1000倍で観察し、JIS G0552:1998に準拠した切断法により各箇所のフェライトの平均粒径を求め、さらに10箇所の平均粒径を平均して求めた。なお、このとき、同時にミクロ組織の相構成も確認できる。
 また、セメンタイトの球状化率は、上記の組織観察で各セメンタイトの最大径aと最小径bの比a/bを計算し、この比が3以下のセメンタイトの個数の全セメンタイト個数に対する割合(%)で求めた。例えば、図1、2に示すように最大径aと最小径bを決めることができる。
 3) 製造条件
 仕上温度:850℃以上
 本発明の高炭素熱延鋼板は、上記のような組成の鋼を粗圧延と仕上圧延からなる熱間圧延して所望の板厚の鋼板とされる。このとき、仕上温度が850℃未満では、オーステナイト粒が微細になるため、その後の冷却過程で形成されるフェライトの平均粒径が10μm未満になる。したがって、仕上温度は850℃以上とする。なお、仕上温度の上限は、特に規定しないが、過度に高いと、ミクロ組織が混粒化して焼入れ性にムラが生じやすくなる場合があるので、1000℃にすることが好ましい。
 巻取温度:600℃以上
 巻取温度が600℃未満では、フェライトの平均粒径が10μm未満になる。したがって、巻取温度は600℃以上とする。なお、巻取温度の上限は、特に規定しないが、スケールによる表面性状の劣化を避けるために、750℃にすることが好ましい。
 焼鈍温度:680℃以上Ac1変態点以下
 巻取り後の鋼板には、酸洗後、パーライトを生成させず、フェライトとセメンタイトからなるミクロ組織とし、かつセメンタイトの球状化率を90%以上にするため、680℃以上Ac1変態点以下の焼鈍温度で焼鈍を行う必要がある。焼鈍温度が680℃未満ではセメンタイトの球状化率を90%以上にできず、Ac1変態点を超えると加熱中にオーステナイトが生じて、冷却中にパーライトが生成し、冷間加工性が劣化する。また、上記の温度に維持される焼鈍時間は20時間以上40時間以下であることが好ましい。焼鈍時間が20時間以上であればセメンタイトの球状化率を所望の範囲に調整しやすいという理由で好ましく、40時間以下であれば焼鈍の効果が充分に得られるとともに、焼鈍を長時間行うことによる製造コストの上昇も抑えられるという理由で好ましい。
 なお、Ac1変態点は、例えば、加熱速度100℃/hrのフォーマスタ(formastor)実験で熱膨張曲線を求め、その変化点により求めることができる。
 本発明の高炭素鋼を溶製するには、転炉、電気炉どちらも使用可能である。また、こうして溶製された高炭素鋼は、造塊-分塊圧延または連続鋳造によりスラブとされる。スラブは、通常、加熱された後、熱間圧延される。なお、連続鋳造で製造されたスラブの場合は、そのままあるいは温度低下を抑制する目的で保熱して、圧延する直送圧延を適用してもよい。また、スラブを加熱して熱間圧延する場合は、スケールによる表面状態の劣化を避けるためにスラブ加熱温度を1280℃以下とすることが好ましい。熱間圧延では、仕上圧延温度を確保するため、熱間圧延中にシートバーヒータ等の加熱手段により被圧延材の加熱を行ってもよい。
 表1に示す鋼番AからOの組成を有する高炭素鋼を溶製し、次いで表2に示す熱延条件に従って熱間圧延後、酸洗し、表2に示す焼鈍温度で焼鈍を行い、板厚4.0mmの熱延焼鈍板(鋼板No.1~18)を製造した。
 このようにして製造した鋼板について、上記の方法によりミクロ組織の相構成、フェライトの平均粒径、セメンタイトの球状化率を求めた。また、圧延方向に平行にJIS 5号試験片を採取し、JIS Z 2201に準拠して引張強度および伸びを求めた。さらに、次の方法により焼入れ性を評価した。
 焼入れ性:鋼板から平板試験片(幅50mm×長さ50mm)を採取し、RXガス(RX gas)に空気を混合してカーボンポテンシャルを鋼中のC量と等しくなるように制御した雰囲気ガス中で、900℃で1時間加熱保持後、直ちに50℃の油中へ投入し油を攪拌させる雰囲気焼入れ法(controlled atmosphere hardening)で焼入れ試験を行い、ロックウエル硬さ(HRC)を測定した。そして、鋼中のC量に応じて、C:0.20%でHRC≧42、C:0.35%でHRC≧54、C:0.48%でHRC≧58であれば焼入れ性が優れるとした。
 結果を表2に示す。
 本発明例の鋼板は、フェライトとセメンタイトからなるミクロ組織を有し、フェライトの平均粒径が10~20μmで、セメンタイトの球状化率が90%以上であり、伸びが高く冷間加工性に優れ、また、焼入れ後にはC量に応じて十分な硬さが得られており、焼入れ性にも優れていることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 

Claims (5)

  1.  質量%で、C:0.20~0.48%、Si:0.1%以下、Mn:0.5%以下、P:0.03%以下、S:0.01%以下、sol.Al:0.10%超え1.0%以下、N:0.005%以下、B:0.0005~0.0050%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、フェライトとセメンタイトからなるミクロ組織を有し、前記フェライトの平均粒径が10~20μmであり、前記セメンタイトの球状化率が90%以上である高炭素熱延鋼板。
  2.  さらに、質量%で、Cu、Niのうちの少なくとも1種を合計で2%以下含有する請求項1に記載の高炭素熱延鋼板。
  3.  さらに、質量%で、Cr、Moのうちの少なくとも1種を合計で1.0%以下含有する請求項1または2に記載の高炭素熱延鋼板。
  4.  さらに、質量%で、Sb、Snのうちの少なくとも1種を合計で0.1%以下含有する請求項1から3のいずれか1項に記載の高炭素熱延鋼板。
  5.  請求項1から4のいずれか1項に記載の組成を有する鋼を、粗圧延後、850℃以上の仕上温度で仕上圧延し、600℃以上の巻取温度で巻取った後、680℃以上Ac1変態点以下の焼鈍温度で焼鈍する高炭素熱延鋼板の製造方法。
PCT/JP2012/008318 2012-01-05 2012-12-26 高炭素熱延鋼板およびその製造方法 WO2013102986A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR20147021554A KR20140110994A (ko) 2012-01-05 2012-12-26 고탄소 열연 강판 및 그 제조 방법
CN201280066106.0A CN104040000B (zh) 2012-01-05 2012-12-26 高碳热轧钢板及其制造方法
JP2013552352A JP5590254B2 (ja) 2012-01-05 2012-12-26 高炭素熱延鋼板およびその製造方法
IN1297KON2014 IN2014KN01297A (ja) 2012-01-05 2012-12-26
EP12864620.5A EP2801636B1 (en) 2012-01-05 2012-12-26 High carbon hot-rolled steel sheet and method for producing same
US14/370,314 US10077491B2 (en) 2012-01-05 2012-12-26 High carbon hot rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012000407 2012-01-05
JP2012-000407 2012-01-05

Publications (1)

Publication Number Publication Date
WO2013102986A1 true WO2013102986A1 (ja) 2013-07-11

Family

ID=48745062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008318 WO2013102986A1 (ja) 2012-01-05 2012-12-26 高炭素熱延鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US10077491B2 (ja)
EP (1) EP2801636B1 (ja)
JP (1) JP5590254B2 (ja)
KR (1) KR20140110994A (ja)
CN (1) CN104040000B (ja)
IN (1) IN2014KN01297A (ja)
TW (1) TWI510643B (ja)
WO (1) WO2013102986A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004902A1 (ja) * 2013-07-09 2015-01-15 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
WO2015146173A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
WO2015146174A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP2016216809A (ja) * 2015-05-26 2016-12-22 新日鐵住金株式会社 冷間成形性と熱処理後靭性に優れた低炭素鋼板及び製造方法
JP6587038B1 (ja) * 2018-10-02 2019-10-09 日本製鉄株式会社 浸炭用鋼板、及び、浸炭用鋼板の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140332122A1 (en) * 2012-01-06 2014-11-13 Jfe Steel Corporation High carbon hot rolled steel sheet and method for manufacturing the same (as amended)
KR101799712B1 (ko) 2013-11-22 2017-11-20 신닛테츠스미킨 카부시키카이샤 고탄소 강판 및 그 제조 방법
KR101975136B1 (ko) 2015-03-13 2019-05-03 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그 제조 방법
MX2017015016A (es) * 2015-05-26 2018-04-13 Nippon Steel & Sumitomo Metal Corp Placa de acero y metodo de produccion de la misma.
MX2020007992A (es) 2018-01-30 2020-09-09 Jfe Steel Corp Lamina de acero laminada en caliente con alto contenido en carbono y metodo para la produccion de la misma.
CN113366137B (zh) * 2019-01-30 2022-10-28 杰富意钢铁株式会社 高碳热轧钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598356A (ja) 1982-07-06 1984-01-17 Nec Corp 半導体集積回路装置の製造方法
JPH04124216A (ja) * 1990-09-12 1992-04-24 Sumitomo Metal Ind Ltd 成形性の良好な高炭素薄鋼板の製造方法
JPH04311546A (ja) * 1991-04-11 1992-11-04 Kawasaki Steel Corp 加工性と焼入れ性に優れた鋼材及びその製造方法
JPH08120405A (ja) * 1994-10-19 1996-05-14 Sumitomo Metal Ind Ltd 穴拡げ性と二次加工性に優れた高炭素薄鋼板及びその製造方法
JP2002309345A (ja) * 2001-02-07 2002-10-23 Nkk Corp 焼入れ後の衝撃特性に優れる薄鋼板およびその製造方法
JP2005097740A (ja) 2003-08-28 2005-04-14 Jfe Steel Kk 高炭素熱延鋼板およびその製造方法
JP4265582B2 (ja) 2001-02-07 2009-05-20 Jfeスチール株式会社 焼入れ後の衝撃特性に優れる熱延鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265582A (ja) 1991-02-20 1992-09-21 Mitsubishi Electric Corp 磁気ディスク装置
JPH0598356A (ja) 1991-10-04 1993-04-20 Sumitomo Metal Ind Ltd 焼き戻し省略型Ti−B系高炭素薄鋼板の製造方法
JP2718332B2 (ja) * 1992-09-29 1998-02-25 住友金属工業株式会社 成形性の良好な高炭素鋼帯の製造方法
JPH08291362A (ja) * 1995-04-21 1996-11-05 Sumitomo Metal Ind Ltd 冷間加工性に優れた鋼材
JP2001011575A (ja) * 1999-06-30 2001-01-16 Nippon Steel Corp 冷間加工性に優れた機械構造用棒鋼・鋼線及びその製造方法
KR100513991B1 (ko) * 2001-02-07 2005-09-09 제이에프이 스틸 가부시키가이샤 박강판의 제조방법
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP5050433B2 (ja) * 2005-10-05 2012-10-17 Jfeスチール株式会社 極軟質高炭素熱延鋼板の製造方法
JP5292698B2 (ja) * 2006-03-28 2013-09-18 Jfeスチール株式会社 極軟質高炭素熱延鋼板およびその製造方法
JP5076347B2 (ja) * 2006-03-31 2012-11-21 Jfeスチール株式会社 ファインブランキング加工性に優れた鋼板およびその製造方法
JP5458649B2 (ja) 2009-04-28 2014-04-02 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP5056876B2 (ja) * 2010-03-19 2012-10-24 Jfeスチール株式会社 冷間加工性と焼入れ性に優れた熱延鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598356A (ja) 1982-07-06 1984-01-17 Nec Corp 半導体集積回路装置の製造方法
JPH04124216A (ja) * 1990-09-12 1992-04-24 Sumitomo Metal Ind Ltd 成形性の良好な高炭素薄鋼板の製造方法
JPH04311546A (ja) * 1991-04-11 1992-11-04 Kawasaki Steel Corp 加工性と焼入れ性に優れた鋼材及びその製造方法
JPH08120405A (ja) * 1994-10-19 1996-05-14 Sumitomo Metal Ind Ltd 穴拡げ性と二次加工性に優れた高炭素薄鋼板及びその製造方法
JP2002309345A (ja) * 2001-02-07 2002-10-23 Nkk Corp 焼入れ後の衝撃特性に優れる薄鋼板およびその製造方法
JP4265582B2 (ja) 2001-02-07 2009-05-20 Jfeスチール株式会社 焼入れ後の衝撃特性に優れる熱延鋼板およびその製造方法
JP2005097740A (ja) 2003-08-28 2005-04-14 Jfe Steel Kk 高炭素熱延鋼板およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004902A1 (ja) * 2013-07-09 2015-01-15 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
US10400298B2 (en) 2013-07-09 2019-09-03 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
JP6065121B2 (ja) * 2014-03-28 2017-01-25 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
CN106133169A (zh) * 2014-03-28 2016-11-16 杰富意钢铁株式会社 高碳热轧钢板及其制造方法
KR20160138230A (ko) * 2014-03-28 2016-12-02 제이에프이 스틸 가부시키가이샤 고탄소 열연 강판 및 그 제조 방법
WO2015146174A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
JP6065120B2 (ja) * 2014-03-28 2017-01-25 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
EP3091097A4 (en) * 2014-03-28 2017-03-08 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing same
KR101892524B1 (ko) 2014-03-28 2018-08-28 제이에프이 스틸 가부시키가이샤 고탄소 열연 강판 및 그 제조 방법
WO2015146173A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
US10844454B2 (en) 2014-03-28 2020-11-24 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for manufacturing the same
JP2016216809A (ja) * 2015-05-26 2016-12-22 新日鐵住金株式会社 冷間成形性と熱処理後靭性に優れた低炭素鋼板及び製造方法
JP6587038B1 (ja) * 2018-10-02 2019-10-09 日本製鉄株式会社 浸炭用鋼板、及び、浸炭用鋼板の製造方法
WO2020070810A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 浸炭用鋼板、及び、浸炭用鋼板の製造方法

Also Published As

Publication number Publication date
EP2801636A1 (en) 2014-11-12
CN104040000B (zh) 2016-09-07
EP2801636A4 (en) 2015-08-05
JP5590254B2 (ja) 2014-09-17
JPWO2013102986A1 (ja) 2015-05-11
US20150090376A1 (en) 2015-04-02
KR20140110994A (ko) 2014-09-17
EP2801636B1 (en) 2018-08-01
US10077491B2 (en) 2018-09-18
IN2014KN01297A (ja) 2015-10-16
CN104040000A (zh) 2014-09-10
TW201337002A (zh) 2013-09-16
TWI510643B (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5590254B2 (ja) 高炭素熱延鋼板およびその製造方法
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5458649B2 (ja) 高炭素熱延鋼板およびその製造方法
JP6017341B2 (ja) 曲げ性に優れた高強度冷延鋼板
US10400299B2 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
TWI433960B (zh) 加工性和點熔接性優異之高強度熔融鍍鋅鋼板及其製造方法
WO2019077777A1 (ja) 高強度鋼板およびその製造方法
JP6065120B2 (ja) 高炭素熱延鋼板およびその製造方法
JP6065121B2 (ja) 高炭素熱延鋼板およびその製造方法
WO2016024371A1 (ja) 高強度鋼板の製造方法
JP5644966B2 (ja) 焼入れ性に優れる面内異方性の小さい高炭素熱延鋼板およびその製造方法
WO2015004902A1 (ja) 高炭素熱延鋼板およびその製造方法
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP5958668B1 (ja) 高強度鋼板およびその製造方法
WO2019131099A1 (ja) 熱延鋼板およびその製造方法
US11248275B2 (en) Warm-workable high-strength steel sheet and method for manufacturing the same
JP5565532B2 (ja) 高炭素熱延鋼板およびその製造方法
JP6275560B2 (ja) 衝突特性に優れる超高強度鋼板
JP4329804B2 (ja) 形状及び加工性に優れる高強度熱延鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552352

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012864620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14370314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147021554

Country of ref document: KR

Kind code of ref document: A