WO2007108281A1 - 酸化物微粒子含有ポリシロキサン組成物およびその製造方法 - Google Patents

酸化物微粒子含有ポリシロキサン組成物およびその製造方法 Download PDF

Info

Publication number
WO2007108281A1
WO2007108281A1 PCT/JP2007/053615 JP2007053615W WO2007108281A1 WO 2007108281 A1 WO2007108281 A1 WO 2007108281A1 JP 2007053615 W JP2007053615 W JP 2007053615W WO 2007108281 A1 WO2007108281 A1 WO 2007108281A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysiloxane
oxide fine
fine particles
weight
less
Prior art date
Application number
PCT/JP2007/053615
Other languages
English (en)
French (fr)
Inventor
Tarou Kanamori
Tatsuya Shimizu
Keisuke Yajima
Akira Nishikawa
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006162878A external-priority patent/JP2007277073A/ja
Priority claimed from JP2006162876A external-priority patent/JP2007277072A/ja
Priority claimed from JP2006162877A external-priority patent/JP2007277505A/ja
Priority claimed from JP2006295912A external-priority patent/JP2007291324A/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US12/293,213 priority Critical patent/US20090093579A1/en
Priority to EP07737417A priority patent/EP1995281A4/en
Publication of WO2007108281A1 publication Critical patent/WO2007108281A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an organic compound comprising a polyfunctional polysiloxane having a dimethylsiloxane chain, or a multifunctional polysiloxane having a hydroxyl group or an alkoxy group, wherein the carboxylic acid fine particles and the Z or metal oxide fine particles have a dimethylsiloxane chain.
  • the present invention relates to a polysiloxane composition highly dispersed in a solvent and a cured product thereof.
  • siloxane-based binder a binder having a siloxane skeleton
  • a cation oxide and Z or various metal oxides are used for imparting various functions to a siloxane material having excellent durability.
  • siloxane-based binder a binder having a siloxane skeleton
  • cation oxide and Z or various metal oxides Compounding with things is being considered.
  • siloxane-based binders polydimethylsiloxane is known. This polydimethyl siloxane does not deteriorate unless it is usually at a high temperature of 200 ° C or higher, and is useful as a siloxane type binder with excellent heat resistance and UV resistance. Used for.
  • siloxane-based binder and a silicon oxide or metal oxide are combined, they are often prepared in the form of a dispersion.
  • siloxane-based binders are difficult to dissolve in water, it is necessary to use an organic solvent as a dispersion medium.
  • silicon oxide fine particles and metal oxide fine particles (hereinafter collectively referred to as “oxide fine particles”) Ii) is often dispersed in an aqueous medium because it tends to aggregate in an organic solvent.
  • oxide fine particles and a siloxane-based binder are combined by a method of finely dispersing oxide fine particles in an organic solvent using these compounds, the dispersibility of the dispersion is Good, but poor compatibility between the above compound and siloxane-based
  • the coating film may be whitened.
  • phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group remains in this coating film. For this reason, problems such as coloring of the coating film and occurrence of cracks may occur in harsh environments such as under ultraviolet irradiation or at high temperatures of 150 ° C or higher.
  • the polysiloxane composition When a transparent coating film is formed using a conventional polysiloxane composition containing acid oxide fine particles, the polysiloxane composition usually contains 30 to 90% by weight of a dispersion solvent. Measured with an E-type viscometer to ensure dispersion stability of the oxide fine particles 25. C, The viscosity at a rotor rotation speed of 5 rpm is usually adjusted to a low viscosity of 15 mPa's or less. When a specific gravity or filler was added to such a low-viscosity oxide fine particle-containing polysiloxane composition, the filler sometimes settled and separated. For this reason, conventionally, an organic thickener such as polyethylene glycol has been added to increase the viscosity.
  • the silicate fine particles include organic solvent dispersions that maintain dispersibility with their own surface charges. Although this dispersion has good dispersion stability, it is a siloxane-based binder. When mixed with No. 1, the silicate fine particles agglomerated and whitened or cracked in some cases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-283822
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-185924
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-99879
  • the present invention is intended to solve the problems associated with the prior art as described above, and does not use phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group.
  • a polysiloxane-based cured product that is excellent in transparency and hardly yellows even at high temperatures
  • An object of the present invention is to provide a polysiloxane composition in which acid fine particles are highly dispersed in an organic solvent and a method for producing the same, which can provide such a cured product.
  • the present inventor treated polyoxysiloxane by treating fine oxide particles in an organic solvent in the presence of a basic compound, an acidic compound or a metal chelate compound. It was found that a polysiloxane composition in which acid oxide fine particles were highly dispersed in an organic solvent containing benzene was obtained, and the cured product obtained from this composition was excellent in transparency and yellowed even at high temperatures. As a result, they found it difficult to complete the present invention.
  • the acid oxide fine particle-containing polysiloxane composition according to the present invention is an organic solvent in the presence of a basic compound, an acidic compound or a metal chelate compound.
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or Okishiarukiren group
  • Yogu R 2 be different be the same as each other in the case where R 1 there are a plurality If there are multiple R 2 groups, they may be the same or different from each other.
  • A is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or Okishiarukiren group
  • Yogu R 3 be different be the same as each other in the case where R 1 there are a plurality A hydrogen atom or an alkyl group, and when there are multiple R 3 groups, they may be the same or different from each other.
  • A is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • c Is greater than 0 and less than 4 and a + b X 2 + c 4
  • oxide fine particles (A) are dispersed in an organic solvent.
  • the oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) or (B3) are mixed in the presence of a basic compound. More preferably, the compound is an organic amine compound.
  • the oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) or (B3) are preferably mixed by a bead mill.
  • the polyfunctional polysiloxane (B1) or (B2) or (B3) is 1 to L000 weight in terms of a complete hydrolyzed condensate with respect to 100 parts by weight of the oxide fine particles (A). It is preferable to partially mix.
  • the water content of the above-mentioned polysiloxane yarn-containing composition containing acid fine particles should be 5% by weight or less. And are preferred.
  • the polyfunctional polysiloxane (B1) In the polysiloxane composition containing oxide fine particles obtained by mixing the oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2), the polyfunctional polysiloxane (B1) Alternatively, it is preferable that (B2) is further hydrolyzed and condensed and then mixed with the oxide fine particles (A).
  • the catalyst in the dealcoholization reaction is preferably a metal chelate compound.
  • the polyfunctional polysiloxane (B3) has a weight average molecular weight of
  • the polystyrene conversion value measured by gel permeation chromatography is in the range of 1,000 to 100,000.
  • the cured product according to the present invention is obtained from the above-described polysiloxane composition containing oxide fine particles.
  • the LED sealing material according to the present invention is obtained by further mixing a phosphor with the above-mentioned oxide fine particle-containing polysiloxane composition.
  • the method for producing the oxide fine particle-containing polysiloxane composition according to the present invention comprises the following average composition formula (1):
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or Okishiarukiren group
  • Yogu R 2 be different be the same as each other in the case where R 1 there are a plurality If there are multiple R 2 groups, they may be the same or different from each other.
  • A is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or oxyalkylene group.
  • R 3 may be the same or different when there are a plurality of R 1 R 3 is a hydrogen atom or an alkyl group, and when there are a plurality of R 3, they may be the same or different from each other.
  • A is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • c is greater than 0 and less than 4
  • a + b X 2 + c 4
  • the polyfunctional polysiloxane (B1) or (B2) or (B3) is mixed with a key oxide fine particle and a Z oxide or metal oxide fine particle (A) in an organic solvent in a basic compound or an acidic compound. Alternatively, mixing is performed in the presence of a metal chelate compound.
  • oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) or (B3) are preferably mixed by a bead mill.
  • the polyfunctional polysiloxane (B1) or (B2) are mixed, the polyfunctional polysiloxane (B1) or (B2) (The catalyst in the dealcoholization reaction, which is preferably mixed with the oxide fine particles (A) after further hydrolyzing / condensing B1) or (B2), is preferably a metal chelate compound.
  • oxide fine particles are formed in an organic solvent containing polysiloxane having a dimethylsiloxane chain without using a compound having an alkoxyalkylene group such as phosphoric acid having an organic group having 6 or more carbon atoms.
  • a highly dispersed composition is obtained.
  • This composition is excellent in dispersion stability and can form a cured product containing the oxide fine particles and the polysiloxane. Since this cured product does not substantially contain the above compound, it does not deteriorate even when exposed to harsh environments, and has excellent transparency. Furthermore, this cured product is not easily yellowed even at high temperatures.
  • the polysiloxane has a dimethylsiloxane chain having an appropriate length, it is excellent in flexibility, so that a thick cured body can be formed.
  • a cured product using highly refractive metal oxide fine particles as oxide fine particles can be used as a sealing material for LED elements using blue LED elements or ultraviolet LED elements as light emitting elements. It is useful as a sealing material for high-brightness LED elements.
  • the oxide fine particle-containing polysiloxane composition according to the present invention comprises oxide fine particles (A) and polyfunctional polysiloxane (B), phosphoric acid or the like having an organic group having 6 or more carbon atoms, Without using a compound having a xylene group, it can be obtained by mixing in an organic solvent in the presence of a basic compound, acidic compound or metal chelate compound and subjecting it to a dispersion treatment.
  • the oxide fine particles (A) used in the present invention are silicate fine particles and Z or metal oxide fine particles.
  • the metal oxide fine particles are metal element oxide fine particles.
  • the oxide fine particles may be used alone or in combination of two or more.
  • the oxide fine particles (A) can be appropriately selected depending on the function to be imparted. For example, in the case of imparting a high refractive property, the TiO fine particles are preferable in the ultraviolet region.
  • UV cut function ZrO fine particles are preferable in order to achieve both high properties and high refractive properties.
  • UV cut function UV cut function
  • cerium oxide fine particles and acid oxide zinc fine particles are preferable.
  • the primary average particle size of the oxide fine particles (A) is preferably 0.1 to: LOOnm, more preferably 0.1 to 70 nm, and particularly preferably 0.1 to 50 nm. It is. When the primary average particle diameter of the oxide fine particles (A) is in the above range, a cured product having excellent light transmittance can be obtained.
  • Such oxide fine particles (A) are dispersed in a solvent! Even if they are added in the form of a powder, they are added in a polar solvent such as isopropyl alcohol or in a nonpolar solvent such as toluene. It may be added in the form of a dispersed dispersion.
  • the oxide fine particles (A) before the addition may be aggregated to form secondary particles.
  • it is preferable to use a powder because an appropriate organic solvent can be appropriately selected in consideration of the solubility of the polyfunctional polysiloxane (B).
  • the production method of the present invention is particularly effective when added in the form of powder.
  • the polyfunctional polysiloxane (B) is a polyfunctional polysiloxane having a dimethylsiloxane chain.
  • Functional polysiloxanes and polyfunctional polysiloxanes having hydroxyl groups and z or alkoxy groups can be used.
  • polyfunctional polysiloxane having a dimethylsiloxane chain examples include an alkoxy-terminated polyfunctional polysiloxane (bl) having a polystyrene-equivalent weight average molecular weight of 500 or more and less than 3,000 as measured by gel permeation chromatography, and gel permeation.
  • Average molecular weight of 2, 000 to 100, 000 alkoxy end is in the range of polydimethylsiloxane (b4) and the polysiloxane obtained by dealcoholation (B2) and the like.
  • the alkoxy-terminated polyfunctional polysiloxane (bl) used in the present invention is:
  • the polyfunctional polysiloxane having an alkoxy group represented by the above formula has a three-dimensional crosslinked structure.
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or oxyalkylene group, and when there are a plurality of R 1 s, they may be the same or different from each other.
  • R 2 is an alkyl group, and when two or more R 2 are present, they may be the same or different.
  • a is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • c is greater than 0 and less than 4
  • a + b X 2 + c 4.
  • a is a ratio of a hydrogen atom and a monovalent hydrocarbon group having no oxyalkylene group to the total of the silicon atoms
  • c is a silicon atom of the alkoxy group Represents the ratio to.
  • the weight average molecular weight of the alkoxy-terminated polyfunctional polysiloxane (bl) is It is a polystyrene conversion value measured by ace chromatography, which is 500 or more and less than 3,000, more preferably 550 or more and less than 3,000, and particularly preferably 600 or more and less than 3,000.
  • the alkoxy-terminated polyfunctional polysiloxane (b 1) having a weight average molecular weight within the above range is used, it is possible to achieve both suppression of crack generation and good curability during formation of the cured product.
  • the monovalent hydrocarbon group is not particularly limited as long as it does not have an oxyalkylene group.
  • 1S substituted or unsubstituted monovalent hydrocarbon group examples include an alkyl group having 1 to 8 carbon atoms, a phenol group, a benzyl group, and a tolyl group.
  • Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • Examples of the monovalent substituted hydrocarbon group include substituted alkyl groups having 1 to 8 carbon atoms.
  • Examples of the substituent of the substituted alkyl group include halogen, amino group, mercapto group, isocyanate group, glycidyl group, glycidoxy group, ureido group and the like.
  • Examples of the alkyl group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Of these alkyl groups, a methyl group and an ethyl group are preferred.
  • the alkoxy-terminated polyfunctional polysiloxane (bl) can be produced, for example, by subjecting the polyfunctional alkoxysilane or polyfunctional chlorosilane to an appropriate combination of hydrolysis and condensation so as to satisfy the above average composition formula. .
  • hydrolysis / condensation with tetraalkoxysilanes only and hydrolysis / condensation with dialkoxysilanes only are excluded.
  • Examples of the polyfunctional alkoxysilane include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, and tetra-n-butoxysilane.
  • Funole propyl triethoxysilane 3 —Aminopropyltrimethoxysilane, 3-aminopropinotriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane, 3-isocyanate pro Pyrtriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 —Glycidoxip Pyrtriethoxysilane, 2 -— (3,4 Epoxycyclohexylenole) ethinoretrimethoxysilane, 2 -— (3,4-Epoxycyclohexyl) ethyltriethoxysilane, 3-ureidopropyltrimethoxysilane , Trialkoxysilanes such as 3-ureidopropyltriethoxysilane;
  • monofunctional alkoxysilanes can be used in combination.
  • monofunctional alkoxysilanes include trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, and triethylethoxysilane. These monofunctional alkoxysilanes should be used at 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less based on the total amount of alkoxysilane used. That's right.
  • alkoxy-terminated polyfunctional polysiloxane (bl) satisfying the above molecular weight X40-9220 (trade name) manufactured by Shin-Etsu Silicone Co., Ltd. XC96- B0446 (trade name) manufactured by GE Toshiba Silicone Co., Ltd. A commercially available siloxane polymer such as can also be used.
  • alkoxy-terminated polyfunctional polysiloxane (bl) has a Si—OH bond in a range without impairing the effects of the present invention.
  • the hydroxy-terminated polydimethylsiloxane (b2) used in the present invention has a polystyrene-equivalent weight average molecular weight of 2,000 to 100,000, more preferably ⁇ 2,000 to 80,000 as measured by gel permeation chromatography. 000 or less, especially preferred ⁇ is from 3,000 to 70,000.
  • a polyfunctional polysiloxane (B1) having excellent flexibility can be obtained. Therefore, it is possible to increase the thickness of the cured body.
  • This hydroxy-terminated polydimethylolsiloxane (b2) can be produced, for example, by hydrolyzing and condensing dimethylinoresinoleoxysilane or dimethyldichlorosilane.
  • dimethyl dialkoxysilane examples include dimethyldimethoxysilane, dimethyljetoxysilane, dimethyldipropoxysilane, dimethyldibutoxysilane, and the like. These dimethyl dialkoxysilanes can be used alone or in admixture of two or more.
  • the hydroxy-terminated polydimethylsiloxane (b2) can also be produced by ring-opening condensation of a cyclic organosiloxane.
  • Cyclic organosiloxanes include hexaphenylcyclotrisiloxane, octaphenylcyclotetrasiloxane, tetilavinyl tetramethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, otamethylcyclotetrasiloxane, pentamethylcyclotetrasiloxane, hexamethyl. Examples thereof include cyclotetrasiloxane, tetramethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • hydroxy-terminated polydimethylsiloxane (b2) satisfying the above molecular weight GE East Commercially available hydroxy-terminated polydimethylsiloxanes such as YF-3057, YF-3800, YF-3802, YF-3897, and XF-3905 (trade name) manufactured by Shiba Silicone may also be used.
  • the hydroxy-terminated polyfunctional polysiloxane (b3) used in the present invention is:
  • the polyfunctional polysiloxane having a hydroxy group represented by the formula (1) has a three-dimensional crosslinked structure.
  • the weight average molecular weight of the hydroxy-terminated polyfunctional polysiloxane (b3) is a polystyrene conversion value measured by gel permeation chromatography, and is not less than 500 and less than 3,000, more preferably not less than 550 and less than 3,000. Particularly preferably, it is 600 or more and less than 3,000.
  • the monovalent hydrocarbon group is not particularly limited as long as it does not have an oxyalkylene group.
  • substituted or unsubstituted monovalent hydrocarbon group examples include the same as the substituted or unsubstituted monovalent hydrocarbon group exemplified for the alkoxy-terminated polyfunctional polysiloxane (bi).
  • This hydroxy-terminated polyfunctional polysiloxane (b3) can be produced, for example, by hydrolyzing and condensing polyfunctional alkoxysilane or polyfunctional chlorosilane in an appropriate combination so as to satisfy the above average composition formula. .
  • hydrolysis / condensation with tetraalkoxysilanes only and hydrolysis / condensation with dialkoxysilanes only are excluded.
  • Examples of the polyfunctional alkoxysilane may include the same polyfunctional alkoxysilanes exemplified for the alkoxy-terminated polyfunctional polysiloxane (bl), and may be used alone or in combination of two or more. Can be used.
  • the monofunctional alkoxysilane exemplified in the above alkoxy-terminated polyfunctional polysiloxane (bl) is used in combination. May be.
  • the monofunctional alkoxysilane is desirably used in an amount of 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less based on the total amount of the alkoxysilane used.
  • the alkoxy-terminated polydimethylsiloxane (b4) used in the present invention has a polystyrene-equivalent weight average molecular weight of 2,000 to 100,000 and more preferably ⁇ 2,000 and 80, as measured by gel permeation chromatography. , 000 or less, particularly preferred ⁇ is from 3,000 to 70,000.
  • a polyfunctional polysiloxane (B2) having excellent flexibility can be obtained. Therefore, it is possible to increase the thickness of the cured body.
  • the alkoxy-terminated polydimethylsiloxane (b4) can be produced, for example, by hydrolysis and condensation of dimethyldialkoxysilane or dimethyldichlorosilane.
  • dialkoxysilane examples include those similar to the dialkoxysilane exemplified for the hydroxy-terminated polydimethylsiloxane (b2). These may be used alone or in combination of two or more. can do.
  • the polyfunctional polysiloxane (B1) can be produced by subjecting the alkoxy-terminated polyfunctional polysiloxane (bl) and the hydroxy-terminated polydimethylsiloxane (b2) to a dealcoholization reaction.
  • the polyfunctional polysiloxane (B2) can be produced by subjecting the hydroxy-terminated polyfunctional polysiloxane (b3) and the alkoxy-terminated polydimethylsiloxane (b4) to a dealcoholization reaction.
  • These polyfunctional polysiloxanes (B1) and (B2 ) Is usually preferably hydrolyzed and condensed after adding water. As a result, the polyfunctional polysiloxanes (B1) and (B2) have a high molecular weight, and the transparency of the resulting cured product is improved.
  • Each of the above reactions is usually performed using a catalyst in an organic solvent.
  • the mixing ratio of the alkoxy-terminated polyfunctional polysiloxane (bl) and the hydroxy-terminated polydimethylsiloxane (b2) is 3Z97 to 55Z45 in a weight ratio (blZb2) with respect to 100 parts by weight of the total. , Preferably 5,95-50,50, more preferably 7,93-30 / 70.
  • the mixing ratio of the hydroxy-terminated polyfunctional polysiloxane (b3) and the alkoxy-terminated polydimethylsiloxane (b4) is 3Z97 to 55Z45 in a weight ratio (b3Zb4) with respect to 100 parts by weight in total. Preferably, it is 5,95-50,50, more preferably 7Z93-30Z70.
  • the temperature of the dealcoholization reaction is preferably 30 to 150 ° C, more preferably 40 to 120 ° C, and particularly preferably 50 to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, and particularly preferably 1 to 8 hours.
  • the dealcoholization reaction may be carried out by charging each component in a reaction vessel all at once, or may be carried out while intermittently or continuously adding the other component to one component.
  • a polyfunctional polysiloxane (B2) having a structure in which a hydroxy-terminated polyfunctional polysiloxane (b3) is bonded to both ends of the siloxane (b4) is formed.
  • the amount of water added in the condensation reaction is usually 0.1 to: LOO parts by weight, preferably 0.5 parts per 100 parts by weight of the polyfunctional polysiloxane (B1) or (B2). -80 parts by weight, more preferably 1-50 parts by weight. If the amount of water added is in the above range, it is preferable because the hydrolysis' condensation reaction proceeds sufficiently.
  • the temperature of the hydrolysis' condensation reaction is preferably 20 to 150 ° C, more preferably 30 to: LO 0 ° C, particularly preferably 40 to 80 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, and particularly preferably 1 to 8 hours.
  • Examples of the organic solvent used in the above dealcoholization reaction and hydrolysis' condensation reaction include alcohols, aromatic hydrocarbons, ethers, ketones, and esters.
  • Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, i-butyl alcohol, n-butyl anolenoconole, sec-butinoreanoreconole, tert-butenoreanoreconole, n-hexino.
  • aromatic hydrocarbons include benzene, toluene, and xylene.
  • ethers include tetrahydrofuran and dioxane.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and dioxane.
  • esters include esters, ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate, 3-ethoxypropionic acid.
  • examples include methyl and ethyl 3-ethoxypropionate.
  • organic solvents in the dealcoholization reaction, it is preferable to use an organic solvent other than alcohol, for example, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, etc., from the viewpoint of promoting the reaction. Moreover, it is preferable to use these organic solvents in a state where moisture has been removed by dehydration in advance.
  • an organic solvent other than alcohol for example, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, etc.
  • the above organic solvent is used for the control of dealcoholization reaction and hydrolysis' condensation reaction, adjustment of the concentration or viscosity of the resulting polyfunctional polysiloxane (B1) or (B2) -containing solution, or thickness during production of the cured product. It can be used as appropriate for the purpose of adjustment.
  • Organic When using a solvent, the amount used can be set as appropriate according to the desired conditions.
  • the resulting polyfunctional polysiloxane (B1) or (B2) has a concentration power.
  • the amount is preferably 5 to 99% by weight, more preferably 7 to 95% by weight, and particularly preferably 10 to 90% by weight.
  • Examples of the catalyst used in the dealcoholization reaction or hydrolysis / condensation reaction include basic compounds, acidic compounds and metal chelate compounds.
  • Examples of the basic compound include ammonia (including aqueous ammonia solution), organic amine compound, sodium hydroxide, hydroxide of alkaline earth metal such as potassium hydroxide, sodium methoxide, and the like. And alkali metal alkoxides such as sodium ethoxide. Of these, ammonia and organic amine compounds are preferred.
  • organic amines examples include alkylamines, alkoxyamines, alkanolamines, arylamines and the like.
  • Alkylamines include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, N, N-dimethylamine, N, N-jetylamine, N, N-dipropylamine, N, N-dibutylamine, trimethylamine, triethylamine, and tolamine.
  • alkylamines having an alkyl group having 1 to 4 carbon atoms such as ripropylamine and tributylamine.
  • alkoxyamine examples include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethyl.
  • Alkoxy groups having an alkoxy group having 1 to 4 carbon atoms such as amines, propoxychetylamines, propoxypropylamines, propoxybutyramines, butoxymethylamines, butoxysethylamines, butoxypropylamines, butoxybutyramines. Min etc. are mentioned.
  • alkanolamine examples include methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylpyramethanolamine, N —Butylmethanolamine, N—Methylethanolamine, N Ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethylpropanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutanolamine, N ethylbutanolamine, N propylbutanolamine, N butylbutanolamine, N, N dimethylmethanolamine, N, N jetylmethanolamine, N, N dipropylmethanolamine, N, N-dibutyl Methanolamine, N, N Dimethylethanolamine, N, N Jetylethanolamine, N, N Dipropylethanolamine, N,
  • Arylamines include aline and N-methylaline.
  • organic amines include tetramethylammuno, idroxide, Tetraalkylammonium hydroxide such as traetylammonum hydroxide, tetrapropylammonum hydroxide, tetraptylammonum hydroxide; tetramethylethylenediamine, tetraethylethylenediamine, Tetraalkylethylenediamines such as tetrapropylethylenediamine and tetrabutylethylenediamine; methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethylaminomethylamine , Aminoethylamine, ethylaminobutylamine, ethylaminobutylamine, propylaminomethylamine, propylaminoethylamine, propylaminopropylamine, propylaminopropyl
  • Such basic compounds may be used singly or in combination of two or more. Of these, triethylamine, tetramethylammonium hydroxide and pyridine are particularly preferable.
  • Examples of the acidic compound include organic acids and inorganic acids.
  • Examples of organic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, maleic anhydride, and methylmalonic acid.
  • the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
  • Such acidic compounds may be used singly or in combination of two or more.
  • maleic acid maleic anhydride, methanesulfonic acid, and acetic acid are particularly preferred.
  • Metal chelate compound examples include an organometallic compound and z or a partial hydrolyzate thereof (hereinafter referred to as “organic metal compounds” t, which are collectively referred to as an organometallic compound and Z or a partial hydrolyzate thereof). Can be mentioned.
  • organometallic compounds include those represented by the following formula (a):
  • M represents at least one metal atom selected from the group consisting of zirconium, titanium, and aluminum
  • R 7 and R 8 are each independently a methyl group, an ethyl group, or an n-propyl group.
  • organic compound (a) (Hereinafter referred to as “organometallic compound (a)”)
  • organic metal compound of tetravalent tin in which 1 to 2 alkyl groups having 1 to 10 carbon atoms are bonded to one tin atom hereinafter referred to as “organic tin compound”.
  • organometallic compound (a) examples include tetra-n-butoxyzirconium, tri-n-butoxy. Ethinoreacetoacetate dinoreconium, zi- n -butoxy'bis (ethinoreacetoacetate) zirconium, n- Organic zirconium compounds such as butoxy 'tris (ethinoreacetoacetate) dinoleconium, tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetinoreacetoacetate) zirconium, tetrakis (ethinoreacetoacetate) zirconium;
  • Organics such as tetra-i-propoxy titanium, di-i-propoxy 'bis (ethinoreacetoacetate) titanium, di-i-propoxy'bis (acetyl acetate) titanium, di-i-propoxy'bis (acetylacetone) titanium Titanium compound;
  • organic tin compound for example,
  • Carboxylic acid-type organotin compounds such as
  • Chloride-type organotin compounds such as (C 4 H 0 ) 2 Sn C 1 [0077]; Organotin oxides such as (CH) SnO and (CH) SnO, and these organotin oxides
  • Reaction products of side and ester compounds such as silicate, dimethyl maleate, jetyl maleate, dioctyl phthalate;
  • Such metal chelate compounds may be used alone or in combination of two or more. Of these, tri-n-butoxyethyl acetate acetate zirconium, diipropoxy bis (acetinoreacetonate) titanium, diipropoxy ethenoreacetoacetate aluminum, tris (ethylacetoacetate) aluminum, or These partial hydrolysates are preferred.
  • metal chelate compounds are preferred in terms of excellent reactivity in the dealcoholization reaction.
  • the basic compound, acidic compound or metal chelate compound is added in a total of 100 parts by weight of the polyfunctional polysiloxane (bl) or (b3) and the polydimethylsiloxane (b2) or (b4). On the other hand, it is usually 0.001 to 20 parts by weight, preferably 0.0.
  • the basic compound, acidic compound or metal chelate compound is a polyfunctional polysiloxane (bl) or (b3) and a polydimethylsiloxane (b2
  • the weight average molecular weight of the polyfunctional polysiloxanes (B1) and (B2) obtained by the above method is usually a polystyrene equivalent value measured by gel permeation chromatography.
  • polyfunctional polysiloxane having a hydroxyl group and Z or alkoxy group examples include the following average composition formula (3)
  • R 1 is is similarly to R 1 defined in the above formula (1)
  • R 3 is a hydrogen atom or a ⁇ alkyl group, the same as each other in the case where R 3 there are multiple Or it can be different.
  • a is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • c is greater than 0 and less than 4
  • a + b X 2 + c 4.
  • a is a ratio of a hydrogen atom and a monovalent hydrocarbon group having no oxyalkylene group to the total silicon atom
  • c is a ratio between a hydroxyl group and an alkoxy group. Represents the percentage of total key atoms.
  • the weight average molecular weight of the polyfunctional polysiloxane (B3) is a polystyrene conversion value measured by gel permeation chromatography, preferably 1,000-100,000, more preferably ⁇ 1, 000-80,000, especially preferred ⁇ 1,500-70,000.
  • the polyfunctional polysiloxane (B3) having a weight average molecular weight within the above range is used, it is possible to achieve both suppression of crack generation and good curability during the formation of a cured product.
  • the monovalent hydrocarbon group is not particularly limited as long as it does not have an oxyalkylene group.
  • substituted or unsubstituted monovalent hydrocarbon group examples include the same as the substituted or unsubstituted monovalent hydrocarbon group exemplified for the alkoxy-terminated polyfunctional polysiloxane (bi).
  • alkyl group represented by R 3 there may be mentioned the same alkyl groups exemplified above alkoxy-terminated polyfunctional polysiloxane Sun (bl), a methyl group, is Echiru group.
  • the polyfunctional polysiloxane (B3) can be produced, for example, by hydrolyzing and condensing polyfunctional alkoxysilane or polyfunctional chlorosilane as appropriate so as to satisfy the above average composition formula. However, hydrolysis / condensation with tetraalkoxysilanes only and hydrolysis / condensation with dialkoxysilanes only are excluded.
  • polyfunctional alkoxysilane examples include the same polyfunctional alkoxysilanes as exemplified for the alkoxy-terminated polyfunctional polysiloxane (bl).
  • One type may be used alone, or two or more types may be mixed. Can be used.
  • the monofunctional alkoxysilane exemplified in the above alkoxy-terminated polyfunctional polysiloxane (bl) may be used in combination.
  • the monofunctional alkoxysilane is It is desirable to use 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less based on the total amount.
  • alkoxy group-containing polysiloxanes X40-9220, X40-9225 (trade name) manufactured by Shin-Etsu Silicone, XR31- B1410, XR31- B0270, XR31- B2733 (all) manufactured by GE Toshiba Silicone It is possible to use commercially available siloxane polymers such as (trade name).
  • the oxide fine particle-containing polysiloxane composition according to the present invention comprises oxide fine particles (A) and polyfunctional polysiloxanes (B1) or (B2) or (B3), which are phosphorous having an organic group having 6 or more carbon atoms.
  • the dispersion can be obtained by mixing in an organic solvent in the presence of a basic compound, acidic compound or metal chelate compound.
  • organic solvent examples include the organic solvents exemplified in the dealcohol reaction and hydrolysis / condensation reaction during the production of the polyfunctional polysiloxane (B1) or (B2). These organic solvents may be used alone or in combination of two or more.
  • organic solvents other than alcohols such as methyl ethyl ketone, methyl isobutyl ketone, di-ethylene are preferable in that the dispersion stability and viscosity of the polysiloxane composition containing oxide fine particles can be increased. Isoptyl ketone, toluene, xylene, ethyl acetate, butylacetate, and mixtures thereof are preferred. In addition, it is preferable to use these organic solvents after dehydration and removal of moisture.
  • the amount of the organic solvent used is not particularly limited as long as it is an amount capable of uniformly dispersing the oxide fine particles (A), but the solid content concentration of the resulting oxide fine particle-containing polysiloxane composition is preferable. Is in an amount of 5 to 80% by weight, more preferably 7 to 70% by weight, particularly preferably 10 to 60% by weight.
  • the basic compound, acidic compound and metal chelate compound include the above-mentioned polyfunctional polysiloxane (B1) or (B2) dealcoholization reaction or hydrolysis' condensation reaction And the compounds exemplified in the above.
  • basic compounds that are preferred by basic compounds and acidic compounds are more preferred by organic amine compounds that are more preferred by triethylamine, tetramethyl. Ammonium hydroxide and pyridine are particularly preferred.
  • the basic compound, acidic compound, or metal chelate compound is added to the oxide fine particle-containing polysiloxane composition of the present invention with respect to 100 parts by weight of the oxide fine particles (A).
  • the oxide fine particles (A) In general, 0.001 to 20 parts by weight, preferably 0.005 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, still more preferably 0.01 to 1 part by weight, and particularly preferably 0.01. -0. It is desirable to contain 5 parts by weight. Within the above range, the dispersion stability of the oxide fine particles (A) and the viscosity of the composition of the oxide fine particle-containing polysiloxane can be easily controlled.
  • the above-mentioned polysiloxane composition containing oxide fine particles comprises an oxide fine particle (A), a polyfunctional polysiloxane (B1) or (B2) or (B3), a basic compound, an acidic compound or a metal chelate compound in an organic solvent. It can be prepared by adding the compound, mixing them well, and dispersing the oxide fine particles (A) in an organic solvent.
  • a known disperser such as a ball mill, a sand mill (bead mill, high shear bead mill), a homogenizer, an ultrasonic homogenizer, a nanomizer, a propeller mixer, a high shear mixer, or a paint shaker.
  • a ball mill and a sand mill (bead mill, high shear bead mill) are preferably used.
  • acid fine particles (A) and polyfunctional polysiloxane (B1) or (B2) or (B3) are combined in the presence of a basic compound, acidic compound or metal chelate compound.
  • the polyfunctional polysiloxane (B1) or (B2) or (B3) condensation reaction proceeds on the surface of the oxide microparticle (A) by the catalytic action of the basic compound, acidic compound or metal chelate compound. Therefore, it is presumed that the surface of the oxide fine particles (A) becomes hydrophobic and easily dispersed in an organic solvent.
  • the polysiloxane composition containing the oxide fine particles of the present invention comprises the complete hydrolysis of the polyfunctional polysiloxane (B1) or (B2) or (B3) with respect to 100 parts by weight of the oxide fine particles (A).
  • the oxide fine particles (A) preferably 1 to: LOOO parts by weight, more preferably 5 to 900 parts by weight, particularly more preferably It is desirable to contain 10 to 800 parts by weight.
  • the oxide fine particle-containing polysiloxane composition is a highly dispersed composition in which the oxide fine particles (A) have a volume average dispersed particle size of preferably 300 nm or less, more preferably 200 nm or less. It is. Further, the above-mentioned polysiloxane composition containing oxide fine particles preferably contains substantially no water. Specifically, the water content is preferably 5% by weight or less, more preferably 3% by weight or less. Particularly preferred is 1% by weight or less.
  • the acid oxide fine particle-containing polysiloxane composition of the present invention can be increased in viscosity by extending the dispersion treatment time without using an organic thickener such as polyethylene glycol, Neither gelation nor sedimentation of oxide fine particles (A) occurs, and sedimentation separation can be suppressed even when an additive with a high specific gravity is mixed.
  • the above-mentioned polysiloxane composition containing acid oxide fine particles is preferably a viscosity at 25 ° C, rotor rotational speed 5 rpm, solid content concentration 20% by weight as measured with a RE80 viscometer manufactured by Toki Sangyo Co., Ltd. Is at least 20 mPa's, more preferably at least 30 mPa's, particularly preferably at least 50 mPa's.
  • a thick film cured body can be easily produced without separation even when a high specific gravity filler is blended.
  • the oxide fine particle-containing polysiloxane composition contains the oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) having a dimethylsiloxane chain, Since siloxanes (B1) and (B2) are excellent in flexibility, a cured product having a thickness of 10 m to llm can be formed.
  • the oxide fine particles (A) are highly dispersed without using phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group. This makes it possible to form a cured body (film) that is not deteriorated even when exposed to a harsh environment and has excellent transparency.
  • This cured product can be obtained by applying the above-mentioned oxide fine particle-containing polysiloxane composition onto a substrate and the like, and removing the solvent by drying to cure the polyfunctional polysiloxane.
  • this cured product has a carbon-carbon bond in the crosslinked structure. There is no bond, and the UV resistance is excellent.
  • the cured product does not turn yellow (yellow) even when irradiated with ultraviolet rays of 5000 mWZ m 2 for 200 hours. Also, it does not deteriorate due to heating at 150 ° C for 200 hours.
  • the oxide fine particle-containing polysiloxane composition of the present invention can further contain a phosphor, and the cured product can be used as an LED sealing material.
  • the oxide fine particle-containing polysiloxane composition of the present invention may contain glass fibers in order to reduce shrinkage and expansion of the cured product.
  • a composition containing glass fiber is used, a thick film cured body can be formed.
  • the difference in refractive index between the polyfunctional polysiloxane (B1) or (B2) and the glass fiber is preferably 0.01 or less.
  • the weight average molecular weight of siloxane was shown as a polystyrene conversion value measured by gel permeation chromatography under the following conditions.
  • the appearance of the obtained composition was visually observed.
  • the volume average dispersed particle size of the composition having no sedimentation of fine particles was measured with a microtrack ultrafine particle size distribution meter ("UPA150" manufactured by Nikkiso Co., Ltd.) and evaluated according to the following criteria.
  • B No separation / sedimentation. 200 nm ⁇ volume average dispersed particle size ⁇ 300 nm.
  • C No separation / sedimentation. 300 nm ⁇ volume average dispersed particle size.
  • the obtained composition was applied on a quartz glass plate so that the dry film thickness was 20 m, then dried and cured at 100 ° C for 1 hour, and then dried and cured at 200 ° C for 1 hour.
  • a cured body having a thickness of 20 m was prepared on the plate.
  • the light transmittance of the cured product at a wavelength of 450 nm was measured with an ultraviolet-visible spectrophotometer and evaluated according to the following criteria.
  • the dealcoholization reaction was carried out with C for 3 hours.
  • a solid containing polyfunctional polysiloxane with Mw 24,000 as in Preparation Example A1, except that the amount of hydroxy-terminated polydimethylsiloxane (XF-3905) with 20,000 was changed to 93 parts by weight.
  • a polysiloxane solution ( ⁇ ) having a partial concentration of 40% by weight was obtained.
  • Mw 30 as in Preparation Example A 1 except that the amount of alkoxy-terminated siloxane oligomer (X40-9220) was changed to 60 parts by weight and the amount of hydroxy-terminated polydimethylsiloxane (XF-3905) was changed to 40 parts by weight. , 000 polyfunctional polysiloxane, 40% solid content % Polysiloxane solution (i) was obtained.
  • a polysiloxane composition containing metal oxide fine particles (A-2) having a solid content concentration of 20% by weight was prepared in the same manner as in Example A1, except that 0.1 part by weight of methanesulfonic acid was used instead of triethylamine. did.
  • the results of evaluating the properties of this composition are shown in Table A1.
  • a polysiloxane composition (A-3) containing metal oxide fine particles having a solid content concentration of 20% by weight was prepared in the same manner as in Example A1, except that 100 parts by weight in terms of the amount was used. The results of evaluating the properties of this composition are shown in Table A1.
  • Example A4 Solid content concentration of 20% by weight in the same manner as in Example A1, except that 100 parts by weight of powdery acid / zirconium fine particles (primary average particle size: 20 nm) was used instead of rutile acid / acid titanium fine particles.
  • a polysiloxane composition (A-4) containing metal oxide fine particles was prepared. The results of evaluating the properties of this composition are shown in Table A1.
  • a fine particle-containing polysiloxane composition (A-5) was prepared. Of this composition The results of evaluating the properties are shown in Table Al.
  • a metal oxide fine particle-containing polysiloxane composition (A-C2) having a solid content concentration of 20% by weight was prepared in the same manner as in Example A1 except that 250 parts by weight were used. The results of evaluating the properties of this composition are shown in Table A1.
  • a polysiloxane composition (A-C3) containing metal oxide fine particles having a solid content of 20% by weight was prepared in the same manner as in Example A1 except that triethylamine was used. The results of evaluating the properties of this composition are shown in Table A1.
  • a metal oxide fine particle-containing polysiloxane composition (A-C5) having a solid content concentration of 20 wt% was prepared in the same manner as in Comparative Example A4 except that 100 parts by weight were used. The results of evaluating the properties of this composition are shown in Table A1.
  • a polysiloxane composition (A-C6) containing metal oxide fine particles was prepared. The results of evaluating the properties of this composition are shown in Table A1.
  • the weight average molecular weight of siloxane was shown as a polystyrene conversion value measured by gel permeation chromatography under the following conditions.
  • the appearance of the obtained composition was visually observed.
  • the volume average dispersed particle size of the selected composition in which no sedimentation of fine particles was observed was measured using a microtrack ultrafine particle size distribution meter (“NIKKISO
  • the obtained composition was applied on a quartz glass plate so that the dry film thickness was 2 / zm, then dried and cured at 100 ° C for 1 hour, and then dried and cured at 200 ° C for 1 hour.
  • a 2 m thick cured body was fabricated on a quartz glass plate.
  • the light transmittance of the cured product at a wavelength of 450 nm was measured with an ultraviolet-visible spectrophotometer and evaluated according to the following criteria.
  • the composition was applied onto a quartz glass plate so that the dry film thickness was 2 m, and then dried and cured at 100 ° C. for 1 hour. Next, it was dried and cured at 200 ° C. for 1 hour to form a cured body having a thickness of 2 ⁇ m on a quartz glass plate.
  • This cured product was irradiated with UV light for 200 hours under the condition of UV irradiation at a wavelength of 365 nm and 5000 mWZcm 2 using a spot UV irradiation device (“SP-V” manufactured by Usio Electric Co., Ltd.), and then the appearance of the film was visually observed. And evaluated according to the following criteria. A: No coloring. No crack.
  • Example B3 Solid content concentration of 20% by weight in the same manner as in Example B1, except that 100 parts by weight of powdery acid / zirconium fine particles (primary average particle size: 20 nm) was used instead of rutile acid / acid titanium fine particles.
  • a metal oxide fine particle-containing polysiloxane composition (B-3) was prepared. The results of evaluating the properties of this composition are shown in Table B1.
  • polydimethylsiloxane that does not contain Si-OR bond (R is alkyl group) or Si-OH bond and has methacrylic structure at both ends (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X ⁇ 22 ⁇ 164B) Similar to Example B1, except that it was used, the force S in which powdery rutile-type titanium oxide fine particles were dispersed in methyl ethyl ketone, and the titanium oxide fine particles settled. .
  • Uniformly dispersed particle size 60 nm, organic dispersant: 0 wt%) 300 parts by weight are put in a container, and an alkoxy-terminated methyl silicone oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X40) -9225) Add 100 parts by weight and 500 parts by weight of methyl ethyl ketone, and add 2000 parts by weight of 0.1 mm diameter Zircoyu beads to this mixture and use a bead mill. The mixture was stirred at 1500 rpm for 1 hour to disperse the fine particles, but the titanium oxide fine particles settled.
  • Titanium oxide fine particle water dispersion (“STS-01” manufactured by Ishihara Sangyo Co., Ltd.) 300 parts by weight are put into a container, and a condensate of tetrafunctional silane compound alone (manufactured by Colcoat Co., Ltd., trade name: Ethyl silicate 48) Add 200 parts by weight and 500 parts by weight of methyl ethyl ketone, and add 2000 parts by weight of 0.1 mm zirconia beads to the mixture and use a bead mill. The mixture was stirred at 1500 rpm for 1 hour to disperse the fine particles, but the titanium oxide fine particles settled.
  • Titanium oxide fine particles were dispersed in the same manner as in Comparative Example B6 except that methyl ethyl ketone was changed to 500 parts by weight of isopropyl alcohol to prepare a metal oxide fine particle-containing polysiloxane composition (Be). Although this composition was well dispersed, cracks occurred during film formation.
  • Example C2 Except for using 100 parts by weight of powdered zinc oxide fine particles (primary average particle size: 20 nm) in place of rutile-type titanium oxide fine particles and 0.1 parts by weight of acetic acid in place of methanesulfonic acid, In the same manner as in Example C1, a metal oxide fine particle-containing polysiloxane composition (C-2) having a solid content concentration of 20% by weight was produced. The results of the evaluation of the properties of this composition are shown in Table C1.
  • Example C1 Solid content concentration of 20% by weight in the same manner as in Example C1 except that 100 parts by weight of powdery acid-zirconium fine particles (primary average particle size: 20 nm) was used instead of rutile acid-acid titanium fine particles.
  • a polysiloxane composition (C-3) containing metal oxide fine particles was prepared. The results of evaluating the properties of this composition are shown in Table C1.
  • a polysiloxane composition (C-4) containing metal oxide fine particles having a solid content concentration of 20% by weight was prepared in the same manner as in Example C1 except that. The results of evaluating the properties of this composition are shown in Table C1.
  • Powdery rutile type titanium oxide fine particles were dispersed in methyl ethyl ketone in the same manner as in Example C1 except that methanesulfonic acid was not used, but the acid titanium fine particles settled.
  • polydimethylsiloxane that does not contain Si-OR bond (R is alkyl group) or Si-OH bond and has methacrylic structure at both ends (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X ⁇ 22 ⁇ 164B)
  • R is alkyl group
  • X ⁇ 22 ⁇ 164B A force S in which powdery rutile-type acid-titanium fine particles were dispersed in methyl ethyl ketone was precipitated in the same manner as in Example C1 except that it was used. .
  • Uniformly dispersed particle size 60 nm, organic dispersant: 0 wt%) 300 parts by weight are put in a container, and an alkoxy-terminated methyl silicone oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X40) -9225) Add 100 parts by weight and 500 parts by weight of methyl ethyl ketone, and add 2000 parts by weight of 0.1 mm diameter Zircoyu beads to this mixture and use a bead mill. The mixture was stirred at 1500 rpm for 1 hour to disperse the fine particles, but the titanium oxide fine particles settled. [0152] [Comparative Example C6]
  • Titanium oxide fine particle water dispersion (“STS-01” manufactured by Ishihara Sangyo Co., Ltd.) 300 parts by weight are put into a container, and a condensate of tetrafunctional silane compound alone (manufactured by Colcoat Co., Ltd., trade name: Ethyl silicate 48) Add 200 parts by weight and 500 parts by weight of methyl ethyl ketone, and add 2000 parts by weight of 0.1 mm zirconia beads to the mixture and use a bead mill. The mixture was stirred at 1500 rpm for 1 hour to disperse the fine particles, but the titanium oxide fine particles settled.
  • Titanium oxide fine particles were dispersed in the same manner as in Comparative Example C6, except that methyl ethyl ketone was changed to 500 parts by weight of isopropyl alcohol, to prepare a metal oxide fine particle-containing polysiloxane composition (Ce). Although this composition was well dispersed, cracks occurred during film formation.
  • a polysiloxane composition (D-2) containing fine particles was prepared. The results of the evaluation of the properties of this composition are shown in Table D1.
  • Mw 100,000 alkoxy-terminated methyl silicone polymer (trade name: XR31-B2733) manufactured by GE Toshiba Silicone Co., Ltd.
  • dilute solution of 75% isopropyl alcohol in tri-n-butoxyethyl acetate acetate instead of a 75% dilute solution in di-isopropoxy ethylacetoacetate aluminum.
  • D-4 having a solid content concentration of 20% by weight was produced. Evaluate the properties of this composition The results are shown in Table Dl.
  • Example D1 Disperse powdery rutile titanium oxide fine particles in methyl ethyl ketone in the same manner as in Example D1, except that 75% isopropyl alcohol diluted with di-isopropoxy ethyl acetate acetate was used. But the titanium oxide fine particles settled
  • polydimethylsiloxane that does not contain Si-OR bond (R is alkyl group) or Si-OH bond and has methacrylic structure at both ends (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X ⁇ 22 ⁇ 164B) Except for use, the same force as in Example D1, in which powdery rutile-type acid-titanium fine particles were dispersed in methyl ethyl ketone S, and acid-titanium fine particles settled. .
  • An acid-titanium fine particle aqueous dispersion in which anatase-type acid-titanium fine particles are dispersed in water in advance (“STS-01” manufactured by Ishihara Sangyo Co., Ltd., TiO concentration 30% by weight, volume level of fine titanium oxide particles
  • Uniformly dispersed particle size 60 nm, organic dispersant: 0 wt%) 300 parts by weight are put in a container, and an alkoxy-terminated methyl silicone oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X40) -9225) Add 100 parts by weight and 500 parts by weight of methyl ethyl ketone, and add 2000 parts by weight of 0.1 mm diameter Zircoyu beads to this mixture and use a bead mill. The mixture was stirred at 1500 rpm for 1 hour to disperse the fine particles, but the titanium oxide fine particles settled.
  • Titanium oxide fine particle water dispersion (“STS-01” manufactured by Ishihara Sangyo Co., Ltd.) 300 parts by weight are put into a container, and a condensate of tetrafunctional silane compound alone (manufactured by Colcoat Co., Ltd., trade name: Ethyl silicate 48) Add 200 parts by weight and 500 parts by weight of methyl ethyl ketone, and add 2000 parts by weight of 0.1 mm zirconia beads to the mixture and use a bead mill. The mixture was stirred at 1500 rpm for 1 hour to disperse the fine particles, but the titanium oxide fine particles settled.
  • Titanium oxide fine particles were dispersed in the same manner as in Comparative Example D6 except that methyl ethyl ketone was changed to 500 parts by weight of isopropyl alcohol to prepare a metal oxide fine particle-containing polysiloxane composition (De). Although this composition was well dispersed, cracks occurred during film formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明に係る酸化物微粒子含有ポリシロキサン組成物は、有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で、(A)ケイ素酸化物微粒子および/または金属酸化物微粒子、および(B)多官能ポリシロキサンを混合して、前記酸化物微粒子(A)を有機溶媒中に分散させることにより得られる。この酸化物微粒子含有ポリシロキサン組成物は、炭素数6以上の有機基を有するリン酸等やオキシアルキレン基を有する化合物を使用せずに、有機溶媒中で酸化物微粒子が高度に分散している。このような酸化物微粒子含有ポリシロキサン組成物から得られるポリシロキサン系硬化体は、透明性に優れ、高温下でも黄色化しにくい。

Description

明 細 書
酸化物微粒子含有ポリシロキサン組成物およびその製造方法
技術分野
[oooi] 本発明は、ケィ素酸ィ匕物微粒子および Zまたは金属酸ィ匕物微粒子がジメチルシロ キサン連鎖を有する多官能ポリシロキサンや、水酸基やアルコキシ基を有する多官 能ポリシロキサンを含む有機溶媒中に高度に分散したポリシロキサン組成物および その硬化体に関する。
背景技術
[0002] 従来から、耐久性に優れるシロキサン材料に各種機能を付与する手段として、シロ キサン骨格を有するバインダー(以下、「シロキサン系バインダー」とも 、う)とケィ素酸 化物および Zまたは各種金属酸化物との複合化が検討されて 、る。このシロキサン 系バインダーの 1つとして、ポリジメチルシロキサンが知られている。このポリジメチル シロキサンは通常 200°C以上の高温下でない限り劣化せず、耐熱性、耐紫外線性に 優れたシロキサン系ノインダ一として有用であり、さらに柔軟性にも優れている点で 様々な用途に使用される。
[0003] シロキサン系バインダーとケィ素酸化物や金属酸化物とを複合化する場合、これら は分散液の形態で調製されることが多い。ところが、シロキサン系バインダーは水に 溶け難いため、分散媒として有機溶剤を使用する必要があり、一方、ケィ素酸化物微 粒子や金属酸化物微粒子 (以下、これらをまとめて「酸化物微粒子」 ヽぅ)は有機溶 媒中で凝集しやすいため、水媒体中に分散させることが多い。このため、有機溶媒中 に酸化物微粒子を微分散させるには、炭素数 6以上の有機基を有するリン酸、スル ホン酸またはカルボン酸 (特許文献 1参照)、ォキシアルキレン基を有する有機化合 物、ォキシアルキレン基を有するリン酸等のエステル (特許文献 2参照)、あるいはォ キシアルキレン基を有するシラン化合物 (特許文献 3参照)を用いる必要があった。
[0004] しかしながら、これらの化合物を使用して酸ィ匕物微粒子を有機溶媒中に微分散さ せる方法で、酸化物微粒子とシロキサン系バインダーとを複合化させた場合、分散液 の分散性は良好であるが、上記化合物とシロキサン系ノ インダ一との相溶性が悪ぐ たとえば、溶媒を除去して塗膜を形成した場合、塗膜が白化することがあった。また、 製膜条件等を制御して透明な塗膜を形成しても、この塗膜には、炭素数 6以上の有 機基を有するリン酸等やォキシアルキレン基を有する化合物が残存するため、紫外 線照射下や 150°C以上の高温下等の過酷な環境下では塗膜の着色やクラック発生 等の不具合が生じることがあった。
[0005] また、従来の酸ィ匕物微粒子を含有するポリシロキサン組成物を用いて透明な塗膜 を形成する場合、ポリシロキサン組成物は、通常 30〜90重量%の分散溶媒を含み、 さらに、酸ィ匕物微粒子の分散安定性を確保するため、 E型粘度計により測定した 25 。C、ローター回転数 5rpmにおける粘度が通常 15mPa' s以下と低粘度に調製される 。このような低粘度の酸ィ匕物微粒子含有ポリシロキサン組成物に比重の重 、充填材 を添加すると、充填材が沈降分離することがあった。このため、従来は、ポリエチレン グリコール等の有機系増粘剤を配合して高粘度化されて ヽたが、熱や紫外線で着色 やクラックが発生し、耐熱性、耐紫外線性等の耐久性が劣っていた。また、ポリエチレ ングリコール等の有機系増粘剤を添加せず、たとえば、固形分濃度を増大させても 粘度を上昇することができる力 シロキサン系バインダーがゲルィ匕したり、酸化物微粒 子が沈降したりすることがあった。
[0006] 一方、ケィ素酸ィ匕物微粒子には、自身の表面電荷で分散性を保った有機溶媒分 散体があるが、この分散体は分散安定性が良好であるものの、シロキサン系バインダ 一と混合した場合、ケィ素酸ィ匕物微粒子が凝集して白化したり、クラックが発生したり することがあった。
特許文献 1:特開 2004— 283822号公報
特許文献 2 :特開 2005— 185924号公報
特許文献 3:特開 2004— 99879号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記のような従来技術に伴う問題を解決しょうとするものであって、炭素 数 6以上の有機基を有するリン酸等やォキシアルキレン基を有する化合物を使用せ ずに、透明性に優れ、高温下でも黄色化しにくいポリシロキサン系硬化体、ならびに このような硬化体が得られる、有機溶媒中で酸ィ匕物微粒子が高度に分散したポリシ口 キサン組成物およびその製造方法を提供することを目的として!/、る。
課題を解決するための手段
[0008] 本発明者は、上記問題点を解決すべく鋭意研究した結果、有機溶媒中で、塩基性 化合物、酸性化合物または金属キレート化合物の存在下、酸化物微粒子を処理する ことにより、ポリシロキサンを含有する有機溶媒中で酸ィ匕物微粒子が高度に分散した ポリシロキサン組成物が得られることを見出し、さらに、この組成物から得られる硬化 体が、透明性に優れ、高温下でも黄色化しにくいことを見出し、本発明を完成するに 至った。
[0009] すなわち、本発明に係る酸ィ匕物微粒子含有ポリシロキサン組成物は、有機溶媒中 、塩基性化合物、酸性化合物または金属キレート化合物の存在下で、
(A)ケィ素酸ィ匕物微粒子および Zまたは金属酸ィ匕物微粒子、および
(B1)下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるアルコキシ末端の多官能ポリ シロキサン (bl)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレ ン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ末端 ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比(blZb 2)が 3Z97〜55Z45の範囲で脱アルコール反応させて得られる多官能ポリシロキ サン、あるいは
(B2)下記平均組成式(2)
R1 SiO (OH) (2)
a b c (式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるヒドロキシ末端の多官能ポリシ ロキサン (b3)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン 換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ末端 ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比(b3Zb 4)が 3Z97〜55Z45の範囲で脱アルコール反応させて得られる多官能ポリシロキ サン、あるいは
(B3)下記平均組成式(3)
R1 SiO (OR3) (3)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R3は水素原 子またはアルキル基であり、 R3が複数存在する場合には互いに同じであっても異な つていてもよぐ aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、か つ a+b X 2 + c=4である)
で表される多官能ポリシロキサン
を混合して、前記酸化物微粒子 (A)を有機溶媒中に分散させることにより得られる。
[0010] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とを塩基性ィ匕合物の存在下で混合することが好ましぐ前記塩基性ィ匕合物は有機ァ ミンィ匕合物であることがより好まし 、。
前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とをビーズミルにより混合することが好まし 、。
[0011] 前記酸ィ匕物微粒子 (A) 100重量部に対して、前記多官能ポリシロキサン (B1)また は (B2)または (B3)を完^ 水分解縮合物換算で 1〜: L000重量部混合することが 好ましい。
上記酸ィヒ物微粒子含有ポリシロキサン糸且成物の水含有率は 5重量%以下であるこ とが好ましい。
[0012] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)とを混合して 得られる酸ィ匕物微粒子含有ポリシロキサン組成物では、前記多官能ポリシロキサン( B1)または (B2)をさらに加水分解 '縮合した後、前記酸化物微粒子 (A)と混合する ことが好ましぐ前記脱アルコール反応における触媒は金属キレートィヒ合物であること が好ましい。
[0013] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B3)とを混合して得られる酸 化物微粒子含有ポリシロキサン組成物では、前記多官能ポリシロキサン (B3)の重量 平均分子量は、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換 算値で 1, 000〜100, 000の範囲にあること力 子まし!/、。
[0014] 本発明に係る硬化体は、上記酸ィ匕物微粒子含有ポリシロキサン組成物から得られ る。
本発明に係る LED封止材は、上記酸ィ匕物微粒子含有ポリシロキサン組成物に、さ らに蛍光体を混合して得られることを特徴とする。
[0015] 本発明に係る酸化物微粒子含有ポリシロキサン組成物の製造方法は、下記平均組 成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるアルコキシ末端の多官能ポリ シロキサン (bl)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレ ン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ末端 ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比(blZb 2)が 3Z97〜55Z45の範囲で脱アルコール反応させて多官能ポリシロキサン(Bl) 、あるいは
下記平均組成式 (2)
R1 SiO (OH) (2)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるヒドロキシ末端の多官能ポリシ ロキサン (b3)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン 換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ末端 ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比(b3Zb 4)が 3Z97〜55Z45の範囲で脱アルコール反応させて得られる多官能ポリシロキ サン(B2)、あるいは
(B3)下記平均組成式(3)
R1 SiO (OR3) (3)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり
、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R3は水素原 子またはアルキル基であり、 R3が複数存在する場合には互いに同じであっても異な つていてもよぐ aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、か つ a+b X 2 + c=4である)
で表される多官能ポリシロキサン
を調製した後、
該多官能ポリシロキサン (B1)または (B2)または (B3)とケィ素酸化物微粒子およ び Zまたは金属酸ィ匕物微粒子 (A)とを、有機溶媒中、塩基性化合物、酸性化合物ま たは金属キレート化合物の存在下で混合することを特徴とする。
前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とを塩基性ィ匕合物の存在下で混合することが好ましぐ前記塩基性ィ匕合物は有機ァ ミンィ匕合物であることが好まし 、。 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とをビーズミルにより混合することが好まし 、。
[0017] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)とを混合する 酸化物微粒子含有ポリシロキサン組成物の製造方法にぉ 、て、前記多官能ポリシ口 キサン (B1)または (B2)をさらに加水分解 ·縮合した後、前記酸化物微粒子 (A)と混 合することが好ましぐ前記脱アルコール反応における触媒は金属キレートィヒ合物で あることが好ましい。
発明の効果
[0018] 本発明によると、炭素数 6以上の有機基を有するリン酸等ゃォキシアルキレン基を 有する化合物を使用せずに、ジメチルシロキサン連鎖を有するポリシロキサンを含む 有機溶媒に酸化物微粒子が高度に分散した組成物が得られる。この組成物は分散 安定性に優れているとともに、酸ィ匕物微粒子と上記ポリシロキサンとを含有する硬化 体を形成できる。この硬化体は、実質的に上記化合物を含まないため、過酷な環境 下に曝しても劣化せず、透明性に優れている。さらに、この硬化体は高温下でも黄色 化しにくい。また、上記ポリシロキサンが適度な長さのジメチルシロキサン連鎖を有す る場合、柔軟性に優れているため、厚膜の硬化体を形成することもできる。特に、酸 化物微粒子として高屈折性の金属酸ィ匕物微粒子を用いた硬化体は、発光素子とし て青色 LED素子や紫外線 LED素子を用いた LED素子の封止材として用いることが でき、特に高輝度の LED素子の封止材に有用である。
発明を実施するための最良の形態
[0019] 本発明に係る酸ィ匕物微粒子含有ポリシロキサン組成物は、酸化物微粒子 (A)と多 官能ポリシロキサン (B)とを、炭素数 6以上の有機基を有するリン酸等やォキシアル キレン基を有する化合物を使用せずに、有機溶媒中、塩基性化合物、酸性化合物ま たは金属キレート化合物の存在下で混合して分散処理を施すことにより得ることがで きる。
[0020] 〔酸ィ匕物微粒子 (A)〕
本発明に用いられる酸化物微粒子 (A)は、ケィ素酸ィ匕物微粒子および Zまたは金 属酸化物微粒子である。上記金属酸化物微粒子は、金属元素の酸化物微粒子であ ればその種類は特に限定されないが、たとえば、酸化アンチモン、酸ィ匕ジルコニウム 、アナターゼ型酸ィ匕チタン、ルチル型酸ィ匕チタン、ブルッカイト型酸ィ匕チタン、酸ィ匕亜 鉛、酸ィ匕タンタル、酸化インジウム、酸ィ匕ハフニウム、酸化スズ、酸化ニオブ、酸ィ匕ァ ルミ-ゥム、酸ィ匕セリウム、酸化スカンジウム、酸化イットリウム、酸ィ匕ランタン、酸ィ匕プ ラセォジゥム、酸ィ匕ネオジゥム、酸化サマリウム、酸ィ匕ユウ口ピウム、酸ィ匕ガドリニウム、 酸化テルビ二ゥム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ッリウ ム、酸化イッテルビウム、酸化ルテチウム、酸化カルシウム、酸化ガリウム、酸化リチウ ム、酸化ストロンチウム、酸化タングステン、酸化バリウム、酸化マグネシウム、および これらの複合体、ならびにインジウムースズ複合酸ィ匕物などの上記金属 2種以上の複 合体の酸ィ匕物などの金属酸ィ匕物微粒子が挙げられる。また、上記酸化物微粒子とし て、ケィ素酸化物と金属酸化物との複合酸化物微粒子や金属酸化物微粒子の表面 をケィ素酸ィ匕物で被覆した酸ィ匕物微粒子を用いることもできる。
[0021] 本発明において、酸ィ匕物微粒子は、 1種単独で、または 2種以上を混合して使用し てもよい。酸化物微粒子 (A)は、付与する機能に応じて適宜選択することができるが 、たとえば、高屈折性を付与する場合には TiO微粒子が好ましぐ紫外領域の透明
2
性と高屈折性を両立させる場合には ZrO微粒子が好ましい。また、 UVカット機能を
2
付与する場合には、酸化セリウム微粒子、酸ィ匕亜鉛微粒子が好ましい。
[0022] 上記酸ィ匕物微粒子 (A)の 1次平均粒子径は、好ましくは 0. 1〜: LOOnm、より好まし くは 0. l〜70nm、特〖こ好ましくは 0. l〜50nmである。酸化物微粒子(A)の 1次平 均粒子径が上記範囲にあると、光透過性に優れた硬化体を得ることができる。
[0023] このような酸ィ匕物微粒子 (A)は、溶媒に分散されて!、な 、粉体の状態で添加しても 、イソプロピルアルコールなどの極性溶媒中やトルエンなどの非極性溶媒中に分散し た分散体の状態で添加してもよい。添加前の酸化物微粒子 (A)は、凝集して二次粒 子を形成していてもよい。本発明では、多官能ポリシロキサン (B)の溶解性を考慮し て適切な有機溶媒を適宜選択できる点で、粉体を使用することが好ましい。また、本 発明の製造方法は、粉体の状態で添加する場合に、特に有効である。
[0024] 〔多官能ポリシロキサン (B)〕
本発明では、多官能ポリシロキサン (B)として、ジメチルシロキサン連鎖を有する多 官能ポリシロキサンや水酸基および zまたはアルコキシ基を有する多官能ポリシロキ サンが使用できる。
[0025] (ジメチルシロキサン連鎖を有する多官能ポリシロキサン)
ジメチルシロキサン連鎖を有する多官能ポリシロキサンとしては、ゲルパーミエーシ ヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 500以上 3, 000未満の範囲にあるアルコキシ末端多官能ポリシロキサン (bl)と、ゲルパーミ エーシヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ末端ポリジメチルシロキサン(b2)とを 脱アルコール反応させて得られるポリシロキサン(B1)、および、ゲルパーミエーショ ンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 500以上 3 , 000未満の範囲にあるヒドロキシ末端多官能ポリシロキサン (b3)と、ゲルパーミエ一 シヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 2, 000 以上 100, 000以下の範囲にあるアルコキシ末端ポリジメチルシロキサン(b4)とを脱 アルコール反応させて得られるポリシロキサン(B2)が挙げられる。
[0026] (bl)アルコキシ末端多官能ポリシロキサン:
本発明に用いられるアルコキシ末端多官能ポリシロキサン (bl)は、
下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
で表される、アルコキシ基を有する多官能ポリシロキサンであり、 3次元架橋構造を有 することが好ましい。
[0027] 式(1)中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基で あり、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はァ ルキル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよ い。 aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である。 R1 R2がそれぞれ複数存在する場合には、 aは、水素原子とォキシァ ルキレン基を有しない 1価の炭化水素基との合計のケィ素原子に対する割合、 cは、 アルコキシ基のケィ素原子に対する割合を表す。
[0028] 上記アルコキシ末端多官能ポリシロキサン (bl)の重量平均分子量は、ゲルパーミ エーシヨンクロマトグラフィーにより測定したポリスチレン換算値で、 500以上 3, 000 未満、より好ましくは 550以上 3, 000未満、特に好ましくは 600以上 3, 000未満で ある。上記範囲の重量平均分子量を有するアルコキシ末端多官能ポリシロキサン (b 1)を使用すると、硬化体形成時におけるクラック発生の抑制と良好な硬化性を両立 できる。
[0029] 上記 1価の炭化水素基は、ォキシアルキレン基を有しなければ特に限定されない
1S 置換または無置換の 1価の炭化水素基が挙げられる。上記 1価の無置換炭化水 素基としては、炭素数 1〜8のアルキル基、フエ-ル基、ベンジル基、トリル基が挙げ られる。炭素数 1〜8のアルキル基としては、メチル基、ェチル基、プロピル基、イソプ 口ピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基などが挙げ られる。また、上記 1価の置換炭化水素基としては、炭素数 1〜8の置換アルキル基 が挙げられる。上記置換アルキル基の置換基としては、ハロゲン、アミノ基、メルカプ ト基、イソシァネート基、グリシジル基、グリシドキシ基、ウレイド基などが挙げられる。
[0030] また、上記 R2で表されるアルキル基としては、メチル基、ェチル基、プロピル基、イソ プロピル基、ブチル基などが挙げられる。これらのアルキル基のうち、メチル基、ェチ ル基が好ましい。
[0031] このアルコキシ末端多官能ポリシロキサン (bl)は、たとえば、上記平均組成式を満 たすように、多官能のアルコキシシランまたは多官能クロロシランを適宜組み合わせ て加水分解 '縮合させることによって製造できる。ただし、テトラアルコキシシラン類の みでの加水分解 ·縮合、およびジアルコキシシラン類のみでの加水分解 ·縮合は除く
[0032] 上記多官能のアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、 テトラー n—プロボキシシラン、テトラー i プロボキシシラン、テトラー n—ブトキシシラ ンなどのテトラアルコキシシラン類;
メチルトリメトキシシラン、メチルトリエトキシシラン、ェチルトリメトキシシラン、ェチルトリ エトキシシラン、 n—プロピルトリメトキシシラン、 n—プロピルトリエトキシシラン、 i—プ 口ピルトリメトキシシラン、 i—プロピルトリエトキシシラン、 n—ブチルトリメトキシシラン、 n—ブチルトリエトキシシラン、 n—ペンチルトリメトキシシラン、 n—へキシルトリメトキシ シラン、 n—ヘプチルトリメトキシシラン、 n—ォクチルトリメトキシシラン、シクロへキシ ルトリメトキシシラン、シクロへキシルトリエトキシシラン、フエニルトリメトキシシラン、フ ェニルトリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、 3—クロ口プロピルトリ ェ卜キシシラン、 3, 3, 3—卜!;フノレ才 Pプ Pピノレ卜リメ卜キシシラン、 3, 3, 3—卜!;フノレ才 口プロピルトリエトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピノレト リエトキシシラン、 3—メルカプトプロピルトリメトキシシラン、 3—メルカプトプロピルトリ エトキシシラン、 3—イソシァネートプロピルトリメトキシシラン、 3—イソシァネートプロ ピルトリエトキシシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシプ 口ピルトリエトキシシラン、 2—(3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラ ン、 2— (3, 4—エポキシシクロへキシル)ェチルトリエトキシシラン、 3—ウレイドプロピ ルトリメトキシシラン、 3—ウレイドプロピルトリエトキシシランなどのトリアルコキシシラン 類;
ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジェチノレジメトキシシラン、ジェ チノレジェトキシシラン、ジー n—プロピノレジメトキシシラン、ジー n プロピノレジェトキシ シラン、ジー i プロピノレジメトキシシラン、ジー i プロピノレジェトキシシラン、ジー n— ブチルジメトキシシラン、ジ n—ブチルジェトキシシラン、ジ n—ペンチルジメトキ シシラン、ジー n ペンチノレジェトキシシラン、ジー n キシノレジメトキシシラン、ジ —n キシノレジェトキシシラン、ジ n—ヘプチノレジメトキシシラン、ジ n プチ ノレジェトキシシラン、ジー n—才クチノレジメトキシシラン、ジー n—才クチノレジェトキシシ ラン、ジー n—シクロへキシノレジメトキシシラン、ジー n—シクロへキシノレジェトキシシラ ン、ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシランなどのジアルコキシシラン 類が挙げられる。これらのアルコキシシラン類は 1種単独でまたは 2種以上を混合して 使用することができる。
また、多官能のアルコキシシランに加えて、 1官能のアルコキシシランを併用するこ ともできる。 1官能のアルコキシシランとしては、トリメチルメトキシシラン、トリメチルエト キシシラン、トリェチルメトキシシラン、トリェチルエトキシシランなどが挙げられる。これ らの 1官能のアルコキシシランは、使用するアルコキシシラン全量に対して、 10重量 %以下、好ましくは 7重量%以下、より好ましくは 5重量%以下で使用することが望ま しい。
[0034] また、上記分子量を満たすアルコキシ末端多官能ポリシロキサン (bl)として、信越 シリコーン社製の X40— 9220 (以上、商品名)、 GE東芝シリコーン社製の XC96— B0446 (以上、商品名)などの巿販のシロキサンポリマーを用いることもできる。
[0035] なお、上記アルコキシ末端多官能ポリシロキサン (bl)は、本発明の効果を損なわ な 、範囲で Si— OH結合を有して!/、てもよ!/、。
(b2)ヒドロキシ末端ポリジメチノレシロキサン:
本発明に用いられるヒドロキシ末端ポリジメチルシロキサン (b2)は、ゲルパーミエ一 シヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 2, 000 以上 100, 000以下、より好まし <は 2, 000以上 80, 000以下、特に好まし <は 3, 0 00以上 70, 000以下である。上記範囲の重量平均分子量を有するヒドロキシ末端ポ リジメチルシロキサン (b2)を使用すると、柔軟性に優れた多官能ポリシロキサン (B1) が得られ、硬化体形成時におけるクラック発生の抑制と硬化性とを両立できるため、 硬化体の厚膜ィ匕を図ることができる。
[0036] このヒドロキシ末端ポリジメチノレシロキサン(b2)は、たとえば、ジメチノレジァノレコキシ シランまたはジメチルジクロロシランを加水分解 '縮合させることによって製造できる。
[0037] 上記ジメチルジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジェト キシシラン、ジメチルジー i プロポキシシラン、ジメチルジー n ブトキシシランなどが 挙げられる。これらのジメチルジアルコキシシランは 1種単独でまたは 2種以上を混合 して使用することができる。
[0038] また、上記ヒドロキシ末端ポリジメチルシロキサン (b2)は、環状オルガノシロキサン を開環縮合させることによつても製造できる。環状オルガノシロキサンとしては、へキ サフエニルシクロトリシロキサン、ォクタフエニルシクロテトラシロキサン、テチラビニル テトラメチルシクロテトラシロキサン、へキサメチルシクロトリシロキサン、オタタメチルシ クロテトラシロキサン、ペンタメチルシクロテトラシロキサン、へキサメチルシクロテトラシ ロキサン、テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ド デカメチルシクロへキサシロキサン等が挙げられる。
[0039] また、上記分子量を満たすヒドロキシ末端ポリジメチルシロキサン (b2)として、 GE東 芝シリコーン社製の YF— 3057、 YF— 3800、 YF— 3802、 YF— 3897、 XF- 390 5 (以上、商品名)などの市販のヒドロキシ末端ポリジメチルシロキサンを用いることも できる。
[0040] (b3)ヒドロキシ末端多官能ポリシロキサン:
本発明に用いられるヒドロキシ末端多官能ポリシロキサン (b3)は、
下記平均組成式 (2)
R1 SiO (OH) (2)
a b c
で表される、ヒドロキシ基を有する多官能ポリシロキサンであり、 3次元架橋構造を有 することが好ましい。
[0041] 式(2)中、 R1は、上記式(1)における R1と同様に定義される。 aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、力つ a+b X 2 + c=4である。 R1が複数 存在する場合には、 aは、水素原子とォキシアルキレン基を有しない 1価の炭化水素 基との合計のケィ素原子に対する割合を表す。
[0042] 上記ヒドロキシ末端多官能ポリシロキサン (b3)の重量平均分子量は、ゲルパーミエ ーシヨンクロマトグラフィーにより測定したポリスチレン換算値で、 500以上 3, 000未 満、より好ましくは 550以上 3, 000未満、特に好ましくは 600以上 3, 000未満である 。上記範囲の重量平均分子量を有するヒドロキシ末端多官能ポリシロキサン (b3)を 使用すると、硬化体形成時におけるクラック発生の抑制と良好な硬化性を両立できる
[0043] 上記 1価の炭化水素基は、ォキシアルキレン基を有しなければ特に限定されない
1S 置換または無置換の 1価の炭化水素基が挙げられる。上記置換もしくは無置換 の 1価の炭化水素基としては、上記アルコキシ末端多官能ポリシロキサン (bi)で例 示した置換または無置換の 1価の炭化水素基と同様のものを挙げることができる。
[0044] このヒドロキシ末端多官能ポリシロキサン (b3)は、たとえば、上記平均組成式を満 たすように、多官能のアルコキシシランまたは多官能クロロシランを適宜組み合わせ て加水分解 '縮合させることによって製造できる。ただし、テトラアルコキシシラン類の みでの加水分解 ·縮合、およびジアルコキシシラン類のみでの加水分解 ·縮合は除く [0045] 上記多官能のアルコキシシランとしては、上記アルコキシ末端多官能ポリシロキサ ン (bl)で例示した多官能アルコキシシランと同様のものを挙げることができ、 1種単 独でまたは 2種以上を混合して使用することができる。
[0046] また、ヒドロキシ末端多官能ポリシロキサン (b3)にお 、ても、多官能のアルコキシシ ランに加えて、上記アルコキシ末端多官能ポリシロキサン (bl)で例示した 1官能のァ ルコキシシランを併用してもよい。このとき、 1官能のアルコキシシランは、使用するァ ルコキシシラン全量に対して、 10重量%以下、好ましくは 7重量%以下、より好ましく は 5重量%以下で使用することが望ましい。
[0047] (b4)ァノレコキシ末端ポリジメチノレシロキサン:
本発明に用いられるアルコキシ末端ポリジメチルシロキサン (b4)は、ゲルパーミエ ーシヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 2, 0 00以上 100, 000以下、より好まし <は 2, 000以上 80, 000以下、特に好まし <は 3 , 000以上 70, 000以下である。上記範囲の重量平均分子量を有するアルコキシ末 端ポリジメチルシロキサン (b4)を使用すると、柔軟性に優れた多官能ポリシロキサン( B2)が得られ、硬化体形成時におけるクラック発生の抑制と硬化性とを両立できるた め、硬化体の厚膜ィ匕を図ることができる。
[0048] このアルコキシ末端ポリジメチルシロキサン(b4)は、たとえば、ジメチルジアルコキ シシランまたはジメチルジクロロシランを加水分解 '縮合させることによって製造できる
[0049] 上記ジアルコキシシランとしては、上記ヒドロキシ末端ポリジメチルシロキサン (b2) で例示したジアルコキシシランと同様のものを挙げることができ、これらは 1種単独で または 2種以上を混合して使用することができる。
[0050] (多官能ポリシロキサン (B1)または (B2)の製造方法)
上記多官能ポリシロキサン (B1)は、上記アルコキシ末端多官能ポリシロキサン (bl )と上記ヒドロキシ末端ポリジメチルシロキサン (b2)とを脱アルコール反応させることに より製造できる。また、上記多官能ポリシロキサン (B2)は、上記ヒドロキシ末端多官能 ポリシロキサン(b3)と上記アルコキシ末端ポリジメチルシロキサン (b4)とを脱アルコ ール反応させることにより製造できる。これらの多官能ポリシロキサン (B1)および (B2 )は、通常水を添加した後、さらに加水分解 '縮合させることが好ましい。これにより、 多官能ポリシロキサン (B1)および (B2)が高分子量化し、得られる硬化体の透明性 が向上する。上記各反応は、通常、有機溶媒中で触媒を用いて行なわれる。
[0051] 上記アルコキシ末端多官能ポリシロキサン (bl)と上記ヒドロキシ末端ポリジメチルシ ロキサン (b2)との混合比は、これらの合計 100重量部に対して、重量比(blZb2)で 、 3Z97〜55Z45であり、好ましくは 5,95〜50,50、より好ましくは 7,93〜30 /70である。また、上記ヒドロキシ末端多官能ポリシロキサン (b3)と上記アルコキシ 末端ポリジメチルシロキサン (b4)との混合比は、これらの合計 100重量部に対して、 重量比(b3Zb4)で、 3Z97〜55Z45であり、好ましくは 5,95〜50,50、より好ま しくは 7Z93〜30Z70である。ポリシロキサン(bl)と(b2)との混合比、およびポリシ ロキサン (b3)と (b4)との混合比が上記範囲にあると、硬化体製造時のクラックの発 生を抑制することができる。
[0052] (脱アルコール反応)
上記脱アルコール反応の温度は、好ましくは 30〜150°C、より好ましく 40〜120°C 、特に好ましくは 50〜100°Cである。反応時間は、好ましくは 0. 1〜24時間、より好 ましくは 0. 5〜12時間、特に好ましくは 1〜8時間である。また、脱アルコール反応は 、各成分を反応容器に一括で仕込んで実施してもよいし、一方の成分に他方の成分 を間欠的にもしくは連続的に添加しながら実施してもよい。
[0053] 上記脱アルコール反応により、ヒドロキシ末端ポリジメチルシロキサン (b2)の両末端 に、アルコキシ末端多官能ポリシロキサン (bl)が結合した構造の多官能ポリシロキサ ン(B1)、または、アルコキシ末端ポリジメチルシロキサン (b4)の両末端に、ヒドロキシ 末端多官能ポリシロキサン (b3)が結合した構造の多官能ポリシロキサン (B2)が形成 される。
[0054] (加水分解 '縮合反応)
加水分解 '縮合反応の際に添加される水の量は、多官能ポリシロキサン (B1)また は(B2) 100重量部に対して、通常 0. 1〜: LOO重量部、好ましくは 0. 5〜80重量部、 より好ましくは 1〜50重量部である。水の添加量が上記範囲にあると、加水分解 '縮 合反応が十分に進行するため好まし ヽ。 [0055] 上記加水分解 '縮合反応の温度は、好ましくは 20〜150°C、より好ましくは 30〜: LO 0°C、特に好ましくは 40〜80°Cである。反応時間は、好ましくは 0. 1〜24時間、より 好ましくは 0. 5〜12時間、特に好ましくは 1〜8時間である。
[0056] (有機溶媒)
上記脱アルコール反応および加水分解 '縮合反応において用いられる有機溶媒と しては、たとえば、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステ ル類などを挙げることができる。上記アルコール類としては、メタノール、エタノール、 n—プロピルアルコール、 i—プロピルアルコール、 i—ブチルアルコール、 n—ブチル ァノレコーノレ、 sec—ブチノレアノレコーノレ、 tーブチノレアノレコーノレ、 n—へキシノレアノレコー ル、 n—ォクチルアルコール、エチレングリコーノレ、ジエチレングリコール、トリエチレン グリコーノレ、エチレングリコーノレモノブチノレエーテノレ、エチレングリコーノレモノェチノレ エーテノレアセテート、ジエチレングリコーノレモノェチノレエーテノレ、プロピレングリコー ルモノメチルエーテル、プロピレンモノメチルエーテルアセテート、ジアセトンアルコー ルなどを挙げることができる。また、芳香族炭化水素類としては、ベンゼン、トルエン、 キシレンなどが挙げられ、エーテル類としては、テトラヒドロフラン、ジォキサンなどが 挙げられ、ケトン類としては、アセトン、メチルェチルケトン、メチルイソブチルケトン、 ジイソプチルケトン、シクロへキサノンなどが挙げられ、エステル類としては、酢酸ェチ ル、酢酸プロピル、酢酸ブチル、炭酸プロピレン、乳酸メチル、乳酸ェチル、乳酸ノル マルプロピル、乳酸イソプロピル、 3—エトキシプロピオン酸メチル、 3—エトキシプロ ピオン酸ェチルなどが挙げられる。これらの有機溶剤は、 1種単独で用いても、 2種以 上を混合して用いてもよい。これらの有機溶媒のうち、脱アルコール反応では、反応 を促進する観点から、アルコール以外の有機溶媒、たとえば、メチルェチルケトン、メ チルイソブチルケトン、トルエン、キシレンなどを使用することが好ましい。また、これら の有機溶媒は、予め脱水処理を施して、水分を除去した状態で使用することが好ま しい。
[0057] 上記有機溶媒は、脱アルコール反応および加水分解 '縮合反応のコントロール、得 られる多官能ポリシロキサン (B1)または (B2)を含む溶液の濃度もしくは粘度の調整 、または硬化体製造時の厚み調整などを目的として適宜使用することができる。有機 溶媒を使用する場合、その使用量は所望の条件に応じて適宜設定することができる 力 たとえば、得られる多官能ポリシロキサン (B1)または(B2)の濃度力 完^ 3口水 分解縮合物換算で、好ましくは 5〜99重量%、より好ましくは 7〜95重量%、特に好 ましくは 10〜90重量%となる量である。
[0058] (触媒)
上記脱アルコール反応または加水分解 '縮合反応に用いられる触媒としては、たと えば、塩基性化合物、酸性ィ匕合物および金属キレートイ匕合物が挙げられる。
[0059] (塩基性化合物)
上記塩基性ィ匕合物としては、アンモニア (アンモニア水溶液を含む)、有機アミンィ匕 合物、水酸化ナトリウム、水酸ィ匕カリウム等のアルカリ金属やアルカリ土類金属の水酸 化物、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属のアルコキシドが挙 げられる。これらのうち、アンモニアおよび有機アミンィ匕合物が好ましい。
[0060] 有機ァミンとしては、アルキルァミン、アルコキシァミン、アルカノールァミン、ァリー ルァミンなどが挙げられる。
アルキルァミンとしては、メチルァミン、ェチルァミン、プロピルァミン、ブチルァミン、 へキシルァミン、ォクチルァミン、 N, N—ジメチルァミン、 N, N—ジェチルァミン、 N , N—ジプロピルァミン、 N, N—ジブチルァミン、トリメチルァミン、トリエチルァミン、ト リプロピルァミン、トリブチルァミンなどの炭素数 1〜4のアルキル基を有するアルキル ァミンなどが挙げられる。
[0061] アルコキシァミンとしては、メトキシメチルァミン、メトキシェチルァミン、メトキシプロピ ルァミン、メトキシブチルァミン、エトキシメチルァミン、エトキシェチルァミン、エトキシ プロピルァミン、エトキシブチルァミン、プロポキシメチルァミン、プロポキシェチルアミ ン、プロポキシプロピルァミン、プロポキシブチルァミン、ブトキシメチルァミン、ブトキ シェチルァミン、ブトキシプロピルァミン、ブトキシブチルァミンなどの炭素数 1〜4の アルコキシ基を有するアルコキシァミンなどが挙げられる。
[0062] アルカノールァミンとしては、メタノールァミン、エタノールァミン、プロパノールァミン 、ブタノールァミン、 N—メチルメタノールァミン、 N—ェチルメタノールァミン、 N—プ 口ピルメタノールァミン、 N—ブチルメタノールァミン、 N—メチルエタノールァミン、 N ェチルエタノールァミン、 N プロピルエタノールァミン、 N ブチルエタノールアミ ン、 N メチルプロパノールァミン、 N ェチルプロパノールァミン、 N—プロピルプロ パノールァミン、 N ブチルプロパノールァミン、 N—メチルブタノールァミン、 N ェ チルブタノールァミン、 N プロピルブタノールァミン、 N ブチルブタノールァミン、 N, N ジメチルメタノールァミン、 N, N ジェチルメタノールァミン、 N, N ジプロ ピルメタノールァミン、 N, N—ジブチルメタノールァミン、 N, N ジメチルエタノール ァミン、 N, N ジェチルエタノールァミン、 N, N ジプロピルエタノールァミン、 N, N—ジブチルエタノールァミン、 N, N ジメチルプロパノールァミン、 N, N ジェチ ルプロパノールァミン、 N, N ジプロピルプロパノールァミン、 N, N—ジブチルプロ パノールァミン、 N, N ジメチルブタノールァミン、 N, N ジェチルブタノールアミン 、 N, N ジプロピルブタノールァミン、 N, N—ジブチルブタノールァミン、 N—メチル ジメタノールァミン、 N ェチルジメタノールァミン、 N—プロピルジメタノールァミン、 N ブチルジメタノールァミン、 N—メチルジェタノールァミン、 N ェチルジェタノ一 ルァミン、 N—プロピルジエタノールァミン、 N ブチルジェタノールァミン、 N—メチ ルジプロパノールァミン、 N ェチルジプロパノールァミン、 N—プロピルジプロパノ ールァミン、 N ブチルジプロパノールァミン、 N メチルジブタノールァミン、 N ェ チルジブタノールアミン、 N プロピルジブタノールァミン、 N ブチルジブタノールァ ミン、 N— (アミノメチル)メタノールァミン、 N— (アミノメチル)エタノールァミン、 N— ( アミノメチル)プロパノールァミン、 N— (アミノメチル)ブタノールァミン、 N— (アミノエ チル)メタノールァミン、 N— (アミノエチル)エタノールァミン、 N— (アミノエチル)プロ パノールァミン、 N— (アミノエチル)ブタノールァミン、 N— (ァミノプロピル)メタノール ァミン、 N— (ァミノプロピル)エタノールァミン、 N— (ァミノプロピル)プロパノールアミ ン、 N— (ァミノプロピル)ブタノールァミン、 N— (アミノブチル)メタノールァミン、 N— (アミノブチル)エタノールァミン、 N— (アミノブチル)プロパノールァミン、 N— (ァミノ ブチル)ブタノールァミンなどの炭素数 1〜4のアルキル基を有するアル力ノールアミ ンが挙げられる。
ァリールァミンとしてはァ-リン、 N—メチルァ-リンなどが挙げられる。
さらに、上記以外の有機ァミンとして、テトラメチルアンモ-ゥムノ、イドロキサイド、テ トラェチルアンモ -ゥムハイドロキサイド、テトラプロピルアンモ-ゥムハイドロキサイド 、テトラプチルアンモ -ゥムハイドロキサイドなどのテトラアルキルアンモ-ゥムハイド口 キサイド;テトラメチルエチレンジァミン、テトラエチルエチレンジァミン、テトラプロピル エチレンジァミン、テトラブチルエチレンジァミンなどのテトラアルキルエチレンジアミ ン;メチルアミノメチルァミン、メチルアミノエチルァミン、メチルァミノプロピルァミン、メ チルアミノブチルァミン、ェチルアミノメチルァミン、ェチルアミノエチルァミン、ェチル ァミノプロピルァミン、ェチルアミノブチルァミン、プロピルアミノメチルァミン、プロピル アミノエチルァミン、プロピルアミノプロピルァミン、プロピルアミノブチルァミン、ブチ ルアミノメチルァミン、ブチルアミノエチルァミン、ブチルァミノプロピルァミン、ブチル アミノブチルァミンなどのアルキルアミノアルキルアミン;ピリジン、ピロール、ピぺラジ ン、ピロリジン、ピぺリジン、ピコリン、モルホリン、メチルモルホリン、ジァザビシクロォ クラン、ジァザビシクロノナン、ジァザビシクロウンデセンなども挙げられる。
[0064] このような塩基性化合物は、 1種単独で用いても、 2種以上を混合して用いてもよい 。これらのうち、トリェチルァミン、テトラメチルアンモ -ゥムハイドロキサイド、ピリジンが 特に好ましい。
[0065] (酸性化合物)
上記酸性ィ匕合物としては、有機酸および無機酸が挙げられる。有機酸としては、た とえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、へキサン酸、ヘプタン酸、ォクタ ン酸、ノナン酸、デカン酸、シユウ酸、マレイン酸、無水マレイン酸、メチルマロン酸、 アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、ァラキドン酸、ミキミ酸、 2—ェ チルへキサン酸、ォレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安 息香酸、 P—ァミノ安息香酸、 ρ—トルエンスルホン酸、ベンゼンスルホン酸、モノクロ 口酢酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ギ酸、マロン酸、メタンスルホ ン酸、フタル酸、フマル酸、クェン酸、酒石酸などが挙げられる。上記無機酸としては 、たとえば、塩酸、硝酸、硫酸、フッ酸、リン酸などが挙げられる。
[0066] このような酸性ィ匕合物は、 1種単独で用いても、 2種以上を混合して用いてもよい。
これらのうち、マレイン酸、無水マレイン酸、メタンスルホン酸、酢酸が特に好ましい。
(金属キレート化合物) 上記金属キレートイ匕合物としては、有機金属化合物および zまたはその部分加水 分解物(以下、有機金属化合物および Zまたはその部分加水分解物をまとめて、「有 機金属化合物類」 t 、う)が挙げられる。
[0067] 上記有機金属化合物類としては、たとえば、下記式 (a)
M (OR7) (R8COCHCOR9) (a)
r s
(式中、 Mは、ジルコニウム、チタンおよびアルミニウム力 なる群からを選択される少 なくとも 1種の金属原子を表し、 R7および R8は、それぞれ独立に、メチル基、ェチル 基、 n プロピル基、 i プロピル基、 n ブチル基、 sec ブチル基、 t ブチル基、 n ペンチル基、 n—へキシル基、シクロへキシル基、フエ-ル基などの炭素数 1〜6個 の 1価の炭化水素基を表し、 R9は、前記炭素数 1〜6個の 1価の炭化水素基、または 、メトキシ基、エトキシ基、 n—プロポキシ基、 i—プロポキシ基、 n—ブトキシ基、 sec— ブトキシ基、 t—ブトキシ基、ラウリルォキシ基、ステアリルォキシ基などの炭素数 1〜1 6個のアルコキシル基を表し、 rおよび sは、それぞれ独立に 0〜4の整数であって、(r + s) = (Mの原子価)の関係を満たす)
で表される化合物 (以下、「有機金属化合物 (a)」という)、
1つのスズ原子に炭素数 1〜 10個のアルキル基が 1〜 2個結合した 4価のスズの有 機金属化合物(以下、「有機スズィ匕合物」という)、あるいは、
これらの部分加水分解物などが挙げられる。
[0068] 有機金属化合物(a)として、たとえば、テトラ— n—ブトキシジルコニウム、トリ— n— ブトキシ .ェチノレアセトアセテートジノレコニゥム、ジー n—ブトキシ'ビス(ェチノレアセト アセテート)ジルコニウム、 n—ブトキシ 'トリス(ェチノレアセトアセテート)ジノレコニゥム、 テトラキス(n—プロピルァセトアセテート)ジルコニウム、テトラキス(ァセチノレアセトァ セテート)ジルコニウム、テトラキス(ェチノレアセトアセテート)ジルコニウムなどの有機 ジルコニウム化合物;
テトラー i プロポキシチタニウム、ジー i プロポキシ 'ビス(ェチノレアセトアセテート )チタニウム、ジ—i—プロポキシ 'ビス(ァセチルアセテート)チタニウム、ジ—i—プロ ポキシ 'ビス(ァセチルアセトン)チタニウムなどの有機チタンィ匕合物;
トリー i—プロポキシアルミニウム、ジ—i—プロポキシ ·ェチルァセトアセテートアルミ ユウム、ジー i—プロボキシ'ァセチルァセトナートアルミニウム、 i—プロポキシ 'ビス( ェチノレアセトアセテート)ァノレミニゥム、 i—プロポキシ 'ビス(ァセチノレアセトナート)ァ ルミ二ゥム、トリス(ェチルァセトアセテート)アルミニウム、トリス(ァセチルァセトナート) アルミニウム、モノァセチルァセトナート'ビス(ェチルァセトアセテート)アルミニウムな どの有機アルミニウム化合物が挙げられる。
[0069] 有機スズィ匕合物として、たとえば、
[0070] [化 1]
(C4H9) 2S n (OCOC11H23) 2
CC4Ha) 2S n (OCOCH=CHCOOCH3) 2
(C4H9) 2S n (OCOCH = CHCOOC4H9) 2
(C8H17 2Sn (OCOCsH17) 2
(C 8HX 7 2Sn (OCOCnH^) 2
(Cghj 7 2Sn (OCOCH = CHCOOCH3) 2
( a 17 2Sn (OCOCH = CHCOOC4H9) 2
(CgH17; 2S n (OCOCH^CHCOOC8H17) 2
(C8H17: 2Sn (OCOCH = CHCOOC1 BH33) 2
(C8H17; 2S n (OCOCH=CHCOOC17H35) 2
(C8H17; 2Sn (OCOCH=CHCOOC18H37) 2
(C8Hiァ, 2Sn (OCOCH=CHCOOC20H41) 2
(C4H9) 2SnOCOCH3
O
(C4H9) 2S n〇COCH3
(C4H9) Sn (OCOCuH23) 3
(C4H9) S n (OCONa) 3
[0071] などのカルボン酸型有機スズィ匕合物;
[0072] [化 2] (C4H9) 2S n (S CH2COOC8H17) 2
(C4H3) 2S n (S CH2CH2COOCaH17) 2
(C8H17) 2S n (S CH2COOC3H17) 2、 (C gHj 7) 2 S n (S CH2CHaCOOC3H17) 2、 (C8HJ 7) 2 S n (SCH2COOC12H25) 2、 (CBHI 7) 2S n (S CH2CH2COOC J 2H25) 2、 (C4H9) S n (S COCH = CHCOOC8H17) 3、 (CaII17) S n (SCOCH=CHCOOC8H17) 3 (C4H9) ZS n (SCH2COOC8H17)
Figure imgf000023_0001
I
(C4H9) 2S n (S CH2COOCaH17)
[0073] などのメルカプチド型有機スズィ匕合物;
[0074] [化 3]
(C4H9) 2S n = S、 (C8H17) 2S n= S、 (C4H9) S n = S
S
ί
(C4H&) S n = S
[0075] などのスルフイド型有機スズィ匕合物;
[0076] [化 4]
(C^HJ S nC l 3、 (C4HQ) 2S nC l 2、 (C4H9) 2S n C 1
I
s
I
(C4H0) 2S n C 1 [0077] などのクロライド型有機スズィ匕合物; (C H ) SnO、 (C H ) SnOなどの有機スズオキサイドや、これらの有機スズォキ
4 9 2 8 17 2
サイドとシリケート、マレイン酸ジメチル、マレイン酸ジェチル、フタル酸ジォクチルな どのエステル化合物との反応生成物;
などが挙げられる。
[0078] このような金属キレートイ匕合物は、 1種単独で用いても、 2種以上を混合して用いて もよい。これらのうち、トリー n—ブトキシ'ェチルァセトアセテートジルコニウム、ジ i プロポキシ ·ビス(ァセチノレアセトナート)チタニウム、ジー i プロポキシ .ェチノレア セトアセテートアルミニウム、トリス(ェチルァセトアセテート)アルミニウム、あるいはこ れらの部分加水分解物が好まし ヽ。
[0079] 塩基性化合物、酸性ィ匕合物および金属キレートイ匕合物のうち、脱アルコール反応 では反応性に優れる点で金属キレートイ匕合物が好ましい。
上記脱アルコール反応において、上記塩基性化合物、酸性化合物または金属キレ ート化合物は、多官能ポリシロキサン (bl)または (b3)とポリジメチルシロキサン (b2) または (b4)との合計 100重量部に対して、通常 0. 001〜20重量部、好ましくは 0. 0
05〜10重量部、より好ましくは 0. 01〜5重量部添加される。
[0080] 上記加水分解 ·縮合反応において、上記塩基性化合物、酸性化合物または金属キ レート化合物は、多官能ポリシロキサン (bl)または (b3)とポリジメチルシロキサン (b2
)または (b4)との合計 100重量部に対して、通常 0. 001〜50重量部、好ましくは 0.
005〜40重量部、より好ましくは 0. 01〜30重量部添加される。
[0081] 上記方法により得られる多官能ポリシロキサン (B1)および (B2)の重量平均分子量 は、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算値で通常
3, 000〜200, 000、好まし <は 4, 000〜150, 000、より好まし <は 5, 000〜100,
000である。
[0082] (水酸基および Zまたはアルコキシ基を有する多官能ポリシロキサン)
水酸基および Zまたはアルコキシ基を有する多官能ポリシロキサンとしては、下記 平均組成式(3)
R1 SiO (OR3) (3)
a b c
で表される多官能ポリシロキサン (B3)が挙げられる。 [0083] 式(3)中、 R1は、上記式(1)における R1と同様に定義され、 R3は水素原子またはァ ルキル基であり、 R3が複数存在する場合には互いに同じであっても異なっていてもよ い。 aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である。 R1 R3がそれぞれ複数存在する場合には、 aは、水素原子とォキシァ ルキレン基を有しない 1価の炭化水素基との合計のケィ素原子に対する割合、 cは、 水酸基とアルコキシ基との合計のケィ素原子に対する割合を表す。
[0084] 上記多官能ポリシロキサン(B3)の重量平均分子量は、ゲルパーミエーシヨンクロマ トグラフィ一により測定したポリスチレン換算値で、好ましくは 1, 000-100, 000、よ り好まし <は 1, 000〜80, 000、特に好まし <は 1, 500〜70, 000である。上記範囲 の重量平均分子量を有する多官能ポリシロキサン (B3)を使用すると、硬化体形成時 におけるクラック発生の抑制と良好な硬化性を両立できる。
[0085] 上記 1価の炭化水素基は、ォキシアルキレン基を有しなければ特に限定されない
1S 置換または無置換の 1価の炭化水素基が挙げられる。上記置換もしくは無置換 の 1価の炭化水素基としては、上記アルコキシ末端多官能ポリシロキサン (bi)で例 示した置換または無置換の 1価の炭化水素基と同様のものを挙げることができる。
[0086] また、上記 R3で表されるアルキル基としては、上記アルコキシ末端多官能ポリシロキ サン (bl)で例示したアルキル基と同様のものを挙げることができ、メチル基、ェチル 基が好ましい。
[0087] この多官能ポリシロキサン (B3)は、たとえば、上記平均組成式を満たすように、多 官能のアルコキシシランまたは多官能クロロシランを適宜組み合わせて加水分解 '縮 合させることによって製造できる。ただし、テトラアルコキシシラン類のみでの加水分 解 ·縮合、およびジアルコキシシラン類のみでの加水分解 ·縮合は除く。
[0088] 上記多官能のアルコキシシランとしては、上記アルコキシ末端多官能ポリシロキサ ン (bl)で例示した多官能アルコキシシランと同様のものを挙げることができ、 1種単 独でまたは 2種以上を混合して使用することができる。
[0089] また、多官能ポリシロキサン (B3)においても、多官能のアルコキシシランに加えて、 上記アルコキシ末端多官能ポリシロキサン (bl)で例示した 1官能のアルコキシシラン を併用してもよい。このとき、 1官能のアルコキシシランは、使用するァノレコキシシラン 全量に対して、 10重量%以下、好ましくは 7重量%以下、より好ましくは 5重量%以下 で使用することが望ましい。
[0090] また、アルコキシ基含有ポリシロキサンとして、信越シリコーン社製の X40— 9220、 X40— 9225 (以上、商品名)、 GE東芝シリコーン社製の XR31— B1410、 XR31— B0270、 XR31— B2733 (以上、商品名)などの巿販のシロキサンポリマーを用いる ことちでさる。
[0091] 〔酸ィ匕物微粒子含有ポリシロキサン組成物およびその用途〕
本発明に係る酸化物微粒子含有ポリシロキサン組成物は、酸化物微粒子 (A)と多 官能ポリシロキサン (B1)または (B2)または (B3)とを、炭素数 6以上の有機基を有 するリン酸等やォキシアルキレン基を有する化合物を使用せずに、有機溶媒中、塩 基性化合物、酸性化合物または金属キレート化合物の存在下で混合して分散処理 を施すことにより得ることができる。
[0092] (有機溶媒)
上記有機溶媒としては、上記多官能ポリシロキサン (B1)または (B2)製造時の脱ァ ルコール反応や加水分解 '縮合反応において例示した有機溶媒が挙げられる。これ らの有機溶剤は、 1種単独で用いても、 2種以上を混合して用いてもよい。これらの有 機溶媒のうち、酸ィ匕物微粒子含有ポリシロキサン組成物の分散安定性および高粘度 化が図れるという点でアルコール以外の有機溶媒、たとえば、メチルェチルケトン、メ チルイソブチルケトン、ジイソプチルケトン、トルエン、キシレン、酢酸ェチル、酢酸ブ チル、およびこれらの混合物などが好ましい。また、これらの有機溶媒は、予め脱水 処理を施して、水分を除去した状態で使用することが好ま U、。
[0093] 上記有機溶媒の使用量は、酸化物微粒子 (A)を均一に分散できる量であれば特 に制限されないが、得られる酸ィ匕物微粒子含有ポリシロキサン組成物の固形分濃度 力 好ましくは 5〜80重量%、より好ましくは 7〜70重量%、特に好ましくは 10〜60 重量%となる量である。
[0094] (塩基性化合物、酸性化合物および金属キレート化合物)
上記塩基性化合物、酸性化合物および金属キレート化合物としては、上記多官能 ポリシロキサン (B1)または (B2)製造時の脱アルコール反応や加水分解 '縮合反応 において例示した化合物が挙げられる。これらの塩基性化合物、酸性化合物および 金属キレート化合物のうち、塩基性化合物および酸性化合物が好ましぐ塩基性ィ匕 合物がより好ましぐ有機アミンィ匕合物がさらに好ましぐトリェチルァミン、テトラメチル アンモ-ゥムハイドロキサイド、ピリジンが特に好まし 、。
[0095] 上記塩基性化合物、酸性ィ匕合物または金属キレートイ匕合物は、本発明の酸化物微 粒子含有ポリシロキサン組成物に、上記酸ィ匕物微粒子 (A) 100重量部に対して、通 常 0. 001〜20重量部、好ましくは 0. 005〜10重量部、より好ましくは 0. 01〜5重 量部、さらに好ましくは 0. 01〜1重量部、特に好ましくは 0. 01-0. 5重量部含有さ れて 、ることが望ま U、。上記範囲にあると酸ィ匕物微粒子 (A)の分散安定性と酸ィ匕 物微粒子含有ポリシロキサンの組成物の粘度を容易に制御できる。
[0096] (酸化物微粒子含有ポリシロキサン組成物の製造方法)
上記酸ィ匕物微粒子含有ポリシロキサン組成物は、有機溶媒に酸化物微粒子 (A)と 多官能ポリシロキサン (B1)または (B2)または (B3)と、塩基性化合物、酸性化合物 または金属キレートイ匕合物とを添加し、これらを十分に混合して酸化物微粒子 (A)を 有機溶媒中に分散させることにより調製することができる。このとき、ボールミル、サン ドミル(ビーズミル,ハイシェアビーズミル)、ホジナイザー、超音波ホモジナイザー、ナ ノマイザ一、プロペラミキサー、ハイシェアミキサー、ペイントシェーカーなどの公知の 分散機を用いることが好ましぐ特に高分散の微粒子分散体を調製するためにはボ ールミル、サンドミル(ビーズミル,ハイシェアビーズミル)が好適に使用される。上記 のように、塩基性化合物、酸性ィ匕合物または金属キレートイ匕合物の存在下で酸ィ匕物 微粒子 (A)と多官能ポリシロキサン (B1)または(B2)または (B3)とを混合すると、塩 基性化合物、酸性化合物または金属キレート化合物の触媒作用により酸化物微粒 子 (A)の表面で多官能ポリシロキサン (B1)または (B2)または(B3)の縮合反応が進 行し、酸ィ匕物微粒子 (A)の表面が疎水性となり、有機溶媒中に微分散しやすくなると 推測される。
[0097] 本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、酸化物微粒子 (A) 100重量 部に対して、多官能ポリシロキサン (B1)または (B2)または(B3)を完全加水分解縮 合物換算で、好ましくは 1〜: LOOO重量部、より好ましくは 5〜900重量部、特により好 ましくは 10〜800重量部含有することが望ましい。
[0098] また、上記酸ィ匕物微粒子含有ポリシロキサン組成物は、酸化物微粒子 (A)力 体 積平均分散粒径が好ましくは 300nm以下、より好ましくは 200nm以下で高度に分 散した組成物である。さらに上記酸ィ匕物微粒子含有ポリシロキサン組成物は、実質 的に水分を含まないことが好ましぐ具体的には、水分含有率が 5重量%以下が好ま しぐ 3重量%以下がより好ましぐ 1重量%以下が特に好ましい。
[0099] また、本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、ポリエチレングリコール 等の有機系増粘剤を使用せずに分散処理時間を延長することで高粘度化すること ができ、ゲル化や酸化物微粒子 (A)の沈降も発生せず、高比重の添加剤を混合した 場合にも沈降分離を抑制できる。
[0100] 上記酸ィ匕物微粒子含有ポリシロキサン組成物は、東機産業 (株)製の RE80型粘度 計により測定した 25°C、ローター回転数 5rpm、固形分濃度 20重量%における粘度 力 好ましくは 20mPa' s以上、より好ましくは 30mPa' s以上、特に好ましくは 50mPa • s以上である。酸ィ匕物微粒子含有ポリシロキサン組成物の粘度が上記範囲にあると 、高比重の充填剤を配合した場合にも分離することなぐ容易に厚膜の硬化体を製 造することができる。
[0101] 上記酸ィ匕物微粒子含有ポリシロキサン組成物は、酸化物微粒子 (A)とジメチルシロ キサン連鎖を有する多官能ポリシロキサン (B1)または (B2)とを含有する場合、上記 多官能ポリシロキサン(B1)および (B2)が柔軟性に優れるため、厚さが 10 m〜lm mの硬化体も形成できる。
[0102] さらに、上記多官能ポリシロキサン (B1)および (B2)が複数の末端アルコキシ基を 有するため、あるいは上記多官能ポリシロキサン (B3)が複数の水酸基またはアルコ キシ基を有するため、上記組成物中では、酸ィ匕物微粒子 (A)が、炭素数 6以上の有 機基を有するリン酸等やォキシアルキレン基を有する化合物を使用せずに、高度に 分散されている。これにより、過酷な環境下に曝しても劣化せず、透明性に優れた硬 化体 (膜)を形成できる。この硬化体は、上記酸化物微粒子含有ポリシロキサン組成 物を、基材上などに塗工し、乾燥により溶媒を除去して多官能ポリシロキサンを硬化 させることにより得ることができる。また、この硬化体には、架橋構造に炭素 炭素結 合が存在せず、耐紫外線性にも優れている。たとえば、上記硬化体は、 5000mWZ m2、 200時間の紫外線照射によっても黄変(黄色化)しない。また、 150°C、 200時 間の加熱によっても熱劣化しない。
[0103] また、本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、さらに蛍光体を含有す ることができ、この硬化体は LED封止材として使用できる。
さらに、本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、硬化体の収縮ー膨 張を緩和するためにガラス繊維を含有して 、てもよ 、。ガラス繊維を含有する組成物 を使用するとさらに厚膜の硬化体を形成することができる。また、硬化体の透明性を 確保するために、上記多官能ポリシロキサン (B1)または(B2)と上記ガラス繊維との 屈折率差は 0. 01以下が好ましい。
[0104] [実施例]
以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定さ れるものではない。なお、実施例および比較例中の「部」および「%」は、特記しない 限り、「重量部」および「重量%」を示す。
[0105] 〔多官能ポリシロキサン (B1)または (B2)を含む組成物〕
実施例および比較例における各種測定は、下記の方法により行なった。
[0106] 〔GPC測定〕
シロキサンの重量平均分子量は、ゲルパーミエーシヨンクロマトグラフィーにより下 記条件で測定したポリスチレン換算値として示した。
装置: HLC -8120C (東ソ一 (株)製)
カラム: TSK— gel MultiporeH —M (東ソ一社製)
XL
溶離液: THF、流量 0. 5mLZmin、負荷量 5. 0%、 100 ,u L
〔分散性〕
得られた組成物の外観を目視により観察した。微粒子の沈降が見られなカゝつた組 成物の体積平均分散粒径を、マイクロトラック超微粒子粒度分布計(日機装 (株)製「 UPA150」)により測定し、下記基準で評価した。
A:分離沈降なし。体積平均分散粒径≤200nm。
B:分離沈降なし。 200nm<体積平均分散粒径≤ 300nm。 C :分離沈降なし。 300nm<体積平均分散粒径。
D :分離沈降あり。
[0107] [厚膜形成性]
得られた組成物を、乾燥膜厚が 50 mになるように石英ガラス板上に塗布した後、
100°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス 板上に膜厚 50 μ mの硬化体を作製した。この硬化体の外観を目視で観察して下記 基準で評価した。
A:クラックなし。
B :クラック発生。
[0108] 〔塗膜透明性〕
得られた組成物を、乾燥膜厚が 20 mになるように石英ガラス板上に塗布した後、
100°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス 板上に膜厚 20 mの硬化体を作製した。この硬化体の波長 500〜700nmにおける 分光透過率を紫外可視分光光度計により測定し、下記基準で評価した。
A:光透過率が 90%超。
B:光透過率が 85%以上 90%以下。
C:光透過率が 70&以上 85%未満。
D:光透過率が 70%未満。
[0109] 〔黄色度〕
得られた組成物を、乾燥膜厚が 20 mになるように石英ガラス板上に塗布した後、 100°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス 板上に膜厚 20 mの硬化体を作製した。この硬化体の波長 450nmの光透過率を 紫外可視分光光度計により測定して、下記基準で評価した。
A:光透過率が 90%超。
B:光透過率が 70〜90%。
C :光透過率が 70%未満。
[0110] [調製例 A1]
攪拌機および還流冷却器を備えた反応器に、 Mw= l, 000のアルコキシ末端ポリ シロキサン (信越ィ匕学工業 (株)製、商品名:X40— 9220) 14重量部と、 Mw= 20, 0 00のヒドロキシ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品名:XF 3905) 86重量部と、トルエン 42重量部と、ジ— i—プロボキシ'ェチルァセトァセテ ートアルミニウムのイソプロピルアルコール 75%希釈液 0. 2重量部とを入れて混合し 、攪拌しながら 70°Cで 3時間脱アルコール反応を行なった。次いで、メチルイソプチ ルケトン 53重量部、トルエン 53重量部および水 0. 6重量部を添加して、 70°Cで 3時 間加水分解 '縮合反応を行ない、 Mw= 26, 000の多官能ポリシロキサンを含む、固 形分濃度 40重量%のポリシロキサン溶液 (I)を得た。
[0111] [調製例 A2]
Mw= l, 000のアルコキシ末端ポリシロキサン (X40— 9220)の代わりに Mw= 80 0のアルコキシ末端シロキサンオリゴマー(GE東芝シリコーン (株)製、商品名:XC96 B0446) 7重量部を使用し、 Mw= 20, 000のヒドロキシ末端ポリジメチルシロキサ ン (XF— 3905)の量を 93重量部に変更した以外は調製例 A1と同様にして、 Mw= 24, 000の多官能ポリシロキサンを含む、固形分濃度 40重量%のポリシロキサン溶 液 (Π)を得た。
[0112] [調製例 A3]
攪拌機および還流冷却器を備えた反応器に、 Mw= 800のアルコキシ末端ポリシ ロキサン(GE東芝シリコーン (株)製、商品名:XC96— B0446) 7重量部と、 Mw= 2 0, 000のヒドロキシ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品名: XF— 3905) 93重量部と、トルエン 42重量部と、ジ— i—プロポキシ 'ェチルァセトァ セテートアルミニウムのイソプロピルアルコール 75%希釈液 0. 2重量部とを入れて混 合し、攪拌しながら 70°Cで 3時間脱アルコール反応を行なった。得られた反応液にメ チルイソブチルケトン 53重量部とトルエン 53重量部とを添カ卩し、 Mw= 23, 000の多 官能ポリシロキサンを含む、固形分濃度 40重量%のポリシロキサン溶液 (III)を得た。
[0113] [調製例 A4]
アルコキシ末端シロキサンオリゴマー(X40— 9220)の量を 60重量部、ヒドロキシ末 端ポリジメチルシロキサン (XF— 3905)の量を 40重量部に変更した以外は調製例 A 1と同様にして、 Mw= 30, 000の多官能ポリシロキサンを含む、固形分濃度 40重量 %のポリシロキサン溶液 (i)を得た。
[0114] [実施例 A1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、ポリ シロキサン成分として上記ポリシロキサン溶液 (I) 250重量部(固形分換算で 100重 量部)と、トリェチルァミン 0. 1重量部と、メチルェチルケトン 650重量部とを容器に入 れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミ ルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固形分濃度 20重量%の 金属酸化物微粒子含有ポリシロキサン組成物 (A— 1)を得た。この組成物の特性を 評価した結果を表 A1に示す。
[0115] [実施例 A2]
トリェチルァミンの代わりにメタンスルホン酸 0. 1重量部を使用した以外は、実施例 A1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成 物 (A— 2)を調製した。この組成物の特性を評価した結果を表 A1に示す。
[0116] [実施例 A3]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸化亜鉛微粒子 (一次平均粒径: 20nm) 100重量部と、ポリシロキサン溶液 (I)の代わりにポリシロキサン溶液 (Π) 250 重量部(固形分換算で 100重量部)とを使用した以外は、実施例 A1と同様にして固 形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A— 3)を調製 した。この組成物の特性を評価した結果を表 A1に示す。
[0117] [実施例 A4]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸ィ匕ジルコニウム微粒子(一次平 均粒径: 20nm) 100重量部を使用した以外は、実施例 A1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A— 4)を調製した。この 組成物の特性を評価した結果を表 A1に示す。
[0118] [実施例 A5]
ポリシロキサン溶液 (I)の代わりにポリシロキサン溶液 (ΠΙ) 250重量部(固形分換算 で 100重量部)とを使用した以外は、実施例 A4と同様にして固形分濃度 20重量% の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A— 5)を調製した。この組成物の 特性を評価した結果を表 Alに示す。
[0119] [比較例 A1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、 Mw = 20, 000のヒドロキシ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品 名 :XF- 3905) 100重量咅と、卜リエチノレアミン 0. 1重量咅と、メチノレエチノレケ卜ン 80 0重量部とを容器に入れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部 を添加して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固 形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A—C1)を得 た。この組成物の特性を評価した結果を表 A1に示す。
[0120] [比較例 A2]
ポリシロキサン成分として上記ポリシロキサン溶液 (I)の代わりにポリシロキサン溶液
(i) 250重量部を使用した以外は、実施例 A1と同様にして固形分濃度 20重量%の 金属酸化物微粒子含有ポリシロキサン組成物 (A— C2)を調製した。この組成物の特 性を評価した結果を表 A1に示す。
[0121] [比較例 A3]
トリェチルァミンを使用しな力つた以外は実施例 A1と同様にして固形分濃度 20重 量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A—C3)を調製した。この組成 物の特性を評価した結果を表 A1に示す。
[0122] [比較例 A4]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、ポリ シロキサン成分として上記ポリシロキサン溶液 (I) 250重量部(固形分換算で 100重 量部)と、ポリオキシエチレンアルキルリン酸エステル (楠本ィ匕成 (株)製、商品名: PL ADD ED151) 9重量部と、ァセチルアセトン 5重量部と、メチルェチルケトン 650重 量部とを容器に入れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部を 添加して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固形 分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A— C4)を得た。 この組成物の特性を評価した結果を表 A1に示す。
[0123] [比較例 A5] ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸化亜鉛微粒子 (一次平均粒径:
20nm) 100重量部を使用した以外は、比較例 A4と同様にして固形分濃度 20重量 %の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A—C5)を調製した。この組成物 の特性を評価した結果を表 A1に示す。
[0124] [比較例 A6]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸ィ匕ジルコニウム微粒子(一次平 均粒径: 20nm) 100重量部を使用した以外は、比較例 A4と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (A—C6)を調製した。こ の組成物の特性を評価した結果を表 A1に示す。
[0125] [表 1]
Figure imgf000035_0001
〔多官能ポリシロキサン (Β3)を含む組成物〕
実施例および比較例における各種測定は、下記の方法により行なった。 [0127] 〔GPC測定〕
シロキサンの重量平均分子量は、ゲルパーミエーシヨンクロマトグラフィーにより下 記条件で測定したポリスチレン換算値として示した。
装置: HLC -8120C (東ソ一 (株)製)
カラム: TSK— gel MultiporeH —M (東ソ一社製)
XL
溶離液: THF、流量 0. 5mLZmin、負荷量 5. 0%、 100 ,u L
〔分散性〕
得られた組成物の外観を目視により観察した。微粒子の沈降が見られなカゝつた組 成物の体積平均分散粒径を、マイクロトラック超微粒子粒度分布計(日機装 (株)製「
UPA150」)により測定し、下記基準で評価した。
A:分離沈降なし。体積平均分散粒径≤200nm。
B:分離沈降なし。 200nm<体積平均分散粒径≤ 300nm。
C :分離沈降なし。 300nm<体積平均分散粒径。
D :分離沈降あり。
[0128] 〔塗膜透明性〕
得られた組成物を、乾燥膜厚が 2 /z mになるように石英ガラス板上に塗布した後、 1
00°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス板 上に膜厚 2 mの硬化体を作製した。この硬化体の波長 500〜700nmにおける分 光透過率を紫外可視分光光度計により測定し、下記基準で評価した。
A:光透過率が 90%超。
B:光透過率が 70〜90%。
C :光透過率が 70%未満。
[0129] 〔黄色度〕
得られた組成物を、乾燥膜厚が 2 /z mになるように石英ガラス板上に塗布した後、 1 00°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス板 上に膜厚 2 mの硬化体を作製した。この硬化体の波長 450nmの光透過率を紫外 可視分光光度計により測定して、下記基準で評価した。
A:光透過率が 90%超。 B:光透過率が 70〜90%。
C :光透過率が 70%未満。
[0130] 〔耐紫外線性〕
乾燥膜厚が 2 mになるように組成物を石英製ガラス板上に塗布した後、 100°Cで 1時間乾燥硬化させた。次いで、 200°Cで 1時間乾燥硬化させて石英製ガラス板上 に膜厚 2 μ mの硬化体を形成した。この硬化体にスポット UV照射装置 (ゥシォ電機 ( 株)製「SP— V」)を使用して波長 365nmの紫外線照度が 5000mWZcm2の条件で 紫外線を 200時間照射した後、膜の外観を目視観察して下記基準で評価した。 A:着色なし。クラックなし。
B :わずかに着色。クラックなし。
C :着色あり。クラックなし。
D :着色あり。クラック発生。
[0131] [実施例 B1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、多官 能ポリシロキサンとして Mw= 2, 000のアルコキシ末端のメチル系シリコーンオリゴマ 一 (信越化学工業 (株)製、商品名:X40- 9225) 100重量部と、トリェチルァミン 0. 1重量部と、メチルェチルケトン 700重量部とを容器に入れ、この混合物に 0. lmm 径のジルコ-ァビーズ 2000重量部を添カロして、ビーズミルを用いて 1500rpmで 1時 間攪拌して微粒子を分散させ、固形分濃度 20重量%の金属酸化物微粒子含有ポリ シロキサン組成物(B— 1)を得た。この組成物の特性を評価した結果を表 B1に示す
[0132] [実施例 B2]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸化亜鉛微粒子 (一次平均粒径: 20nm) 100重量部と、トリェチルァミンの代わりにピリジン 0. 1重量部とを使用した以 外は、実施例 B1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシ ロキサン組成物(B— 2)を作製した。この組成物の特性を評価した結果を表 B1に示 す。
[0133] [実施例 B3] ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸ィ匕ジルコニウム微粒子(一次平 均粒径: 20nm) 100重量部を使用した以外は、実施例 B1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(B— 3)を作製した。この 組成物の特性を評価した結果を表 B1に示す。
[0134] [実施例 B4]
多官能ポリシロキサンとしてシリコーンオリゴマー(X40— 9225)の代わりに Mw= 1 0, 000のアルコキシ末端のメチル系シリコーンポリマー(GE東芝シリコーン (株)製、 商品名:XR31— B2733) 100重量部を使用した以外は、実施例 B1と同様にして固 形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(B—4)を作製 した。この組成物の特性を評価した結果を表 B1に示す。
[0135] [比較例 B1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、多官 能ポリシロキサンとして Mw= 2, 000のアルコキシ末端のメチル系シリコーンオリゴマ 一 (信越化学工業 (株)製、商品名:X40— 9225) 100重量部と、ポリオキシエチレン アルキルリン酸エステル (楠本化成 (株)製、商品名: PLADD ED151) 9重量部と、 ァセチルアセトン 5重量部と、メチルェチルケトン 700重量部とを容器に入れ、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固形分濃度 20重量%の金属酸ィ匕 物微粒子含有ポリシロキサン組成物(B—a)を得た。この組成物の特性を評価した結 果を表 B1に示す。
[0136] [比較例 B2]
トリェチルァミンを使用しな力つた以外は実施例 B1と同様にして粉体状のルチル型 酸ィ匕チタン微粒子をメチルェチルケトンに分散させたが、酸ィ匕チタン微粒子が沈降し た。
[0137] [比較例 B3]
多官能ポリシロキサンを使用しなかった以外は実施例 B1と同様にして粉体状のル チル型酸ィ匕チタン微粒子をメチルェチルケトンに分散させたが、酸ィ匕チタン微粒子 が沈降した。 [0138] [比較例 B4]
多官能ポリシロキサンの代わりに、 Si— OR結合 (Rはアルキル基)や Si— OH結合 を含有せず、両末端にメタクリル構造を有するポリジメチルシロキサン (信越化学工業 (株)製、商品名:X— 22— 164B)使用した以外は、実施例 B1と同様にして粉体状 のルチル型酸ィ匕チタン微粒子をメチルェチルケトンに分散させた力 S、酸ィ匕チタン微 粒子が沈降した。
[0139] [比較例 B5]
予め水にアナターゼ型酸ィ匕チタン微粒子を分散させた酸ィ匕チタン微粒子水分散体 (石原産業 (株)製「STS— 01」、 TiO濃度 30重量%、酸化チタン微粒子の体積平
2
均分散粒径: 60nm、有機系分散剤: 0重量%) 300重量部を容器に入れ、これに、 アルコキシ末端のメチル系シリコーンオリゴマー (信越ィ匕学工業 (株)製、商品名:X4 0- 9225) 100重量部と、メチルェチルケトン 500重量部とを添カ卩し、さらに、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させたが、酸ィ匕チタン微粒子が沈降した。
[0140] [比較例 B6]
酸化チタン微粒子水分散体 (石原産業 (株)製「STS— 01」) 300重量部を容器に 入れ、これに、 4官能シランィ匕合物単独の縮合物(コルコート (株)製、商品名:ェチル シリケート 48) 200重量部、メチルェチルケトン 500重量部とを添カ卩し、さらに、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させたが、酸ィ匕チタン微粒子が沈降した。
[0141] [比較例 B7]
メチルェチルケトンをイソプロピルアルコール 500重量部に変更した以外は、比較 例 B6と同様にして酸化チタン微粒子を分散させ、金属酸化物微粒子含有ポリシロキ サン組成物 (B— e)を作製した。この組成物は良好に分散していたが、製膜時にクラ ックが発生した。
[0142] [表 2]
Figure imgf000040_0001
[実施例 C1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、多官 能ポリシロキサンとして Mw= 2, 000のアルコキシ末端のメチル系シリコーンオリゴマ 一 (信越化学工業 (株)製、商品名:X40— 9225) 100重量部と、メタンスルホン酸 0 . 1重量部と、メチルェチルケトン 700重量部とを容器に入れ、この混合物に 0. lmm 径のジルコ-ァビーズ 2000重量部を添カロして、ビーズミルを用いて 1500rpmで 1時 間攪拌して微粒子を分散させ、固形分濃度 20重量%の金属酸化物微粒子含有ポリ シロキサン組成物(C— 1)を得た。この組成物の特性を評価した結果を表 C1に示す
[0144] [実施例 C2]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸化亜鉛微粒子 (一次平均粒径: 20nm) 100重量部と、メタンスルホン酸の代わりに酢酸 0. 1重量部とを使用した以 外は、実施例 C1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリ シロキサン組成物(C— 2)を作製した。この組成物の特性を評価した結果を表 C1〖こ 示す。
[0145] [実施例 C3]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸ィ匕ジルコニウム微粒子(一次平 均粒径: 20nm) 100重量部を使用した以外は、実施例 C1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(C— 3)を作製した。この 組成物の特性を評価した結果を表 C1に示す。
[0146] [実施例 C4]
多官能ポリシロキサンとしてシリコーンオリゴマー(X40— 9225)の代わりに Mw= 1 0, 000のアルコキシ末端のメチル系シリコーンポリマー(GE東芝シリコーン (株)製、 商品名:XR31— B2733) 100重量部を使用した以外は、実施例 C1と同様にして固 形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(C— 4)を作製 した。この組成物の特性を評価した結果を表 C1に示す。
[0147] [比較例 C1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、多官 能ポリシロキサンとして Mw= 2, 000のアルコキシ末端のメチル系シリコーンオリゴマ 一 (信越化学工業 (株)製、商品名:X40— 9225) 100重量部と、ポリオキシエチレン アルキルリン酸エステル (楠本化成 (株)製、商品名: PLADD ED151) 9重量部と、 ァセチルアセトン 5重量部と、メチルェチルケトン 700重量部とを容器に入れ、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固形分濃度 20重量%の金属酸ィ匕 物微粒子含有ポリシロキサン組成物(C— a)を得た。この組成物の特性を評価した結 果を表 C1に示す。
[0148] [比較例 C2]
メタンスルホン酸を使用しな力つた以外は実施例 C1と同様にして粉体状のルチル 型酸ィ匕チタン微粒子をメチルェチルケトンに分散させたが、酸ィ匕チタン微粒子が沈 降した。
[0149] [比較例 C3]
多官能ポリシロキサンを使用しなかった以外は実施例 C 1と同様にして粉体状のル チル型酸ィ匕チタン微粒子をメチルェチルケトンに分散させたが、酸ィ匕チタン微粒子 が沈降した。
[0150] [比較例 C4]
多官能ポリシロキサンの代わりに、 Si— OR結合 (Rはアルキル基)や Si— OH結合 を含有せず、両末端にメタクリル構造を有するポリジメチルシロキサン (信越化学工業 (株)製、商品名:X— 22— 164B)使用した以外は、実施例 C1と同様にして粉体状 のルチル型酸ィ匕チタン微粒子をメチルェチルケトンに分散させた力 S、酸ィ匕チタン微 粒子が沈降した。
[0151] [比較例 C5]
予め水にアナターゼ型酸ィ匕チタン微粒子を分散させた酸ィ匕チタン微粒子水分散体 (石原産業 (株)製「STS— 01」、 TiO濃度 30重量%、酸化チタン微粒子の体積平
2
均分散粒径: 60nm、有機系分散剤: 0重量%) 300重量部を容器に入れ、これに、 アルコキシ末端のメチル系シリコーンオリゴマー (信越ィ匕学工業 (株)製、商品名:X4 0- 9225) 100重量部と、メチルェチルケトン 500重量部とを添カ卩し、さらに、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させたが、酸ィ匕チタン微粒子が沈降した。 [0152] [比較例 C6]
酸化チタン微粒子水分散体 (石原産業 (株)製「STS— 01」) 300重量部を容器に 入れ、これに、 4官能シランィ匕合物単独の縮合物(コルコート (株)製、商品名:ェチル シリケート 48) 200重量部、メチルェチルケトン 500重量部とを添カ卩し、さらに、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させたが、酸ィ匕チタン微粒子が沈降した。
[0153] [比較例 C7]
メチルェチルケトンをイソプロピルアルコール 500重量部に変更した以外は、比較 例 C6と同様にして酸化チタン微粒子を分散させ、金属酸化物微粒子含有ポリシロキ サン組成物 (C— e)を作製した。この組成物は良好に分散していたが、製膜時にクラ ックが発生した。
[0154] [表 3]
Figure imgf000044_0001
[実施例 D1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、多官 能ポリシロキサンとして Mw= 2, 000のアルコキシ末端のメチル系シリコーンオリゴマ 一 (信越化学工業 (株)製、商品名:X40— 9225) 100重量部と、ジ—イソプロポキシ •ェチルァセトアセテートアルミニウムのイソプロピルアルコール 75%希釈液 1重量部 と、メチルェチルケトン 700重量部とを容器に入れ、この混合物に 0. 1mm径のジル コ-ァビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌し て微粒子を分散させ、固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサ ン組成物(D— 1)を得た。この組成物の特性を評価した結果を表 D1に示す。
[0156] [実施例 D2]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸化亜鉛微粒子 (一次平均粒径: 20nm) 100重量部を使用した以外は、実施例 D1と同様にして固形分濃度 20重量 %の金属酸ィ匕物微粒子含有ポリシロキサン組成物(D— 2)を作製した。この組成物 の特性を評価した結果を表 D1に示す。
[0157] [実施例 D3]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸ィ匕ジルコニウム微粒子(一次平 均粒径: 20nm) 100重量部を使用し、ジ—イソプロボキシ'ェチルァセトアセテートァ ルミ-ゥムのイソプロピルアルコール 75%希釈液の代わりにトリ— n—ブトキシ 'ェチ ルァセトアセテートジルコニウムのイソプロピルアルコール 75%希釈液 1重量部を使 用した以外は、実施例 D1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子 含有ポリシロキサン組成物(D— 3)を作製した。この組成物の特性を評価した結果を 表 D1に示す。
[0158] [実施例 D4]
多官能ポリシロキサンとしてシリコーンオリゴマー(X40— 9225)の代わりに Mw= 1 0, 000のアルコキシ末端のメチル系シリコーンポリマー(GE東芝シリコーン (株)製、 商品名:XR31— B2733) 100重量部を使用し、ジ—イソプロポキシ 'ェチルァセトァ セテートアルミニウムのイソプロピルアルコール 75%希釈液の代わりにトリ— n—ブト キシ.ェチルァセトアセテートジルコニウムのイソプロピルアルコール 75%希釈液 1重 量部を使用した以外は、実施例 D1と同様にして固形分濃度 20重量%の金属酸ィ匕 物微粒子含有ポリシロキサン組成物(D— 4)を作製した。この組成物の特性を評価し た結果を表 Dlに示す。
[0159] [比較例 D1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 100重量部と、多官 能ポリシロキサンとして Mw= 2, 000のアルコキシ末端のメチル系シリコーンオリゴマ 一 (信越化学工業 (株)製、商品名:X40— 9225) 100重量部と、ポリオキシエチレン アルキルリン酸エステル (楠本化成 (株)製、商品名: PLADD ED151) 9重量部と、 ァセチルアセトン 5重量部と、メチルェチルケトン 700重量部とを容器に入れ、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させ、固形分濃度 20重量%の金属酸ィ匕 物微粒子含有ポリシロキサン組成物(D—a)を得た。この組成物の特性を評価した結 果を表 D2に示す。
[0160] [比較例 D2]
ジ—イソプロポキシ ·ェチルァセトアセテートアルミニウムのイソプロピルアルコール 75%希釈液を使用しな力つた以外は実施例 D1と同様にして粉体状のルチル型酸 化チタン微粒子をメチルェチルケトンに分散させたが、酸ィ匕チタン微粒子が沈降した
[0161] [比較例 D3]
多官能ポリシロキサンを使用しなかった以外は実施例 D1と同様にして粉体状のル チル型酸ィ匕チタン微粒子をメチルェチルケトンに分散させたが、酸ィ匕チタン微粒子 が沈降した。
[0162] [比較例 D4]
多官能ポリシロキサンの代わりに、 Si— OR結合 (Rはアルキル基)や Si— OH結合 を含有せず、両末端にメタクリル構造を有するポリジメチルシロキサン (信越化学工業 (株)製、商品名:X— 22— 164B)使用した以外は、実施例 D1と同様にして粉体状 のルチル型酸ィ匕チタン微粒子をメチルェチルケトンに分散させた力 S、酸ィ匕チタン微 粒子が沈降した。
[0163] [比較例 D5]
予め水にアナターゼ型酸ィ匕チタン微粒子を分散させた酸ィ匕チタン微粒子水分散体 (石原産業 (株)製「STS— 01」、 TiO濃度 30重量%、酸化チタン微粒子の体積平
2
均分散粒径: 60nm、有機系分散剤: 0重量%) 300重量部を容器に入れ、これに、 アルコキシ末端のメチル系シリコーンオリゴマー (信越ィ匕学工業 (株)製、商品名:X4 0- 9225) 100重量部と、メチルェチルケトン 500重量部とを添カ卩し、さらに、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させたが、酸ィ匕チタン微粒子が沈降した。
[0164] [比較例 D6]
酸化チタン微粒子水分散体 (石原産業 (株)製「STS— 01」) 300重量部を容器に 入れ、これに、 4官能シランィ匕合物単独の縮合物(コルコート (株)製、商品名:ェチル シリケート 48) 200重量部、メチルェチルケトン 500重量部とを添カ卩し、さらに、この混 合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ビーズミルを用いて 1500rpmで 1時間攪拌して微粒子を分散させたが、酸ィ匕チタン微粒子が沈降した。
[0165] [比較例 D7]
メチルェチルケトンをイソプロピルアルコール 500重量部に変更した以外は、比較 例 D6と同様にして酸化チタン微粒子を分散させ、金属酸化物微粒子含有ポリシロキ サン組成物 (D— e)を作製した。この組成物は良好に分散していたが、製膜時にクラ ックが発生した。
[0166] [表 4]
表口 1
Figure imgf000048_0001
[表 5]
表 D2
Figure imgf000049_0001

Claims

請求の範囲
有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で、
(A)ケィ素酸ィ匕物微粒子および Zまたは金属酸ィ匕物微粒子、および
(B1)下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるアルコキシ末端の多官能ポリ シロキサン (bl)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレ ン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ末端 ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比(blZb 2)が 3Z97〜55Z45の範囲で脱アルコール反応させて得られる多官能ポリシロキ サン、あるいは
(B2)下記平均組成式(2)
R1 SiO (OH) (2)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるヒドロキシ末端の多官能ポリシ ロキサン (b3)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン 換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ末端 ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比(b3Zb 4)が 3Z97〜55Z45の範囲で脱アルコール反応させて得られる多官能ポリシロキ サン、あるいは
(B3)下記平均組成式(3)
R1 SiO (OR3) (3)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R3は水素原 子またはアルキル基であり、 R3が複数存在する場合には互いに同じであっても異な つていてもよぐ aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、か つ a+b X 2 + c=4である)
で表される多官能ポリシロキサン
を混合して、前記酸化物微粒子 (A)を有機溶媒中に分散させることにより得られる酸 化物微粒子含有ポリシロキサン組成物。
[2] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とを塩基性化合物の存在下で混合することを特徴とする請求項 1に記載の酸化物微 粒子含有ポリシロキサン組成物。
[3] 前記塩基性ィ匕合物が有機アミンィ匕合物であることを特徴とする請求項 2に記載の酸 化物微粒子含有ポリシロキサン組成物。
[4] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とをビーズミルにより混合することを特徴とする請求項 1〜3のいずれか〖こ記載の酸ィ匕 物微粒子含有ポリシロキサン組成物。
[5] 前記酸ィ匕物微粒子 (A) 100重量部に対して、前記多官能ポリシロキサン (B1)また は (B2)または (B3)を完^ 水分解縮合物換算で 1〜: L000重量部混合することを 特徴とする請求項 1〜4のいずれかに記載の酸ィ匕物微粒子含有ポリシロキサン組成 物。
[6] 水含有率が 5重量%以下であることを特徴とする請求項 1〜5のいずれかに記載の 酸ィ匕物微粒子含有ポリシロキサン組成物。
[7] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とを混合して 得られる酸ィ匕物微粒子含有ポリシロキサン組成物であって、前記多官能ポリシロキサ ン (B1)または (B2)をさらに加水分解 '縮合した後、前記酸化物微粒子 (A)と混合す ることを特徴とする請求項 1〜6のいずれかに記載の酸化物微粒子含有ポリシロキサ ン組成物。
[8] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とを混合して 得られる酸ィ匕物微粒子含有ポリシロキサン組成物であって、前記脱アルコール反応 における触媒が金属キレートイ匕合物であることを特徴とする請求項 1〜7のいずれか に記載の酸ィ匕物微粒子含有ポリシロキサン組成物。
[9] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B3)とを混合して得られる酸 化物微粒子含有ポリシロキサン組成物であって、前記多官能ポリシロキサン (B3)の 重量平均分子量力 S、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレ ン換算値で 1, 000〜100, 000の範囲にあることを特徴とする請求項 1〜6のいずれ か記載の酸ィ匕物微粒子含有ポリシロキサン組成物。
[10] 請求項 1〜9のいずれかに記載の酸ィ匕物微粒子含有ポリシロキサン組成物から得 られる硬化体。
[11] 請求項 1〜9のいずれかに記載の酸ィ匕物微粒子含有ポリシロキサン組成物に、さら に蛍光体を混合して得られることを特徴とする LED封止材。
[12] 下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるアルコキシ末端の多官能ポリ シロキサン (bl)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレ ン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ末端 ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比(blZb 2)が 3Z97〜55Z45の範囲で脱アルコール反応させて多官能ポリシロキサン(Bl) 、あるいは
下記平均組成式 (2)
R1 SiO (OH) (2)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 500以上 3, 000未満の範囲にあるヒドロキシ末端の多官能ポリシ ロキサン (b3)と、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン 換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ末端 ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比(b3Zb 4)が 3Z97〜55Z45の範囲で脱アルコール反応させて得られる多官能ポリシロキ サン(B2)、あるいは
(B3)下記平均組成式(3)
R1 SiO (OR3) (3)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり
、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R3は水素原 子またはアルキル基であり、 R3が複数存在する場合には互いに同じであっても異な つていてもよぐ aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、か つ a+b X 2 + c=4である)
で表される多官能ポリシロキサン
を調製した後、
該多官能ポリシロキサン (B1)または (B2)または (B3)とケィ素酸化物微粒子およ び Zまたは金属酸ィ匕物微粒子 (A)とを、有機溶媒中、塩基性化合物、酸性化合物ま たは金属キレート化合物の存在下で混合することを特徴とする酸化物微粒子含有ポ リシロキサン組成物の製造方法。
前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とを塩基性化合物の存在下で混合することを特徴とする請求項 12に酸化物微粒子 含有ポリシロキサン組成物の製造方法。
[14] 前記塩基性ィ匕合物が有機アミンィ匕合物であることを特徴とする請求項 13に記載の 酸化物微粒子含有ポリシロキサン組成物の製造方法。
[15] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)または(B3) とをビーズミルにより混合することを特徴とする請求項 12〜 14のいずれかに記載の 酸化物微粒子含有ポリシロキサン組成物の製造方法。
[16] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とを混合する 酸ィ匕物微粒子含有ポリシロキサン組成物の製造方法であって、前記多官能ポリシ口 キサン (B1)または (B2)をさらに加水分解 ·縮合した後、前記酸化物微粒子 (A)と混 合することを特徴とする請求項 12〜 15の ヽずれかに記載の酸化物微粒子含有ポリ シロキサン組成物の製造方法。
[17] 前記酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とを混合する 酸ィ匕物微粒子含有ポリシロキサン組成物の製造方法であって、前記脱アルコール反 応における触媒が金属キレートイ匕合物であることを特徴とする請求項 12〜16のいず れかに記載の酸ィ匕物微粒子含有ポリシロキサン組成物の製造方法。
PCT/JP2007/053615 2006-03-16 2007-02-27 酸化物微粒子含有ポリシロキサン組成物およびその製造方法 WO2007108281A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/293,213 US20090093579A1 (en) 2006-03-16 2007-02-27 Oxide particle-containing polysiloxane composition and method for producing same
EP07737417A EP1995281A4 (en) 2006-03-16 2007-02-27 POLYSILOXANE FORMULA CONTAINING OXIDE PARTICLES AND METHOD OF PRODUCING THE SAME

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2006073216 2006-03-16
JP2006073217 2006-03-16
JP2006-073216 2006-03-16
JP2006073215 2006-03-16
JP2006-073217 2006-03-16
JP2006-073215 2006-03-16
JP2006-100013 2006-03-31
JP2006100013 2006-03-31
JP2006162878A JP2007277073A (ja) 2006-03-16 2006-06-12 酸化物微粒子分散体およびその製造方法
JP2006-162878 2006-06-12
JP2006162876A JP2007277072A (ja) 2006-03-16 2006-06-12 酸化物微粒子分散体およびその製造方法
JP2006-162876 2006-06-12
JP2006-162877 2006-06-12
JP2006162877A JP2007277505A (ja) 2006-03-16 2006-06-12 酸化物微粒子分散体およびその製造方法
JP2006295912A JP2007291324A (ja) 2006-03-31 2006-10-31 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2006-295912 2006-10-31

Publications (1)

Publication Number Publication Date
WO2007108281A1 true WO2007108281A1 (ja) 2007-09-27

Family

ID=38522317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053615 WO2007108281A1 (ja) 2006-03-16 2007-02-27 酸化物微粒子含有ポリシロキサン組成物およびその製造方法

Country Status (4)

Country Link
US (1) US20090093579A1 (ja)
EP (1) EP1995281A4 (ja)
KR (1) KR20080111480A (ja)
WO (1) WO2007108281A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035669A1 (fr) * 2006-09-19 2008-03-27 Jsr Corporation Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication
JP2009091380A (ja) * 2007-10-03 2009-04-30 Jsr Corp 発光素子コーティング用組成物および発光装置、ならびに発光素子コーティング用組成物の製造方法
CN101857676A (zh) * 2009-04-03 2010-10-13 日东电工株式会社 含金属氧化物细粒的硅树脂组合物
JP2013213133A (ja) * 2012-04-02 2013-10-17 Ishizuka Glass Co Ltd Led素子用接着性組成物
JP2016184751A (ja) * 2016-05-26 2016-10-20 石塚硝子株式会社 Led素子用封止材料

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200900143A (en) 2006-12-28 2009-01-01 Dow Corning Toray Co Ltd Catalyst for alcohol-liberating condensation reaction and preparation method of organopolysiloxane using the same
JP5398134B2 (ja) * 2007-11-15 2014-01-29 住友金属鉱山株式会社 表面処理酸化亜鉛微粒子の製造方法、表面処理酸化亜鉛微粒子、その分散液体および分散固体、並びに酸化亜鉛微粒子被覆基材
US7902294B2 (en) 2008-03-28 2011-03-08 General Electric Company Silicone rubber compositions comprising bismuth oxide and articles made therefrom
JP5103364B2 (ja) * 2008-11-17 2012-12-19 日東電工株式会社 熱伝導性シートの製造方法
JP5907262B2 (ja) * 2011-07-22 2016-04-26 エルジー・ケム・リミテッド 硬化性組成物
WO2013099193A1 (ja) * 2011-12-26 2013-07-04 コニカミノルタ株式会社 Led装置用封止剤、led装置、及びled装置の製造方法
TWI565732B (zh) * 2012-06-13 2017-01-11 財團法人工業技術研究院 有機-無機金屬氧化物混成樹脂、其形成方法、及其形成的樹脂組成物
DE102012108828A1 (de) * 2012-09-19 2014-03-20 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, optisches Element und deren Herstellungsverfahren
JP6697654B2 (ja) * 2015-11-07 2020-05-27 山陽色素株式会社 顔料分散体及び着色組成物
CN116438259A (zh) * 2020-12-02 2023-07-14 Sika技术股份公司 具有较长混合器开放时间的快速固化双组分有机硅组合物

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131250A (en) * 1981-02-09 1982-08-14 Fujitsu Ltd Silicone resin composition
JPS59176326A (ja) * 1983-03-14 1984-10-05 ダウ・コ−ニング・コ−ポレ−シヨン シリコ−ンポリマ−−充填剤混合物の製造法
JP2002088155A (ja) * 2000-09-14 2002-03-27 Shin Etsu Chem Co Ltd ポリオルガノシロキサン化合物及びそれを含有するコーティング組成物
JP2002356617A (ja) * 2001-05-30 2002-12-13 Asahi Denka Kogyo Kk 硬化性組成物
WO2005013361A1 (ja) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. 高耐熱半導体装置
JP2005325174A (ja) * 2004-05-12 2005-11-24 Asahi Denka Kogyo Kk ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物
JP2006073950A (ja) * 2004-09-06 2006-03-16 Kansai Electric Power Co Inc:The 高耐熱半導体装置
JP2006206721A (ja) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
JP2006206700A (ja) * 2005-01-27 2006-08-10 Jsr Corp ポリシロキサン組成物およびその製造方法、それから得られるフィルムおよびその製造方法、ならびに封止材
JP2006299251A (ja) * 2005-03-22 2006-11-02 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006316264A (ja) * 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) * 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) * 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2007099955A (ja) * 2005-10-06 2007-04-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024126A (en) * 1960-06-15 1962-03-06 Dow Corning Method of treating reinforcing silica
GB2116189A (en) * 1982-02-17 1983-09-21 Gen Electric Low modulusone-component RTV compositions and processes
US4508758A (en) * 1982-12-27 1985-04-02 At&T Technologies, Inc. Encapsulated electronic circuit
US4523001A (en) * 1983-03-17 1985-06-11 General Electric Company Scavengers for one component alkoxy-functional RTV compositions
US4564562A (en) * 1984-05-29 1986-01-14 At&T Technologies, Inc. Silicone encapsulated devices
FR2792323B1 (fr) * 1999-04-19 2001-07-06 Centre Nat Etd Spatiales Composition de revetement transparent non mouillable et articles revetus obtenus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131250A (en) * 1981-02-09 1982-08-14 Fujitsu Ltd Silicone resin composition
JPS59176326A (ja) * 1983-03-14 1984-10-05 ダウ・コ−ニング・コ−ポレ−シヨン シリコ−ンポリマ−−充填剤混合物の製造法
JP2002088155A (ja) * 2000-09-14 2002-03-27 Shin Etsu Chem Co Ltd ポリオルガノシロキサン化合物及びそれを含有するコーティング組成物
JP2002356617A (ja) * 2001-05-30 2002-12-13 Asahi Denka Kogyo Kk 硬化性組成物
WO2005013361A1 (ja) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. 高耐熱半導体装置
JP2005325174A (ja) * 2004-05-12 2005-11-24 Asahi Denka Kogyo Kk ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物
JP2006073950A (ja) * 2004-09-06 2006-03-16 Kansai Electric Power Co Inc:The 高耐熱半導体装置
JP2006206721A (ja) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
JP2006206700A (ja) * 2005-01-27 2006-08-10 Jsr Corp ポリシロキサン組成物およびその製造方法、それから得られるフィルムおよびその製造方法、ならびに封止材
JP2006299251A (ja) * 2005-03-22 2006-11-02 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006316264A (ja) * 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) * 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) * 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2007099955A (ja) * 2005-10-06 2007-04-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995281A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035669A1 (fr) * 2006-09-19 2008-03-27 Jsr Corporation Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication
JPWO2008035669A1 (ja) * 2006-09-19 2010-01-28 Jsr株式会社 酸化物微粒子含有有機無機ハイブリッドポリマー組成物およびその製造方法
JP2009091380A (ja) * 2007-10-03 2009-04-30 Jsr Corp 発光素子コーティング用組成物および発光装置、ならびに発光素子コーティング用組成物の製造方法
CN101857676A (zh) * 2009-04-03 2010-10-13 日东电工株式会社 含金属氧化物细粒的硅树脂组合物
JP2013213133A (ja) * 2012-04-02 2013-10-17 Ishizuka Glass Co Ltd Led素子用接着性組成物
JP2016184751A (ja) * 2016-05-26 2016-10-20 石塚硝子株式会社 Led素子用封止材料

Also Published As

Publication number Publication date
EP1995281A1 (en) 2008-11-26
EP1995281A4 (en) 2010-03-24
KR20080111480A (ko) 2008-12-23
US20090093579A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
WO2007108281A1 (ja) 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
WO2007119517A1 (ja) 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP5034301B2 (ja) 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP5034283B2 (ja) 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2007270055A (ja) 多官能ポリシロキサンおよび金属酸化物微粒子含有ポリシロキサン組成物、ならびにそれらの製造方法
JP2007291324A (ja) 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2007277505A (ja) 酸化物微粒子分散体およびその製造方法
JP2009091380A (ja) 発光素子コーティング用組成物および発光装置、ならびに発光素子コーティング用組成物の製造方法
JP2006336010A (ja) シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
US20060070551A1 (en) Coating composition
JP2006348284A (ja) シロキサン系縮合物およびその製造方法
EP2085411A2 (en) Metal-coating material, method for protecting metal, and light emitting device
JP2007270054A (ja) 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JPWO2009072632A1 (ja) 硬化性組成物、光学素子コーティング用組成物、およびled封止用材料ならびにその製造方法
JPWO2008035669A1 (ja) 酸化物微粒子含有有機無機ハイブリッドポリマー組成物およびその製造方法
JPWO2008090971A1 (ja) エポキシ基末端ポリジメチルシロキサンおよびその製造方法、ならびに硬化性ポリシロキサン組成物
JP2004099879A (ja) コーティング用組成物
JP2007277072A (ja) 酸化物微粒子分散体およびその製造方法
JP2010059359A (ja) エポキシ基含有多官能ポリシロキサンおよびその製造方法、ならびに硬化性ポリシロキサン組成物
US20060264525A1 (en) Composition for photocatalyst coating and coating film
JP2007277073A (ja) 酸化物微粒子分散体およびその製造方法
JP2005230661A (ja) 可視光光触媒組成物および可視光光触媒含有塗膜
JP2009173718A (ja) 金属コート材、および発光装置
JP4225133B2 (ja) 樹脂表面改質用光触媒シート、積層体および樹脂表面改質方法
JP2001081404A (ja) コーティング組成物および硬化体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12293213

Country of ref document: US

Ref document number: 200780009286.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087025184

Country of ref document: KR