WO2007119517A1 - 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法 - Google Patents

金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法 Download PDF

Info

Publication number
WO2007119517A1
WO2007119517A1 PCT/JP2007/056287 JP2007056287W WO2007119517A1 WO 2007119517 A1 WO2007119517 A1 WO 2007119517A1 JP 2007056287 W JP2007056287 W JP 2007056287W WO 2007119517 A1 WO2007119517 A1 WO 2007119517A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
polysiloxane
oxide fine
weight
fine particles
Prior art date
Application number
PCT/JP2007/056287
Other languages
English (en)
French (fr)
Inventor
Tarou Kanamori
Tatsuya Shimizu
Keisuke Yajima
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US12/295,439 priority Critical patent/US20090050852A1/en
Publication of WO2007119517A1 publication Critical patent/WO2007119517A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a polysiloxane composition in which metal oxide fine particles are highly dispersed in an organic solvent containing a polyfunctional polysiloxane having a dimethylsiloxane chain, and a cured product thereof.
  • siloxane binder a composite of a binder having a siloxane skeleton (hereinafter also referred to as “siloxane binder”) and various metal oxides has been used. It is being considered.
  • Polydimethylsiloxane is known as one of these siloxane-based binders! This polydimethylsiloxane does not deteriorate unless it is usually at a high temperature of 200 ° C or higher, and is useful as a siloxane-based binder with excellent heat resistance and ultraviolet resistance. Used for.
  • siloxane binder and a metal oxide are combined, they are often prepared in the form of a dispersion.
  • siloxane-based binders are difficult to dissolve in water, it is necessary to use an organic solvent as a dispersion medium.
  • metal oxide fine particles tend to aggregate in an organic solvent and are therefore often dispersed in an aqueous medium. . Therefore, in order to finely disperse metal oxide fine particles in an organic solvent, phosphoric acid, sulfonic acid or carboxylic acid having an organic group having 6 or more carbon atoms (see Patent Document 1), or oxyalkylene group is added. It is necessary to use an organic compound having an oxyalkylene group, an ester such as phosphoric acid (see Patent Document 2), or a silane compound having an oxyalkylene group (see Patent Document 3).
  • these compounds are used to differentiate metal oxide fine particles into an organic solvent.
  • the metal oxide fine particles and the siloxane binder are combined by a dispersion method, the dispersibility of the dispersion is good.
  • the compatibility between the above compound and the siloxane binder is poor.
  • the coating film could be whitened.
  • phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group remains in this coating film. For this reason, defects such as coloring of the coating film and occurrence of cracks may occur in harsh environments such as under ultraviolet irradiation or at high temperatures of 150 ° C or higher.
  • the polysiloxane composition When a transparent coating film is formed using a conventional polysiloxane composition containing metal oxide fine particles, the polysiloxane composition usually contains 30 to 90% by weight of a dispersion solvent, Furthermore, in order to ensure the dispersion stability of the metal oxide fine particles, the viscosity at 25 ° C. and the rotor rotation speed of 5 rpm measured by an E-type viscometer is usually adjusted to a low viscosity of 15 mPa's or less. When a filler having a high specific gravity was added to such a low-viscosity metal oxide fine particle-containing polysiloxane composition, the filler sometimes settled and separated.
  • organic thickeners such as polyethylene glycol have been added to increase the viscosity.
  • coloring and cracks are generated by heat and ultraviolet rays, and durability such as heat resistance and ultraviolet resistance is improved. It was inferior.
  • the viscosity can be increased even if the solid content concentration is increased.
  • the siloxane-based binder is gelled or the metal oxide fine particles are formed. Sometimes settled.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-283822
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-185924
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-99879
  • the present invention is intended to solve the problems associated with the prior art as described above, and has excellent transparency, heat resistance, ultraviolet resistance, and moisture resistance, which are excellent in transparency and hardly yellow or decompose even at high temperatures. It is an object of the present invention to provide a polysiloxane-based cured product excellent in heat resistance, a polysiloxane composition in which metal oxide fine particles are highly dispersed, and a method for producing the same. Means for solving the problem
  • the present inventor predealked a hydroxy-terminated polydimethylsiloxane and a high molecular weight alkoxy-terminated polyfunctional polysiloxane, or an alkoxy group-containing polydimethylsiloxane and a high-molecular weight silanol-terminated polyfunctional polysiloxane.
  • a polyfunctional polysiloxane having a dimethylsiloxane chain and the metal oxide fine particles are treated in the presence of a basic compound, acidic compound or metal chelate compound in an organic solvent containing the polyfunctional polysiloxane.
  • the metal oxide fine particle-containing polysiloxane composition according to the present invention in the presence of a basic compound, an acidic compound or a metal chelate compound in an organic solvent,
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or Okishiarukiren group
  • Yogu R 2 be different be the same as each other in the case where R 1 there are a plurality If there are multiple R 2 groups, they may be the same or different from each other.
  • A is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • Alcohol-terminated polydimethylsiloxane (b4) in the range of 000 to 100,000 is subjected to a dealcoholization reaction with a weight ratio (b 3 / b4) in the range of 30Z70 to 95Z5 with respect to a total of 100 parts by weight.
  • metal oxide fine particles ( ⁇ ) are dispersed in an organic solvent.
  • the polyfunctional polysiloxane (B1) or ( ⁇ 2) is further hydrolyzed and condensed, It is preferable to mix with metal oxide fine particles (A).
  • the catalyst in the hydrolysis' condensation is preferably a basic catalyst.
  • the catalyst in the dealcoholization reaction is preferably a metal chelate compound.
  • the metal oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) are mixed in the presence of a basic compound.
  • the metal oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) are preferably mixed by a bead mill.
  • the polyfunctional polysiloxane (B1) or (B2) is mixed with 100 parts by weight of the metal oxide fine particles (A) by 1 to LOOO parts by weight in terms of a complete hydrolyzed condensate. Is preferred
  • the cured body according to the present invention is obtained from the metal oxide fine particle-containing polysiloxane composition.
  • the LED sealing material according to the present invention is obtained by further mixing a phosphor with the metal oxide fine particle-containing polysiloxane composition.
  • the method for producing the metal oxide fine particle-containing polysiloxane composition according to the present invention comprises the following average composition formula (1):
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or Okishiarukiren group
  • Yogu R 2 be different be the same as each other in the case where R 1 there are a plurality If there are multiple R 2 groups, they may be the same or different from each other.
  • A is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • Alcohol-terminated polydimethylsiloxane (b4) in the range of 000 to 100,000 is subjected to a dealcoholization reaction with a weight ratio (b 3 / b4) in the range of 30Z70 to 95Z5 with respect to a total of 100 parts by weight.
  • the polyfunctional polysiloxane (B1) or ( ⁇ 2) and the metal oxide fine particles ( ⁇ ) are mixed in an organic solvent in the presence of a basic compound, an acidic compound or a metal chelate compound.
  • the polyfunctional polysiloxane (B1) or () 2) is further hydrolyzed and condensed and then mixed with the metal oxide fine particles ( ⁇ ).
  • the catalyst in the hydrolysis' condensation is preferably a basic catalyst.
  • the catalyst in the dealcoholization reaction is preferably a metal chelate compound.
  • metal oxide fine particles ( ⁇ ) and the polyfunctional polysiloxane (B1) or ( ⁇ 2) are mixed in the presence of a basic compound.
  • the metal oxide fine particles ( ⁇ ) and the polyfunctional polysiloxane (B1) or ( ⁇ 2) are mixed by a bead mill.
  • a polysiloxane having a dimethylsiloxane chain is used without using a compound having an alkoxyalkylene group such as phosphoric acid having an organic group having 6 or more carbon atoms.
  • a composition in which metal oxide fine particles are highly dispersed in an organic solvent is obtained.
  • This composition is excellent in dispersion stability and can form a transparent cured product containing metal oxide fine particles and the polysiloxane.
  • the polysiloxane power includes a polyfunctional polysiloxane having a dimethylsiloxane chain having an appropriate length and a three-dimensional structure or a ladder structure, it can form a thick cured film having excellent flexibility and can be used at high temperatures.
  • a cured product excellent in heat resistance, ultraviolet resistance, and moist heat resistance, which is difficult to be yellowed and decomposed and deteriorated can be obtained.
  • a cured product using highly refractive metal oxide fine particles as metal oxide fine particles can be used as a sealing material for LED elements using blue LED elements or ultraviolet LED elements as light emitting elements. It is useful as a sealing material for high-brightness LED elements.
  • the metal oxide fine particle-containing polysiloxane composition according to the present invention comprises metal oxide fine particles.
  • a and B) are used in an organic solvent without using a phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group. It can be obtained by mixing in the presence of a basic compound, an acidic compound or a metal chelate compound and subjecting it to a dispersion treatment.
  • metal oxide fine particles (A) used in the present invention is not particularly limited as long as they are metal element oxide fine particles.
  • metal element oxide fine particles For example, antimony oxide, zirconium oxide, anatase-type titanium oxide, rutile-type oxide Titanium, brookite type acid titanium oxide, acid zinc oxide, acid titanium tantalum, indium oxide, acid hafnium, tin oxide, niobium oxide, acid medium, acid cerium, oxidation Scandium, yttrium oxide, lanthanum oxide, acid prasedium, acid neodymium, samarium oxide, gallium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide , Yttrium oxide, ytterbium oxide, lutetium oxide, calcium oxide, gallium oxide, lithium oxide, striking oxide
  • metal oxide fine particles such as oxides of two or more of the above-mentioned metals such as indium, tungsten oxide, barium oxide
  • the metal oxide fine particles are used singly or in combination of two or more. May be used.
  • the metal oxide fine particles (A) can be appropriately selected according to the function to be imparted. For example, when imparting high refractive properties, the TiO fine particles are preferred in the ultraviolet region.
  • ZrO fine particles are preferable for achieving both transparency and high refractive index. UV cut function
  • acid-cerium fine particles and acid-zinc fine particles are preferable.
  • the primary average particle diameter of the metal oxide fine particles (A) is preferably 0.1 to: LOOnm, more preferably 0.1 to 70 nm, and particularly preferably 0.1 to 50 nm.
  • LOOnm more preferably 0.1 to 70 nm, and particularly preferably 0.1 to 50 nm.
  • Such metal oxide fine particles (A) are dispersed in a solvent! However, it may be added in the form of powder or may be added in the form of a dispersion dispersed in a polar solvent such as isopropyl alcohol or a nonpolar solvent such as toluene.
  • the metal oxide fine particles (A) before addition may be aggregated to form secondary particles.
  • it is preferable to use a powder because an appropriate organic solvent can be appropriately selected in consideration of the solubility of the polyfunctional polysiloxane (B).
  • the production method of the present invention is particularly effective when added in the form of powder.
  • the polyfunctional polysiloxane (B) used in the present invention is a polyfunctional polysiloxane having a dimethylsiloxane chain, and has a polystyrene-equivalent weight average molecular weight of 3,000 or more and 100,000 or less as measured by genorepermeation chromatography. And hydroxy-terminated polydimethylsiloxane (bl) having a polystyrene-reduced weight average molecular weight in the range of 2,000 to 100,000 as measured by genopermeation chromatography.
  • Polysiloxane (B1) obtained by dealcoholization reaction with siloxane (b2) and polystyrene equivalent weight average molecular weight measured by gel permeation chromatography is in the range of 3,000 to 100,000.
  • (bl) Alkoxy-terminated polyfunctional polysiloxane The alkoxy-terminated polyfunctional polysiloxane (bl) used in the present invention has the following average composition formula (1)
  • R 1 is a monovalent hydrocarbon group having no hydrogen atom or oxyalkylene group, and when there are a plurality of R 1 s, they may be the same as or different from each other.
  • R 2 is an alkyl group, and when two or more R 2 are present, they may be the same or different.
  • a is greater than 0 and less than 2
  • b is greater than 0 and less than 2
  • c is greater than 0 and less than 4
  • a + b X 2 + c 4.
  • a is a ratio of a hydrogen atom and a monovalent hydrocarbon group having no oxyalkylene group to the total of the silicon atoms
  • c is a silicon atom of the alkoxy group Represents the ratio to.
  • the weight-average molecular weight of the above alkoxy-terminated polyfunctional polysiloxane (bl) is 3,000 or more and 100,000 or less, more preferably ⁇ 3,000 or more in terms of polystyrene measured by gel permeation chromatography. 80,000 or less, particularly preferred ⁇ 3,500 or more and 50,000 or less.
  • an alkoxy-terminated polyfunctional polysiloxane (bl) having a weight average molecular weight within the above range is used, it is possible to achieve both suppression of crack generation during formation of a cured product and suppression of degradation and degradation under wet heat.
  • the monovalent hydrocarbon group is not particularly limited as long as it does not have an oxyalkylene group.
  • 1S substituted or unsubstituted monovalent hydrocarbon group examples include an alkyl group having 1 to 8 carbon atoms, a phenol group, a benzyl group, and a tolyl group.
  • Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • Examples of the monovalent substituted hydrocarbon group include substituted alkyl groups having 1 to 8 carbon atoms.
  • Examples of the substituent of the substituted alkyl group include halogen, amino group, mercapto group, isocyanate group, glycidyl group, glycidoxy group, ureido group and the like.
  • alkyl group represented by R 2 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Of these alkyl groups, a methyl group and an ethyl group are preferred.
  • This alkoxy-terminated polyfunctional polysiloxane (bl) can be produced, for example, by subjecting the polyfunctional alkoxysilane or polyfunctional chlorosilane to an appropriate combination of hydrolysis and condensation so as to satisfy the above average composition formula. . However, hydrolysis / condensation with only tetraalkoxysilanes and hydrolysis / condensation with dialkoxysilanes only are excluded.
  • an alkoxy-terminated polyhydride obtained by using 50% by weight or more of trifunctional alkoxysilane and Z or trifunctional chlorosilane is used.
  • functional polysiloxanes are especially preferred.
  • Examples of the polyfunctional alkoxysilane include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, and tetra-n-butoxysilane.
  • Dimethinoresimethoxysilane Dimethinoresetoxysilane, Getinoresimethoxymethoxysilane, Getinoresetoxysilane, Gn -propinoresimethoxymethoxysilane, Gn Propinolegetoxy Silane, G i Propinoresimethoxy silane, G i Propino letoxy silane, G n-Butyl dimethoxy silane, Di n-Butyl methoxy silane, Di n-Pentyl dimethoxy silane, G n Pentino-letoxy silane, G n carboxymethyl Norre dimethoxysilane, di -n- to carboxymethyl Honoré jet silane, di n- heptylene Honoré dimethoxysilane, Petit to di n- Honoré jet silane, di n - old Chi Honoré dimethoxysilane, di n- old Kuchinorejeto Examples thereof include dialkoxysilanes such as xys
  • a monofunctional alkoxysilane may be used in combination.
  • monofunctional alkoxysilanes include trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, and triethylethoxysilane. These monofunctional alkoxysilanes are desirably used in an amount of 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less based on the total amount of alkoxysilane used.
  • alkoxy-terminated polyfunctional polysiloxane (bl) satisfying the above molecular weight commercially available siloxane polymers such as XR31-B0270 and XR31-B2733 (trade name) manufactured by GE TOSHIBA Silicone Co., Ltd. are used. You can also.
  • the alkoxy-terminated polyfunctional polysiloxane (bl) has a Si—OH bond in a range without impairing the effects of the present invention!
  • the hydroxy-terminated polydimethylsiloxane (b2) used in the present invention has a polystyrene-equivalent weight average molecular weight of 2,000 to 100,000, more preferably ⁇ 2,000 to 80,000 as measured by gel permeation chromatography. 000 or less, especially preferred ⁇ is from 3,000 to 70,000.
  • a polyfunctional polysiloxane (B1) having excellent flexibility can be obtained. Therefore, it is possible to increase the thickness of the cured body.
  • This hydroxy-terminated polydimethylolsiloxane (b2) can be produced, for example, by hydrolyzing and condensing dimethylenoresinanoloxysilane or dimethyldichlorosilane.
  • dimethyldialkoxysilane examples include dimethyldimethoxysilane, dimethyljetoxysilane, dimethyldipropoxysilane, dimethyldibutoxysilane, and the like. These dimethyl dialkoxysilanes can be used alone or in admixture of two or more.
  • the hydroxy-terminated polydimethylsiloxane (b2) can also be produced by ring-opening condensation of a cyclic organosiloxane.
  • Cyclic organosiloxanes include hexaphenylcyclotrisiloxane, octaphenylcyclotetrasiloxane, tetilavinyl tetramethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, otamethylcyclotetrasiloxane, pentamethylcyclotetrasiloxane, hexamethyl. Examples thereof include cyclotetrasiloxane, tetramethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • hydroxy-terminated polydimethylsiloxane (b2) satisfying the above molecular weight YF-3057, YF-3800, YF-3802, YF-3807, YF-3389, and XF-3905 manufactured by GE Toshiba Corporation. It is possible to use commercially available hydroxy-terminated polydimethylsiloxane (such as the above).
  • the hydroxy-terminated polyfunctional polysiloxane (b3) used in the present invention is:
  • the polyfunctional polysiloxane having a hydroxy group represented by the formula (1) has a three-dimensional crosslinked structure.
  • the hydroxy-terminated polyfunctional polysiloxane (b3) has a weight average molecular weight of -Polystyrene conversion value measured by chromatography, 3,000 to 100,000, more preferably ⁇ 3,000 to 80,000, particularly preferably ⁇ 3,500 to 50,000 is there.
  • a weight average molecular weight of -Polystyrene conversion value measured by chromatography 3,000 to 100,000, more preferably ⁇ 3,000 to 80,000, particularly preferably ⁇ 3,500 to 50,000 is there.
  • the monovalent hydrocarbon group is not particularly limited as long as it does not have an oxyalkylene group.
  • substituted or unsubstituted monovalent hydrocarbon group examples include the same as the substituted or unsubstituted monovalent hydrocarbon group exemplified for the alkoxy-terminated polyfunctional polysiloxane (bi).
  • This hydroxy-terminated polyfunctional polysiloxane (b3) is obtained by, for example, subjecting the above average yarn formula to hydrolysis and condensation by appropriately combining polyfunctional alkoxysilanes or polyfunctional chlorosilanes. Can be manufactured. However, hydrolysis / condensation with only tetraalkoxysilanes and hydrolysis / condensation with dialkoxysilanes only are excluded. In the present invention, since the decomposition resistance in the presence of the metal oxide fine particles (A) and water is excellent, 50% by weight or more of V-terminated hydroxy end groups obtained by using trifunctional alkoxysilane and Z or trifunctional chlorosilane. Especially preferred are functional polysiloxanes.
  • Examples of the polyfunctional alkoxysilane may include the same polyfunctional alkoxysilanes exemplified for the alkoxy-terminated polyfunctional polysiloxane (bl), and may be used alone or in combination of two or more. Can be used.
  • the monofunctional alkoxysilane exemplified in the above alkoxy-terminated polyfunctional polysiloxane (bl) is used in combination. May be.
  • the monofunctional alkoxysilane is desirably used in an amount of 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less based on the total amount of the alkoxysilane used.
  • the above alkoxy-terminated polyfunctional polysiloxane (b3) has a Si—OR bond in a range without impairing the effects of the present invention.
  • the alkoxy-terminated polydimethylsiloxane (b4) used in the present invention is a gel permeant.
  • the weight average molecular weight in terms of polystyrene measured by chromatography chromatography is 2,000 to 100,000, more preferably ⁇ is 2,000 to 80,000, particularly preferably ⁇ is 3,000 to 70,000 It is as follows.
  • a polyfunctional polysiloxane (B2) having excellent flexibility can be obtained. Therefore, it is possible to increase the thickness of the cured body.
  • This alkoxy-terminated polydimethylsiloxane (b4) can be produced, for example, by hydrolysis and condensation of dimethyldialkoxysilane or dimethyldichlorosilane.
  • dialkoxysilane examples include those similar to the dialkoxysilane exemplified in the hydroxy-terminated polydimethylsiloxane (b2). These may be used alone or in combination of two or more. can do.
  • the polyfunctional polysiloxane (B1) can be produced by subjecting the alkoxy-terminated polyfunctional polysiloxane (bl) and the hydroxy-terminated polydimethylsiloxane (b2) to a dealcoholization reaction.
  • the polyfunctional polysiloxane (B2) can be produced by subjecting the hydroxy-terminated polyfunctional polysiloxane (b3) and the alkoxy-terminated polydimethylsiloxane (b4) to a dealcoholization reaction.
  • These polyfunctional polysiloxanes (B1) and (B2) are usually preferably further hydrolyzed and condensed after adding water. As a result, the multifunctional polysiloxanes (B1) and (B2) have a high molecular weight, and the resulting cured product has improved transparency.
  • Each of the above reactions is usually performed using a catalyst in an organic solvent.
  • the mixing ratio of the alkoxy-terminated polyfunctional polysiloxane (bl) and the hydroxy-terminated polydimethylsiloxane (b2) is 30Z70 to 95Z5 in a weight ratio (blZb2) with respect to 100 parts by weight of the total. Preferably, it is 50 ⁇ 50 to 95 ⁇ ⁇ ⁇ ⁇ 5, more preferably 50,50 to 90/10.
  • the mixing ratio of the hydroxy-terminated polyfunctional polysiloxane (b3) and the alkoxy-terminated polydimethylsiloxane (b4) is 30Z70 to 95Z5 in a weight ratio (b3Zb4) with respect to 100 parts by weight in total.
  • the temperature of the dealcoholization reaction is preferably 30 to 150 ° C, more preferably 40 to 120 ° C, and particularly preferably 50 to 100 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, and particularly preferably 1 to 8 hours.
  • the dealcoholization reaction may be carried out by charging each component in a reaction vessel at once, or may be carried out while intermittently or continuously adding the other component to one component.
  • a polyfunctional polysiloxane (B2) having a structure in which a hydroxy-terminated polyfunctional polysiloxane (b3) is bonded to both ends of the siloxane (b4) is formed.
  • the amount of water added in the condensation reaction is usually 1 to 500 parts by weight, preferably 10 to 300 parts by weight, per 100 parts by weight of the polyfunctional polysiloxane (B1) or (B2). More preferably, it is 20 to 200 parts by weight. It is preferable that the amount of water added is in the above range because the hydrolysis and condensation reaction proceeds sufficiently and the amount of water removed after the reaction is small.
  • the temperature of the hydrolysis' condensation reaction is preferably 20 to 150 ° C, more preferably 30 to: LO 0 ° C, particularly preferably 40 to 80 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours, and particularly preferably 1 to 8 hours.
  • Examples of the organic solvent used in the above dealcoholization reaction and hydrolysis' condensation reaction include alcohols, aromatic hydrocarbons, ethers, ketones, and esters. And the like.
  • Examples of the alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, i-butyl alcohol, n-butyl anolenoconole, sec-butinoreanoreconole, tert-butenoreanoreconole, n-hexino.
  • aromatic hydrocarbons include benzene, toluene, and xylene.
  • ethers include tetrahydrofuran and dioxane.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and dioxane.
  • esters ethyl acetate, propyl acetate, butyl acetate, propylene carbonate, methyl lactate, ethyl lactate, normal propyl lactate, isopropyl lactate, methyl 3-ethoxypropionate, 3-ethoxypropion.
  • acids ethyl may be used alone or in combination of two or more.
  • organic solvents in the dealcoholization reaction, it is preferable to use an organic solvent other than alcohol, for example, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, etc., from the viewpoint of promoting the reaction.
  • organic solvents are preferably used in a state where moisture has been removed by performing a dehydration treatment in advance.
  • the above organic solvent is used for the control of dealcoholization reaction and hydrolysis' condensation reaction, adjustment of the concentration or viscosity of the resulting polyfunctional polysiloxane (B1) or (B2) -containing solution, or thickness at the time of producing a cured product. It can be used as appropriate for the purpose of adjustment.
  • the amount used can be set as appropriate according to the desired conditions. For example, the concentration of the polyfunctional polysiloxane (B1) or (B2) obtained.
  • the amount is preferably 5 to 99% by weight, more preferably 7 to 95% by weight, and particularly preferably 10 to 90% by weight.
  • Examples of the catalyst used in the dealcoholization reaction or hydrolysis / condensation reaction include basic compounds, acidic compounds and metal chelate compounds. [0066] (Basic compounds)
  • Examples of the basic compound include ammonia (including aqueous ammonia solution), organic amine compound, sodium hydroxide, hydroxide of alkaline earth metal such as potassium hydroxide, sodium methoxide, and the like. And alkali metal alkoxides such as sodium ethoxide. Of these, ammonia and organic amine compounds are preferred.
  • organic amines examples include alkylamines, alkoxyamines, alkanolamines, arylamines and the like.
  • alkylamine examples include methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, N, N dimethylamine, N, N jettilamine, N, N dipropylamine, N, N dibutylamine, trimethylamine, triethylamine, tripropylamine.
  • alkylamine having an alkyl group having 1 to 4 carbon atoms such as tributylamine.
  • alkoxyamine examples include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethyl.
  • Alkoxy groups having an alkoxy group having 1 to 4 carbon atoms such as amines, propoxychetylamines, propoxypropylamines, propoxybutylamines, butoxymethylamines, butoxysethylamines, butoxypropylamines, butoxybutylamines. Min etc. are mentioned.
  • alkanolamines include methanolamine, ethanolamine, propanolamine, butanolamine, N-methylmethanolamine, N-ethylmethanolamine, N-propylmethanolamine, and N-butylmethanol.
  • arylamine examples include aline and N-methylaline.
  • organic amines include tetramethylammonumno, idroxide, tetraethylammonium hydroxide, tetrapropylammonum hydroxide.
  • Tetraalkylammonium hydroxide such as tetrabutylethylenediamine; tetraalkylethylenediamine such as tetramethylethylenediamine, tetraethylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine Methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutyramine, ethylaminomethylamine, ethylaminoethylamine, ethylaminopropylamine, Tilaminobutylamine, propylaminomethylamine, propyl Alkylaminoalkylamines such as aminoethylamine, propylaminopropylamine, propylaminobutylamine, butylaminomethylamine, butylaminoethylamine, butylaminopropylamine, butylaminobuty
  • Such basic compounds may be used singly or in combination of two or more. Of these, triethylamine, tetramethylammonium hydroxide and pyridine are particularly preferable.
  • Examples of the acidic compound include organic acids and inorganic acids.
  • Examples of organic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, maleic anhydride, and methylmalonic acid.
  • the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
  • Such acidic compounds may be used singly or in combination of two or more.
  • maleic acid maleic anhydride, methanesulfonic acid, and acetic acid are particularly preferred.
  • metal chelate compound examples include organometallic compounds and Z or partial hydrolysates thereof (hereinafter referred to as “organic metal compounds” t, which are collectively referred to as organometallic compounds and Z or partial hydrolysates thereof). Can be mentioned.
  • organometallic compounds include, for example, the following formula (a)
  • M represents at least one metal atom selected from the group consisting of zirconium, titanium, and aluminum
  • R 7 and R 8 independently represent a methyl group, an ethyl group, N-propyl group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group, phenol group, etc. having 1 to 6 carbon atoms
  • R 9 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, or a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, or an n-butoxy group.
  • organic compound (a) (Hereinafter referred to as “organometallic compound (a)”)
  • organic metal compound of tetravalent tin in which 1 to 2 alkyl groups having 1 to 10 carbon atoms are bonded to one tin atom hereinafter referred to as “organic tin compound”.
  • organometallic compound (a) for example, tetra-n-butoxyzirconium, tri-n-butoxy.
  • Ethinoreacetoacetate dinoreconium, di- n -butoxy'bis (ethenoreacetoacetate) zirconium, n- Organic zirconium compounds such as butoxy 'tris (ethinoreacetoacetate) dinoleconium, tetrakis (n-propylacetoacetate) zirconium, tetrakis (acetinoreacetoacetate) zirconium, tetrakis (ethinoreacetoacetate) zirconium;
  • Organics such as tetra-i-propoxy titanium, di-i-propoxy 'bis (ethinoreacetoacetate) titanium, di-i-propoxy'bis (acetyl acetate) titanium, di-i-propoxy'bis (acetylacetone) titanium Titanium compound;
  • Tree i-propoxyaluminum, di-i-propoxy-ethylacetoacetate aluminum yuum, zi i-propoxy-acetylacetonate aluminum, i-propoxy 'bis (ethinoreacetoacetate) anoleminium, i-propoxy' Bis (acetinoreacetonate) Aluminum, Tris (ethyl acetoacetate) Aluminum, Tris (Acetyl acetonate) Aluminum, Monoacetyl acetonate 'bis (ethyl acetoacetate) aluminum And organoaluminum compounds.
  • organic tin compound for example,
  • Carboxylic acid type organotin compounds such as;
  • Mercaptide-type organotin compounds such as (C 4 H g ) 2 Sn (SCH 2 COOC 8 H l7 );
  • Chloride-type organotin compounds such as;
  • Organic tin oxides such as (C H) SnO and (C H) SnO, and these organic tin oxides
  • Reaction products of id with silicates, ester compounds such as dimethyl maleate, jetyl maleate, dioctyl phthalate;
  • Such metal chelate compounds may be used singly or in combination of two or more. Of these, tri-n-butoxyethyl acetate acetate zirconium, diipropoxy bis (acetinoreacetonate) titanium, diipropoxy ethenoreacetoacetate aluminum, tris (ethylacetoacetate) aluminum, or These partial hydrolysates are preferred.
  • hydrolysis compounds in which metal chelate compounds are preferred in the dealcoholization reaction and basic compounds are preferred in the condensation.
  • the metal chelate compound is superior in dealcoholization reactivity compared to other compounds, and when a basic compound is used as a catalyst in the presence of moisture, the hydrolysis reaction rate is faster than the condensation reaction rate.
  • the remaining alkoxy groups can be reduced, and the volume shrinkage of the resulting polysiloxane can be reduced, so that a cured product having excellent crack resistance can be formed.
  • the basic compound, acidic compound or metal chelate compound is a total of 100 of polyfunctional polysiloxane (bl) or (b3) and polydimethylsiloxane (b2) or (b4).
  • the amount is usually 0.001 to 20 parts by weight, preferably 0.05 to 10 parts by weight, more preferably 0.01 to 5 parts by weight based on the parts by weight.
  • the basic compound, acidic compound or metal chelate compound is the sum of polyfunctional polysiloxane (bl) or (b3) and polydimethylsiloxane (b2) or (b4).
  • 1 to 50 parts by weight, preferably 2 to 40 parts by weight, more preferably 3 to 30 parts by weight are added to 100 parts by weight.
  • a decatalyzing step after hydrolysis condensation is performed. It is preferable to perform washing with water. In particular, when a basic compound is used as a hydrolysis-condensation catalyst, it is more preferable to carry out water washing after neutralization with an acidic compound after the reaction.
  • the acidic compound used for neutralization the acidic compounds exemplified above can be used.
  • the amount of the acidic compound used is usually 0.5 to 2.0 mol, preferably 0.8 to 1.5 mol, more preferably 0.9 to 1., per 1 mol of the basic compound used for the hydrolysis condensation. 3 moles.
  • the acidic compound is usually 1 per 100 parts by weight of the total of polyfunctional polysiloxane (bl) or (b3) and polydimethylsiloxane (b2) or (b4).
  • 0-500 parts by weight preferably ⁇ is 20-300 parts, more preferably ⁇ is dissolved in 30-200 parts of water. After neutralization, stir and mix thoroughly, and let stand, and after confirming phase separation between the aqueous phase and the organic solvent phase, remove the water in the lower layer.
  • the water used for washing after neutralization is usually 10 to 500 per 100 parts by weight of the total of the polyfunctional polysiloxane (bl) or (b3) and the polydimethylsiloxane (b2) or (b4). Parts by weight
  • the amount is preferably 20 to 300 parts, more preferably 30 to 200 parts.
  • Washing with water is performed by adding water and stirring sufficiently, and then allowing to stand, and after confirming phase separation between the aqueous phase and the organic solvent phase, removing water in the lower layer.
  • the number of washings is preferably 1 or more times, more preferably 2 or more times.
  • the weight average molecular weights of the polyfunctional polysiloxanes (B1) and (B2) obtained by the above method are usually expressed in terms of polystyrene measured by gel permeation chromatography.
  • the metal oxide fine particle-containing polysiloxane composition according to the present invention comprises metal oxide fine particles.
  • a polyfunctional polysiloxane having a dimethylsiloxane chain (B1) or (B2) can be used without using a phosphoric acid having an organic group having 6 or more carbon atoms or a compound having an oxyalkylene group. It can be obtained by mixing and dispersing in an organic solvent in the presence of a basic compound, acidic compound or metal chelate compound.
  • organic solvent examples include the organic solvents exemplified in the dealcohol reaction and hydrolysis / condensation reaction during the production of the polyfunctional polysiloxane (B1) or (B2).
  • organic solvents other than alcohols such as methyl ethyl ketone, methyl isobutyl ketone, diisoptyl ketone are preferable in that the dispersion stability and viscosity of the metal oxide-containing polysiloxane composition can be increased.
  • Toluene, xylene, ethyl acetate, butyl acetate, and mixtures thereof are preferred.
  • These organic solvents are preferably used in a state where moisture has been removed by performing a dehydration treatment in advance.
  • the amount of the organic solvent used is not particularly limited as long as the metal oxide fine particles (A) can be uniformly dispersed, but the solid content concentration of the resulting metal oxide fine particle-containing polysiloxane composition is not limited. However, the amount is preferably 5 to 80% by weight, more preferably 7 to 70% by weight, and particularly preferably 10 to 60% by weight.
  • Examples of the basic compound, acidic compound, and metal chelate compound include the compounds exemplified in the dealcoholization reaction and hydrolysis / condensation reaction during the production of the polyfunctional polysiloxane (B1) or (B2).
  • these basic compounds, acidic compounds, and metal chelate compounds basic compounds that are preferred by basic compounds and acidic compounds are more preferred by organic amine compounds that are more preferred by triethylamine, tetramethyl. Ammonium hydroxide and pyridine are particularly preferred.
  • the basic compound, acidic compound, or metal chelate compound is added to the metal oxide fine particle-containing polysiloxane composition of the present invention with respect to 100 parts by weight of the metal oxide fine particles (A).
  • the metal oxide fine particles (A) Usually, 0.001 to 20 parts by weight, preferably 0.005 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, still more preferably 0.01 to 1 part by weight, particularly preferably 0.01 to 10 parts by weight. 0.5 weight It is desirable that the part is contained. Within the above range, the dispersion stability of the metal oxide fine particles (A) and the viscosity of the polysiloxane composition containing the metal oxide fine particles can be easily controlled.
  • the metal oxide fine particle-containing polysiloxane composition includes a metal oxide fine particle (A) and a polyfunctional polysiloxane (B1) or (B2) having a dimethylsiloxane chain in an organic solvent, a basic compound, an acidic compound, or a metal. It can be prepared by adding a chelate compound, mixing them well and dispersing the metal oxide fine particles (A) in an organic solvent. At this time, it is particularly preferable to use a known disperser such as a ball mill, a sand mill (bead mill, a high shear bead mill), a homogenizer, an ultrasonic homogenizer, a nanomizer, a propeller mixer, a high shear mixer, or a paint shaker.
  • a known disperser such as a ball mill, a sand mill (bead mill, a high shear bead mill), a homogenizer, an ultrasonic homogenizer, a nanomizer, a propeller mixer
  • the fine particle dispersion ball mill and sand mill (bead mill, high shear bead mill) are preferably used.
  • the metal oxide fine particles (A) and the polyfunctional polysiloxane (B1) or (B2) are mixed in the presence of the basic compound, acidic compound or metal chelate compound, the basic compound, acidic compound or The polyfunctional polysiloxane (B1) or (B2) condensation reaction proceeds on the surface of the metal oxide fine particles (A) due to the catalytic action of the metal chelate compound, and the surface of the metal oxide fine particles (A) becomes hydrophobic. Therefore, it is presumed that it becomes easy to finely disperse in an organic solvent.
  • the polysiloxane composition containing metal oxide fine particles of the present invention is a product obtained by completely hydrolyzing polyfunctional polysiloxane (B1) or (B2) with respect to 100 parts by weight of metal oxide fine particles (A).
  • B1 or B2 polyfunctional polysiloxane
  • A metal oxide fine particles
  • the polysiloxane composition containing metal oxide fine particles is a composition in which metal oxide fine particles (A) are highly dispersed with a volume average dispersed particle size of 300 nm or less, preferably 200 nm or less. .
  • the oxide fine particle-containing polysiloxane composition of the present invention can be increased in viscosity by extending the dispersion treatment time without using an organic thickener such as polyethylene glycol, Neither gelation nor sedimentation of oxide fine particles (A) occurred, and high specific gravity additive was mixed Even in this case, sedimentation separation can be suppressed.
  • the acid oxide fine particle-containing polysiloxane composition is preferably a viscosity at 25 ° C, rotor rotational speed 5 rpm, solid content concentration 20 wt% as measured by a RE80 viscometer manufactured by Toki Sangyo Co., Ltd. Is at least 20 mPa's, more preferably at least 30 mPa's, particularly preferably at least 50 mPa's.
  • a thick film cured body can be easily produced without separation even when a high specific gravity filler is blended.
  • the metal oxide fine particle-containing polysiloxane composition includes a metal oxide fine particle (A) and a polysiloxane (B1) containing polysiloxane (B1) or (B2) having a dimethylsiloxane chain. Or, since the polyfunctional polysiloxane (bl) or (b3) contained in (B2) is present on the surface of the metal oxide fine particles, contact between the dimethylsiloxane chain and the metal oxide fine particles can be suppressed. It is estimated that the cured product, in which the decomposition reaction of the dimethylsiloxane chain hardly occurs even under high temperature and high humidity, is excellent in heat resistance and moist heat resistance. In addition, since the above polysiloxane is excellent in flexibility, a cured product having a thickness of 10 m to 500 nm can be formed.
  • the metal oxide fine particles (A) in the composition are organic having 6 or more carbon atoms. Highly dispersed without using phosphoric acid having a group or a compound having an oxyalkylene group. This makes it possible to form a cured product that does not deteriorate even when exposed to harsh environments and has excellent transparency.
  • this cured body has no carbon-carbon bond in the cross-linked structure and is excellent in ultraviolet resistance. For example, the cured body is It should not turn yellow (yellow) even after 200 hours of ultraviolet irradiation.
  • the oxide fine particle-containing polysiloxane composition of the present invention can further contain a phosphor, and the cured product can be used as an LED sealing material.
  • the oxide fine particle-containing polysiloxane composition of the present invention may contain glass fibers in order to relieve the shrinkage-expansion of the cured product.
  • a composition containing glass fiber is used, a thick film cured body can be formed.
  • the difference in refractive index between the polyfunctional polysiloxane (B1) or (B2) and the glass fiber is preferably 0.01 or less.
  • the weight average molecular weight of siloxane was shown as a polystyrene conversion value measured by gel permeation chromatography under the following conditions.
  • the appearance of the obtained composition was visually observed.
  • the volume average dispersed particle size of the composition having no sedimentation of fine particles was measured with a microtrack ultrafine particle size distribution meter ("UPA150" manufactured by Nikkiso Co., Ltd.) and evaluated according to the following criteria.
  • the resulting composition was applied on a quartz glass plate so that the dry film thickness was 50 m, then dried and cured at 100 ° C for 1 hour, and then dried and cured at 200 ° C for 1 hour.
  • a cured product having a thickness of 50 ⁇ m was prepared on the plate. The appearance of this cured product was visually observed and evaluated according to the following criteria.
  • the obtained dispersion was coated on a quartz glass plate so that the dry film thickness was 20 m, then dried and cured at 100 ° C for 1 hour, and then dried and cured at 200 ° C for 1 hour.
  • a cured body having a thickness of 20 m was prepared on the plate.
  • the light transmittance of the cured product at a wavelength of 450 nm was measured with an ultraviolet-visible spectrophotometer and evaluated according to the following criteria.
  • the obtained composition was applied on a quartz glass plate so as to have a dry film thickness of 20 m, and then dried and cured at 100 ° C. for 1 hour. Next, it was dried and cured at 200 ° C. for 1 hour to form a cured body having a thickness of 200 m on a quartz glass plate.
  • This cured product was irradiated with UV light for 200 hours under the condition of UV irradiation at a wavelength of 365 nm and 5000 mW Zcm 2 using a spot UV irradiation device (“SP-V” manufactured by Usio Electric Co., Ltd.). Eye? Observed and evaluated according to the following criteria.
  • Weight retention ratio (%) cured body weight after storage Z cured body weight before storage X 100 The weight retention ratio was calculated and evaluated according to the following criteria.
  • Weight retention is 90% or more and less than 95%.
  • Weight retention is 70% or more and less than 90%.
  • Weight retention ratio (%) cured body weight after storage Z cured body weight before storage X 100 The weight retention ratio was calculated and evaluated according to the following criteria.
  • Weight retention is 90% or more and less than 95%.
  • Weight retention is 70% or more and less than 90%.
  • Mw 25,000 as in Preparation Example 1, except that the amount of alkoxy-terminated polysiloxane (XR31-B2733) was changed to 80 parts by weight and the amount of hydroxy-terminated polydimethylsiloxane (YF-3800) was changed to 20 parts by weight.
  • alkoxy-terminated polysiloxane (XR31—B2733) was changed to 95 parts by weight.
  • hydroxy-terminated polydimethylsiloxane (YF—3800)
  • hydroxy-terminated polydimethylsiloxane (GE Toshiba Silicone (GE Co., Ltd., trade name:? -3905)
  • Polysiloxane with a solid content of 50% by weight containing a polyfunctional polysiloxane with Mw 22,000 in the same manner as Preparation Example 1 except that 5 parts by weight was used.
  • Solution (III) was obtained.
  • Mw 33,000 in the same manner as in Preparation Example 1 except that the amount of alkoxy-terminated polysiloxane (XR31—B2733) was changed to 40 parts by weight and the amount of hydroxy-terminated polydimethylsiloxane (YF—3800) was changed to 60 parts by weight.
  • each of the polysiloxane solutions (II) to (V) was used in the same manner as in Example 1 except that 160 parts by weight (80 parts by weight in terms of solid content) was used.
  • Polysiloxane compositions (2) to (5) containing metal oxide fine particles having a weight percentage of 2% were prepared. Table 1 shows the results of evaluating the properties of these compositions.
  • a metal oxide fine particle-containing polysiloxane composition (6) having a solid content concentration of 20% by weight was prepared in the same manner as in Example 2 except that 0.1 part by weight of methanesulfonic acid was used instead of triethylamine.
  • the results of evaluating the properties of this composition are shown in Table 1. [Example 7]
  • a polysiloxane composition (7) containing fine particles was prepared. Table 1 shows the results of evaluating the properties of this composition.
  • a polysiloxane composition (8) containing metal oxide fine particles was prepared. Table 1 shows the results of the evaluation of the properties of this composition.
  • a metal oxide fine particle-containing polysiloxane composition (C2) having a solid content concentration of 20% by weight was prepared in the same manner as in Example 1 except that 160 parts by weight (80 parts by weight in terms of solid content) was used. .
  • the results of evaluating the properties of this composition are shown in Table 2.
  • a polysiloxane composition (C4) containing metal oxide fine particles having a solid content concentration of 20% by weight was prepared in the same manner as in Example 3 except that triethylamine was used. Table 2 shows the results of evaluating the properties of this composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Sealing Material Composition (AREA)

Abstract

 本発明に係る金属酸化物微粒子含有ポリシロキサン組成物は、有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で、(A)金属酸化物微粒子、および(B1)下記平均組成式(1) R1 aSiOb(OR2)c (1) (式中、R1は水素原子またはオキシアルキレン基を有しない1価の炭化水素基であり、R2はアルキル基であり、aは0を超えて2未満、bは0を超えて2未満、cは0を超えて4未満、かつa+b×2+c=4である)で表され、重量平均分子量が3,000以上100,000以下の範囲にあるアルコキシ末端の多官能ポリシロキサン(b1)と、重量平均分子量が2,000以上100,000以下の範囲にあるヒドロキシ末端ポリジメチルシロキサン(b2)とを、特定の割合で脱アルコール反応させて得られる多官能ポリシロキサンを混合して、前記金属酸化物微粒子(A)を有機溶媒中に分散させることにより得られる。

Description

明 細 書
金属酸ィ匕物微粒子含有ポリシロキサン組成物およびその製造方法 技術分野
[0001] 本発明は、金属酸ィ匕物微粒子がジメチルシロキサン連鎖を有する多官能ポリシロキ サンを含む有機溶媒中に高度に分散したポリシロキサン組成物およびその硬化体に 関する。
背景技術
[0002] 従来から、耐久性に優れるシロキサン材料に各種機能を付与する手段として、シロ キサン骨格を有するバインダー(以下、「シロキサン系バインダー」とも 、う)と各種金 属酸化物との複合化が検討されている。このシロキサン系バインダーの 1つとして、ポ リジメチルシロキサンが知られて!/、る。このポリジメチルシロキサンは通常 200°C以上 の高温下でない限り劣化せず、耐熱性、耐紫外線性に優れたシロキサン系バインダ 一として有用であり、さらに柔軟性にも優れている点で様々な用途に使用される。とこ ろが、ポリジメチルシロキサンに各種機能を付与するために金属酸ィ匕物微粒子を配 合した場合、これらを含む組成物は分散性に劣り、その硬化体は白化しやすぐたと え透明塗膜が得られたとしても高温、高湿下で保存した場合、経時的に重量減少し 、白化するという問題があった。
[0003] また、シロキサン系バインダーと金属酸ィ匕物とを複合ィ匕する場合、これらは分散液 の形態で調製されることが多い。ところが、シロキサン系バインダーは水に溶け難い ため、分散媒として有機溶剤を使用する必要があり、一方、金属酸化物微粒子は有 機溶媒中で凝集しやすいため、水媒体中に分散させることが多い。このため、有機溶 媒中に金属酸ィ匕物微粒子を微分散させるには、炭素数 6以上の有機基を有するリン 酸、スルホン酸またはカルボン酸 (特許文献 1参照)、ォキシアルキレン基を有する有 機化合物、ォキシアルキレン基を有するリン酸等のエステル (特許文献 2参照)、ある いはォキシアルキレン基を有するシランィ匕合物 (特許文献 3参照)を用いる必要があ つた o
[0004] しかしながら、これらの化合物を使用して金属酸化物微粒子を有機溶媒中に微分 散させる方法で、金属酸ィ匕物微粒子とシロキサン系バインダーとを複合化させた場 合、分散液の分散性は良好である力 上記化合物とシロキサン系バインダーとの相 溶性が悪ぐたとえば、溶媒を除去して塗膜を形成した場合、塗膜が白化することが あった。また、製膜条件等を制御して透明な塗膜を形成しても、この塗膜には、炭素 数 6以上の有機基を有するリン酸等やォキシアルキレン基を有する化合物が残存す るため、紫外線照射下や 150°C以上の高温下等の過酷な環境下では塗膜の着色や クラック発生等の不具合が生じることがあった。
[0005] また、従来の金属酸ィ匕物微粒子を含有するポリシロキサン組成物を用いて透明な 塗膜を形成する場合、ポリシロキサン組成物は、通常 30〜90重量%の分散溶媒を 含み、さらに、金属酸ィ匕物微粒子の分散安定性を確保するため、 E型粘度計により 測定した 25°C、ローター回転数 5rpmにおける粘度が通常 15mPa' s以下と低粘度 に調製される。このような低粘度の金属酸ィ匕物微粒子含有ポリシロキサン組成物に 比重の重い充填材を添加すると、充填材が沈降分離することがあった。このため、従 来は、ポリエチレングリコール等の有機系増粘剤を配合して高粘度化されていたが、 熱や紫外線で着色やクラックが発生し、耐熱性、耐紫外線性等の耐久性が劣ってい た。また、ポリエチレングリコール等の有機系増粘剤を添加せず、たとえば、固形分 濃度を増大させても粘度を上昇することができるが、シロキサン系バインダーがゲル 化したり、金属酸ィ匕物微粒子が沈降したりすることがあった。
特許文献 1:特開 2004— 283822号公報
特許文献 2 :特開 2005— 185924号公報
特許文献 3:特開 2004— 99879号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記のような従来技術に伴う問題を解決しょうとするものであって、透明 性に優れ、高温下でも黄色化や分解劣化しにくぐ耐熱性、耐紫外線性および耐湿 熱性に優れたポリシロキサン系硬化体、ならびにこのような硬化体が得られる、金属 酸ィ匕物微粒子が高度に分散したポリシロキサン組成物およびその製造方法を提供 することを目的としている。 課題を解決するための手段
[0007] 本発明者は、上記問題点を解決すべく鋭意研究した結果、ポリジメチルシロキサン と金属酸化物微粒子とを配合した硬化体を多湿下で保持すると、ポリジメチルシロキ サンが分解されて硬化体の劣化が起こることを見出した。この分解機構の詳細は明ら かではないが、ポリジメチルシロキサンの加水分解劣化であると推測された。また、金 属酸ィ匕物微粒子の一次粒子径が小さいほどポリジメチルシロキサンの加水分解劣化 が起こりやすいことを見出した。そこで、金属酸ィ匕物微粒子をシランモノマー等のシラ ンカップリング剤で表面処理した力 ポリジメチルシロキサンの加水分解劣化を十分 に抑制することはできな力つた。一方、多官能ポリシロキサンについては金属酸ィ匕物 微粒子の存在下、多湿下で保持しても加水分解劣化しな!、ことも併せて見出した。 多官能シロキサンが多湿下で分解劣化しない要因は明らかではないが、多官能ポリ シロキサンが 3次元構造またはラダー構造であるため主鎖(Si— O結合)がその立体 障害効果により保護され、金属酸化物微粒子と水による加水分解作用を受け難いた めと推測される。
[0008] 本発明者は、予め、ヒドロキシ末端ポリジメチルシロキサンと高分子量のアルコキシ 末端多官能ポリシロキサンとを、あるいはアルコキシ基含有ポリジメチルシロキサンと 高分子量のシラノール末端多官能ポリシロキサンとを脱アルコール反応させて、ジメ チルシロキサン連鎖を有する多官能ポリシロキサンを形成し、この多官能ポリシロキサ ンを含有する有機溶媒中で、塩基性化合物、酸性化合物または金属キレート化合物 の存在下、金属酸化物微粒子を処理することにより、ポリシロキサンを含有する有機 溶媒中で酸ィ匕物微粒子が高度に分散したポリシロキサン組成物が得られることを見 出し、さらに、この組成物から得られる硬化体が、透明性に優れ、高温下でも黄色化 や分解劣化しにくぐ耐熱性、耐紫外線性および耐湿熱性に優れていることを見出し 、本発明を完成するに至った。
[0009] すなわち、本発明に係る金属酸ィ匕物微粒子含有ポリシロキサン組成物は、有機溶 媒中、塩基性化合物、酸性ィ匕合物または金属キレートイ匕合物の存在下で、
(A)金属酸化物微粒子、および
(B1)下記平均組成式(1) R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるアルコキシ末端の多官 能ポリシロキサン (bl)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリス チレン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ 末端ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比 (b l/b2)が 30Z70〜95Z5の範囲で脱アルコール反応させて得られる多官能ポリシ ロキサン、あるいは
(Β2)下記平均組成式(1 ' )
R1 SiO (OH) (1,)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるヒドロキシ末端の多官能 ポリシロキサン (b3)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリスチ レン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ 末端ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比 (b 3/b4)が 30Z70〜95Z5の範囲で脱アルコール反応させて得られる多官能ポリシ ロキサン
を混合して、前記金属酸化物微粒子 (Α)を有機溶媒中に分散させることにより得られ る。
前記多官能ポリシロキサン (B1)または (Β2)をさらに加水分解 '縮合した後、前記 金属酸化物微粒子 (A)と混合することが好ま 、。
[0011] 前記加水分解 '縮合における触媒は塩基性触媒であることが好ましい。
[0012] 前記脱アルコール反応における触媒は金属キレートイ匕合物であることが好ましい。
[0013] 前記金属酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)とを塩 基性ィ匕合物の存在下で混合することが好まし ヽ。
[0014] 前記金属酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)とをビー ズミルにより混合することが好ま 、。
[0015] 前記金属酸ィ匕物微粒子 (A) 100重量部に対して、前記多官能ポリシロキサン (B1) または (B2)を完^ 水分解縮合物換算で 1〜: LOOO重量部混合することが好ましい
[0016] 本発明に係る硬化体は、上記金属酸ィ匕物微粒子含有ポリシロキサン組成物から得 られる。
[0017] 本発明に係る LED封止材は、上記金属酸ィ匕物微粒子含有ポリシロキサン組成物 に、さらに蛍光体を混合して得られることを特徴とする。
[0018] 本発明に係る金属酸化物微粒子含有ポリシロキサン組成物の製造方法は、下記平 均組成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるアルコキシ末端の多官 能ポリシロキサン (bl)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリス チレン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ 末端ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比 (b l/b2)が 30Z70〜95Z5の範囲で脱アルコール反応させて多官能ポリシロキサン (Bl)、あるいは
下記平均組成式(1 ' )
R1 SiO (OH) (1,)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるヒドロキシ末端の多官能 ポリシロキサン (b3)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリスチ レン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ 末端ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比 (b 3/b4)が 30Z70〜95Z5の範囲で脱アルコール反応させて得られる多官能ポリシ ロキサン(Β2)
を調製した後、
該多官能ポリシロキサン (B1)または (Β2)と金属酸化物微粒子 (Α)とを、有機溶媒 中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で混合すること を特徴とする。
[0019] 前記多官能ポリシロキサン (B1)または (Β2)をさらに加水分解 '縮合した後、前記 金属酸化物微粒子 (Α)と混合することが好ま 、。
[0020] 前記加水分解 '縮合における触媒は塩基性触媒であることが好ましい。
[0021] 前記脱アルコール反応における触媒は金属キレートイ匕合物であることが好ましい。
[0022] 前記金属酸化物微粒子 (Α)と前記多官能ポリシロキサン (B1)または(Β2)とを塩 基性ィ匕合物の存在下で混合することが好まし ヽ。
[0023] 前記金属酸化物微粒子 (Α)と前記多官能ポリシロキサン (B1)または(Β2)とをビー ズミルにより混合することが好ま 、。
発明の効果
[0024] 本発明によると、炭素数 6以上の有機基を有するリン酸等ゃォキシアルキレン基を 有する化合物を使用せずに、ジメチルシロキサン連鎖を有するポリシロキサンを含む 有機溶媒に金属酸化物微粒子が高度に分散した組成物が得られる。この組成物は 分散安定性に優れているとともに、金属酸ィ匕物微粒子と上記ポリシロキサンとを含有 する透明な硬化体を形成できる。さらに、上記ポリシロキサン力 適度な長さのジメチ ルシロキサン連鎖と 3次元構造やラダー構造を有する多官能ポリシロキサンを含むた め、柔軟性に優れた厚膜の硬化体を形成できるとともに、高温下でも黄色化や分解 劣化しにくぐ耐熱性、耐紫外線性および耐湿熱性に優れた硬化体が得られる。特 に、金属酸化物微粒子として高屈折性の金属酸化物微粒子を用いた硬化体は、発 光素子として青色 LED素子や紫外線 LED素子を用いた LED素子の封止材として 用いることができ、特に高輝度の LED素子の封止材に有用である。
発明を実施するための最良の形態
[0025] 本発明に係る金属酸化物微粒子含有ポリシロキサン組成物は、金属酸化物微粒子
(A)とジメチルシロキサン連鎖を有する多官能ポリシロキサン (B)とを、炭素数 6以上 の有機基を有するリン酸等やォキシアルキレン基を有する化合物を使用せずに、有 機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で混合 して分散処理を施すことにより得ることができる。
[0026] 〔金属酸ィ匕物微粒子 (A)〕
本発明に用いられる金属酸化物微粒子 (A)は、金属元素の酸化物微粒子であれ ばその種類は特に限定されないが、たとえば、酸化アンチモン、酸ィ匕ジルコニウム、 アナターゼ型酸化チタン、ルチル型酸ィ匕チタン、ブルッカイト型酸ィ匕チタン、酸ィ匕亜 鉛、酸ィ匕タンタル、酸化インジウム、酸ィ匕ハフニウム、酸化スズ、酸化ニオブ、酸ィ匕ァ ルミ-ゥム、酸ィ匕セリウム、酸化スカンジウム、酸化イットリウム、酸ィ匕ランタン、酸ィ匕プ ラセォジゥム、酸ィ匕ネオジゥム、酸化サマリウム、酸ィ匕ユウ口ピウム、酸ィ匕ガドリニウム、 酸化テルビ二ゥム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ッリウ ム、酸化イッテルビウム、酸化ルテチウム、酸化カルシウム、酸化ガリウム、酸化リチウ ム、酸化ストロンチウム、酸化タングステン、酸化バリウム、酸化マグネシウム、および これらの複合体、ならびにインジウムースズ複合酸ィ匕物などの上記金属 2種以上の複 合体の酸ィ匕物などの金属酸ィ匕物微粒子が挙げられる。
[0027] 本発明にお 、て、金属酸ィ匕物微粒子は、 1種単独で、または 2種以上を混合して使 用してもよい。金属酸化物微粒子 (A)は、付与する機能に応じて適宜選択することが できるが、たとえば、高屈折性を付与する場合には TiO微粒子が好ましぐ紫外領域
2
の透明性と高屈折性を両立させる場合には ZrO微粒子が好ましい。 UVカット機能
2
を付与する場合には、酸ィ匕セリウム微粒子、酸ィ匕亜鉛微粒子が好ましい。
[0028] 上記金属酸ィ匕物微粒子 (A)の 1次平均粒子径は、好ましくは 0. 1〜: LOOnm、より 好ましくは 0. l〜70nm、特に好ましくは 0. l〜50nmである。金属酸化物微粒子 (A )の 1次平均粒子径が上記範囲にあると、光透過性に優れた硬化体を得ることができ る。
[0029] このような金属酸ィ匕物微粒子 (A)は、溶媒に分散されて!、な 、粉体の状態で添カロ しても、イソプロピルアルコールなどの極性溶媒中やトルエンなどの非極性溶媒中に 分散した分散体の状態で添加してもよい。添加前の金属酸ィ匕物微粒子 (A)は、凝集 して二次粒子を形成していてもよい。本発明では、多官能ポリシロキサン (B)の溶解 性を考慮して適切な有機溶媒を適宜選択できる点で、粉体を使用することが好まし い。また、本発明の製造方法は、粉体の状態で添加する場合に、特に有効である。
[0030] 〔多官能ポリシロキサン (B)〕
本発明に用いられる多官能ポリシロキサン (B)は、ジメチルシロキサン連鎖を有する 多官能ポリシロキサンであり、ゲノレパーミエーシヨンクロマトグラフィーにより測定した ポリスチレン換算の重量平均分子量が 3, 000以上 100, 000以下の範囲にあるアル コキシ末端多官能ポリシロキサン (bl)と、ゲノレパーミエーシヨンクロマトグラフィーによ り測定したポリスチレン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲 にあるヒドロキシ末端ポリジメチルシロキサン (b2)とを脱アルコール反応させて得られ るポリシロキサン(B1)、および、ゲルパーミエーシヨンクロマトグラフィーにより測定し たポリスチレン換算の重量平均分子量が 3, 000以上 100, 000以下の範囲にあるヒ ドロキシ末端多官能ポリシロキサン (b3)と、ゲノレパーミエーシヨンクロマトグラフィーに より測定したポリスチレン換算の重量平均分子量が 2, 000以上 100, 000以下の範 囲にあるアルコキシ末端ポリジメチルシロキサン(b4)とを脱アルコール反応させて得 られるポリシロキサン (B2)が挙げられる。
[0031] (bl)アルコキシ末端多官能ポリシロキサン: 本発明に用いられるアルコキシ末端多官能ポリシロキサン (bl)は、 下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
で表される、アルコキシ基を有する多官能ポリシロキサンである。
[0032] 式(1)中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基で あり、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はァ ルキル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよ い。 aは 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である。 R1 R2がそれぞれ複数存在する場合には、 aは、水素原子とォキシァ ルキレン基を有しない 1価の炭化水素基との合計のケィ素原子に対する割合、 cは、 アルコキシ基のケィ素原子に対する割合を表す。
[0033] 上記アルコキシ末端多官能ポリシロキサン (bl)の重量平均分子量は、ゲルパーミ エーシヨンクロマトグラフィーにより測定したポリスチレン換算値で、 3, 000以上 100, 000以下、より好まし <は 3, 000以上 80, 000以下、特に好まし <は 3, 500以上 50 , 000以下である。上記範囲の重量平均分子量を有するアルコキシ末端多官能ポリ シロキサン (bl)を使用すると、硬化体形成時におけるクラック発生の抑制と湿熱下に おける分解劣化の抑制とを両立できる。
[0034] 上記 1価の炭化水素基は、ォキシアルキレン基を有しなければ特に限定されない
1S 置換または無置換の 1価の炭化水素基が挙げられる。上記 1価の無置換炭化水 素基としては、炭素数 1〜8のアルキル基、フエ-ル基、ベンジル基、トリル基が挙げ られる。炭素数 1〜8のアルキル基としては、メチル基、ェチル基、プロピル基、イソプ 口ピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基などが挙げ られる。また、上記 1価の置換炭化水素基としては、炭素数 1〜8の置換アルキル基 が挙げられる。上記置換アルキル基の置換基としては、ハロゲン、アミノ基、メルカプ ト基、イソシァネート基、グリシジル基、グリシドキシ基、ウレイド基などが挙げられる。
[0035] また、上記 R2で表されるアルキル基としては、メチル基、ェチル基、プロピル基、イソ プロピル基、ブチル基などが挙げられる。これらのアルキル基のうち、メチル基、ェチ ル基が好ましい。 [0036] このアルコキシ末端多官能ポリシロキサン (bl)は、たとえば、上記平均組成式を満 たすように、多官能のアルコキシシランまたは多官能クロロシランを適宜組み合わせ て加水分解 '縮合させることによって製造できる。ただし、テトラアルコキシシラン類の みでの加水分解 ·縮合、およびジアルコキシシラン類のみでの加水分解 ·縮合は除く 。本発明では、金属酸化物微粒子 (A)と水との存在下における耐分解性が優れる点 から、 3官能アルコキシシランおよび Zまたは 3官能クロロシランを 50重量%以上用 V、て得られるアルコキシ末端多官能ポリシロキサンが特に好ま 、。
[0037] 上記多官能のアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、 テトラー n—プロボキシシラン、テトラー i プロボキシシラン、テトラー n—ブトキシシラ ンなどのテトラアルコキシシラン類;
メチルトリメトキシシラン、メチルトリエトキシシラン、ェチルトリメトキシシラン、ェチルトリ エトキシシラン、 n—プロピルトリメトキシシラン、 n—プロピルトリエトキシシラン、 i—プ 口ピルトリメトキシシラン、 i—プロピルトリエトキシシラン、 n—ブチルトリメトキシシラン、 n—ブチルトリエトキシシラン、 n—ペンチルトリメトキシシラン、 n—へキシルトリメトキシ シラン、 n—ヘプチルトリメトキシシラン、 n—ォクチルトリメトキシシラン、シクロへキシ ルトリメトキシシラン、シクロへキシルトリエトキシシラン、フエニルトリメトキシシラン、フ ェニルトリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、 3—クロ口プロピルトリ ェ卜キシシラン、 3, 3, 3—卜!;フノレ才 Pプ Pピノレ卜リメ卜キシシラン、 3, 3, 3—卜!;フノレ才 口プロピルトリエトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピノレト リエトキシシラン、 3—メルカプトプロピルトリメトキシシラン、 3—メルカプトプロピルトリ エトキシシラン、 3—イソシァネートプロピルトリメトキシシラン、 3—イソシァネートプロ ピルトリエトキシシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシプ 口ピルトリエトキシシラン、 2—(3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラ ン、 2— (3, 4 エポキシシクロへキシル)ェチルトリエトキシシラン、 3 ウレイドプロピ ルトリメトキシシラン、 3—ウレイドプロピルトリエトキシシランなどのトリアルコキシシラン 類;
ジメチノレジメトキシシラン、ジメチノレジェトキシシラン、ジェチノレジメトキシシラン、ジェ チノレジェトキシシラン、ジー n—プロピノレジメトキシシラン、ジー n プロピノレジェトキシ シラン、ジー i プロピノレジメトキシシラン、ジー i プロピノレジェトキシシラン、ジー n— ブチルジメトキシシラン、ジ n—ブチルジェトキシシラン、ジ n—ペンチルジメトキ シシラン、ジー n ペンチノレジェトキシシラン、ジー n—へキシノレジメトキシシラン、ジ —n—へキシノレジェトキシシラン、ジ n—ヘプチノレジメトキシシラン、ジ n—へプチ ノレジェトキシシラン、ジー n—才クチノレジメトキシシラン、ジー n—才クチノレジェトキシシ ラン、ジー n—シクロへキシノレジメトキシシラン、ジー n—シクロへキシノレジェトキシシラ ン、ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシランなどのジアルコキシシラン 類が挙げられる。これらのアルコキシシラン類は 1種単独でまたは 2種以上を混合して 使用することができる。
[0038] また、多官能のアルコキシシランに加えて、 1官能のアルコキシシランを併用するこ ともできる。 1官能のアルコキシシランとしては、トリメチルメトキシシラン、トリメチルエト キシシラン、トリェチルメトキシシラン、トリェチルエトキシシランなどが挙げられる。これ らの 1官能のアルコキシシランは、使用するアルコキシシラン全量に対して、 10重量 %以下、好ましくは 7重量%以下、より好ましくは 5重量%以下で使用することが望ま しい。
[0039] また、上記分子量を満たすアルコキシ末端多官能ポリシロキサン (bl)として、 GE東 芝シリコーン社製の XR31— B0270、 XR31— B2733 (以上、商品名)などの巿販の シロキサンポリマーを用いることもできる。
[0040] なお、上記アルコキシ末端多官能ポリシロキサン (bl)は、本発明の効果を損なわ な 、範囲で Si— OH結合を有して!/、てもよ!/、。
[0041] (b2)ヒドロキシ末端ポリジメチルシロキサン:
本発明に用いられるヒドロキシ末端ポリジメチルシロキサン (b2)は、ゲルパーミエ一 シヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 2, 000 以上 100, 000以下、より好まし <は 2, 000以上 80, 000以下、特に好まし <は 3, 0 00以上 70, 000以下である。上記範囲の重量平均分子量を有するヒドロキシ末端ポ リジメチルシロキサン (b2)を使用すると、柔軟性に優れた多官能ポリシロキサン (B1) が得られ、硬化体形成時におけるクラック発生の抑制と硬化性とを両立できるため、 硬化体の厚膜ィ匕を図ることができる。 [0042] このヒドロキシ末端ポリジメチノレシロキサン(b2)は、たとえば、ジメチノレジァノレコキシ シランまたはジメチルジクロロシランを加水分解 '縮合させることによって製造できる。
[0043] 上記ジメチルジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジェト キシシラン、ジメチルジー i プロポキシシラン、ジメチルジー n ブトキシシランなどが 挙げられる。これらのジメチルジアルコキシシランは 1種単独でまたは 2種以上を混合 して使用することができる。
[0044] また、上記ヒドロキシ末端ポリジメチルシロキサン (b2)は、環状オルガノシロキサン を開環縮合させることによつても製造できる。環状オルガノシロキサンとしては、へキ サフエニルシクロトリシロキサン、ォクタフエニルシクロテトラシロキサン、テチラビニル テトラメチルシクロテトラシロキサン、へキサメチルシクロトリシロキサン、オタタメチルシ クロテトラシロキサン、ペンタメチルシクロテトラシロキサン、へキサメチルシクロテトラシ ロキサン、テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ド デカメチルシクロへキサシロキサン等が挙げられる。
[0045] また、上記分子量を満たすヒドロキシ末端ポリジメチルシロキサン (b2)として、 GE東 芝シリコーン社製の YF— 3057、 YF— 3800、 YF— 3802、 YF— 3807、 YF— 389 7、 XF— 3905 (以上、商品名)などの市販のヒドロキシ末端ポリジメチルシロキサンを 用いることちでさる。
[0046] (b3)ヒドロキシ末端多官能ポリシロキサン:
本発明に用いられるヒドロキシ末端多官能ポリシロキサン (b3)は、
下記平均組成式(1 ' )
R1 SiO (OH) (1,)
a b c
で表される、ヒドロキシ基を有する多官能ポリシロキサンであり、 3次元架橋構造を有 することが好ましい。
[0047] 式(1 ' )中、 R1は、上記式(1)における R1と同様に定義される。 aは 0を超えて 2未満 、 bは 0を超えて 2未満、 cは 0を超えて 4未満、力つ a+b X 2 + c=4である。 R1が複数 存在する場合には、 aは、水素原子とォキシアルキレン基を有しない 1価の炭化水素 基との合計のケィ素原子に対する割合を表す。
[0048] 上記ヒドロキシ末端多官能ポリシロキサン (b3)の重量平均分子量は、ゲルパーミエ ーシヨンクロマトグラフィーにより測定したポリスチレン換算値で、 3, 000以上 100, 0 00以下、より好まし <は 3, 000以上 80, 000以下、特に好まし <は 3, 500以上 50, 000以下である。上記範囲の重量平均分子量を有するヒドロキシ末端多官能ポリシ口 キサン (b3)を使用すると、硬化体形成時におけるクラック発生の抑制と湿熱下にお ける分解劣化の抑制とを両立できる。
[0049] 上記 1価の炭化水素基は、ォキシアルキレン基を有しなければ特に限定されない
1S 置換または無置換の 1価の炭化水素基が挙げられる。上記置換もしくは無置換 の 1価の炭化水素基としては、上記アルコキシ末端多官能ポリシロキサン (bi)で例 示した置換または無置換の 1価の炭化水素基と同様のものを挙げることができる。
[0050] このヒドロキシ末端多官能ポリシロキサン (b3)は、たとえば、上記平均糸且成式を満 たすように、多官能のアルコキシシランまたは多官能クロロシランを適宜組み合わせ て加水分解 '縮合させることによって製造できる。ただし、テトラアルコキシシラン類の みでの加水分解 ·縮合、およびジアルコキシシラン類のみでの加水分解 ·縮合は除く 。本発明では、金属酸化物微粒子 (A)と水との存在下における耐分解性が優れる点 から、 3官能アルコキシシランおよび Zまたは 3官能クロロシランを 50重量%以上用 V、て得られるヒドロキシ末端多官能ポリシロキサンが特に好ま 、。
[0051] 上記多官能のアルコキシシランとしては、上記アルコキシ末端多官能ポリシロキサ ン (bl)で例示した多官能アルコキシシランと同様のものを挙げることができ、 1種単 独でまたは 2種以上を混合して使用することができる。
[0052] また、ヒドロキシ末端多官能ポリシロキサン (b3)にお 、ても、多官能のアルコキシシ ランに加えて、上記アルコキシ末端多官能ポリシロキサン (bl)で例示した 1官能のァ ルコキシシランを併用してもよい。このとき、 1官能のアルコキシシランは、使用するァ ルコキシシラン全量に対して、 10重量%以下、好ましくは 7重量%以下、より好ましく は 5重量%以下で使用することが望ましい。
[0053] なお、上記アルコキシ末端多官能ポリシロキサン (b3)は、本発明の効果を損なわ な 、範囲で Si— OR結合を有して!/、てもよ!/、。
[0054] (b4)ァノレコキシ末端ポリジメチノレシロキサン:
本発明に用いられるアルコキシ末端ポリジメチルシロキサン (b4)は、ゲルパーミエ ーシヨンクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が 2, 0 00以上 100, 000以下、より好まし <は 2, 000以上 80, 000以下、特に好まし <は 3 , 000以上 70, 000以下である。上記範囲の重量平均分子量を有するアルコキシ末 端ポリジメチルシロキサン (b4)を使用すると、柔軟性に優れた多官能ポリシロキサン( B2)が得られ、硬化体形成時におけるクラック発生の抑制と硬化性とを両立できるた め、硬化体の厚膜ィ匕を図ることができる。
[0055] このアルコキシ末端ポリジメチルシロキサン(b4)は、たとえば、ジメチルジアルコキ シシランまたはジメチルジクロロシランを加水分解 '縮合させることによって製造できる
[0056] 上記ジアルコキシシランとしては、上記ヒドロキシ末端ポリジメチルシロキサン (b2) で例示したジアルコキシシランと同様のものを挙げることができ、これらは 1種単独で または 2種以上を混合して使用することができる。
[0057] (多官能ポリシロキサン (B)の製造方法)
上記多官能ポリシロキサン (B1)は、上記アルコキシ末端多官能ポリシロキサン (bl )と上記ヒドロキシ末端ポリジメチルシロキサン (b2)とを脱アルコール反応させることに より製造できる。また、上記多官能ポリシロキサン (B2)は、上記ヒドロキシ末端多官能 ポリシロキサン(b3)と上記アルコキシ末端ポリジメチルシロキサン (b4)とを脱アルコ ール反応させることにより製造できる。この多官能ポリシロキサン (B1)および (B2)は 、通常水を添加した後、さらに加水分解 '縮合させることが好ましい。これにより、多官 能ポリシロキサン (B1)および (B2)が高分子量化し、得られる硬化体の透明性が向 上する。上記各反応は、通常、有機溶媒中で触媒を用いて行なわれる。
[0058] 上記アルコキシ末端多官能ポリシロキサン (bl)と上記ヒドロキシ末端ポリジメチルシ ロキサン (b2)との混合比は、これらの合計 100重量部に対して、重量比(blZb2)で 、 30Z70〜95Z5であり、好ましくは 50Ζ50〜95Ζ5、より好ましくは 50,50〜90 /10である。また、上記ヒドロキシ末端多官能ポリシロキサン (b3)と上記アルコキシ 末端ポリジメチルシロキサン (b4)との混合比は、これらの合計 100重量部に対して、 重量比(b3Zb4)で、 30Z70〜95Z5であり、好ましくは 50,50〜95,5、より好ま しくは 50Ζ50〜90Ζ10である。ポリシロキサン(bl)と(b2)との混合比、およびポリ シロキサン (b3)と (b4)との混合比が上記範囲にあると、ポリジメチルシロキサンの劣 化が抑制でき、耐熱性、耐紫外線性および耐湿熱性に優れた硬化体を得ることがで きる。特に、アルコキシ末端多官能ポリシロキサン (bl)およびヒドロキシ末端多官能 ポリシロキサン (b3)の割合が少ないと、耐熱性、耐紫外線性および耐湿熱性が低下 する。
[0059] (脱アルコール反応)
上記脱アルコール反応の温度は、好ましくは 30〜150°C、より好ましくは 40〜120 °C、特に好ましくは 50〜100°Cである。反応時間は、好ましくは 0. 1〜24時間、より 好ましくは 0. 5〜12時間、特に好ましくは 1〜8時間である。また、脱アルコール反応 は、各成分を反応容器に一括で仕込んで実施してもよいし、一方の成分に他方の成 分を間欠的にもしくは連続的に添加しながら実施してもよい。
[0060] 上記脱アルコール反応により、ヒドロキシ末端ポリジメチルシロキサン (b2)の両末端 に、アルコキシ末端多官能ポリシロキサン (bl)が結合した構造の多官能ポリシロキサ ン(B1)、または、アルコキシ末端ポリジメチルシロキサン (b4)の両末端に、ヒドロキシ 末端多官能ポリシロキサン (b3)が結合した構造の多官能ポリシロキサン (B2)が形成 される。
[0061] (加水分解 '縮合反応)
加水分解 '縮合反応の際に添加される水の量は、多官能ポリシロキサン (B1)また は(B2) 100重量部に対して、通常 1〜500重量部、好ましくは 10〜300重量部、よ り好ましくは 20〜200重量部である。水の添加量が上記範囲にあると、加水分解 '縮 合反応が十分に進行するとともに、反応後に除去する水の量が少ないため好ましい
[0062] 上記加水分解 '縮合反応の温度は、好ましくは 20〜150°C、より好ましくは 30〜: LO 0°C、特に好ましくは 40〜80°Cである。反応時間は、好ましくは 0. 1〜24時間、より 好ましくは 0. 5〜12時間、特に好ましくは 1〜8時間である。
[0063] (有機溶媒)
上記脱アルコール反応および加水分解 '縮合反応において用いられる有機溶媒と しては、たとえば、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステ ル類などを挙げることができる。上記アルコール類としては、メタノール、エタノール、 n—プロピルアルコール、 i—プロピルアルコール、 i—ブチルアルコール、 n—ブチル ァノレコーノレ、 sec—ブチノレアノレコーノレ、 tーブチノレアノレコーノレ、 n—へキシノレアノレコー ル、 n—ォクチルアルコール、エチレングリコーノレ、ジエチレングリコール、トリエチレン グリコーノレ、エチレングリコーノレモノブチノレエーテノレ、エチレングリコーノレモノェチノレ エーテノレアセテート、ジエチレングリコーノレモノェチノレエーテノレ、プロピレングリコー ルモノメチルエーテル、プロピレンモノメチルエーテルアセテート、ジアセトンアルコー ルなどを挙げることができる。また、芳香族炭化水素類としては、ベンゼン、トルエン、 キシレンなどが挙げられ、エーテル類としては、テトラヒドロフラン、ジォキサンなどが 挙げられ、ケトン類としては、アセトン、メチルェチルケトン、メチルイソブチルケトン、 ジイソプチルケトンなどが挙げられ、エステル類としては、酢酸ェチル、酢酸プロピル 、酢酸ブチル、炭酸プロピレン、乳酸メチル、乳酸ェチル、乳酸ノルマルプロピル、乳 酸イソプロピル、 3—エトキシプロピオン酸メチル、 3—エトキシプロピオン酸ェチルな どが挙げられる。これらの有機溶剤は、 1種単独で用いても、 2種以上を混合して用 いてもよい。これらの有機溶媒のうち、脱アルコール反応では、反応を促進する観点 から、アルコール以外の有機溶媒、たとえば、メチルェチルケトン、メチルイソブチル ケトン、トルエン、キシレンなどを使用することが好ましい。また、これらの有機溶媒は 、予め脱水処理を施して、水分を除去した状態で使用することが好ましい。
[0064] 上記有機溶媒は、脱アルコール反応および加水分解 '縮合反応のコントロール、得 られる多官能ポリシロキサン (B1)または (B2)を含む溶液の濃度もしくは粘度の調整 、または硬化体製造時の厚み調整などを目的として適宜使用することができる。有機 溶媒を使用する場合、その使用量は所望の条件に応じて適宜設定することができる 力 たとえば、得られる多官能ポリシロキサン (B1)または(B2)の濃度力 完^ 3口水 分解縮合物換算で、好ましくは 5〜99重量%、より好ましくは 7〜95重量%、特に好 ましくは 10〜90重量%となる量である。
[0065] (触媒)
上記脱アルコール反応または加水分解 '縮合反応に用いられる触媒としては、たと えば、塩基性化合物、酸性ィ匕合物および金属キレートイ匕合物が挙げられる。 [0066] (塩基性化合物)
上記塩基性ィ匕合物としては、アンモニア (アンモニア水溶液を含む)、有機アミンィ匕 合物、水酸化ナトリウム、水酸ィ匕カリウム等のアルカリ金属やアルカリ土類金属の水酸 化物、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属のアルコキシドが挙 げられる。これらのうち、アンモニアおよび有機アミンィ匕合物が好ましい。
[0067] 有機ァミンとしては、アルキルァミン、アルコキシァミン、アルカノールァミン、ァリー ルァミンなどが挙げられる。
[0068] アルキルァミンとしては、メチルァミン、ェチルァミン、プロピルァミン、ブチルァミン、 へキシルァミン、ォクチルァミン、 N, N ジメチルァミン、 N, N ジェチルァミン、 N , N ジプロピルァミン、 N, N ジブチルァミン、トリメチルァミン、トリエチルァミン、ト リプロピルァミン、トリブチルァミンなどの炭素数 1〜4のアルキル基を有するアルキル ァミンなどが挙げられる。
[0069] アルコキシァミンとしては、メトキシメチルァミン、メトキシェチルァミン、メトキシプロピ ルァミン、メトキシブチルァミン、エトキシメチルァミン、エトキシェチルァミン、エトキシ プロピルァミン、エトキシブチルァミン、プロポキシメチルァミン、プロポキシェチルアミ ン、プロポキシプロピルァミン、プロポキシブチルァミン、ブトキシメチルァミン、ブトキ シェチルァミン、ブトキシプロピルァミン、ブトキシブチルァミンなどの炭素数 1〜4の アルコキシ基を有するアルコキシァミンなどが挙げられる。
[0070] アルカノールァミンとしては、メタノールァミン、エタノールァミン、プロパノールァミン 、ブタノールァミン、 N—メチルメタノールァミン、 N ェチルメタノールァミン、 N プ 口ピルメタノールァミン、 N ブチルメタノールァミン、 N メチルエタノールァミン、 N ェチルエタノールァミン、 N プロピルエタノールァミン、 N ブチルエタノールアミ ン、 N メチルプロパノールァミン、 N ェチルプロパノールァミン、 N—プロピルプロ パノールァミン、 N ブチルプロパノールァミン、 N—メチルブタノールァミン、 N ェ チルブタノールァミン、 N プロピルブタノールァミン、 N ブチルブタノールァミン、 N, N ジメチルメタノールァミン、 N, N ジェチルメタノールァミン、 N, N ジプロ ピルメタノールァミン、 N, N—ジブチルメタノールァミン、 N, N ジメチルエタノール ァミン、 N, N ジェチルエタノールァミン、 N, N ジプロピルエタノールァミン、 N, N—ジブチルエタノールァミン、 N, N—ジメチルプロパノールァミン、 N, N—ジェチ ルプロパノールァミン、 N, N—ジプロピルプロパノールァミン、 N, N—ジブチルプロ パノールァミン、 N, N—ジメチルブタノールァミン、 N, N—ジェチルブタノールアミン 、 N, N—ジプロピルブタノールァミン、 N, N—ジブチルブタノールァミン、 N—メチル ジメタノールァミン、 N—ェチルジメタノールァミン、 N—プロピルジメタノールァミン、 N—ブチルジメタノールァミン、 N—メチルジェタノールァミン、 N—ェチルジェタノ一 ルァミン、 N—プロピルジエタノールァミン、 N—ブチルジェタノールァミン、 N—メチ ルジプロパノールァミン、 N—ェチルジプロパノールァミン、 N—プロピルジプロパノ ールァミン、 N—ブチルジプロパノールァミン、 N—メチルジブタノールァミン、 N—ェ チルジブタノールアミン、 N—プロピルジブタノールァミン、 N—ブチルジブタノールァ ミン、 N— (アミノメチル)メタノールァミン、 N— (アミノメチル)エタノールァミン、 N— ( アミノメチル)プロパノールァミン、 N— (アミノメチル)ブタノールァミン、 N— (アミノエ チル)メタノールァミン、 N— (アミノエチル)エタノールァミン、 N— (アミノエチル)プロ パノールァミン、 N— (アミノエチル)ブタノールァミン、 N— (ァミノプロピル)メタノール ァミン、 N— (ァミノプロピル)エタノールァミン、 N— (ァミノプロピル)プロパノールアミ ン、 N— (ァミノプロピル)ブタノールァミン、 N— (アミノブチル)メタノールァミン、 N— (アミノブチル)エタノールァミン、 N— (アミノブチル)プロパノールァミン、 N— (ァミノ ブチル)ブタノールァミンなどの炭素数 1〜4のアルキル基を有するアル力ノールアミ ンが挙げられる。
[0071] ァリールァミンとしてはァ-リン、 N—メチルァ-リンなどが挙げられる。
[0072] さらに、上記以外の有機ァミンとして、テトラメチルアンモニゥムノ、イドロキサイド、テ トラェチルアンモ -ゥムハイドロキサイド、テトラプロピルアンモ-ゥムハイドロキサイド
、テトラプチルアンモ -ゥムハイドロキサイドなどのテトラアルキルアンモ-ゥムハイド口 キサイド;テトラメチルエチレンジァミン、テトラエチルエチレンジァミン、テトラプロピル エチレンジァミン、テトラブチルエチレンジァミンなどのテトラアルキルエチレンジアミ ン;メチルアミノメチルァミン、メチルアミノエチルァミン、メチルァミノプロピルァミン、メ チルアミノブチルァミン、ェチルアミノメチルァミン、ェチルアミノエチルァミン、ェチル ァミノプロピルァミン、ェチルアミノブチルァミン、プロピルアミノメチルァミン、プロピル アミノエチルァミン、プロピルアミノプロピルァミン、プロピルアミノブチルァミン、ブチ ルアミノメチルァミン、ブチルアミノエチルァミン、ブチルァミノプロピルァミン、ブチル アミノブチルァミンなどのアルキルアミノアルキルアミン;ピリジン、ピロール、ピぺラジ ン、ピロリジン、ピぺリジン、ピコリン、モルホリン、メチルモルホリン、ジァザビシクロォ クラン、ジァザビシクロノナン、ジァザビシクロウンデセンなども挙げられる。
[0073] このような塩基性化合物は、 1種単独で用いても、 2種以上を混合して用いてもよい 。これらのうち、トリェチルァミン、テトラメチルアンモ -ゥムハイドロキサイド、ピリジンが 特に好ましい。
[0074] (酸性化合物)
上記酸性ィ匕合物としては、有機酸および無機酸が挙げられる。有機酸としては、た とえば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、へキサン酸、ヘプタン酸、ォクタ ン酸、ノナン酸、デカン酸、シユウ酸、マレイン酸、無水マレイン酸、メチルマロン酸、 アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、ァラキドン酸、ミキミ酸、 2—ェ チルへキサン酸、ォレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安 息香酸、 P—ァミノ安息香酸、 ρ—トルエンスルホン酸、ベンゼンスルホン酸、モノクロ 口酢酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ギ酸、マロン酸、メタンスルホ ン酸、フタル酸、フマル酸、クェン酸、酒石酸などが挙げられる。上記無機酸としては 、たとえば、塩酸、硝酸、硫酸、フッ酸、リン酸などが挙げられる。
[0075] このような酸性ィ匕合物は、 1種単独で用いても、 2種以上を混合して用いてもよい。
これらのうち、マレイン酸、無水マレイン酸、メタンスルホン酸、酢酸が特に好ましい。
[0076] (金属キレート化合物)
上記金属キレートイ匕合物としては、有機金属化合物および Zまたはその部分加水 分解物(以下、有機金属化合物および Zまたはその部分加水分解物をまとめて、「有 機金属化合物類」 t 、う)が挙げられる。
[0077] 上記有機金属化合物類としては、たとえば、下記式 (a)
M (OR7) (R8COCHCOR9) (a)
r s
(式中、 Mは、ジルコニウム、チタンおよびアルミニウム力 なる群からを選択される少 なくとも 1種の金属原子を表し、 R7および R8は、それぞれ独立に、メチル基、ェチル基 、 n プロピル基、 i プロピル基、 n ブチル基、 sec ブチル基、 t ブチル基、 n— ペンチル基、 n—へキシル基、シクロへキシル基、フエ-ル基などの炭素数 1〜6個の 1価の炭化水素基を表し、 R9は、前記炭素数 1〜6個の 1価の炭化水素基、または、 メトキシ基、エトキシ基、 n—プロポキシ基、 i—プロポキシ基、 n—ブトキシ基、 sec ブ トキシ基、 t—ブトキシ基、ラウリルォキシ基、ステアリルォキシ基などの炭素数 1〜16 個のアルコキシル基を表し、 rおよび sは、それぞれ独立に 0〜4の整数であって、(r + s) = (Mの原子価)の関係を満たす)
で表される化合物 (以下、「有機金属化合物 (a)」という)、
1つのスズ原子に炭素数 1〜 10個のアルキル基が 1〜 2個結合した 4価のスズの有 機金属化合物(以下、「有機スズィ匕合物」という)、あるいは、
これらの部分加水分解物などが挙げられる。
[0078] 有機金属化合物(a)として、たとえば、テトラ— n—ブトキシジルコニウム、トリ— n— ブトキシ .ェチノレアセトアセテートジノレコニゥム、ジー n—ブトキシ'ビス(ェチノレアセト アセテート)ジルコニウム、 n—ブトキシ 'トリス(ェチノレアセトアセテート)ジノレコニゥム、 テトラキス(n—プロピルァセトアセテート)ジルコニウム、テトラキス(ァセチノレアセトァ セテート)ジルコニウム、テトラキス(ェチノレアセトアセテート)ジルコニウムなどの有機 ジルコニウム化合物;
テトラー i プロポキシチタニウム、ジー i プロポキシ 'ビス(ェチノレアセトアセテート )チタニウム、ジ—i—プロポキシ 'ビス(ァセチルアセテート)チタニウム、ジ—i—プロ ポキシ 'ビス(ァセチルアセトン)チタニウムなどの有機チタンィ匕合物;
トリー i—プロポキシアルミニウム、ジ—i—プロポキシ ·ェチルァセトアセテートアルミ ユウム、ジー i—プロボキシ'ァセチルァセトナートアルミニウム、 i—プロポキシ 'ビス( ェチノレアセトアセテート)ァノレミニゥム、 i—プロポキシ 'ビス(ァセチノレアセトナート)ァ ルミ二ゥム、トリス(ェチルァセトアセテート)アルミニウム、トリス(ァセチルァセトナート) アルミニウム、モノァセチルァセトナート'ビス(ェチルァセトアセテート)アルミニウムな どの有機アルミニウム化合物が挙げられる。
[0079] 有機スズィ匕合物として、たとえば、
[0080] [化 1] n
Figure imgf000022_0001
2
C 4 ti ^ ) 2 S n (OCOCH=CHCOOCH3) 2、 C 4H9) 2 S n (OCOCH=CHCOOC4H9) 2
C8Hi 7ノ 2 S η COCOC8H17) 2
C3H1 Ί' 3S η (ΟΟΟϋ^Η^) 2
し Ί' ZS η (OCOCH=CHCOOCH3) 2
C8h1 Ί> 2Sn (OCOCH=CHCOOC4H&) 2
7) 2Sn (OCOCH = CHCOOC8H17) 2
Figure imgf000022_0002
C8H! Ί' 2S n (OCOCH=CHCOOC17H35) 2、 マ) zSn (OCOCH = CHCOOClgH37) z,
C8hi 7> 2Sn (OCOCH = CHCOOC20H41) 2
(C4H9) 2S nOCOCH,
O
(C4H9) 2S nOCOCH3
(C4H9) S n (OCOC„H23) 3
(C4H9) S n (OCONa) 3
などのカルボン酸型有機スズ化合物;
2] (C4H9) 2Sn (SCH2COOC8H17) 2ゝ (C4H9) 2Sn (SCH2CH2COOC8H17) 2
(C8H17) 2Sn (SCH2COOC8H17) 2、 (C8H17) 2Sn (SCHzCH2COOC8Hl7) 2、 (C8H:7) 2Sn (SCH2COOCl2H25) 2、 (C8H17) 2Sn (SCH2CH2COOCa2H25) 2、 (C4H9) Sn (SCOCH=CHCOOC8H17) 3、 (C8H17) S n (SCOCH=CHCOOCgH17) 3
(C4H9) 2S n (SCH2COOCaH17)
o
I
(C4Hg) 2Sn (SCH2COOC8Hl7) などのメルカプチド型有機スズ化合物;
[化 3]
(C4H9) 2Sn = S、 (CSH17) 2Sn = S、 (C4H9) Sn = S
S
(C4H9) Sn = S などのスルフィド型有機スズ化合物; [化 4] (C 4H9) S n C l 3、 (C4H 9) 2 S n C 1 2、 (C SH 1 7) 2 S n C 、
〔C 4H9) 2 S n C 1
I
s
ί
(C 4H9) 2 S n C 1
[0084] などのクロライド型有機スズィ匕合物;
(C H ) SnO、 (C H ) SnOなどの有機スズオキサイドや、これらの有機スズォキサ
4 9 2 8 17 2
イドとシリケート、マレイン酸ジメチル、マレイン酸ジェチル、フタル酸ジォクチルなど のエステル化合物との反応生成物;
などが挙げられる。
[0085] このような金属キレートイ匕合物は、 1種単独で用いても、 2種以上を混合して用いて もよい。これらのうち、トリー n—ブトキシ'ェチルァセトアセテートジルコニウム、ジ i プロポキシ ·ビス(ァセチノレアセトナート)チタニウム、ジー i プロポキシ .ェチノレア セトアセテートアルミニウム、トリス(ェチルァセトアセテート)アルミニウム、あるいはこ れらの部分加水分解物が好まし ヽ。
[0086] 塩基性化合物、酸性ィ匕合物および金属キレートイ匕合物のうち、脱アルコール反応 では金属キレートイ匕合物が好ましぐ加水分解 '縮合では塩基性ィ匕合物が好ましい。 金属キレート化合物は他の化合物に比べて脱アルコール反応性に優れ、また、水分 存在下で塩基性化合物を触媒として使用すると縮合反応速度に比較し加水分解反 応速度が早いため、得られるポリシロキサンの残存アルコキシ基を低減することがで き、結果として得られるポリシロキサンの体積収縮を低減できるため、耐クラック性に 優れる硬化体を形成できる。
[0087] 上記脱アルコール反応において、上記塩基性化合物、酸性化合物または金属キレ ート化合物は、多官能ポリシロキサン (bl)または (b3)とポリジメチルシロキサン (b2) または (b4)との合計 100重量部に対して、通常 0. 001〜20重量部、好ましくは 0. 0 05〜10重量部、より好ましくは 0. 01〜5重量部添加される。 [0088] 上記加水分解 ·縮合反応において、上記塩基性化合物、酸性化合物または金属キ レート化合物は、多官能ポリシロキサン (bl)または (b3)とポリジメチルシロキサン (b2 )または (b4)との合計 100重量部に対して、通常 1〜50重量部、好ましくは 2〜40重 量部、より好ましくは 3〜30重量部添加される。
[0089] 上記で得られた多官能ポリシロキサン (B1)および (B2)の貯蔵安定性、および以 降の金属酸化物微粒子分散安定性確保の点から、加水分解縮合後に脱触媒工程と して水洗を行うことが好ましい。特に加水分解縮合触媒として塩基性ィ匕合物を使用し た場合、反応後に酸性ィ匕合物による中和を行った上で、水洗を行うことがより好まし い。
[0090] 中和に使用する酸性化合物は上記例示した酸性化合物を使用することができる。
酸性化合物の使用量は加水分解縮合に使用した塩基性化合物 1モルに対し、通常 0. 5〜2. 0モル、好ましくは 0. 8〜1. 5モル、さらに好ましくは 0. 9〜1. 3モルであ る。酸性ィ匕合物を水に溶解して使用する場合は、多官能ポリシロキサン (bl)または( b3)とポリジメチルシロキサン (b2)または (b4)との合計 100重量部に対して、通常 1 0〜500重量部、好まし <は 20〜300部、より好まし <は 30〜200部の水に溶解する 。中和後、十分に攪拌混合して静置し、水相と有機溶媒相との相分離を確認後、下 層の水分を除去する。
[0091] 中和後の水洗に使用する水は、多官能ポリシロキサン (bl)または (b3)とポリジメチ ルシロキサン (b2)または(b4)との合計 100重量部に対して、通常 10〜500重量部
、好ましくは 20〜300部、より好ましくは 30〜200部である。
[0092] 水洗は、水を添加して十分に攪拌した後、静置し、水相と有機溶媒相との相分離を 確認後、下層の水分を除去することにより行う。水洗回数は好ましくは 1回以上、さら に好ましくは 2回以上である。
[0093] 上記方法により得られる多官能ポリシロキサン (B1)および (B2)の重量平均分子量 は、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算値で通常
3, 000〜200, 000、好まし <は 4, 000〜150, 000、より好まし <は 5, 000〜100,
000である。
[0094] 〔金属酸ィ匕物微粒子含有ポリシロキサン組成物およびその用途〕 本発明に係る金属酸化物微粒子含有ポリシロキサン組成物は、金属酸化物微粒子
(A)とジメチルシロキサン連鎖を有する多官能ポリシロキサン (B1)または(B2)とを、 炭素数 6以上の有機基を有するリン酸等やォキシアルキレン基を有する化合物を使 用せずに、有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存 在下で混合して分散処理を施すことにより得ることができる。
[0095] (有機溶媒)
上記有機溶媒としては、上記多官能ポリシロキサン (B1)または (B2)製造時の脱ァ ルコール反応や加水分解 '縮合反応において例示した有機溶媒が挙げられる。これ らの有機溶媒のうち、金属酸ィ匕物含有ポリシロキサン組成物の分散安定性および高 粘度化が図れるという点でアルコール以外の有機溶媒、たとえば、メチルェチルケト ン、メチルイソブチルケトン、ジイソプチルケトン、トルエン、キシレン、酢酸ェチル、酢 酸プチル、およびこれらの混合物などが好ましい。また、これらの有機溶媒は、予め 脱水処理を施して、水分を除去した状態で使用することが好ましい。
[0096] 上記有機溶媒の使用量は、金属酸化物微粒子 (A)を均一に分散できる量であれ ば特に制限されないが、得られる金属酸ィ匕物微粒子含有ポリシロキサン組成物の固 形分濃度が、好ましくは 5〜80重量%、より好ましくは 7〜70重量%、特に好ましくは 10〜60重量%となる量である。
[0097] (塩基性化合物、酸性化合物および金属キレート化合物)
上記塩基性化合物、酸性化合物および金属キレート化合物としては、上記多官能 ポリシロキサン (B1)または (B2)製造時の脱アルコール反応や加水分解 '縮合反応 において例示した化合物が挙げられる。これらの塩基性化合物、酸性化合物および 金属キレート化合物のうち、塩基性化合物および酸性化合物が好ましぐ塩基性ィ匕 合物がより好ましぐ有機アミンィ匕合物がさらに好ましぐトリェチルァミン、テトラメチル アンモ-ゥムハイドロキサイド、ピリジンが特に好まし 、。
[0098] 上記塩基性化合物、酸性ィ匕合物または金属キレートイ匕合物は、本発明の金属酸化 物微粒子含有ポリシロキサン組成物に、上記金属酸ィ匕物微粒子 (A) 100重量部に 対して、通常 0. 001〜20重量部、好ましくは 0. 005〜10重量部、より好ましくは 0. 01〜5重量部、さらに好ましくは 0. 01〜1重量部、特に好ましくは 0. 01-0. 5重量 部含有されて 、ることが望ま 、。上記範囲にあると金属酸ィ匕物微粒子 (A)の分散 安定性と金属酸ィ匕物微粒子含有ポリシロキサンの組成物の粘度を容易に制御できる
[0099] (金属酸化物微粒子含有ポリシロキサン組成物の製造方法)
上記金属酸化物微粒子含有ポリシロキサン組成物は、有機溶媒に金属酸化物微 粒子 (A)とジメチルシロキサン連鎖を有する多官能ポリシロキサン (B1)または(B2) と、塩基性化合物、酸性化合物または金属キレート化合物とを添加し、これらを十分 に混合して金属酸ィ匕物微粒子 (A)を有機溶媒中に分散させることにより調製すること ができる。このとき、ボールミル、サンドミル(ビーズミル,ハイシェアビーズミル)、ホジ ナイザー、超音波ホモジナイザー、ナノマイザ一、プロペラミキサー、ハイシェアミキサ 一、ペイントシェーカーなどの公知の分散機を用いることが好ましぐ特に高分散の微 粒子分散体ボールミル、サンドミル(ビーズミル,ハイシェアビーズミル)が好適に使用 される。上記のように、塩基性化合物、酸性化合物または金属キレート化合物の存在 下で金属酸化物微粒子 (A)と多官能ポリシロキサン (B1)または (B2)とを混合すると 、塩基性化合物、酸性化合物または金属キレート化合物の触媒作用により金属酸ィ匕 物微粒子 (A)の表面で多官能ポリシロキサン (B1)または (B2)の縮合反応が進行し 、金属酸化物微粒子 (A)の表面が疎水性となり、有機溶媒中に微分散しやすくなる と推測される。
[0100] 本発明の金属酸ィ匕物微粒子含有ポリシロキサン組成物は、金属酸化物微粒子 (A ) 100重量部に対して、多官能ポリシロキサン (B1)または (B2)を完全加水分解縮合 物換算で、好ましくは 1〜1000重量部、より好ましくは 5〜900重量部、特により好ま しくは 10〜800重量部含有することが望まし 、。
[0101] また、上記金属酸ィ匕物微粒子含有ポリシロキサン組成物は、金属酸化物微粒子 (A )が、体積平均分散粒径が 300nm以下、好ましくは 200nm以下で高度に分散した 組成物である。
[0102] また、本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、ポリエチレングリコール 等の有機系増粘剤を使用せずに分散処理時間を延長することで高粘度化すること ができ、ゲル化や酸化物微粒子 (A)の沈降も発生せず、高比重の添加剤を混合した 場合にも沈降分離を抑制できる。
[0103] 上記酸ィ匕物微粒子含有ポリシロキサン組成物は、東機産業 (株)製の RE80型粘度 計により測定した 25°C、ローター回転数 5rpm、固形分濃度 20重量%における粘度 力 好ましくは 20mPa' s以上、より好ましくは 30mPa' s以上、特に好ましくは 50mPa • s以上である。酸ィ匕物微粒子含有ポリシロキサン組成物の粘度が上記範囲にあると 、高比重の充填剤を配合した場合にも分離することなぐ容易に厚膜の硬化体を製 造することができる。
[0104] 上記金属酸ィ匕物微粒子含有ポリシロキサン組成物は、金属酸化物微粒子 (A)とジ メチルシロキサン連鎖を有するポリシロキサン (B1)または (B2)とを含有する力 ポリ シロキサン (B1)または(B2)中に含まれる多官能ポリシロキサン (bl)または (b3)が 金属酸ィ匕物微粒子表面に存在するため、ジメチルシロキサン連鎖と金属酸ィ匕物微粒 子との接触が抑制できると推定され、高温高湿下でもジメチルシロキサン連鎖の分解 反応が起こりにくぐその硬化体は耐熱性、耐湿熱性に優れている。また、上記ポリシ ロキサンが柔軟性に優れるため、厚さが 10 m〜500nmの硬化体も形成できる。
[0105] さらに、上記多官能ポリシロキサン (B1)および (B2)が複数の末端アルコキシ基を 有するため、上記組成物中では、金属酸ィ匕物微粒子 (A)が、炭素数 6以上の有機基 を有するリン酸等やォキシアルキレン基を有する化合物を使用せずに、高度に分散 されている。これにより、過酷な環境下に曝しても劣化せず、透明性に優れた硬化体 を形成できる。また、この硬化体には、架橋構造に炭素 炭素結合が存在せず、耐 紫外線性にも優れている。たとえば、上記硬化体は、
Figure imgf000028_0001
200時間の紫 外線照射によっても黄変 (黄色化)しな ヽ。
[0106] また、本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、さらに蛍光体を含有す ることができ、この硬化体は LED封止材として使用できる。
[0107] さらに、本発明の酸ィ匕物微粒子含有ポリシロキサン組成物は、硬化体の収縮ー膨 張を緩和するためにガラス繊維を含有して 、てもよ 、。ガラス繊維を含有する組成物 を使用するとさらに厚膜の硬化体を形成することができる。また、硬化体の透明性を 確保するために、上記多官能ポリシロキサン (B1)または(B2)と上記ガラス繊維との 屈折率差は 0. 01以下が好ましい。 [0108] [実施例]
以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定さ れるものではない。なお、実施例および比較例中の「部」および「%」は、特記しない 限り、「重量部」および「重量%」を示す。また、実施例および比較例における各種測 定は、下記の方法により行なった。
[0109] 〔GPC測定〕
シロキサンの重量平均分子量は、ゲルパーミエーシヨンクロマトグラフィーにより下 記条件で測定したポリスチレン換算値として示した。
装置: HLC -8120C (東ソ一 (株)製)
カラム: TSK— gel MultiporeH —M (東ソ一社製)
XL
溶離液: THF、流量 0. 5mLZmin、負荷量 5. 0%、 100 ,u L
〔分散性〕
得られた組成物の外観を目視により観察した。微粒子の沈降が見られなカゝつた組 成物の体積平均分散粒径を、マイクロトラック超微粒子粒度分布計(日機装 (株)製「 UPA150」)により測定し、下記基準で評価した。
A:分離沈降なし。体積平均分散粒径≤200nm。
B:分離沈降なし。 200nm<体積平均分散粒径≤ 300nm。
C :分離沈降なし。 300nm<体積平均分散粒径。
D :分離沈降あり。
[0110] [厚膜形成性]
得られた組成物を、乾燥膜厚が 50 mになるように石英ガラス板上に塗布した後、 100°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス 板上に膜厚 50 μ mの硬化体を作製した。この硬化体の外観を目視で観察して下記 基準で評価した。
A:クラックなし。
B :クラック発生。
[0111] 〔塗膜透明性〕
得られた組成物を、乾燥膜厚が 20 mになるように石英ガラス板上に塗布した後、 100°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス 板上に膜厚 20 mの硬化体を作製した。この硬化体の波長 500〜700nmにおける 分光透過率を紫外可視分光光度計により測定し、下記基準で評価した。
A:光透過率が 90%超。
B:光透過率が 85%以上 90%以下。
C:光透過率が 70&以上 85%未満。
D:光透過率が 70%未満。
[0112] 〔黄色度〕
得られた分散体を、乾燥膜厚が 20 mになるように石英ガラス板上に塗布した後、 100°Cで 1時間乾燥硬化させ、次いで、 200°Cで 1時間乾燥硬化させて石英ガラス 板上に膜厚 20 mの硬化体を作製した。この硬化体の波長 450nmの光透過率を 紫外可視分光光度計により測定して、下記基準で評価した。
A:光透過率が 90%超。
B:光透過率が 70〜90%。
C :光透過率が 70%未満。
[0113] 〔耐紫外線性〕
得られた組成物を、乾燥膜厚が 20 mになるように石英製ガラス板上に塗布した 後、 100°Cで 1時間乾燥硬化させた。次いで、 200°Cで 1時間乾燥硬化させて石英 製ガラス板上に膜厚 200 mの硬化体を形成した。この硬化体にスポット UV照射装 置(ゥシォ電機 (株)製「SP— V」)を使用して波長 365nmの紫外線照度が 5000mW Zcm2の条件で紫外線を 200時間照射した後、膜の外観を目?見観察して下記基準 で評価した。
A:着色なし。クラックなし。
B :わずかに着色。クラックなし。
C :着色あり。クラックなし。
D :着色あり。クラック発生。
[0114] 〔耐熱性〕
得られた組成物を、アルミ皿に約 2g (下四桁まで正確に秤量)採取し、 100°Cで 1 時間、次いで、 200°Cで 1時間乾燥硬化させて硬化体を形成した。この硬化体を 150 °Cで 70時間保管し、保管前後の硬化体の重量を測定し、下記式
重量保持率 (%) =保管後の硬化体重量 Z保管前の硬化体重量 X 100 により重量保持率を算出し、下記基準で評価した。
A:重量保持率が 95%超。
B:重量保持率が 90%以上 95%未満。
C:重量保持率が 70%以上 90%未満。
D:重量保持率が 70%未満。
[0115] 〔耐湿熱性〕
得られた組成物を、アルミ皿に約 2g (下四桁まで正確に秤量)採取し、 100°Cで 1 時間、次いで、 200°Cで 1時間乾燥硬化させて硬化体を形成した。この硬化体を温 度 85°C、湿度 85%RHで 70時間保管し、保管前後の硬化体の重量を測定し、下記 式
重量保持率 (%) =保管後の硬化体重量 Z保管前の硬化体重量 X 100 により重量保持率を算出し、下記基準で評価した。
A:重量保持率が 95%超。
B:重量保持率が 90%以上 95%未満。
C:重量保持率が 70%以上 90%未満。
D:重量保持率が 70%未満。
[0116] [調製例 1]
攪拌機および還流冷却器を備えた反応器に、 Mw= 20, 000のアルコキシ末端ポ リシロキサン (GE東芝シリコーン (株)製、商品名:XR31— B2733) 60重量部と、 M w=4000のヒドロキシ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品 名: YF— 3800) 40重量部と、トルエン 42重量部と、ジ— i—プロポキシ 'ェチルァセ トアセテートアルミニウムのイソプロピルアルコール 75%希釈液 0. 2重量部とを入れ て混合し、攪拌しながら 80°Cで 3時間脱アルコール反応を行なった。次いで、メチル イソブチルケトン 288重量部、メタノール 70重量部、水 80重量部およびトリェチルアミ ン 12重量部を添加して、 60°Cで 3時間加水分解 '縮合反応を行なった。その後、得 られた反応液をシユウ酸で中和し、水相(下層)を除去した後に、水洗と水相除去を 3 回実施後、溶媒を留去して Mw= 30, 000の多官能ポリシロキサンを得た。この多官 能ポリシロキサンにメチルイソプチルケトン 100重量部を添加し、固形分濃度 50重量 %のポリシロキサン溶液 (I)を得た。
[0117] [調製例 2]
アルコキシ末端ポリシロキサン (XR31— B2733)の量を 80重量部、ヒドロキシ末端 ポリジメチルシロキサン (YF— 3800)の量を 20重量部に変更した以外は調製例 1と 同様にして、 Mw= 25, 000の多官能ポリシロキサンを含む、固形分濃度 50重量% のポリシロキサン溶液 (II)を得た。
[0118] [調製例 3]
アルコキシ末端ポリシロキサン (XR31— B2733)の量を 95重量部に変更し、ヒドロ キシ末端ポリジメチルシロキサン (YF— 3800)の代わりに Mw= 10, 000のヒドロキ シ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品名: ?—3905) 5重 量部を使用した以外は調製例 1と同様にして、 Mw= 22, 000の多官能ポリシロキサ ンを含む、固形分濃度 50重量%のポリシロキサン溶液 (III)を得た。
[0119] [調製例 4]
アルコキシ末端ポリシロキサン (XR31— B2733)の量を 40重量部、ヒドロキシ末端 ポリジメチルシロキサン (YF— 3800)の量を 60重量部に変更した以外は調製例 1と 同様にして、 Mw= 33, 000の多官能ポリシロキサンを含む、固形分濃度 50重量% のポリシロキサン溶液 (IV)を得た。
[0120] [調製例 5]
攪拌機および還流冷却器を備えた反応器に、 Mw= 20, 000のアルコキシ末端ポ リシロキサン (GE東芝シリコーン (株)製、商品名:XR31— B2733) 60重量部と、 M w=4000のヒドロキシ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品 名: YF— 3800) 40重量部と、トルエン 42重量部と、ジ— i—プロポキシ 'ェチルァセ トアセテートアルミニウムのイソプロピルアルコール 75%希釈液 0. 2重量部とを入れ て混合し、攪拌しながら 80°Cで 3時間脱アルコール反応を行なった。得られた反応 液にメチルイソブチルケトン 58重量部を添カ卩し、 Mw= 25, 000の多官能ポリシロキ サンを含む、固形分濃度 50重量%のポリシロキサン溶液 (V)を得た。
[0121] [調製例 6]
Mw= 10, 000のアルコキシ末端ポリシロキサン (XR31— B2733)の代わりに Mw = 1000のアルコキシ末端シロキサンオリゴマー(信越ィ匕学工業 (株)製 X40— 9220 ) 60重量部を使用した以外は調製例 1と同様にして、 Mw= 5, 000の多官能ポリシ口 キサンを含む、固形分濃度 50重量%のポリシロキサン溶液 (i)を得た。
[0122] [調製例 7]
アルコキシ末端ポリシロキサン (XR31— B2733)の量を 20重量部、ヒドロキシ末端 ポリジメチルシロキサン (YF— 3800)の量を 80重量部に変更した以外は調製例 1と 同様にして、 Mw= 30, 000の多官能ポリシロキサンを含む、固形分濃度 50重量% のポリシロキサン溶液 (ii)を得た。
[0123] [実施例 1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 120重量部と、ポリ シロキサン成分として上記ポリシロキサン溶液 (I) 160重量部(固形分換算で 80重量 部)と、トリェチルァミン 0. 1重量部と、ジイソプチルケトン 720重量部とを容器に入れ 、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部を添カ卩して、ペイントシエ 一力一を用いて 6時間微粒子を分散させ、固形分濃度 20重量%の金属酸ィ匕物微粒 子含有ポリシロキサン組成物(1)を得た。この組成物の特性を評価した結果を表 1〖こ 示す。
[0124] [実施例 2〜5]
ポリシロキサン溶液 (I)の代わりに、それぞれポリシロキサン溶液 (II)〜 (V) 160重 量部(固形分換算で 80重量部)を使用した以外は実施例 1と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(2)〜(5)を調製した。こ れらの組成物の特性を評価した結果を表 1に示す。
[0125] [実施例 6]
トリェチルァミンの代わりにメタンスルホン酸 0. 1重量部を使用した以外は、実施例 2と同様にして固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成 物(6)を調製した。この組成物の特性を評価した結果を表 1に示す。 [0126] [実施例 7]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸化亜鉛微粒子 (一次平均粒径: 20nm) 120重量部を使用した以外は、実施例 2と同様にして固形分濃度 20重量% の金属酸ィ匕物微粒子含有ポリシロキサン組成物(7)を調製した。この組成物の特性 を評価した結果を表 1に示す。
[0127] [実施例 8]
ルチル型酸ィ匕チタン微粒子の代わりに粉体状の酸ィ匕ジルコニウム微粒子(一次平 均粒径: 20nm) 120重量部を使用した以外は、実施例 1と同様にして固形分濃度 20 重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(8)を調製した。この組成物 の特性を評価した結果を表 1に示す。
[0128] [比較例 1]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 120重量部と、 Mw =4000のヒドロキシ末端ポリジメチルシロキサン (GE東芝シリコーン (株)製、商品名 : YF— 3800) 80重量咅と、卜リエチノレアミン 0. 1重量咅と、メチノレエチノレケ卜ン 800 重量部とを容器に入れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部 を添加して、ペイントシェーカーを用いて 6時間微粒子を分散させ、固形分濃度 20重 量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物(C1)を得た。この組成物の特 性を評価した結果を表 2に示す。
[0129] [比較例 2]
ポリシロキサン成分として上記ポリシロキサン溶液 (I)の代わりにポリシロキサン溶液
(i) 160重量部(固形分換算で 80重量部)を使用した以外は、実施例 1と同様にして 固形分濃度 20重量%の金属酸化物微粒子含有ポリシロキサン組成物 (C2)を調製 した。この組成物の特性を評価した結果を表 2に示す。
[0130] [比較例 3]
粉体状のルチル型酸化チタン微粒子(一次平均粒径: 30nm) 120重量部と、ポリ シロキサン成分として上記ポリシロキサン溶液 (I) 160重量部(固形分換算で 80重量 部)と、ポリオキシエチレンアルキルリン酸エステル (楠本ィ匕成 (株)製、商品名: PLA DD ED151) 9重量部と、ァセチルアセトン 5重量部と、メチルェチルケトン 720重量 部とを容器に入れ、この混合物に 0. 1mm径のジルコユアビーズ 2000重量部を添 カロして、ペイントシェーカーを用いて 6時間微粒子を分散させ、固形分濃度 20重量 %の金属酸ィ匕物微粒子含有ポリシロキサン組成物(C3)を得た。この組成物の特性 を評価した結果を表 2に示す。
[0131] [比較例 4]
トリェチルァミンを使用しな力つた以外は実施例 3と同様にして固形分濃度 20重量 %の金属酸ィ匕物微粒子含有ポリシロキサン組成物(C4)を調製した。この組成物の 特性を評価した結果を表 2に示す。
[0132] [比較例 5]
ポリシロキサン成分として上記ポリシロキサン溶液 (I)の代わりにポリシロキサン溶液
(ii) 160重量部(固形分換算で 80重量部)を使用した以外は、実施例 3と同様にして 固形分濃度 20重量%の金属酸ィ匕物微粒子含有ポリシロキサン組成物 (C5)を調製 した。この組成物の特性を評価した結果を表 2に示す。
[0133] [表 1]
表 1 ^
Figure imgf000036_0001
表 2
比較例 1 比較例 2 例 3 比較例 4 比較例 5 金属酸化物
酸化チタン
微粒子 ホ 4リシロキサン溶液 YF-3800 ( i ) (1) Cii)
PLADD ED151
添加剤 ― トリ Wミン 性 D A A D A 厚膜形成性 ― B A 一 A
^^透明性 ― D ― A
200°C
黄色度 ― C ― A
焼飾:
耐紫外線性 一 ― ― C (白化)
― クラックが
面纖 一 ― D
発生
而隱性 ― ― 一 D

Claims

請求の範囲 有機溶媒中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で、(A)金属酸化物微粒子、および
(B1)下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるアルコキシ末端の多官 能ポリシロキサン (bl)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリス チレン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ 末端ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比 (b l/b2)が 30Z70〜95Z5の範囲で脱アルコール反応させて得られる多官能ポリシ ロキサン、あるいは
(Β2)下記平均組成式(1 ' )
R1 SiO (OH) (1,)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるヒドロキシ末端の多官能 ポリシロキサン (b3)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリスチ レン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ 末端ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比 (b 3/b4)が 30Z70〜95Z5の範囲で脱アルコール反応させて得られる多官能ポリシ ロキサン
を混合して、前記金属酸化物微粒子 (A)を有機溶媒中に分散させることにより得られ る金属酸ィ匕物微粒子含有ポリシロキサン組成物。
[2] 前記多官能ポリシロキサン (B1)または (B2)をさらに加水分解 '縮合した後、前記 金属酸化物微粒子 (A)と混合することを特徴とする請求項 1に記載の金属酸化物微 粒子含有ポリシロキサン組成物。
[3] 前記加水分解 '縮合における触媒が塩基性触媒であることを特徴とする請求項 2〖こ 記載の金属酸ィ匕物微粒子含有ポリシロキサン組成物。
[4] 前記脱アルコール反応における触媒が金属キレートイ匕合物であることを特徴とする 請求項 1〜3のいずれかに記載の金属酸ィ匕物微粒子含有ポリシロキサン組成物。
[5] 前記金属酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とを塩 基性ィ匕合物の存在下で混合することを特徴とする請求項 1〜4のいずれかに記載の 金属酸ィ匕物微粒子含有ポリシロキサン組成物。
[6] 前記金属酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とをビー ズミルにより混合することを特徴とする請求項 1〜5のいずれかに記載の金属酸化物 微粒子含有ポリシロキサン組成物。
[7] 前記金属酸ィ匕物微粒子 (A) 100重量部に対して、前記多官能ポリシロキサン (B1) または (B2)を完全加水分解縮合物換算で 1〜: LOOO重量部混合することを特徴とす る請求項 1〜6のいずれかに記載の金属酸ィ匕物微粒子含有ポリシロキサン組成物。
[8] 請求項 1〜7の 、ずれかに記載の金属酸ィ匕物微粒子含有ポリシロキサン組成物か ら得られる硬化体。
[9] 請求項 1〜7のいずれかに記載の金属酸ィ匕物微粒子含有ポリシロキサン組成物に 、さらに蛍光体を混合して得られることを特徴とする LED封止材。
[10] 下記平均組成式(1)
R1 SiO (OR2) (1)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ R2はアルキ ル基であり、 R2が複数存在する場合には互いに同じであっても異なっていてもよぐ a は 0を超えて 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c = 4である)
で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるアルコキシ末端の多官 能ポリシロキサン (bl)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリス チレン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるヒドロキシ 末端ポリジメチルシロキサン (b2)とを、これらの合計 100重量部に対して、重量比 (b l/b2)が 30Z70〜95Z5の範囲で脱アルコール反応させて多官能ポリシロキサン (B1)、あるいは
下記平均組成式(1 ' )
R1 SiO (OH) (1,)
a b c
(式中、 R1は水素原子またはォキシアルキレン基を有しない 1価の炭化水素基であり 、 R1が複数存在する場合には互いに同じであっても異なっていてもよぐ aは 0を超え て 2未満、 bは 0を超えて 2未満、 cは 0を超えて 4未満、かつ a+b X 2 + c=4である) で表され、ゲルパーミエーシヨンクロマトグラフィーにより測定したポリスチレン換算の 重量平均分子量が 3, 000以上 100, 000以下の範囲にあるヒドロキシ末端の多官能 ポリシロキサン (b3)と、ゲノレパーミエーシヨンクロマトグラフィーにより測定したポリスチ レン換算の重量平均分子量が 2, 000以上 100, 000以下の範囲にあるアルコキシ 末端ポリジメチルシロキサン (b4)とを、これらの合計 100重量部に対して、重量比 (b 3/b4)が 30Z70〜95Z5の範囲で脱アルコール反応させて得られる多官能ポリシ ロキサン(Β2)
を調製した後、
該多官能ポリシロキサン (B1)または (Β2)と金属酸化物微粒子 (Α)とを、有機溶媒 中、塩基性化合物、酸性化合物または金属キレート化合物の存在下で混合すること を特徴とする金属酸化物微粒子含有ポリシロキサン組成物の製造方法。
[11] 前記多官能ポリシロキサン (B1)または (Β2)をさらに加水分解 '縮合した後、前記 金属酸化物微粒子 (Α)と混合することを特徴とする請求項 10に記載の金属酸化物 微粒子含有ポリシロキサン組成物の製造方法。
[12] 前記加水分解 '縮合における触媒が塩基性触媒であることを特徴とする請求項 11 に記載の金属酸化物微粒子含有ポリシロキサン組成物の製造方法。
[13] 前記脱アルコール反応における触媒が金属キレートイ匕合物であることを特徴とする 請求項 10〜 12のいずれかに記載の金属酸ィ匕物微粒子含有ポリシロキサン組成物 の製造方法。
[14] 前記金属酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または (B2)とを塩 基性化合物の存在下で混合することを特徴とする請求項 10〜 13のいずれかに金属 酸化物微粒子含有ポリシロキサン組成物の製造方法。
[15] 前記金属酸化物微粒子 (A)と前記多官能ポリシロキサン (B1)または(B2)とをビー ズミルにより混合することを特徴とする請求項 10〜14のいずれかに記載の金属酸化 物微粒子含有ポリシロキサン組成物の製造方法。
PCT/JP2007/056287 2006-03-31 2007-03-27 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法 WO2007119517A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/295,439 US20090050852A1 (en) 2006-03-31 2007-03-27 Metal Oxide Particle-Containing Polysiloxane Composition and Method for Producing Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006100014A JP2007270056A (ja) 2006-03-31 2006-03-31 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2006-100014 2006-03-31

Publications (1)

Publication Number Publication Date
WO2007119517A1 true WO2007119517A1 (ja) 2007-10-25

Family

ID=38609295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056287 WO2007119517A1 (ja) 2006-03-31 2007-03-27 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法

Country Status (5)

Country Link
US (1) US20090050852A1 (ja)
JP (1) JP2007270056A (ja)
KR (1) KR20090017495A (ja)
CN (1) CN101443418A (ja)
WO (1) WO2007119517A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270055A (ja) * 2006-03-31 2007-10-18 Jsr Corp 多官能ポリシロキサンおよび金属酸化物微粒子含有ポリシロキサン組成物、ならびにそれらの製造方法
WO2008035669A1 (fr) * 2006-09-19 2008-03-27 Jsr Corporation Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication
JP2011097024A (ja) * 2009-09-29 2011-05-12 Jsr Corp 光半導体素子の製造方法、及び、光半導体素子保護層形成用組成物
JP2012521459A (ja) * 2009-03-26 2012-09-13 ダウ コーニング コーポレーション オルガノシロキサンポリマーの製造
WO2018047760A1 (ja) * 2016-09-07 2018-03-15 住友化学株式会社 硬化物、波長変換シート、発光装置、封止用部材および半導体発光装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291324A (ja) * 2006-03-31 2007-11-08 Jsr Corp 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
EP2075277A3 (en) 2007-12-25 2012-11-07 Nitto Denko Corporation Silicone resin composition
US7902294B2 (en) * 2008-03-28 2011-03-08 General Electric Company Silicone rubber compositions comprising bismuth oxide and articles made therefrom
JP2010037457A (ja) * 2008-08-06 2010-02-18 Nitto Denko Corp 無機微粒子を含有するシリコーン樹脂組成物
JP5099911B2 (ja) * 2008-09-11 2012-12-19 日東電工株式会社 熱硬化性組成物及び光半導体装置
JP5602379B2 (ja) * 2009-04-03 2014-10-08 日東電工株式会社 金属酸化物微粒子含有シリコーン樹脂組成物
KR20140011308A (ko) * 2010-12-08 2014-01-28 다우 코닝 도레이 캄파니 리미티드 금속 산화물 나노입자를 개질하는 방법
JP2012126756A (ja) * 2010-12-10 2012-07-05 Jsr Corp 硬化性樹脂組成物、及びそれを用いた発光装置
KR101560030B1 (ko) * 2011-07-22 2015-10-15 주식회사 엘지화학 경화성 조성물
JP6001676B2 (ja) * 2011-12-30 2016-10-05 ダウ コーニング コーポレーションDow Corning Corporation 固体ライト及び形成方法
US9688035B2 (en) * 2012-01-16 2017-06-27 Dow Corning Corporation Optical article and method of forming
US9212262B2 (en) 2012-02-29 2015-12-15 Dow Corning Corporation Compositions of resin-linear organosiloxane block copolymers
JP6218757B2 (ja) * 2012-03-09 2017-10-25 ダウ コーニング コーポレーションDow Corning Corporation 樹脂−直鎖状オルガノシロキサンブロックコポリマーの組成物
US9175140B2 (en) 2012-03-21 2015-11-03 Dow Corning Corporation Compositions of resin-linear organosiloxane block copolymers
RU2484546C1 (ru) * 2012-03-22 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Композит для защиты от космического воздействия, способ его получения
WO2015193556A1 (en) * 2014-06-19 2015-12-23 Inkron Oy Composition having siloxane polymer and particle
SG11201706097UA (en) * 2015-01-30 2017-08-30 Toray Industries Resin composition, solid imaging element obtained using same, and process for producing same
US10668259B2 (en) 2015-10-21 2020-06-02 Materials Science Associates, LLC Metal oxide and polymer controlled delivery systems, sunscreens, treatments, and topical coating applicators
JP6634906B2 (ja) * 2015-12-21 2020-01-22 住友大阪セメント株式会社 表面修飾無機粒子含有分散液、シリコーン樹脂組成物、硬化体、光学部材、発光装置、表示装置及び表面修飾無機粒子
JP6962321B2 (ja) * 2016-05-26 2021-11-05 株式会社大阪ソーダ 導電性接着剤
JP6553139B2 (ja) * 2016-09-07 2019-07-31 住友化学株式会社 波長変換材料含有縮合型シリコーン組成物の製造方法及び波長変換シートの製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131250A (en) * 1981-02-09 1982-08-14 Fujitsu Ltd Silicone resin composition
JPS59176326A (ja) * 1983-03-14 1984-10-05 ダウ・コ−ニング・コ−ポレ−シヨン シリコ−ンポリマ−−充填剤混合物の製造法
JP2002088155A (ja) * 2000-09-14 2002-03-27 Shin Etsu Chem Co Ltd ポリオルガノシロキサン化合物及びそれを含有するコーティング組成物
JP2002356617A (ja) * 2001-05-30 2002-12-13 Asahi Denka Kogyo Kk 硬化性組成物
JP2003206700A (ja) * 2002-01-11 2003-07-25 Kajima Corp トンネル内の換気装置
WO2005013361A1 (ja) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. 高耐熱半導体装置
JP2005325174A (ja) * 2004-05-12 2005-11-24 Asahi Denka Kogyo Kk ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物
JP2006073950A (ja) * 2004-09-06 2006-03-16 Kansai Electric Power Co Inc:The 高耐熱半導体装置
JP2006206721A (ja) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
JP2006299251A (ja) * 2005-03-22 2006-11-02 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006316264A (ja) * 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) * 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) * 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2007099955A (ja) * 2005-10-06 2007-04-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461419B1 (en) * 1999-11-01 2002-10-08 3M Innovative Properties Company Curable inkjet printable ink compositions
JP2004099879A (ja) * 2002-08-21 2004-04-02 Jsr Corp コーティング用組成物
US7282194B2 (en) * 2004-10-05 2007-10-16 Gp Medical, Inc. Nanoparticles for protein drug delivery
JP2006206700A (ja) * 2005-01-27 2006-08-10 Jsr Corp ポリシロキサン組成物およびその製造方法、それから得られるフィルムおよびその製造方法、ならびに封止材
JP2007277505A (ja) * 2006-03-16 2007-10-25 Jsr Corp 酸化物微粒子分散体およびその製造方法
JP2007277073A (ja) * 2006-03-16 2007-10-25 Jsr Corp 酸化物微粒子分散体およびその製造方法
JP2007277072A (ja) * 2006-03-16 2007-10-25 Jsr Corp 酸化物微粒子分散体およびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131250A (en) * 1981-02-09 1982-08-14 Fujitsu Ltd Silicone resin composition
JPS59176326A (ja) * 1983-03-14 1984-10-05 ダウ・コ−ニング・コ−ポレ−シヨン シリコ−ンポリマ−−充填剤混合物の製造法
JP2002088155A (ja) * 2000-09-14 2002-03-27 Shin Etsu Chem Co Ltd ポリオルガノシロキサン化合物及びそれを含有するコーティング組成物
JP2002356617A (ja) * 2001-05-30 2002-12-13 Asahi Denka Kogyo Kk 硬化性組成物
JP2003206700A (ja) * 2002-01-11 2003-07-25 Kajima Corp トンネル内の換気装置
WO2005013361A1 (ja) * 2003-07-30 2005-02-10 The Kansai Electric Power Co., Inc. 高耐熱半導体装置
JP2005325174A (ja) * 2004-05-12 2005-11-24 Asahi Denka Kogyo Kk ケイ素含有硬化性組成物、及びこれを熱硬化させた硬化物
JP2006073950A (ja) * 2004-09-06 2006-03-16 Kansai Electric Power Co Inc:The 高耐熱半導体装置
JP2006206721A (ja) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The 高耐熱合成高分子化合物及びこれで被覆した高耐電圧半導体装置
JP2006299251A (ja) * 2005-03-22 2006-11-02 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006316264A (ja) * 2005-04-15 2006-11-24 Jsr Corp 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006336010A (ja) * 2005-05-02 2006-12-14 Jsr Corp シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2006348284A (ja) * 2005-05-20 2006-12-28 Jsr Corp シロキサン系縮合物およびその製造方法
JP2007099955A (ja) * 2005-10-06 2007-04-19 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270055A (ja) * 2006-03-31 2007-10-18 Jsr Corp 多官能ポリシロキサンおよび金属酸化物微粒子含有ポリシロキサン組成物、ならびにそれらの製造方法
WO2008035669A1 (fr) * 2006-09-19 2008-03-27 Jsr Corporation Composition polymère hybride organique-inorganique contenant de fines particules d'oxyde et son procédé de fabrication
JPWO2008035669A1 (ja) * 2006-09-19 2010-01-28 Jsr株式会社 酸化物微粒子含有有機無機ハイブリッドポリマー組成物およびその製造方法
JP2012521459A (ja) * 2009-03-26 2012-09-13 ダウ コーニング コーポレーション オルガノシロキサンポリマーの製造
US8735493B2 (en) 2009-03-26 2014-05-27 Dow Corning Corporation Preparation of organosiloxane polymers
JP2011097024A (ja) * 2009-09-29 2011-05-12 Jsr Corp 光半導体素子の製造方法、及び、光半導体素子保護層形成用組成物
WO2018047760A1 (ja) * 2016-09-07 2018-03-15 住友化学株式会社 硬化物、波長変換シート、発光装置、封止用部材および半導体発光装置
CN109689790A (zh) * 2016-09-07 2019-04-26 住友化学株式会社 固化物、波长转换片材、发光装置、密封用构件及半导体发光装置

Also Published As

Publication number Publication date
US20090050852A1 (en) 2009-02-26
KR20090017495A (ko) 2009-02-18
CN101443418A (zh) 2009-05-27
JP2007270056A (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
WO2007119517A1 (ja) 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP5034301B2 (ja) 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
WO2007108281A1 (ja) 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP2007270055A (ja) 多官能ポリシロキサンおよび金属酸化物微粒子含有ポリシロキサン組成物、ならびにそれらの製造方法
JP2007291324A (ja) 酸化物微粒子含有ポリシロキサン組成物およびその製造方法
JP5034283B2 (ja) 高屈折材料形成用組成物およびその硬化体、ならびに高屈折材料形成用組成物の製造方法
JP2006348284A (ja) シロキサン系縮合物およびその製造方法
JP2009091380A (ja) 発光素子コーティング用組成物および発光装置、ならびに発光素子コーティング用組成物の製造方法
JP2006336010A (ja) シロキサン系縮合物およびその製造方法、ポリシロキサン組成物
JP2007277505A (ja) 酸化物微粒子分散体およびその製造方法
JP2007270054A (ja) 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法
EP2085411A2 (en) Metal-coating material, method for protecting metal, and light emitting device
US20060070551A1 (en) Coating composition
JP2017105895A (ja) シリコーンゴム組成物及びその硬化物
JPWO2008090971A1 (ja) エポキシ基末端ポリジメチルシロキサンおよびその製造方法、ならびに硬化性ポリシロキサン組成物
JPWO2008035669A1 (ja) 酸化物微粒子含有有機無機ハイブリッドポリマー組成物およびその製造方法
WO2014069215A1 (ja) 保護板及び表示装置
JP2007277072A (ja) 酸化物微粒子分散体およびその製造方法
JP2010059359A (ja) エポキシ基含有多官能ポリシロキサンおよびその製造方法、ならびに硬化性ポリシロキサン組成物
JP2008280368A (ja) 低透湿性ポリオルガノシロキサン組成物
KR20090037469A (ko) 산화물 미립자 함유 수지 조성물 및 그의 제조 방법
US20060264525A1 (en) Composition for photocatalyst coating and coating film
JP2007277073A (ja) 酸化物微粒子分散体およびその製造方法
JP2005230661A (ja) 可視光光触媒組成物および可視光光触媒含有塗膜
JP4225133B2 (ja) 樹脂表面改質用光触媒シート、積層体および樹脂表面改質方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12295439

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087026700

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780017643.5

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07739725

Country of ref document: EP

Kind code of ref document: A1