RU2484546C1 - Композит для защиты от космического воздействия, способ его получения - Google Patents

Композит для защиты от космического воздействия, способ его получения Download PDF

Info

Publication number
RU2484546C1
RU2484546C1 RU2012111095/07A RU2012111095A RU2484546C1 RU 2484546 C1 RU2484546 C1 RU 2484546C1 RU 2012111095/07 A RU2012111095/07 A RU 2012111095/07A RU 2012111095 A RU2012111095 A RU 2012111095A RU 2484546 C1 RU2484546 C1 RU 2484546C1
Authority
RU
Russia
Prior art keywords
composite
filler
siloxane
solvent
heated
Prior art date
Application number
RU2012111095/07A
Other languages
English (en)
Inventor
Вячеслав Иванович Павленко
Наталья Игоревна Черкашина
Олег Дмитриевич Едаменко
Роман Николаевич Ястребинский
Дмитрий Геннадьевич Тарасов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова"
Priority to RU2012111095/07A priority Critical patent/RU2484546C1/ru
Application granted granted Critical
Publication of RU2484546C1 publication Critical patent/RU2484546C1/ru

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к области космического материаловедения и может быть использовано в качестве терморегулирующих покрытий на внешней стороне космического аппарата в области низких земных орбит. Композит включает полимерное связующее и высокодисперсный силоксановый наполнитель при следующем соотношении компонентов, в мас.%: ударопрочный полистирол 38-46, силоксановый наполнитель 54-62. Способ получения композита состоит из синтеза силоксанового наполнителя (ксерогель метилполисилоксана), растворения ударопрочного полистирола в толуоле, его смешения с порошкообразным наполнителем путем ультразвуковой кавитации при частоте 22 кГц, удаления растворителя и прессования получившейся порошкообразной смеси. Для удаления растворителя полученный раствор нагревают до температуры 115°С и выдерживают в течение 30 мин, после полного удаления растворителя образовавшуюся сухую смесь нагревают до температуры 170°С и выдерживают в течение 20 мин, затем производят прессование композитов методом твердофазного компактирования под высоким удельным давлением 200 МПа. Повышение стойкости к воздействию ультрафиолетового излучения и увеличение температурного диапазона эксплуатации композита являются техническим результатом изобретения. 2 н.п. ф-лы, 2 табл.

Description

Изобретение относится к области космического материаловедения и может применяться в качестве терморегулирующих покрытий на внешней стороне космического аппарата (КА) в области низких земных орбит.
Известны полимерные защитные материалы от воздействия космического излучения. Каждый вид защитного материала, наряду с преимуществами, имеет и существенные недостатки.
Известен материал [RU № 2275704. МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ КОСМИЧЕСКОЙ РАДИАЦИИ], состоящий из следующих компонентов, мас.%:
Кремнийорганический полимер 8,2-37,1
Порошки тяжелых металлов, их оксиды и карбиды 60,7-92,0
Структурирующий агент 0,2-0,5
Технологический структурирующий агент 0,2-0,5
Вулканизирующий агент в виде диэтилдикаприлата олова или
катализатор в виде раствора аминосилана в эфирах
ортокремниевой кислоты 0,9-1,
Его недостатком является высокая плотность (4660-7450 кг/м3), а также невысокая стойкость к потоку атомарного кислорода в околоземном пространстве.
Наиболее близким техническим решением, принятым за прототип, является материал, устойчивый к воздействию атомарного кислорода в космических условиях [Вернигоров К.Б. Исследование устойчивости гибридных композиций эпоксидное связующее - силоксан к воздействию атомарного кислорода при лабораторной имитации полета в ионосфере. / К.Б.Вернигоров, А.А.Чугунова, А.Ю.Алентьев и др. // Труды 2-й Всероссийской школы-семинара студентов, аспирантов и молодых ученых по тематическому направлению деятельности национальной нанотехнологической сети «Функциональные наноматериалы для космической техники»: сб. научн. тр., Москва, 17-19 мая 2011 / МИЭМ. - Москва, 2011. - С.88-91], состоящий из эпоксидного связующего, содержащего в своем составе 10-50% полидиметилсилоксана.
Недостатком данного материала является техническая сложность его синтеза методом химической модификации полимера, основанного на внедрении в структуру полимерных цепей различных силоксансодержащих фрагментов, а также невысокая стойкость к воздействию ВУФ-излучения.
Известен способ получения композита [JP № 2007270056. METAL OXIDE PARTICULATE-CONTAINING POLISILOXANE COMPOSITION AND METOD FOR PRODUCING SAME] путем смешивания частиц оксидов металлов и многофункционального полисилоксана в органическом растворителе с дальнейшим отверждением композита.
Его недостатком является неоднородность и долгое время синтеза композита в связи с необходимостью отверждения композиции.
Наиболее близким по совокупности существенных признаков, принятым за прототип, является способ [KR № 20050022036. POLYMER CAPSULES CONTAINING AN ULTRAVIOLET ABSORBER, HAVING IMPROVED STABILITY IN COSMETIC FORMULATIONS WITHOUT LOSS OF ULTRAVIOLET BLOCKING EFFECT AND PREPARATION METHOD THEREOF, AND COSMETICS CONTAINING THE SAME], он включает в себя этапы: (1) растворение полимера в растворителе; (2) диспергирование ультрафиолетового поглотителя в раствор полимера, (3) эмульгирование ультрафиолетового поглотителя в раствор полимера в присутствии дисперсии стабилизирующего агента для подготовки эмульсии; и (4) удаление растворителя из эмульсии и восстановления мягких капсул полимера. Его недостатком является невысокая плотность упаковки получаемых частиц в виде капсул, что не позволяет их использовать в космическом пространстве.
Целью изобретения является повышение защиты от вакуумного ультрафиолетового излучения (ВУФ), набегающего потока атомарного кислорода (АК), а также увеличение температурного диапазона применения композита.
Поставленная цель достигается тем, что заявленный композит для защиты от космического воздействия содержит в качестве составляющих компонентов ударопрочный полистирол (матрица) и силоксановый наполнитель (ксерогель метилполисилоксана) размером до 1 мкм при следующем соотношении компонентов, мас.%:
Ударопрочный полистирол 38-46
Силоксановый наполнитель 54-62
Использование в качестве матрицы ударопрочного полистирола марки УПС-0803Э (ГОСТ 28250-89) обусловлено его высокой радиационной стойкостью, а также низким газовыделением при космическом воздействии.
Силоксановый наполнитель (ксерогель метилполисилоксана) представляет собой высокодисперсный гидрофобный порошок белого цвета, полученный по золь-гель методу с плотностью 1100-1200 кг/м3.
Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемый состав композита для защиты от космического воздействия отличается от известного введением нового компонента, а именно ударопрочного полистирола. Таким образом, заявляемое техническое решение соответствует критерию «новизна».
Количественное содержание компонентов предлагаемого и известного композита приведено в табл.1.
Характеристики композита для защиты от космического воздействия представлены в табл.2.
Модуль продольной упругости Е (модуль Юнга) композитов рассчитывали по скорости распространения ультразвука в композите. Измерение скорости ультразвуковых колебаний в композитах проводили эхо-импульсным методом.
Таблица 1
Составы материалов
Компонент Содержание, мас.%
Предлагаемый композит Известный композит (прототип)
1 2 3 4 5
Ударопрочный полистирол 38 40 42 44 46 Нет
Силоксановый наполнитель 62 60 58 56 54 50
Эпоксидное связующее нет нет нет нет нет 50
Плотность композитов ρ измеряли методом гидростатического взвешивания. Устойчивость к воздействию АК оценивали по массовому коэффициенту эрозии Rm, равному соотношению удельной потери массы к флюенсу АК (г/атом О). Облучение проводилось при энергии атомов кислорода 20 эВ, флюенсе атомов Ф~7,18·1020 ат/см2. Использование ударопрочного полистирола в виде матрицы позволяет создавать композиты, максимально наполненные силоксановым наполнителем, который является одним из основных компонентов для защиты АК. Атомы Si4+, образующиеся при термоокислительной деструкции метилполисилоксана, взаимодействуют с атомарным кислородом, в композите образуется оксид кремния, из которого формируется защитная пленка, препятствующая диффузии атомов кислорода к поверхности композита.
Испытания на стойкость к воздействию ВУФ-излучения проводили по ГОСТ Р 25645.338-96 «Материалы полимерные для космической техники. Требования к испытаниям на стойкость к воздействию вакуумного ультрафиолетового излучения». Стойкость к воздействию ВУФ-излучения оценивали по изменению интегрального коэффициента поглощения солнечного излучения α при длине волны от 0,2 до 2,5 мкм при интенсивности излучения 0,5 Вт/м2 и длине волны ВУФ-излучения 115 нм. Использование ударопрочного полистирола позволило создавать композиты, обладающие максимальной белизной. Сам ударопрочный полистирол - прозрачный материал, а силоксановый наполнитель является фотоактивным компонентом, эффективно рассеивающим видимый свет, придавая тем самым композиту белизну, что защищает композит от фотодеструкции в космосе.
Верхнюю и нижнюю границы температуры эксплуатации композита Тэкс определяли по максимальной температуре, при которой происходит уменьшение прочностных свойств композита в 2 раза (без механических нагрузок).
Таблица 2
Свойства композита для защиты от космического воздействия
Показатель Предлагаемый композит Известный композит (прототип)
1 2 3 4 5 6
Плотность ρ, кг/м3 1161 1159 1157 1153 1147 1170
Модуль продольной упругости E, ·104 МПа 0,323 0,398 0,417 0,434 0,450 0,345
Массовый коэффициент эрозии Rm, 10-24 г/атом O 0,46 0,39 0,38 0,41 0,45 0,48
Отношение коэффициентов поглощения солнечного излучения αначкон 0,16/0,18 0,16/0,18 0,15/0,17 0,16/0,19 0,17/0,2 0,21/0,25
Нижний предел эксплуатации, °С -130 -130 -129 -128 -125 -70
Верхний предел эксплуатации, °С 170 168 166 158 150 160
Анализ прототипа показал, что композит, содержащий в качестве матрицы эпоксидное связующее, не обладает высокими защитными свойствами от космического воздействия, какими обладает композит для защиты от космического воздействия на основе компонентов, представленных в заявляемом решении (табл.2), а именно на 28,6% и 32% понижается интегральный коэффициент поглощения солнечного излучения соответственно до и после воздействия ВУФ-излучения. Кроме того, на 20,8% понижается массовый коэффициент эрозии АК и на 85,7% увеличивается нижний предел эксплуатации заявленного композита по сравнению с прототипом. Таким образом, заявляемый состав компонентов придает композиту новые, более высокие показатели защиты от космического воздействия, что позволяет сделать вывод о соответствии заявляемого решения критерию «существенные отличия».
Заявленный способ получения композита состоит из синтеза силоксанового наполнителя (ксерогель метилполисилоксана), растворения ударопрочного полистирола в толуоле, его смешения с порошкообразным наполнителем путем ультразвуковой кавитации при частоте 22 кГц, удаления растворителя и прессования получившейся порошкообразной смеси и отличается тем, что для удаления растворителя полученный раствор нагревают до температуры 115°С и выдерживают в течение 30 мин, после полного удаления растворителя образовавшуюся сухую смесь нагревают до температуры 170°С и выдерживают в течение 20 мин, затем производят прессование композитов методом твердофазного компактирования под высоким удельным давлением 200 МПа.
Благодаря технологии прессования композитов методом твердофазного компактирования под высоким удельным давлением 200 МПа происходит реакция поликонденсации, и за счет топохимического взаимодействия ударопрочного полистирола и силоксанового наполнителя происходит образование нового типа соединения силоксановый наполнитель-ударопрочный полистирол.
Силоксановый наполнитель получают по золь-гель технологии из распространенного в химической промышленности водорастворимого метилсиликоната натрия - RSi(OH)2ONa, где R=СН3, при рН 4. Структурная формула силоксанового наполнителя имеет вид:
Figure 00000001
Осажденный силоксановый наполнитель (ксерогель метилполисилоксана) отделяют от раствора, декантируют водой от щелочи, высушивают в вакууме при 100°С в течение 3 часов и диспергируют в мельнице до размера частиц 0,1-1 мкм. Готовый наполнитель представляет собой высокодисперсный гидрофобный порошок белого цвета с плотностью 1100-1200 кг/м3 [Черкашина Н.И. Создание высокодисперсных наполнителей на кремнийорганической основе для полимерных композиционных материалов авиационно-космического назначения. / Н.И.Черкашина, Н.А.Четвериков. // Труды 2-й Всероссийской школы-семинара студентов, аспирантов и молодых ученых по тематическому направлению деятельности национальной нанотехнологической сети «Функциональные наноматериалы для космической техники»: сб. научн. тр., Москва, 17-19 мая 2011 / МИЭМ. - Москва, 2011. - С.230-233].
Смешение компонентов происходит во влажном состоянии: растворяют ударопрочный полистирол марки УПС-0803Э в толуоле, после чего добавляют силоксановый наполнитель и подвергают ультразвуковой обработке при частоте 22 кГц. Благодаря перемешиванию компонентов во влажном состоянии путем ультразвуковой кавитации при частоте 22 кГц достигается наиболее равномерное распределение наполнителя в матрице. При сухом смешении порошкообразных компонентов в готовом композите наблюдается объединение силоксанового наполнителя в отдельные конгломераты с поперечными размерами до 10 мкм. Следовательно, ухудшается равномерность распределения силоксанового наполнителя в ударопрочном полистироле, что влечет за собой снижение стойкости композита к воздействию атомарного кислорода. Таким образом, растворение ударопрочного полистирола в толуоле и ультразвуковая обработка препятствует агрегации частиц силоксанового наполнителя, тем самым обеспечивая равномерное распределение его в объеме композита.
Для удаления растворителя полученный раствор нагревают в сушильном шкафу до температуры 115°С и выдерживают в течение 30 мин, после полного удаления растворителя смесь диспергируют в мельнице не менее 5 мин.
Образовавшуюся сухую смесь нагревают до 170°С (температура формовки полистирольных образцов) и выдерживают 20 мин, затем производят прессование композитов методом твердофазного компактирования под высоким удельным давлением 200 МПа. Способ изготовления композита методом горячего твердофазного компактирования с заданным давлением обеспечивает композиту необходимые механические характеристики для защиты от воздействия космического пространства, в связи с созданием более плотной упаковки частиц в композите. Пуансон пресс-формы отполирован до зеркального блеска, благодаря чему композит обладает глянцевой поверхностью, что в сочетании с высокой белизной композита позволит использовать его в качестве терморегулирующего покрытия класса «Солнечные отражатели».
Заявленный состав и способ его получения придает композиту новые более высокие показатели защиты от космического воздействия, что позволяет его использовать на высоте от 200 до 700 км, в температурном диапазоне от -130°С до +170°С, при интенсивности ВУФ-излучения 0,5 Вт/м2, при флюенсе АК Ф~7,18·1020 ат/см2 с энергией облучения 20 эВ.
Новый материал позволит расширить номенклатуру полимерных композитов авиационно-космического назначения, упростить технологию изготовления полимерных композитов, увеличить срок службы космического аппарата на низких земных орбитах и уменьшить его весовые характеристики.

Claims (2)

1. Композит для защиты от космического воздействия, состоящий из силоксанового наполнителя размером до 1 мкм, отличающийся тем, что дополнительно содержит ударопрочный полистирол при следующем соотношении компонентов, мас.%:
Ударопрочный полистирол 38-46 Силоксановый наполнитель 54-62
2. Способ получения композита по п.1, состоящий из синтеза силоксанового наполнителя (ксерогель метилполисилоксана), растворения ударопрочного полистирола в толуоле, его смешение с порошкообразным наполнителем путем ультразвуковой кавитации при частоте 22 кГц, удаления растворителя и прессования получившейся порошкообразной смеси, отличающийся тем, что полученный раствор нагревают до температуры 115°С и выдерживают в течение 30 мин, после полного удаления растворителя образовавшуюся сухую смесь нагревают до температуры 170°С и выдерживают в течение 20 мин, затем производят прессование композитов методом твердофазного компактирования под высоким удельным давлением 200 МПа.
RU2012111095/07A 2012-03-22 2012-03-22 Композит для защиты от космического воздействия, способ его получения RU2484546C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012111095/07A RU2484546C1 (ru) 2012-03-22 2012-03-22 Композит для защиты от космического воздействия, способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012111095/07A RU2484546C1 (ru) 2012-03-22 2012-03-22 Композит для защиты от космического воздействия, способ его получения

Publications (1)

Publication Number Publication Date
RU2484546C1 true RU2484546C1 (ru) 2013-06-10

Family

ID=48785858

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012111095/07A RU2484546C1 (ru) 2012-03-22 2012-03-22 Композит для защиты от космического воздействия, способ его получения

Country Status (1)

Country Link
RU (1) RU2484546C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2076360C1 (ru) * 1994-09-16 1997-03-27 Павленко Вячеслав Иванович Защитный контейнер
RU95111274A (ru) * 1995-06-29 1997-06-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Рентгенозащитная композиция
US6080455A (en) * 1994-07-08 2000-06-27 Raytheon Company Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth
KR20050022036A (ko) * 2003-08-25 2005-03-07 주식회사 태평양 자외선 흡수제를 함유하는 고분자 캡슐 및 그 제조 방법,및 이를 함유하는 화장료 조성물
RU2275704C2 (ru) * 2003-11-13 2006-04-27 Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения" Материал для защиты от космической радиации
JP2007270056A (ja) * 2006-03-31 2007-10-18 Jsr Corp 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080455A (en) * 1994-07-08 2000-06-27 Raytheon Company Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth
RU2076360C1 (ru) * 1994-09-16 1997-03-27 Павленко Вячеслав Иванович Защитный контейнер
RU95111274A (ru) * 1995-06-29 1997-06-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Рентгенозащитная композиция
KR20050022036A (ko) * 2003-08-25 2005-03-07 주식회사 태평양 자외선 흡수제를 함유하는 고분자 캡슐 및 그 제조 방법,및 이를 함유하는 화장료 조성물
RU2275704C2 (ru) * 2003-11-13 2006-04-27 Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения" Материал для защиты от космической радиации
JP2007270056A (ja) * 2006-03-31 2007-10-18 Jsr Corp 金属酸化物微粒子含有ポリシロキサン組成物およびその製造方法

Similar Documents

Publication Publication Date Title
EP0649388B1 (en) Method of making metal oxide clusters and metal oxide-polymer composites
JP5555225B2 (ja) 金属酸化物多孔質体の製造方法
CN104016361B (zh) 两亲性纳米颗粒的制备方法及其在制备Pickering乳液中的应用
JP6565923B2 (ja) 表面修飾金属酸化物粒子分散液及びその製造方法、表面修飾金属酸化物粒子−シリコーン樹脂複合組成物、表面修飾金属酸化物粒子−シリコーン樹脂複合体、光学部材、及び発光装置
Randall et al. Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis (trimethoxysilylpropyl) amine as silane precursors
JP6278979B2 (ja) シリカ粒子、その粒子を含む樹脂組成物、ならびに、その用途
CN118145659A (zh) 中空二氧化硅颗粒及中空二氧化硅颗粒的制造方法
JP2013535002A (ja) 放射線遮蔽用の窒化ホウ素および窒化ホウ素ナノチューブ材料
Boo et al. Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways
Suzuki et al. Unusual reinforcement of silicone rubber compounds containing mesoporous silica particles as inorganic fillers
PT96328A (pt) Microesferas compositas magnetizaveis a base de um polimero de organosilicio reticulado, processo para a sua preparacao e sua aplicacao em biologia
Zhou et al. Polymer–silica hybrid self-healing nano/microcapsules with enhanced thermal and mechanical stability
JP6339889B2 (ja) 金属酸化物中空粒子の製造方法
JP4927363B2 (ja) 微小粒子含有組成物
Greesh et al. Preparation of polystyrene–clay nanocomposites via dispersion polymerization using oligomeric styrene‐montmorillonite as stabilizer
RU2484546C1 (ru) Композит для защиты от космического воздействия, способ его получения
CN103102622A (zh) 纳米杂化pvdf复合膜及其制备方法和应用
Ingale et al. Preparation of Nano‐Structured RDX in a Silica Xerogel Matrix
KR19990069189A (ko) 유기-무기 컴포지트의 제조방법
Lansade et al. Enhanced resistance to proton irradiation of poly (dimethylsiloxane) resins through surface embedding of silica photonic crystals
Yin et al. Novel polymeric organosilica precursor and emulsion stabilizer: Toward highly elastic hollow organosilica nanospheres
Chin et al. Fabrication, thermal analysis, and heavy ion irradiation resistance of epoxy matrix nanocomposites loaded with silane-functionalized ceria nanoparticles
Liu et al. Grafting hyperbranched polyurethane onto silica nanoparticle via one-pot “A2+ CBn” condensation approach to improve its dispersion in polyurethane
JP6957538B2 (ja) 放射線遮蔽材用液状シリコーンエラストマー組成物、放射線遮蔽材用液状シリコーンエラストマー組成物の製造方法、及び放射線遮蔽シリコーンゴム成型物
WO2021132078A1 (ja) シリコーン弾性体粒子及び空隙を有するシリコーンエラストマー粒子、ならびにこれらの製造方法、シリコーン弾性体及びその製造方法、シリコーンエラストマー多孔体の製造方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20150416

PD4A Correction of name of patent owner