RU2275704C2 - Материал для защиты от космической радиации - Google Patents

Материал для защиты от космической радиации Download PDF

Info

Publication number
RU2275704C2
RU2275704C2 RU2003133125/06A RU2003133125A RU2275704C2 RU 2275704 C2 RU2275704 C2 RU 2275704C2 RU 2003133125/06 A RU2003133125/06 A RU 2003133125/06A RU 2003133125 A RU2003133125 A RU 2003133125A RU 2275704 C2 RU2275704 C2 RU 2275704C2
Authority
RU
Russia
Prior art keywords
solution
coating layer
linking agent
orthosilicic acid
carbides
Prior art date
Application number
RU2003133125/06A
Other languages
English (en)
Other versions
RU2003133125A (ru
Inventor
Герберт Александрович Ефремов (RU)
Герберт Александрович Ефремов
Игорь Сергеевич Епифановский (RU)
Игорь Сергеевич Епифановский
Владимир Тихонович Заболотный (RU)
Владимир Тихонович Заболотный
ев Александр Владимирович Шир (RU)
Александр Владимирович Ширяев
Евгений Валерьевич Чесалов (RU)
Евгений Валерьевич Чесалов
Надежда Лаврентьевна Краснова (RU)
Надежда Лаврентьевна Краснова
Евгений Евгеньевич Старостин (RU)
Евгений Евгеньевич Старостин
Лев Иванович Иванов (RU)
Лев Иванович Иванов
Сабир Иманверди оглы Садыхов (RU)
Сабир Иманверди Оглы Садыхов
Владимир Александрович Брюквин (RU)
Владимир Александрович Брюквин
Юрий В чеславович Благовещенский (RU)
Юрий Вячеславович Благовещенский
Original Assignee
Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения" filed Critical Федеральное унитарное государственное предприятие "Научно-производственное объединение машиностроения"
Priority to RU2003133125/06A priority Critical patent/RU2275704C2/ru
Publication of RU2003133125A publication Critical patent/RU2003133125A/ru
Application granted granted Critical
Publication of RU2275704C2 publication Critical patent/RU2275704C2/ru

Links

Landscapes

  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

Изобретение относится к области защиты от ионизирующего излучения. Сущность изобретения: материал для защиты от космической радиации содержит подслой в виде раствора полибутилтитаната или раствора элементоорганических соединений и слой покрытия из материала, содержащего в качестве матрицы кремнийорганический полимер. В качестве неорганического наполнителя слой покрытия из материала содержит порошки тяжелых металлов, их оксиды и карбиды, структурирующий агент на основе смеси эфира ортокремниевой кислоты и продуктов его гидролиза. Кроме того, он содержит технологический структурирующий агент в виде пирогенетического аморфного диоксида кремния, вулканизирующий агент в виде диэтилдикаприлата олова или катализатор в виде раствора аминосилана в эфирах ортокремниевой кислоты. Слой покрытия из материала имеет следующее соотношение компонентов, мас.%: кремнийорганический полимер 8,2-37,1; порошки тяжелых металлов, их оксиды и карбиды 60,7-92,0; структурирующий агент 0,2-0,5; технологический структурирующий агент 0,2-0,5; вулканизирующий агент или катализатор 0,9-1,2. Преимущества изобретения заключаются в повышении физико-механических и защитных свойств материала. 1 табл., 1 ил.

Description

Изобретение относится к материалам для защиты от радиации и космического излучения.
Известна композиция для защиты от радиации (патент РФ №2105363) следующего состава (мас.%):
Жидкое стекло 54,3-57,1
Модифицирующая добавка - кремнийорганическая 0,7-1,0
жидкость 136-41
Отвердитель - феррохромовый шлак 14,4-23,9
Наполнитель - молотые отходы оптического стекла, 18,6-30,0
содержащего Na2O, K2O, Al2O3, PbO, SiO2,
при этом количество PbO составляет 70,93 мас.%
Недостатком указанной композиции является необходимость высокотемпературной обработки и высокая жесткость (хрупкость).
Наиболее близким материалом к заявленному изобретению является материал для нейтрализации патогенного влияния излучений, охарактеризованный в патенте РФ №2138933 (прототип). Материал имеет два слоя. Один слой выполнен в виде ткани, содержащей синтетические нити или волокно. Материал также содержит слой, выполненный из никеля с включением в него, по меньшей мере, одного металла.
Недостатком данного материала является узкий температурный диапазон эксплуатации (от минус 30°С до +180°С), низкая прочность и низкая технологичность композиции.
Задачей изобретения является повышение физико-механических и защитных свойств материала, расширение температурного диапазона эксплуатации (от минус 130°С до +250°С) при сохранении эластичности, улучшении технологичности (возможность нанесения на защищаемые детали любой формы и размеров штапельным, кистевым методами или в виде листов, отформованных заготовок), с вулканизацией без нагрева.
Технический результат изобретения заключается в том, что предложенная композиция обладает высокой технологичностью, термической стойкостью, эластичностью, отверждается без нагрева, наносится на защищаемую поверхность шпательным или кистевым методом, обладает высокими защитными свойствами, позволяет создавать покрытие с электропроводными свойствами (для снятия электростатического заряда с поверхности защищаемых приборов) или, напротив, с диэлектрическими свойствами.
Технический результат достигается за счет того, что материал для защиты от космической радиации включает слой покрытия из материала, содержащего матрицу и неорганический наполнитель. При этом материал для защиты от космической радиации содержит подслой в виде раствора полибутилтитаната или раствора элементоорганических соединений и слой покрытия из материала, содержащего в качестве матрицы кремнийорганический полимер. В качестве неорганического наполнителя материал содержит порошки тяжелых металлов, их оксиды и карбиды. Материал также включает структурирующий агент на основе смеси эфира ортокремниевой кислоты и продуктов его гидролиза, технологический структурирующий агент в виде пирогенетического аморфного диоксида кремния, вулканизирующий агент в виде диэтилдикаприлата олова или катализатор в виде раствора аминосилана в эфирах ортокремниевой кислоты при следующем соотношении компонентов, мас.%:
кремнийорганический полимер 8,2-37,1
порошки тяжелых металлов, их оксиды и карбиды 60,7-92,0
структурирующий агент 0,2-0,5
технологический структурирующий агент 0,2-0,5
вулканизирующий агент в виде диэтилдикаприлата олова или
катализатор в виде раствора аминосилана в эфирах
ортокремниевой кислоты 0,9-1,2
На чертеже изображены структуры материала для защиты от космической радиации.
На чертеже изображены: полимерная матрица 1; частицы пирогенетического аморфного диоксида кремния 2; частицы наполнителя 3; подслой 4; поверхность защищаемого прибора 5.
Применение порошка наполнителя заданного гранулометрического состава (размер частиц от 0,1 мкм до 70 мкм) обеспечивает требуемую степень наполнения материала и, как следствие, требуемое значение поверхностной плотности покрытия, которое обеспечивает защитные (поглощающие) свойства покрытия. Применение порошка тяжелого металла (например, вольфрама) позволяет при определенной степени наполнения получить покрытие с электропроводными свойствами. Применение порошка оксида или карбида тяжелого металла обуславливает диэлектрические свойства покрытия.
Применение в качестве матрицы кремнийорганических соединений в сочетании с вулканизирующим агентом в виде диэтилдикаприлата олова или катализатором в виде раствора полиметилсилана позволяет повысить стойкость материала к перепадам температуры (от минус 130°С до +250°С) и обеспечивает отверждение кремнийорганической матрицы и композиции на ее основе без нагрева. Применение этилсиликата, представляющего собой смесь эфира ортокремневой кислоты и продуктов его гидролиза с различным содержанием тетраэтоксисилана, позволяет повысить качество структуры полимерной матрицы, повысить прочность материала и снизить потерю массы (унос вещества) при нагреве материала. Применение пирогенетического аморфного диоксида кремния повышает технологичность композиции, исключает расслаивание компонентов в слое покрытия, исключает подтеки и неоднородность покрытия. Применение раствора полибутилтитаната (подслоя П-9) или раствора элементоорганических соединений (тип П-11) в качестве подслоя позволяет получить высокую адгезионную прочность соединения покрытия с поверхностью защищаемого прибора.
Технология приготовления композиции включает следующие операции.
Порошок наполнителя (в качестве наполнителя может быть использован порошок вольфрама или его оксида) путем просева на сите с размером ячейки 100 мкм очищается от посторонних включений и остатка крупных фракций. Приготовление кремнийорганической матрицы производится в смесителе путем тщательного промешивания гранул полимера в растворителе до получения однородной массы. Затем вводится этилсиликат, требуемое количество вольфрамового порошка, пирогенетического аморфного диоксида кремния. Композиция перемешивается до получения однородной массы в течение 20-30 минут. Готовый полуфабрикат выгружается в емкость.
Материал приготавливается непосредственно перед нанесением на поверхность защищаемого прибора. Подготовка поверхности заключается в обезжиривании ацетоном, сушке в течение 3-5 мин, нанесении подслоя в виде раствора полибутилтитаната или раствора элементоорганических соединений и последующей сушке в течение от 40 мин до 3 часов. После чего на поверхность наносится готовый полуфабрикат защитного материала и выдерживается на воздухе в течение 24 часов.
Из предложенного материала были изготовлены образцы, на которых были исследованы физические, механические свойства. Конкретные примеры составов и их свойства приведены в табл. 1.
Поглощающая способность материала при облучении электронами с энергией 2 МэВ составила 93% при поверхностной плотности 0,93 г/см2 и 96% при поверхностной плотности 1,08 г/см2. По отношению к рентгеновскому излучению покрытие с поверхностной плотностью 1 г/см2 обеспечивает 10-кратное ослабление излучения с энергией 100 кэВ, а покрытие с поверхностной плотностью 2 г/см2 - 10-кратное ослабление излучения с энергией 200 кэВ.
Подтвержденный экспериментальными измерениями расчет показывает, что покрытие с поверхностной плотностью 1 г/см2 обеспечивает полную защиту электронных приборов КА, находящегося на геостационарной орбите, от воздействия поражающих факторов магнитных бурь.
Радиационная стойкость материала эквивалентна дозе облучения, превышающей до 240 Мрад. Адгезионная прочность материала до 30 кгс/см2. Электрическое сопротивление для "проводящего" варианта покрытия составило 40 Ом/см2, для диэлектрического >2-108 Ом/см2. Удельный вес материала покрытия в зависимости от степени наполнения составляет 4,5-7,5 г/см3.
Преимущества предлагаемого материала заключаются в следующем:
- предлагаемый материал позволяет создать защитное покрытие на корпусе электронного прибора, не подвергая его дополнительному технологическому нагреву;
- высокая технологичность композиции позволяет получить покрытие со стабильными физическими свойствами на деталях любого размера и формы, варьировать свойства получаемого покрытия (проводящее/диэлектрик, различная поверхностная плотность);
- высокая степень защиты достигается при толщине слоя покрытия 1,1-2,0 мм при поверхностной плотности материала от 0,9 до 2,0 г/см2;
- предложенный материал обеспечивает стабильную радиационную защиту объектов в интервале температур от минус 130°С до +250°С при длительной эксплуатации (например, в составе приборов КА до 30 лет), при этом суммарная доза облучения может достигать 240 Мрад;
- пластичность материала обеспечивает релаксацию механических напряжений, возникающих вследствие разности КЛТР материала покрытия и материала корпуса прибора;
- высокое значение адгезии (до 30 кгс/см2) обеспечивает работоспособность покрытия в условиях вибраций, ударных нагрузок;
- предлагаемый материал наиболее эффективен для локальной защиты электронных приборов типа интегральных микросхем, что особенно актуально для КА с жесткими ограничениями по массе и габаритам.
Таблица 1
МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ КОСМИЧЕСКОЙ РАДИАЦИИ
№ образца 1 2
Материал порошка наполнителя вольфрам вольфрам
Размер частиц порошка наполнителя d<70 мкм dcp~25 мкм
Состав материала, мас.%:
каучук СКТН 163 8,2
структурирующий агент (этилсиликат) 0,3 0,2
технологический структурирующий агент (пирогенетический аморфный диоксид кремния) 0,5 0,2
вулканизирующий агент (раствор полиметилсилана) 1,2 0,8
наполнитель 81,7 90,6
Характеристики материала покрытия:
Плотность, г/см3 4,66 7,45
Толщина слоя покрытия, мм 2,0 1,45
Поглощающая способность при облучении электронами с энергией 2 МэВ, % 93 96
Электрическое сопротивление, Ом/см2 40 >2-108
Адгезионная прочность, кгс/см2 29,6 24,3

Claims (1)

  1. Материал для защиты от космической радиации, включающий слой покрытия из материала, содержащего матрицу и неорганический наполнитель, отличающийся тем, что материал для защиты от космической радиации содержит подслой в виде раствора полибутилтитаната или раствора элементоорганических соединений и слой покрытия из материала, содержащего в качестве матрицы кремнийорганический полимер, в качестве неорганического наполнителя - порошки тяжелых металлов, их оксиды и карбиды, структурирующий агент на основе смеси эфира ортокремниевой кислоты и продуктов его гидролиза, технологический структурирующий агент в виде пирогенетического аморфного диоксида кремния, вулканизирующий агент в виде диэтилдикаприлата олова или катализатор в виде раствора аминосилана в эфирах ортокремниевой кислоты при следующем соотношении компонентов, мас.%:
    Кремнийорганический полимер 8,2-37,1 Порошки тяжелых металлов, их оксиды и карбиды 60,7-92,0 Структурирующий агент 0,2-0,5 Технологический структурирующий агент 0,2-0,5 Вулканизирующий агент в виде диэтилдикаприлата олова или катализатор в виде раствора аминосилана в эфирах ортокремниевой кислоты 0,9-1,2.
RU2003133125/06A 2003-11-13 2003-11-13 Материал для защиты от космической радиации RU2275704C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003133125/06A RU2275704C2 (ru) 2003-11-13 2003-11-13 Материал для защиты от космической радиации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003133125/06A RU2275704C2 (ru) 2003-11-13 2003-11-13 Материал для защиты от космической радиации

Publications (2)

Publication Number Publication Date
RU2003133125A RU2003133125A (ru) 2005-04-27
RU2275704C2 true RU2275704C2 (ru) 2006-04-27

Family

ID=35635787

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003133125/06A RU2275704C2 (ru) 2003-11-13 2003-11-13 Материал для защиты от космической радиации

Country Status (1)

Country Link
RU (1) RU2275704C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484546C1 (ru) * 2012-03-22 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Композит для защиты от космического воздействия, способ его получения
RU2488244C1 (ru) * 2012-06-05 2013-07-20 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Способ повышения теплоотдачи и радиационной защиты электронных блоков
RU2515493C1 (ru) * 2012-11-12 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Композит для защиты от космической радиации
RU2554183C1 (ru) * 2014-05-27 2015-06-27 Открытое акционерное общество "Композит" (ОАО "Композит") Радиационно-защитное терморегулирующее покрытие для космических аппаратов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484546C1 (ru) * 2012-03-22 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Композит для защиты от космического воздействия, способ его получения
RU2488244C1 (ru) * 2012-06-05 2013-07-20 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Способ повышения теплоотдачи и радиационной защиты электронных блоков
RU2515493C1 (ru) * 2012-11-12 2014-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Композит для защиты от космической радиации
RU2554183C1 (ru) * 2014-05-27 2015-06-27 Открытое акционерное общество "Композит" (ОАО "Композит") Радиационно-защитное терморегулирующее покрытие для космических аппаратов

Also Published As

Publication number Publication date
RU2003133125A (ru) 2005-04-27

Similar Documents

Publication Publication Date Title
Kawaguchi et al. The effect of particle–matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness
CN103619949B (zh) 用于中子屏蔽的环氧树脂组合物及其制备方法
CN206030341U (zh) 一种辐射防护材料的制备系统
KR20120017845A (ko) 코어-쉘 타입의 필러 입자를 포함하는 복합 시트용 조성물, 이를 포함하는 복합 시트 및 복합 시트의 제조 방법
Wozniak et al. Modern approaches to polymer materials protecting from ionizing radiation
CN107736085B (zh) 高频电磁干扰(emi)复合材料
Liu et al. In situ reaction and radiation protection properties of Gd (AA) 3/NR composites
RU2275704C2 (ru) Материал для защиты от космической радиации
KR102328377B1 (ko) 구형 또는 각형 분말 충전재의 제조 방법, 이로부터 수득된 구형 또는 각형 분말 충전재 및 이의 응용
Abdel‐Aziz et al. Styrene–butadiene rubber/lead oxide composites as gamma radiation shields
CN110415851B (zh) 一种水泥基中子屏蔽材料及其制备方法
CN113201180A (zh) 一种中子及伽马射线复合屏蔽材料及其制备方法
Fan et al. Effect of different size of PbWO4 particles on EPDM composite for gamma-ray shielding
Bajaj et al. Effect of coupling agents on thermal and electrical properties of mica/epoxy composites
CN113223740A (zh) 无铅辐射防护手套及制备方法
RU2515493C1 (ru) Композит для защиты от космической радиации
JP2014182055A (ja) 有機無機複合体
KR20230058216A (ko) 방사선 차폐기능을 갖는 실란트 조성물 및 이의 제조방법
CN115179636A (zh) 一种汽车用电池隔热罩及其加工工艺
Wang et al. The preparation and properties of glass powder reinforced epoxy resin
Chakraborty et al. Effect of space charge density and high voltage breakdown of surface modified alumina reinforced epoxy composites
RU2554183C1 (ru) Радиационно-защитное терморегулирующее покрытие для космических аппаратов
CN113956846B (zh) 一种用于空间带电粒子辐射防护的稀土氧化物纳米颗粒掺杂Mxene材料及复合涂层以及制备方法
RU2632934C1 (ru) Композиционный материал на полимерной основе для комбинированной защиты гамма, нейтронного и электромагнитного излучения, наполненный нанопорошком вольфрама, нитрида бора и технического углерода
RU2809332C1 (ru) Радиационно-защитное покрытие

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20050713

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20050822

PD4A Correction of name of patent owner