WO2007108192A1 - ガラス基板の静電吸着装置及びその吸着離脱方法 - Google Patents

ガラス基板の静電吸着装置及びその吸着離脱方法 Download PDF

Info

Publication number
WO2007108192A1
WO2007108192A1 PCT/JP2006/325957 JP2006325957W WO2007108192A1 WO 2007108192 A1 WO2007108192 A1 WO 2007108192A1 JP 2006325957 W JP2006325957 W JP 2006325957W WO 2007108192 A1 WO2007108192 A1 WO 2007108192A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
glass substrate
voltage
time
electrostatic
Prior art date
Application number
PCT/JP2006/325957
Other languages
English (en)
French (fr)
Inventor
Mitsuo Kato
Shigenari Horie
Tatsufumi Aoi
Masaki Kawano
Yoshitaka Tsumoto
Hiroaki Ogasawara
Toshiro Kobayashi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN200680053935XA priority Critical patent/CN101401198B/zh
Priority to US12/225,167 priority patent/US7995324B2/en
Priority to EP06843341.6A priority patent/EP1998365B1/en
Publication of WO2007108192A1 publication Critical patent/WO2007108192A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • B23Q3/088Work-clamping means other than mechanically-actuated using vacuum means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/10Auxiliary devices, e.g. bolsters, extension members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to a glass substrate electrostatic adsorption device and a glass substrate adsorption separation method.
  • the semiconductor substrate or the glass substrate is adsorbed on a support base or the like by using an electrostatic adsorption device using an electrostatic attraction force. Make sure to hold the glass substrate securely.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-085045
  • Patent Document 2 JP 09-213780 A
  • Patent Document 3 Japanese Patent Laid-Open No. 11-340307
  • Figs. 7 (a) and 7 (b) show a conventional electrostatic chuck for a glass substrate.
  • the conventional electrostatic chuck for glass substrates has a ceramics suction plate 33 in which a plurality of positive electrodes 31 and a plurality of negative electrodes 32 are arranged, and a positive voltage that supplies a positive DC voltage to the positive electrode 31.
  • the power supply unit 34 includes a negative voltage power supply unit 35 that supplies a negative DC voltage to the negative electrode 32.
  • the glass substrate 41 may be supported on the vertical lower surface side of the adsorption plate 33, and the adsorption force more than the weight of the glass substrate 41 is electrostatic. adsorption Required for equipment.
  • the gap between the suction plate 33 and the glass substrate 41 and the suction force have a relationship as shown in FIG. 9 (b), and the gap between the suction plate 33 and the glass substrate 41 becomes larger.
  • the gap is 50 m or more, the substantial adsorption force becomes substantially zero even though the adsorption force is greater than its own weight. Therefore, depending on the size of the deformation of the glass substrate 41, there may be a case where an adsorption force larger than its own weight does not occur. In particular, this problem has become serious as the glass substrate 41 becomes larger in recent years.
  • a surface potential is generated near the suction plate 33 by the positive electrode 31 and the negative electrode 32, and particles may adhere due to the surface potential.
  • the surface potential on the glass substrate 41 adsorbed on the adsorption plate 33 is measured along the arrow A shown in FIG. 7 (b)
  • the surface potential is generated as shown in FIG.
  • a large surface potential is generated at the end portion.
  • a gap between the suction plate 33 and the glass substrate 41 is generated, and the suction force is reduced as described above. There is also a fear.
  • the presence of particles in the vicinity of the glass substrate 41 may cause the particles to adhere to the glass substrate 41 itself when the glass substrate 41 is adsorbed and detached, and the particles are in the vicinity of the glass substrate 41.
  • the presence is not preferable from the viewpoint of the process.
  • a surface potential that is too large may adversely affect the device generated on the glass substrate 41.
  • the volume resistivity of the glass substrate 41 has a physical property that it rapidly decreases as the temperature increases. For example, when the temperature of the glass substrate 41 increases by 10 ° C., the volume resistivity decreases by an order of magnitude, and as a result, the time required for adsorption increases with the same applied voltage.
  • the adsorption force of the glass substrate 41 changes depending on the temperature of the glass substrate 41, and this characteristic is also a cause of hindering stable adsorption / desorption operation.
  • the adsorption force changes greatly only by a few degrees, as shown in FIG. 11 (b).
  • the glass substrate temperature changes from room temperature to a temperature of 50 ° C or higher during the process, so the time required for adsorption and desorption is expected to change significantly. Therefore, without taking this into account, it is difficult to perform the adsorption / desorption operation stably.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrostatic chucking apparatus and a chucking / detaching method for a glass substrate that can be reliably attracted and quickly detached.
  • An electrostatic chucking device for a glass substrate according to a first invention for solving the above-mentioned problem is provided:
  • An adsorption plate made of a dielectric material having at least one or more first electrodes and at least one or more second electrodes disposed therein;
  • a first power source for applying a voltage to the first electrode
  • a second power source for applying a voltage having a polarity opposite to that of the first electrode to the second electrode, an adsorption detection means for detecting that the glass substrate is adsorbed to the adsorption plate, and a temperature of the glass substrate. Temperature sensing means to measure or predict;
  • Control means for controlling the voltage of the first power supply and the second power supply based on the detection result from the adsorption detection means and the temperature detection means;
  • An electrostatic adsorption device for a glass substrate that electrostatically adsorbs the glass substrate to the adsorption plate by applying a voltage to the first electrode and the second electrode, and detaches the glass substrate from the adsorption plate.
  • the control means includes The size, specific gravity, and electrical resistivity of the glass substrate are preset, and the adsorption time required for adsorption of the glass substrate, the holding time for adsorption holding the glass substrate, and the separation time required for detachment of the glass substrate. Preset,
  • an adsorption voltage necessary for obtaining the adsorption force is obtained, and a holding voltage for holding the adsorption and Find the release voltage to leave,
  • a comparison is made between the preset adsorption time and the measured adsorption time. If the preset adsorption time differs from the measured adsorption time, the holding voltage and the separation voltage are determined based on the measured adsorption time. Recalculate
  • the control means gradually decreases at least one of the adsorption voltage, the holding voltage, and the separation voltage with time.
  • An electrostatic chucking apparatus for a glass substrate according to a third invention for solving the above-mentioned problems is as follows.
  • the adsorption detection means uses a first ammeter for measuring a current flowing through the first electrode, or a current flowing through a second electrode.
  • the control means detects at least one of the second ammeter to be measured, and the control means detects a change in a current value flowing through the first ammeter or the second ammeter, and the glass substrate is placed on the suction plate. It is characterized by detecting the adsorption.
  • the suction detection means is a position sensor provided in the vicinity of the suction surface of the suction plate, and the control means uses the position sensor to detect that the glass substrate is sucked to the suction plate.
  • a deformation detection means for predicting or measuring the deformation amount of the glass substrate, wherein the control means is predicted or measured. Further, the adsorption force is obtained based on the deformation amount of the glass substrate.
  • the glass substrate electrostatic chucking device is characterized in that a conductive member that covers a surface other than the suction surface of the suction plate and is grounded is provided.
  • a glass substrate adsorption / desorption method according to a seventh invention for solving the above-mentioned problems is
  • the size, specific gravity, and electrical resistivity of the glass substrate are set in advance, and the adsorption time required to adsorb the glass substrate, the holding time for adsorbing and holding the glass substrate, and the detaching time required for detaching the glass substrate are preset. ,
  • the adsorption voltage necessary for obtaining the adsorption force is obtained, and the holding voltage for holding the adsorption and for releasing it.
  • the adsorption of the glass substrate to the adsorption plate is detected, and the actual adsorption time required for adsorption of the glass substrate is measured,
  • the recalculated holding voltage and release voltage are applied to at least one first electrode and at least one second electrode that are placed inside a dielectric adsorption plate and have opposite polarities. Then, the glass substrate is maintained to be adsorbed and detached.
  • At least one of the adsorption voltage, the holding voltage, and the separation voltage is gradually decreased with time.
  • the adsorption of the glass substrate is detected by detecting a change in at least one of the current values flowing through the first electrode or the second electrode.
  • the adsorption to the plate is detected.
  • the adsorption of the glass substrate to the adsorption plate is detected by a position sensor provided in the vicinity of the adsorption surface of the adsorption plate. To do.
  • the deformation amount of the glass substrate is predicted or measured, and the adsorption force is obtained based on the predicted or measured deformation amount of the glass substrate.
  • a glass substrate adsorption / desorption method according to a twelfth invention for solving the above-described problems is
  • a potential of the surface other than the suction surface of the suction plate is set to 0 by a conductive member that covers the surface other than the suction surface of the suction plate and is grounded.
  • the invention's effect when adsorbing a glass substrate, the size, specific gravity, electrical resistivity, substrate temperature, deformation amount, etc. are grasped, and the necessary adsorption force and the voltage necessary for the adsorption force are obtained. Because the voltage required for adsorption holding and desorption is controlled based on the actual adsorption time required, the adsorption and desorption operation should be performed quickly and stably even if there are variations in the temperature of the substrate and the adsorption time. Can do.
  • surfaces other than the adsorption surface of the adsorption plate are shielded with a conductive member such as a metal so that the potential is 0, so that particles are prevented from adhering to the adsorption plate, It is possible to prevent the adsorption / desorption operation of the substrate from being hindered.
  • FIG. 1 is a schematic diagram showing an example of an embodiment of an electrostatic attraction apparatus for a glass substrate according to the present invention.
  • FIG. 2 is a flowchart for explaining an example of an embodiment of a glass substrate adsorption / desorption method according to the present invention.
  • FIG. 3 is a diagram for explaining a pattern of an applied voltage in the glass substrate adsorption / desorption method according to the present invention.
  • FIG. 4 is a diagram of an electrical equivalent circuit model of the glass substrate electrostatic adsorption device according to the present invention.
  • FIG. 5 shows the measurement results of the adsorption / desorption time of the glass substrate in the conventional adsorption / desorption method and the measurement results of the adsorption / desorption time of the glass substrate in the adsorption / desorption method according to the present invention.
  • FIG. 6 is a schematic view showing another example of the embodiment of the electrostatic attraction apparatus for a glass substrate according to the present invention.
  • FIG. 7 is a schematic view showing a conventional electrostatic adsorption device for a glass substrate.
  • FIG. 8 is a graph showing the relationship between adsorption force and adsorption time.
  • FIG. 9 is a graph showing the deflection of the glass substrate due to its own weight and the change in the adsorption force due to the gap.
  • FIG. 10 is a graph showing the surface potential of the glass substrate on the adsorption surface of the electrostatic adsorption device.
  • FIG. 11 is a graph showing changes in volume resistivity and adsorption force of a glass substrate with temperature.
  • FIG. 1 is a schematic view of an electrostatic chucking apparatus for a glass substrate according to the present invention.
  • the glass substrate electrostatic adsorption device of this embodiment has at least one or more first electrodes 1 and at least one or more second electrodes 2 arranged therein, and is made of ceramics or the like.
  • Suction plate 3 made of an insulator, first power supply unit 4 for supplying voltage to first electrode 1, and first electrode 1 for supplying voltage to second electrode 2 having a polarity opposite to the applied voltage.
  • (2) Power supply unit 5 first ammeter 6 for measuring current flowing through first electrode 1, second ammeter 7 for measuring current flowing through second electrode 2, first ammeter 6, second current
  • the control unit 8 (control means) that measures the current value of the total 7 and controls the voltage output from the first power supply unit 4 and the second power supply unit 5 is provided.
  • the electrostatic adsorption device for the glass substrate of the present embodiment is configured such that the first electrode 1 and the second electrode 2 inside the adsorption plate 3 are alternately arranged in parallel, thereby It is configured so that even a large-sized glass substrate 11 can be reliably adsorbed.
  • a plurality of suction plates 3 having a plurality of first electrodes 1 and a plurality of second electrodes 2 are arranged, and the plurality of suction plates 3 are used to suck the large glass substrate 11. You may do so.
  • the first power supply unit 4 and the second power supply unit 5 are capable of applying a DC voltage of the opposite polarity with only a DC voltage of one polarity, and further capable of applying an AC voltage. It is.
  • At least one temperature sensor 9 (infrared type or thermocouple type; temperature detection means) for measuring the temperature of the glass substrate 11 is provided in the vicinity of the adsorption plate 3, and the glass substrate 11 Measure the temperature of the plate 11 and input it to the control unit 8.
  • At least one position sensor 10 (deformation detecting means) for measuring the deformation amount of the glass substrate 11 is provided. Is input to the control unit 8.
  • the control unit 8 detects the change in at least one of the current values measured by the first ammeter 6 or the second ammeter 7 so that the glass substrate 11 is adsorbed to the adsorption plate 3.
  • the first ammeter 6 and the second ammeter 7 function as adsorption detection means.
  • the position sensor 10 may be used as a suction detection unit to detect whether or not the glass substrate 11 is sucked to the suction plate 3.
  • the glass substrate 11 When adsorbing the glass substrate 11, the glass substrate 11 is brought into contact with the surface of the adsorption plate 3, and direct current is applied to the first electrode 1 and the second electrode 2 from the first power supply unit 4 and the second power supply unit 5.
  • a voltage By applying a voltage, charges having different polarities are generated on the opposing surfaces of the suction plate 3 and the glass substrate 14, and the substrate 11 is attracted to the surface of the suction plate 3 by the electrostatic adsorption force of these charges. Let me hold it.
  • a DC voltage or an AC voltage having a polarity opposite to the voltage applied during the adsorption is applied to the first electrode 1 and the second electrode 2 and accumulated during the adsorption.
  • the glass substrate 11 is detached by reducing the charge.
  • the glass substrate 11 is adsorbed on the vertical lower surface side of the adsorption plate 3 by using the electrostatic adsorption device having the above-described configuration.
  • the vapor deposition process is performed on the vertical bottom side of 11.
  • the electrostatic suction device is required to have an adsorption force that is greater than the weight of the glass substrate 11.
  • the adsorption force is too strong, the glass substrate 11 may be prevented from being detached.
  • the size (length X width X thickness) and material (specific gravity, electrical resistivity) of the glass substrate 11 are basically input.
  • Step S1 Enter suction completion time t, hold completion time t, and release completion time t according to the process (step S1)
  • the holding completion time t is the voltage application starting force.
  • the adsorption time during adsorption is the adsorption completion time t, and the retention time during the adsorption state is
  • T is one holding completion time t].
  • the deformation amount of the glass substrate 11 is predicted based on the size (length X width X thickness) and material (specific gravity) of the glass substrate 11 (step S3).
  • the deformation amount of the glass substrate 11 may be measured using the position sensor 10 (step S4).
  • the deformation amount of the glass substrate 11 may be measured in advance. It is desirable that the position sensor 10 be arranged so that at least the central portion of the glass substrate 11 that is predicted to have the largest deformation amount can be measured. Then, by predicting or measuring the deformation amount of the glass substrate 11, a change in the adsorption force accompanying the deformation of the glass substrate 11 is obtained.
  • the temperature change of the substrate 11 is predicted (step S5).
  • the temperature of the glass substrate 11 may be actually measured using the thermocouple 9 (step S6). Then, by predicting or measuring the temperature of the glass substrate 11, the change in electrical resistivity accompanying the temperature change of the glass substrate 11 and further the change in adsorption force are obtained.
  • the adsorption voltage pattern V (t) at the adsorption time is obtained so as to obtain an optimum adsorption force for adsorbing the glass substrate 11.
  • the holding voltage pattern V c h at the holding time is obtained.
  • the adsorption voltage pattern V (t), holding voltage pattern V (t), and release voltage pattern V (t) may be constant as shown in Fig. 3, such as the chr voltages V, V, and V. As shown in voltage V, V, and V shown in 3, cl hi rl c2 h2 r2
  • the applied voltage may be gradually decreased with time.
  • the change in adsorption force on glass substrate 11 The adsorption voltage pattern V (t) must be larger than the holding voltage pattern V (t).
  • the change in the current value in the first ammeter 6 and the second ammeter 7 is measured.
  • the current values in the first ammeter 6 and the second ammeter 7 increase momentarily. It can be determined that 11 is adsorbed to the adsorption plate 3.
  • the actual measurement time t until the force glass substrate 11 is actually attracted to the suction plate 3 is measured by marking the suction voltage pattern V (t) (step S8). Instead of checking the suction status based on the change in the current value of the first ammeter 6 and the second ammeter 7, check the suction status and suction time separately with the position sensor 10. .
  • the calculated holding voltage pattern V (t) and release voltage pattern V (t) are determined as the applied voltage at hr 2 at hold completion time t and the applied voltage at release completion time t (steps S9 and S10). .
  • Step S9 Sl l. For example, if t ⁇ t, the holding voltage V (t) and the release voltage V (t) are
  • the adsorption completion time t and the separation completion time t do not necessarily need to be fixed.
  • the holding voltage pattern V (t) and the disconnection voltage pattern V (t) may be appropriately changed to c h r.
  • the separation voltage pattern V (t) is too large or the separation completion time t r 3 is too long, the glass substrate 11 once detached may be adsorbed again. Therefore, for example, when the actual adsorption time t is shorter than the preset adsorption completion time t,
  • the adsorption voltage pattern is reduced immediately after the actual adsorption time t has elapsed.
  • the applied voltage is changed to V (t), or the application of the release voltage pattern V (t) is completed.
  • FIG. 4 an electric equivalent circuit model of the electrostatic adsorption device for a glass substrate according to the present invention is shown in Fig. 4, and the adsorption force, adsorption voltage, and holding voltage in the electrostatic adsorption method for the glass substrate according to the present invention are shown. A calculation method for obtaining the separation voltage will be described.
  • F can be calculated by the following formula (1) as an electrostatic force applied to the gap d between the glass part (glass substrate 11) and the electrode part (electrodes 1 and 2).
  • F is the adsorption power (NZm 2 )
  • Q is the amount of charge stored in the gap (c)
  • C is the gap
  • V is the gap potential difference (V)
  • is the dielectric constant in vacuum (F / m) go
  • the capacitance C is a function of the gap d between the glass part and the electrode part as shown in the following formula (2).
  • d is the gap distance (m)
  • is the dielectric constant in vacuum (F / m)
  • is the ratio of the target material.
  • the gap d between the glass part and the electrode part is obtained from the deformation amount of the glass substrate 11 predicted or measured in steps S3 and S4, and the capacitance C can be obtained using the obtained gap d. That's fine.
  • the capacitances C and C of the glass part and the electrode part are the gap d in the above formula (2).
  • the capacitances C and C of each element are calculated. It is calculated.
  • resistance components R, R, R of each element connected in parallel with capacitors C, C, C of each element
  • R is the resistance of each element ( ⁇ / ⁇ 2 ), is the electrical resistivity of each element (Q 'm), L is each element e
  • Element thickness (d in the gap part) (m) S is the adsorption area (m 2 ) of each element.
  • the thickness L and the adsorption area S determine the size (length X width X thickness) of the glass substrate 11 and the like. Therefore
  • Resistance R is the material (electrical resistivity p), temperature T, substrate size (thickness L, adsorption e
  • the potential difference V in the gap part is the glass part, g a with respect to the applied voltage V.
  • the potential difference V is a function of the material and temperature of each element, the size of the substrate, and the waveform of the applied voltage V a a
  • the attractive force F which is an electrostatic force, is obtained as a function of the gap d between the glass part and the electrode part, the material and temperature of each part, the temperature, the magnitude, and the waveform of the applied voltage V, as shown in Equation (1). It is done.
  • the conditions for the adsorption and separation of the glass substrate 11 and the value conditions are such that the adsorption force F is sufficiently larger than its own weight, which also requires the density force of the glass substrate 11.
  • the time passing through this is used as the adsorption time t or desorption time t.
  • the function f in the above equation (4) can be obtained analytically in advance, or a calibration curve can be obtained experimentally to obtain the adsorption force for each adsorption or separation input condition. You should prepare in advance.
  • Fig. 5 (a) shows the measurement results of the conventional method
  • Fig. 5 (b) shows the measurement results of this example.
  • the applied voltage pattern of this example is that the adsorption completion time t, the retention completion time t, and the separation completion time t are set to preset times.
  • the applied voltage at each time is fixed, such as voltage V ⁇ V ⁇ V in Fig. 3. cl hi rl
  • the constant value is indicated by a dotted line, and the current measurement value is indicated by a solid line. Looking at the change in the applied current value with respect to this applied voltage, the glass substrate absorbs in a short actual measurement time t after application of the adsorption voltage [VI].
  • the glass substrate is adsorbed in a short actual measurement time t after application of the adsorption voltage [VI]. Since the adsorption is maintained at a holding voltage [V3] smaller than the adsorption voltage [VI] obtained based on the adsorption time t, the applied current is also smaller than the conventional one. For this reason, it is determined based on the adsorption time t that no excessive charge is generated. Even with a separation voltage [—V4] smaller than the conventional separation voltage [V2], the glass substrate can be obtained with a short separation time t. The withdrawal of It is finished.
  • the desorption time t in the adsorption and desorption method of this example is about r ra of the desorption time t in the conventional adsorption and desorption method.
  • FIG. 6 is a schematic diagram showing another example of the embodiment of the electrostatic attraction apparatus for a glass substrate according to the present invention.
  • the diagram is simplified so that the configuration is powerful, and the same components as those shown in FIG. 1 of the first embodiment are denoted by the same reference numerals. Therefore, detailed description of the equivalent configuration is omitted.
  • the glass substrate electrostatic adsorption device of the present example has a configuration substantially equivalent to that of the glass substrate electrostatic adsorption device shown in FIG. 1 of Example 1, but as shown in FIG.
  • the other surface of the suction plate 3 excluding the suction surface that sucks the glass substrate 11 is covered with a metal cover 21 made of a conductive member, and the metal cover 21 is grounded.
  • the surface potential other than the suction surface of the suction plate 3 is set to 0, and particles or the like are charged and attached to the suction plate 3. This can be prevented.
  • the adhesion of the particles is prevented in the adsorption plate 3 in the vicinity of the glass substrate 11, when adsorbing the glass substrate 11 to the adsorption plate 3, the glass substrate 11 and the adsorption surface of the adsorption plate 3 are not affected. It is also possible to prevent particles from being caught in between, and to suppress the influence on the adsorption force. In addition, the adhesion of particles to the glass substrate 11 during the process can be suppressed.
  • the present invention is suitable for an insulating substrate such as a glass substrate, and can be applied to, for example, an organic EL manufacturing apparatus or a liquid crystal manufacturing apparatus using a glass substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 確実に吸着すると共に速やかに離脱させることができるガラス基板の静電吸着装置及び吸着離脱方法を提供する。そのため、ガラス基板の物理的特性に基づき、ガラス基板を吸着するための吸着力を求め、その吸着力を得るために必要な吸着電圧Vc(t)を求めると共に吸着状態を保持する保持電圧Vh(t)、ガラス基板を離脱させる離脱電圧Vr(t)を求める(S1~S7)。実際の吸着実測時間tcを測定し、予め設定された吸着時間t1と異なる場合、実際の吸着実測時間tcに基づき、保持電圧Vh(t)、離脱電圧Vr(t)を再計算する(S8~S11)。

Description

ガラス基板の静電吸着装置及びその吸着離脱方法
技術分野
[0001] 本発明は、ガラス基板の静電吸着装置及びガラス基板の吸着離脱方法に関する。
背景技術
[0002] 半導体基板やガラス基板へのプロセスを行う際には、静電吸着力を利用した静電 吸着装置を用いて、半導体基板やガラス基板を支持台等に吸着させて、半導体基 板やガラス基板を確実に保持するようにして ヽる。
特許文献 1:特開平 06— 085045号公報
特許文献 2:特開平 09— 213780号公報
特許文献 3:特開平 11― 340307号公報
発明の開示
発明が解決しょうとする課題
[0003] 図 7 (a)、 (b)に、従来のガラス基板の静電吸着装置を示す。
従来のガラス基板の静電吸着装置は、複数の正電極 31と複数の負電極 32が内部 に配置されたセラミクス製の吸着板 33と、正電極 31に直流の正電圧を供給する正電 圧電源部 34と、負電極 32に直流の負電圧を供給する負電圧電源部 35とを有するも のである。
[0004] ガラス基板 41を吸着させる際には、ガラス基板 41を吸着板 33の表面に接触させ、 正電圧電源部 34、負電圧電源部 35から正電極 31、負電極 32に直流電圧を印加す ることにより、吸着板 33、ガラス基板 44の互いの対向面に極性の異なる電荷を発生 させ、これらの電荷による静電吸着力により、基板 41を吸着板 33の表面に吸着させ て保持している。例えば、図 7 (b)に示すように、吸着板 33内部の正電極 31と負電極 32を交互に平行に配列させて、 2極式の静電吸着装置を構成することにより、大きな サイズのガラス基板であっても、確実に吸着するようにしている。特に、有機 EL (エレ タトロルミネセンス)素子用の真空蒸着装置においては、ガラス基板 41を吸着板 33の 鉛直下面側に支持することもあり、ガラス基板 41の自重以上の吸着力が、静電吸着 装置に求められる。
[0005] ところが、従来の静電吸着装置においては、吸着時における印加電圧を一定として おり、その吸着力は、図 8に示すように、時間と共に増大し、逆に、吸着板 33からガラ ス基板 41を離脱したいときには、その離脱に時間が力かるという問題があった。
[0006] 又、上述したように、ガラス基板 41を吸着板 33の下面側に吸着させる際には、自重 より大きい吸着力を必要とするが、自重によりガラス基板 41が変形し、ガラス基板 41 を吸着させる際、吸着板 33とガラス基板 41との間にギャップができ、所望の吸着力 が得られない場合もあった。例えば、幅約 600mmのガラス基板 41の自重による変 形を測定してみると、図 9 (a)に示すように、ガラス基板 41の中心部がたわみ、中心 部と端部とにおいて、約 2mmの差が生じる。そして、吸着板 33とガラス基板 41の間 のギャップと吸着力との間には、図 9 (b)に示すような関係があり、吸着板 33とガラス 基板 41との間のギャップが大きくなれば、吸着力も低下してしまい、ギャップが 50 m以上の場合には、自重より大きい吸着力とはいえ、実質的な吸着力は略 0となって しまう。従って、ガラス基板 41の変形の大きさによっては、自重より大きい吸着力が生 じない場合もありうる。特に、近年、ガラス基板 41の大型化に伴い、この問題は重大 になってきている。
[0007] 更に、吸着板 33の近傍には、正電極 31、負電極 32により表面電位が発生しており 、この表面電位により、パーティクルが付着する可能性がある。例えば、吸着板 33に 吸着されたガラス基板 41上の表面電位を、図 7 (b)に示す矢印 Aに沿って計測して みると、図 10に示すように、表面電位が発生しており、特に、その端部において、大 きい表面電位が発生していることがわかる。この表面電位により、例えば、吸着板 33 の吸着面にパーティクルが付着した場合には、吸着板 33とガラス基板 41との間のギ ヤップが生成されて、上述したように、吸着力が小さくなるおそれもある。又、ガラス基 板 41の近傍にパーティクルが存在することにより、ガラス基板 41の吸着離脱の際、パ 一ティクルがガラス基板 41自体に付着するおそれがあり、ガラス基板 41の近傍にパ 一ティクルが存在することは、プロセスの面からも好ましいものではない。又、大きす ぎる表面電位は、ガラス基板 41上に生成されたデバイスに悪影響を与える可能性も ある。 [0008] 力!]えて、図 11 (a)に示すように、ガラス基板 41の体積抵抗率は、温度の上昇と共に 急激に低下するという物性的特性を有している。例えば、ガラス基板 41の温度が 10 °C高くなると、その体積抵抗率は 1桁小さくなり、その結果、同じ印加電圧でも、吸着 に必要な時間が速くなつてしまう。これは、同じ印加電圧でも、ガラス基板 41の温度 によって、ガラス基板 41の吸着力が変化することを意味し、このような特性が、安定し た吸着離脱動作を阻害する原因にもなつている。実際、ガラス基板 41の温度変化に 対する吸着力の変化を調べてみると、図 11 (b)に示すように、数度違うだけで、吸着 力が大きく変化していることがわかる。特に、蒸着プロセス等においては、プロセス中 にガラス基板の温度が室温から 50°C以上の温度に変化するため、吸着離脱に要す る時間が大きく変化することが予想される。従って、このことを考慮しないと、安定して 吸着離脱動作を行うことは難し 、。
[0009] 本発明は上記課題に鑑みなされたもので、確実に吸着すると共に速やかに離脱さ せることができるガラス基板の静電吸着装置及び吸着離脱方法を提供することを目 的とする。
課題を解決するための手段
[0010] 上記課題を解決する第 1の発明に係るガラス基板の静電吸着装置は、
少なくとも 1つ以上の第 1電極と少なくとも 1つ以上の第 2電極とが内部に配置され た誘電体からなる吸着板と、
前記第 1電極に電圧を印加する第 1電源と、
前記第 2電極に、前記第 1電極とは逆の極性の電圧を印加する第 2電源と、 前記吸着板にガラス基板が吸着されたことを検知する吸着検知手段と、 前記ガラス基板の温度を測定又は予測する温度検知手段と、
前記吸着検知手段、前記温度検知手段からの検知結果に基づいて、前記第 1電 源、前記第 2電源の電圧を制御する制御手段とを有し、
前記第 1電極、前記第 2電極への電圧の印加により、前記ガラス基板を前記吸着板 に静電吸着し、又、前記ガラス基板を前記吸着板カゝら離脱させるガラス基板の静電 吸着装置において、
前記制御手段は、 前記ガラス基板の大きさ、比重、電気抵抗率が予め設定されると共に、前記ガラス 基板の吸着に要する吸着時間、前記ガラス基板を吸着保持する保持時間、前記ガラ ス基板の離脱に要する離脱時間が予め設定され、
前記ガラス基板の大きさ、比重及び前記吸着時間に基づいて、前記ガラス基板の 吸着に必要な吸着力を求め、
前記電気抵抗率及び前記温度検知手段により測定又は予測された前記ガラス基 板の温度に基づいて、前記吸着力を得るために必要な吸着電圧を求めると共に、吸 着を保持するための保持電圧及び離脱するための離脱電圧を求め、
前記吸着電圧の印加後、前記吸着検知手段により前記ガラス基板の吸着が検知さ れた際、前記ガラス基板の吸着に要した実測吸着時間を測定し、
予め設定された吸着時間と前記実測吸着時間とを比較し、予め設定された吸着時 間と前記実測吸着時間が異なる場合には、前記実測吸着時間に基づいて、前記保 持電圧及び前記離脱電圧を再計算し、
再計算した保持電圧及び離脱電圧を用いて、前記ガラス基板の吸着維持及び離 脱を制御することを特徴とする。
[0011] 上記課題を解決する第 2の発明に係るガラス基板の静電吸着装置は、
上記第 1の発明に記載のガラス基板の静電吸着装置において、
前記制御手段は、前記吸着電圧、前記保持電圧、前記離脱電圧の少なくとも 1つ を、時間と共に漸減することを特徴とする。
[0012] 上記課題を解決する第 3の発明に係るガラス基板の静電吸着装置は、
上記第 1又は第 2の発明に記載のガラス基板の静電吸着装置において、 前記吸着検知手段を、前記第 1電極に流れる電流を測定する第 1電流計、又は、 第 2電極に流れる電流を測定する第 2電流計の少なくとも一方とすると共に、 前記制御手段は、前記第 1電流計、又は、前記第 2電流計に流れる電流値の変化 を検出して、前記吸着板に前記ガラス基板が吸着されたことを検知することを特徴と する。
[0013] 上記課題を解決する第 4の発明に係るガラス基板の静電吸着装置は、
上記第 1又は第 2の発明に記載のガラス基板の静電吸着装置において、 前記吸着検知手段を、前記吸着板の吸着面近傍に設けた位置センサとすると共に 前記制御手段は、前記位置センサを用いて、前記吸着板に前記ガラス基板が吸着 されたことを検知することを特徴とする。
[0014] 上記課題を解決する第 5の発明に係るガラス基板の静電吸着装置は、
上記第 1乃至第 4のいずれかの発明に記載のガラス基板の静電吸着装置において 更に、前記ガラス基板の変形量を予測又は測定する変形検知手段を設け、 前記制御手段は、予測又は測定された前記ガラス基板の変形量に基づいて、前記 吸着力を求めることを特徴とする。
[0015] 上記課題を解決する第 6の発明に係るガラス基板の静電吸着装置は、
上記第 1乃至第 5のいずれかの発明に記載のガラス基板の静電吸着装置において 前記吸着板の吸着面以外の表面を覆うと共に接地された導電性部材を設けたこと を特徴とする。
[0016] 上記課題を解決する第 7の発明に係るガラス基板の吸着離脱方法は、
ガラス基板の大きさ、比重、電気抵抗率を予め設定すると共に、前記ガラス基板の 吸着に要する吸着時間、前記ガラス基板を吸着保持する保持時間、前記ガラス基板 の離脱に要する離脱時間を予め設定し、
前記ガラス基板の大きさ、比重及び前記吸着時間に基づいて、前記ガラス基板の 吸着に必要な吸着力を求め、
前記ガラス基板の温度を測定又は予測し、
前記電気抵抗率及び測定又は予測された前記ガラス基板の温度に基づ!ヽて、前 記吸着力を得るために必要な吸着電圧を求めると共に、吸着を保持するための保持 電圧及び離脱するための離脱電圧を求め、
前記吸着電圧の印加後、前記ガラス基板の前記吸着板への吸着を検知して、前記 ガラス基板の吸着に要した実測吸着時間を測定し、
予め設定された吸着時間と前記実測吸着時間とを比較し、予め設定された吸着時 間と前記実測吸着時間が異なる場合には、前記実測吸着時間に基づいて、前記保 持電圧及び前記離脱電圧を再計算し、
誘電体からなる吸着板の内部に配置され、互いに逆の極性となる少なくとも 1っ以 上の第 1電極と少なくとも 1つ以上の第 2電極とに、再計算した保持電圧及び離脱電 圧を印加して、前記ガラス基板の吸着維持及び離脱を行うことを特徴とする。
[0017] 上記課題を解決する第 8の発明に係るガラス基板の吸着離脱方法は、
上記第 6の発明に記載のガラス基板の吸着離脱方法にぉ 、て、
前記吸着電圧、前記保持電圧、前記離脱電圧の少なくとも 1つを、時間と共に漸減 することを特徴とする。
[0018] 上記課題を解決する第 9の発明に係るガラス基板の吸着離脱方法は、
上記第 7又は第 8の発明に記載のガラス基板の吸着離脱方法において、 前記第 1電極、又は、前記第 2電極に流れる電流値の少なくとも一方の変化を検出 して、前記ガラス基板の前記吸着板への吸着を検知することを特徴とする。
[0019] 上記課題を解決する第 10の発明に係るガラス基板の吸着離脱方法は、
上記第 7又は第 8の発明に記載のガラス基板の吸着離脱方法において、 前記吸着板の吸着面近傍に設けた位置センサにより、前記ガラス基板の前記吸着 板への吸着を検知することを特徴とする。
[0020] 上記課題を解決する第 11の発明に係るガラス基板の吸着離脱方法は、
上記第 7乃至第 10のいずれかの発明に記載のガラス基板の吸着離脱方法におい て、
前記ガラス基板の変形量を予測又は測定し、予測又は測定された前記ガラス基板 の変形量に基づいて、前記吸着力を求めることを特徴とする。
[0021] 上記課題を解決する第 12の発明に係るガラス基板の吸着離脱方法は、
上記第 7乃至第 11の 、ずれかの発明に記載のガラス基板の吸着離脱方法にお!ヽ て、
前記吸着板の吸着面以外の表面を覆うと共に接地された導電性部材により、前記 吸着板の吸着面以外の表面の電位を 0とすることを特徴とする。
発明の効果 [0022] 本発明によれば、ガラス基板を吸着させる際、大きさ、比重、電気抵抗率、基板温 度、変形量等を把握した上で、必要な吸着力及び吸着力に必要な電圧を求め、実 際に要した吸着時間に基づき、吸着保持及び離脱に必要な電圧を制御するので、 基板の温度変化や吸着時間にばらつきがあっても、吸着離脱動作を速やかに安定 して行うことができる。
[0023] 又、本発明によれば、吸着板の吸着面以外の面を金属等の導電性部材でシールド して、 0電位とするので、吸着板にパーティクルが付着することを防止し、ガラス基板 の吸着離脱動作を阻害しないようにすることができる。
図面の簡単な説明
[0024] [図 1]本発明に係るガラス基板の静電吸着装置の実施形態の一例を示す概略図であ る。
[図 2]本発明に係るガラス基板の吸着離脱方法の実施形態の一例を説明するフロー チャートである。
[図 3]本発明に係るガラス基板の吸着離脱方法における印加電圧のパターンを説明 する図である。
[図 4]本発明に係るガラス基板の静電吸着装置の電気等価回路モデルの図である。
[図 5]従来の吸着離脱方法におけるガラス基板の吸着離脱時間の測定結果と、本発 明に係る吸着離脱方法におけるガラス基板の吸着離脱時間の測定結果である。
[図 6]本発明に係るガラス基板の静電吸着装置の実施形態の他の一例を示す概略 図である。
[図 7]従来のガラス基板の静電吸着装置を示す概略図である。
[図 8]吸着力と吸着時間の関係を示すグラフである。
[図 9]ガラス基板の自重によるたわみと、ギャップによる吸着力の変化を示すグラフで ある。
[図 10]静電吸着装置の吸着面におけるガラス基板の表面電位を示すグラフである。
[図 11]温度によるガラス基板の体積抵抗率の変化と吸着力の変化を示すグラフであ る。
符号の説明 [0025] 1 第 1電極、 2 第 2電極、 3 吸着板、 4 第 1電源部、 5 第 2電源 部、 6 第 1電流計、 7 第 2電流計、 8 制御部、 9 温度センサ、 10 位置センサ、 11 ガラス基板、 21 金属カバー
発明を実施するための最良の形態
[0026] 本発明に係るガラス基板の静電吸着装置及び吸着離脱方法の実施形態のいくつ かを、図 1〜図 6を参照して説明を行う。
実施例 1
[0027] 図 1は、本発明に係るガラス基板の静電吸着装置の概略図である。
図 1に示すように、本実施例のガラス基板の静電吸着装置は、少なくとも 1つ以上の 第 1電極 1と少なくとも 1つ以上の第 2電極 2とが内部に配置され、セラミクス製等の誘 電体からなる吸着板 3と、第 1電極 1に電圧を供給する第 1電源部 4と、第 1電極 1〖こ 印加する電圧と逆の極性の電圧を第 2電極 2に供給する第 2電源部 5と、第 1電極 1 に流れる電流を測定する第 1電流計 6と、第 2電極 2に流れる電流を測定する第 2電 流計 7と、第 1電流計 6、第 2電流計 7の電流値を計測すると共に第 1電源部 4、第 2電 源部 5から出力される電圧を制御する制御部 8 (制御手段)とを有するものである。
[0028] 本実施例のガラス基板の静電吸着装置は、吸着板 3内部の第 1電極 1と第 2電極 2 とを交互に平行に配列することにより、 2極式の静電吸着装置を構成しており、大きな サイズのガラス基板 11であっても、確実に吸着できるようにしている。なお、ガラス基 板 11が更に大きい場合には、複数の第 1電極 1、複数の第 2電極 2を有する吸着板 3 を更に複数配置し、複数の吸着板 3により、大きいガラス基板 11を吸着するようにし てもよい。
[0029] 又、第 1電源部 4、第 2電源部 5は、一方の極性の直流電圧だけでなぐ逆の極性の 直流電圧も印加可能なものであり、更に、交流電圧も印加可能なものである。
[0030] 又、吸着板 3の近傍には、ガラス基板 11の温度を測定する、少なくとも 1つ以上の 温度センサ 9 (赤外線式又は熱電対式;温度検知手段)が設けられており、ガラス基 板 11の温度を測定して、制御部 8に入力して 、る。
[0031] 又、同じぐ吸着板 3の近傍には、ガラス基板 11の変形量を測定する、少なくとも 1 つ以上の位置センサ 10 (変形検知手段)が設けられており、ガラス基板 11の変形量 を測定して、制御部 8に入力している。
[0032] 又、制御部 8は、第 1電流計 6、又は、第 2電流計 7で測定される電流値の少なくとも 一方の変化を検知することで、ガラス基板 11が吸着板 3に吸着したかどうか検知可 能であり、この場合、第 1電流計 6、第 2電流計 7を吸着検知手段として機能させてい る。若しくは、上記位置センサ 10を吸着検知手段として用い、ガラス基板 11が吸着 板 3に吸着したかどうかを検知してもよい。
[0033] ガラス基板 11を吸着させる際には、ガラス基板 11を吸着板 3の表面に接触させ、第 1電極 1、第 2電極 2に第 1電源部 4、第 2電源部 5から、直流電圧を印加することによ り、吸着板 3、ガラス基板 14の互いの対向面に極性の異なる電荷が発生させ、これら の電荷による静電吸着力により、基板 11を吸着板 3の表面に吸着させて保持して 、 る。そして、吸着したガラス基板 11を離脱させる際には、吸着時に印カロした電圧と逆 極性の直流電圧又は交流電圧を第 1電極 1、第 2電極 2に印加して、吸着時に蓄積さ れた電荷を減少させて、ガラス基板 11を離脱させて 、る。
[0034] 次に、上記構成の静電吸着装置におけるガラス基板の吸着離脱方法について、図 2、図 3を参照して説明を行う。
[0035] 例えば、有機 EL (エレクトロルミネセンス)素子用の真空蒸着装置においては、上 記構成の静電吸着装置を用い、ガラス基板 11を吸着板 3の鉛直下面側に吸着して、 ガラス基板 11の鉛直下面側に蒸着プロセスを行って ヽる。ガラス基板 11を吸着板 3 の鉛直下面側に吸着する場合、静電吸着装置には、ガラス基板 11の自重以上の吸 着力が求められる。し力しながら、強すぎる吸着力は、ガラス基板 11の離脱を阻害す るおそれが有る。
[0036] そこで、本発明にお ヽては、ガラス基板 11の物性を考慮して、ガラス基板 11の大き さ (縦 X横 X厚み)、材質 (比重、電気抵抗率)を基本的な入力条件とし、更に、吸着 が完了する吸着完了時間 t、吸着状態の保持を完了する保持完了時間 t、離脱を完
1 2 了する離脱完了時間 t、ガラス基板 11の変形量、ガラス基板 11の温度を考慮して、
3
吸着離脱時に用いる電圧及び電圧パターンを制御して 、る。
[0037] 具体的には、ガラス基板 11へのプロセス開始前に、ガラス基板 11の大きさ(縦 X横
X厚み)、材質 (比重、電気抵抗率)を入力し (ステップ S1)、ガラス基板 11へのプロ セスに応じて、吸着完了時間 t、保持完了時間 t、離脱完了時間 tを入力する (ステ
1 2 3
ップ S2)。吸着完了時間 tは、電圧印加開始 (t=0)力もガラス基板 11が吸着される
1
までの時間であり、保持完了時間 tは、電圧印加開始力 ガラス基板 11の吸着状態
2
の保持が完了するまでの時間であり、離脱完了時間 tは、電圧印加開始力もガラス
3
基板 11が離脱されるまでの時間である。なお、図 3に示すように、吸着に要する間の 吸着時間は、吸着完了時間 tであり、吸着状態を保持する間の保持時間は、 [保持
1
完了時間 t 吸着完了時間 t ]となり、離脱に要する間の離脱時間は、 [離脱完了時
2 1
間 t一保持完了時間 t ]となる。
3 2
[0038] 次に、ガラス基板 11の大きさ(縦 X横 X厚み)、材質 (比重)に基づいて、ガラス基 板 11の変形量を予測する (ステップ S3)。又は、位置センサ 10を用いて、ガラス基板 11の変形量を実測してもよい (ステップ S4)。若しくは、ガラス基板 11の変形量を、予 め、実測しておいてもよい。なお、位置センサ 10は、少なくとも、変形量が一番大きい と予測されるガラス基板 11の中央部を測定できるように配置することが望ま 、。そし て、ガラス基板 11の変形量を予測又は測定することにより、ガラス基板 11の変形に 伴う吸着力の変化を求める。
[0039] 次に、ガラス基板 11の大きさ(縦 X横 X厚み)、材質 (比重量、電気抵抗率)、ガラ ス基板 11の吸着完了時間 t、保持完了時間 t、離脱完了時間 tに基づいて、ガラス
1 2 3
基板 11の温度変化を予測する (ステップ S5)。又は、熱電対 9を用いて、ガラス基板 11の温度を実測してもよい (ステップ S6)。そして、ガラス基板 11の温度を予測又は 測定することにより、ガラス基板 11の温度変化に伴う電気抵抗率の変化、更には、吸 着力の変化を求める。
[0040] 上記ステップで求めた条件下にお!/、て、ガラス基板 11を吸着する最適な吸着力と なるように、吸着時間における吸着電圧パターン V (t)を求める。そして、吸着時間に おける吸着電圧パターン V (t)に基づいて、保持時間における保持電圧パターン V c h
(t)と、離脱時間における離脱電圧パターン V (t)を求める (ステップ S 7)。吸着電圧 パターン V (t)、保持電圧パターン V (t)、離脱電圧パターン V (t)は、図 3に示す電 c h r 圧 V 、V 、Vのように、一定であってもよいし、図 3に示す電圧 V 、V 、Vのように cl hi rl c2 h2 r2
、時間と共に印加電圧を漸減させてもよい。特に、ガラス基板 11における吸着力の変 化を考慮すると、吸着電圧パターン V (t)は、保持電圧パターン V (t)より大きいこと c h
が望ましぐ保持電圧パターン V (t)は、印加時間と共に漸減させることが望ましい。
h
[0041] 吸着電圧パターン V (t)を印加した後、第 1電流計 6、第 2電流計 7における電流値 の変化を計測する。後述の図 5からもわ力るように、ガラス基板 11が吸着板 3に吸着 する際には、第 1電流計 6、第 2電流計 7における電流値が一瞬大きくなり、これにより 、ガラス基板 11が吸着板 3に吸着したことが判定できる。このとき、吸着電圧パターン V (t)を印カロして力 ガラス基板 11が吸着板 3に実際吸着するまでの吸着実測時間 t を測定する (ステップ S8)。なお、第 1電流計 6、第 2電流計 7の電流値の変化に基づ く吸着状態の確認に代えて、別途、位置センサ 10で、吸着状態及び吸着時間を確 認するようにしてちょい。
[0042] t =tであれば、実際の吸着力が上記ステップにおける予測通りであり、 tを用いて
1 c 1 計算した保持電圧パターン V (t)、離脱電圧パターン V (t)を、保持完了時間 tにお h r 2 ける印加電圧、離脱完了時間 tにおける印加電圧と決定する (ステップ S9、 S10)。
3
[0043] t =tでなければ、実際の吸着力が上記ステップにおける予測と異なるため、実測
1 c
値 tを用いて、保持電圧パターン V (t)、離脱電圧パターン V (t)を再計算し、これら c h r
を、保持完了時間 tにおける印加電圧、離脱完了時間 tにおける印加電圧と決定す
2 3
る (ステップ S9、 Sl l)。例えば、 t <tの場合は、保持電圧 V (t)、離脱電圧 V (t)は
1 c h r
、より大きくなり、 t >tの場合は、保持電圧 V (t)、離脱電圧 V (t)は、より小さくなる
1 c h r
[0044] なお、吸着完了時間 t、離脱完了時間 tは必ずしも固定する必要はなぐこの吸着
1 3
実測時間 t応じて、保持電圧パターン V (t)、離脱電圧パターン V (t)と共に、適宜 c h r に変更してもよい。特に、離脱電圧パターン V (t)が大きすぎたり、離脱完了時間 t r 3 長すぎたりすると、一旦離脱したガラス基板 11を再び吸着するおそれもある。従って 、例えば、予め設定した吸着完了時間 tより、吸着実測時間 tが短い場合には、当初
1 c
の吸着完了時間 tより短くして、吸着実測時間 tの経過後、即座に、保持電圧パター
1 c
ン V (t)に印加電圧を変更したり、又、離脱電圧パターン V (t)の印加が完了する離 h r
脱完了時間 tをより短い時間に設定し直したりすることが望ましい。
3
[0045] 吸着離脱動作を安定して確実に行うためには、上述した条件に基づ!/、て、適切な 印加電圧、時間を設定することが重要である。本発明においては、上述したように、 ガラス基板 11の吸着完了時間 tに応じて、保持電圧パターン V (t)、離脱電圧バタ c h
ーン V (t)、更には、吸着完了時間 t、離脱完了時間 t等を変更するので、ガラス基 r 1 3
板 11を確実に吸着する吸着力を確保すると共に、吸着時に過剰に電荷が生成され ることはなく、離脱の際には、速やか、かつ、確実に、ガラス基板 11を離脱させること ができる。
[0046] ここで、本発明に係るガラス基板の静電吸着装置の電気等価回路モデルを図 4〖こ 示して、本発明に係るガラス基板の静電吸着方法における吸着力、吸着電圧、保持 電圧、離脱電圧を求める計算方法を説明する。
[0047] 最初に、吸着力とギャップ部の電位差との関係を求める。
具体例として、図 4に示すように、吸着電圧が印加される各要素 (ガラス部、ギャップ 部、電極部)を、抵抗とコンデンサの並列回路として表現した電気等価回路モデルを 考えると、吸着力 Fは、ガラス部 (ガラス基板 11)と電極部 (電極 1、 2)との間のギャップ dに加わる静電力として、下記式(1)で計算できる。
F = Qソ (2 ε ) = (C V ) (2 ε ) · · · 式 (1
0 1 gソ )
o
なお、 Fは吸着力(NZm2)、 Qはギャップに蓄えられる電荷量 (c)、 Cはギャップ部
1
の静電容量 (FZm2)、 Vはギャップ部の電位差 (V)、 ε は真空中の誘電率 (F/m) g o
である。
[0048] 又、静電容量 Cは、下記(2)式に示す通り、ガラス部と電極部の間のギャップ dの関
1
数として表される。
C = ( ε - ε ) /ά · · · 式(2)
1 0 s
なお、 dはギャップの距離 (m)、 ε は真空中の誘電率 (F/m)、 ε は対象材質の比
0 s
誘電率 (F/m)である。
例えば、上記ステップ S3、 S4で予測又は実測されたガラス基板 11の変形量から、 ガラス部と電極部の間のギャップ dを求め、求められたギャップ dを用いて、上記静電 容量 Cを求めればよい。
1
又、ガラス部、電極部の静電容量 C、 Cは、上記式(2)において、ギャップ dを、ガ
2 3
ラス部の厚み、電極部の厚みに置き換えることにより、各要素の静電容量 C、 Cが計 算される。
[0049] 又、各要素のコンデンサ C、 C、 Cと並列接続される各要素の抵抗成分 R、 R、 R
1 2 3 1 2 3 は、電気抵抗率 P を用いて下記式(3)で表される。
e
R= ( p -L) /S · · · 式(3)
e 0
なお、 Rは各要素の抵抗(Ω /πι2)、 は各要素の電気抵抗率(Q 'm)、Lは各要 e
素の厚み (ギャップ部では d) (m)、 Sは各要素の吸着面積 (m2)である。
0
電気抵抗率 P
eは、各要素の材質や温度の関数として一意に与えられ、又、厚み L や吸着面積 Sは、ガラス基板 11の大きさ(縦 X横 X厚み)等力も決定される。従って
0
、抵抗 Rは、式 (3)から、材質 (電気抵抗率 p )、温度 T、基板の大きさ (厚み L、吸着 e
面積 S )等の関数として与えることができる。
0
[0050] 次に、ギャップ部の電位差 Vと印加電圧 Vとの関係を求める。
g a
ギャップ部の電位差 Vは、図 4からもゎカゝるように、印加電圧 Vに対して、ガラス部、 g a
ギャップ部、電極部の各インピーダンスに応じて分担された過渡的な (時間変化する) 電圧として求められる。要素毎の各インピーダンスは、コンデンサの静電容量 C、 C
1 2
、 C及び抵抗 R、 R、 Rで決定されるので、上記式(2)、 (3)を考慮すると、ギャップ
3 1 2 3
部の電位差 Vは、各要素の材質や温度、基板の大きさ、印加電圧 Vの波形の関数 a a
として求められる。
[0051] 次に、吸着力 F、印加電圧 Vを求める式及び吸着、離脱条件との関係を求める。
a
静電力である吸着力 Fは、式(1)からわ力るように、ガラス部と電極部の間のギヤッ プ d、各部の材質や温度、大きさ及び印加電圧 Vの波形の関数として求められる。
a
F=f (d、 S、 p 、L、T、 V ) · · · 式(4)
0 e a
[0052] 上記式 (4)を用いる予測では、ガラス基板 11の吸着、離脱のしき 、値条件として、 吸着力 Fが、ガラス基板 11の密度力も求められる自重よりも、十分大きくなる条件を 設け、これを通過した時間を吸着時間 t又は脱離時間 tとして使用する。
なお、上記式 (4)の関数 fについては、事前に解析的に求めておくか、又は、実験 的に校正曲線を求めておき、各吸着あるいは離脱時の入力条件に対する吸着力を 求められるように準備しておけばよい。
[0053] 本実施例の効果を確認するため、従来の吸着離脱方法におけるガラス基板の吸着 離脱の時間を測定すると共に、本実施例の一番単純な電圧パターンを用いて、ガラ ス基板の吸着離脱の時間を測定してみた。図 5 (a)が従来法における測定結果であ り、図 5 (b)が本実施例の測定結果である。なお、本実施例の印加電圧のパターンと しては、吸着完了時間 t、保持完了時間 t、離脱完了時間 tを予め設定した時間に
1 2 3
固定し、各時間における印加電圧を、図 3における電圧 V →V →Vのように、一定 cl hi rl
としたものである。又、図 5 (a)、 (b)において、具体的な数値は省略した力 電圧軸、 時間軸は共に同じスケールとしている。
[0054] 図 5 (a)に示すように、従来の吸着離脱方法では、吸着動作開始 (t=0)と共に吸 着電圧 [VI]にて電圧を印加し、離脱動作開始 (t = t )まで、吸着電圧 [VI]を維持
2a
し、離脱動作開始 (t=t )と共に離脱電圧 [ V2 (V2は正数) ]にて電圧を印加し、
2a
離脱動作終了 (t=t )まで、離脱電圧 [ V2]を維持している。なお、図中、電圧設
3a
定値を点線で、電流測定値を実線で示している。この印加電圧に対する印加電流値 の変化を見ると、吸着電圧 [VI]の印加後、短い吸着実測時間 tでガラス基板が吸 ca
着しているにもかかわらず、離脱動作開始 (t=t )まで、吸着電圧 [VI]が維持され
2a
ている。そのため、多くの電荷が生成されてしまい、離脱動作終了(t=t )までにガラ
3a ス基板が離脱することができず、離脱動作終了 (t=t )後、しばらく時間が過ぎた後
3a
、やっと、離脱できている。
[0055] これに対して、本実施例の吸着離脱方法では、図 5 (b)に示すように、吸着動作開 始 (t = 0)と共に吸着電圧 [VI]にて電圧を印加し、吸着検知後、吸着完了時間 (t= t )まで、吸着電圧 [VI]を維持した後、吸着完了時間 (t=t )後、離脱動作開始 (t=
1 1
まで、保持電圧 [V3]を維持し、離脱動作開始 (t=t )と共に離脱電圧 [-V4 (V4
2 2
は正数) ]にて電圧を印加し、離脱動作終了(t=t )まで、離脱電圧 [—V4]を維持し
3
ている。この印加電圧に対する印加電流値の変化を見ると、吸着電圧 [VI]の印加 後、ガラス基板は短い吸着実測時間 tで吸着している。そして、吸着時間 tに基づい て求められた、吸着電圧 [VI]より小さ ヽ保持電圧 [V3]で吸着を維持するようにして いるので、印加される電流も従来と比較すると小さくなつている。そのため、過剰に電 荷が生成されることはなぐ吸着時間 tに基づいて求められ、従来の離脱電圧 [ V2 ]より小さい離脱電圧 [—V4]であっても、短い離脱時間 tで、ガラス基板の離脱が終 了している。
[0056] 従来の吸着離脱方法と本実施例の吸着離脱方法を比較してみると、本実施例の吸 着離脱方法における離脱時間 tは、従来の吸着離脱方法における離脱時間 tの約 r ra
1Z6となっており、本実施例の吸着離脱方法における効果が顕著であることがわか る。又、離脱時間が短いことは、過剰な電荷が生成されていないことも意味し、単に、 離脱時間が早くなるだけでなぐ過剰な表面電位が生成されることもないため、ガラス 基板 11上のデバイスへの影響を低減できる点、パーティクル付着を低減できる点等 、プロセスの面でも効果がある。
実施例 2
[0057] 図 6は、本発明に係るガラス基板の静電吸着装置の実施形態の他の一例を示す概 略図である。なお、図 6においては、その構成がわ力るように、図を簡略化すると共に 、実施例 1の図 1に示した構成と同等のものには同じ符号を付してある。従って、同等 の構成のものについて、その詳細な説明は省略する。
[0058] 本実施例のガラス基板の静電吸着装置は、実施例 1の図 1に示したガラス基板の 静電吸着装置と略同等の構成を有するものであるが、図 6に示すように、吸着板 3に おいて、ガラス基板 11を吸着する吸着面を除く他の表面を、導電性部材からなる金 属カバー 21で覆うと共に、金属カバー 21を接地したものである。吸着板 3の吸着面 以外を、金属カバー 21でシールドすることにより、吸着板 3の吸着面以外の表面電位 を 0とすることになり、吸着板 3にパーティクル等が帯電して付着することを防止するこ とがでさる。
[0059] 従って、ガラス基板 11の近傍における吸着板 3において、パーティクルの付着を防 止するので、ガラス基板 11を吸着板 3に吸着する際、ガラス基板 11と吸着板 3の吸 着面との間にパーティクルを巻き込むことも防止され、吸着力への影響も抑制するこ とができる。又、プロセス時におけるガラス基板 11へのパーティクルの付着も抑制す ることがでさる。
産業上の利用可能性
[0060] 本発明は、ガラス基板等の絶縁性基板に好適なものであり、例えば、ガラス基板を 用いる有機 EL製造装置や液晶製造装置に適用可能なものである。

Claims

請求の範囲
少なくとも 1つ以上の第 1電極と少なくとも 1つ以上の第 2電極とが内部に配置され た誘電体からなる吸着板と、
前記第 1電極に電圧を印加する第 1電源と、
前記第 2電極に、前記第 1電極とは逆の極性の電圧を印加する第 2電源と、 前記吸着板にガラス基板が吸着されたことを検知する吸着検知手段と、 前記ガラス基板の温度を測定又は予測する温度検知手段と、
前記吸着検知手段、前記温度検知手段からの検知結果に基づいて、前記第 1電 源、前記第 2電源の電圧を制御する制御手段とを有し、
前記第 1電極、前記第 2電極への電圧の印加により、前記ガラス基板を前記吸着板 に静電吸着し、又、前記ガラス基板を前記吸着板カゝら離脱させるガラス基板の静電 吸着装置において、
前記制御手段は、
前記ガラス基板の大きさ、比重、電気抵抗率が予め設定されると共に、前記ガラス 基板の吸着に要する吸着時間、前記ガラス基板を吸着保持する保持時間、前記ガラ ス基板の離脱に要する離脱時間が予め設定され、
前記ガラス基板の大きさ、比重及び前記吸着時間に基づいて、前記ガラス基板の 吸着に必要な吸着力を求め、
前記電気抵抗率及び前記温度検知手段により測定又は予測された前記ガラス基 板の温度に基づいて、前記吸着力を得るために必要な吸着電圧を求めると共に、吸 着を保持するための保持電圧及び離脱するための離脱電圧を求め、
前記吸着電圧の印加後、前記吸着検知手段により前記ガラス基板の吸着が検知さ れた際、前記ガラス基板の吸着に要した実測吸着時間を測定し、
予め設定された吸着時間と前記実測吸着時間とを比較し、予め設定された吸着時 間と前記実測吸着時間が異なる場合には、前記実測吸着時間に基づいて、前記保 持電圧及び前記離脱電圧を再計算し、
再計算した保持電圧及び離脱電圧を用いて、前記ガラス基板の吸着維持及び離 脱を制御することを特徴とするガラス基板の静電吸着装置。
[2] 請求項 1に記載のガラス基板の静電吸着装置にぉ 、て、
前記制御手段は、前記吸着電圧、前記保持電圧、前記離脱電圧の少なくとも 1つ を、時間と共に漸減することを特徴とするガラス基板の静電吸着装置。
[3] 請求項 1又は請求項 2に記載のガラス基板の静電吸着装置にぉ 、て、
前記吸着検知手段を、前記第 1電極に流れる電流を測定する第 1電流計、又は、 第 2電極に流れる電流を測定する第 2電流計の少なくとも一方とすると共に、 前記制御手段は、前記第 1電流計、又は、前記第 2電流計に流れる電流値の変化 を検出して、前記吸着板に前記ガラス基板が吸着されたことを検知することを特徴と するガラス基板の静電吸着装置。
[4] 請求項 1又は請求項 2に記載のガラス基板の静電吸着装置にぉ 、て、
前記吸着検知手段を、前記吸着板の吸着面近傍に設けた位置センサとすると共に 前記制御手段は、前記位置センサを用いて、前記吸着板に前記ガラス基板が吸着 されたことを検知することを特徴とするガラス基板の静電吸着装置。
[5] 請求項 1乃至請求項 4のいずれかに記載のガラス基板の静電吸着装置において、 更に、前記ガラス基板の変形量を予測又は測定する変形検知手段を設け、 前記制御手段は、予測又は測定された前記ガラス基板の変形量に基づいて、前記 吸着力を求めることを特徴とするガラス基板の静電吸着装置。
[6] 請求項 1乃至請求項 5のいずれかに記載のガラス基板の静電吸着装置において、 前記吸着板の吸着面以外の表面を覆うと共に接地された導電性部材を設けたこと を特徴とするガラス基板の静電吸着装置。
[7] ガラス基板の大きさ、比重、電気抵抗率を予め設定すると共に、前記ガラス基板の 吸着に要する吸着時間、前記ガラス基板を吸着保持する保持時間、前記ガラス基板 の離脱に要する離脱時間を予め設定し、
前記ガラス基板の大きさ、比重及び前記吸着時間に基づいて、前記ガラス基板の 吸着に必要な吸着力を求め、
前記ガラス基板の温度を測定又は予測し、
前記電気抵抗率及び測定又は予測された前記ガラス基板の温度に基づ!ヽて、前 記吸着力を得るために必要な吸着電圧を求めると共に、吸着を保持するための保持 電圧及び離脱するための離脱電圧を求め、
前記吸着電圧の印加後、前記ガラス基板の前記吸着板への吸着を検知して、前記 ガラス基板の吸着に要した実測吸着時間を測定し、
予め設定された吸着時間と前記実測吸着時間とを比較し、予め設定された吸着時 間と前記実測吸着時間が異なる場合には、前記実測吸着時間に基づいて、前記保 持電圧及び前記離脱電圧を再計算し、
誘電体からなる吸着板の内部に配置され、互いに逆の極性となる少なくとも 1っ以 上の第 1電極と少なくとも 1つ以上の第 2電極とに、再計算した保持電圧及び離脱電 圧を印カ卩して、前記ガラス基板の吸着維持及び離脱を行うことを特徴とするガラス基 板の吸着離脱方法。
[8] 請求項 7に記載のガラス基板の静電吸着方法にぉ 、て、
前記吸着電圧、前記保持電圧、前記離脱電圧の少なくとも 1つを、時間と共に漸減 することを特徴とするガラス基板の静電吸着方法。
[9] 請求項 7又は請求項 8に記載のガラス基板の吸着離脱方法にぉ 、て、
前記第 1電極、又は、前記第 2電極に流れる電流値の少なくとも一方の変化を検出 して、前記ガラス基板の前記吸着板への吸着を検知することを特徴とするガラス基板 の吸着離脱方法。
[10] 請求項 7又は請求項 8に記載のガラス基板の吸着離脱方法にぉ 、て、
前記吸着板の吸着面近傍に設けた位置センサにより、前記ガラス基板の前記吸着 板への吸着を検知することを特徴とするガラス基板の吸着離脱方法。
[11] 請求項 7乃至請求項 10のいずれかに記載のガラス基板の吸着離脱方法において 前記ガラス基板の変形量を予測又は測定し、予測又は測定された前記ガラス基板 の変形量に基づいて、前記吸着力を求めることを特徴とするガラス基板の吸着離脱 方法。
[12] 請求項 7乃至請求項 11の 、ずれかに記載のガラス基板の吸着離脱方法にお!、て 前記吸着板の吸着面以外の表面を覆うと共に接地された導電性部材により、前記 吸着板の吸着面以外の表面の電位を 0とすることを特徴とするガラス基板の吸着離 脱方法。
PCT/JP2006/325957 2006-03-20 2006-12-26 ガラス基板の静電吸着装置及びその吸着離脱方法 WO2007108192A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680053935XA CN101401198B (zh) 2006-03-20 2006-12-26 用于玻璃基板的静电吸引设备和吸引和释放玻璃基板的方法
US12/225,167 US7995324B2 (en) 2006-03-20 2006-12-26 Electrostatic attraction apparatus for glass substrate and method of attracting and releasing the same
EP06843341.6A EP1998365B1 (en) 2006-03-20 2006-12-26 Electrostatic attraction apparatus for glass substrate and method for attracting and releasing such glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-076033 2006-03-20
JP2006076033A JP4884811B2 (ja) 2006-03-20 2006-03-20 ガラス基板の静電吸着装置及びその吸着離脱方法

Publications (1)

Publication Number Publication Date
WO2007108192A1 true WO2007108192A1 (ja) 2007-09-27

Family

ID=38522229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325957 WO2007108192A1 (ja) 2006-03-20 2006-12-26 ガラス基板の静電吸着装置及びその吸着離脱方法

Country Status (7)

Country Link
US (1) US7995324B2 (ja)
EP (1) EP1998365B1 (ja)
JP (1) JP4884811B2 (ja)
KR (1) KR100995176B1 (ja)
CN (1) CN101401198B (ja)
TW (1) TW200810000A (ja)
WO (1) WO2007108192A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246583B2 (ja) * 2008-02-29 2013-07-24 旭硝子株式会社 ガラス基板吸着テーブル、及びガラス基板加工方法
KR101125430B1 (ko) * 2009-09-04 2012-03-28 주식회사 디엠에스 피처리물의 디척킹과 함께 반응 챔버 내부 및 정전 척의 드라이 클리닝을 실행하는 플라즈마 반응기의 피처리물 디척킹 장치 및 방법
WO2011031589A2 (en) * 2009-09-10 2011-03-17 Lam Research Corporation Methods and arrangement for detecting a wafer-released event within a plasma processing chamber
JP5401343B2 (ja) * 2010-01-28 2014-01-29 株式会社日立ハイテクノロジーズ 静電チャック用電源回路、及び静電チャック装置
US20140064905A1 (en) * 2011-01-10 2014-03-06 Sri International Electroadhesive System for Capturing Objects
DE102011050322B4 (de) 2011-05-12 2022-02-17 Hanwha Q Cells Gmbh Substrataufnahmeverfahren und Substrataufnahmevorrichtung
JP5592833B2 (ja) * 2011-05-20 2014-09-17 株式会社日立ハイテクノロジーズ 荷電粒子線装置および静電チャック装置
DE102012109073A1 (de) * 2012-09-26 2014-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Betrieb einer Greifvorrichtung sowie elektrostatische Greifvorrichtung
JP2014107382A (ja) * 2012-11-27 2014-06-09 Fuji Electric Co Ltd 半導体基板の脱離方法
CN107534002A (zh) 2015-02-25 2018-01-02 康宁股份有限公司 用于将衬底静电地卡紧到移动载体的装置和方法
KR101960194B1 (ko) * 2017-11-29 2019-03-19 캐논 톡키 가부시키가이샤 성막장치, 성막방법, 및 유기 el 표시장치의 제조방법
KR102008581B1 (ko) * 2017-11-29 2019-08-07 캐논 톡키 가부시키가이샤 성막장치, 성막방법, 및 유기 el 표시장치의 제조방법
KR102039233B1 (ko) * 2017-12-26 2019-11-26 캐논 톡키 가부시키가이샤 정전척, 이를 포함하는 성막장치, 기판의 보유지지 및 분리방법, 이를 포함하는 성막방법, 및 이를 사용하는 전자 디바이스의 제조방법
KR102427823B1 (ko) * 2018-06-11 2022-07-29 캐논 톡키 가부시키가이샤 정전척 시스템, 성막장치, 흡착방법, 성막방법 및 전자 디바이스의 제조방법
KR102421610B1 (ko) * 2018-07-31 2022-07-14 캐논 톡키 가부시키가이샤 정전척 시스템, 성막 장치, 흡착 방법, 성막 방법 및 전자 디바이스의 제조방법
CN109545692B (zh) * 2018-11-22 2020-06-26 武汉新芯集成电路制造有限公司 一种降低晶圆键合边缘扭曲度的方法
JP7419288B2 (ja) * 2021-03-30 2024-01-22 キヤノントッキ株式会社 制御装置、成膜装置、制御方法、及び電子デバイスの製造方法
JP7390328B2 (ja) * 2021-03-30 2023-12-01 キヤノントッキ株式会社 制御装置、基板吸着方法及び電子デバイスの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685045A (ja) 1992-08-31 1994-03-25 Fujitsu Ltd ウェーハ離脱方法
JPH09213780A (ja) 1996-01-29 1997-08-15 Tokyo Electron Ltd 静電チャック装置及び静電チャックの離脱方法
JPH11163111A (ja) * 1997-11-26 1999-06-18 Hitachi Chem Co Ltd 静電チャック
JPH11340307A (ja) 1998-05-25 1999-12-10 Hitachi Ltd 半導体製造装置におけるウエハの離脱方法及びその電源
JP2005032858A (ja) * 2003-07-09 2005-02-03 Toto Ltd 静電チャックによるガラス基板の吸着方法および静電チャック
JP2005209768A (ja) * 2004-01-21 2005-08-04 Hitachi Ltd 静電吸着装置及び静電吸着方法
JP2005245106A (ja) * 2004-02-25 2005-09-08 Kyocera Corp 静電チャック

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027072B2 (ja) * 2001-10-18 2007-12-26 松下電器産業株式会社 減圧プラズマ処理装置及びその方法
JP2004047512A (ja) * 2002-07-08 2004-02-12 Tokyo Electron Ltd 吸着状態判別方法、離脱方法、処理方法、静電吸着装置および処理装置
CN1685599B (zh) * 2002-09-27 2012-04-25 筑波精工株式会社 静电保持装置
JP4637684B2 (ja) * 2004-09-10 2011-02-23 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685045A (ja) 1992-08-31 1994-03-25 Fujitsu Ltd ウェーハ離脱方法
JPH09213780A (ja) 1996-01-29 1997-08-15 Tokyo Electron Ltd 静電チャック装置及び静電チャックの離脱方法
JPH11163111A (ja) * 1997-11-26 1999-06-18 Hitachi Chem Co Ltd 静電チャック
JPH11340307A (ja) 1998-05-25 1999-12-10 Hitachi Ltd 半導体製造装置におけるウエハの離脱方法及びその電源
JP2005032858A (ja) * 2003-07-09 2005-02-03 Toto Ltd 静電チャックによるガラス基板の吸着方法および静電チャック
JP2005209768A (ja) * 2004-01-21 2005-08-04 Hitachi Ltd 静電吸着装置及び静電吸着方法
JP2005245106A (ja) * 2004-02-25 2005-09-08 Kyocera Corp 静電チャック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1998365A4

Also Published As

Publication number Publication date
JP2007251083A (ja) 2007-09-27
KR100995176B1 (ko) 2010-11-17
KR20080106270A (ko) 2008-12-04
US7995324B2 (en) 2011-08-09
CN101401198B (zh) 2012-05-02
EP1998365B1 (en) 2017-09-06
CN101401198A (zh) 2009-04-01
TWI348197B (ja) 2011-09-01
EP1998365A1 (en) 2008-12-03
TW200810000A (en) 2008-02-16
JP4884811B2 (ja) 2012-02-29
US20090273879A1 (en) 2009-11-05
EP1998365A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2007108192A1 (ja) ガラス基板の静電吸着装置及びその吸着離脱方法
KR100532523B1 (ko) 플라즈마를 사용하여 반도체 웨이퍼를 처리하는반도체제조장치 및 처리방법 및 웨이퍼 전위프로브
CN100530536C (zh) 承载晶圆的放电系统、静电吸附器与集成电路的制造方法
JP2008041993A (ja) 静電チャック
TW201037304A (en) Method of evaluating glass plate based on its electrostatic properties, method of producing glass plate using the same, and device used for the evaluation
JP2016213358A (ja) プラズマ処理装置およびプラズマ処理方法
CN112640042A (zh) 洗净装置
JP2005032858A (ja) 静電チャックによるガラス基板の吸着方法および静電チャック
JP2017123354A (ja) 試料の離脱方法およびプラズマ処理装置
JP3659180B2 (ja) 半導体製造装置および処理方法、およびウエハ電位プローブ
JP2695436B2 (ja) 静電チャックの劣化検出回路
JP6069768B2 (ja) 静電チャック装置及びその制御方法
JP3913355B2 (ja) 被吸着物の処理方法
JPH07211768A (ja) 静電吸着装置の保持状態確認方法
JP4579206B2 (ja) 離脱状態判断方法及び真空処理装置
JP2973758B2 (ja) 静電チャック
JP2000340640A (ja) 非接触型静電吸着装置
JP4631748B2 (ja) 静電吸着方法
CN112526242B (zh) 半导体工艺设备及静电卡盘表面电荷量的检测方法
JP7020311B2 (ja) 基板処理装置及び基板処理方法
JPH07130827A (ja) ウエーハ静電吸着装置
Kalkowski et al. Electrostatic chuck behaviour at ambient conditions
JP2005310945A (ja) 半導体製造装置およびウェハの静電吸着方法・除電方法
JP2005142582A (ja) 半導体製造装置および処理方法
JP6472230B2 (ja) 真空処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06843341

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2006843341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006843341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087022882

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680053935.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12225167

Country of ref document: US