WO2007105645A1 - 露光装置、メンテナンス方法、露光方法及びデバイス製造方法 - Google Patents

露光装置、メンテナンス方法、露光方法及びデバイス製造方法 Download PDF

Info

Publication number
WO2007105645A1
WO2007105645A1 PCT/JP2007/054706 JP2007054706W WO2007105645A1 WO 2007105645 A1 WO2007105645 A1 WO 2007105645A1 JP 2007054706 W JP2007054706 W JP 2007054706W WO 2007105645 A1 WO2007105645 A1 WO 2007105645A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid immersion
immersion member
liquid
substrate
exposure apparatus
Prior art date
Application number
PCT/JP2007/054706
Other languages
English (en)
French (fr)
Inventor
Yasufumi Nishii
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP07738191A priority Critical patent/EP1995768A4/en
Publication of WO2007105645A1 publication Critical patent/WO2007105645A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment

Definitions

  • Exposure apparatus maintenance method, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus that exposes a substrate, a maintenance method, an exposure method, and a device manufacturing method.
  • an immersion exposure apparatus that forms a liquid immersion area on a substrate and exposes the substrate through the liquid as disclosed in the following patent document Is disclosed! Speak.
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • the present invention provides an exposure apparatus, a maintenance method, an exposure method, and a device manufacturing method capable of suppressing degradation such as exposure accuracy due to a decrease in operating rate and a defect in Z or a liquid immersion member. For the purpose.
  • the present invention employs the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • an exposure apparatus that exposes a substrate (P) by irradiating the substrate (P) with exposure light (EL) through a liquid (LQ).
  • P Form an immersion area (LR) on top Immersion system (86, 87, etc.) and immersion part (70) that forms part of the immersion system (86, 87, etc.) and contacts the liquid (LQ) that forms the immersion area (LR)
  • An exposure apparatus (EX) is provided that includes an exchange system (CS) for exchanging.
  • the first aspect of the present invention it is possible to suppress a reduction in operating rate due to replacement of the liquid immersion member.
  • a liquid immersion member in which a defect such as contamination occurs it is possible to suppress deterioration in exposure accuracy and Z or measurement accuracy.
  • an exposure apparatus that exposes a substrate (P) by irradiating the substrate (P) with exposure light (EL) via a liquid (LQ).
  • An immersion system (86, 87, etc.) that forms an immersion area (LR) on the substrate; an immersion member (70) that comes into contact with the liquid that forms the immersion area;
  • An exposure apparatus comprising a holding device (30) for holding is provided.
  • the second aspect of the present invention it is possible to suppress a reduction in the operating rate of the exposure apparatus due to cleaning or replacement of the liquid immersion member by attaching and detaching the liquid immersion member with the holding device. Further, when cleaning or replacing a liquid immersion member in which a defect such as contamination occurs, it is possible to suppress deterioration in exposure accuracy, Z, or measurement accuracy.
  • the exposure apparatus (EX) exposes the substrate (P) with exposure light (EL) through the liquid (LQ), and the optical member emits the exposure light.
  • An immersion member (70) enclosing a space between the (FS) and the substrate and having at least a part of the immersion region (LR) formed therein; and a frame member (7) provided with the immersion member;
  • An exposure apparatus is provided that includes a support device (55) that transfers the liquid immersion member to and from the frame member.
  • the third aspect of the present invention it is possible to easily remove and attach the liquid immersion member and to shorten the time, and as a result, the exposure apparatus according to the cleaning or replacement of the liquid immersion member. A decrease in operating rate can be suppressed.
  • a device manufacturing method using the exposure apparatus (EX) of any one of the first, second and third aspects According to the device manufacturing method of the present invention, a reduction in the operating rate of the exposure apparatus is suppressed, and a device can be manufactured with high productivity. In addition, when cleaning or replacing a liquid immersion member in which a defect such as contamination occurs, deterioration of exposure accuracy and Z or measurement accuracy is suppressed, and a device is manufactured with high accuracy. It can be done.
  • the substrate (P) has the liquid immersion member (70) disposed so as to face the substrate, and the substrate is interposed via the liquid (LQ) held by the liquid immersion member.
  • This is a maintenance method for the exposure apparatus (EX) that exposes (P), in which the immersion member (70) is removed from the exposure apparatus, and the removed immersion member is cleaned (S38) or replaced (S18). Maintenance methods are provided.
  • EX exposure apparatus
  • S38 cleaned
  • S18 replaced
  • the liquid immersion member (70) holding the liquid (LQ) is provided between the optical member (FS) and the substrate (P), and the optical member and the liquid Is a maintenance method for an exposure apparatus that exposes a substrate with exposure light (EL) via a substrate, and includes carrying in and out the liquid immersion member for replacement (S 18) or cleaning (S 38).
  • a method is provided.
  • maintenance is facilitated by loading and unloading of the liquid immersion member.
  • the exposure apparatus having a liquid immersion member is maintained (S18, S38, etc.) by the maintenance method of the present invention; and the substrate is exposed through the liquid.
  • An exposure method comprising (204) is provided. According to the seventh aspect of the present invention, highly accurate immersion exposure can be performed.
  • the substrate is exposed by the exposure method of the seventh or eighth aspect (204); the exposed substrate is developed (204); There is provided a method of manufacturing a device comprising processing (205). According to the device manufacturing method of the present invention, it is possible to manufacture a device with high accuracy and high reliability and with high throughput.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing the main parts of the exposure apparatus according to the first embodiment.
  • FIG. 3 is a partially cutaway view of a perspective view showing the liquid immersion member according to the first embodiment.
  • FIG. 4 A perspective view of the liquid immersion member according to the first embodiment when the lower force is also seen.
  • FIG. 5 is a diagram illustrating an example of the operation of the exchange system according to the first embodiment.
  • FIG. 6 is a schematic diagram for explaining the detection device according to the first embodiment.
  • FIG. 7 is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • FIG. 8 is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • FIG. 9 is a schematic diagram for explaining the operation of the exchange system according to the first embodiment. ⁇ 10] It is a schematic diagram for explaining the operation of the exchange system according to the first embodiment. ⁇ 11] It is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • FIG. 12 is a schematic diagram for explaining the operation of the exchange system according to the first embodiment. [13] FIG.
  • FIG. 13 is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • FIG. 14 It is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • FIG. 15 is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • ⁇ 16 It is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • ⁇ 17 It is a schematic diagram for explaining the operation of the exchange system according to the first embodiment.
  • FIG. 18 is a cross-sectional view showing the main parts of an exposure apparatus according to a second embodiment.
  • FIG. 19 is a schematic view showing an exposure apparatus according to the third embodiment.
  • FIG. 20 is a schematic view showing an exposure apparatus according to the fourth embodiment.
  • FIG. 21 is a schematic view showing a part of an exposure apparatus according to a fifth embodiment.
  • FIG. 22 is a schematic view showing a part of an exposure apparatus according to a fifth embodiment.
  • FIG. 23 is a flowchart showing an example of a maintenance method and an exposure method including an operation of replacing the liquid immersion member.
  • FIG. 24 is a flowchart showing an example of a maintenance method and an exposure method including a cleaning operation for a liquid immersion member.
  • FIG. 25 is a flowchart showing an example of a microdevice manufacturing process.
  • Optical device 131 ... Projection device, 132 ⁇ Receiver, CS... Exchange system, EL... Exposure light, EX... Exposure device, FS... Terminal optical element, LQ... Liquid, LS... Immersion system, M... Mask, P... Substrate, PL... Projection optics System, PS1 ... 1st position, PS2- "2nd position, PS3-" 3rd position
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X axis direction, in the horizontal plane!
  • the direction perpendicular to the X-axis direction is the Y-axis direction, and the direction perpendicular to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and 0Z directions, respectively.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX illuminates the pattern of the mask stage 1 that can move while holding the mask M, the substrate stage 2 that can move while holding the substrate P, and the mask M with the exposure light EL.
  • It includes an illumination system IL, a projection optical system PL that projects an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P, and a control device 3 that controls the operation of the entire exposure apparatus EX.
  • the exposure apparatus EX is connected to the control apparatus 3, and an input apparatus 17 that can input an operation signal to the exposure apparatus EX, and an output apparatus 18 that is connected to the control apparatus 3 and can output the operation status of the exposure apparatus EX.
  • the input device 17 includes at least one of a keyboard, a mouse, and a touch panel, for example.
  • the output device 18 includes at least one of a display device such as a flat 'panel' display, a light emitting device that emits light, and a sounding device that emits sound (including an alarm).
  • the substrate referred to here includes, for example, a substrate in which a photosensitive material (photoresist) is coated on a base material such as a semiconductor wafer such as a silicon wafer, and a protective film (topcoat film) separately from the photosensitive film.
  • a photosensitive material photoresist
  • topcoat film topcoat film
  • the mask includes a reticle in which a device pattern to be reduced and projected on a substrate is formed. For example, a predetermined pattern is formed on a transparent plate member such as a glass plate using a light shielding film such as chrome.
  • This transmissive mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and includes, for example, a phase shift mask such as a noise tone type or a spatial frequency modulation type.
  • a force reflection type mask using a transmission type mask as a mask may be used.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus.
  • an immersion system LS that forms an immersion area LR on the substrate P so that the optical path space K including the optical path of the exposure light EL on the image plane side (light emission side) of the projection optical system PL is filled with the liquid LQ.
  • the operation of the immersion system LS is controlled by the controller 3.
  • the liquid immersion system LS is provided in the vicinity of the optical path space K, and includes a liquid immersion member 70 having a supply port 71 capable of supplying the liquid LQ and a recovery port 72 capable of recovering the liquid LQ.
  • the liquid immersion system LS uses the immersion member 70, and among the plurality of optical elements of the projection optical system PL, the terminal optical element FS closest to the image plane of the projection optical system PL and the image plane side of the projection optical system PL An immersion region LR is formed on the substrate P so that the optical path space K including the optical path of the exposure light EL between the surface of the substrate P on the substrate stage 2 arranged in the substrate is filled with the liquid LQ.
  • water pure water
  • the exposure apparatus EX forms an immersion area LR on the substrate P using the immersion system LS while projecting at least the pattern image of the mask M onto the substrate P.
  • the exposure apparatus EX irradiates the exposure light EL that has passed through the mask M through the projection optical system PL and the liquid LQ filled in the optical path space K onto the substrate P held by the substrate stage 2 to thereby provide a mask.
  • the image of the pattern of M is projected onto the substrate P, and the substrate P is exposed.
  • the exposure apparatus EX of the present embodiment includes the projection area AR of the liquid LQ force projection optical system PL filled with the optical path space K including the optical path of the exposure light EL between the terminal optical element FS and the substrate P.
  • the immersion area LR of liquid LQ is locally larger than the projection area AR and smaller than the substrate P. Adopting a local liquid immersion method.
  • the liquid immersion region LR is mainly formed on the substrate P.
  • the terminal optical element FS and It can also be formed on an object arranged at an opposing position, for example, a part of the substrate stage 2. Further, for example, at the time of exposure of the shot area near the outer periphery of the substrate P, a part of the liquid immersion region LR is formed on the substrate P and the remaining part is formed on the substrate stage 2.
  • the exposure apparatus EX includes an exchange system CS for exchanging the liquid immersion member 70.
  • the exchange system CS includes a holding device 30 that detachably holds the liquid immersion member 70 in the vicinity of the optical path space K, and a transport device 50 that transports the liquid immersion member 70.
  • the transport device 50 can transport the liquid immersion member 70 between the first position PS1 and a second position PS2 different from the first position PS1.
  • the first and second positions PS1, PS2 are set apart in the Y-axis direction.
  • the exposure apparatus EX includes a chamber apparatus 19 that houses at least the projection optical system PL.
  • the chamber device 19 includes at least a mask stage 1, a substrate stage 2, at least a part of the illumination system IL, at least a part of the projection optical system PL, the immersion system LS, and the exchange system CS. At least a portion is contained.
  • the input device 17 and the output device 18 are disposed outside the chamber device 19.
  • a storage station 20 that can store the liquid immersion member 70 is disposed outside the chamber device 19.
  • the holding device 30 is provided at the first position PS1
  • the storage station 20 is provided at the second position PS2
  • the transport device 50 includes the liquid immersion member 70 and the holding device 30. Can be transferred to and from containment station 20.
  • the exposure apparatus EX of the present embodiment is a scanning exposure apparatus (so-called “so-called exposure apparatus”) that projects an image of the pattern of the mask M onto the substrate P while moving the mask M and the substrate P synchronously in a predetermined scanning direction. Scanning stepper).
  • the scanning direction (synchronous movement direction) of the substrate P is the Y-axis direction
  • the scanning direction (synchronous movement direction) of the mask M is also the Y-axis direction.
  • the exposure apparatus EX moves the shot area of the substrate P in the Y-axis direction with respect to the projection area AR of the projection optical system PL and synchronizes with the movement of the substrate P in the Y-axis direction.
  • Projection optical system P while moving the pattern formation area of mask M in the Y-axis direction relative to area IA By irradiating the projection area AR with the exposure light EL through L and the liquid LQ, the shot area on the substrate P is exposed with an image of the pattern formed in the projection area AR.
  • the exposure apparatus EX includes, for example, a body BD including a first column CL1 provided on a floor surface (or base plate) FL in a clean room and a second column CL2 provided on the first column CL1.
  • the first column CL1 includes a plurality of first struts 11 and a lens barrel surface plate 7 supported by the first struts 11 via a vibration isolator 9.
  • the second column CL2 includes a plurality of second support columns 12 provided on the lens barrel surface plate 7, and a mask stage surface plate 6 supported by the second support columns 12 via a vibration isolator 4.
  • RU vibration isolator
  • the illumination system IL illuminates a predetermined illumination area IA on the mask M with exposure light EL having a uniform illuminance distribution.
  • exposure light EL that also emits illumination system IL force
  • exposure light EL for example, far ultraviolet light (DUV light) such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) emitted from mercury lamps, ArF excimer laser light (wavelength 193nm), F laser light (wavelength 157nm), etc.
  • Vacuum ultraviolet light (VUV light) is used.
  • ArF excimer laser light is used.
  • all of the illumination system IL is arranged in the chamber device 19.
  • a part of the force illumination system IL may be arranged outside the chamber device 19.
  • an ArF excimer laser device that generates ArF excimer laser light as exposure light EL is placed under the floor of the clean room, and at least part of it is placed in the chamber device 19 by a transmission optical system including a beam matching unit. Guide the exposure light EL to the illumination optical system.
  • the mask stage 1 holds the mask M by driving a mask stage driving device 1D including an actuator such as a linear motor, for example, and at least the X-axis, Y-axis, and It can move in ⁇ Z direction.
  • Mask stage 1 is supported in a non-contact manner on the upper surface (guide surface) of mask stage surface plate 6 by an air bearing (air pad).
  • Mask stage 1 has a first opening 1K for allowing exposure light EL to pass through during exposure of substrate P, and mask stage surface plate 6 has a second opening 6K for allowing exposure light EL to pass through. is doing.
  • the exposure light EL emitted from the illumination system IL and illuminates the pattern formation area of the mask M passes through the first opening 1K of the mask stage 1 and the second opening 6 of the mask stage surface plate 6, and then the projection optical system PL Is incident on.
  • Position information (including rotation information) of mask stage 1 (and hence mask M) is measured by laser interferometer 13.
  • the laser interferometer 13 measures the position information of the mask stage 1 using the reflecting surface 14 of the moving mirror fixed on the mask stage 1 (or the reflecting surface formed on the side surface of the mask stage 1).
  • the control device 3 drives the mask stage drive device 1D based on the measurement result of the laser interferometer 13, and controls the position of the mask M held by the mask stage 1.
  • the projection optical system PL projects the pattern image of the mask M onto the substrate P at a predetermined projection magnification.
  • Projection optical system PL has a plurality of optical elements, and these optical elements are held by lens barrel 5.
  • the lens barrel 5 has a flange 5F, and the projection optical system PL is supported by the lens barrel surface plate 7 via the flange 5F. Further, an anti-vibration device can be provided between the lens barrel surface plate 7 and the lens barrel 5.
  • the projection optical system PL of this embodiment is a reduction system whose projection magnification is, for example, 1Z4, 1/5, or 1Z8.
  • the substrate stage 2 has a substrate holder 2H that holds the substrate P.
  • the substrate stage 2 is driven by a substrate stage driving device 2D that includes an actuator such as a linear motor, and holds the substrate P on the substrate holder 2H.
  • a substrate stage driving device 2D that includes an actuator such as a linear motor, and holds the substrate P on the substrate holder 2H.
  • the substrate stage 2 is supported in a non-contact manner on the upper surface (guide surface) of the substrate stage surface plate 8 by air bearings.
  • the substrate stage surface plate 8 is supported on the floor FL via a vibration isolator 10.
  • the position information of the substrate stage 2 (and consequently the substrate P) is measured by the laser interferometer 15.
  • the laser interferometer 15 uses the reflecting surface 16 provided on the substrate stage 2 to measure position information regarding the X-axis, Y-axis, and ⁇ Z directions of the substrate stage 2.
  • the exposure apparatus EX can detect focus position leveling (not shown) that can detect surface position information (position information about the Z axis, ⁇ X, and ⁇ Y directions) of the surface of the substrate P held by the substrate stage 2.
  • the control device 3 drives the substrate stage drive device 2D and holds it on the substrate stage 2. Control the position of plate P.
  • the focus leveling detection system for example, as disclosed in US Pat. No.
  • the height information of the substrate P is detected at each of a plurality of detection points.
  • Multi-point position detection system can be used .
  • at least some of the plurality of detection points are set in the exposure area AR, but all the detection points may be set outside the exposure area AR (or the liquid immersion area LR).
  • the laser interferometer 15 is related to the Z-axis, ⁇ X, and ⁇ Y directions of the substrate stage 2 as disclosed in, for example, JP 2001-510577 (corresponding to International Publication No. 1999/28790 pamphlet).
  • the position information may be measurable.
  • at least the position control of the substrate P may not use the detection result of the focus / leveling detection system, or the focus / leveling detection system may be arranged with the projection optical system PL force separated.
  • a recess 2R is provided on the substrate stage 2, and the substrate holder 2H is disposed in the recess 2R.
  • the upper surface 2F other than the recess 2R on the substrate stage 2 is a flat surface that is substantially the same height (level) as the surface of the substrate P held by the substrate holder 2H.
  • the substrate holder 2H should be configured integrally with the substrate stage 2.
  • FIG. 2 is a side sectional view parallel to the YZ plane showing the liquid immersion member 70 held by the holding device 30 of the exchange system CS
  • FIG. 3 is a schematic perspective view showing the liquid immersion member 70 of the liquid immersion system LS
  • FIG. 4 is a perspective view of the liquid immersion member 70 as viewed from below.
  • the holding device 30 has a holding surface 31 that comes into contact with at least a part of the upper surface 75 A of the liquid immersion member 70.
  • the holding surface 31 is provided so as to surround the terminal optical element FS.
  • the holding surface 31 is provided in a part of the lens barrel 5 and is substantially parallel to the XY plane.
  • the region in contact with the holding surface 31 is a plane substantially parallel to the XY plane.
  • the holding device 30 has an adsorption mechanism 32 that adsorbs the liquid immersion member 70.
  • the suction mechanism 32 includes a suction port 33 provided at each of a plurality of predetermined positions on the holding surface 31, and a vacuum system 35 connected to the suction port 33 via a first flow path 34.
  • the first flow path 34 is a first internal flow path 34A formed inside the lens barrel 5, and a first tube member 34B that connects the first internal flow path 34A and the vacuum system 35.
  • a flow path formed by The suction port 33 is connected to one end of the first internal flow path 34A, and the other end of the first internal flow path 34A is connected to the first pipe member 34B.
  • the vacuum system 35 includes a vacuum pump, for example, and the control device 3
  • the liquid immersion member 70 can be adsorbed and held by the holding surface 31 by driving the vacuum system 35 of the attachment mechanism 32 and sucking the gas from the suction port 33.
  • the control device 7 controls the suction mechanism 32 including the vacuum system 35 to release the suction of the liquid immersion member 70 by the suction mechanism 32, so that the liquid immersion member 70 can be separated from the holding surface 31. it can.
  • the control device 3 controls the holding device 30 including the suction mechanism 32 to attach and detach the liquid immersion member 70 to and from the holding surface 31 of the holding device 30. can do.
  • the holding surface 31 of the holding device 30 is preferably subjected to a liquid repellent treatment in order to prevent liquid from entering the inside of the lens barrel 5.
  • a sealing member surrounding the suction port 33 may be provided to prevent liquid from entering the inside of the lens barrel.
  • the suction mechanism 32 of the holding device 30 includes a vacuum suction mechanism that vacuum-sucks the liquid immersion member 70, but is not limited to the vacuum suction mechanism.
  • a vacuum suction mechanism that vacuum-sucks the liquid immersion member 70
  • an electrostatic adsorption mechanism using electrostatic force may be provided. Even with the electrostatic adsorption mechanism, the holding device 30 can hold the liquid immersion member 70 in a detachable manner.
  • the liquid immersion member 70 held by the holding device 30 is disposed so as to face the substrate P (substrate stage 2) near the terminal optical element FS that emits the exposure light EL onto the substrate P. Is done.
  • the liquid immersion member 70 is an annular member, and is disposed so as to surround the terminal optical element FS 1 above the substrate P (substrate stage 2) by being held by the holding device 30.
  • the liquid immersion member 70 held by the holding device 30 and the terminal optical element FS are separated from each other.
  • the liquid immersion system LS includes a liquid immersion member 70 having a supply port 71 capable of supplying the liquid LQ and a collection port 72 capable of recovering the liquid LQ, and a supply flow path 81 to the supply port 71 of the liquid immersion member 70. And a liquid supply device 86 connected via the second flow path 84 and a liquid recovery device 87 connected to the recovery port 72 of the liquid immersion member 70 via the recovery flow path 82 and the third flow path 85. ing.
  • the second flow path 84 is a second internal flow path 84A formed inside the lens barrel 5, and a second internal flow path 84A that connects the second internal flow path 84A and the liquid supply device 86. And a flow path formed by the pipe member 84B.
  • the supply channel 81 is formed inside the liquid immersion member 70, the supply port 71 is connected to one end (lower end) of the supply channel 81, and the other end (upper end) of the supply channel 81 is the second It is connected to one end of the internal flow path 84A.
  • the other end of the second internal channel 84A is connected to the second pipe member 84B.
  • the third flow path 85 connects the third internal flow path 85A formed inside the lens barrel 5, and the third internal flow path 85A and the liquid recovery device 87. And a flow path formed by the third pipe member 85B.
  • the recovery flow path 82 is formed inside the liquid immersion member 70.
  • the collection path 72 is connected to one end (lower end) of the recovery flow path 82, and the other end (upper end) of the recovery flow path 82 is third. It is connected to one end of the internal flow path 85A.
  • the other end of the third internal channel 85A is connected to the third pipe member 85B.
  • the exposure apparatus EX of the present embodiment includes a first connection mechanism 101 that connects the other end of the supply flow path 81 and one end of the second internal flow path 84A, and the other end of the recovery flow path 82 and the third internal flow path. And a second connection mechanism 102 for connecting one end of the flow path 85A.
  • the first connection mechanism 101 causes the other end of the supply flow path 81 to One end of the second internal flow path 84A is connected, and the other end of the recovery flow path 82 and one end of the third internal flow path 85A are connected by the second connection mechanism 102.
  • the holding device 30 releases the holding of the liquid immersion member 70, that is, when the holding surface 31 of the holding device 30 and the upper surface 75 of the liquid immersion member 70 are separated from each other, the supply flow path 81 of the first connection mechanism 101 is changed. The connection between the other end and one end of the second internal flow path 84A is released, and the connection between the other end of the recovery flow path 82 and one end of the third internal flow path 85A by the second connection mechanism 102 is released.
  • the connection between the second flow path 84 and the supply flow path 81, and the third flow path 85 and the recovery flow path 82 are Is automatically connected, and when the holding of the liquid immersion member 70 in the holding device 30 is released, the second flow path 84 and the supply flow path 81 are connected, and the third flow path 85 and the recovery flow path 82 are connected.
  • the connection with is automatically released.
  • the first connection mechanism 101 and the second connection mechanism 102 have a seal member such as an O-ring, for example, and suppress the leakage of the liquid LQ.
  • the force holding surface 31 and Z or the upper surface 75A are not necessarily flat surfaces, in which both the holding surface 31 of the holding device 30 and the upper surface 75A of the liquid immersion member 70 are flat surfaces. Further, when the liquid immersion member 70 is held by the holding device 30, the holding surface 31 and the upper surface 75A do not have to be in contact with each other at least in part. Even if there is a gap between the holding surface 31 and the upper surface 75A, the first and second connection mechanisms 101 and 102 connect the second channel 84 and the supply channel 81 and the third channel 85.
  • the operations of the liquid supply device 86 and the liquid recovery device 87 are controlled by the control device 3.
  • the liquid supply device 86 can deliver clean and temperature-adjusted liquid LQ, and the liquid recovery device 87 including a vacuum system can recover the liquid LQ.
  • the liquid supply device 86 can supply the liquid LQ via the second flow path 84, the supply flow path 81, and the supply port 71.
  • the liquid recovery apparatus 87 includes the recovery port 72, the recovery flow path 82, and the first flow path. Liquid LQ can be recovered via the three flow path 85.
  • the liquid immersion member 70 has a bottom plate 78 having an upper surface 79 that faces the lower surface T1 of the last optical element FS.
  • a part of the bottom plate 78 is disposed between the lower surface T1 of the terminal optical element FS and the substrate P (substrate stage 2) in the Z-axis direction.
  • an opening 78K through which the exposure light EL passes is formed at the center of the bottom plate 78.
  • the cross-sectional shape of the exposure light EL (that is, the projection area AR) is substantially rectangular within the field of the projection optical system PL, and the opening 78K is formed in a substantially rectangular shape according to the projection area AR. Speak.
  • the lower surface 77 facing the surface of the substrate P held by the substrate stage 2 is a flat surface.
  • the lower surface 77 is provided on the bottom plate 78 so as to surround the opening 78K.
  • the lower surface 77 of the liquid immersion member 70 is referred to as a land surface 77 as appropriate.
  • the land surface 77 is provided between the lower surface T1 of the terminal optical element FS of the projection optical system PL and the surface of the substrate P so as to surround the optical path (opening 78K) of the exposure light EL.
  • the land surface 77 is provided in the liquid immersion member 70 at a position closest to the substrate P held by the substrate stage 2, and can hold the liquid LQ with the surface of the substrate P.
  • the liquid LQ that fills the optical path space K contacts the bottom plate 78 and the last optical element FS. Further, a space having a predetermined gap is provided between the lower surface T1 of the terminal optical element FS and the upper surface 79 of the bottom plate 78.
  • the space inside the liquid immersion member 70 including the space between the lower surface T1 of the last optical element FS and the upper surface 79 of the bottom plate 78 is appropriately referred to as an internal space K2.
  • the supply port 71 is connected to the internal space K2, and can supply the liquid LQ to the internal space K2.
  • the supply ports 71 are provided at predetermined positions on both sides in the X-axis direction across the opening 78K outside the opening 78K through which the exposure light EL can pass.
  • the liquid immersion member 70 has a discharge port 73 for discharging (exhausting) the gas in the internal space K2 to the external space (including the atmospheric space).
  • the discharge port 73 is connected to the internal space K2.
  • the discharge port 73 is provided outside the opening 78K at predetermined positions on both sides in the Y-axis direction across the opening 78K.
  • the gas in the internal space K2 can be discharged to the external space through the discharge port 73 and the discharge flow path 83 provided in the liquid immersion member 70.
  • the recovery port 72 is provided above the substrate P held by the substrate stage 2 so as to face the surface of the substrate P.
  • the recovery port 72 is provided outside the supply port 71 and the discharge port 73 with respect to the opening 78K, and is provided in an annular shape so as to surround the land surface 77, the supply port 71, and the discharge port 73.
  • a porous member 88 having a plurality of holes is disposed in the recovery port 72.
  • the porous member 88 has a lower surface 89 facing the substrate P held on the substrate stage 2.
  • the lower surface 89 of the porous member 88 is substantially flat, and the lower surface 89 of the multi-hole member 88 and the land surface 77 are substantially flush (positions in the Z-axis direction are substantially the same). Note that the optimum value (allowable range) of the pressure in the recovery flow path 82 can be obtained in advance by, for example, experiments or simulations.
  • the land surface 77 is lyophilic with respect to the liquid LQ.
  • the bottom plate 78 forming the land surface 77 is made of titanium and has lyophilicity (hydrophilicity).
  • the contact angle of the liquid LQ on the land surface 77 is, for example, 40 ° or less.
  • the land surface 77 may be subjected to a surface treatment for enhancing lyophilicity.
  • the porous member 88 is a titanium mesh member and is lyophilic (hydrophilic) with respect to the liquid LQ.
  • the porous member 88 may be subjected to a surface treatment for improving lyophilicity.
  • the material of the bottom plate 78 and the porous member 88 is not limited to titanium, but may be other materials such as aluminum or ceramics.
  • the liquid immersion member 70 of the present embodiment includes a flange 74.
  • the flange 74 is provided on the upper part of the liquid immersion member 70 and is formed to extend in each of the + Y direction and the Y direction.
  • the upper surface 75 A and the side surface 75 B of the liquid immersion member 70 are connected by a slope (tapered surface) 76.
  • Slope 76 is + X side, X side, + Y side, and — Y of upper surface 75A It is formed on each of the sides, and is formed at a predetermined angle with respect to the holding surface 31.
  • a notch 74K is formed in each of a plurality of predetermined positions on the side surface 75B of the flange 74 of the liquid immersion member 70.
  • the notch 74K is formed to extend in the thickness direction of the flange 74 (Z-axis direction).
  • four notches 74K are formed in two at predetermined positions on the side surfaces 75B of the flange 74 on the + X side and the ⁇ X side.
  • a recess 74M is formed in each of a plurality of predetermined positions on the side surface 75B of the flange 74 of the liquid immersion member 70.
  • a total of four recesses 74M are formed, two at a predetermined position on each of the side surfaces 75B of the flange 74 on the + Y side and the ⁇ Y side.
  • the upper surface 75A, the side surface 75B, and the inclined surface 76 of the liquid immersion member 70 are preferably subjected to liquid repellency treatment.
  • the liquid repellent treatment is applied to the upper surface 75A of the liquid immersion member 70 in order to prevent liquid from entering between the holding surface 31 of the holding device 30 and the upper surface 75A of the liquid immersion member 70.
  • the holding surface 31 of the holding device 30 is also subjected to liquid repellency treatment as described above.
  • a liquid repellent film can be applied to the holding surface 31 and the upper surface 75A.
  • liquid repellent film for example, a fluorine-based resin material such as polytetrafluoroethylene (Teflon (registered trademark)), an acrylic resin material, or a silicon-based resin material can be used.
  • Teflon polytetrafluoroethylene
  • acrylic resin material acrylic resin material
  • silicon-based resin material silicon-based resin material
  • the contact angle of the liquid LQ can be 90 ° or more.
  • These liquid repellent films may be provided on the side surface 75 B and the recess 74 M of the flange 74 of the liquid immersion member 70 and the support member 43.
  • a seal member may be used.
  • the exposure apparatus EX is provided separately from the holding apparatus 30 and includes a support mechanism 40 that can support the liquid immersion member 70.
  • the support mechanism 40 is disposed on the base material 41 provided so as to surround the liquid immersion member 70, and the opening 42K formed on the inner side surface 42 of the base material 41, and is provided on the side surface 75B of the liquid immersion member 70.
  • the recess 74M is provided with a support member 43 that can be removed.
  • the base material 41 is provided at a predetermined position with respect to the holding surface 31. In the present embodiment, the base material 41 of the support mechanism 40 is disposed on the lower surface of the lens barrel 5 so as to surround the holding surface 31.
  • a plurality (four) of the support members 43 are provided so as to correspond to the plurality of recesses 74M.
  • the support member 43 is a pin-shaped member, and is provided such that its tip can be moved in the Y-axis direction by an actuator such as an air cylinder.
  • the inner side surface 42 of the base material 41 includes a slope (taper surface) 44 corresponding to the slope (taper surface) 76 of the liquid immersion member 70.
  • the positional relationship between the base material 41 and the liquid immersion member 70 is adjusted by the contact between the slope 44 of the base material 41 and the slope 76 of the liquid immersion member 70.
  • the positional relationship with the member 70 is adjusted (positioned) to a desired state. Therefore, the slope 76 of the liquid immersion member 70 and the slope 44 of the base material 41 function as an alignment device.
  • the support mechanism 40 can support the liquid immersion member 70 by inserting the support member 43 into the recess 74M of the liquid immersion member 70. Further, the control device 3 can support the liquid immersion member 70 by using the support mechanism 40 when the liquid immersion member 70 is not held by the holding device 30.
  • the support mechanism 40 supports the liquid immersion member 70 with the support member 43 when the liquid immersion member 70 is detached from the holding device 30 due to a failure of the holding device 30, and prevents the liquid immersion member 70 from falling. That is, the support mechanism 40 functions as a safety mechanism for preventing the liquid immersion member 70 from dropping.
  • the support mechanism 40 supports the liquid immersion member independently of the holding device 30. Further, the support mechanism 40 can release the support to the liquid immersion member 70 by also removing the support member 43 from the recess 74M force of the liquid immersion member 70.
  • the substrate holder 2H that holds the substrate P is provided on the upper surface of the base material of the substrate holder 2H, and is disposed inside the peripheral wall 2A and the peripheral wall 2A that functions as a sealing member.
  • a suction port 2C provided on the upper surface of the base material inside the peripheral wall 2A.
  • the control device 3 drives a suction device including a vacuum system connected to the suction port 2C, and sucks the gas in the space surrounded by the back surface of the substrate P, the peripheral wall 2A, and the base material, and the space becomes negative. By applying pressure, the back surface of the substrate P is sucked and held by the support member 2B.
  • the substrate holder 2H force can also remove the substrate P by releasing the suction operation by the suction device connected to the suction port 2C.
  • the substrate P can be attached to and detached from the substrate holder 2H by performing the suction operation using the suction port 2C and the release of the suction operation.
  • the substrate holder 2H in the present embodiment includes a so-called pin chuck mechanism. That is, the support member 2B includes a large number of pin-shaped members.
  • the transport device 50 will be described with reference to FIGS. 1 and 2.
  • the transport device 50 can transport the liquid immersion member 70 between the first position PS1 and a second position PS2 different from the first position PS1.
  • the holding device 30 is provided at the first position PS1
  • the storage station 20 capable of storing the liquid immersion member 70 is provided at the second position PS2, and the transport device 50 is The member 70 can be transported between the holding device 30 and the storage station 20.
  • the transport device 50 includes a first sub transport system 51 and a second sub transport system 52.
  • the first sub transport system 51 includes a moving mechanism 53 that transfers the liquid immersion member 70 to and from the holding device 30 at the first position PS1.
  • the movement mechanism 53 is provided on the substrate stage 2. As shown in FIG. 2, the moving mechanism 53 moves the pin-shaped member 55 disposed in the opening 54 formed on the upper surface of the substrate holder 2H of the substrate stage 2 and the pin-shaped member 55 in the Z-axis direction. And a drive device 56 that moves up and down. A plurality of (for example, three) pin-shaped members 55 are provided, and the driving device 56 can move up and down each of the plurality of pin-shaped members 55.
  • FIG. 5 is a view showing a state where the pin-like member 55 supports the liquid immersion member 70 at the first position PS1.
  • the pin-like member 55 of the moving mechanism 53 can support the land surface 77 of the liquid immersion member 70 from which the holding member 30 is released.
  • a suction port is provided on the upper surface of the pin-shaped member 55, and the pin-shaped member 55 can suck and hold the land surface 77 of the liquid immersion member 70.
  • the moving mechanism 53 of the first sub-transport system 51 supports the liquid immersion member 70 and is movable in the Z-axis direction.
  • the holding surface 31 of the holding device 30 that is, the lower surface T1 of the terminal optical element FS
  • the distance between the immersion member 70 and the upper surface 75A of the liquid immersion member 70 can be adjusted.
  • the control device 3 removes the recess 74M force of the support member 43 of the support mechanism 40 from the liquid immersion member 70 and releases the suction hold on the liquid immersion member 70 by the suction mechanism 32 of the holding device 30.
  • the land surface 77 of the liquid immersion member 70 is supported by the pin-like member 55 of the moving mechanism 53 at the first position PS1.
  • the drive device 56 moves the pin-shaped member 55 in the Z-axis direction, so that the liquid immersion is performed from the first position PS1.
  • Member 70 Moveable in the Z-axis direction, and the immersion member 70 can be moved away from the holding device 30.
  • control device 3 controls the moving mechanism 53 to move the pin-shaped member 55 in the + Z-axis direction, so that the liquid immersion member 70 supported by the pin-shaped member 55 is transferred to the holding device 30. It can be raised to the first position PS1 in the + Z direction so as to approach.
  • control device 3 inserts the support member 43 of the support mechanism 40 into the recess 74M of the liquid immersion member 70 supported at the first position PS1, and also moves the liquid immersion member 70 by the suction mechanism 32 of the holding device 30. By holding, the liquid immersion member 70 can be transferred from the moving mechanism 53 to the holding device 30.
  • the first sub-transport system 51 including the moving mechanism 53 can deliver the holding device 30 and the liquid immersion member 70 at the first position PS1.
  • the moving mechanism 53 including the pin-shaped member 55 is provided in the substrate stage 2 that can move in the X-axis and Y-axis directions, and the control device 3 uses the pin-shaped member 55 for the liquid immersion member 70.
  • the liquid immersion member 70 With the liquid supported, or with the liquid immersion member 70 mounted on the substrate stage 2, the liquid immersion member 70 is moved from directly below the projection optical system PL by moving the substrate stage 2 at least in the Y-axis direction. At the same time, it can move to just below.
  • the liquid immersion member 70 moves between the first and second positions P Sl and PS2, even if the substrate stage 2 on which the liquid immersion member 70 is mounted is driven in the XY plane, the Z axis direction is Since the upper surface 75A of the liquid immersion member 70 is lower than the lower surface T1 of the terminal optical element FS, the liquid immersion member 70 does not come into contact with the terminal optical element FS. This makes it possible to carry in and out the liquid immersion member 70 for cleaning or replacement, for example, during maintenance of the exposure apparatus. That is, it is possible to carry out the liquid immersion member 70 from the exposure main body portion that exposes the substrate P through the projection optical system PL, and to carry the cleaned or exchanged liquid immersion member into the exposure main body portion.
  • the force at which the position where the liquid immersion member 70 is transferred between the holding device 30 and the pin-shaped member 55 is the first position PS1.
  • the substrate stage 2 is arranged in the XY plane at the time of the transfer. Although this position is also different from the first position PS1 in the Z-axis direction, it is hereinafter referred to as the first position PS1.
  • the movement mechanism 53 moves the terminal optical element FS and the liquid immersion member 70 relative to each other in the Z-axis direction.
  • the substrate stage 2 and Z or the projection optical system PL on which the liquid immersion member 70 is mounted may be moved in the Z-axis direction.
  • the member that supports the liquid immersion member removed from the holding device 30 or the liquid immersion member attached to the holding device 30, that is, the member to which the liquid immersion member 70 is transferred to and from the holding device 30 is the pin-shaped member 55.
  • the support member 2B of the substrate holder 2H or a movable member (for example, a transfer arm) movable in the XY plane may be used.
  • the moving mechanism 53 is also used for transporting the substrate P.
  • the moving mechanism 53 supports the back surface of the substrate P in the Z-axis direction by lifting and lowering the pin-like member 55 by the driving device 56 when the substrate P is loaded and unloaded from the substrate holder 2H. It is movable.
  • the second sub transport system 52 includes a first transport mechanism 61 and a second transport mechanism 62.
  • the second sub transport system 52 is provided between the first position PS1 and the second position PS2.
  • the second sub transport system 52 is not necessarily provided on a straight line connecting the first position PS1 and the second position PS2, and the liquid immersion member 70 is disposed between the first position PS1 and the second position PS2. It only needs to be arranged so that it can be transported.
  • the first transport mechanism 61 is provided on the lens barrel surface plate 7 of the first column CL1 on the + Y side of the lens barrel 5.
  • the second transfer mechanism 62 is disposed on the floor surface FL on the + Y side of the substrate stage surface plate 8.
  • the second sub transport system 52 including the first transport mechanism 61 and the second transport mechanism 62 is a third position PS 3 different from the first position PS1 and the second position PS 2, and the first sub transport system 51.
  • the immersion member 70 can be transferred between the two.
  • the second sub transport system 52 can transport the liquid immersion member 70 between the third position PS3 and the second position PS2.
  • the first transport mechanism 61 has a first arm 63 that can hold the flange 74 of the liquid immersion member 70, and the second transport mechanism 62 can hold the land surface (lower surface) 77 of the liquid immersion member 70.
  • a second arm 64 is provided.
  • Each of the first arm 63 of the first transport mechanism 61 and the second arm 64 of the second transport mechanism 62 has six degrees of freedom in the X axis, Y axis, Z axis, ⁇ , 0 Y, and 0 Z directions. Can be moved to.
  • the first transport mechanism 61 and the second transport mechanism 62 can deliver the liquid immersion member 70.
  • the driving operation of the first arm 63 and the second arm 64 will be described later.
  • the first transport mechanism 61 of the second sub transport system 52 is disposed in the vicinity of the third position PS3.
  • the moving mechanism 53 of the first sub-transport system 51 can move between the first position PS1 and the vicinity of the third position PS3 by moving the substrate stage 2.
  • the transport device 50 transfers the liquid immersion member 70 between the first sub transport system 51 including the moving mechanism 53 and the second sub transport system 52 including the first transport mechanism 61 at the third position PS3. It can be carried out.
  • the transport device 50 is a liquid at a third position PS3 different from the first position PS1 where the holding device 30 is provided and the second position PS2 where the storage station 20 is provided.
  • a first sub-transport system 51 and a second sub-transport system 52 for transferring the immersion member 70 are provided.
  • an opening 21 is formed in the vicinity of the accommodation station 20 of the chamber device 19, and a door 22 is disposed in the opening 21.
  • the second arm 64 of the second transport mechanism 62 can access the accommodation station 20.
  • the control device 3 opens the door 22 and releases the opening 21 when the second arm 64 accesses the accommodation station 20.
  • the second arm 64 is stored in the storage station 20, and the liquid immersion member 70 can be taken out of the storage station 20, and the held liquid immersion member 70 can be stored in the storage station 20. it can.
  • the second transport mechanism 62 of the transport device 50 delivers the liquid immersion member 70 between the second position PS2 and the third position PS3.
  • the transfer apparatus 50 of this embodiment can also transfer the substrate P.
  • the control device 3 transfers the substrate P to be subjected to the exposure process transferred into the peripheral chamber force chamber device 19 such as a substrate storage station (not shown) or a coater device to the second transport mechanism 6 of the second sub transport system 52. 2 can be received.
  • the second transport mechanism 62 can pass the held substrate P over the first transport mechanism 61.
  • the first transport mechanism 61 includes the pin-shaped member 53 of the first sub-transport system 51 provided on the substrate stage 2 with the substrate P held therein, for example, at the third position PS 3. Can be passed to moving mechanism 53.
  • the control device 3 can place the substrate P on the substrate holder 2H by controlling the drive device 56 of the moving mechanism 53 and lowering the pin-like member 55. Further, when unloading the exposed substrate P from the substrate stage 2, the control device 3 moves the substrate stage 2 to the third position PS3 and controls the driving device 56 of the moving mechanism 53 to control the movement.
  • the board-shaped member 55 is raised and the board P is separated from the board holder 2H.
  • the substrate P separated from the substrate holder 2H is delivered to the first transport mechanism 61 of the second sub transport system 52 at the third position PS3.
  • the first transport mechanism 61 passes the substrate P to the second transport mechanism 62
  • the second transport mechanism 62 passes the substrate P to a peripheral device such as a substrate storage station (not shown) or a developer device.
  • the liquid immersion member 70 and the substrate P serve as the transfer device 50.
  • the liquid immersion member 70 and the substrate P may each have a dedicated transfer device.
  • the transport device 50 is not limited to the above configuration.
  • a movable member for example, a transport arm that can move between the first position PS1 and the third position PS3 (or the second position PS2) is provided, and the liquid immersion member 70 is transported by the movable member. Also good. In this case, the liquid immersion member 70 may be transferred between the holding device 30 and the movable member.
  • the exposure apparatus EX includes a detection device 90 that detects the state of the liquid immersion member 70.
  • the detection device 90 includes a pressure sensor 91 that detects the pressure of the flow path connected to the recovery port 72 of the liquid immersion member 70.
  • the pressure sensor 91 is provided on the third pipe member 85B of the third flow path 85.
  • the control device 3 can detect the value of the pressure of the recovery flow path 82 connected to the recovery port 72 using the pressure sensor 91 and, based on the detection result of the pressure sensor 91, the recovery flow path The difference between the pressure of 82 and the pressure of the external space can be obtained. Therefore, the control device 3 can determine whether the recovery port 72 of the liquid immersion member 70 is recovering the liquid LQ in a desired state based on the detection result of the pressure sensor 91.
  • the detection device 90 includes an imaging device 92 that can observe the state of the surface (mainly the lower surface) of the liquid immersion member 70. As shown in FIG. 1, in the present embodiment, the imaging device 92 is provided at a position on the substrate stage 2 that is different from the substrate holder 2H.
  • FIG. 6 is a schematic diagram showing the imaging device 92.
  • An opening 2K is formed in a part of the upper surface 2F of the substrate stage 2, and a transparent member 93 such as quartz or fluorite is disposed in the opening 2K.
  • the material of the transparent member 93 can be appropriately selected depending on the wavelength of light guided to an imaging device described later.
  • the upper surface of the transparent member 93 (the detection surface of the imaging device 92) is a flat surface and is almost flush with the upper surface 2F of the substrate stage 2!
  • the substrate stage 2 has an internal space 2L connected to the opening 2K. 92 is arranged in the internal space 2L.
  • the imaging device 92 includes an optical system 94 disposed below the transparent member 93 and an imaging element 95 such as a CCD.
  • the imaging element 95 can acquire an optical image (image) of the lower surface of the liquid immersion member 70 (including the land surface 77 and the lower surface 89 of the porous member 88) via the transparent member 93 and the optical system 94.
  • the image sensor 95 can also acquire optical images (images) such as the liquid LQ and the lower surface of the terminal optical element FS.
  • the image sensor 95 converts the acquired image into an electrical signal and outputs the signal (image information) to the control device 3.
  • the imaging device 92 has an adjustment mechanism 96 that can adjust the focal position of the optical system 94. Note that all of the imaging device 92 may not be provided on the substrate stage 2 or may be provided on a measurement stage (not shown) that can be independent of the substrate stage 2.
  • the control device 3 uses the liquid supply device 86 and the liquid recovery device 87 to fill the optical path space K including the optical path of the exposure light EL with the liquid LQ. Drive this.
  • the liquid LQ delivered from the liquid supply device 86 flows through the second flow path 84, and then is supplied to the internal space K2 from the supply port 71 via the supply flow path 81 of the liquid immersion member 70.
  • the liquid LQ supplied from the supply port 71 to the internal space K2 fills the internal space K2, and then flows into the space between the land surface 77 and the substrate P (substrate stage 2) via the opening 78K. Fill space K.
  • the immersion system LS supplies the liquid LQ from the supply port 71 to the internal space K2 between the terminal optical element FS and the bottom plate 78, thereby connecting the terminal optical element FS (projection optical system PL).
  • the liquid recovery apparatus 87 recovers a predetermined amount of liquid LQ per unit time.
  • the liquid recovery device 87 including the vacuum system recovers the liquid LQ existing between the recovery port 72 (porous member 88) and the substrate P through the recovery port 72 by setting the recovery flow path 82 to a negative pressure. can do.
  • the liquid LQ filled in the optical path space K flows into the recovery channel 82 via the recovery port 72 of the liquid immersion member 70, flows through the third channel 85, and is recovered by the liquid recovery device 87.
  • the control device 3 controls the liquid immersion system LS to perform the liquid supply operation by the liquid supply device 86 and the liquid recovery operation by the liquid recovery device 87 in parallel, thereby filling the optical path space K with the liquid LQ. Then, a liquid LQ immersion region LR is locally formed on a part of the substrate P.
  • control device 3 irradiates the exposure light EL onto the substrate P through the liquid LQ while moving the substrate P in the Y-axis direction with respect to the optical path space K in a state where the optical path space K is filled with the liquid LQ. Then, immersion exposure is executed (S10).
  • the control device 3 supports the liquid immersion member 70 with the holding device 30 at least during the operation of forming the liquid immersion region LR (including during exposure of the substrate). Further, the control device 3 inserts the support member 43 into the recess 74M of the liquid immersion member 70.
  • the liquid immersion member 70 falls. This can be prevented. Accordingly, it is possible to prevent the occurrence of problems such as damage to the substrate stage 2, the substrate stage surface plate 8, the liquid immersion member 70, and the like due to the drop of the liquid immersion member 70.
  • the liquid immersion member 70 may be deteriorated and Z or contaminated.
  • the liquid LQ in the immersion area LR is a force that contacts both the surface of the substrate P and the immersion member 70.
  • the photosensitive material of the substrate P, or a certain material such as a top coat applied on the photosensitive material, is a liquid LQ.
  • the foreign matter enters the inside and adheres to the liquid immersion member 70 and contaminates the liquid immersion member 70.
  • foreign matter floating in the air may adhere to the liquid immersion member 70 and contaminate the liquid immersion member 70. If the land surface 77 of the liquid immersion member 70 is contaminated, the liquid LQ cannot be held well between the liquid immersion member 70 and the substrate P.
  • the liquid LQ May result in a spill.
  • the porous member 88 disposed in the recovery port 72 of the liquid immersion member 70 is contaminated, the liquid LQ cannot be recovered well, and the liquid LQ is held well between the liquid immersion member 70 and the substrate P. It may not be possible.
  • foreign matter that has adhered to the liquid immersion member 70 may enter the liquid LQ during exposure of the substrate P and float on the optical path of the exposure light EL or may adhere to the substrate P. is there. Further, the liquid immersion member 70 may be damaged for some reason. If you continue to use the immersion member 70 in which such a malfunction has occurred (the immersion member 70 in an abnormal state), the immersion region LR in the desired state cannot be formed, resulting in exposure accuracy and Z or measurement accuracy. Etc. may deteriorate.
  • the exposure apparatus EX automatically replaces the liquid immersion member 70 using the replacement system CS.
  • the control device 3 detects the state of the liquid immersion member 70 using the detection device 90.
  • the control device 3 adjusts the position of the substrate stage 2 so that the lower surface of the liquid immersion member 70 and the transparent member 93 provided on the substrate stage 2 face each other.
  • the state of the surface of the liquid immersion member 70 is observed using the imaging device 92 (S12).
  • the control device 3 collects the liquid LQ in the liquid immersion region LR (after removing all the liquid LQ inside the liquid immersion member 70, the substrate stage 2, etc.) and then moves the image pickup device 92. Observe the surface state of the immersion member 70 used.
  • the liquid LQ may be filled between the liquid immersion member 70 and the upper surface 2F (transparent member 93) of the substrate stage 2.
  • the imaging device 92 observes the state of the liquid immersion member 70 through the liquid LQ, and when the liquid immersion member 70 is replaced after the observation operation using the imaging device 92 is completed, Operation to collect all liquid LQ in immersion area LR is performed.
  • control device 3 executes the state detection operation of the liquid immersion member 70 using the imaging device 92 of the detection device 90 every time a predetermined number of substrates are exposed. To do.
  • the control device 3 may execute the state detection operation of the liquid immersion member 70 using the imaging device 92 of the detection device 90 at predetermined time intervals.
  • Image information captured by the imaging device 92 is output to the control device 3.
  • the control device 3 determines whether or not the liquid immersion member 70 needs to be replaced based on the detection result of the imaging device 92 (S14). Then, the control device 3 executes the replacement operation of the liquid immersion member 70 in accordance with the detection result of the imaging device 92. For example, the control device 3 performs image processing on image information captured by the imaging device 92, and determines whether or not the liquid immersion member 70 needs to be replaced based on the processing result.
  • the control device 3 stores in advance information regarding the allowable range for the contamination state of the liquid immersion member 70, and the control device 3 uses the storage information and the image processing result to store the liquid immersion member. Determine whether 70 needs to be replaced. For example, when it is determined that the contamination state of the liquid immersion member 70 is within the allowable range based on the stored information and the image processing result, the control device 3 Without replacing the member 70, the immersion exposure operation using the immersion member 70 is continued (S16).
  • the contamination state of the liquid immersion member 70 being within the allowable range means that the liquid immersion member 70 is used and the desired exposure accuracy and measurement accuracy can be maintained.
  • the permissible range for the contamination state can be obtained in advance by, for example, experiments or simulations and stored in the control device 3.
  • control device 3 replaces the liquid immersion member 70. Operation starts (S1 8). The control device 3 starts the replacement operation of the liquid immersion member 70 after collecting all the liquid LQ on the substrate stage 2.
  • the control device 3 adjusts the position of the substrate stage 2 so that the lower surface of the liquid immersion member 70 and the moving mechanism 53 of the substrate stage 2 face each other, and the pins of the moving mechanism 53
  • the member 55 is raised, and the upper surface of the pin member 55 and the land surface 77 of the liquid immersion member 70 are brought into contact with each other.
  • the control device 3 removes the support member 43 of the support mechanism 40 from the recess 74K of the liquid immersion member 70, and then releases the holding of the liquid immersion member 70 by the holding device 30. That is, the control device 3 is in the state shown in FIG. Thereby, the liquid immersion member 70 is transferred from the holding device 30 to the moving mechanism 53 of the first sub-transport system 51 at the first position PS1.
  • the control device 3 lowers the pin-shaped member 55 while the liquid immersion member 70 is supported by the pin-shaped member 55 of the moving mechanism 53. As a result, as shown in FIG. 9, the upper surface 75 A of the liquid immersion member 70 and the holding surface 31 of the holding device 30 are separated. Further, the control device 3 lowers the pin-like member 55 until the upper surface 75A of the liquid immersion member 70 is disposed below (one Z side) the lower surface T1 of the last optical element FS. If the upper surface 75A of the liquid immersion member 70 cannot be disposed below the lower surface T1 of the last optical element FS simply by lowering the pin-shaped member 55, the control device 3 supports the substrate stage surface plate 8.
  • the substrate stage surface plate 8 can be lowered together with the substrate stage 2 by controlling the vibration isolator 10.
  • the anti-vibration device 10 is an active anti-vibration device including an actuator and a Dunno mechanism, and the actuator of the anti-vibration device 10 can move the substrate stage surface plate 8 at least in the Z-axis direction. Therefore, the control device 3 can move (lower) the substrate stage 2 in the ⁇ Z direction by driving the actuator of the vibration isolator 10 and moving the substrate stage surface plate 8 in the Z direction. Therefore, the control equipment The apparatus 3 is provided on the substrate stage 2 by driving the actuator of the vibration isolator 10, and is supported by the pin-like member 55 of the moving mechanism 53 so that the liquid immersion member 70 also moves in the Z direction.
  • the upper surface 75A of the liquid immersion member 70 can be disposed below the lower surface T1 of the last optical element FS.
  • the lens barrel surface plate 7 is moved in the + Z direction so that the upper surface 75A of the liquid immersion member 70 is disposed below (one Z side) the lower surface T1 of the terminal optical element FS.
  • both the lens barrel surface plate 7 and the substrate stage surface plate 8 may be powered.
  • a movable member for example, a transfer arm
  • the substrate stage 2 is also retracted by the force directly below the projection optical system PL.
  • the movable member holding the liquid immersion member 70 may be moved in the Z-axis direction.
  • the amount of movement of the liquid immersion member 70 in the Z-axis direction can be made larger than the distance between the holding surface 31 of the holding device 30 and the bottom surface T1 of the terminal optical element FS, and the top surface 75A of the liquid immersion member 70 is optically terminated. It is possible to place it below the bottom surface T1 of the element FS (one Z side).
  • the control device 3 moves the substrate stage 2 at least in the Y-axis direction, and moves to the vicinity of the third position PS3 where the first transport mechanism 61 of the second sub transport system 52 is disposed. .
  • the liquid immersion member 70 supported by the moving mechanism 53 of the substrate stage 2 also moves to the third position PS3 together with the substrate stage 2.
  • the substrate stage 2 Even when moved in the XY plane, the liquid immersion member 70 on the substrate stage 2 and the terminal optical element FS do not contact each other.
  • the control device 3 moves at least one of the first arm 63 of the first transport mechanism 61 and the pin-shaped member 55 of the moving mechanism 53 in the Z-axis direction, The liquid immersion member 70 and the first arm 63 on the substrate stage 2 arranged near the position PS3 are brought close to each other.
  • the control device 3 causes the first arm 63 of the first transport mechanism 61 and the moving mechanism 53 (substrate stage 2) so that the support surface of the first arm 63 is positioned below the flange 74 of the liquid immersion member 70. Move at least relative to the X-axis.
  • control device 3 moves relative to the Z-axis direction so that the first arm 63 and the pin-shaped member 55 are separated from each other, and the liquid is immersed in the first arm 63 of the first transport mechanism 61. Holds 70 flanges 74. Thus, the liquid immersion member 70 is moved to the third position PS3. Thus, the moving mechanism 53 (pin-like member 55) of the first sub-transport system 51 passes the first transport mechanism 61 (first transport arm 63) of the second sub-transport system 52.
  • the control device 3 replaces the liquid immersion member 70 whose upper force is also held by the first arm 63 of the first transport mechanism 61 with the second arm of the second transport mechanism 62. Pass to 64.
  • the second arm 64 of the second transport mechanism 62 receives the liquid immersion member 70 from the lower side. That is, the control device 3 extends the second arm 64 of the second transport mechanism 62 to the ⁇ Z side of the first transport mechanism 61 and then moves the Z-axis so that the first arm 63 and the second arm 64 approach each other.
  • the liquid immersion member 70 is transferred from the first arm 63 of the first transport mechanism 61 to the second arm 64 of the second transport mechanism.
  • the second transfer arm 64 holds the liquid immersion member 70 so as to contact only the land surface 77 of the liquid immersion member 70.
  • the control device 3 uses the second transport mechanism 62 to store the liquid immersion member 70 in the storage station 20 at the second position PS 2. That is, the control device 3 moves the second arm 64 at least in the Y-axis direction and carries the liquid immersion member 70 into the storage station 20 (second position PS2). The control device 3 opens the door 22 and opens the opening 21 when the liquid immersion member 70 is stored in the storage station 20 using the second transport mechanism 62.
  • the control device 3 executes an operation of attaching a new clean liquid immersion member 70.
  • the operation of attaching the new liquid immersion member 70 is only required to operate the respective transport mechanisms in the reverse order of the operation of removing the liquid immersion member 70, and thus the description is simplified.
  • the control device 3 uses the second transport mechanism 62 of the second sub transport system 52 to carry out a new clean liquid immersion member 70 stored in the storage station 20 from the storage station 20. As shown in FIG. 13, the control device 3 passes the new liquid immersion member 70 from the second transport mechanism 62 (second transport arm 64) to the first transport mechanism 61 (first transport arm 63).
  • the control device 3 moves the substrate stage 2 in the vicinity of the third position PS3, and at the third position PS3, the first transport mechanism 61 (first transport arm). 61), a new liquid immersion member 70 is transferred to the moving mechanism 53 (pin-like member 55) on the substrate stage 2. In this way, the liquid immersion member 70 is transferred from the first transport mechanism 61 of the second sub-transport system 52 to the moving mechanism 53 of the first sub-transport system 51 at the third position PS3.
  • FIG. 14 shows a state where the pin-like member 55 is lowered on the substrate stage 2.
  • the control device 3 moves the substrate stage 2 at least in the Y-axis direction, and moves the liquid immersion member 70 on the substrate stage 2 to the holding device 30 (projection optical system).
  • the control device 3 prevents the liquid immersion member 70 on the substrate stage 2 from contacting the terminal optical element FS.
  • the lens barrel surface plate 7 and the substrate stage surface plate 8 that is, the projection optical system PL and the substrate stage 2) can be moved relative to each other in the Z-axis direction.
  • the control device 3 moves the holding device 30 closer to the liquid immersion member 70 supported by the moving mechanism 53.
  • the liquid immersion member supported by the pin-like member 55 by moving the lens barrel surface plate 7 and the substrate stage surface plate 8 relative to each other in the Z-axis direction and controlling the moving mechanism 53 of the first sub-transport system 51. Raise 70 to first position P S1.
  • the liquid immersion member 70 supported by the pin-shaped member 55 approaches the holding device 30, and the upper surface 75 of the liquid immersion member 70 and the holding surface 31 of the holding device 30 come into contact with each other. To do.
  • FIG. 17 is a view showing a state in which the liquid immersion member 70 supported by the pin-like member 55 is brought close to the holding surface 31 of the holding device 30.
  • the control device 3 raises the pin-shaped member 55 to guide the V-shaped liquid immersion member 70 supported by the pin-shaped member 55 while guiding the inclined surface 44 formed on the base material 41. Can be approached.
  • An inclined surface 76 is also formed on the new liquid immersion member 70, and the control device 3 brings the upper surface of the liquid immersion member 70 into contact with the inclined surface 44 of the substrate 41 and the inclined surface 76 of the liquid immersion member 70.
  • 75A can be brought close to the holding surface 31 of the holding device 30. Therefore, the movement of the liquid immersion member 70 in the + Z direction can be guided by the inclined surface 44 of the base material 41, and the positional relationship between the holding device 30 and the liquid immersion member 70 held by the holding device 30 Can be adjusted.
  • the control device 3 uses the suction mechanism 32 of the holding device 30 while the holding surface 31 of the holding device 30 and the upper surface 75A of the liquid immersion member 70 are in contact with each other. Then, the liquid immersion member 70 is adsorbed. Accordingly, the liquid immersion member 70 is transferred to the holding device 30 and held by the holding device 30 by the moving mechanism 53 of the first sub-transport system 51 at the first position PS1.
  • the control device 3 causes the suction mechanism 32 of the holding device 30 to be connected to the liquid immersion member 70 based on the detection result of the pressure sensor. It is possible to determine whether or not the force can be held well.
  • the first connection mechanism 101 connects the second flow path 84 and the supply flow path 81, and the second connection.
  • the third flow path 85 and the recovery flow path 82 are connected by the mechanism 102.
  • control device 3 is supported by the pin-like member 55, and the liquid immersion member 70 can be brought close to the holding device 30, and the support member 43 of the support mechanism 40 is moved into the recess of the liquid immersion member 70. Insert into 74M. Since the positional relationship between the holding device 30 and the liquid immersion member 70 is adjusted by the slopes 76 and 44, the support mechanism 40 can smoothly insert the support member 43 into the recess 74M of the liquid immersion member 70. As a result, the control device 3 can support the liquid immersion member 70 with the support mechanism 40 while the liquid immersion member 70 is held by the holding device 30.
  • the control device 3 moves the pin-shaped member 55 of the moving mechanism 53 in the -Z direction so that the liquid immersion member 70 and the pin-shaped member 55 are separated from each other. Move and store the pin-shaped member 55 in the substrate stage 2. Since the support member 43 of the support mechanism 40 is inserted into the recess 74M of the liquid immersion member 70 before the pin-shaped member 55 is moved in the Z direction, the liquid immersion member 70 is detached from the holding device 30. Even so, the liquid immersion member 70 can be supported by the support member 43 of the support mechanism 40 to prevent the liquid immersion member 70 from falling.
  • the control device 3 performs the liquid supply operation of the liquid supply device 86 and the liquid recovery operation of the liquid recovery device 87 with the liquid immersion member 70 and the upper surface 2F of the substrate stage 2 facing each other. Perform in parallel for a predetermined time. That is, the control device 3 forms the liquid immersion region LQ on the upper surface 2F of the substrate stage 2 while the second channel 84, the supply channel 81, the recovery channel 82, and the third channel 85 for a predetermined time. Continue to flow the liquid LQ through the channel, and wash (flush) each flow path in contact with the liquid LQ with the liquid LQ.
  • the liquid contact surface that contacts the liquid LQ such as the land surface 77 and the upper surface 79 of the liquid immersion member 70 or the liquid contact surface that contacts the liquid LQ of the terminal optical element FS becomes the liquid LQ.
  • (Flushing) can be performed with (S 20).
  • the lyophilicity (hydrophilicity) of the liquid contact surface of the liquid immersion member 70 (such as the land surface 77 and the lower surface 89 of the porous member 88) can be increased.
  • a dummy substrate can be placed on the substrate holder 2H instead of the substrate P, and flushing can be performed with the liquid immersion member 70 and the dummy substrate facing each other.
  • the control device 3 loads the substrate P to be exposed next onto the substrate stage 2, and performs immersion exposure of the substrate P using the new immersion member 70. Resume (S16).
  • the exchange system CS for exchanging the liquid immersion member 70 since the exchange system CS for exchanging the liquid immersion member 70 is provided, the liquid immersion member 70 can be exchanged smoothly using the exchange system CS. Accordingly, it is possible to suppress a reduction in the operating rate of the exposure apparatus EX, and it is possible to suppress deterioration in exposure accuracy and measurement accuracy caused by continuing to use the liquid immersion member 70 in an abnormal state.
  • a return work for returning peripheral members and equipment that have been removed or disassembled to their original state, or an air conditioning area It may be necessary to set a waiting time to restore the original environment.
  • the operation of the exposure apparatus EX since the operation of the exposure apparatus EX is stopped, it may be necessary to perform calibration work for various devices constituting the exposure apparatus EX. In that case, the operating rate of the exposure apparatus EX may be significantly reduced.
  • vibration may be transmitted to the projection optical system PL via the liquid immersion member 70. Therefore, the transmission of the vibration may be suppressed by, for example, a vibration isolator.
  • FIG. 18 is a cross-sectional view showing the main parts of the exposure apparatus EX according to the second embodiment.
  • a characteristic part of this embodiment is that a holding surface 31 of a holding device 30 for holding the liquid immersion member 70 is provided on a support member 110 different from the lens barrel 5.
  • the support member 110 is an annular member disposed so as to surround the terminal optical element FS, and a holding surface 31 for holding the liquid immersion member 70 is provided on the lower surface thereof.
  • the suction port 33 of the suction mechanism 32 is formed as in the first embodiment described above.
  • the support member 110 is connected to the lens barrel surface plate 7 of the first column CL1 via the support mechanism 113.
  • the support mechanism 113 includes a vibration isolator 111 connected to the lens barrel surface plate 7 and a connection member 112 that connects the vibration isolator 111 and the support member 110.
  • the first internal flow path 34A of the first flow path 34 is formed inside the support member 110 and the connection member 112. Further, the second internal flow path 84A of the second flow path 84 and the third internal flow path 85A of the third flow path 85 are also formed inside the support member 110 and the connection member 112.
  • the member having the holding surface 31 for holding the liquid immersion member 70 can be arbitrarily set, and the holding surface for holding the liquid immersion member 70 as in the present embodiment.
  • a member having 31 may be connected to the first column CL1 including the lens barrel surface plate 7. Further, since the lens barrel surface plate 7 of the first column CL1, the support member 110, and the connection member 112 are connected via the vibration isolator 111, the vibration generated in the support member 110 and the connection member 112 is mirrored. Transmission to the projection optical system PL supported by the cylindrical surface plate 7 can be suppressed.
  • the holding surface 31 is not limited to being parallel to the XY plane, and may be arranged so as to intersect (for example, vertically) with the XY plane.
  • the support member 110 is annular.
  • the present invention is not limited to this.
  • a plurality of support columns may be used.
  • the member (lens barrel 5 or support member 110) on which the liquid immersion member 70 is provided has the holding surface 31, but the structure of the holding mechanism for the liquid immersion member 70 In some cases, the holding surface 31 may not be provided on the member.
  • the pin-like member 55 of the moving mechanism 53 of the first sub-transport system 51 is provided in the opening 54 of the substrate holder 2H, and the substrate P can also be transported (can be raised and lowered).
  • the pin-like member 55 may be provided at a position different from the substrate holder 2H.
  • the pin-like member 55 is disposed on the upper surface 2F of the substrate stage 2.
  • the pin-shaped member that raises and lowers the substrate P and the pin-shaped member that raises and lowers the liquid immersion member 70 are separate members. Therefore, the dimensions and arrangement of the pin-like members that raise and lower the liquid immersion member 70 and the pin-like members that raise and lower the substrate P can be optimized as appropriate according to the object to be conveyed.
  • the moving mechanism 53 of the first sub transport system 51 may not be provided on the force substrate stage 2 provided on the substrate stage 2.
  • the moving body 2 ′ may be provided on a moving body 2 ′ different from the substrate stage 2.
  • the moving body 2 ′ is movable between a position near the first position PS1 where the holding device 30 is disposed and a position near the third position PS3 where the first transport mechanism 61 is disposed. It is.
  • the transfer device 50 ′ that transfers the substrate P and the transfer device 50 that transfers the liquid immersion member 70 are different devices.
  • the transport device 50 that transports the liquid immersion member 70 includes the moving body 2 ′, the first position PS1 where the holding device 30 is disposed, and the second position PS2 where the storage station 20 is disposed.
  • the liquid immersion member 70 can be conveyed between the two.
  • the transfer device 50 ′ for transferring the substrate P is a substrate stage 20 at the fourth position PS4 where the substrate P is transferred to and from a peripheral device such as a substrate storage station 20 ′ or a developer device. 2 can be loaded.
  • the force used to unload the substrate P from the substrate stage 2 at the fourth position PS4 may be unloaded at a position different from the fourth position PS4. That is, if the loading position and unloading position of board P are different, It may be allowed.
  • the measurement stage may be used as the moving body 2.
  • a characteristic part of the present embodiment is a device (alignment device) that adjusts the positional relationship between the liquid immersion member 70 and the holding device 30 and is provided on the transport path of the transport device 50, and detects the detection light La. It has a projection device 131 that emits light and a light reception device 132 that can receive the detection light La, and an optical device 130 that optically acquires position information of the liquid immersion member 70 held by the transport device 50. is there.
  • the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
  • the optical device 130 is disposed on the transport path of the first transport mechanism 61.
  • the optical device 130 includes a plurality of projection devices 131 arranged at predetermined positions with respect to the first arm 63 of the first transport mechanism 61, and arranged at predetermined positions with respect to the projection device 131.
  • a plurality of light receiving devices 132 are provided on the lower surface of the upper plate member 61A of the first transport mechanism 61, and each of the projection devices 131 is disposed so as to face the light receiving device 132.
  • Each of the projection device 131 and the light receiving device 132 is provided so as to correspond to a plurality of (four) cutouts 74K formed in the liquid immersion member 70.
  • Each of the projection devices 131 can project the detection light La near the notch 74K formed at the edge of the liquid immersion member 70.
  • the control device 3 emits the detection light La from the projection device 131 while driving the first arm 63 holding the liquid immersion member 70 in the direction of six degrees of freedom.
  • the control device 3 is a first arm that holds the liquid immersion member 70 so that each of the detection light La emitted from each projection device 131 and received through each notch 74K is received by each light receiving device 132 in a predetermined state. Move 63.
  • the position information of the first arm 63 at this time is detected by a position detection device such as an encoder.
  • the control device 3 stores the position information of the first arm 63 when the detection light La is received by each light receiving device 132 in a predetermined state, and the position information of the liquid immersion member 70 at that time.
  • Detection light La The relationship between the position of the liquid immersion member 70 and the position of the holding device 30 when each of the light receiving devices 132 is received by each light receiving device 132 in a predetermined state is known, and the control device 3 detects the detection result of the position detecting device,
  • the liquid immersion member 70 is transported to the holding device 30 using the first transport mechanism 61 and the moving mechanism 53 on the substrate stage 2 while monitoring the measurement results of the laser interferometer 15 and the like.
  • control device 3 can transport the liquid immersion member 70 to the holding device 30 in a desired positional relationship with respect to the holding device 30.
  • the liquid immersion member 70 can be attached to the holding device 30 in a desired state with less contact between the liquid immersion member 70 and other members.
  • the arrangement of the optical device 130 can be arbitrarily determined as long as the position, Z, or rotation of the liquid immersion member 70 can be detected. That is, the optical device 130 is not limited to the above configuration.
  • the control device 3 detects the state of the liquid immersion member 70 using the imaging device 92, and based on the detection result, the control device 3 Although the necessity of replacement is determined, the necessity of replacement of the liquid immersion member 70 may be determined based on the detection result of the pressure sensor 91. In this case, the imaging device 92 may be omitted, or the imaging device 92 and the pressure sensor 91 may be used together to determine whether or not the liquid immersion member 70 needs to be replaced.
  • a sensor for example, a particle counter
  • a sensor that checks the state of the liquid LQ is installed in the liquid supply device 86 and Z or the liquid recovery device 87, and the state of the liquid LQ detected by the sensor. Based on the above, it may be determined whether or not the liquid immersion member 70 needs to be replaced.
  • the type and Z or number of sensors of the force detection device 90 in which the detection device 90 includes at least one of the pressure sensor 91, the imaging device 92, and the particle counter are as follows. It is not limited to this.
  • the immersion member 70 is in a defective state, such as contamination of the lower surface (such as the land surface 77) of the immersion member 70, the shape of the immersion region LR may not be maintained in a desired state. . Accordingly, the necessity of replacement of the liquid immersion member 70 may be determined based on the shape of the liquid immersion region LR. In this case, for example, the operator can determine whether replacement or cleaning is necessary by visual observation or by observing the image of the imaging device 92.
  • the liquid immersion member 70 is defective due to contamination of the lower surface of the liquid immersion member 70 (such as the land surface 77).
  • the liquid LQ droplets remain on the substrate P, and defects may increase in the pattern formed on the substrate P due to the remaining droplets. Therefore, based on the exposure result (defect) of the substrate P, it may be determined whether or not the liquid immersion member 70 needs to be replaced.
  • the imaging result of the imaging device 92 may be displayed on the display device of the output device 18. Since the operator can confirm the display content of the display device, the operator may determine whether or not the liquid immersion member 70 needs to be replaced based on the display result of the display device. Then, when the replacement operation of the liquid immersion member 70 is executed according to the display result of the display device, a command signal for operating the replacement system CS can be input from the input device 17. The control device 3 can control the replacement operation of the liquid immersion member 70 based on the input signal of the input device 17.
  • the force of detecting the state of the liquid immersion member 70 using the imaging device 92 every predetermined number of processed substrates or every predetermined time interval for example, An operator may input a command signal for executing a detection operation using the imaging device 92 from the input device 17 at an arbitrary timing.
  • the control device 3 or the operator can determine whether or not the liquid immersion member 70 needs to be replaced based on the detection result (imaging result) of the imaging device 92.
  • the imaging device 92 for determining whether or not the liquid immersion member 70 needs to be replaced is omitted, and an operator inputs an instruction to replace the liquid immersion member 70 from the input device 17 at a predetermined timing. You can do it.
  • the control device 3 may output a command for replacing the liquid immersion member 70 at a predetermined timing. That is, the liquid immersion member 70 may be replaced so that the operator or the control device 3 determines whether or not the liquid immersion member 70 needs to be replaced.
  • the detection result of the detection device 90 or the like may not be used alone, or the detection operation for determining necessity may not be performed. This is exactly the same in determining whether or not the liquid immersion member 70 needs to be cleaned in a sixth embodiment to be described later.
  • the liquid immersion member 70 includes both the supply port 71 and the recovery port 72.
  • the liquid supply port and the liquid recovery port may be misaligned.
  • a part having one side may be exchanged by the exchange system CS.
  • JP 2004-289126 A corresponding US Pat. No. 6,952,253
  • a sealing member as disclosed in US Pat. No. 7,075,616
  • only a part of the liquid immersion member 70 may be replaced using the replacement system CS.
  • the support mechanism 40 may be omitted if the holding device 30 can reliably hold the liquid immersion member 70.
  • the transport device 50 for transporting the liquid immersion member 70 includes a moving mechanism 53, a first transport mechanism 61, and a second transport mechanism 62.
  • the liquid immersion member 70 can be transported between the first position PS 1 where the holding device 30 is arranged and the second position PS2 where the containing station 20 is arranged.
  • the configuration is arbitrary.
  • the moving mechanism 53 (pin-shaped member 55) and the second transport mechanism 62 (second transport mechanism) arranged on the substrate stage 2 are used. Since the liquid immersion member 70 can be transferred to and from the arm 64), the first transport mechanism 61 can be omitted. Further, when the liquid immersion member 70 can be transferred between the second transfer arm 64 of the second transfer mechanism 62 and the holding device 30, the moving mechanism 53 and the first transfer mechanism 61 can be omitted.
  • the second position PS2 of the switching system CS is set outside the chamber device 19, but the second position PS2 is not limited to this. It may be set in the device 19.
  • the transport system 50 is configured only by a mechanism (for example, the above-described moving mechanism 53) that moves the liquid immersion member 70 away from the holding device 30 or moves the liquid immersion member 70 closer to the holding device 30 in the Z-axis direction.
  • the second position PS2 may be set directly below the first position PS1 (one Z side). In this case, it is possible to reduce the time required for replacement of the force immersion member 70 that requires an operator or the like to access the inside of the chamber device 19, thereby suppressing a decrease in the operating rate of the exposure apparatus EX. it can.
  • the replacement work of the liquid immersion member 70 is a force performed using the replacement system CS.
  • the replacement system CS is not necessarily used. An operator may perform at least part of the replacement work manually.
  • another liquid immersion member is exposed by replacement with the liquid immersion member 70.
  • Force intended to be attached to the light body part The liquid immersion member 70 that has also carried out the exposure body part force is washed in, for example, a space isolated from the exposure body part (for example, the storage station 20 or the outside of the exposure apparatus).
  • the cleaned liquid immersion member 70 may be carried into the exposure main body and reattached. That is, in each of the above-described embodiments, it may be determined whether or not the liquid immersion member 70 is replaced, and whether or not both replacement and cleaning are necessary. Hereinafter, this maintenance operation will be described.
  • Immersion exposure is performed by irradiating the exposure light EL onto the substrate P while moving the substrate P in the Y-axis direction (S30).
  • the control device 3 observes the state of the immersion member 70.
  • the liquid immersion member 70 may be observed by using an imaging device 92 as shown in FIG. 7 or by an operator visually observing (S32).
  • the control device 3 determines whether or not the liquid immersion member 70 needs to be cleaned based on the detection result of the imaging device 92.
  • the liquid immersion member is visually checked. It is determined whether or not the member 70 needs to be cleaned (S 34).
  • the control device 3 performs image processing on the image information picked up by the image pickup device 92, and determines whether or not the liquid immersion member 70 needs to be cleaned based on the processing result.
  • the control device 3 stores in advance information regarding the allowable range of the contamination state of the liquid immersion member 70, and the control device 3 is based on the stored information and the image processing result. Thus, it is determined whether or not the liquid immersion member 70 needs to be cleaned. For example, when it is determined that the contamination state of the liquid immersion member 70 is within the allowable range based on the stored information and the image processing result, the control device 3 does not clean the liquid immersion member 70 and does not perform the cleaning. The immersion exposure operation using the immersion member 70 is continued (S36). [0142] On the other hand, if it is determined that the contamination state of the liquid immersion member 70 is out of the allowable range based on the stored information and the image processing result, the first as described in the first embodiment.
  • the liquid immersion member 70 is transferred to the outside of the chamber device 19 using the transfer device 50 having the sub transfer system 51 and the second sub transfer system 52.
  • Cleaning of the conveyed liquid immersion member 70 can be performed at the cleaning station 200 arranged in parallel with the storage station 20 in the X direction as shown in FIG.
  • the cleaning station 200 is equipped with, for example, a cleaning device (not shown) having a cleaning liquid spray nozzle for cleaning the liquid immersion member 70 transported by the transport device 50.
  • the liquid immersion member 70 is cleaned by spraying the liquid immersion member 70 with a cleaning liquid and a rinse liquid such as pure water (S38).
  • the cleaning may be performed by immersing the liquid immersion member 70 in a container filled with the cleaning liquid.
  • the liquid immersion member 70 can be placed on a rotating stage and the cleaning liquid and rinse liquid can be sprinkled off by rotation of the rotating stage.
  • the liquid immersion member 70 may be dried by a blower and Z or a heater.
  • the liquid immersion member 70 is returned again into the chamber device 19 using the transport device 50, and the second transport mechanism 62, the first transport mechanism 61, and the substrate stage are returned. 2 is held by the holding device 30 via the (moving mechanism 53).
  • the control device 3 forms the liquid immersion region LQ on the upper surface 2F of the substrate stage 2, while the second flow path 84, the supply flow path 81, the recovery flow path 82, and the third flow path are formed for a predetermined time.
  • the liquid LQ continues to flow through 85, and each flow path in contact with the liquid LQ is washed (flushed) with the liquid LQ (S40). Flushing may be omitted.
  • the control device 3 uses the cleaned liquid immersion member 70 to load the substrate P to be exposed next onto the substrate stage 2 and resumes the liquid immersion light on the substrate P (S36). .
  • the liquid immersion member 70 is transferred to the outside of the chamber device 19 by using the transfer device 50 and the holding device 30 and the cleaning station 200 of the exchange system CS, and the liquid immersion member 70 is cleaned. can do. With this cleaning operation, it is possible to suppress a reduction in the operating rate of the exposure apparatus EX, and it is possible to suppress a deterioration in exposure accuracy and measurement accuracy caused by continuing to use the liquid immersion member 70 in an abnormal state.
  • the liquid immersion member 70 is held by the holding device 3 using the moving mechanism 53 of the transfer device 50. Although it is attached to and detached from 0, an operator may manually attach and detach the liquid immersion member 70 without using them. Further, the conveyance of the liquid immersion member 70 to the outside of the chamber device 19 may be performed manually by an operator without using the conveyance device 50. In other words, the maintenance method of the present embodiment may be executed manually by an operator.
  • the replacement operation of the liquid immersion member 70 described in the first embodiment described above and the cleaning operation of the liquid immersion member 70 described in the sixth embodiment can be appropriately used appropriately.
  • the replacement operation of the liquid immersion member 70 is performed only when the contamination of the liquid immersion member 70 cannot be removed by cleaning. If the contamination is at a level that requires cleaning, the cleaning operation of the liquid immersion member 70 can be executed. As a result, a reduction in throughput (operation rate) of the exposure apparatus can be suppressed, and fine and efficient maintenance work can be performed.
  • the optical path space on the image plane side (exit surface) of the terminal optical element (final optical element FS) is filled with liquid.
  • a projection optical system in which the optical path space on the object plane side of the terminal optical element is also filled with liquid may be adopted. it can. If an immersion member for filling the optical path space on the object plane side with the liquid is provided, the immersion member may be replaced using the exchange system CS.
  • the projection optical system PL is supported by the lens barrel surface plate 7.
  • the projection optical system PL may be suspended and supported with respect to a main frame member (not shown) disposed above the optical system PL or the mask stage surface plate 6.
  • the liquid immersion member 70 is provided on the support member 110 (that is, the lens barrel surface plate 7) or the lens barrel 5.
  • the liquid immersion member 70 is integrated with the projection optical system PL.
  • the immersion member 70 may be provided on a measurement frame that is suspended and supported independently of the projection optical system PL, or on a stand that is provided separately from the first column CL1, the immersion member 70 may be provided. Good.
  • a part of the exchange system CS is provided on the lens barrel surface plate.
  • the exchange system CS may be exchanged with a stand that is provided separately from the measurement frame or the first column CL1. At least a part of the system cs may be provided.
  • the projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system.
  • the projection optical system PL includes any one of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element (catadic or optical system). It may be.
  • a refractive system that does not include a reflective optical element
  • a reflective system that does not include a refractive optical element
  • a catadioptric system that includes a reflective optical element and a refractive optical element (catadic or optical system). It may be.
  • an optical system having a plurality of reflection surfaces and forming an intermediate image at least once (reflection system)
  • a so-called in-line catadioptric system in which a refraction system is provided in a part thereof and has a single optical axis may be used.
  • the projection optical system PL may form either an inverted image or an erect image.
  • the illumination area IA and the exposure area AR are assumed to be on-axis areas including the optical axis within the field of the projection optical system PL, but for example, an off-axis that does not include the optical axis as in an inline catadioptric system. It may be a region.
  • the illumination area IA and the exposure area AR are not limited to a rectangular shape, but may be other shapes such as an arc shape, a trapezoid, or a parallelogram.
  • the liquid LQ in the present embodiment is pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effect on the photoresist or optical elements (lenses) on the substrate P.
  • pure water has no adverse effects on the environment, and the impurity content is extremely low, so it is expected to clean the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. it can.
  • the refractive index n of pure water (water) for exposure light EL with a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source for exposure light EL.
  • lZn that is, the wavelength is shortened to about 134 nm to obtain a high resolution.
  • the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air.
  • the numerical aperture can be increased further, and the resolution is improved in this respect as well.
  • the terminal optical element FS is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL, such as aberration (spherical aberration, coma aberration, etc.), by this optical element. Adjustments can be made.
  • the final optical element of the projection optical system PL May be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ! It may be configured to fill the liquid LQ with a cover glass attached.
  • the liquid LQ in each of the above embodiments is water (pure water), but may be a liquid other than water.
  • the exposure light EL is F laser light
  • the F laser light passes through water.
  • the liquid LQ may be a fluorinated fluid such as perfluorinated polyether (PFPE) or fluorinated oil.
  • PFPE perfluorinated polyether
  • a lyophilic treatment is performed by forming a thin film with a material having a small polarity and a molecular structure including fluorine, for example, in a portion in contact with the liquid LQ.
  • liquid LQ is stable to the photoresist applied to the projection optical system PL and the substrate P, which is transparent to the exposure light EL and has a refractive index as high as possible (for example, Cedar). Oil) can also be used.
  • liquid LQ having a refractive index higher than that of pure water for example, 1.5 or more
  • predetermined liquids with C—H or O—H bonds glycerin
  • predetermined liquids (organic solvents) such as hexane, heptane, decane, or decalin (Decalin: Decahydr ⁇ naphthalene) with a refractive index of about 1.60
  • decalin decalin: Decahydr ⁇ naphthalene
  • the liquid LQ may be a mixture of any two or more of these liquids, or a mixture of at least one of these liquids in pure water (mixed). Furthermore, the liquid LQ is, H + in the pure water, Cs +, K +, Cl _, SO 2_, PO 2_ etc.
  • the base or acid of 4 may be added (mixed), or fine water such as A1 oxides may be added to (mixed with) pure water.
  • the liquid LQ is a photosensitive material (or topcoat film) applied to the surface of the first and second projection systems PL1, PL2, and Z or the substrate P, which has a small light absorption coefficient and a small temperature dependency. Alternatively, it is preferably stable to an antireflection film. Liquid LQ has a higher refractive index for exposure light EL than water. A body having a refractive index of about 1.6 to 1.8 may be used. It is also possible to use a supercritical fluid as the liquid LQ.
  • the terminal optical element FS of the projection optical system PL is made of, for example, quartz (silica) or calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride. It may be formed of a single crystal material of a fluorinated compound, or may be formed of a material having a higher refractive index than quartz or fluorite (eg, 1.6 or more). Examples of materials having a refractive index of 1.6 or more include sapphire and germanium dioxide disclosed in International Publication No. 2005Z059617, or potassium chloride disclosed in International Publication No. 2005Z059618 (refractive index is approximately 1. 75) etc. can be used.
  • the other optical element may be formed of the same material as the terminal optical element FS.
  • the object surface side of the terminal optical element FS is The optical element may be made of quartz, fluorite, or a material having a refractive index of 1.6 or more.
  • a thin film having lyophilicity and Z or dissolution prevention function is formed on a part or all of the surface (including at least the contact surface with the liquid LQ) of the optical element that contacts the liquid LQ, for example, the terminal optical element FS.
  • Quartz has a high affinity with liquid LQ and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
  • a light-shielding film may be provided in a region of the terminal optical element FS that is different from the region through which the exposure light EL passes, to suppress deterioration of optical components (for example, a seal member) due to the exposure light EL.
  • the refractive index n of the terminal optical element FS for the exposure light EL may be smaller than the refractive index n of the liquid LQ for the exposure light EL.
  • termination optical element
  • FS is made of quartz (refractive index is about 1.5), and liquid LQ has a refractive index n that is the refractive index of quartz.
  • the refractive index n of the terminal optical element FS may be larger than the refractive index n of the liquid LQ.
  • the terminal optical element FS is formed of a material having a refractive index of 1.6 or more, and a liquid LQ having a refractive index n larger than that of pure water and smaller than the terminal optical element FS is used. This place
  • the refractive index n of the liquid LQ which is smaller than the refractive index n of the terminal optical element FS, and the projection optical system P
  • the numerical aperture of L is preferably larger than NA.
  • the position information of the mask stage 1 and the substrate stage 3 is measured using an interferometer system.
  • the present invention is not limited to this, for example, a scale (diffraction grating) provided in each stage. You may use the encoder system which detects this. In this case, it is preferable to use a hybrid system equipped with both an interferometer system and an encoder system, and calibrate the measurement results of the encoder system using the measurement results of the interferometer system. Further, the position of the stage may be controlled by switching between the interferometer system and the encoder system or using both.
  • an excimer laser is used as a light source for generating the exposure light EL.
  • a harmonic generator such as a mercury lamp or a semiconductor laser may be used.
  • a light source device that generates ArF excimer laser light as exposure light EL for example, as disclosed in WO 1999Z46835 pamphlet (corresponding US Pat. No. 7,023,610), a solid-state laser such as a DFB semiconductor laser or fiber laser
  • a harmonic generator that outputs pulsed light with a wavelength of 193 nm, including a light source, an optical amplifier having a fiber amplifier, and a wavelength converter, may also be used.
  • the configuration of the liquid immersion system such as the liquid immersion member is not limited to that described above.
  • International Publication No. 2004Z086468 (corresponding to US Patent Application Publication No. 2005Z0280791).
  • International Publication No. 2005/024517 European Patent Publication No. 1420298
  • International Publication No. 2004Z055803 Publication
  • International Publication No. 2 004Z057589 Publication
  • International Publication No. 2004/057590 International Publication No. 2005Z 029559
  • Japanese Patent Publication corresponding US Patent Application Publication No. 2006Z0231206
  • US Pat. No. 6,952,253 is also possible to use an immersion system disclosed in Japanese Patent Publication (corresponding US Patent Application Publication No. 2006Z0231206) and US Pat. No. 6,952,253.
  • the substrate P of each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices, but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses.
  • a mask or reticle master synthetic quartz, silicon wafer
  • a film member is applied.
  • the shape of the substrate P is not limited to a circle but may be other shapes such as a rectangle.
  • the mask M and the substrate P are moved synchronously to run the mask M pattern.
  • Exposure Step In addition to the scanning exposure system (scanning stepper) of the scan method, the mask M pattern is exposed in a batch with the mask M and the substrate P being stationary, and the substrate P is moved step by step. It can also be applied to a step-and-repeat projection exposure apparatus (Stenno. In this case, a projection optical system, for example, a refraction-type projection optical system that does not include a reflective element at a 1Z8 reduction magnification is used.
  • step-and-repeat exposure a reduced image of the first pattern was transferred onto the substrate P using the projection optical system while the first pattern and the substrate P were almost stationary. After that, while the second pattern and the substrate P are almost stationary, the reduced image of the second pattern is partially overlapped with the first pattern using the projection optical system, and the substrate P is exposed at once.
  • Good Switch type batch exposure system.
  • the stitch type exposure apparatus can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially transferred onto the substrate P, and the substrate P is sequentially moved.
  • the exposure apparatus of each of the embodiments described above is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. Nos. 6,341,007, 6,400,441, 6,549). , 269 and 6, 590,634), JP 2000-505958 (corresponding US Pat. No. 5,969,441) 3 ⁇ 4 A multi-stage type (twin-stage type) having a plurality of substrate stages ) Exposure apparatus.
  • the moving mechanism 53 may be arranged on all the substrate stages and used for replacing the liquid immersion member, or the moving mechanism 53 may be arranged only on a specific substrate stage and used for replacing the liquid immersion member.
  • the disclosure of the above US patent is incorporated into the text.
  • the exposure apparatus of each of the above embodiments is disclosed in, for example, Japanese Patent Laid-Open No. 11-135400 (corresponding international publication 1999/23692), Japanese Patent Laid-Open No. 2000-164504 (corresponding US Pat. No. 6,897,963).
  • An exposure apparatus comprising a substrate stage for holding a substrate and a measurement stage on which a measurement member (for example, a reference member on which a reference mark is formed, and Z or various photoelectric sensors) is mounted.
  • a measurement member for example, a reference member on which a reference mark is formed, and Z or various photoelectric sensors
  • the exposure apparatus of each of the above embodiments may be an exposure apparatus provided with a plurality of substrate stages and measurement stages.
  • an exposure apparatus that locally fills a liquid between the projection optical system PL and the substrate P is employed.
  • the present invention is disclosed in, for example, Japanese Patent Laid-Open No. 6-124873. No. 10-303114, US Pat. No. 5,825,043, etc., and the entire surface of the substrate to be exposed is immersed in the liquid so that the exposure is performed. It can also be applied to immersion exposure equipment.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the force projection optical system PL that have been described by taking the exposure apparatus including the projection optical system PL as an example. Even when the projection optical system PL is not used in this way, the exposure light is irradiated onto the substrate via an optical member such as a lens, and the immersion area is placed in a predetermined space between the optical member and the substrate. Is formed.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can also be widely applied to exposure equipment for manufacturing micromachines, MEMS, DNA chips, image sensors (CCD), reticles or masks.
  • force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used instead of this mask.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • a DMD Digital Micro-mirror Device
  • a kind of non-light emitting image display element spatial light modulator
  • the exposure apparatus of each of the above embodiments forms line fringe on the substrate P by forming interference fringes on the substrate P as disclosed in, for example, International Publication No. 2001Z035168.
  • An exposure apparatus that exposes a space pattern may be used.
  • the exposure apparatus of each of the embodiments described above includes, for example, two mask patterns and a projection optical system as disclosed in JP-T-2004-519850 (corresponding US Pat. No. 6,611,316). Through a single shot exposure on the substrate almost simultaneously. Even with a double exposure system.
  • the exposure apparatus EX provides various mechanical systems including the respective constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device includes step 201 for performing a function / performance design of the microdevice, step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate which is a base material of the device, Substrate processing step 204 including an exposure process for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, and a development process for the exposed substrate, and a device assembly step Manufactured through 205, inspection step 206, etc. (including processing processes such as dicing process, bonding process, and knocking process). Note that the maintenance method including replacement of the liquid immersion member and Z or cleaning described in the above embodiment is included in the substrate processing step 204.
  • the present invention maintenance of the liquid immersion member can suppress a reduction in device productivity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

露光装置EXは、液浸システム86,87と、液浸部材70を交換する交換システムCSを備えている。交換システムCSは、液浸部材70を着脱可能に保持する保持装置30及び搬送装置50を有する。交換システムCSを用いることで、液浸部材70の洗浄または交換に起因する稼動率の低下などを抑制することができる。

Description

明 細 書
露光装置、メンテナンス方法、露光方法及びデバイス製造方法
技術分野
[0001] 本発明は、基板を露光する露光装置、メンテナンス方法、露光方法及びデバイス製 造方法に関する。
背景技術
[0002] フォトリソグラフイエ程で用いられる露光装置において、下記特許文献に開示されて いるような、基板上に液体の液浸領域を形成し、その液体を介して基板を露光する液 浸露光装置が開示されて!ヽる。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] 液浸露光装置にお!、て、液浸領域の液体と接触する液浸部材に汚染等の不具合 が生じると、所望状態の液浸領域を形成できず、その結果、露光精度及び Z又は計 測精度などが劣化する可能性がある。そのため、不具合が生じた液浸部材に作業者 がアクセスし、メンテナンス作業を行なったり、交換作業を行ったりすることが考えられ る。し力しながら、液浸部材のメンテナンス作業、交換作業などのために露光装置の 動作を停止した場合、露光装置の稼動率が低下する。
[0004] 本発明は、稼動率の低下、及び Z又は液浸部材の不具合に起因する露光精度な どの劣化を抑制することができる露光装置、メンテナンス方法、露光方法及びデバィ ス製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、液体 (LQ)を介して基板 (P)に露光光 (EL)を照射 して基板 (P)を露光する露光装置であって、基板 (P)上に液浸領域 (LR)を形成する 液浸システム(86, 87など)と、液浸システム(86, 87など)の一部を構成するとともに 、液浸領域 (LR)を形成する液体 (LQ)と接触する液浸部材 (70)を交換する交換シ ステム (CS)とを備えた露光装置 (EX)が提供される。
[0007] 本発明の第 1の態様によれば、液浸部材の交換などによる稼動率の低下を抑制す ることができる。また、例えば汚染などの不具合が生じた液浸部材の交換などを行う 場合、露光精度及び Z又は計測精度の劣化などを抑制することができる。
[0008] 本発明の第 2の態様に従えば、液体 (LQ)を介して基板 (P)に露光光 (EL)を照射 して基板 (P)を露光する露光装置 (EX)であって、基板上に液浸領域 (LR)を形成す る液浸システム(86, 87など)と;液浸領域を形成する液体と接触する液浸部材(70) と;液浸部材を着脱可能に保持する保持装置 (30)とを備える露光装置が提供される
[0009] 本発明の第 2の態様によれば、保持装置により液浸部材を着脱することで、液浸部 材の洗浄または交換による露光装置の稼動率の低下を抑制することができる。また、 例えば汚染などの不具合が生じた液浸部材の洗浄または交換を行う場合、露光精 度及び Z又は計測精度の劣化などを抑制することができる。
[0010] 本発明の第 3の態様に従えば、液体 (LQ)を介して露光光 (EL)で基板 (P)を露光 する露光装置 (EX)であって、露光光を射出する光学部材 (FS)と基板との間の空間 を囲みかつその内側に液浸領域 (LR)の少なくとも一部が形成される液浸部材(70) と、液浸部材が設けられるフレーム部材(7)と、フレーム部材との間で液浸部材の受 け渡しが行われる支持装置 (55)と、を備える露光装置が提供される。
[0011] 本発明の第 3の態様によれば、液浸部材の取り外し及び取り付けが容易となってそ の時間短縮を図ることができ、ひいては液浸部材の洗浄または交換に起因する露光 装置の稼働率の低下などを抑制することができる。
[0012] 本発明の第 4の態様に従えば、第 1、第 2及び第 3態様のいずれかの露光装置 (EX )を用いるデバイス製造方法が提供される。本発明のデバイス製造方法によれば、露 光装置の稼動率の低下が抑制され、高 、生産性でデバイスを製造することができる。 また、例えば汚染などの不具合が生じた液浸部材の洗浄または交換を行う場合、露 光精度及び Z又は計測精度などの劣化が抑制され、高 、精度でデバイスを製造す ることがでさる。
[0013] 本発明の第 5の態様に従えば、基板 (P)が対向して配置される液浸部材 (70)を有 し、液浸部材で保持される液体 (LQ)を介して基板 (P)を露光をする露光装置 (EX) のメンテナンス方法であって、液浸部材(70)を露光装置から取り外すことと、取り外 した液浸部材を洗浄 (S38)又は交換する(S18)ことを含むメンテナンス方法が提供 される。本発明の第 5の態様によれば、液浸部材を洗浄又は交換することにより、露 光精度及び Z又は計測精度の劣化などを抑制することができる。
[0014] 本発明の第 6の態様に従えば、光学部材 (FS)と基板 (P)との間に液体 (LQ)を保 持する液浸部材 (70)を有し、光学部材及び液体を介して露光光 (EL)で基板を露 光する露光装置のメンテナンス方法であって、液浸部材の交換 (S 18)または洗浄 (S 38)のためにその搬出入を行うことを含むメンテナンス方法が提供される。本発明の 第 6の態様によれば、液浸部材の搬出入によりメンテナンスが容易となる。
[0015] 本発明の第 7の態様に従えば、本発明のメンテナンス方法により液浸部材を有する 露光装置をメンテナンス(S 18、 S38など)することと;液体を介して基板を露光するこ と(204)を含む露光方法が提供される。本発明の第 7の態様によれば、高精度な液 浸露光を行うことができる。
[0016] 本発明の第 8の態様に従えば、液体 (LQ)を介して露光光 (EL)で基板 (P)を露光 する露光方法であって、露光光を射出する光学部材 (FS)と基板との間の空間を囲 む液浸部材(70)によってその空間に液体を保持しつつ露光光で基板を露光するこ とと、液浸部材の交換 (S 18)または洗浄 (S38)のためにその搬出入を行うこととを含 む露光方法が提供される。本発明の第 8の態様によれば、液浸部材の交換または洗 浄を容易に行うことができる。
[0017] 本発明の第 9の態様に従えば、第 7又は第 8の態様の露光方法により基板を露光 すること(204)と;露光した基板を現像すること (204)と;現像した基板を加工すること (205)を含むデバイスの製造方法が提供される。本発明のデバイスの製造方法によ れば、高精度で信頼性の高 、デバイスを高 ヽスループットで製造することができる。 図面の簡単な説明
[0018] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。 [図 2]第 1実施形態に係る露光装置の要部を示す断面図である。
圆 3]第 1実施形態に係る液浸部材を示す斜視図の一部破断図である。
圆 4]第 1実施形態に係る液浸部材を下側力も見た斜視図である。
圆 5]第 1実施形態に係る交換システムの動作の一例を示す図である。
圆 6]第 1実施形態に係る検出装置を説明するための模式図である。
圆 7]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 8]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 9]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 10]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 11]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 12]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 13]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 14]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 15]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 16]第 1実施形態に係る交換システムの動作を説明するための模式図である。 圆 17]第 1実施形態に係る交換システムの動作を説明するための模式図である。
[図 18]第 2実施形態に係る露光装置の要部を示す断面図である。
圆 19]第 3実施形態に係る露光装置を示す模式図である。
圆 20]第 4実施形態に係る露光装置を示す模式図である。
[図 21]第 5実施形態に係る露光装置の一部を示す模式図である。
[図 22]第 5実施形態に係る露光装置の一部を示す模式図である。
圆 23]液浸部材の交換動作を含むメンテナンス方法及び露光方法の一例を示すフ ローチャート図である。
[図 24]液浸部材の洗浄動作を含むメンテナンス方法及び露光方法の一例を示すフ ローチャート図である。
[図 25]マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
1…マスクステージ、 2…基板ステージ、 2'…移動体、 3…制御装置、 17· ··入力装 置、 20· ··収容ステーション、 30…保持装置、 32· ··吸着機構、 40· ··支持機構、 43〜 支持部材、 44…斜面、 50· ··搬送装置、 51· ··第 1サブ搬送系、 52…第 2サブ搬送系 、 53· ··移動機構、 70· ··液浸部材、 71· ··供給口、 72· ··回収口、 74Κ· ··切欠、 74M …凹部、 75A…上面、 75B…下面、 76· ··斜面、 88· ··多孔部材、 90…検出装置、 91 …圧力センサ、 92…撮像装置、 130…光学装置、 131· ··投射装置、 132· ··受光装 置、 CS…交換システム、 EL…露光光、 EX…露光装置、 FS…終端光学素子、 LQ …液体、 LS…液浸システム、 M…マスク、 P…基板、 PL…投影光学系、 PS1…第 1 位置、 PS2- "第 2位置、 PS3- "第 3位置
発明を実施するための最良の形態
[0020] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Y軸方 向、 X軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸 方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 θ Y,及び 0 Z方向とする。
[0021] <第 1実施形態 >
第 1実施形態について説明する。図 1は、第 1実施形態に係る露光装置 EXを示す 概略構成図である。図 1において、露光装置 EXは、マスク Mを保持して移動可能な マスクステージ 1と、基板 Pを保持して移動可能な基板ステージ 2と、マスク Mのパタ ーンを露光光 ELで照明する照明系 ILと、露光光 ELで照明されたマスク Mのパター ンの像を基板 P上に投影する投影光学系 PLと、露光装置 EX全体の動作を制御する 制御装置 3とを備えている。また、露光装置 EXは、制御装置 3に接続され、露光装置 EXに操作信号を入力可能な入力装置 17と、制御装置 3に接続され、露光装置 EX の動作状況を出力可能な出力装置 18とを備えている。入力装置 17は、例えばキー ボード、マウス、及びタツチパネル等の少なくとも 1つを含む。出力装置 18は、例えば フラット 'パネル'ディスプレイ等の表示装置、光を発する発光装置、及び音 (警報を 含む)を発する発音装置等の少なくとも 1つを含む。 [0022] なお、ここでいう基板は、例えばシリコンウェハのような半導体ウェハ等の基材上に 感光材 (フォトレジスト)を塗布したものを含み、感光膜とは別に保護膜 (トップコート膜 )などの各種の膜を塗布したものも含む。マスクは、基板上に縮小投影されるデバイ スパターンが形成されたレチクルを含み、例えばガラス板等の透明板部材上にクロム 等の遮光膜を用いて所定のパターンが形成されたものである。この透過型マスクは、 遮光膜でパターンが形成されるバイナリーマスクに限られず、例えばノヽーフトーン型 、あるいは空間周波数変調型などの位相シフトマスクも含む。また、本実施形態にお いては、マスクとして透過型のマスクを用いる力 反射型のマスクを用いてもよい。
[0023] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、 投影光学系 PLの像面側 (光射出側)の露光光 ELの光路を含む光路空間 Kを液体 L Qで満たすように基板 P上に液浸領域 LRを形成する液浸システム LSを備えて 、る。 液浸システム LSの動作は制御装置 3に制御される。液浸システム LSは、光路空間 K 近傍に配置され、液体 LQを供給可能な供給口 71及び液体 LQを回収可能な回収 口 72を有する液浸部材 70を備えている。液浸システム LSは、液浸部材 70を用いて 、投影光学系 PLの複数の光学素子のうち、投影光学系 PLの像面に最も近い終端 光学素子 FSと、投影光学系 PLの像面側に配置された基板ステージ 2上の基板 Pの 表面との間の露光光 ELの光路を含む光路空間 Kを液体 LQで満たすように基板 P上 に液浸領域 LRを形成する。本実施形態においては、液体 LQとして、水(純水)を用 いる。
[0024] 露光装置 EXは、少なくともマスク Mのパターンの像を基板 P上に投影している間、 液浸システム LSを用いて基板 P上に液浸領域 LRを形成する。露光装置 EXは、投 影光学系 PLと光路空間 Kに満たされた液体 LQとを介してマスク Mを通過した露光 光 ELを基板ステージ 2に保持された基板 P上に照射することによって、マスク Mのパ ターンの像を基板 P上に投影して、基板 Pを露光する。また、本実施形態の露光装置 EXは、終端光学素子 FSと基板 Pとの間の露光光 ELの光路を含む光路空間 Kに満 たされた液体 LQ力 投影光学系 PLの投影領域 ARを含む基板 P上の一部の領域に 、投影領域 ARよりも大きく且つ基板 Pよりも小さ ヽ液体 LQの液浸領域 LRを局所的 に形成する局所液浸方式を採用して 、る。
[0025] なお、本実施形態にぉ ヽては、主に液浸領域 LRが基板 P上に形成される場合に ついて説明するが、投影光学系 PLの像面側において、終端光学素子 FSと対向する 位置に配置された物体、例えば基板ステージ 2の一部にも形成可能である。また、例 えば基板 Pの外周付近のショット領域の露光時には、液浸領域 LRはその一部が基 板 P上に形成され、残り一部が基板ステージ 2上に形成される。
[0026] また、後に詳述するように、露光装置 EXは、液浸部材 70を交換する交換システム CSを備えている。交換システム CSは、光路空間 K近傍で液浸部材 70を着脱可能に 保持する保持装置 30と、液浸部材 70を搬送する搬送装置 50とを備えている。搬送 装置 50は、液浸部材 70を、第 1位置 PS1と、第 1位置 PS1とは異なる第 2位置 PS2と の間で搬送可能である。本実施形態では、第 1及び第 2位置 PS1、 PS2が Y軸方向 に離れて設定されている。
[0027] また、露光装置 EXは、少なくとも投影光学系 PLを収容するチャンバ装置 19を備え ている。本実施形態においては、チャンバ装置 19には、少なくともマスクステージ 1、 基板ステージ 2、照明系 ILの少なくとも一部、投影光学系 PL、液浸システム LSの少 なくとも一部、及び交換システム CSの少なくとも一部が収容されている。また、入力装 置 17及び出力装置 18は、チャンバ装置 19の外側に配置されている。
[0028] また、チャンバ装置 19の外側には、液浸部材 70を収容可能な収容ステーション 20 が配置されている。本実施形態においては、第 1位置 PS1には保持装置 30が設けら れ、第 2位置 PS2には収容ステーション 20が設けられており、搬送装置 50は、液浸 部材 70を、保持装置 30と収容ステーション 20との間で搬送可能である。
[0029] また、本実施形態の露光装置 EXは、マスク Mと基板 Pとを所定の走査方向に同期 移動しつつ、マスク Mのパターンの像を基板 P上に投影する走査型露光装置 (所謂 スキャニングステツパ)である。本実施形態においては、基板 Pの走査方向(同期移動 方向)を Y軸方向とし、マスク Mの走査方向(同期移動方向)も Y軸方向とする。露光 装置 EXは、基板 Pのショット領域を投影光学系 PLの投影領域 ARに対して Y軸方向 に移動するとともに、その基板 Pの Y軸方向への移動と同期して、照明系 ILの照明領 域 IAに対してマスク Mのパターン形成領域を Y軸方向に移動しつつ、投影光学系 P L及び液体 LQを介して投影領域 ARに露光光 ELを照射することによって、投影領域 ARに形成されるパターンの像で基板 P上のショット領域を露光する。
[0030] 露光装置 EXは、例えばクリーンルーム内の床面(またはベースプレート) FL上に設 けられた第 1コラム CL1、及び第 1コラム CL1上に設けられた第 2コラム CL2を含むボ ディ BDを備えている。第 1コラム CL1は、複数の第 1支柱 11と、それら第 1支柱 11に 防振装置 9を介して支持された鏡筒定盤 7とを備えている。第 2コラム CL2は、鏡筒定 盤 7上に設けられた複数の第 2支柱 12と、それら第 2支柱 12に防振装置 4を介して支 持されたマスクステージ定盤 6とを備えて 、る。
[0031] 照明系 ILは、マスク M上の所定の照明領域 IAを均一な照度分布の露光光 ELで照 明する。照明系 IL力も射出される露光光 ELとしては、例えば水銀ランプから射出さ れる輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光 (波長 248nm)等の遠紫外光( DUV光)、 ArFエキシマレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等
2
の真空紫外光 (VUV光)などが用いられる。本実施形態にぉ 、ては ArFエキシマレ 一ザ光が用いられる。なお、図 1では照明系 ILはその全てがチャンバ装置 19内に配 置されている力 照明系 ILの一部をチャンバ装置 19の外部に配置してもよい。例え ば、露光光 ELとして ArFエキシマレーザ光を発生する ArFエキシマレーザ装置をク リーンルームの床下に配置し、ビームマッチングユニットを含む伝送光学系によって、 少なくとも一部がチャンバ装置 19内に配置される照明光学系に露光光 ELを導いて ちょい。
[0032] マスクステージ 1は、例えばリニアモータ等のァクチユエータを含むマスクステージ 駆動装置 1Dの駆動により、マスク Mを保持して、マスクステージ定盤 6上で、少なくと も X軸、 Y軸、及び Θ Z方向に移動可能である。マスクステージ 1は、エアベアリング( エアパッド)により、マスクステージ定盤 6の上面 (ガイド面)に対して非接触支持され ている。マスクステージ 1は、基板 Pの露光時に露光光 ELを通過させるための第 1開 口 1Kを有しており、マスクステージ定盤 6は、露光光 ELを通過させるための第 2開口 6Kを有している。照明系 ILから射出され、マスク Mのパターン形成領域を照明した 露光光 ELは、マスクステージ 1の第 1開口 1K、及びマスクステージ定盤 6の第 2開口 6Κを通過した後、投影光学系 PLに入射する。 [0033] マスクステージ 1 (ひ 、てはマスク M)の位置情報(回転情報を含む)はレーザ干渉 計 13によって計測される。レーザ干渉計 13は、マスクステージ 1上に固設された移動 鏡の反射面 (あるいは、マスクステージ 1の側面に形成された反射面) 14を用いてマ スクステージ 1の位置情報を計測する。制御装置 3は、レーザ干渉計 13の計測結果 に基づ!/、てマスクステージ駆動装置 1Dを駆動し、マスクステージ 1に保持されて 、る マスク Mの位置制御を行う。
[0034] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率で基板 Pに投影する 。投影光学系 PLは、複数の光学素子を有しており、それら光学素子は鏡筒 5で保持 されている。鏡筒 5はフランジ 5Fを有しており、投影光学系 PLはフランジ 5Fを介して 鏡筒定盤 7に支持されている。また、鏡筒定盤 7と鏡筒 5との間に防振装置を設けるこ とができる。本実施形態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/5, あるいは 1Z8等の縮小系である。
[0035] 基板ステージ 2は、基板 Pを保持する基板ホルダ 2Hを有しており、例えばリニアモ ータ等のァクチユエータを含む基板ステージ駆動装置 2Dの駆動により、基板ホルダ 2Hに基板 Pを保持して、基板ステージ定盤 8上で、 X軸、 Y軸、 Z軸、 0 X、 0 Y、及 び θ Z方向の 6自由度の方向に移動可能である。基板ステージ 2は、エアベアリング により基板ステージ定盤 8の上面 (ガイド面)に対して非接触支持されている。基板ス テージ定盤 8は、床面 FL上に防振装置 10を介して支持されている。基板ステージ 2 ( ひいては基板 P)の位置情報はレーザ干渉計 15によって計測される。レーザ干渉計 15は、基板ステージ 2に設けられた反射面 16を用いて基板ステージ 2の X軸、 Y軸、 及び θ Z方向に関する位置情報を計測する。また、露光装置 EXは、基板ステージ 2 に保持されている基板 Pの表面の面位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位 置情報)を検出可能な不図示のフォーカス ·レベリング検出系を備えている。制御装 置 3は、レーザ干渉計 15の計測結果及びフォーカス'レべリング検出系の検出結果 に基づ!/ヽて基板ステージ駆動装置 2Dを駆動し、基板ステージ 2に保持されて ヽる基 板 Pの位置制御を行う。なお、フォーカス'レべリング検出系としては、例えば米国特 許第 6,608,681号などに開示されるように、複数の検出点でそれぞれ基板 Pの高さ 情報 (Z軸方向に関する位置情報)を検出する多点位置検出系を用いることができる 。本実施形態では、複数の検出点はその少なくとも一部が露光領域 AR内に設定さ れるが、全ての検出点が露光領域 AR (又は液浸領域 LR)の外側に設定されてもよ い。また、レーザ干渉計 15は、例えば特表 2001— 510577号公報 (対応国際公開 第 1999/28790号パンフレット)などに開示されているように、基板ステージ 2の Z軸 、 Θ X及び Θ Y方向に関する位置情報をも計測可能としてよい。この場合、少なくとも 基板 Pの位置制御ではフォーカス ·レベリング検出系の検出結果を用いなくてもよい し、フォーカス ·レべリング検出系を投影光学系 PL力も離して配置してもよ 、。
[0036] また、本実施形態においては、基板ステージ 2上には凹部 2Rが設けられており、基 板ホルダ 2Hはその凹部 2Rに配置されている。そして、基板ステージ 2上のうち凹部 2R以外の上面 2Fは、基板ホルダ 2Hに保持された基板 Pの表面とほぼ同じ高さ(面 一)になるような平坦面となっている。なお、基板ホルダ 2Hは基板ステージ 2と一体に 構成してちょい。
[0037] 次に、図 1〜図 4を参照しながら、交換システム CS及び液浸システム LSについて 説明する。図 2は、交換システム CSの保持装置 30に保持された液浸部材 70を示す YZ平面と平行な側断面図、図 3は、液浸システム LSの液浸部材 70を示す概略斜視 図の一部破断図、図 4は液浸部材 70を下側から見た斜視図である。
[0038] 図 2に示すように、保持装置 30は、液浸部材 70の上面 75Aの少なくとも一部と接 触する保持面 31を有している。保持面 31は、終端光学素子 FSを囲むように設けら れている。本実施形態においては、保持面 31は、鏡筒 5の一部に設けられており、 X Y平面とほぼ平行である。また、液浸部材 70の上面 75Aのうち、保持面 31と接触す る領域は、 XY平面とほぼ平行な平面である。
[0039] 保持装置 30は、液浸部材 70を吸着する吸着機構 32を有している。吸着機構 32は 、保持面 31の複数の所定位置のそれぞれに設けられた吸引口 33と、それら吸引口 33に第 1流路 34を介して接続された真空系 35とを備えている。本実施形態におい ては、第 1流路 34は、鏡筒 5の内部に形成された第 1内部流路 34Aと、第 1内部流路 34Aと真空系 35とを接続する第 1管部材 34Bで形成される流路とを含む。吸引口 33 は、第 1内部流路 34Aの一端に接続され、第 1内部流路 34Aの他端は第 1管部材 3 4Bに接続されている。真空系 35は、例えば真空ポンプ等を含み、制御装置 3は、吸 着機構 32の真空系 35を駆動して、吸引口 33より気体を吸引することにより、液浸部 材 70を保持面 31で吸着保持することができる。また、制御装置 7は、真空系 35を含 む吸着機構 32を制御して、吸着機構 32による液浸部材 70の吸着を解除することに より、液浸部材 70を保持面 31から離すことができる。
[0040] このように、本実施形態においては、制御装置 3は、吸着機構 32を含む保持装置 3 0を制御することにより、液浸部材 70を保持装置 30の保持面 31に取り付け及び取り 外しすることができる。なお、保持装置 30の保持面 31は、鏡筒 5の内部への液体の 浸入を防止するために、撥液性処理が施されていることが望ましい。または、吸引口 33を囲むシール部材を設けて、鏡筒内部への液体の侵入を防止してもよい。
[0041] なお本実施形態にお!、ては、保持装置 30の吸着機構 32は、液浸部材 70を真空 吸着する真空吸着機構を備えているが、真空吸着機構に限られるものでなぐ例え ば静電気の力を用いた静電吸着機構を備えていてもよい。静電吸着機構によっても 、保持装置 30は液浸部材 70を着脱可能に保持することができる。
[0042] 保持装置 30に保持された液浸部材 70は、基板 P上に露光光 ELを射出する終端 光学素子 FSの近傍にぉ 、て、基板 P (基板ステージ 2)と対向するように配置される。 液浸部材 70は環状部材であって、保持装置 30に保持されることにより、基板 P (基板 ステージ 2)の上方にお 1、て終端光学素子 FSを囲むように配置される。保持装置 30 に保持された液浸部材 70と終端光学素子 FSとは離れている。
[0043] 液浸システム LSは、液体 LQを供給可能な供給口 71及び液体 LQを回収可能な回 収口 72を有する液浸部材 70と、液浸部材 70の供給口 71に供給流路 81及び第 2流 路 84を介して接続された液体供給装置 86と、液浸部材 70の回収口 72に回収流路 82及び第 3流路 85を介して接続された液体回収装置 87とを備えている。
[0044] 本実施形態においては、第 2流路 84は、鏡筒 5の内部に形成された第 2内部流路 84Aと、第 2内部流路 84Aと液体供給装置 86とを接続する第 2管部材 84Bとで形成 される流路とを含む。供給流路 81は液浸部材 70の内部に形成されており、供給口 7 1は、供給流路 81の一端 (下端)に接続され、供給流路 81の他端 (上端)は、第 2内 部流路 84Aの一端に接続されている。また、第 2内部流路 84Aの他端は、第 2管部 材 84Bに接続されている。 [0045] また、本実施形態においては、第 3流路 85は、鏡筒 5の内部に形成された第 3内部 流路 85Aと、第 3内部流路 85Aと液体回収装置 87とを接続する第 3管部材 85Bとで 形成される流路とを含む。回収流路 82は液浸部材 70の内部に形成されており、回 収ロ 72は、回収流路 82の一端 (下端)に接続され、回収流路 82の他端 (上端)は、 第 3内部流路 85Aの一端に接続されている。また、第 3内部流路 85Aの他端は、第 3 管部材 85Bに接続されて 、る。
[0046] 本実施形態の露光装置 EXは、供給流路 81の他端と第 2内部流路 84Aの一端とを 接続する第 1接続機構 101と、回収流路 82の他端と第 3内部流路 85Aの一端とを接 続する第 2接続機構 102とを備えて 、る。保持装置 30が液浸部材 70を保持したとき 、すなわち保持装置 30の保持面 31と液浸部材 70の上面 75Aとが接触したとき、第 1 接続機構 101により供給流路 81の他端と第 2内部流路 84Aの一端とが接続され、第 2接続機構 102により回収流路 82の他端と第 3内部流路 85Aの一端とが接続される 。また、保持装置 30が液浸部材 70の保持を解除したとき、すなわち保持装置 30の 保持面 31と液浸部材 70の上面 75とが離れたとき、第 1接続機構 101による供給流 路 81の他端と第 2内部流路 84Aの一端との接続が解除され、第 2接続機構 102によ る回収流路 82の他端と第 3内部流路 85Aの一端との接続が解除される。
[0047] すなわち、本実施形態においては、保持装置 30で液浸部材 70を保持したとき、第 2流路 84と供給流路 81との接続、及び第 3流路 85と回収流路 82との接続が自動的 に行われ、保持装置 30での液浸部材 70の保持を解除したとき、第 2流路 84と供給 流路 81との接続、及び第 3流路 85と回収流路 82との接続が自動的に解除される。
[0048] また、第 1接続機構 101及び第 2接続機構 102は、例えば Oリング等のシール部材 を有しており、液体 LQの漏れを抑制している。なお、本実施形態では保持装置 30の 保持面 31と液浸部材 70の上面 75Aの両方が平坦面であるものとした力 保持面 31 及び Z又は上面 75Aが平坦面でなくてもよい。また、保持装置 30で液浸部材 70を 保持する際に保持面 31と上面 75Aとがその少なくとも一部で接触しなくてもよい。保 持面 31と上面 75Aとの間にギャップが存在しても、第 1及び第 2接続機構 101、 102 によって、第 2流路 84と供給流路 81との接続、及び第 3流路 85と回収流路 82との接 続が行われる。 [0049] 液体供給装置 86及び液体回収装置 87の動作は制御装置 3によって制御される。 液体供給装置 86は清浄で温度調整された液体 LQを送出可能であり、真空系等を 含む液体回収装置 87は液体 LQを回収可能である。液体供給装置 86は、第 2流路 84、供給流路 81、及び供給口 71を介して液体 LQを供給可能であり、液体回収装 置 87は、回収口 72、回収流路 82、及び第 3流路 85を介して液体 LQを回収可能で ある。
[0050] 図 2及び図 3に示すように、液浸部材 70は、終端光学素子 FSの下面 T1と対向する 上面 79を有する底板 78を有している。底板 78の一部は、 Z軸方向に関して、終端光 学素子 FSの下面 T1と基板 P (基板ステージ 2)との間に配置されて 、る。
[0051] また、図 2、図 3、及び図 4に示すように、底板 78の中央には、露光光 ELが通過す る開口 78Kが形成されている。本実施形態においては、投影光学系 PLの視野内で 露光光 ELの断面形状 (すなわち投影領域 AR)は略矩形状であり、開口 78Kは、投 影領域 ARに応じて略矩形状に形成されて ヽる。
[0052] 液浸部材 70のうち、基板ステージ 2に保持された基板 Pの表面と対向する下面 77 は平坦面となっている。下面 77は開口 78Kを囲むように底板 78に設けられている。 以下の説明においては、液浸部材 70の下面 77を適宜、ランド面 77と称する。ランド 面 77は、投影光学系 PLの終端光学素子 FSの下面 T1と基板 Pの表面との間におい て、露光光 ELの光路(開口 78K)を囲むように設けられている。ランド面 77は、液浸 部材 70のうち、基板ステージ 2に保持された基板 Pに最も近い位置に設けられており 、基板 Pの表面との間で液体 LQを保持可能である。光路空間 Kを満たす液体 LQは 底板 78及び終端光学素子 FSに接触する。また、終端光学素子 FSの下面 T1と底板 78の上面 79との間には所定のギャップを有する空間が設けられている。以下の説明 においては、終端光学素子 FSの下面 T1と底板 78の上面 79との間の空間を含む液 浸部材 70の内側の空間を適宜、内部空間 K2と称する。
[0053] 供給口 71は内部空間 K2に接続されており、内部空間 K2に液体 LQを供給可能で ある。また、本実施形態においては、供給口 71は、露光光 ELが通過可能な開口 78 Kの外側において開口 78Kを挟んだ X軸方向両側のそれぞれの所定位置に設けら れている。 [0054] また、液浸部材 70は、内部空間 K2の気体を外部空間(大気空間を含む)に排出( 排気)する排出口 73を有している。排出口 73は内部空間 K2に接続されており、本 実施形態においては、開口 78Kの外側において、開口 78Kを挟んだ Y軸方向両側 のそれぞれの所定位置に設けられている。内部空間 K2の気体は、排出口 73及び液 浸部材 70の内部に設けられた排出流路 83を介して外部空間に排出可能となってい る。
[0055] 回収口 72は、基板ステージ 2に保持された基板 Pの上方において、その基板 Pの 表面と対向するように設けられている。回収口 72は、開口 78Kに対して供給口 71及 び排出口 73の外側に設けられており、ランド面 77、供給口 71、及び排出口 73を囲 むように環状に設けられている。回収口 72には、複数の孔を有する多孔部材 88が配 置されている。多孔部材 88は基板ステージ 2に保持された基板 Pと対向する下面 89 を有している。本実施形態においては、多孔部材 88の下面 89はほぼ平坦であり、多 孔部材 88の下面 89とランド面 77とはほぼ面一 (Z軸方向の位置がほぼ同一)に設け られている。なお、回収流路 82の圧力の最適値 (許容範囲)は、例えば実験又はシミ ユレーシヨンにより予め求めることができる。
[0056] ランド面 77は、液体 LQに対して親液性を有して 、る。本実施形態にぉ 、ては、ラ ンド面 77を形成する底板 78はチタンによって形成されており、親液性 (親水性)を有 している。本実施形態においては、ランド面 77における液体 LQの接触角は例えば 4 0° 以下である。なお、ランド面 77に親液性を高めるための表面処理を施してもよい 。また、本実施形態においては、多孔部材 88はチタン製のメッシュ部材であり、液体 LQに対して親液性 (親水性)を有している。なお、多孔部材 88に親液性を高めるた めの表面処理を施してもよい。なお、底板 78及び多孔部材 88の材料はチタンに限ら れるものでなぐ他の材料、例えばアルミニウム、あるいはセラミックスなどでもよい。
[0057] また、本実施形態の液浸部材 70は、フランジ 74を備えて 、る。フランジ 74は、液浸 部材 70の上部に設けられており、 +Y方向及び Y方向のそれぞれに延びるように 形成されている。
[0058] また本実施形態にぉ 、ては、液浸部材 70の上面 75Aと側面 75Bとは斜面 (テーパ 面) 76で接続されている。斜面 76は、上面 75Aの +X側、 X側、 +Y側、及び— Y 側のそれぞれに形成されており、保持面 31に対して所定の角度で形成されている。
[0059] また、液浸部材 70のフランジ 74の側面 75Bの複数の所定位置のそれぞれには切 欠 74Kが形成されている。切欠 74Kは、フランジ 74の厚み方向(Z軸方向)に延びる ように形成されている。本実施形態においては、切欠 74Kは、フランジ 74の +X側及 び— X側のそれぞれの側面 75Bの所定位置に 2つずつ、全部で 4つ形成されて 、る
[0060] また、液浸部材 70のフランジ 74の側面 75Bの複数の所定位置のそれぞれには凹 部 74Mが形成されている。本実施形態においては、凹部 74Mは、フランジ 74の +Y 側及び—Y側のそれぞれの側面 75Bの所定位置に 2つずつ、全部で 4つ形成されて いる。
[0061] 鏡筒 5の内部への液体 LQの浸入を防止するために、液浸部材 70の上面 75A、側 面 75B、斜面 76には、撥液性処理が施されていることが望ましい。特に、保持装置 3 0の保持面 31と液浸部材 70の上面 75Aの間に、液体が浸入することを防止するた めに、液浸部材 70の上面 75Aには撥液性処理が施されていることが望ましぐこの 場合、前述したように保持装置 30の保持面 31にも撥液性処理が施されて ヽることが 望ましい。撥液性処理として、例えば、保持面 31や上面 75Aに撥液性膜を塗布する ことができる。撥液性膜としては、例えば、ポリ四フッ化工チレン (テフロン (登録商標) )等のフッ素系榭脂材料、アクリル系榭脂材料、あるいはシリコン系榭脂材料等を用 い得る。このような撥液性膜を上記面に塗布することにより液体 LQの接触角を 90° 以上にすることができる。これらの撥液性膜は、液浸部材 70のフランジ 74の側面 75 B及び凹部 74M並びに支持部材 43に設けてもよい。なお、液体の侵入防止などの ために、撥液性処理とは別の手法を採用する、例えばシール部材を用いてもよい。
[0062] 図 2に示すように、露光装置 EXは、保持装置 30とは別に設けられ、液浸部材 70を 支持可能な支持機構 40を備えている。支持機構 40は、液浸部材 70を囲むように設 けられた基材 41と、基材 41の内側面 42に形成された開口 42Kに配置され、液浸部 材 70の側面 75Bに設けられた凹部 74Mに揷脱可能な支持部材 43とを備えている。 基材 41は、保持面 31に対して所定位置に設けられている。本実施形態においては 、支持機構 40の基材 41は、保持面 31を囲むように鏡筒 5の下面に配置されている。 支持部材 43は、複数の凹部 74Mに対応するように複数 (4つ)設けられている。支持 部材 43はピン状の部材であって、例えばエアシリンダ等のァクチユエータにより、そ の先端を Y軸方向に移動可能に設けられて 、る。
[0063] また、基材 41の内側面 42は、液浸部材 70の斜面 (テーパ面) 76に応じた斜面 (テ ーパ面) 44を含む。基材 41の斜面 44と液浸部材 70の斜面 76とが接触することによ り、基材 41と液浸部材 70との位置関係が調整され、さらに保持装置 30の保持面 31 と液浸部材 70との位置関係が所望状態に調整 (位置決め)される。それゆえ、液浸 部材 70の斜面 76と基材 41の斜面 44はァライメント装置として機能する。
[0064] そして、支持機構 40は、液浸部材 70の凹部 74Mに支持部材 43を挿入することに より、液浸部材 70を支持することができる。また、制御装置 3は、液浸部材 70が保持 装置 30に保持されていないときに、支持機構 40を用いて、液浸部材 70を支持可能 である。支持機構 40は、保持装置 30の故障などによって保持装置 30から液浸部材 70が外れたときに支持部材 43で液浸部材 70を支持して、液浸部材 70の落下を防 止する。すなわち、支持機構 40は液浸部材 70の落下を防止するための安全機構と して機能する。このように、支持機構 40は保持装置 30と独立して液浸部材を支持す る。また、支持機構 40は、液浸部材 70の凹部 74M力も支持部材 43を抜くことにより 、液浸部材 70に対する支持を解除することができる。
[0065] なお、図 2において、基板 Pを保持する基板ホルダ 2Hは、基板ホルダ 2Hの基材の 上面に設けられ、シール部材として機能する周壁 2Aと、周壁 2Aの内側に配置され、 基板 Pの裏面を支持する支持部材 2Bと、周壁 2Aの内側における基材の上面に設け られた吸引口 2Cとを備えている。制御装置 3は、吸引口 2Cに接続された真空系を含 む吸引装置を駆動し、基板 Pの裏面と周壁 2Aと基材とで囲まれた空間の気体を吸引 して、その空間を負圧にすることによって、基板 Pの裏面を支持部材 2Bで吸着保持 する。また、吸引口 2Cに接続された吸引装置による吸引動作を解除することにより、 基板ホルダ 2H力も基板 Pを外すことができる。このように、本実施形態においては、 吸引口 2Cを用いた吸引動作及び吸引動作の解除を行うことにより、基板 Pを基板ホ ルダ 2Hに対して着脱することができる。本実施形態における基板ホルダ 2Hは所謂 ピンチャック機構を含む。すなわち、支持部材 2Bは多数のピン状部材を含む。 [0066] 次に、搬送装置 50について、図 1及び図 2を参照しながら説明する。搬送装置 50 は、液浸部材 70を、第 1位置 PS1と、第 1位置 PS1とは異なる第 2位置 PS2との間で 搬送可能である。本実施形態においては、第 1位置 PS1には保持装置 30が設けら れ、第 2位置 PS2には液浸部材 70を収容可能な収容ステーション 20が設けられて おり、搬送装置 50は、液浸部材 70を、保持装置 30と収容ステーション 20との間で搬 送可能である。
[0067] 搬送装置 50は、第 1サブ搬送系 51と、第 2サブ搬送系 52とを備えている。第 1サブ 搬送系 51は、第 1位置 PS 1にお 、て保持装置 30との間で液浸部材 70の受け渡しを 行う移動機構 53を含む。
[0068] 移動機構 53は、基板ステージ 2に設けられている。図 2に示すように、移動機構 53 は、基板ステージ 2の基板ホルダ 2Hの基材の上面に形成された開口 54に配置され るピン状部材 55と、ピン状部材 55を Z軸方向に移動 (昇降)させる駆動装置 56とを備 えている。ピン状部材 55は複数 (例えば 3本)設けられており、駆動装置 56は、複数 のピン状部材 55のそれぞれを昇降することができる。
[0069] 図 5は、第 1位置 PS1でピン状部材 55が液浸部材 70を支持している状態を示す図 である。図 5に示すように、移動機構 53のピン状部材 55は、保持部材 30の保持が解 除された液浸部材 70のランド面 77を支持可能である。ピン状部材 55の上面には吸 引口が設けられており、ピン状部材 55は、液浸部材 70のランド面 77を吸着保持する ことができる。移動機構 53のピン状部材 55で液浸部材 70を支持する場合には、基 板 Pは基板ホルダ 2Hに載置されて!、な!/、。
[0070] 第 1サブ搬送系 51の移動機構 53は、液浸部材 70を支持して Z軸方向に移動可能 であり、保持装置 30の保持面 31 (すなわち、終端光学素子 FSの下面 T1)と液浸部 材 70の上面 75Aとの間隔を調整可能である。図 5に示すように、制御装置 3は、支持 機構 40の支持部材 43を液浸部材 70の凹部 74M力も抜くとともに、保持装置 30の 吸着機構 32による液浸部材 70に対する吸着保持を解除し、第 1位置 PS1において 移動機構 53のピン状部材 55で液浸部材 70のランド面 77を支持する。移動機構 53 のピン状部材 55で液浸部材 70のランド面 77を支持した状態で、駆動装置 56により ピン状部材 55を— Z軸方向に移動することにより、第 1位置 PS 1から液浸部材 70を —Z軸方向に移動することができ、保持装置 30から液浸部材 70を遠ざけることがで きる。
[0071] また、制御装置 3は、移動機構 53を制御してピン状部材 55を +Z軸方向に移動す ることにより、ピン状部材 55で支持した液浸部材 70を、保持装置 30に近づくように + Z軸方向に第 1位置 PS1まで上昇させることができる。また、制御装置 3は、第 1位置 PS1で支持されている液浸部材 70の凹部 74Mに支持機構 40の支持部材 43を挿 入するとともに、保持装置 30の吸着機構 32により液浸部材 70を保持することによつ て、液浸部材 70を移動機構 53から保持装置 30へ渡すことができる。このように、移 動機構 53を含む第 1サブ搬送系 51は、第 1位置 PS1において保持装置 30と液浸部 材 70の受け渡しを行うことができる。
[0072] また、ピン状部材 55を含む移動機構 53は、 X軸及び Y軸方向に移動可能な基板ス テージ 2に設けられており、制御装置 3は、ピン状部材 55で液浸部材 70を支持した 状態で、あるいは基板ステージ 2に液浸部材 70を載置した状態で、基板ステージ 2を 少なくとも Y軸方向に移動することにより、液浸部材 70を、投影光学系 PLの直下から 移動するとともに、その直下まで移動することができる。すなわち、第 1及び第 2位置 P Sl、 PS2の間での液浸部材 70の移動にあたって、液浸部材 70を搭載した基板ステ ージ 2を XY平面内で駆動しても、 Z軸方向に関して液浸部材 70の上面 75Aは終端 光学素子 FSの下面 T1よりも下がっているので、液浸部材 70が終端光学素子 FSと 接触することがない。これにより、露光装置のメンテナンス時などにおいて、例えば洗 浄または交換のための液浸部材 70の搬出入が可能となる。すなわち、投影光学系 P Lを介して基板 Pの露光を行う露光本体部からの液浸部材 70の搬出、及び洗浄また は交換された液浸部材の露光本体部への搬入が可能となる。なお、本実施形態で は保持装置 30とピン状部材 55との間で液浸部材 70の受け渡しが行われる位置を第 1位置 PS1とした力 その受け渡し時に XY平面内で基板ステージ 2が配置される位 置も、正確には Z軸方向に関して第 1位置 PS1とは異なるものの、以下では第 1位置 PS1と呼ぶものとする。
[0073] なお、本実施形態では液浸部材 70の着脱 (搬出入)時、移動機構 53によって終端 光学素子 FSと液浸部材 70とを Z軸方向に相対移動するものとしたが、これに限らず 、例えば液浸部材 70を搭載した基板ステージ 2及び Z又は投影光学系 PLを Z軸方 向に移動してもよい。また、保持装置 30から取り外された液浸部材あるいは保持装 置 30に取り付ける液浸部材を支持する、すなわち保持装置 30との間で液浸部材 70 の受け渡しが行われる部材はピン状部材 55に限られるものでなぐ例えば基板ホル ダ 2Hの支持部材 2B、あるいは XY平面内で移動可能な可動部材 (例えば、搬送ァ ーム)などでもよい。
[0074] また、本実施形態において、移動機構 53は、基板 Pの搬送にも使用される。すなわ ち、移動機構 53は、基板ホルダ 2Hに対する基板 Pのロード及びアンロード時におい て、駆動装置 56によりピン状部材 55を昇降することで、基板 Pの裏面を支持して Z軸 方向に移動可能である。
[0075] 第 2サブ搬送系 52は、第 1搬送機構 61と第 2搬送機構 62とを含む。第 2サブ搬送 系 52は、第 1位置 PS1と第 2位置 PS2との間に設けられている。なお、第 2サブ搬送 系 52は、第 1位置 PS1と第 2位置 PS2とを結ぶ直線上に設けられている必要はなぐ 第 1位置 PS1と第 2位置 PS2との間で液浸部材 70を搬送可能に配置されていればよ い。本実施形態においては、第 1搬送機構 61は、鏡筒 5の +Y側において第 1コラム CL1の鏡筒定盤 7に設けられている。第 2搬送機構 62は、基板ステージ定盤 8の + Y側にお 、て床面 FL上に配置されて 、る。
[0076] 第 1搬送機構 61及び第 2搬送機構 62を含む第 2サブ搬送系 52は、第 1位置 PS1 及び第 2位置 PS 2とは異なる第 3位置 PS 3で、第 1サブ搬送系 51との間で液浸部材 70の受け渡しを行うことができる。また、第 2サブ搬送系 52は、第 3位置 PS3と第 2位 置 PS2との間で液浸部材 70の搬送を行うことができる。第 1搬送機構 61は、液浸部 材 70のフランジ 74を保持可能な第 1アーム 63を有し、第 2搬送機構 62は、液浸部 材 70のランド面(下面) 77を保持可能な第 2アーム 64を有している。第 1搬送機構 61 の第 1アーム 63及び第 2搬送機構 62の第 2アーム 64のそれぞれは、 X軸、 Y軸、 Z軸 、 Θ Χ, 0 Y、及び 0 Z方向の 6自由度の方向に移動可能である。第 1搬送機構 61と 第 2搬送機構 62とは液浸部材 70の受け渡しを行うことができる。第 1アーム 63及び 第 2アーム 64の駆動動作にっ 、ては後述する。
[0077] また、第 2サブ搬送系 52の第 1搬送機構 61は、第 3位置 PS3近傍に配置されてお り、第 1サブ搬送系 51の移動機構 53は、基板ステージ 2を移動することによって、第 1位置 PS1と第 3位置 PS3近傍との間で移動可能である。そして、搬送装置 50は、第 3位置 PS3で、移動機構 53を含む第 1サブ搬送系 51と、第 1搬送機構 61を含む第 2 サブ搬送系 52との間で液浸部材 70の受け渡しを行うことができる。このように、本実 施形態においては、搬送装置 50は、保持装置 30が設けられた第 1位置 PS1及び収 容ステーション 20が設けられた第 2位置 PS2とは異なる第 3位置 PS3で、液浸部材 7 0の受け渡しを行う第 1サブ搬送系 51と第 2サブ搬送系 52とを有している。
[0078] また、チャンバ装置 19の収容ステーション 20近傍には開口 21が形成されており、 その開口 21には扉 22が配置されている。第 2搬送機構 62の第 2アーム 64は、収容 ステーション 20にアクセス可能となっている。制御装置 3は、第 2アーム 64を収容ステ ーシヨン 20にアクセスするとき、扉 22を開けて開口 21を解放する。例えば、第 2ァー ム 64は、収容ステーション 20に収容されて 、る液浸部材 70を収容ステーション 20か ら取り出すことができるし、保持した液浸部材 70を収容ステーション 20に収容するこ ともできる。こうして搬送装置 50の第 2搬送機構 62は、液浸部材 70を第 2位置 PS2と 第 3位置 PS3との間で受け渡しする。
[0079] なお、本実施形態の搬送装置 50は、基板 Pも搬送可能である。制御装置 3は、不 図示の基板収容ステーション、あるいはコータ装置等の周辺装置力 チャンバ装置 1 9内に搬送された露光処理されるべき基板 Pを、第 2サブ搬送系 52の第 2搬送機構 6 2で受け取ることができる。第 2搬送機構 62は、保持した基板 Pを第 1搬送機構 61〖こ 渡すことができる。そして、第 1搬送機構 61は、保持している基板 Pを、例えば第 3位 置 PS 3にお 、て基板ステージ 2に設けられて 、る第 1サブ搬送系 51のピン状部材 53 を含む移動機構 53に渡すことができる。第 1サブ搬送系 51の移動機構 53が第 2サ ブ搬送系 52の第 1搬送機構 61から基板 Pを受け取るときには、ピン状部材 55は上昇 しており、第 2サブ搬送系 52の第 1搬送機構 61は、その上昇しているピン状部材 55 に基板 Pを渡す。そして、制御装置 3は、移動機構 53の駆動装置 56を制御して、ピ ン状部材 55を下降することにより、基板ホルダ 2H上に基板 Pを載置することができる 。また、露光後の基板 Pを基板ステージ 2からアンロードする場合には、制御装置 3は 、基板ステージ 2を第 3位置 PS3に移動し、移動機構 53の駆動装置 56を制御してピ ン状部材 55を上昇させ、基板 Pを基板ホルダ 2Hカゝら離す。基板ホルダ 2Hから離さ れた基板 Pは、第 3位置 PS3において、第 2サブ搬送系 52の第 1搬送機構 61に渡さ れる。第 1搬送機構 61は、その基板 Pを第 2搬送機構 62に渡し、第 2搬送機構 62は 、その基板 Pを不図示の基板収容ステーション、あるいはデベロツバ装置等の周辺装 置に渡す。なお、本実施形態では液浸部材 70と基板 Pとで搬送装置 50を兼用する ものとしたが、液浸部材 70と基板 Pとでそれぞれ専用の搬送装置を設けてもよい。ま た、搬送装置 50は上記構成に限られるものでない。例えば、第 1位置 PS1と第 3位置 PS3 (又は第 2位置 PS2)との間を移動可能な可動部材 (例えば、搬送アーム)を設 け、この可動部材によって液浸部材 70の搬送を行ってもよい。この場合、保持装置 3 0と可動部材との間で液浸部材 70の受け渡しを行ってもよい。
[0080] また、図 2に示すように、露光装置 EXは、液浸部材 70の状態を検出する検出装置 90を備えている。検出装置 90は、液浸部材 70の回収口 72に接続する流路の圧力 を検出する圧力センサ 91を含む。本実施形態においては、圧力センサ 91は、第 3流 路 85の第 3管部材 85Bに設けられて 、る。
[0081] 制御装置 3は、圧力センサ 91を用いて、回収口 72に接続する回収流路 82の圧力 の値を検出することができるとともに、圧力センサ 91の検出結果に基づいて、回収流 路 82の圧力と外部空間の圧力との差を求めることができる。したがって、制御装置 3 は、圧力センサ 91の検出結果に基づいて、液浸部材 70の回収口 72が所望状態で 液体 LQを回収しているかどうかを判断することができる。
[0082] また、検出装置 90は、液浸部材 70の表面 (主に下面)の状態を観察可能な撮像装 置 92を含む。図 1に示すように、本実施形態においては、撮像装置 92は、基板ステ ージ 2の、基板ホルダ 2Hとは異なる位置に設けられて 、る。
[0083] 図 6は、撮像装置 92を示す模式図である。基板ステージ 2の上面 2Fの一部には開 口部 2Kが形成されており、その開口 2Kには石英や蛍石等の透明部材 93が配置さ れている。なお、透明部材 93の材料は、後述する撮像素子に導かれる光の波長によ り適宜選択可能である。透明部材 93の上面 (撮像装置 92の検出面)は平坦面であり 、基板ステージ 2の上面 2Fとほぼ面一となつて!/、る。
[0084] 基板ステージ 2には、開口 2Kに接続する内部空間 2Lが形成されており、撮像装置 92は内部空間 2Lに配置されている。撮像装置 92は、透明部材 93の下側に配置さ れた光学系 94と、 CCD等の撮像素子 95とを備えている。撮像素子 95は、液浸部材 70の下面 (ランド面 77、多孔部材 88の下面 89を含む)の光学像 (画像)を透明部材 93及び光学系 94を介して取得可能である。また、撮像素子 95は、液体 LQ、終端光 学素子 FSの下面などの光学像 (画像)も取得可能である。撮像素子 95は取得した画 像を電気信号に変換し、その信号 (画像情報)を制御装置 3に出力する。また、撮像 装置 92は、光学系 94の焦点位置を調整可能な調整機構 96を有している。なお、撮 像装置 92はその全てが基板ステージ 2に設けられていなくてもよいし、基板ステージ 2とは独立に可能な計測ステージ (不図示)に設けてもよい。
次に、上述の構成を有する露光装置 EXのメンテナンス方法及び露光装置 EXを用 いて基板 Pを露光する方法の一例について、図 23を参照しつつ説明する。マスク M のパターンの像で基板 Pを露光する場合、制御装置 3は、露光光 ELの光路を含む光 路空間 Kを液体 LQで満たすために、液体供給装置 86及び液体回収装置 87のそれ ぞれを駆動する。液体供給装置 86から送出された液体 LQは、第 2流路 84を流れた 後、液浸部材 70の供給流路 81を介して、供給口 71より内部空間 K2に供給される。 供給口 71から内部空間 K2に供給された液体 LQは、内部空間 K2を満たした後、開 口 78Kを介してランド面 77と基板 P (基板ステージ 2)との間の空間に流入し、光路空 間 Kを満たす。このように、液浸システム LSは、供給口 71から終端光学素子 FSと底 板 78との間の内部空間 K2に液体 LQを供給することによって、終端光学素子 FS (投 影光学系 PL)と基板 Pとの間の露光光 ELの光路を含む光路空間 Kを液体 LQで満 たす。このとき、液体回収装置 87は、単位時間当たり所定量の液体 LQを回収してい る。真空系を含む液体回収装置 87は、回収流路 82を負圧にすることにより、回収口 72 (多孔部材 88)と基板 Pとの間に存在する液体 LQを、回収口 72を介して回収する ことができる。光路空間 Kに満たされている液体 LQは、液浸部材 70の回収口 72を 介して回収流路 82に流入し、第 3流路 85を流れた後、液体回収装置 87に回収され る。制御装置 3は、液浸システム LSを制御して、液体供給装置 86による液体供給動 作と液体回収装置 87による液体回収動作とを並行して行うことで、光路空間 Kを液 体 LQで満たし、基板 P上の一部に液体 LQの液浸領域 LRを局所的に形成する。そ して、制御装置 3は、光路空間 Kを液体 LQで満たした状態で、光路空間 Kに対して 基板 Pを Y軸方向に移動しつつ液体 LQを介して基板 P上に露光光 ELを照射して液 浸露光を実行する(S10)。
[0086] 制御装置 3は、少なくとも液浸領域 LRの形成動作中(基板の露光中を含む)にお いては、保持装置 30で液浸部材 70を支持している。また、制御装置 3は、液浸部材 70の凹部 74Mに支持部材 43を挿入する。これにより、例えば液浸領域 LRの形成動 作中に、何らかの原因で保持装置 30による液浸部材 70の保持が解除されたり、保 持力が弱まったりした場合でも、液浸部材 70が落下することを防止することができる。 したがって、液浸部材 70の落下に起因して、基板ステージ 2、基板ステージ定盤 8、 及び液浸部材 70等が損傷するなどといった不具合の発生を防止することができる。
[0087] ところで、液浸部材 70は劣化及び Z又は汚染が生じる可能性がある。例えば、液 浸領域 LRの液体 LQは基板 Pの表面と液浸部材 70との両方に接触する力 基板 P の感光材、ある ヽは感光材上に塗布されるトップコート等の材料が液体 LQ中に異物 として混入し、その異物が液浸部材 70に付着し、液浸部材 70を汚染する可能性が ある。あるいは、空中を浮遊する異物が液浸部材 70に付着し、液浸部材 70を汚染す る可能性もある。液浸部材 70のランド面 77が汚染すると、液浸部材 70と基板 Pとの 間で液体 LQを良好に保持できなくなり、例えば液浸部材 70に対して基板 Pを移動 するときに、液体 LQの流出を招く可能性がある。また、液浸部材 70の回収口 72に配 置された多孔部材 88が汚染されると、液体 LQを良好に回収できなくなり、液浸部材 70と基板 Pとの間で液体 LQを良好に保持できなくなる可能性がある。また、液浸部 材 70に付着していた異物が、基板 Pの露光中に液体 LQ中に混入し、露光光 ELの 光路上で浮遊したり、基板 P上に付着したりする可能性がある。また、何らかの原因で 、液浸部材 70が損傷する可能性もある。そのような不具合が生じている液浸部材 70 (異常状態の液浸部材 70)を使用し続けた場合、所望状態の液浸領域 LRを形成で きず、その結果、露光精度及び Z又は計測精度などが劣化する可能性がある。
[0088] そこで、本実施形態にぉ 、ては、露光装置 EXは、交換システム CSを用いて、液浸 部材 70を自動的に交換する。
[0089] 次に、液浸部材 70を交換する動作について、図 7〜図 16の模式図を参照して説 明する。ここで、液浸部材 70の交換動作は、基板 Pを露光していないときに実行され る。また、液浸部材 70の交換動作を実行する際には、基板ホルダ 2Hには、基板 Pは 載置されていない。
[0090] 制御装置 3は、液浸部材 70の状態を検出装置 90を用いて検出する。本実施形態 においては、図 7に示すように、制御装置 3は、基板ステージ 2の位置を調整して、液 浸部材 70の下面と基板ステージ 2に設けられている透明部材 93とを対向させ、撮像 装置 92を用いて、液浸部材 70の表面の状態、具体的には液浸部材 70のランド面 7 7、多孔部材 88の状態を観察する (S 12)。本実施形態においては、制御装置 3は、 液浸領域 LRの液体 LQを全て回収した後(液浸部材 70、基板ステージ 2などの内部 の液体 LQも全て除去した後)に、撮像装置 92を用いた液浸部材 70の表面の状態の 観察を行う。なお、撮像装置 92を用いた観察動作中において、液浸部材 70と基板ス テージ 2の上面 2F (透明部材 93)との間に液体 LQが満たされていてもよい。この場 合、撮像装置 92は、液体 LQを介して、液浸部材 70の状態を観察し、撮像装置 92を 用いた観察動作の終了後に、液浸部材 70の交換を行う場合には、液浸領域 LRの 液体 LQを全て回収する動作が実行される。
[0091] また、本実施形態においては、制御装置 3は、検出装置 90の撮像装置 92を用いた 液浸部材 70の状態の検出動作を、所定枚数の基板の露光処理が行われるたびに 実行する。なお、制御装置 3は、検出装置 90の撮像装置 92を用いた液浸部材 70の 状態の検出動作を、所定時間間隔で実行してもよい。
[0092] 撮像装置 92で撮像された画像情報は制御装置 3に出力される。制御装置 3は、撮 像装置 92の検出結果に基づいて、液浸部材 70の交換の要否を判断する (S 14)。そ して、制御装置 3は、撮像装置 92の検出結果に応じて、液浸部材 70の交換動作を 実行する。例えば、制御装置 3は、撮像装置 92で撮像された画像情報を画像処理し 、その処理結果に基づいて、液浸部材 70の交換の要否を判断する。
[0093] 制御装置 3には、液浸部材 70の汚染状態についての許容範囲に関する情報が予 め記憶されており、制御装置 3は、その記憶情報と画像処理結果とに基づいて、液浸 部材 70の交換の要否を判断する。例えば、記憶情報と画像処理結果とに基づいて、 液浸部材 70の汚染状態が許容範囲内であると判断した場合、制御装置 3は、液浸 部材 70の交換を行わず、その液浸部材 70を用いた液浸露光動作を継続する(S16 )。ここで、液浸部材 70の汚染状態が許容範囲内であるとは、その液浸部材 70を用 V、て所望の露光精度及び計測精度を維持できる状態を!、う。汚染状態につ!、ての 許容範囲は、例えば実験あるいはシミュレーションにより予め求め、制御装置 3に記 憶しておくことができる。
[0094] 一方、記憶情報と画像処理結果とに基づ!/、て、液浸部材 70の汚染状態が許容範 囲外であると判断した場合、制御装置 3は、液浸部材 70の交換動作を開始する (S1 8)。制御装置 3は、基板ステージ 2上の液体 LQを全て回収した後、液浸部材 70の交 換動作を開始する。
[0095] 図 8に示すように、制御装置 3は、液浸部材 70の下面と基板ステージ 2の移動機構 53とが対向するように基板ステージ 2の位置を調整するとともに、移動機構 53のピン 状部材 55を上昇させ、そのピン状部材 55の上面と液浸部材 70のランド面 77とを接 触させる。次に、制御装置 3は、支持機構 40の支持部材 43を、液浸部材 70の凹部 7 4K力も抜き、その後に保持装置 30による液浸部材 70の保持を解除する。すなわち 、制御装置 3は、図 5に示した状態にする。これにより、液浸部材 70は、第 1位置 PS1 において、保持装置 30から第 1サブ搬送系 51の移動機構 53に渡される。
[0096] 次に、制御装置 3は、移動機構 53のピン状部材 55で液浸部材 70を支持した状態 で、ピン状部材 55を下降する。これにより、図 9に示すように、液浸部材 70の上面 75 Aと保持装置 30の保持面 31とが離れる。また、制御装置 3は、液浸部材 70の上面 7 5Aが終端光学素子 FSの下面 T1よりも下側(一 Z側)に配置されるまで、ピン状部材 55を下降する。なお、ピン状部材 55を下降するのみでは、液浸部材 70の上面 75A を終端光学素子 FSの下面 T1よりも下側に配置できない場合には、制御装置 3は、 基板ステージ定盤 8を支持する防振装置 10を制御して、基板ステージ定盤 8を基板 ステージ 2とともに下降することができる。防振装置 10は、ァクチユエータとダンノ 機 構とを備えたアクティブ防振装置であり、その防振装置 10のァクチユエータは、基板 ステージ定盤 8を少なくとも Z軸方向に移動可能である。そのため、制御装置 3は、防 振装置 10のァクチユエータを駆動して、基板ステージ定盤 8を Z方向に移動するこ とにより、基板ステージ 2を— Z方向に移動(下げる)ことができる。したがって、制御装 置 3は、防振装置 10のァクチユエータを駆動することで、基板ステージ 2に設けられ て 、る移動機構 53のピン状部材 55に支持されて 、る液浸部材 70も Z方向に移動 することができ、液浸部材 70の上面 75Aを終端光学素子 FSの下面 T1よりも下側に 配置することができる。もちろん、可能であれば、液浸部材 70の上面 75Aが終端光 学素子 FSの下面 T1よりも下側(一 Z側)に配置されるように、鏡筒定盤 7を +Z方向 に移動してもよいし、鏡筒定盤 7と基板ステージ定盤 8の両方を動力ゝしてもよい。また 、搬送装置 50の少なくとも一部として、 XY平面内で可動かつ液浸部材 70を保持可 能な可動部材 (例えば、搬送アーム)を設け、基板ステージ 2を投影光学系 PLの直 下力も退避させた状態で、液浸部材 70を保持した可動部材を Z軸方向に移動しても よい。これにより、液浸部材 70の Z軸方向の移動量を、保持装置 30の保持面 31と終 端光学素子 FSの下面 T1との間隔よりも大きくでき、液浸部材 70の上面 75Aを終端 光学素子 FSの下面 T1よりも下側(一 Z側)に配置することが可能となる。
[0097] 次に、制御装置 3は、基板ステージ 2を少なくとも Y軸方向に移動して、第 2サブ搬 送系 52の第 1搬送機構 61が配置されている第 3位置 PS3近傍まで移動する。基板 ステージ 2が第 3位置 PS3近傍まで移動することにより、基板ステージ 2の移動機構 5 3に支持されている液浸部材 70も、基板ステージ 2と一緒に第 3位置 PS3に移動する 。上述のように、液浸部材 70の上面 75Aは終端光学素子 FSの下面 T1よりも下側に 配置されているので、基板ステージ 2を第 3位置 PS3近傍に移動するために、基板ス テージ 2を XY平面内で移動した場合でも、基板ステージ 2上の液浸部材 70と終端光 学素子 FSとは接触しない。
[0098] そして、図 10に示すように、制御装置 3は、第 1搬送機構 61の第 1アーム 63と移動 機構 53のピン状部材 55との少なくとも一方を Z軸方向に移動し、第 3位置 PS3近傍 に配置されている基板ステージ 2上の液浸部材 70と第 1アーム 63とを接近させる。次 に、制御装置 3は、第 1アーム 63の支持面が液浸部材 70のフランジ 74の下に位置 するように、第 1搬送機構 61の第 1アーム 63と移動機構 53 (基板ステージ 2)とを少な くとも X軸方向に相対的に移動する。次に、制御装置 3は、第 1アーム 63とピン状部 材 55とが離れるように Z軸方向に相対的に移動して、第 1搬送機構 61の第 1アーム 6 3で、液浸部材 70のフランジ 74を保持する。こうして、液浸部材 70は、第 3位置 PS3 で、第 1サブ搬送系 51の移動機構 53 (ピン状部材 55)から、第 2サブ搬送系 52の第 1搬送機構 61 (第 1搬送アーム 63)に渡される。
[0099] 次に、図 11に示すように、制御装置 3は、第 1搬送機構 61の第 1アーム 63で上側 力も保持されている液浸部材 70を、第 2搬送機構 62の第 2アーム 64に渡す。第 2搬 送機構 62の第 2アーム 64は、液浸部材 70を下側から受け取る。すなわち、制御装 置 3は、第 1搬送機構 61の— Z側に第 2搬送機構 62の第 2アーム 64をのばした後、 第 1アーム 63と第 2アーム 64とが近づくように Z軸方向に相対的に移動し、第 1搬送 機構 61の第 1アーム 63から第 2搬送機構の第 2アーム 64へ液浸部材 70を受け渡す 。なお、第 2搬送アーム 64は液浸部材 70のランド面 77とのみ接触するように液浸部 材 70を保持する。
[0100] 次に、図 12に示すように、制御装置 3は、第 2搬送機構 62を用いて、液浸部材 70 を、第 2位置 PS 2の収容ステーション 20に収容する。すなわち制御装置 3は、第 2ァ ーム 64を少なくとも Y軸方向に移動して、収容ステーション 20 (第 2位置 PS2)に液浸 部材 70を搬入する。なお、制御装置 3は、第 2搬送機構 62を用いて液浸部材 70を 収容ステーション 20に収容するとき、扉 22を開けて開口 21を解放する。
[0101] 次に、制御装置 3は、新たな清浄な液浸部材 70を取り付ける動作を実行する。なお 、新たな液浸部材 70を取り付ける動作は、液浸部材 70を取り外す動作とほぼ逆の順 序で各搬送機構を動作させればよいので、説明は簡略化する。制御装置 3は、第 2 サブ搬送系 52の第 2搬送機構 62を用いて、収容ステーション 20に収容されている 新たな清浄な液浸部材 70を、その収容ステーション 20から搬出する。図 13に示すよ うに、制御装置 3は、その新たな液浸部材 70を、第 2搬送機構 62 (第 2搬送アーム 64 )から第 1搬送機構 61 (第 1搬送アーム 63)に渡す。
[0102] 次に、図 14に示すように、制御装置 3は、第 3位置 PS3近傍に基板ステージ 2を移 動するとともに、その第 3位置 PS3において、第 1搬送機構 61 (第 1搬送アーム 61)か ら基板ステージ 2上の移動機構 53 (ピン状部材 55)に新たな液浸部材 70を渡す。こ うして、液浸部材 70は、第 3位置 PS3で、第 2サブ搬送系 52の第 1搬送機構 61から 、第 1サブ搬送系 51の移動機構 53に渡される。なお、図 14では、基板ステージ 2上 でピン状部材 55が下降して 、る状態を示して 、る。 [0103] 次に、図 15に示すように、制御装置 3は、基板ステージ 2を少なくとも Y軸方向に移 動して、基板ステージ 2上の液浸部材 70を、保持装置 30 (投影光学系 PL)の下方に 配置する。なお、基板ステージ 2を移動して、液浸部材 70を保持装置 30の下方に配 置する際、基板ステージ 2上の液浸部材 70と終端光学素子 FSとが接触しないように 、制御装置 3は、鏡筒定盤 7と基板ステージ定盤 8 (すなわち、投影光学系 PLと基板 ステージ 2)を Z軸方向に相対的に移動しておくことができる。
[0104] 制御装置 3は、基板ステージ 2上の液浸部材 70を保持装置 30の下方に配置した 後、保持装置 30と、移動機構 53に支持された液浸部材 70とが近づくように、鏡筒定 盤 7と基板ステージ定盤 8とを Z軸方向に相対的に移動するとともに、第 1サブ搬送系 51の移動機構 53を制御して、ピン状部材 55に支持された液浸部材 70を第 1位置 P S1まで上昇させる。これにより、図 16に示すように、ピン状部材 55に支持された液浸 部材 70は、保持装置 30に接近し、液浸部材 70の上面 75と保持装置 30の保持面 3 1とが接触する。
[0105] 図 17は、ピン状部材 55に支持された液浸部材 70を保持装置 30の保持面 31に接 近させている状態を示す図である。制御装置 3は、ピン状部材 55を上昇させることに より、基材 41に形成された斜面 44でガイドしつつ、そのピン状部材 55に支持されて V、る液浸部材 70を保持装置 30に接近させることができる。新たな液浸部材 70にも斜 面 76が形成されており、制御装置 3は、基材 41の斜面 44と、液浸部材 70の斜面 76 とを接触させつつ、その液浸部材 70の上面 75Aを保持装置 30の保持面 31に接近 させることができる。したがって、基材 41の斜面 44で液浸部材 70の +Z方向への移 動をガイドすることができ、保持装置 30と、その保持装置 30に保持される液浸部材 7 0との位置関係を調整することができる。
[0106] そして、制御装置 3は、第 1位置 PS1において、保持装置 30の保持面 31と液浸部 材 70の上面 75Aとを接触させた状態で、保持装置 30の吸引機構 32を用いて、液浸 部材 70を吸着する。これにより、液浸部材 70は、第 1位置 PS1において、第 1サブ搬 送系 51の移動機構 53により、保持装置 30に渡され、保持装置 30に保持される。ここ で、第 1流路 34の圧力を検出する圧力センサを設けておくことにより、制御装置 3は、 その圧力センサの検出結果に基づいて、保持装置 30の吸着機構 32が液浸部材 70 を良好に保持できた力どうかを判断することができる。
[0107] また、液浸部材 70が保持装置 30に保持されることにより、第 1接続機構 101によつ て、第 2流路 84と供給流路 81とが接続されるとともに、第 2接続機構 102によって、 第 3流路 85と回収流路 82とが接続される。
[0108] また、制御装置 3は、そのピン状部材 55に支持されて 、る液浸部材 70を保持装置 30に接近させることができ、支持機構 40の支持部材 43を液浸部材 70の凹部 74M に挿入する。保持装置 30と液浸部材 70との位置関係は、斜面 76、 44によって調整 されているので、支持機構 40は、支持部材 43を液浸部材 70の凹部 74Mに円滑に 挿入することができる。これにより、制御装置 3は、液浸部材 70が保持装置 30に保持 されて 、な 、ときにぉ 、て、支持機構 40で液浸部材 70を支持することができる。
[0109] 保持装置 30で液浸部材 70を保持した後、制御装置 3は、液浸部材 70とピン状部 材 55とが離れるように、移動機構 53のピン状部材 55を—Z方向に移動し、ピン状部 材 55を基板ステージ 2内に格納する。なお、ピン状部材 55を— Z方向に移動する前 に、支持機構 40の支持部材 43が液浸部材 70の凹部 74Mに挿入されているので、 万が一、保持装置 30から液浸部材 70が外れたとしても、支持機構 40の支持部材 43 で液浸部材 70を支持して、液浸部材 70の落下を防止することができる。
[0110] 次に、制御装置 3は、液浸部材 70と基板ステージ 2の上面 2Fとを対向させた状態 で、液体供給装置 86の液体供給動作と液体回収装置 87の液体回収動作とを、所定 時間、並行して行う。すなわち、制御装置 3は、基板ステージ 2の上面 2F上に液浸領 域 LQを形成しつつ、所定時間、第 2流路 84、供給流路 81、回収流路 82、及び第 3 流路 85に液体 LQを流し続け、液体 LQと接触する各流路を、液体 LQで洗浄 (フラッ シング)する。また、液体 LQを流し続けることにより、液浸部材 70のランド面 77、上面 79等の液体 LQと接触する液体接触面、あるいは終端光学素子 FSの液体 LQと接 触する液体接触面を液体 LQで洗浄 (フラッシング)することができる (S 20)。また、液 浸部材 70の液体接触面 (ランド面 77、多孔部材 88の下面 89など)の親液性 (親水 性)を高めることができる。なお、このフラッシング動作のときに、基板 Pの代わりに、基 板ホルダ 2Hにダミー基板を載置し、液浸部材 70とダミー基板とを対向させた状態で フラッシングを行うこともできる。 [0111] そして、フラッシングの終了後、制御装置 3は、次に露光される基板 Pを基板ステー ジ 2上にロードして、その新たな液浸部材 70を用いて基板 Pの液浸露光を再開する( S16)。
[0112] 以上説明したように、液浸部材 70を交換する交換システム CSを設けたので、その 交換システム CSを用いて液浸部材 70の交換を円滑に行うことができる。したがって、 露光装置 EXの稼動率の低下を抑制することができるとともに、異常状態の液浸部材 70を使用し続けることに起因する露光精度及び計測精度の劣化を抑制することがで きる。
[0113] すなわち、不具合が生じている液浸部材 70を交換あるいはメンテナンスするために 、例えば作業者が液浸部材 70にアクセスする場合、露光装置の動作を停止する必 要が生じる可能性がある。また、液浸部材 70の交換作業等を円滑に行うために、液 浸部材 70の周辺に取り付けられている部材、機器などの取り外し作業、分解作業を 行う必要が生じる可能性もある。また、露光装置の動作の停止、あるいは作業者の液 浸部材 70へのアクセスにより、空調エリア (チャンバ装置 19内)の環境が変動する可 能性もある。また、液浸部材 70の交換作業終了後、露光装置 EXの動作を再開させ るために、取り外したり分解したりした周辺の部材、機器などを元の状態に戻すため の復帰作業や、空調エリアの環境を元の状態に戻すための待ち時間を設定する必 要が生じる可能性がある。また、露光装置 EXの動作を停止したことにより、露光装置 EXを構成する各種機器のキャリブレーション作業を実行する必要が生じる可能性も ある。その場合、露光装置 EXの稼動率が著しく低下する可能性がある。
[0114] 本実施形態においては、交換システム CSを設けたので、上述のような取り外し作業 、分解作業、及び復帰作業や、キャリブレーション作業、あるいは待ち時間の設定を 省くことができ、露光装置 EXの稼動率の低下を招くことなぐ液浸部材 70を円滑に 交換することができる。なお、本実施形態では液浸部材 70を介して投影光学系 PLに 振動が伝達する可能性があるので、例えば防振装置などによってその振動の伝達を 抑制してもよい。
[0115] <第 2実施形態 >
次に、第 2実施形態について、図 18を参照して説明する。以下の説明において、 上述の第 1実施形態と同一又は同等の構成部分については同一の符号を付し、そ の説明を簡略若しくは省略する。
[0116] 図 18は、第 2実施形態に係る露光装置 EXの要部を示す断面図である。本実施形 態の特徴的な部分は、液浸部材 70を保持するための保持装置 30の保持面 31が、 鏡筒 5とは別の支持部材 110に設けられている点にある。支持部材 110は、終端光 学素子 FSを囲むように配置された環状部材であって、その下面に、液浸部材 70を 保持するための保持面 31が設けられている。支持部材 110の保持面 31には、上述 の第 1実施形態と同様、吸着機構 32の吸引口 33が形成されている。
[0117] 支持部材 110は、支持機構 113を介して、第 1コラム CL1の鏡筒定盤 7に接続され ている。支持機構 113は、鏡筒定盤 7に接続された防振装置 111と、防振装置 111と 支持部材 110とを接続する接続部材 112とを含む。そして、第 1流路 34の第 1内部 流路 34Aは、支持部材 110及び接続部材 112の内部に形成されている。また、第 2 流路 84の第 2内部流路 84A、及び第 3流路 85の第 3内部流路 85Aも、支持部材 11 0及び接続部材 112の内部に形成されて!ヽる。
[0118] このように、液浸部材 70を保持するための保持面 31を有する部材は任意に設定す ることができ、本実施形態のように、液浸部材 70を保持するための保持面 31を有す る部材が、鏡筒定盤 7を含む第 1コラム CL1に接続されていてもよい。また、第 1コラ ム CL1の鏡筒定盤 7と支持部材 110及び接続部材 112とは防振装置 111を介して 接続されているので、支持部材 110及び接続部材 112で発生した振動が、鏡筒定盤 7に支持された投影光学系 PLに伝達することを抑制することができる。
[0119] また、保持面 31は、 XY平面と平行に限らず、 XY平面と交差するように (例えば垂 直に)配置されていてもよい。また、本実施形態では支持部材 110が環状であるもの としたが、これに限らず、例えば複数の支柱などでもよい。なお、上述の第 1、第 2実 施形態では、液浸部材 70を設ける部材 (鏡筒 5あるいは支持部材 110)が保持面 31 を有するものとしたが、液浸部材 70の保持機構の構成などによってはその部材に保 持面 31を設けなくてもよい。
[0120] <第 3実施形態 >
次に、第 3実施形態について、図 19を参照して説明する。以下の説明において、 上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説 明を簡略もしくは省略する。上述の実施形態においては、第 1サブ搬送系 51の移動 機構 53のピン状部材 55は、基板ホルダ 2Hの開口 54内に設けられ、基板 Pも搬送可 能 (昇降可能)であったが、本実施形態においては図 19の模式図に示すように、ピン 状部材 55が、基板ホルダ 2Hとは異なる位置に設けられていてもよい。図 19に示す 例では、ピン状部材 55は、基板ステージ 2の上面 2Fに配置されている。本実施形態 においては、基板 Pを昇降するピン状部材と、液浸部材 70を昇降するピン状部材と は別の部材である。それゆえ、液浸部材 70を昇降するピン状部材と基板 Pを昇降す るピン状部材の寸法や配置などを、搬送する対象に応じて適宜最適化させることが できる。
[0121] <第 4実施形態 >
次に、第 4実施形態について、図 20を参照して説明する。以下の説明において、 上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説 明を簡略もしくは省略する。上述の実施形態においては、第 1サブ搬送系 51の移動 機構 53は、基板ステージ 2に設けられている力 基板ステージ 2に設けなくても良い。 例えば、図 20に示すように、基板ステージ 2とは別の移動体 2'に設けられていてもよ い。本実施形態においては、移動体 2'が、保持装置 30が配置された第 1位置 PS1 の近傍位置と、第 1搬送機構 61が配置された第 3位置 PS3の近傍位置との間で移動 可能である。
[0122] また、本実施形態においては、基板 Pを搬送する搬送装置 50'と、液浸部材 70を 搬送する搬送装置 50とは別の装置である。本実施形態においては、液浸部材 70を 搬送する搬送装置 50は、移動体 2'を含み、保持装置 30が配置された第 1位置 PS1 と、収容ステーション 20が配置された第 2位置 PS2との間で、液浸部材 70を搬送可 能である。また、基板 Pを搬送する搬送装置 50'は、基板収容ステーション 20'又はコ ータ 'デベロッパ装置等の周辺装置との間で基板 Pの受け渡しを行う第 4位置 PS4で 、基板 Pを基板ステージ 2にロード可能である。本実施形態では、第 4位置 PS4で基 板ステージ 2から基板 Pのアンロードを行うものとした力 第 4位置 PS4と異なる位置で アンロードを行ってもよい。すなわち、基板 Pのロード位置とアンロード位置とを異なら せてもよい。また、計測部材を有する計測ステージを備える露光装置では、移動体 2 ,としてその計測ステージを用いてもよ!、。
[0123] <第 5実施形態 >
次に、第 5実施形態について、図 21及び図 22を参照して説明する。上述の実施形 態にお 、ては、保持装置 30に接近する液浸部材 70の移動を斜面 44でガイドするこ とによって、液浸部材 70と保持装置 30との位置関係を調整しているが、本実施形態 の特徴的な部分は、液浸部材 70と保持装置 30との位置関係を調整する装置 (ァライ メント装置)として、搬送装置 50の搬送経路上に設けられ、検出光 Laを射出する投 射装置 131及び検出光 Laを受光可能な受光装置 132を有し、搬送装置 50に保持さ れた液浸部材 70の位置情報を光学的に取得する光学装置 130を設けた点にある。 以下の説明において、上述の実施形態と同一又は同等の構成部分については同一 の符号を付し、その説明を簡略もしくは省略する。
[0124] 本実施形態においては、光学装置 130は、第 1搬送機構 61の搬送経路上に配置 されている。図 21に示すように、光学装置 130は、第 1搬送機構 61の第 1アーム 63 に対して所定位置に配置された複数の投射装置 131と、投射装置 131に対して所定 位置に配置された複数の受光装置 132とを備えている。本実施形態においては、受 光装置 132のそれぞれは、第 1搬送機構 61の上板部材 61Aの下面に設けられ、投 射装置 131のそれぞれは、受光装置 132と対向するように配置されている。
[0125] 投射装置 131及び受光装置 132のそれぞれは、液浸部材 70に複数 (4つ)形成さ れた切欠 74Kに対応するように設けられている。投射装置 131のそれぞれは、液浸 部材 70のエッジに形成された切欠 74K近傍に検出光 Laを投射可能である。制御装 置 3は、液浸部材 70を保持した第 1アーム 63を 6自由度の方向に動力しつつ、投射 装置 131より検出光 Laを射出する。制御装置 3は、各投射装置 131より射出され、各 切欠 74Kを介した検出光 Laのそれぞれが、所定状態で各受光装置 132に受光され るように、液浸部材 70を保持した第 1アーム 63を動かす。このときの第 1アーム 63の 位置情報は、例えばエンコーダ等の位置検出装置により検出される。制御装置 3は、 検出光 Laのそれぞれが所定状態で各受光装置 132に受光されたときの第 1アーム 6 3の位置情報、ひいてはそのときの液浸部材 70の位置情報を記憶する。検出光 La のそれぞれが所定状態で各受光装置 132に受光されるときの液浸部材 70の位置と 、保持装置 30の位置との関係は既知であり、制御装置 3は、位置検出装置の検出結 果、及びレーザ干渉計 15の計測結果等をモニタしつつ、第 1搬送機構 61及び基板 ステージ 2上の移動機構 53を用いて、液浸部材 70を保持装置 30に搬送する。これ により、制御装置 3は、保持装置 30に対して所望の位置関係で液浸部材 70を保持 装置 30に搬送することができる。このように、本実施形態においては、液浸部材 70と 他の部材との接触を少なくして、保持装置 30に液浸部材 70を所望の状態で取り付 けることができる。
[0126] なお、光学装置 130の配置は、液浸部材 70の位置、及び Z又は回転を検出でき れば、任意に決めることができる。すなわち、光学装置 130は上記構成に限られるも のでない。
[0127] なお、上述の第 1〜第 5実施形態においては、制御装置 3は、撮像装置 92を用い て液浸部材 70の状態を検出し、その検出結果に基づいて、液浸部材 70の交換の要 否を判断しているが、圧力センサ 91の検出結果に基づいて、液浸部材 70の交換の 要否を判断してもよい。この場合、撮像装置 92を省いてもよいし、撮像装置 92と圧力 センサ 91とを併用して、液浸部材 70の交換の要否を判断するようにしてもよい。
[0128] また、液体供給装置 86、及び Z又は液体回収装置 87に、液体 LQの状態をチエツ クするセンサ(例えば、パーティクルカウンターなど)を設置して、そのセンサで検出さ れる液体 LQの状態に基づ 、て液浸部材 70の交換の要否を判断するようにしてもよ い。なお、上述の第 1〜第 5実施形態では、検出装置 90が圧力センサ 91、撮像装置 92、及びパーティクルカウンターの少なくとも 1つを含むものとした力 検出装置 90の センサの種類及び Z又は数はこれに限られるものでない。
[0129] また、液浸部材 70の下面 (ランド面 77など)の汚染など、液浸部材 70が不良状態 の場合には、液浸領域 LRの形状が所望状態に維持できなくなる可能性がある。した 力 て、液浸領域 LRの形状に基づいて液浸部材 70の交換の要否を判断するように してもよい。この場合、例えば、作業者が目視によって又は撮像装置 92の像を観測 することによって交換または洗浄の要否を判断し得る。
[0130] また、液浸部材 70の下面 (ランド面 77など)の汚染など、液浸部材 70が不良状態 の場合には、基板 P上に液体 LQの滴が残留し、その残留した滴に起因して、基板 P 上に形成されたパターンに欠陥が増加する可能性ある。したがって、基板 Pの露光結 果 (欠陥)に基づ 、て液浸部材 70の交換の要否を判断するようにしてもょ 、。
[0131] また、例えば、撮像装置 92の撮像結果を出力装置 18の表示装置で表示するように してもよい。作業者は、表示装置の表示内容を確認することができるので、表示装置 の表示結果に基づいて、作業者が液浸部材 70の交換に要否を判断するようにしても よい。そして、表示装置の表示結果に応じて、液浸部材 70の交換動作を実行する場 合には、交換システム CSを作動させるための指令信号を入力装置 17より入力するこ とができる。制御装置 3は、入力装置 17の入力信号に基づいて、液浸部材 70の交換 動作を制御することができる。
[0132] また、上述の第 1〜第 5実施形態においては、所定処理基板枚数毎あるいは所定 時間間隔毎に撮像装置 92を用 、て液浸部材 70の状態を検出して 、る力 例えば、 作業者が、任意のタイミングで、撮像装置 92を用いた検出動作を実行させるための 指令信号を入力装置 17より入力するようにしてもよい。そして、制御装置 3又は作業 者は、その撮像装置 92の検出結果 (撮像結果)に基づいて、液浸部材 70の交換の 要否を判断することができる。
[0133] また、液浸部材 70の交換の要否を判断するための撮像装置 92などを省 、て、所 定のタイミングで作業者が液浸部材 70の交換の指令を入力装置 17から入力してもよ い。または、制御装置 3が所定のタイミングで液浸部材 70の交換の指令を出力しても よい。すなわち、作業者または制御装置 3が液浸部材 70の交換の要否判断を行うこ となぐ液浸部材 70の交換を行ってもよい。この場合、検出装置 90などの検出結果 を使用しな 、だけでもよ 、し、ある 、は要否判断のための検出動作を行わなくてもよ い。これは、後述の第 6実施形態における液浸部材 70の洗浄の要否判断においても 全く同様である。
[0134] なお、上述の第 1〜第 5実施形態において、液浸部材 70は、供給口 71と回収口 72 との両方を備えて 、るが、液体供給口及び液体回収口の 、ずれか一方を有する部 材を交換システム CSで交換するようにしてもよい。また、本実施形態の交換システム CSを用いて、例えば特開 2004— 289126号公報(対応米国特許第 6,952,253号 及び第 7,075,616号)に開示されているようなシール部材 (液浸部材)を交換するこ ともできる。また、液浸部材 70の一部のみを交換システム CSを用いて交換するように してちよい。
[0135] なお、上述の第 1〜第 5実施形態においては、保持装置 30による液浸部材 70の保 持が確実に実行可能であれば、支持機構 40を省 ヽてもよ ヽ。
[0136] また、上述の第 1〜第 5実施形態において、液浸部材 70を搬送するための搬送装 置 50は、移動機構 53、第 1搬送機構 61,第 2搬送機構 62を備えているが、これらを すべて必ず備えている必要はなぐ保持装置 30が配置される第 1位置 PS 1と収容ス テーシヨン 20が配置された第 2位置 PS2との間で液浸部材 70を搬送可能であれば、 その構成は任意である。例えば、基板ステージ 2を、第 2搬送機構 62の近くまで移動 することができる場合には、基板ステージ 2に配置された移動機構 53 (ピン状部材 55 )と第 2搬送機構 62 (第 2搬送アーム 64)との間で液浸部材 70の受け渡しを行うこと ができるので、第 1搬送機構 61を省くことができる。また、第 2搬送機構 62の第 2搬送 アーム 64と保持装置 30との間で液浸部材 70の受け渡しが可能な場合には、移動機 構 53、第 1搬送機構 61を省くことができる。
[0137] 上述の第 1〜第 5実施形態において、交換システム CSの第 2位置 PS2は、チャン バ装置 19の外側に設定されているが、第 2位置 PS2はこれに限られず、例えばチヤ ンバ装置 19内に設定してもよい。例えば、搬送システム 50を、 Z軸方向において、保 持装置 30から液浸部材 70を遠ざける、あるいは保持装置 30に液浸部材 70を接近さ せる機構 (例えば上述の移動機構 53)のみで構成し、第 1位置 PS1の直下(一 Z側) に第 2位置 PS2に設定してもよい。この場合、作業者などが、チャンバ装置 19内にァ クセスする必要が生じる力 液浸部材 70の交換に要する時間を短縮することができる ので、露光装置 EXの稼働率の低下を抑制することができる。
[0138] 上述の第 1〜第 5実施形態において、液浸部材 70の交換作業は、交換システム C Sを用いて行った力 上記各実施形態のメンテナンス方法においては、交換システム CSは必ずしも用いる必要はなぐその交換作業の少なくとも一部を作業者が手作業 で行ってもよい。
[0139] また、上述の第 1〜第 5実施形態では、液浸部材 70との交換で別の液浸部材を露 光本体部に装着するものとした力 露光本体部力も搬出した液浸部材 70を、例えば 露光本体部と隔離された空間(例えば、収容ステーション 20あるいは露光装置の外 部など)内で洗浄し、この洗浄した液浸部材 70を露光本体部に搬入して再装着して もよい。すなわち、上述の各実施形態では液浸部材 70の交換ではなく洗浄の要否を 判断してもよいし、交換と洗浄の両方の要否を判断してもよい。以下、このメンテナン ス動作について説明する。
[0140] <第 6実施形態 >
上述の第 1〜第 5実施形態において、交換システム CSを用いて液浸部材 70を清 浄な液浸部材 70と交換するメンテナンス動作を説明してきたが、この実施形態では 液浸部材 70を交換する代わりに液浸部材 70を洗浄して再利用するメンテナンス動 作を説明する。以下の説明において、第 1実施形態との相違点のみを図 1及び図 24 を参照しながら説明し、上述の実施形態と同一又は同等の構成部分については同 一の符号を付し、その説明を省略する。第 1実施形態と同様にして図 1との関係で説 明した露光装置 EXを用いて基板 P上の一部に液体 LQの液浸領域 LRを局所的に 形成し、光路空間 Kに対して基板 Pを Y軸方向に移動しつつ基板 P上に露光光 ELを 照射して液浸露光を実行する(S30)。液浸露光終了後、制御装置 3は、液浸部材 7 0の状態を観察する。液浸部材 70の観察は、図 7に示したような撮像装置 92を用い てもよくあるいは作業者が目視で観察してもよい (S32)。前者の場合、制御装置 3 (ま たは作業者)は、撮像装置 92の検出結果に基づいて、液浸部材 70の洗浄の要否を 判断し、後者の場合は作業者の目視により液浸部材 70の洗浄の要否を判断する (S 34)。例えば、制御装置 3は、撮像装置 92で撮像された画像情報を画像処理し、そ の処理結果に基づ!、て、液浸部材 70の洗浄の要否を判断する。
[0141] 前述のように制御装置 3には、液浸部材 70の汚染状態についての許容範囲に関 する情報が予め記憶されており、制御装置 3は、その記憶情報と画像処理結果とに 基づいて、液浸部材 70の洗浄の要否を判断する。例えば、記憶情報と画像処理結 果とに基づいて、液浸部材 70の汚染状態が許容範囲内であると判断した場合、制 御装置 3は、液浸部材 70の洗浄を行わず、その液浸部材 70を用いた液浸露光動作 を継続する(S36)。 [0142] 一方、記憶情報と画像処理結果とに基づ!/、て、液浸部材 70の汚染状態が許容範 囲外であると判断した場合、第 1実施形態で説明したように第 1サブ搬送系 51及び 第 2サブ搬送系 52を有する搬送装置 50を用いて液浸部材 70をチャンバ装置 19の 外部に搬送する。搬送された液浸部材 70の洗浄は、図 1に示したように収容ステー シヨン 20と X方向に並列して配置されている洗浄ステーション 200で行うことができる 。洗浄ステーション 200には、搬送装置 50により搬送された液浸部材 70を洗浄する 、例えば洗浄液噴射ノズルを備えた洗浄装置 (不図示)などが装備されている。洗浄 ステーション 200にて、液浸部材 70に洗浄液、及び純水のようなリンス液が噴射され ることで液浸部材 70の洗浄が行われる(S38)。洗浄は、洗浄液を充満した容器に桶 に液浸部材 70を浸すことによって行ってもよい。洗浄後、液浸部材 70を回転ステー ジなどに載置して回転ステージの回転により洗浄液及びリンス液を振り払うことができ る。回転ステージに代えてまたは回転ステージと共に送風機及び Z又はヒータにより 液浸部材 70を乾燥してもよい。洗浄後、第 1実施形態で説明したように、再び搬送装 置 50を用いて液浸部材 70がチャンバ装置 19内に戻され、第 2搬送機構 62、第 1搬 送機構 61、及び基板ステージ 2 (移動機構 53)を介して保持装置 30により保持され る。
[0143] 制御装置 3は、基板ステージ 2の上面 2F上に液浸領域 LQを形成しつつ、所定時 間、第 2流路 84、供給流路 81、回収流路 82、及び第 3流路 85に液体 LQを流し続け 、液体 LQと接触する各流路を、液体 LQで洗浄 (フラッシング)する(S40)。フラッシ ングは省略してもよい。フラッシング終了後、制御装置 3は、洗浄された液浸部材 70 を用いて、次に露光される基板 Pを基板ステージ 2上にロードして、基板 Pの液浸露 光を再開する (S36)。
[0144] 以上説明したように、交換システム CSが有する搬送装置 50及び保持装置 30と洗 浄ステーション 200とを用いて液浸部材 70をチャンバ装置 19の外部に搬送して液浸 部材 70を洗浄することができる。この洗浄動作により露光装置 EXの稼動率の低下を 抑制することができるとともに、異常状態の液浸部材 70を使用し続けることに起因す る露光精度及び計測精度の劣化を抑制することができる。
[0145] この実施形態では、搬送装置 50の移動機構 53を用いて液浸部材 70を保持装置 3 0に対して着脱したが、それらを用いることなく作業者が手作業で液浸部材 70の着脱 作業を行ってもよい。また、液浸部材 70のチャンバ装置 19の外部への搬送は、搬送 装置 50を用いることなく作業者が手作業で行ってもよい。すなわち、本実施形態のメ ンテナンス方法は作業者が手作業で実行してもよ ヽ。
[0146] 上述の第 1実施形態で説明した液浸部材 70の交換動作と、第 6実施形態で説明し た液浸部材 70の洗浄動作とを適宜使い分けることも可能である。例えば、撮像装置 92で液浸部材 70の状態を検出した結果、洗浄により液浸部材 70の汚れを除去でき な 、ような場合にのみ液浸部材 70の交換動作を行 、、それより低 、レベルの汚染で あって洗浄が必要なレベルの汚染である場合には液浸部材 70の洗浄動作を実行す ることができる。これにより、露光装置のスループット (稼働率)の低下を抑制して、き め細かで且つ効率のよいメンテナンス作業を行うことができる。
[0147] なお、上述の第 1〜第 6実施形態の投影光学系は、終端光学素子 (最終光学素子 FS)の像面側 (射出面)の光路空間を液体で満たしているが、例えば、国際公開第 2 004Z019128号パンフレット(対応する米国特許出願公開第 2005Z0248856号 )などに開示されているように、終端光学素子の物体面側の光路空間も液体で満た す投影光学系を採用することもできる。そして、その物体面側の光路空間を液体で満 たすための液浸部材が設けられて 、る場合には、交換システム CSを用いてその液 浸部材を交換するようにしてもょ 、。
[0148] また、上述の第 1〜第 6実施形態では、投影光学系 PLを鏡筒定盤 7で支持するも のとした力 例えば国際公開第 2006Z038952号パンフレットに開示されているよう に、投影光学系 PLの上方に配置される不図示のメインフレーム部材、あるいはマスク ステージ定盤 6などに対して投影光学系 PLを吊り下げ支持しても良い。さらに、上述 の各実施形態では、液浸部材 70を支持部材 110 (すなわち、鏡筒定盤 7)または鏡 筒 5に設けるものとしたが、例えば投影光学系 PLと一体に液浸部材 70を吊り下げ支 持する、投影光学系 PLとは独立に吊り下げ支持される計測フレームに液浸部材 70 を設ける、あるいは第 1コラム CL1とは別設される架台に液浸部材 70を設けてもよい 。また、上述の各実施形態では交換システム CSの一部を鏡筒定盤に設けるものとし たが、例えば前述の計測フレームあるいは第 1コラム CL1とは別設される架台に交換 システム csの少なくとも一部を設けてもよい。
[0149] なお、投影光学系 PLは縮小系のみならず等倍系及び拡大系のいずれでもよい。
また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含まな い反射系、及び反射光学素子と屈折光学素子とを含む反射屈折系 (カタディ,ォプト リック系)のいずれであってもよい。例えば、国際公開第 2004Z107011号パンフレ ット(対応する米国特許出願公開第 2006Z0121364号)などに開示されるように、 複数の反射面を有しかつ中間像を少なくとも 1回形成する光学系 (反射系または反 屈系)がその一部に設けられ、かつ単一の光軸を有する、いわゆるインライン型の反 射屈折系を用いてもよい。また、投影光学系 PLは、倒立像と正立像とのいずれを形 成してもよい。さら〖こ、照明領域 IA及び露光領域 ARは、投影光学系 PLの視野内で 光軸を含むオンァクシス領域であるものとしたが、例えばインライン型の反射屈折系 のように光軸を含まないオファクシス領域であってもよい。また、照明領域 IA及び露 光領域 ARはその形状が矩形に限られず、他の形状、例えば円弧状、台形、あるい は平行四辺形などでもよ ヽ。
[0150] 上述したように、本実施形態における液体 LQは純水である。純水は、半導体製造 工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや光学素子(レ ンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がな いとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 PL の先端面に設けられている光学素子の表面を洗浄する作用も期待できる。
[0151] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0152] 上述の各実施形態では、投影光学系 PLの先端に終端光学素子 FSが取り付けら れており、この光学素子により投影光学系 PLの光学特性、例えば収差 (球面収差、 コマ収差等)の調整を行うことができる。なお、投影光学系 PLの終端光学素子として は、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるい は露光光 ELを透過可能な平行平面板であってもよい。
[0153] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0154] なお、上述の各実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満 たされて!/ヽる構成であるが、例えば基板 Pの表面に平行平面板カゝらなるカバーガラス を取り付けた状態で液体 LQを満たす構成であってもよい。
[0155] なお、上述の各実施形態の液体 LQは水(純水)であるが、水以外の液体であって もよい。例えば、露光光 ELが Fレーザ光である場合、この Fレーザ光は水を透過し
2 2
ないので、液体 LQは、例えば過フッ化ポリエーテル(PFPE)やフッ素系オイル等の フッ素系流体であってもよい。この場合、液体 LQと接触する部分には、例えばフッ素 を含む極性の小さ!/、分子構造の物質で薄膜を形成することで親液化処理する。また 、液体 LQとしては、その他にも、露光光 ELに対する透過性があってできるだけ屈折 率が高ぐ投影光学系 PLや基板 P表面に塗布されているフォトレジストに対して安定 なもの(例えばセダー油)を用いることも可能である。
[0156] ここで、純水よりも屈折率が高い(例えば 1. 5以上)の液体 LQとしては、例えば、屈 折率が約 1. 50のイソプロパノール、屈折率が約 1. 61のグリセロール(グリセリン)と いった C—H結合あるいは O—H結合を持つ所定液体、へキサン、ヘプタン、デカン 等の所定液体 (有機溶剤)、あるいは屈折率が約 1. 60のデカリン (Decalin: Decahydr ◦naphthalene)などが挙げられる。また、液体 LQは、これら液体のうち任意の 2種類以 上の液体を混合したものでもよいし、純水にこれら液体の少なくとも 1つを添カ卩(混合) したものでもよい。さらに、液体 LQは、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_
4 4 の塩基又は酸を添加(混合)したものでもよ ヽし、純水に A1酸ィ匕物等の微粒子を添カロ (混合)したものでもよい。なお、液体 LQとしては、光の吸収係数が小さぐ温度依存 性が少なぐ第 1、第 2投影系 PL1、 PL2、及び Z又は基板 Pの表面に塗布されてい る感光材 (又はトップコート膜あるいは反射防止膜など)に対して安定なものであるこ とが好ましい。また、液体 LQとしては、水よりも露光光 ELに対する屈折率が高い液 体、屈折率が 1. 6〜1. 8程度のものを使用してもよい。液体 LQとして、超臨界流体 を用いることも可能である。
[0157] また、投影光学系 PLの終端光学素子 FSを、例えば石英 (シリカ)、あるいは、フッ 化カルシウム(蛍石)、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、及びフッ 化ナトリウム等のフッ化化合物の単結晶材料で形成してもよ 、し、石英や蛍石よりも 屈折率が高い(例えば 1. 6以上)材料で形成してもよい。屈折率が 1. 6以上の材料 としては、例えば、国際公開第 2005Z059617号パンフレットに開示されるサフアイ ァ、二酸化ゲルマニウム等、あるいは、国際公開第 2005Z059618号パンフレットに 開示される塩化カリウム (屈折率は約 1. 75)等を用いることができる。なお、投影光学 系 PLの、終端光学素子 FSとは別の光学素子が液体 LQと接触する場合、その別の 光学素子も終端光学素子 FSと同様の材料で形成してもよい。例えば、米国特許出 願公開第 2005Z0248856号などに開示されているように、投影光学系の終端光学 素子 FSの物体面側の光路空間も液体 LQで満たす場合、終端光学素子 FSの物体 面側の光学素子を、石英、蛍石、あるいは屈折率が 1. 6以上の材料などで形成して もよい。また、液体 LQと接触する光学素子、例えば終端光学素子 FSの表面の一部( 少なくとも液体 LQとの接触面を含む)又は全部に、親液性及び Z又は溶解防止機 能を有する薄膜を形成してもよい。なお、石英は液体 LQとの親和性が高ぐかつ溶 解防止膜も不要であるが、蛍石は少なくとも溶解防止膜を形成することが好ましい。 さら〖こ、終端光学素子 FSの、露光光 ELが通過する領域と異なる領域に遮光膜を設 け、露光光 ELによる光学部品(例えば、シール部材)の劣化などを抑制してもよい。
[0158] また、投影光学系 PLでは、露光光 ELに対する終端光学素子 FSの屈折率 nを、露 光光 ELに対する液体 LQの屈折率 nよりも小さくしてもよい。例えば、終端光学素子
2
FSを石英 (屈折率は約 1. 5)で形成し、液体 LQはその屈折率 nが石英の屈折率よ
2
りも高い(例えば 1. 6〜1. 8程度)のものが使用される。あるいは、投影光学系 PLで は、終端光学素子 FSの屈折率 nを、液体 LQの屈折率 nよりも大きくしてもよい。例
1 2
えば、屈折率が 1. 6以上の材料で終端光学素子 FSを形成し、液体 LQはその屈折 率 nが純水よりも大きくかつ終端光学素子 FSよりも小さいものが使用される。この場
2
合、終端光学素子 FSの屈折率 nよりも小さい液体 LQの屈折率 nを、投影光学系 P Lの開口数 NAよりも大きくすることが好ましい。
[0159] 上記各実施形態では干渉計システムを用いてマスクステージ 1及び基板ステージ 3 の各位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられ るスケール(回折格子)を検出するエンコーダシステムを用いてもよい。この場合、干 渉計システムとエンコーダシステムの両方を備えるノ、イブリツドシステムとし、干渉計シ ステムの計測結果を用いてエンコーダシステムの計測結果の較正(キヤリブレーショ ン)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを切り替えて 用いる、あるいはその両方を用いて、ステージの位置制御を行うようにしてもよい。
[0160] また、上記各実施形態では露光光 ELを発生する光源としてエキシマレーザを用い るものとしたが、水銀ランプ、あるいは半導体レーザなどの高調波発生装置などを用 いてもよい。露光光 ELとして ArFエキシマレーザ光を発生する光源装置として、例え ば、国際公開第 1999Z46835号パンフレット (対応米国特許 7,023,610号)に開 示されているように、 DFB半導体レーザ又はファイバーレーザなどの固体レーザ光 源、ファイバーアンプなどを有する光増幅部、及び波長変換部などを含み、波長 193 nmのパルス光を出力する高調波発生装置を用いてもょ 、。
[0161] また、上述の各実施形態にお!、て、液浸部材など液浸システムの構成は上述のも のに限られず、例えば国際公開第 2004Z086468号パンフレット(対応米国特許出 願公開第 2005Z0280791号)、国際公開第 2005/024517号パンフレット、欧州 特許公開第 1420298号公報、国際公開第 2004Z055803号公報、国際公開第 2 004Z057589号公報、国際公開第 2004/057590号公報、国際公開第 2005Z 029559号公報 (対応米国特許出願公開第 2006Z0231206号)、及び米国特許 第 6,952,253号などに開示されている液浸システムを用いることもできる。
[0162] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみならず 、矩形など他の形状でもよい。
[0163] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ にも適用することができる。この場合、投影光学系、例えば、 1Z8縮小倍率で反 射素子を含まない屈折型投影光学系が用いられる。
[0164] さらに、ステップ'アンド'リピート方式の露光において、第 1パターンと基板 Pとをほ ぼ静止した状態で、投影光学系を用いて第 1パターンの縮小像を基板 P上に転写し た後、第 2パターンと基板 Pとをほぼ静止した状態で、投影光学系を用いて、第 2バタ ーンの縮小像を第 1パターンと部分的に重ねて基板 P上に一括露光してもよい (ステ イッチ方式の一括露光装置)。また、ステイッチ方式の露光装置としては、基板 P上で 少なくとも 2つのパターンを部分的に重ねて転写し、基板 Pを順次移動させるステップ •アンド'ステイッチ方式の露光装置にも適用できる。
[0165] また、上記各実施形態の露光装置は、例えば特開平 10— 163099号公報、特開 平 10— 214783号公報(対応米国特許 6, 341, 007、 6, 400, 441、 6, 549, 269 及び 6, 590,634)、特表 2000— 505958号公報(対応米国特許 5, 969, 441) ¾ どに開示されて 、るような複数の基板ステージを備えたマルチステージ型 (ツインステ ージ型)の露光装置でもよい。この場合、すべての基板ステージに移動機構 53を配 置して液浸部材の交換に用いてもよいし、特定の基板ステージのみに移動機構 53を 配置して液浸部材の交換に用いるようにしてもょ 、。指定国及び選択国の国内法令 が許す限りにおいて、上記米国特許の開示を援用して本文の記載の一部とする。
[0166] 更に、上記各実施形態の露光装置は、例えば特開平 11— 135400号公報 (対応 国際公開 1999/23692)、特開 2000— 164504号公報(対応米国特許第 6, 897 , 963号)に開示されているように、基板を保持する基板ステージと、計測部材 (例え ば、基準マークが形成された基準部材、及び Z又は各種の光電センサ)を搭載した 計測ステージとを備えた露光装置でもよい。例えば、図 20を参照して説明した移動 体 2,が計測ステージであってもよ!/、。
[0167] また、上記各実施形態の露光装置は、複数の基板ステージと計測ステージとを備 えた露光装置でもよい。 [0168] また、上述の各実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液 体を満たす露光装置を採用しているが、本発明は、例えば特開平 6— 124873号公 報、特開平 10— 303114号公報、米国特許第 5, 825, 043号などに開示されてい るような露光対象の基板の表面全体が液体中に浸力つて 、る状態で露光を行う液浸 露光装置にも適用可能である。
[0169] 上記各実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明してきた 力 投影光学系 PLを用いない露光装置及び露光方法に本発明を適用することがで きる。このように投影光学系 PLを用いない場合であっても、露光光はレンズなどの光 学部材を介して基板に照射され、そのような光学部材と基板との間の所定空間に液 浸領域が形成される。
[0170] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、マイクロマシン、 MEMS, DNAチップ、撮像素子 (C CD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0171] なお、上述の各実施形態においては、光透過性の基板上に所定の遮光パターン( 又は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスク に代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光す べきパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発 光パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像 表示素子(空間光変調器)の一種である DMD (Digital Micro -mirror Device)などを 含む)を用いてもよい。
[0172] また、上記各実施形態の露光装置は、例えば国際公開第 2001Z035168号パン フレットに開示されているように、干渉縞を基板 P上に形成することによって、基板 P上 にライン 'アンド'スペースパターンを露光する露光装置でもよい。さらに、上記各実施 形態の露光装置は、例えば特表 2004— 519850号公報 (対応米国特許第 6, 611 , 316号)に開示されているように、 2つのマスクのパターンを、投影光学系を介して 基板上で合成し、 1回の走査露光によって基板上の 1つのショット領域をほぼ同時に 二重露光する露光装置でもよ 、。
[0173] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。
[0174] 半導体デバイス等のマイクロデバイスは、図 25〖こ示すよう〖こ、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する露光工程及び露 光した基板の現像工程を含む基板処理ステップ 204、デバイス組み立てステップ (ダ イシング工程、ボンディング工程、ノ ッケージ工程などの加工プロセスを含む) 205、 検査ステップ 206等を経て製造される。なお、上述の実施形態で説明した液浸部材 の交換及び Zまたは洗浄を含むメンテナンス方法は基板処理ステップ 204に含まれ る。
産業上の利用可能性
[0175] 本発明によれば、液浸部材をメンテナンスすることにより、デバイスの生産性の低下 を抑制することができる。特に、液浸部材の汚染に伴う不都合を未然に防止して、高 密度な回路パターンを有するデバイスを高 、スループットで生産することができる。こ のため、本発明は、我国の半導体産業を含むハイテク産業及び IT技術の発展に貢 献するであろう。

Claims

請求の範囲
[I] 液体を介して基板に露光光を照射して前記基板を露光する露光装置であって、 前記基板上に液浸領域を形成する液浸システムと、
前記液浸システムの一部を構成するとともに、前記液浸領域を形成する液体と接触 する液浸部材を交換する交換システムとを備えた露光装置。
[2] 前記液浸部材は、前記基板が対向して配置される請求項 1記載の露光装置。
[3] 前記露光光が射出する光学部材を備え、
前記液浸部材は、前記光学部材を囲むように配置される請求項 1又は 2記載の露 光装置。
[4] 前記交換システムは、前記液浸部材を着脱可能に保持する保持装置と、前記液浸 部材を搬送する搬送装置とを含む請求項 1〜3のいずれか一項記載の露光装置。
[5] 前記保持装置は、前記液浸部材を吸着する吸着部を含む請求項 4記載の露光装 置。
[6] 前記保持装置とは別に設けられ、前記液浸部材を支持可能な支持機構を更に備 える請求項 4又は 5記載の露光装置。
[7] 前記液浸部材が前記保持装置に保持されていないときに、前記支持機構は前記 液浸部材を支持可能である請求項 6記載の露光装置。
[8] 前記保持装置は、前記液浸部材の上面と接触し、
前記支持機構は、前記液浸部材の側面に設けられた凹部に挿脱可能な支持部材 を有する請求項 6又は 7記載の露光装置。
[9] 前記搬送装置は、前記液浸部材を、第 1位置と前記第 1位置とは異なる第 2位置と の間で搬送可能である請求項 4〜8のいずれか一項記載の露光装置。
[10] 前記液浸部材を収容可能な収容ステーションを備え、
前記収容ステーションは、前記第 2位置に設けられて 、る請求項 9記載の露光装置
[II] 前記搬送装置は、前記第 1位置及び前記第 2位置とは異なる所定位置で、前記液 浸部材の受け渡しを行う第 1サブ搬送系と第 2サブ搬送系とを有し、
前記第 1サブ搬送系は、前記第 1位置において前記保持装置と前記液浸部材の受 け渡しを行い、
前記第 2サブ搬送系は、前記所定位置と前記第 2位置との間で前記液浸部材の搬 送を行う請求項 9又は 10記載の露光装置。
[12] 前記第 1サブ搬送系は、前記液浸部材を支持して所定方向に移動可能であり、前 記保持装置と前記液浸部材との間隔を調整可能な移動機構を含む請求項 11記載 の露光装置。
[13] 前記移動機構は、前記所定方向とほぼ垂直な方向に移動可能な移動体に設けら れている請求項 12記載の露光装置。
[14] 前記移動体は、前記基板を保持して移動可能な基板ステージを含む請求項 13記 載の露光装置。
[15] 前記搬送装置は、前記基板も搬送可能である請求項 4〜 14のいずれか一項記載 の露光装置。
[16] 前記液浸部材と前記保持装置との位置関係を調整するァライメント装置を備えた請 求項 4〜 15の 、ずれか一項記載の露光装置。
[17] 前記ァライメント装置は、前記保持装置に接近する前記液浸部材の移動をガイドす るガイド面を有する請求項 16記載の露光装置。
[18] 前記ァライメント装置は、前記搬送装置の搬送経路上に設けられ、検出光を射出す る投射装置及び前記検出光を受光可能な受光装置を有し、前記搬送装置に保持さ れた前記液浸部材の位置情報を光学的に取得する光学装置を有する請求項 16又 は 17記載の露光装置。
[19] 前記液浸部材の状態を検出する検出装置と、
前記検出装置の検出結果に基づいて、前記液浸部材の交換の要否を判断する制 御装置とを備えた請求項 1〜18のいずれか一項記載の露光装置。
[20] 前記制御装置は、前記検出装置の検出結果に応じて、前記液浸部材の交換動作 を実行する請求項 19記載の露光装置。
[21] 前記検出装置は、前記液浸部材の液体回収口に接続する流路の圧力を検出する 圧力センサを含む請求項 19又は 20記載の露光装置。
[22] 前記液体回収口に配置された多孔部材を有する請求項 21記載の露光装置。
[23] 前記検出装置は、前記液浸部材の表面の状態を観察可能な撮像装置を含む請求 項 19〜22のいずれか一項記載の露光装置。
[24] 指令信号が入力される入力装置と、
前記入力装置の入力信号に基づ!、て、前記液浸部材の交換動作を制御する制御 装置とを備えた請求項 1〜23のいずれか一項記載の露光装置。
[25] 前記液浸部材は、前記液浸領域を形成するための液体供給口及び液体回収口の 少なくとも一方を有する請求項 1〜24のいずれか一項記載の露光装置。
[26] 前記交換システムは、前記液浸システムから取り外されて洗浄が行われた前記液 浸部材を前記液浸システムに再装着する請求項 1〜25のいずれか一項記載の露光 装置。
[27] 液体を介して基板に露光光を照射して前記基板を露光する露光装置であって、 前記基板上に液浸領域を形成する液浸システムと、
前記液浸領域を形成する液体と接触する液浸部材と、
前記液浸部材を着脱可能に保持する保持装置とを備える露光装置。
[28] 前記保持装置は、前記液浸部材を吸着して保持する請求項 27記載の露光装置。
[29] さらに、前記基板との間に前記液浸領域が形成される光学部材を有し、前記基板 にパターンの像を投影する投影光学系を備え、前記保持装置は、前記光学部材とは 非接触に前記液浸部材を保持する請求項 27記載の露光装置。
[30] 前記保持装置は、前記液浸部材を前記投影光学系に着脱可能に保持する請求項 29記載の露光装置。
[31] 前記保持装置は、前記液浸部材を、前記投影光学系を支持する部材に着脱可能 に保持する請求項 29記載の露光装置。
[32] さらに、前記保持装置と独立して前記液浸部材を支持する支持機構を備える請求 項 27〜31のいずれか一項記載の露光装置。
[33] 前記支持機構は、前記液浸部材の搬出に先立ち、前記保持装置による保持が解 除された前記液浸部材を支持する請求項 32記載の露光装置。
[34] 前記保持装置が保持面を有し、該保持面に液浸部材の一面が吸着され、該保持 面と液浸部材の一面の少なくとも一方に撥液膜が付与されている請求項 28記載の 露光装置。
[35] 液体を介して露光光で基板を露光する露光装置であって、
前記露光光を射出する光学部材と前記基板との間の空間を囲みかつその内側に液 浸領域の少なくとも一部が形成される液浸部材と、
前記液浸部材が設けられるフレーム部材と、
前記フレーム部材との間で前記液浸部材の受け渡しが行われる支持装置と、を備え る露光装置。
[36] 前記支持装置を含み、前記液浸部材の交換または洗浄のためにその搬出入を行う 搬送システムを備える請求項 35記載の露光装置。
[37] 前記搬送システムは、前記搬出入時、前記基板が移動する所定の平面と垂直な方 向に関して前記液浸部材と前記光学部材とを相対移動する請求項 36記載の露光装 置。
[38] 前記液浸部材の状態に関する情報を検出する検出装置を備え、前記情報は、少な くとも前記液浸部材のメンテナンスに用いられる請求項 35〜37のいずれか一項記載 の露光装置。
[39] 前記フレーム部材に設けられ、前記光学部材を有する投影光学系を備える請求項
35〜38の!、ずれか一項記載の露光装置。
[40] 請求項 1〜39のいずれか一項記載の露光装置を用いるデバイス製造方法。
[41] 基板が対向して配置される液浸部材を有し、前記液浸部材で保持される液体を介 して前記基板を露光をする露光装置のメンテナンス方法であって、
前記液浸部材を前記露光装置から取り外すことと、
取り外した液浸部材を洗浄又は交換することを含むメンテナンス方法。
[42] 所定時間または所定枚数の基板の露光ごとに、前記液浸部材を前記露光装置か ら取り外す請求項 41記載のメンテナンス方法。
[43] さらに、前記液浸部材の状態を検出し、該検出結果に基づいて前記液浸部材を前 記露光装置から取り外す請求項 41又は 42記載のメンテナンス方法。
[44] 前記露光装置が、前記液浸部材を着脱可能に保持する保持装置を有しており、該 保持装置による保持を解除して前記液浸部材を前記露光装置から取り外す請求項 4 1〜43の 、ずれか一項記載のメンテナンス方法。
[45] 前記取り外した液浸部材は前記露光装置内の所定位置または外部まで搬送される 請求項 41〜44のいずれか一項記載のメンテナンス方法。
[46] さらに、洗浄又は交換した液浸部材を前記露光装置に取り付けることを含む請求項 41〜45のいずれか一項記載のメンテナンス方法。
[47] 前記液浸部材によって前記基板との間に前記液体が保持される光学部材を介して 前記基板が露光され、前記液浸部材の洗浄又は交換のための搬出入時、前記基板 が移動する所定の平面と垂直な方向に関して前記液浸部材と前記光学部材とを相 対移動する請求項 41〜46のいずれか一項記載のメンテナンス方法。
[48] 光学部材と基板との間に液体を保持する液浸部材を有し、前記光学部材及び前記 液体を介して露光光で前記基板を露光する露光装置のメンテナンス方法であって、 前記液浸部材の交換または洗浄のためにその搬出入を行うことを含むメンテナンス 方法。
[49] 前記搬出入時、前記基板が移動する所定の平面と垂直な方向に関して前記液浸 部材と前記光学部材とを相対移動する請求項 48記載のメンテナンス方法。
[50] 請求項 41〜49の ヽずれか一項記載のメンテナンス方法により液浸部材を有する 露光装置をメンテナンスすることと、
液体を介して基板を露光することを含む露光方法。
[51] 液体を介して露光光で基板を露光する露光方法であって、
前記露光光を射出する光学部材と前記基板との間の空間を囲む液浸部材によって その空間に前記液体を保持しつつ前記露光光で前記基板を露光することと、 前記液浸部材の交換または洗浄のためにその搬出入を行うこととを含む露光方法。
[52] 前記搬出入時、前記基板が移動する所定の平面と垂直な方向に関して前記液浸 部材と前記光学部材とを相対移動する請求項 51記載の露光方法。
[53] 前記液浸部材の状態に関する情報を検出することを含み、前記情報は、少なくとも 前記液浸部材のメンテナンスに用いられる請求項 51又は 52記載の露光方法。
[54] 請求項 50〜53のいずれか一項記載の露光方法により基板を露光することと、 露光した基板を現像することと、 現像した基板を加工することを含むデバイスの製造方法。
PCT/JP2007/054706 2006-03-13 2007-03-09 露光装置、メンテナンス方法、露光方法及びデバイス製造方法 WO2007105645A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07738191A EP1995768A4 (en) 2006-03-13 2007-03-09 EXPOSURE DEVICE, MAINTENANCE METHOD, EXPOSURE METHOD AND DEVICE MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006067476 2006-03-13
JP2006-067476 2006-03-13

Publications (1)

Publication Number Publication Date
WO2007105645A1 true WO2007105645A1 (ja) 2007-09-20

Family

ID=38509468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054706 WO2007105645A1 (ja) 2006-03-13 2007-03-09 露光装置、メンテナンス方法、露光方法及びデバイス製造方法

Country Status (6)

Country Link
US (1) US8035800B2 (ja)
EP (1) EP1995768A4 (ja)
JP (1) JP2007281441A (ja)
KR (1) KR20080114691A (ja)
TW (1) TW200809915A (ja)
WO (1) WO2007105645A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7866330B2 (en) * 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7900641B2 (en) 2007-05-04 2011-03-08 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8947629B2 (en) * 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9297098B2 (en) * 2007-12-19 2016-03-29 Saint-Gobain Adfors Canada, Ltd. Foldable reinforcing web
NL1036579A1 (nl) * 2008-02-19 2009-08-20 Asml Netherlands Bv Lithographic apparatus and methods.
US8896806B2 (en) 2008-12-29 2014-11-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
NL2004547A (en) * 2009-05-14 2010-11-18 Asml Netherlands Bv An immersion lithographic apparatus and a device manufacturing method.
CN102500566B (zh) * 2011-09-22 2014-01-15 清华大学 适于危险环境使用的免维修泥浆洗涤器及其工作方法
US9785281B2 (en) 2011-11-09 2017-10-10 Microsoft Technology Licensing, Llc. Acoustic touch sensitive testing
US9317147B2 (en) 2012-10-24 2016-04-19 Microsoft Technology Licensing, Llc. Input testing tool
CN108475025B (zh) * 2015-11-20 2021-02-26 Asml荷兰有限公司 光刻设备和操作光刻设备的方法
WO2020064265A1 (en) 2018-09-24 2020-04-02 Asml Netherlands B.V. A process tool and an inspection method

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10303114A (ja) 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1128790A (ja) 1997-07-09 1999-02-02 Asahi Chem Ind Co Ltd 紫外線遮蔽用熱可塑性樹脂板
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
US20010035168A1 (en) 2000-03-10 2001-11-01 Knut Meyer Ventilation device for a fuel tank
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6608681B2 (en) 1992-12-25 2003-08-19 Nikon Corporation Exposure method and apparatus
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US20040024517A1 (en) 2002-08-01 2004-02-05 Jankovic Mrdjan J. Method and system for predicting cylinder air charge in an internal combustion engine for a future cylinder event
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
US20040107011A1 (en) 2002-10-09 2004-06-03 Giovanni Moselli Arrangement for controlling operation of fuel cells in electric vehicles
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US20050059617A1 (en) 2001-09-17 2005-03-17 Takeshi Imanishi Novel anitsense oligonucleotide derivatives against to hepatitis c virus
US20050059618A1 (en) 2001-11-08 2005-03-17 Karsten Eulenberg Men protein, gst2, rab-rp1, csp, f-box protein lilina/fbl7, abc50, coronin, sec61 alpha, or vhappa1-1, or homologous proteins involved in the regulation of energy homeostasis
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
JP2005191557A (ja) * 2003-12-03 2005-07-14 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2005268412A (ja) * 2004-03-17 2005-09-29 Nikon Corp 露光装置、露光方法、及びデバイスの製造方法
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
JP2005347617A (ja) * 2004-06-04 2005-12-15 Nikon Corp 露光装置及びデバイス製造方法
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2005353820A (ja) * 2004-06-10 2005-12-22 Nikon Corp 露光装置及びデバイス製造方法
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
WO2006038952A2 (en) 2004-09-30 2006-04-13 Nikon Corporation Projection optical device and exposure apparatus
US20060121364A1 (en) 2003-05-06 2006-06-08 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
DE10241894A1 (de) 2002-09-10 2004-03-11 Robert Bosch Gmbh Scheibenwischvorrichtung
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
WO2004050266A1 (ja) * 2002-12-03 2004-06-17 Nikon Corporation 汚染物質除去方法及び装置、並びに露光方法及び装置
CN106444292A (zh) * 2003-04-11 2017-02-22 株式会社尼康 沉浸式光刻装置、清洗方法、器件制造方法及液体沉浸式光刻装置
EP2722702A3 (en) 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
EP3223053A1 (en) 2003-09-03 2017-09-27 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
SG2014014955A (en) 2003-12-03 2014-07-30 Nippon Kogaku Kk Exposure apparatus, exposure method, method for producing device, and optical part
JP4427379B2 (ja) 2003-12-03 2010-03-03 株式会社徳力本店 気密封止用材およびその製造方法
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
WO2005059645A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal elements
US20070103661A1 (en) * 2004-06-04 2007-05-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101264936B1 (ko) 2004-06-04 2013-05-15 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR101433496B1 (ko) * 2004-06-09 2014-08-22 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US20070285634A1 (en) * 2004-11-19 2007-12-13 Nikon Corporation Maintenance Method, Exposure Method, Exposure Apparatus, And Method For Producing Device
WO2006062065A1 (ja) 2004-12-06 2006-06-15 Nikon Corporation メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
JP4752473B2 (ja) * 2004-12-09 2011-08-17 株式会社ニコン 露光装置、露光方法及びデバイス製造方法

Patent Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
US6608681B2 (en) 1992-12-25 2003-08-19 Nikon Corporation Exposure method and apparatus
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
US6400441B1 (en) 1996-11-28 2002-06-04 Nikon Corporation Projection exposure apparatus and method
JPH10163099A (ja) 1996-11-28 1998-06-19 Nikon Corp 露光方法及び露光装置
JPH10214783A (ja) 1996-11-28 1998-08-11 Nikon Corp 投影露光装置及び投影露光方法
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6549269B1 (en) 1996-11-28 2003-04-15 Nikon Corporation Exposure apparatus and an exposure method
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
JPH10303114A (ja) 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JPH1123692A (ja) 1997-06-30 1999-01-29 Sekisui Chem Co Ltd 地中探査用アンテナ
JPH1128790A (ja) 1997-07-09 1999-02-02 Asahi Chem Ind Co Ltd 紫外線遮蔽用熱可塑性樹脂板
JPH11135400A (ja) 1997-10-31 1999-05-21 Nikon Corp 露光装置
JP2001510577A (ja) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 干渉計システムおよびそのようなシステムを含むリソグラフィー装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US7023610B2 (en) 1998-03-11 2006-04-04 Nikon Corporation Ultraviolet laser apparatus and exposure apparatus using same
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
US20010035168A1 (en) 2000-03-10 2001-11-01 Knut Meyer Ventilation device for a fuel tank
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004519850A (ja) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
US20050059617A1 (en) 2001-09-17 2005-03-17 Takeshi Imanishi Novel anitsense oligonucleotide derivatives against to hepatitis c virus
US20050059618A1 (en) 2001-11-08 2005-03-17 Karsten Eulenberg Men protein, gst2, rab-rp1, csp, f-box protein lilina/fbl7, abc50, coronin, sec61 alpha, or vhappa1-1, or homologous proteins involved in the regulation of energy homeostasis
US20040024517A1 (en) 2002-08-01 2004-02-05 Jankovic Mrdjan J. Method and system for predicting cylinder air charge in an internal combustion engine for a future cylinder event
US20050248856A1 (en) 2002-08-23 2005-11-10 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US20040107011A1 (en) 2002-10-09 2004-06-03 Giovanni Moselli Arrangement for controlling operation of fuel cells in electric vehicles
US20040086468A1 (en) 2002-10-30 2004-05-06 Isp Investments Inc. Delivery system for a tooth whitener
JP2004289126A (ja) 2002-11-12 2004-10-14 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
EP1420298A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
US7075616B2 (en) 2002-11-12 2006-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6952253B2 (en) 2002-11-12 2005-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
WO2004057590A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
WO2004057589A1 (en) 2002-12-19 2004-07-08 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US20050280791A1 (en) 2003-02-26 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20060121364A1 (en) 2003-05-06 2006-06-08 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2005029559A1 (ja) 2003-09-19 2005-03-31 Nikon Corporation 露光装置及びデバイス製造方法
US20060231206A1 (en) 2003-09-19 2006-10-19 Nikon Corporation Exposure apparatus and device manufacturing method
JP2005191557A (ja) * 2003-12-03 2005-07-14 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2005268412A (ja) * 2004-03-17 2005-09-29 Nikon Corp 露光装置、露光方法、及びデバイスの製造方法
JP2005347617A (ja) * 2004-06-04 2005-12-15 Nikon Corp 露光装置及びデバイス製造方法
JP2005353820A (ja) * 2004-06-10 2005-12-22 Nikon Corp 露光装置及びデバイス製造方法
WO2006038952A2 (en) 2004-09-30 2006-04-13 Nikon Corporation Projection optical device and exposure apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995768A4

Also Published As

Publication number Publication date
EP1995768A1 (en) 2008-11-26
TW200809915A (en) 2008-02-16
KR20080114691A (ko) 2008-12-31
US8035800B2 (en) 2011-10-11
EP1995768A4 (en) 2013-02-06
JP2007281441A (ja) 2007-10-25
US20080013064A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
WO2007105645A1 (ja) 露光装置、メンテナンス方法、露光方法及びデバイス製造方法
JP5029611B2 (ja) クリーニング用部材、クリーニング方法、露光装置、並びにデバイス製造方法
US8721803B2 (en) Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
JP4665712B2 (ja) 基板処理方法、露光装置及びデバイス製造方法
JP2014027316A (ja) 露光装置、及びデバイス製造方法
US8013975B2 (en) Exposure apparatus, exposure method, and method for producing device
WO2007066758A1 (ja) 基板保持装置、露光装置、露光方法、及びデバイス製造方法
JP2006165502A (ja) 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
US8040490B2 (en) Liquid immersion exposure apparatus, exposure method, and method for producing device
WO2006062074A1 (ja) 基板処理方法、露光方法、露光装置及びデバイス製造方法
WO2007001045A1 (ja) 露光装置、基板処理方法、及びデバイス製造方法
WO2010050240A1 (ja) 露光装置、露光方法、及びデバイス製造方法
KR20110000571A (ko) 노광 장치, 클리닝 방법, 및 디바이스 제조 방법
JP2009267401A (ja) 露光装置、クリーニング方法、及びデバイス製造方法
JP2009260352A (ja) 露光装置、クリーニング方法、及びデバイス製造方法
JP5861642B2 (ja) 露光装置、露光方法、露光装置のメンテナンス方法、露光装置の調整方法、デバイス製造方法、及びダミー基板
JP5018277B2 (ja) 露光装置、デバイス製造方法、及びクリーニング方法
JP2010016264A (ja) 露光装置、メンテナンス方法、露光方法、及びデバイス製造方法
WO2006041091A1 (ja) 露光装置のメンテナンス方法、露光装置、デバイス製造方法、液浸露光装置のメンテナンス用の液体回収部材
JP2010109270A (ja) 確認方法、メンテナンス方法、及びデバイス製造方法
JP2010147081A (ja) 露光装置、交換方法、露光方法、及びデバイス製造方法
JP2012109359A (ja) クリーニング工具、クリーニング方法、露光装置、及びデバイス製造方法
JP2011003835A (ja) 露光装置、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087020355

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007738191

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE