WO2007102427A1 - 孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法 - Google Patents

孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法 Download PDF

Info

Publication number
WO2007102427A1
WO2007102427A1 PCT/JP2007/054055 JP2007054055W WO2007102427A1 WO 2007102427 A1 WO2007102427 A1 WO 2007102427A1 JP 2007054055 W JP2007054055 W JP 2007054055W WO 2007102427 A1 WO2007102427 A1 WO 2007102427A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
flat
flat membrane
solution
diffusion
Prior art date
Application number
PCT/JP2007/054055
Other languages
English (en)
French (fr)
Inventor
Sei-Ichi Manabe
Saori Hanada
Chieko Seki
Keiko Otsubo
Original Assignee
Sei-Ichi Manabe
Saori Hanada
Chieko Seki
Keiko Otsubo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sei-Ichi Manabe, Saori Hanada, Chieko Seki, Keiko Otsubo filed Critical Sei-Ichi Manabe
Priority to US12/224,626 priority Critical patent/US8623210B2/en
Priority to CN2007800075805A priority patent/CN101394917B/zh
Priority to EP07715149A priority patent/EP2006016A4/en
Priority to JP2008503826A priority patent/JPWO2007102427A1/ja
Priority to AU2007223448A priority patent/AU2007223448B2/en
Publication of WO2007102427A1 publication Critical patent/WO2007102427A1/ja
Priority to US14/099,520 priority patent/US20140116934A1/en
Priority to US14/099,555 priority patent/US20140096594A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/28Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/0821Membrane plate arrangements for submerged operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/084Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes
    • B01D63/085Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes specially adapted for two fluids in mass exchange flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/00091Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • B01D2313/086Meandering flow path over the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • Pore diffusion type flat membrane separator ⁇ Flat membrane concentrator ⁇ Regenerated cellulose porous membrane for pore diffusion and non-destructive flat membrane inspection method
  • the present invention relates to a pore diffusion type flat membrane separation device that separates solid and liquid using a pore diffusion mechanism of a flat membrane, a flat membrane concentration device using a flat membrane, and a regenerated cellulose porous membrane as a flat membrane And a method for inspecting a flat membrane.
  • membrane separation devices used for liquid separation include hollow fiber membrane modules, tubular membrane modules, flat membrane membrane modules, spiral membrane modules, and pleated membrane modules. It is a device. Furthermore, in order to hold the membrane in these modules, a part of the membrane and the support are bonded and fixed with grease or the like. In particular, when the effective filtration area exceeds 0.1 square meters, the container (housing) and support are made of stainless steel to support the transmembrane pressure, making it difficult to carry modules or membranes. It becomes a hollow fiber membrane module in which a part is bonded and fixed with resin or the like.
  • the membrane filtration method since the pores inside the membrane are clogged, it is difficult to regenerate the membrane.
  • the separation by the membrane filtration method depends on the pore size of the membrane, when the size of the molecules to be separated is reduced, the average pore size of the applied separation membrane must be small, and the effective filtration area is reduced. The amount of filtration is reduced and clogging is likely to occur.
  • Evaporation / coagulation / freeze-drying / precipitation / adsorption methods have been implemented as techniques for concentrating specific substances in solution. Water removal by evaporation or condensation does not involve phase separation. And it is energy intensive.
  • this concentration loses the activity of physiologically active substances such as proteins.
  • the precipitation method requires the addition of at least a third component, and the concentrated component becomes a solid as in the case of lyophilization.
  • the adsorption method is selective enrichment, but is expensive due to dilution and desorption.
  • concentration by membrane is expected to be applied especially in the biochemical industry because it can be concentrated under mild conditions and with low power.
  • the membrane concentration method is generally performed by filtration. Since the filtration rate has a positive correlation with the transmembrane pressure, the membrane concentration is performed with the transmembrane pressure increased. In order to increase the transmembrane pressure difference, a hollow fiber membrane is used, or in the case of a flat membrane, a support is used. However, increasing the transmembrane pressure causes concentration of high molecular weight components on the membrane surface, resulting in a decrease in filtration rate and a decrease in recovery rate.
  • a flat membrane module is more advantageous in principle than a hollow fiber membrane module as a membrane module. That is, the flat membrane module can be disassembled and assembled, and only the membrane portion can be taken out and collected.
  • Conventional flat membrane concentrator modules include the simplest flat plate type, tube type 'spiral type', pleated type 'rotating membrane type, and the like. Filtration through a flat membrane requires a device that supports the transmembrane pressure.
  • the flat film has a film thickness of 1 ⁇ m or more and less than 1 mm, a ratio of the area of the film plane to the cross-sectional area in the film thickness direction of 20 or more, and In the case of a cylindrical film, it means a film having a radius of 5 mm or more.
  • the raw solution before filtration is filtered while flowing parallel to the membrane surface (parallel filtration, cross flow filtration, tangential flow filtration), or the raw solution is filtered without flowing (vertical filtration or dead flow). End filtration).
  • the parallel filtration method is adopted in the membrane concentration method using hollow fibers, but both parallel filtration and vertical filtration are adopted in the flat membrane.
  • a support is usually not used on the pressure side.
  • the concentration rate is defined as the ratio between the concentration in the recovered solution and the concentration in the stock solution.
  • the membrane In membrane concentration by parallel filtration without using a support, the membrane is set vertically in order to effectively use the membrane surface. However, if a dispersion with a high density is present in the stock solution, this dispersion will precipitate in the lower layer, resulting in a decrease in the effective filtration area of the membrane.
  • the gas when collecting the concentrate, the gas must be sent upside down. Also, as a problem common to membrane concentration, the osmotic pressure increases with increasing concentration rate during membrane concentration, so the concentration rate decreases, and the components to be recovered also in the filtrate occur.
  • membrane separation technology has been centered on filtration using transmembrane pressure as a driving force for mass transfer.
  • the treatment liquid flows into the pores in the porous membrane as a fluid, so the pores are clogged and concentration polarization occurs on the membrane surface, and the amount of liquid that can be treated as a membrane rapidly increases as the average pore size of the membrane decreases. descend.
  • the filtration rate is proportional to the 4th or 2nd power of the average pore diameter (when the porosity is the same), the filtration rate decreases rapidly as the average pore size decreases.
  • Membrane separation that can be separated under mild conditions is increasingly used in the biotechnology field using biological resources as raw materials.
  • Membrane separation technology has become an indispensable means for separation and purification, especially in the manufacturing process of biopharmaceuticals and the purification process in the food field.
  • membrane separation technology is used to remove infectious particles (prions, viruses, bacteria, etc.) and plays an important role in safety measures.
  • the membrane separation technique in the present invention is
  • Membrane filtration technology that uses the pressure difference between the front and back surfaces of the membrane as a driving force for mass transport, causes a hydrodynamic flow, and separates the material by the relationship between the pore size and the particle size,
  • FIG. 9 is a cross-sectional view of the film used for hole diffusion parallel to the film plane.
  • the structure shown in this figure is laminated in layers in the thickness direction of the film, and the film has a multilayer structure.
  • Figure 10 shows the separation of albumin particles and a solution containing virus prions as particles to be removed by pore diffusion.
  • Albumin with the smallest particle size passes through the membrane along the diffusion direction because most of the pores present in the membrane can pass.
  • a virus' prion having a diameter larger than that of albumin has few holes having a diameter that can be passed through, and therefore it takes a long time to pass through the holes.
  • the membranes employed in the membrane separation technique are roughly classified into hollow fiber membranes and flat membranes in terms of morphology.
  • a hollow fiber membrane does not require a membrane support, but since the container and the hollow fiber membrane are integrated as a membrane separator, the membrane cannot be replaced independently, and it must be replaced for each container. .
  • the flat membrane requires a support for supporting the membrane, and has a problem that the module per membrane area is large and the amount of filling liquid is large.
  • the membrane separation cost can be reduced because only the membrane can be replaced.
  • a microphase separation method is suitable as a method for producing a separation membrane for the purpose of removing fine particles.
  • the phase separation method means the following method (see, for example, Non-Patent Document 2).
  • phase separation occurs during casting, or in the case of a hollow fiber membrane, during the spinning process, which separates into a polymer-rich phase and a dilute phase.
  • phase separation probably grows to primary particles after nuclei with a size of several nanometers are generated.
  • secondary particles (diameter 50 to several hundred nm) mainly by associating and fusing primary particles. This secondary particle is relatively stable, and this state is defined as a microphase separation state.
  • a method in which primary particles and secondary particles are agglomerated and stacked, and continuously formed into a porous membrane is called a mixed phase separation method.
  • an inorganic salt such as water glass or an organic solvent such as acetone is added to a regenerated cellulose stock solution of the copper ammonium method, and microphase separation is caused by a dry or wet method to form a membrane.
  • a method for removing salts and metals remaining after solidifying with an acid see, for example, Patent Documents 1 and 2).
  • the time required for phase separation becomes longer, and it was industrially difficult to achieve a film thickness of 200 ⁇ m or more and a porosity of 80% or more. It was also difficult to make the average pore diameter 10 nm or less.
  • a method for producing a porous membrane by a microphase separation method from a cellulose derivative such as cellulose acetate is known (for example, see Non-patent Document 1).
  • the cellulose acetate porous membrane obtained by this method can be changed to a regenerated cellulose porous membrane by a saponification reaction.
  • the degree of swelling when the porous membrane is immersed in a liquid such as water strongly depends on the degree of development of intermolecular hydrogen bonds.
  • anisotropy occurs in the degree of swelling. Obedience Therefore, due to this anisotropy, the permeation function of the substance changes depending on the type of liquid when the membrane is used, and the membrane deforms during use.
  • the degree of development of intermolecular hydrogen bonds is evaluated by dynamic viscoelastic temperature characteristics (see, for example, Non-Patent Document 3).
  • the mechanical absorption due to the micro-Brownian motion of the cellulose molecular chain appears in the temperature range of 115-200 ° C.
  • the mechanical absorption due to the micro-Brownian motion of the cellulose molecular chain appears in the temperature region of 285 to 305 ° C.
  • is the temperature at which the mechanical loss tangent of the sample is 0.1
  • is the most intermolecular water.
  • Examples of the degree of development of intermolecular hydrogen bonds in existing regenerated cellulose solid samples include 85-95% for copper-ancho clothing fibers, 75-85% for artificial kidney hollow fibers, and virus-removing hollow fiber membranes. 45 to 55%, and 45 to 60% for viscose flat membranes (cellophane). The larger this value, the greater the swelling anisotropy of the sample when immersed in water.
  • Membrane technology used in the biopharmaceutical industry and the food industry can be said to be a safety measure against microbial infection. Since unknown infectious substances may appear in the future, it should be clarified that safety measures can reliably remove these unknown infectious substances. It must be done.
  • the membrane separation technique must have a clear removal mechanism. Since removal by an action related to affinity such as an adsorption mechanism cannot predict the removal effect for unknown infectious substances, the removal effect by this action must be minimized.
  • Membranes used to prevent infection with fine particles have an average pore size that is gradually decreasing.
  • a removal membrane with an average pore size of 100 nm is used for AIDS virus removal, an average pore size of 35 nm for removal of hepatitis B virus and hepatitis C virus, and an average pore size of 15 nm or 20 nm for removal of parvovirus. .
  • the required fine particle removal performance requires a high removal performance of 4 or more and a force of 5 or more in logarithmic removal coefficient.
  • the relationship between the particulate removal ability and the membrane structure must be clear.
  • the role of the film thickness in the flat film is designed to be about 10; ⁇ ⁇ ⁇ 100 m in order to obtain mechanical strength and ease of handling. Force that is considered to be possible by increasing the membrane separation performance by increasing the pore size distribution on the membrane surface. This idea is hardly useful for achieving the object of the present invention.
  • the porosity decreases the mechanical properties of the membrane.
  • the porosity is set to 0.6 to 0.7. It is necessary to further increase the porosity (Pr) unless the mechanical properties are strongly demanded.
  • a method that enables a porosity (Pr) of 0.7 or more while keeping the average pore size small has been proposed to date! ⁇ ⁇ .
  • Membrane modules used for safety measures are usually sterilized before use. This place Depending on the reason, a change in the form of the film may occur. Therefore, it is necessary to predict the shape change due to sterilization and to predetermine the membrane shape. However, if the shape change is isotropic and the change is slight, the membrane module can be easily designed.
  • Membrane separation technology is important as a technology for separating substances under mild conditions.
  • membranes used in the production of biopharmaceuticals and foods are expected to play a role in removing infectious particles (viruses, bacteria, etc.).
  • the fine particles contained in the raw material include aggregates such as proteins and denatured substances in addition to infectious fine particles such as prion virus bacteria. When these fine particles are mixed in the final product, they can cause various infections and fever.
  • Virus removal membranes and sterilization filters have already been commercialized, and there is a possibility that prion membrane technology will also appear in the near field.
  • membrane separation methods membrane filtration technology, pore diffusion technology, and diffusion dialysis technology are known! / Speak.
  • the membrane filtration technique uses the transmembrane pressure as the driving force for mass transfer.
  • the pore diffusion technology uses the concentration gradient of a substance through the pores in the membrane as a driving force, separation using the difference in thermal kinetics (so-called Brownian motion) of the molecules of the substance, and the pore size and particle size in the membrane. Separation is based on the effect that occurs in relation to the child diameter.
  • Diffusion dialysis technology uses the difference in concentration across the semipermeable membrane as the driving force for mass transfer, and the free volume of the space that is generated by the difference in affinity between the membrane and the material and the thermal mobility of the membrane material polymer (micro Brownian motion). Separate molecules by the difference between the size and the size of the molecule.
  • virus removal membranes are used in filtration technology.
  • the virus removal membrane is: (1) Virus removal performance with a logarithmic removal coefficient of 4 or more (that is, 10 or fewer viruses in the processing solution for 4 viruses), (2) Virus removal The mechanism is a sieving mechanism. (3) The film has reproducible removal performance.
  • the integrity test is a test to confirm that the user of the membrane used the membrane after use to confirm that the membrane functions as originally set up under the usage conditions of the membrane.
  • the direct method is a test method for measuring fine particle removal performance of a film using an aqueous solution in which fine particles having a specified size are regarded as virus model substances of equivalent size and in which these fine particles are dispersed.
  • the fine particles actually used are colloidal gold particles (see, for example, Patent Document 3).
  • the removal performance is indicated by a logarithmic blocking coefficient of 3 (the ratio of the concentration in the stock solution to the concentration in the processing solution is 1000).
  • the accuracy of the performance test is insufficient. At present, it is interpreted that changes in the pore size distribution are confirmed by this method.
  • colloidal gold particles bind to proteins immediately, and therefore, before conducting an integrity test.
  • the fine particle logarithmic blocking coefficient is defined by the following equation (2).
  • the liquid membrane permeation speed when a certain transmembrane pressure difference is applied is measured (for example, see Patent Document 4).
  • the pore diameter is determined by the pressure at the moment when one liquid is pressurized and the liquid passes through the hole against the interfacial tension generated when the two liquid phases in the state of defense are brought into contact with each other through the hole in the membrane.
  • this pressure is equal to or higher than a predetermined pressure, it can be confirmed in principle that the size of the maximum hole in the membrane is within the set hole diameter (see, for example, Patent Document 4).
  • a performance test (determined as a membrane validation test, which is usually performed by a membrane manufacturer) to determine the particulate removal ability of the membrane.
  • a performance test is a test performed by the membrane manufacturer before the membrane is used.
  • a direct method there is a method using colloidal gold particles, which is a destructive test and is a sampling inspection. In other words, the direct method proposed up to now is the position of the performance test as an average value as a group within the production lot.
  • the membrane In this method, the membrane must be in a dry state, and it must be free of dissolved components from the membrane in the liquid used.
  • the transmembrane pressure difference applied in this inspection method becomes 10 atmospheres or more.
  • the particulate removal performance is above the target value even after repeating the regeneration process four times.
  • the membrane system Assuming a membrane treatment system that uses unused membranes, membranes once regenerated, 2 times, 3 times, and 5 before the 4th regeneration treatment, the membrane system as a whole is always a membrane system. The same performance can be realized with good reproducibility.
  • a membrane treatment process consisting only of membranes after four reprocessings is supported.
  • Patent Document 1 Japanese Patent Publication No. 62-044017
  • Patent Document 2 Japanese Patent Publication No. 2-46608
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-40756
  • Patent Document 4 Japanese Patent Laid-Open No. 7-132215
  • Non-patent document 1 Investigation on separation membranes 1st, 2nd, 3rd Osaka Chemical Marketing Center Co., Ltd. (1980, 1981, 1982)
  • Non-Patent Document 2 Edited by the Society of Polymer Science, “Physical Properties of Polymer (3)” Kyoritsu Application, Item 50, 1995
  • Non-Patent Document 3 S, Manabe etal. Polymer J. Vol. 18 (Nol7), ppl—14 (1986
  • a first object of the present invention relates to a pore diffusion type flat membrane separation device, and the clogging of the membrane is alleviated by using pore diffusion that does not use filtration that requires the addition of a transmembrane pressure in the solid-liquid separation method. Furthermore, another object is to provide a pore diffusion type flat membrane separation device that can reuse the membrane at a low cost.
  • a second object of the present invention relates to a flat membrane concentrator that eliminates a decrease in the concentration of a target substance, which is a drawback of pore diffusion, and has a function of concentrating specific components in a solution, and is lightweight and has a configuration.
  • An object of the present invention is to provide a flat membrane concentrating device that is simple and easy to handle.
  • An object of the present invention is to provide a concentrating device having a sanitary property and a membrane housing that can be reused.
  • a third object of the present invention relates to a regenerated cellulose porous membrane, and from the viewpoint of practical use of pore diffusion, a porous membrane is provided in consideration of the permeability and usefulness of useful substances that can be obtained only by removing microorganisms. And providing a method for producing the porous membrane.
  • a fourth object of the present invention relates to a flat film inspection method, and a flat film that uses a nondestructive direct film integrity test method to enable reuse of the film as a fine particle removal film.
  • the purpose is to provide inspection methods.
  • pore diffusion refers to mass transfer using a concentration difference through pores in a membrane, and has a function of separating according to the activity of Brownian motion of substance molecules.
  • separation is performed by mass transfer through a semipermeable membrane based on the affinity between the membrane and the substance and the thermal motility of the membrane material molecules (ie, the micro-Brownian motion).
  • the diffusion coefficient decreases as the affinity between the substance and the membrane material molecule increases, but conversely increases in dialysis diffusion.
  • the first characteristic configuration of the pore diffusion type flat membrane separation device of the present invention comprises a plurality of holes and separates a specific dispersion in a solution by the hole diffusion method.
  • a plurality of flat membranes and flat plate-like supports provided on one or both sides, and a ratio of the spatial volume of the flow channel to the membrane area of the flat membrane. Is set to be in the range of 0.04 to 0.4, and the flow direction of the solution in the flow path of the upper and lower plate-like supports through the flat membrane is substantially the same direction,
  • a water passage that communicates with the flow path is provided in at least two places on the side surface of the flat plate-like support, and the flat plate-like support and the flat membrane can be disassembled and assembled.
  • This configuration has the greatest feature in that it is limited to the hole diffusion type. In pore diffusion, the transmembrane pressure difference should not be practically applied. That is, almost no pressure (transmembrane pressure difference) is applied to the membrane. Therefore, unlike the case of filtration, a flat membrane module with a large effective filtration area becomes possible.
  • the role of the membrane support in the hole diffusion module is to optimize the liquid flow circuit and prevent the generation of pressure associated with the liquid flow.
  • the hole diffusion type flat membrane separation device of this configuration a plurality of holes are provided and the hole diffusion type is used.
  • a plurality of flat membranes for separating a specific dispersion in a solution and flat plate-like supports provided with channels on one side or both sides are arranged alternately.
  • the ratio with the area is set to be in the range of 0.04 to 0.4, and the flow direction of the solution in the flow path of the upper and lower plate-like supports through the flat membrane is substantially the same.
  • a water passage that communicates with the flow path is provided in at least two places on the side surface of the flat plate-like support so as to be in the direction.
  • substantially the same direction means that the directions of the pressure gradients required to flow the two types of liquids match within 90 degrees.
  • the ratio of the spatial volume of the flow path to the membrane area is less than 0.04, the flow of liquid may be significantly delayed, and smooth pore diffusion is hindered. In addition, when this ratio exceeds 0.4, the contact portion between the liquid and the membrane decreases, making it difficult to efficiently diffuse the holes.
  • the flow path of the upper and lower supports is made to be in the same direction through the membrane, so that the pressure accompanying the flow of the liquid (the direction of the pressure gradient generating the flow is the same) It becomes possible to make it the same up and down, and the generation of transmembrane pressure difference can be suppressed.
  • a diffusion liquid into which a liquid that undergoes a diffusion treatment at a constant speed (hereinafter abbreviated as a liquid to be diffused) and a diffusion substance flow
  • a liquid (hereinafter, abbreviated as a diffusion liquid) can flow. If pore diffusion occurs through the membrane and the flow occurs without mixing the diffusion liquid and the diffusion liquid at a constant speed, a steady state in diffusion can be realized. That is, a steady diffusion state is achieved.
  • a continuous process can be performed as a material separation process using pore diffusion.
  • a water passage for the support on the side surface, it is possible to stack the support, making it possible to achieve compactness as a whole device and making it easy to adjust the membrane area.
  • the membrane area can be changed freely.
  • the flat support and the flat membrane can be disassembled and assembled. By stacking a plurality of supports, it can be adjusted to any membrane area, flat membrane, Both modules can be reused.
  • the separation method by pore diffusion uses the Brownian motion, which is the thermal mobility of the molecules of the substance itself, so that clogging of the pores is alleviated and there is no mechanical deformation of the molecules. . Therefore, since the membrane is not mechanically burdensome, the module including the membrane and the support can be reused by performing a simple regeneration process such as cleaning only the membrane surface. The membrane cost to be used is reduced.
  • a second characteristic configuration of the hole diffusion type flat membrane separation device of the present invention is that a packing that also has a polymer elastic body force is provided on at least one peripheral portion of the upper surface and the lower surface of the flat support.
  • the membrane is tightly fixed to the support, and packing is performed on one side or both sides of the membrane support so as to prevent liquid leakage and promote hole diffusion. Making it easier to handle and assemble.
  • a third characteristic configuration of the pore diffusion flat membrane separation device of the present invention is that the flat support is a material having heat resistance, impact resistance, alkali resistance, acid resistance, light weight and transparency.
  • Polycarbonate 'Polyamide ⁇ Polyacetal ⁇ Polysulfone ⁇ Polyethersulfone ⁇ Polyetheretherketone Power Group power is selected.
  • the membrane support has heat resistance, toughness, alkali resistance, and acid resistance, and is lightweight and transparent.
  • heat resistance means a property that can withstand 100 ° C hot water or 110 ° C steam treatment
  • alkali resistance means resistance to a 0.1 N sodium hydroxide aqueous solution.
  • sex is meant resistance to 0.1N hydrochloric acid.
  • the membrane support is selected from materials such as polycarbonate, polyamide, polyacetal, polysulfone, polyethersulfone, and polyetheretherketone.
  • a fourth characteristic configuration of the pore diffusion flat membrane separation device of the present invention includes a heat-resistant connecting member that can be attached to and detached from a water passage of the flat plate support, and the flat plate support is made of polycarbonate. It is in the point that was made.
  • a connecting member that can be attached to and detached from the water passage of the membrane support.
  • the connecting material is preferably made of polycarbonate and has heat resistance.
  • the first characteristic configuration of the flat membrane concentrator of the present invention for achieving the second object described above comprises a plurality of pores having an average pore diameter of 1 to 3 nm and a specific dispersion in a solution by membrane filtration.
  • a flat membrane to be separated is narrowed by a flat support, and has at least two flat membranes and at least three supports.
  • the support has an inlet, a flow path, and a flow path for the solution.
  • An outlet is formed, and the pressure on the solution side, which is the stock solution, is increased to atmospheric pressure or higher with respect to the flat membrane, and at the same time, the filtrate side that has passed through the flat membrane is reduced to atmospheric pressure or lower.
  • In order to concentrate the components in the solution by generating a differential pressure, causing pervaporation at the same time as the filtration, and filtering the solution while flowing the solution substantially parallel to the surface of the flat membrane.
  • the greatest feature of this configuration is that a flat film is used as the film.
  • a flat membrane By using a flat membrane, the recovery rate during concentration can be increased.
  • the transmembrane pressure difference can be increased without a support, and in principle, the concentration rate can be increased.
  • the component with the highest concentration rate often remains on the inner wall of the hollow fiber and the component recovery rate decreases. Efficient recovery of highly concentrated parts on the membrane surface is essential to increase the recovery rate.
  • the thickness of the flat membrane is preferably 10 to 50 m from the viewpoint of operability and water membrane permeation rate.
  • a film having an average pore diameter of 1 nm or more and 3 nm or less is used. Average pore size less than lnm
  • concentration rate of water-soluble substances with a molecular weight of 200 or less for example, metal salts, amino acids, acetic acid, ethyl alcohol, etc.
  • membrane concentration can be achieved with a transmembrane pressure difference of 1 atm or less.
  • concentration rate of water-soluble substances with a molecular weight of 200 or less for example, metal salts, amino acids, acetic acid, ethyl alcohol, etc.
  • the pressure on the solution side which is the stock solution
  • the filtrate side that has passed through the flat membrane is reduced to atmospheric pressure or lower.
  • the support plate is provided with a plurality of liquid outlets so that the transmembrane pressure can be generated and the components in the solution can be concentrated by parallel filtration.
  • the pressure applied to the entire module can be greatly reduced, and the membrane module can be reduced in weight.
  • the concentration rate increases because filtration and pervaporation occur simultaneously.
  • a second characteristic configuration of the flat membrane concentrator of the present invention is configured such that each of the flat membrane 'the support', the inflow port and the outflow port can be disassembled, and can be cleaned and reassembled. It is in the point which was made Noh.
  • a third characteristic configuration of the flat membrane concentrator of the present invention is that the support is made of polycarbonate, and a groove along the flow direction of the solution is carved on the surface of the support as the flow path.
  • the inflow port and the outflow port are on the side surface of the support, and packing is attached to at least one peripheral edge of the upper surface and the lower surface of the support.
  • the filtration area can be easily changed.
  • the assembly work of the apparatus can be simplified by applying force packing to at least one peripheral portion of the upper surface and the lower surface of the support. Noking should have a close contact that can be easily removed by hand.
  • the fourth characteristic configuration of the flat membrane concentrator of the present invention is a reduced pressure state between the two support bodies arranged on the outermost side when assembled and the flat membrane adjacent to each of the supports. Is at the point.
  • polycarbonate which is a support
  • polycarbonate which is a support
  • a fifth characteristic configuration of the flat membrane concentrator of the present invention is that the average pore size of the flat membrane is 2 nm or less.
  • medium molecular weight substances such as peptides can be effectively concentrated by making the average pore diameter 2 nm or less. Therefore, it is possible to effectively concentrate the functional substance in the diffusion liquid in the diffusion separation using the pores in the porous membrane.
  • the membrane pressure difference in the ordinary aqueous solution in which various substances having a molecular weight of less than 200 are mixed must increase the transmembrane pressure difference as the concentration rate increases.
  • the increase in transmembrane pressure must increase the pressure resistance of the support plate, making the module heavier and difficult to handle.
  • a sixth characteristic configuration of the flat membrane concentrator of the present invention is that the flat membrane is made of a hydrophilic polymer.
  • the flat membrane is composed of a hydrophilic polymer as in the present configuration
  • the flat membrane is water-soluble such as protein. The quality becomes difficult to adsorb.
  • a seventh characteristic configuration of the flat membrane concentrator of the present invention is that the hydrophilic polymer is regenerated cellulose.
  • the regenerated cellulose can be handled with high pressure steam sterilization with low adsorbability with other substances (proteins, etc.) and high heat resistance.
  • the first characteristic composition of the regenerated cellulose porous membrane of the present invention for achieving the third object is that the average pore diameter (2rf) force is ⁇ 500 nm, the film thickness (d) force is 0 to 500 ⁇ m, the porosity ( This is a regenerated cellulose membrane having a multilayer structure with a Pr) of 0.6 to 0.9, and the degree of development of intermolecular hydrogen bonds is 40% or less.
  • the membrane is a flat membrane for hole diffusion. If pore diffusion is used, the pressure difference between the membranes may be zero in principle, and the required function for the mechanical properties of the membrane may be at a low level. Pore diffusion depends only on the membrane diffusion rate of the material and is almost independent of the average pore size. Hole diffusion does not clog the pores inside the membrane. Flat membrane modules are optimal for pore diffusion because they do not generate any flow resistance for fluid flow. Of course, the flat membrane of the present invention can also be used for filtration, but the characteristics of pore diffusion disappear in filtration.
  • regenerated cellulose is used as a membrane material.
  • regenerated cellulose is capable of high-pressure steam sterilization with low adsorption to other substances (proteins, etc.) and high heat resistance.
  • the mechanism of removing fine particles must be clear.
  • a regenerated cellulose porous membrane is suitable.
  • Regenerated cellulose is suitable for reducing the crystallinity of a regenerated cellulose film obtained by saponifying a cellulose derivative, particularly a cellulose ester.
  • An increase in crystallinity destroys the layered structure of the particles.
  • the average pore size is 5 ⁇ ! ⁇ 500 nm.
  • the average pore diameter was measured by a water filtration rate method. Since conventional separation membranes are used in filtration methods, membranes with an average pore size of lOnm or less have been developed as separation membranes.
  • the average pore size is 5 ⁇ :
  • the most expected method is the pore diffusion method in a flat film of LOnm.
  • the porosity decreases as the average pore size decreases. Therefore, even if a membrane with an average pore diameter of lOnm or less is developed, if it is a membrane for filtration, the filtration rate is small and practical application is difficult.
  • average pore diameter 9 ⁇ : LOnm is used for prions
  • average pore diameter 20nm is used for virus removal
  • average pore diameter 500nm is used for sterilization and mycoplasma.
  • the average pore diameter is less than 5 nm, the permeation rate of useful substances such as proteins in aqueous solution in the membrane decreases, and the practicality as an industrial separation membrane is lost. In some cases, osmotic pressure is generated and water flows due to osmotic pressure.
  • the average pore diameter is 500 nm or more, the filtration method is more advantageous than the pore diffusion in terms of both the material permeation rate and the treatment liquid amount per unit membrane area.
  • the film thickness (d) in the dry state is 50 ⁇ m or more and 500 ⁇ m or less, and the force also has a multilayer structure.
  • the moving speed of substances in the film is inversely proportional to the film thickness, the smaller the film thickness, the better.
  • the larger the film thickness the better the particle removal performance of the film having a multilayer structure.
  • the film thickness is less than 50 m, the particulate removal performance is significantly degraded due to the influence of pinholes existing in the film. If it exceeds 500 m, the membrane permeation rate will decrease.
  • the porosity (Pr) is set to 0.6 or more and 0.9 or less.
  • the porosity (Pr) is more preferably 0.7 or more and 0.85 or less.
  • the degree of development of intermolecular hydrogen bonds was set to 40% or less. This decrease in development generally results in a decrease in crystallinity. In addition, the anisotropy of morphological changes during water swelling Resulting in a decrease.
  • the degree of development is 40% or less, there is no change in the shape of the membrane when immersed in water, and the possibility of membrane damage when the flat membrane is fixed to a support is reduced. Furthermore, there are almost no changes in pore characteristics (average pore diameter, porosity, film thickness) and membrane morphology associated with high-pressure steam sterilization.
  • the second characteristic constitution of the regenerated cellulose porous membrane of the present invention is that the average pore diameter (2rf) is 8 to: LOOn m, the film thickness (d) is 100 to 300 ⁇ m, the porosity (Pr) and the film thickness.
  • the product of (d) is 50 ⁇ m or more.
  • the removal target can be suitably applied to prions, viruses, and the like.
  • the film thickness (d) should be 100 ⁇ m or more and 300 ⁇ m or less because of the balance between removal performance and permeability of useful substances. More preferable.
  • the third characteristic configuration of the regenerated cellulose porous membrane of the present invention is that the product of the porosity (Pr) and the film thickness (d) is 100 ⁇ m to 200 ⁇ m.
  • the first characteristic configuration of the method for producing a regenerated cellulose porous membrane of the present invention is the method for producing a regenerated cellulose porous membrane for pore diffusion described in the first characteristic configuration of the regenerated cell mouth porous membrane, a porous membrane in micro phase separation method while adding a metal salt 1 weight 0/0 above solution of cellulose ester in a cellulose derivative, then Keni an alkaline aqueous solution of 50 ° C or less under PH is 11 to 13 It is in the point which manufactures by processing a cocoon.
  • the regenerated cellulose porous membrane for pore diffusion includes (1) a cellulose derivative.
  • it can be prepared by a combination of containing 1% by weight or more of a metal salt in the microphase separation solution and selecting the specified kenning conditions.
  • Cellulose esters particularly cellulose acetate, are particularly preferred as cellulose derivatives, since they are easily available and a non-aqueous solvent can be selected as a solvent system that causes microphase separation.
  • a non-aqueous solvent By using a non-aqueous solvent, microphase separation can occur in a short time, and microphase separation by a dry method can be used.
  • microphase separation can occur in a short time, it becomes easy to produce a multilayer structure film having a large film thickness.
  • organic solvents that do not contain heavy metals and have many types of good solvents can be easily selected as solvent systems. Particularly in this case, acetone is preferred.
  • the average pore diameter of the membrane before the kenning is 9 nm or less, the average pore diameter increases conversely due to the saponification reaction. Utilizing this property, a regenerated cellulose film having an average pore diameter of lOnm or less can be produced.
  • the casting solution contains 1% by weight or more of a metal salt in addition to the good solvent, the poor solvent, and the interfacial tension control agent, the separation of the support force of the membrane after the microphase separation and the surface It becomes easy to control the pore characteristics of the film on the back surface.
  • Alkaline earth metal hydrochlorides and acetates are good as metal salts. Especially salty calcium is good.
  • a metal salt a certain amount of water is added to the crystallization water. It is good to include moisture. The amount added is determined by the total weight including the crystal water.
  • the alkaline aqueous solution is prepared with caustic soda or caustic potash. Even under such mild conditions, the reaction time is sufficient within 24 hours, and the membrane after microphase separation does not work either in a dry state or in a wet state. The reason why the Ken's reaction proceeds rapidly is that the flat membrane after microphase separation is porous, and the solid portion is in an amorphous state.
  • a second characteristic configuration of the method for producing a regenerated cellulose porous membrane of the present invention is the method for producing a regenerated cellulose porous membrane for pore diffusion described in the second characteristic configuration of the regenerated cell mouth porous membrane,
  • a porous membrane is formed by microphase separation with a metal salt added in a solution of cellulose acetate, a cellulose derivative, in an amount of 1% by weight or more, and then treated with an aqueous alkaline solution with a pH of 11-13 and below 50 ° C. It is in the point to manufacture by doing.
  • a third characteristic configuration of the method for producing a regenerated cellulose porous membrane according to the present invention is the method for producing a regenerated cellulose porous membrane for pore diffusion described in the third characteristic configuration of the regenerated cell mouth porous membrane, while adding a metal salt 1 weight 0/0 or a solution of the cellulose ester is a cellulose derivative, a porous membrane with a micro-phase separation method is caused by evaporation of good solvent of the cellulose ester, then, PH 11 It is the point which manufactures by carrying out a ken treatment with the alkaline solution below 50 degreeC of ⁇ 13.
  • the direct diffusion method using fine particles other than noble metals is used to provide a plurality of pores and the above-mentioned flat diffusion method. It has an integrity test process that confirms that the particle removal ability of the membrane is reduced and that it is very bad.
  • the inspection method for fine particle removal performance and the film integrity test method are the same.
  • the testing methods for fine particle removal performance were performed by the membrane manufacturer, and the integrity test was performed by the membrane user. Therefore, the two test methods are generally different. Since membrane manufacturers were instructing to dispose of membranes, the integrity test was a destructive test, and the detection sensitivity was insufficient as an inspection method for removal performance, and there was almost no technical progress. By making both methods the same, the actual value obtained in the integrity test shows the removal performance value as it is.
  • a nondestructive direct method is used as the integrity test method. Since it is non-destructive, it was confirmed that the membrane after use was a membrane with the ability to remove microorganisms obtained by an integrity test. In other words, it plays the role of a membrane performance test when the integrity test is reused.
  • an integrity test is performed It is not always necessary to dissolve and remove the used film before and after. If it is confirmed in advance that the components adsorbed on the membrane and the fine particles used in the integrity test will not adsorb in the aqueous solution, it is not always necessary to dissolve and remove the membrane before the integrity test. ⁇ .
  • the membrane separation technology using a flat membrane is a pore diffusion technology, it is unnecessary in most cases to dissolve and remove the membrane before the integrity test.
  • the pore diffusion technology particles are hardly clogged inside the membrane. Therefore, it is desirable to use the hole diffusion technique as a membrane separation technique.
  • certain components may be adsorbed on the film surface and laminated. In this case, there is a possibility of interaction such as adsorption between the fine particles used for the integrity test and the layered material, so it is necessary to dissolve and remove the membrane before the integrity test.
  • the conventional integrity test method for flat membranes was the indirect method.
  • the transmembrane pressure differential is usually less than 1 atm due to the mechanical limitations of the module.
  • the integrity test is a destructive test for the membrane because the solvent trusted in the integrity test is other than water and remains inside the membrane after the test, and changes the physical and physical properties of the membrane. is there.
  • the need for a non-destructive integrity test using the direct method is not limited to the use of a fine particle removal film as in the past, and the need to discard it.
  • the microparticles used in the test must be chemically and physically stable. Specifically, it must be fine particles other than noble metals. Therefore, the colloidal gold particles employed in the conventional direct method are not suitable.
  • a second characteristic configuration of the nondestructive flat film inspection method of the present invention is that a dissolution removal step of dissolving and removing the fine particles is performed after the integrity test step.
  • the particulate removal performance is confirmed by an integrity test on this membrane. Although the integrity test can reveal the contribution of large pores to mass transport, the average performance of the entire pores may not be regenerated. In order to confirm the possibility of reuse more reliably, it is preferable to measure the filtration rate of water under a certain transmembrane pressure difference and confirm that it is within the set range for the regenerated membrane. .
  • the membrane after the completion of the integrity test is (A) immersed in a solution to be dissolved and removed, (B) the membrane is back-washed with a cleaning solution, and (C) the solution to be dissolved and removed is filled in the module. There is a method to remove the solution after storage for a period.
  • the third characteristic configuration of the nondestructive flat membrane inspection method of the present invention is that the dissolution and removal agent used in the dissolution and removal step dissolves and swells due to a chemical reaction with the material constituting the flat membrane. It has the property to dissolve the fine particles used in the integrity test step.
  • the dissolution / removal agent used in the dissolution / removal step does not chemically dissolve and swell due to a chemical reaction with the material constituting the flat membrane, so that the dissolution / removal step can be performed stably. it can.
  • a fourth characteristic configuration of the nondestructive flat film inspection method of the present invention is that the fine particles are made of ferric hydroxide colloidal particles.
  • the fine particles are made of hydroxide and ferric colloid particles as in this configuration, the adjustment of the colloid particles, the stability, and the measurement of the colloid particle concentration are facilitated.
  • the concentration of the ferric hydroxide ferric colloidal particles is determined by ionizing the ferric hydroxide ferric acid with hydrochloric acid or the like. Use iron spectroscopy and measure by spectroscopy.
  • Hydroxyl ferric colloidal particles can be easily dissolved and removed using an acid after the integrity test. Addition of a hydrophilic polymer additive and a cationic surfactant or nonionic surfactant to an aqueous solution in which ferric hydroxide colloidal particles are dispersed increases the stability of the colloidal particles during the integrity test. To do.
  • the fifth characteristic configuration of the non-destructive flat membrane inspection method of the present invention is that the material of the flat membrane is a hydrophilic polymer and the dissolution remover is hydrochloric acid.
  • the membrane Before performing the integrity test, the membrane is regenerated as necessary.
  • a hydrophilic polymer is suitable as a material for the membrane for removing fine particles.
  • the fine particles can be easily dissolved by acid treatment immediately after the test.
  • acid hydrochloric acid is preferable because it is easily available and handled.
  • a hydrochloric acid concentration of 0.1 to 1 is desirable because the influence on the polymer membrane material can often be ignored.
  • the dissolution remover is mixed in an aqueous solution containing the fine particles in advance, and the relationship between the treatment time and the ionization rate of the fine particle component is determined. Set the treatment time at least twice as long as the ionization time and set the treatment temperature to 10 ° C higher than the temperature during the integrity test! After dissolution removal, wash with water to completely remove the dissolution remover.
  • the sixth characteristic configuration of the nondestructive flat membrane inspection method of the present invention is that the hydrophilic polymer is regenerated cellulose.
  • regenerated cellulose is optimal as a raw material polymer, particularly in membrane treatment of an aqueous solution containing protein.
  • a typical method for regenerating the regenerated cellulose membrane is as follows: 0.1 to 0.2% of a nonionic surfactant dissolved in 0.01% caustic soda solution under a certain condition. Immerse with.
  • the purpose of the regeneration treatment before the integrity test is to prevent the dispersion state of the colloidal particles for the integrity test from being changed by the components adsorbed or clogged to the membrane after use. It is not playing back to the previous state.
  • the pore diffusion flat membrane separator X of the present invention includes a flat membrane 7 having a plurality of pores and separating a specific dispersion in a solution by the pore diffusion method.
  • a plurality of flow paths 2 are provided so as to be alternately arranged with flat plate-like supports 1 provided on one side or both sides.
  • the ratio of the space volume of the flow path 2 and the membrane area of the flat membrane 7 is set to be in the range of 0.04 to 0.4.
  • the flow path 2 and the flow path 2 are connected to at least two sides of the flat support 1 through the flat membrane 7 so that the flow directions of the solutions in the flow paths 2 of the upper and lower flat support 1 are substantially the same direction.
  • Fig. 1 shows a hole diffusion type flat membrane separation device X assembled using three flat plate supports 1 and two flat membranes 7, and Fig. 2 is a plan view of the flat plate support 1. A schematic diagram is shown.
  • the flat support 1 used in the present invention supports the flat membrane 7 so that the flat membrane 7 is sandwiched between vertical forces.
  • the solid-liquid separation method is a diffusion type
  • the membrane to be used is a flat membrane on a thin flat plate
  • the support has a flat plate shape.
  • a flow path 2 is provided on one side or both sides of the flat support 1 for smoothly passing the processing liquid.
  • a processing solution that contains a diffusing substance and undergoes a diffusion process at a constant speed flows from the inlet 3 a of the water passage 3 toward the outlet 3 b.
  • the channel 2 is formed in a concave shape on the surface of the flat support 1 so as to bend and meander from the inlet 3a to the outlet 3b of the water passage 3.
  • the treatment liquid can be brought into contact with the entire flat membrane 7, thereby improving the hole diffusion efficiency.
  • the flow path 2 is provided in the support 1, it is possible to prevent the entire flat membrane 7 from being in close contact with the support 1.
  • the depth of the flow path 2 may be any thickness as long as the hole diffusion can be efficiently performed, but it is preferable that the flow path 2 be thin so that the area of the treatment liquid that touches the flat film 7 is as large as possible. Preferably, it is about 0.05 centimeters to 0.3 centimeters. 0. Above 3cm, Accordingly, the thickness of the flat support 1 must be increased, and handling becomes difficult. Also, if it is 0.05 centimeters or less, the area of the processing solution that touches the flat membrane 7 decreases, so that pore diffusion cannot be performed efficiently, and the flow of the solution is delayed.
  • a water flow path 3 leading to the flow path 2 is provided at two or more side surfaces of the flat plate-shaped support body 1 as an inlet / outlet of the processing liquid. At this time, in order to perform diffusion without applying pressure to the flat membrane 7, the flow of the upper and lower liquids through the flat membrane 7 is made to be in the same direction.
  • the hole diffusion flat membrane separation apparatus X of the present invention can be adjusted to an arbitrary membrane area by laminating a plurality of the supports in the vertical direction.
  • the flat support 1 is preferably fixed by opening the screw holes 4 around the flat support 1 and using screws 8 and nuts 9 as fixing members.
  • the number and interval of the screw holes 4 may be adjusted according to the size and area of the module.
  • the fixing members 8 and 9 stainless steel having excellent corrosivity can be used.
  • the flat membrane 7 and the flat support 1 are not fixed with an adhesive or the like, they can be disassembled and assembled. Therefore, even if a part of the flat membrane 7 and the flat plate support 1 is damaged, only that part can be replaced, and the membrane regeneration process is reduced and the cost of the hole diffusion flat membrane separator X is reduced. Can do.
  • a packing 5 made of a polymer elastic body is provided on at least one peripheral portion of the upper surface and the lower surface of the flat support 1.
  • Packing 5 is made of material that surrounds the peripheral edge of the flat support 1 and the flat membrane 7 is fixed with the packing 5, and the processing liquid leaks from the side surface of the pore diffusion type flat membrane separator X. Any material can be used as long as it is possible to efficiently prevent pore diffusion.
  • it is a polymer elastic body having both heat resistance and chemical resistance.
  • silicone rubber can be used.
  • the degree of adhesion between the packing 5 and the flat plate support 1 adheres when pressed by the fixing members 8 and 9, and weakly adheres when the flat membrane 7 and the flat plate support 1 are separated. It is preferable that the packing can be peeled off by hand.
  • plastics such as polycarbonate 'polyamide' polyacetal 'polysulfone, polyethersulfone, polyetheretherketone, and polyethylene, and stainless steel' inorganic materials such as ceramics can be applied. Use repeatedly It is desirable to have heat resistance, impact resistance, alkali resistance, acid resistance, light weight and a certain degree of transparency.
  • Engineering plastic is a plastic with such properties.
  • polycarbonate can be particularly preferably used.
  • a connecting member 6 connected to an external flow path is detachably provided.
  • Any material can be used for the connecting member 6.
  • plastic such as polyethylene or Teflon (registered trademark) can be used.
  • heat-resistant and steam-resistant materials such as polyethylene and polypropylene crystalline polymer materials are preferred.
  • the flat membrane 7 of the present invention does not require any special adhesive fixing to the flat support 1, and the flat membrane 7 itself does not need to be specially processed. Any film is acceptable. However, since pore diffusion is used in the separation method, it is desirable that the porous membrane has an average pore diameter of about 2 nm or more and a porosity of 0% to 90%.
  • a flat support 1 made of a polycarbonate plate (hereinafter referred to as a support) is a flat plate having a thickness of about 0.6 cm, a length of 40 cm, and a width of 50 cm. One side or both sides are processed so as to communicate with each other over a concave flow path with a width of 1.5 cm and a depth of 0.1 cm.
  • the water passage 3 is the inlet / outlet of the processing liquid.
  • the water passage 3 is formed with a hole having a diameter of about 0.4 cm so as to be connected to the flow path 2 on the side surface of the support 1 so as to reach the front end and the end of the flow path 2. Thereby, the process liquid can ensure the flow of a fixed direction.
  • screw hole 4 the hole spacing was 5 centimeters.
  • a hole is drilled directly in the support 1.
  • a screw 8 is inserted here to fix the support 1.
  • the screw 8 need not be fixed using all the screw holes 4 and may be adjusted in number and location as necessary.
  • a silicone-based adhesive is directly bonded to the support 1 so as to have a width of about 0.7 centimeter between the flow path 2 of the support 1 and the screw hole 4. After polymerization solidification, the thickness was formed as a 0.05 centimeter packing. By this packing 5, the inside of the hole diffusion type flat membrane separating apparatus X can be further sealed to fix the flat membrane 7.
  • Fig. 1 a hole diffusion type flat membrane separating apparatus X assembled using three supports 1 and two flat membranes 7 is shown.
  • the outer support la has a flow path 2 and a knocking 5 on one side, and a water passage 3 on the side surface.
  • the intermediate support lb has a flow path 2 and a packing 5 on both sides, and a water flow path 3 on the side.
  • Flat membrane 7 was a porous flat membrane made of regenerated cellulose, having an average pore diameter of 30 nm, a porosity of 65%, and a film thickness of 170 microns.
  • the flat membrane 7 is a single membrane having a membrane area (about 2000 square centimeters) equal to or larger than the packing 5 formed on the support 1.
  • the flat membrane 7 is sandwiched between the supports 1 and fixed with screws 8. At this time, the direction of the support 1 is set so that the direction of the flow path 2 is the same.
  • a polyethylene diffusion member 6 was inserted into the water passage 3 to produce a hole diffusion type flat membrane separation device X, and a device capable of hole diffusion by an interlocking pump was created.
  • the treatment liquid As the treatment liquid, a hydroxide-iron colloidal solution having an average particle diameter of 27 nm was used.
  • the pore diffusion type flat membrane separation device X of the present invention is configured so that the treatment liquid that undergoes the diffusion treatment at a constant speed during diffusion flows along the flow path 2 from the water passage 3a on the inlet side so that it flows under the flat membrane 7. It flowed and collected outside through the waterway 3b on the exit side.
  • the diffusion liquid into which the diffusion material flows flows from the inlet side water passage 3a along the flow passage 2 so as to flow on the flat membrane 7, and is collected outside through the outlet side water passage 3b.
  • the knocking 5 can increase the sealing degree of the apparatus and can sufficiently fix the flat membrane 7. Furthermore, since the flat membrane 7 and the flat support 1 are independent from each other, the hole diffusion type flat membrane separator X can be reassembled after being disassembled, or the membrane area can be increased by increasing the number of flat membranes 7. could be done easily.
  • AOUT is the concentration change of the processing solution
  • BOUT is the concentration change of the diffusion solution.
  • a graph showing the relationship between the residence time (h) 'concentration (g / dL) in the treatment liquid and the diffusion liquid is shown in FIG.
  • the residence time can be obtained by dividing the volume of the flow path by the flow rate.
  • the recovery rate (%) can be obtained by dividing the amount of decrease in the concentration of the processing solution by the concentration at the inlet of the processing solution.
  • a graph showing the relationship between the recovery rate (%) and the flow rate (L / h'm 2 ) is shown in FIG.
  • the flat membrane 7 utilizing the diffusion phenomenon of the substance through the pores of the porous membrane can be reused. Can be provided at low cost.
  • the flat membrane concentrator includes a flat membrane that has a plurality of pores having an average pore diameter of 1 to 3 nm and separates a specific dispersion in the solution by membrane filtration.
  • the flat membrane concentrating device Y narrows the flat membrane 7 with a flat support 1 and has at least two flat membranes 7 and at least three supports 1.
  • the support 1 is provided with a solution inlet 3a, a channel 2 and an outlet 3b.
  • the flat membrane concentrator Y pressurizes the pressure on the solution side, which is the stock solution, to atmospheric pressure or higher with respect to the flat membrane 7, and at the same time, reduces the filtrate side that has passed through the flat membrane 7 to atmospheric pressure or less. A differential pressure is generated, and the components in the solution are concentrated by parallel filtration in which the solution is filtered while flowing substantially parallel to the surface of the flat membrane 7.
  • a cellophane film wet-formed by a known method is treated in hot water at 95 ° C for 1 hour at the free end. After the treatment, water was drained and dry heat treatment was performed at 180 ° C. in a nitrogen pressure to produce a regenerated cellulose membrane having an average pore diameter of 1.5 nm and a porosity of 20%. Regenerated cellulose is an example of a hydrophilic polymer.
  • the porosity is calculated from the measured value of the apparent density of the membrane by using the density method, assuming that the density of regenerated cellulose is 1.54 gZml.
  • the average pore diameter is calculated by measuring the filtration rate under a constant transmembrane pressure of pure water (a method called the filtration rate method).
  • a flow path 2 is formed by forming a groove having a depth of about 1 mm on a polycarbonate support 1 (thickness 6 mm, length 45 cm x width 55 cm).
  • a packing 5 is formed by attaching a silicon-based filler around the support 1. The thickness of knocking 5 is, for example, 0.5 to lmm.
  • two inlets 3 a ′ outlet 3 b (inner diameter 3 mm) for connecting to the flow path outside the support 1 are installed on the side surface, and the inlet 3 a ′ outlet 3 b is detachable. The connecting member is inserted.
  • Fig. 4 is a schematic view of the flat membrane concentrator Y.
  • the flat membrane concentrator Y has a structure in which the support 1 and the flat membrane 7 are alternately overlapped. Atmospheric pressure acts on the outer support la, and the adhesion between the supports increases, increasing the packing effect.
  • FIG. 5 is a diagram schematically showing a longitudinal sectional view of the flat membrane concentrator Y of FIG.
  • the dotted line indicates that the plurality of supports and flat membranes sandwiched between them are omitted.
  • the space 10 between the support la and the flat membrane 7 disposed outside is in a reduced pressure state, and the space 11 is in a pressurized state.
  • a flow path is also formed in the support on the pressure side. This flow path makes it easy to collect the concentrate and backwash if necessary.
  • the connecting member may be shifted in advance and inserted.
  • the processing liquid When the processing liquid is allowed to flow through the space in the pressurized state, filtration is performed by the transmembrane pressure difference from the space in the reduced pressure state, and the processing liquid that has permeated the flat membrane 7 moves toward the space in the reduced pressure state.
  • the flat membrane concentrator Y In order to effectively use the membrane area that flows in for filtration, the air in the pressurized space must be removed. Therefore, in order to make air easily flow out to the inlet 3a and outlet 3b, the flat membrane concentrator Y needs to be set up vertically or inclined.
  • the concentration rate In order to increase the concentration rate of the treatment liquid, the flow rate of the solution is decreased or filtration is repeatedly performed. The concentration rate should be 10 times or less so that the recovery rate does not decrease.
  • FIG. 6 is a plan view of the support 1.
  • a packing 5 is formed on at least one peripheral portion of the upper surface and the lower surface of the support 1, and a flow path 2 is formed along the flow direction of the processing liquid over the entire surface where the processing liquid flows. These processes are applied to both sides.
  • the outermost support la is only one side.
  • the support 1 is made of polycarbonate and has excellent heat resistance and impact resistance.
  • the membrane area can be changed. Therefore, from the viewpoint of preventing clogging and increasing the concentration efficiency, it is most preferable to flow the diffusion liquid after passing through a pore diffusion type flat membrane separation device. Better ,.
  • the flat membrane concentrator of the present invention succeeds in reducing the weight of the entire apparatus, simplifies the structure of the apparatus, and makes it easy to disassemble and assemble.
  • the present invention makes it possible to concentrate components under mild conditions. Compared to conventional membrane concentration methods,
  • Concentrated components are components with a molecular weight of 500 or more, such as peptides, and for components with a molecular weight of 1000 or more, a concentration rate of 10 times from a rare concentration of 1% or less is achieved.
  • a regenerated cellulose porous membrane as a membrane to be attached to the pore diffusion flat membrane separator and a method for producing the membrane will be described. More specifically, the expansion of the substance through the pores in the porous membrane. It is a flat membrane that is most suitable for the technology for separating and purifying the target substance by diffusion (pore diffusion), and its manufacturing method.
  • the regenerated cellulose porous membrane of the present invention has an average pore diameter (2rf) of 5 to 500 nm, a film thickness (d) of 50 to 500 / ⁇ ⁇ , and a porosity (Pr) of 0.6 to 0.9. It is a regenerated cellulose membrane with a multilayer structure, and the degree of development of intermolecular hydrogen bonds is 40% or less.
  • the average pore diameter (2rf) is 8: LOOnm
  • the film thickness (d) is 100-300 / ⁇ m
  • the product of the porosity (Pr) and the film thickness (d) is 50 ⁇ m or more.
  • the product of the porosity (Pr) and the film thickness (d) is 100 ⁇ m to 200 ⁇ m.
  • the regenerated cellulose porous membrane is made into a porous membrane by a microphase separation method with a metal salt added in an amount of 1% by weight or more in a cellulose ester solution, which is a cellulose derivative, and then PH of 11 to 13 is obtained.
  • a cellulose ester solution which is a cellulose derivative, and then PH of 11 to 13 is obtained.
  • the cellulose ester produced by saponification with an alkaline aqueous solution at a temperature of ° C or lower is preferably cellulose acetate!
  • metal salts include alkaline earth metal hydrochlorides and acetates, and salt calcium is particularly preferred.
  • the microphase separation method is preferably caused by evaporation of a good solvent for cellulose ester.
  • Thickness on glass plate 0.5mn! Cast at ⁇ 2mm and evaporate mainly good solvent (in this case, acetone) so that the temperature difference between outside air temperature and glass plate is 10 ° C or more. Microphase separation occurs during the evaporation process, and the casting liquid turns white. The cast film and glass plate produced after 20 to 60 minutes are immersed in methanol to remove the solvent and calcium chloride remaining in the film.
  • solvent in this case, acetone
  • PH 12
  • a porous porous membrane is obtained.
  • the film was cast on a glass plate to a casting thickness of 1 mm.
  • the thickness of the regenerated cellulose porous membrane after the Ken-i reaction was 180 m, the average pore size was 9.5 nm, and the porosity was 0.82.
  • a regenerated cellulose porous membrane was produced by the same method as described above. At this time, methanol was 15% by weight, cyclohexanol was 20.7% by weight, and the obtained regenerated cell porous membrane had an average pore diameter of 40 nm and a porosity of 0.67.
  • the obtained porous membrane was dried, and then an ultrathin section (film thickness: 1 OOnm) of the membrane cross section after staining with osmic acid was observed with an electron microscope. As a result, a layered structure having a thickness of 100 to 200 nm parallel to the film surface was observed.
  • Figure 7 shows an electron micrograph at 30,000 times. In FIG. 7, the vertical direction is the thickness direction of the film. A layered structure having 1000 to 2000 layers was confirmed.
  • the obtained regenerated cellulose porous membrane was attached to a pore diffusion type flat membrane separator.
  • the pre-treatment solution was poured over the membrane surface with an effective membrane area of 100 cm 2 (2 mLZ), and pure water (spreading solution) was poured over the back side of the membrane (flow rate 3 mLZ).
  • the regenerated cellulose porous membrane of the present invention can be attached to a pore diffusion flat membrane separator and exhibits high particulate removal performance.
  • a membrane for filtration it is also used as a membrane for filtration, and it is easy to improve the virus removal performance as compared with the conventional hollow fiber membrane for virus removal.
  • the film thickness For example, setting the film thickness to 200 m is easy with a flat membrane, but is almost impossible with a hollow fiber membrane. This difference in film thickness is directly related to virus removal performance. Since it is possible to replace only the membrane, the cost of the membrane module can be easily reduced to 1Z5 or less per treatment liquid volume compared to the hollow fiber membrane module.
  • the clogging of the regenerated cellulose porous membrane of the present invention hardly causes clogging, it is used as a technology for removing fine particles in many industries and as a membrane technology for making only fine particles in a closed space and other molecules open spaces. Function.
  • This flat membrane inspection method is an inspection method of fine particle removal ability for membranes that have the ability to remove fine particles such as prion 'virus' bacteria, and is a non-destructive inspection that can be reused as a fine particle removal membrane even after applying this inspection method. Is the law.
  • the non-destructive flat membrane inspection method of the present invention enables reuse of a flat membrane that separates a specific dispersion in a solution. Therefore, a direct method using fine particles other than noble metals can be used. It has a completeness test step that confirms that the particle removal ability of the flat membrane is lowered by the hole diffusion method with holes. Then, after the integrity test step, a dissolution removal step for dissolving and removing the fine particles is performed.
  • FIG. 8 shows an overall view of the integrity test apparatus of the hole diffusion type flat membrane separator (MDPM) 33. Reference numerals in the figure are as follows.
  • Controller for electric motor 25 that controls the height of the second stage of the mount 25; Electric motor that raises and lowers the second stage mount 26
  • the flat membrane in the pore diffusion flat membrane separator 33 is back-washed with pure water in the container 29 using the pump 34.
  • an aqueous solution for the integrity test of the direct method an aqueous solution containing hydroxide-ferric colloidal particles having a particle size of 30 nm and containing polyvinyl alcohol and a cationic surfactant as stabilizers was selected.
  • the logarithmic particle removal coefficient ⁇ is calculated from the ratio of the iron concentration in the aqueous solution in the container 30 using the following equation (7).
  • the pore diffusion flat membrane separator 33 After standing for 12 hours, pure water is put into the containers 29 and 30, and the aqueous solution in the pore diffusion flat membrane separator 33 is replaced with pure water using the cock 35 and the interlocking pump 34. After replacement, the pore diffusion flat membrane separation device 33 is reused again as a fine particle removal membrane from the aqueous globulin solution.
  • the eel was subjected to enzymatic degradation with a proteolytic enzyme (Samoase PC-10, manufactured by Daiwa Kasei Co., Ltd.), and the aqueous solution components were recovered by centrifugation. About 2 L of this aqueous solution was subjected to a pore diffusion method using a pore diffusion type flat membrane separator (housing made of polycarbonate) composed of a regenerated cellulose porous membrane having an average pore diameter of 25 ⁇ m, a porosity of 65%, and a film thickness of 180 microns. separated.
  • a proteolytic enzyme Sudoase PC-10, manufactured by Daiwa Kasei Co., Ltd.
  • the effective diffusion area was 100 square centimeters.
  • the main components in the diffusion solution were peptides and amino acids, and the enzyme remained in the diffusion residue.
  • the interlocking pump 34 is operated, and the pore diffusion flat membrane separator 33 is filled with pure water.
  • the flow rate control cock 35 is opened, the aqueous solution IS is filled into the hole diffusion type flat membrane separator 33, and the cock 35 is closed.
  • the interlocking pump 34 was operated to collect the diffusion liquid.
  • the concentration of iron in the aqueous solution IS and the concentration of iron in the diffusion solution were measured. That is, hydrochloric acid was added to each solution, the pH was adjusted to 1.0, and the mixture was further heated to 50 ° C. for 10 minutes, and a small amount of potassium thiocyanate was added for coloring.
  • ⁇ calculated by Equation 3 was 3 or more.
  • Fill container 10 with 1N hydrochloric acid aqueous solution dissolve and remove with hydrochloric acid aqueous solution by the interlock pump 34 on the inlet side of the pore diffusion flat membrane separator 33, and immediately remove the pore diffusion flat membrane separator 33 from the circuit.
  • Each of the pore diffusion flat membrane separators 33 was immersed in a 0.1 N aqueous NaOH solution.
  • the pore diffusion flat membrane separator 33 was disassembled into a flat membrane and a housing while immersed.
  • the housing constituting the module was washed with water and dried at 110 ° C.
  • the flat membrane is 0.1 After being immersed in the prescribed aqueous NaOH solution for 2 days, it was washed with water. The flat membrane after washing with water was assembled again to produce a pore diffusion flat membrane separator 33.
  • the membrane can be reused in combination with pore diffusion technology. Even for flat membranes, direct method integrity testing can be applied, and the necessity for dissolution removal of components deposited on the membrane surface before safety testing can be reduced. This leads to cost reduction. That is, since the fine particles used in the direct method of the present invention are fine particles other than noble metals, their preparation is easy and inexpensive.
  • Fine particles removal performance of a regenerated cellulose porous membrane (average pore size 9 nm, porosity 85%, film thickness 160 ⁇ m) produced by the casting process after casting from an acetone solution of cellulose acetate with the average particle size
  • the pore diffusion method was used to evaluate the dispersion of colloidal hydroxide and iron oxide particles with a diameter of 20 nm.
  • polyvinyl alcohol and a nonionic surfactant are mixed.
  • the particle logarithmic blocking coefficient is 4.5 or more.
  • An 80 micron regenerated cellulose flat membrane was prepared.
  • the logarithmic inhibition coefficient was 5 or more.
  • the membrane after the test was immediately immersed in a 0.2N aqueous hydrochloric acid solution at 30 ° C for 1 hour to dissolve and remove the remaining hydroxide-ferric colloidal particles.
  • the particle logarithmic blocking coefficient was 5 or more.
  • the membrane after the integrity test was immersed in a 0.1 N aqueous sodium hydroxide solution.
  • the concentration measurement of ferric hydroxide particles was performed as follows. First, the test solution was mixed with a 0.5N hydrochloric acid aqueous solution and stirred at 50 ° C for 30 minutes to convert ferric hydroxide into trivalent iron ions.
  • potassium thiocyanate was added.
  • the concentration was measured by measuring the absorbance at a wavelength of 480 nm with a spectrophotometer.
  • the flat membrane can be reused even after the integrity test after using the fine particle removing membrane.
  • the flat membrane can be reused after the integrity test.
  • the pore diffusion flat membrane separation device of the present invention is an industry that requires separation and purification under mild conditions (eg, pharmaceutical industry, food industry), particularly separation of substances having physiological activity such as proteins, Can be used for purification. Moreover, it can be incorporated into an industrial process as a method for purifying and separating specific fine particles including colloidal particles in the industry handling colloidal particle systems. It is particularly suitable for using a flat membrane with high virus removability for a long period of time.
  • the flat membrane concentrator of the present invention can be used for concentration of components in a diffusion solution in which fine particle removal is performed by a pore diffusion type flat membrane separator in a biopharmaceutical manufacturing process.
  • the regenerated cellulose porous membrane of the present invention concentrates the target molecular weight substance without increasing the water-soluble metal salt concentration. Exhibits high particle removal performance.
  • the regenerated cellulose porous membrane hardly clogs, so it functions as a technology for removing fine particles in many industries, and as a membrane technology for making only fine particles in closed space and other molecules open space. .
  • the non-destructive flat membrane inspection method of the present invention can be used for the inspection method of particulate removal ability for membranes having the ability to remove particulates such as prions, viruses and bacteria.
  • FIG. 1 Schematic diagram of the pore diffusion flat membrane separator of the present invention
  • FIG.3 Schematic cross-section of a pore diffusion flat membrane separator
  • FIG. 4 Schematic diagram of the flat membrane concentrator of the present invention
  • FIG. 6 Schematic view of the support in top view
  • FIG. 7 Electron micrograph (30,000 times magnification) of cross section of regenerated cellulose porous membrane
  • FIG. 9 is a schematic diagram showing a cross-sectional view of a membrane used for hole diffusion parallel to the membrane plane.
  • FIG. 11 Graph showing the relationship between the residence time and concentration of the treatment liquid and diffusion liquid.
  • FIG. 12 Graph showing the relationship between recovery rate and flow rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 複数の孔を備えて孔拡散式によって溶液中の特定の分散物を分離する平膜7と、流路2を片面あるいは両面に設けた平板状支持体1とが交互に配置されるようにそれぞれ複数備え、流路2の空間体積と平膜7の膜面積との比が0.04~0.4の範囲となるように設定し、平膜7を介して上下の平板状支持体1の流路2における溶液の流れ方向が実質的に同一方向になるよう、平板状支持体1の側面の少なくとも2箇所以上に、流路2と連通する通水路3を設け、平板状支持体1と平膜7とが分解および組立てが可能である孔拡散式平膜分離装置X。

Description

明 細 書
孔拡散式平膜分離装置 ·平膜濃縮装置 ·孔拡散用再生セルロース多孔 膜および非破壊式の平膜検査方法
技術分野
[0001] 本発明は、平膜の孔拡散機構を利用して固液の分離を行う孔拡散式平膜分離装 置、平膜を用いた平膜濃縮装置、平膜としての再生セルロース多孔膜、および、平 膜検査方法に関する。
背景技術
[0002] (孔拡散式平膜分離装置)
従来、液体の分離に使用する膜分離装置には、中空糸膜モジュール、管状膜モジ ユール、平膜型膜モジュール、スパイラル型膜モジュール、プリーツ型膜モジュール などがあるが、いずれも濾過分離を主とする装置である。さらに、これらのモジュール は膜を保持するため、膜の一部と支持体とを榭脂などで接着固定している。特に有 効濾過面積が 0. 1平方メートルを超える場合は、膜間差圧を支えるために容器 (ハウ ジング)や支持体はステンレス製となり、持ち運びの困難なモジュールとなる力、ある いは膜の一部とを榭脂などで接着固定した中空糸膜モジュールとなる。
[0003] 膜濾過法では、膜間差圧の付カ卩は不可避であり、この圧力は平膜モジュールの場 合ではモジュールの最外層が主として分担するため、最外層に補強用の材料が付 カロされるためにモジュール内の観察が難しくなる。
膜濾過法では膜内部の孔に目詰まりするため、膜の再生処理が難しい。また、膜濾 過法による分離は、膜の孔径に依存しているため、分離すべき分子の大きさが小さく なると、適用される分離膜の平均孔径も小さくなければならず、有効濾過面積あたり の濾過量が減少し、さらに目詰まりが起こりやすい。
[0004] し力しながら、上記の榭脂で接着固定したモジュールでは膜を保持するために膜の 一部と支持体とを接着固定している為、膜のみ或いはモジュールの一部のみが破損 した場合、破損した一部だけを取り替えることは困難であるという問題があった。 また、膜濾過法を採用しているモジュールでは濾過分離を行う際、膜は目詰まりが 起こりやすいため、安定的な膜濾過性能の維持が難しぐまた、衛生上の観点からシ ングルユースが一般的であり、結果製造コストが高くなつてしまうという問題があった。
[0005] (平膜濃縮装置)
溶液中の特定物質を濃縮する技術として蒸発 ·凝結 ·凍結乾燥 ·沈殿 ·吸着法など が実施されている。蒸発や凝結による水分除去では相分離が伴わない。かつエネル ギー多消費である。
また、この濃縮によりタンパク等の生理活性物質の活性が失われる。
沈殿法では少なくとも第 3成分の添加を必要とし、凍結乾燥の場合と同様に濃縮成 分は固体状となる。
吸着法は選択的な濃縮であるが、脱着による稀釈とコスト高である。
これに対して膜による濃縮は、温和な条件下でし力も省エネ下での濃縮が可能な ため、特に生化学工業での適用が期待されている。
[0006] 膜による濃縮法は一般に濾過によって実施される。濾過速度は膜間差圧と正の相 関性があるため膜間差圧を大きくして膜濃縮は実行される。膜間差圧を大きくするに は、中空糸膜にするか、或いは、平膜の場合には支持体を用いる。しかし、膜間差圧 を高めると膜表面に高分子量成分の濃縮が起り、濾過速度の減少と回収率の低下 が起る。
[0007] 回収率を高めるには、膜モジュールとして中空糸膜モジュールよりも平膜モジユー ルの方が原理上有利である。即ち、平膜モジュールではモジュールの分解組み立て が可能で膜部分のみを取り出して回収可能であるためである。
従来の平膜濃縮装置のモジュールとして、装置の構造としては最も単純な平板型 をはじめ、管型'スパイラル型'プリーツ型'回転膜型等が挙げられる。平膜での濾過 では膜間差圧を支える装置上の工夫が必要である。
[0008] これらは耐圧性や膜充填密度の問題を解消するための設計上、装置の構造が複 雑な、大型のものが多ぐ支持体の素材が金属質であるものが汎用的であった。その ため装置のモジュールは、それぞれの部材がー体ィ匕されている、もしくは、簡単に分 解することのできない形状になっている、の何れかであり、運搬 '設置'支持体や液流 入出口コネクタの洗浄 ·消耗部品や平膜の取替えが容易ではな力つた。そのため、 平膜を利用した濃縮装置の実用化は不可能と考えられた。
[0009] 本発明でいう平膜とは、膜の厚さが 1 μ m以上でかつ lmm未満であり、膜平面の面 積と膜厚方向の断面積との比が 20以上であり、かつ円筒状形状の膜の場合には該 円筒の半径が 5mm以上である膜を意味する。
濾過方法として、濾過前の原液を膜表面に平行に流動させながら濾過する方法( 平行濾過あるいはクロスフロー濾過、タンジュンシャルフロー濾過)と、原液を流動さ せずに濾過する方法 (垂直濾過あるいはデッドエンド濾過)とがある。
通常、中空糸を用いた膜濃縮法では平行濾過方法が採用されるが、平膜では平行 濾過と垂直濾過の両者が採用される。平行濾過の場合では、加圧側には通常支持 体を使用しない。濃縮率は回収液中の濃度と原液中の濃度との比として定義する。
[0010] 支持体を使用しない平行濾過での膜濃縮では、膜面を有効に利用するために膜 は垂直に設定される。ただし、原液中に密度の大きい分散体が存在する場合は、こ の分散体が下層に沈殿し、膜の有効濾過面積の低下が生じる。
また、濃縮液の回収の際には、上下方向を逆にして気体を送り込まなくてはならな い。また、膜濃縮共通の問題点として、膜濃縮中に濃縮率の増大に伴って浸透圧が 増大するために濃縮速度が減少し、濾液中にも回収すべき成分の濾出が起る。
[0011] (再生セルロース多孔膜)
従来、膜分離技術は膜間差圧を物質移動の駆動力とする濾過が中心であった。濾 過では処理液が流体として多孔膜中の孔に流入するので、孔に目詰まりと膜表面で の濃度分極が起り、膜として処理可能な液量は、膜の平均孔径の低下と共に急速に 低下する。
また、濾過速度は平均孔径の 4乗または 2乗 (空孔率が同一の場合)に比例するた め、平均孔径が小さくなると濾過速度は急速に低下する。
[0012] 温和な条件で分離が可能な膜分離は、生物資源を原料とするバイオテクノロジー 分野での利用が増えつつある。特にバイオ医薬品の製造や食品分野での精製工程 では、膜分離技術は、不可欠な分離精製手段となっている。これらの分野では、感染 性粒子 (プリオン,ウィルス,細菌など)の除去に膜分離技術が利用され、安全性対 策に重要な役割を果して 、る。 [0013] 本発明中の膜分離技術とは、
(1)膜の表裏面間の圧力差を物質輸送の駆動力とし、流体力学的な流れを起こして 、孔径と粒子径との関係で物質を分離する膜濾過技術と、
(2)膜を介した 2種の液体間での濃度差を物質移動の駆動力とし、液体としての流れ は起らず、物質の分子の持つ熱運動性 (いわゆるブラウン運動)の差を利用した分離 、および、膜中の孔径と粒子径との関係で生じるふるい効果によって分離する孔拡散 技術と、
(3)半透膜を隔てた濃度差を物質移動の駆動力として、膜および物質の親和力差と 、膜を構成する素材高分子の熱運動性 (ミクロブラウン運動)で生じる自由体積の空 間部の大きさと、物質の分子の大きさとの差で分子分離する拡散透析技術と、 を意味する。
[0014] 孔拡散技術の模式図を図 9〜10に示した。
図 9は、孔拡散に用いる膜を膜平面に対して平行に断面視した図である。この図の ような構造が膜の厚さ方向に層状に積層し、当該膜が多層構造となっている。
図 10には、アルブミンの粒子および除去すべき粒子としてウィルス ·プリオンを含ん だ溶液を孔拡散によって分離する様子が示してある。最小の粒径を有するアルブミン は、膜中に存在する孔は殆ど通過できるため、拡散方向に沿って膜を通過する。一 方、アルブミンより大径のウィルス 'プリオンは、通過できる径を有する孔が殆どないた め、孔を通過するのに多大な時間を要する。
[0015] 膜分離技術で採用される膜としては、形態的には中空糸膜と平膜とに大別される。
中空糸膜では膜の支持体は不要であるが、膜分離機として容器と中空糸膜とがー 体ィ匕しているため、膜を単独に取り替えることはできず、容器ごとの取り替えとなる。
[0016] 一方、平膜では膜を支持するための支持体が必要で、膜面積当りのモジュールは 大きくなり、充填液量が大きくなるという問題点を有する。しかし、膜のみの取り替えが 可能であるため膜分離コストを低下させることが可能である。
[0017] 分離用膜の作製方法として(1)ミクロ相分離法、(2)溶媒によるエッチング法、(3) 延伸に伴う空孔発生を利用する方法等 (例えば非特許文献 1参照)がある。
微粒子除去を目的とする分離用膜の製法としてはミクロ相分離法が適する。ミクロ 相分離法とは以下の方法を意味する (例えば非特許文献 2参照)。
[0018] 即ち、湿式または乾式の製膜法において、製膜用原液は均一な一相の液体状態 にある。平膜の場合では流延中、あるいは、中空糸膜の場合では紡糸過程中におい て、高分子濃厚相と希簿相とに分離する相分離が起る。この際、相分離は、おそらく は数 nm程度の大きさの核が発生した後に一次粒子に成長する。さらに、主として一 次粒子が会合 ·融合することによって二次粒子(直径 50〜数百 nm)へと成長する。 この二次粒子が比較的安定であり、この状態をミクロ相分離状態と定義する。一次 粒子と二次粒子とが凝集して積み重なり、連続ィ匕して多孔膜が製膜される方法をミク 口相分離法という。
[0019] 再生セルロースの製膜法として、銅安法の再生セルロース原液中に水ガラス等の 無機塩、あるいはアセトン等の有機溶媒を添加し、乾式あるいは湿式法によりミクロ相 分離を起こさせ、膜が固化した後残存する塩や金属を酸で除去する方法が知られて いる(例えば特許文献 1, 2参照)。この方法では、相分離に要する時間が長くなり、そ のため膜厚を 200 μ m以上で空孔率を 80%以上にするのが工業的には困難であつ た。また、平均孔径を 10nm以下にすることも困難であった。
[0020] 一方、セルロース誘導体、例えば酢酸セルロースよりミクロ相分離法によって多孔 膜を作製する方法が知られて ヽる (例えば非特許文献 1参照)。この方法で得られた 酢酸セルロース多孔膜を、ケン化反応により再生セルロース多孔膜に変化させること は原理上可能である。
しかし、この方法では主鎖の切断が起こり、機械的強度の低下が著しぐ特に空孔 率の大きな多孔膜に適用するのは困難である。また、ケンィ匕処理による孔特性の変 ィ匕も起こるため、ミクロ相分離法とケンィ匕処理との組み合わせによる再生セルロース 膜の実用化例は知られて 、な 、。
[0021] 再生セルロース固体内部には、分子間水素結合が良く発達した部分とそうでない 部分とがある。最も良く発達した領域は結晶領域となり、多孔膜の形態安定性を与え るためには適度な結晶化度が必要と考えられて 、る。
また、多孔膜を水等の液体中に浸潰した際の膨潤度は、分子間水素結合の発達 度に強く依存する。分子間水素結合の方向に依存して膨潤度に異方性が生じる。従 つて、この異方性のために膜の使用時での液体の種類により物質の透過機能に変化 が現れ、使用時に膜が変形する。
[0022] 分子間水素結合の発達度は、動的粘弾性温度特性より評価される (例えば非特許 文献 3参照)。分子間水素結合がほとんど発達していない領域内において、セルロー ス分子鎖のミクロブラウン運動に原因した力学的吸収は、 115〜200°Cの温度領域 に出現する。結晶領域外の領域で、最も分子間水素結合が発達した領域内におい て、セルロース分子鎖のミクロブラウン運動による力学的吸収は、 285〜305°Cの温 度領域に現われる。
従って、分子間水素結合発達度を以下の数 1の式で定義する。
[0023] [数 1]
分子間水素結合発達度 = (T S-T0) / (τ 1 0 0ο) Χ 1 0 ° (%)
[0024] ここで Τは試料の力学的損失正接の値が 0. 1となる際の温度、 Τは最も分子間水
Ο
素結合が発達していない試料の力学的損失正接の値が 0. 1となる温度(115°C)、 Τ は最も分子間水素結合が発達している試料の力学的損失正接の値が 0. 1となる
100
温度(305°C)である。
[0025] 既存の再生セルロース固体試料の分子間水素結合発達度の例として、銅安法衣 料用繊維では 85〜95%、人工腎臓用中空糸では 75〜85%、ウィルス除去用中空 糸膜では 45〜55%、ビスコース法の平膜 (セロハン)では 45〜60%である。この値 が大きいほど水に浸漬した際の試料の膨潤異方性が大きい。
[0026] 平膜では、有効膜面積が大きくなると膜の支持体の力学的強度を大きくしなくては ならないため、支持体の材質としてはステンレス製となり、膜分離装置としては重く取 り扱い性に問題があり、さらに高価になる。
軽量で安価でかつ平膜モジュールのハウジングを再利用可能にすることによって、 膜分離コストを大幅に低下させる。膜分離コストの低下により膜分離技術はあらゆる 産業に利用できるようになる。
[0027] バイオ医薬品工業、食品工業で利用される膜技術は微生物感染に対する安全性 対策といえる。将来、未知の感染性物質が出現する可能性もあるので、安全性対策 はこれらの未知の感染物質に対しても、確実に除去できることを明らかにしておかな くてはならない。
そのためには、除去機構が明らかな膜分離技術でなくてはならない。吸着機構等 のように、親和力に関連した作用での除去では、未知感染物質においては除去効果 が予測できな 、ので、この作用での除去効果は極小化して 、なくてはならな 、。
[0028] 微粒子力もの感染防止に利用される膜は、その平均孔径が次第に小さくなつてい る。
例えば、エイズウイルス除去用には平均孔径 100nm、 B型肝炎ウィルスや C型肝 炎ウィルス除去用には平均孔径 35nm、パルボウイルス除去用には平均孔径 15nm または 20nm、の除去膜が採用されている。
今後はウィルスのみでなぐさらに小さなプリオン除去性を持たさなくてはならない。 平均孔径が小さくなると処理速度のみでなぐ濾過の場合には目詰まりが起りやすく なる。
[0029] 要求される微粒子除去性能は、対数除去係数で 4以上力 5以上の高 、除去性能 が要求されている。平膜でこの性能を満足させるには、微粒子除去能と膜構造との 関係が明らかでなくてはならない。しかし、現在までその関係は明らかにされていな い。平膜での膜厚の役割は、力学的強度と取り扱い易しさとを求めるため、 10 ;ζ ΐη〜 100 m程度に設計されている。膜分離性能を膜表面での孔径分布 ¾|¾くすること で高めることは可能と考えられている力 この考えは本発明の目的を達成するのにほ とんど役立たない。
[0030] 膜分離速度を上昇するには膜厚を小さぐまた平均孔径ゃ空孔率を大きくすること が考えられる。微粒子の除去対象が小粒子になると平均孔径は当然小さくなくては ならない。このような状況下で膜処理速度を増加させるのに、空孔率 (Pr)を大きくす れば良いことは原理上明らかである。
[0031] しかし、空孔率 (Pr)を大きくすれば膜の力学的性質が低下する。通常、空孔率は 0 . 6〜0. 7に設定されている。力学的性質の要求が強くなければ空孔率 (Pr)をさらに 大きくすることは必要である。しかし、平均孔径を小さく保ったままで 0. 7以上の空孔 率 (Pr)を可能にする方法は現在まで提案されて!ヽな ヽ。
[0032] 安全対策で利用される膜モジュールは、使用前に通常滅菌処理を受ける。この処 理によって、膜の形態の変化が起る可能性がある。そのため、滅菌処理による形態 変化を予測し、予め膜の形態を定める必要がある。しかし、もし形態変化が等方的で 、かつ、その変化がわずかであれば膜モジュール設計が容易となる。
[0033] 平均孔径を lOnm以下と小さぐまた膜厚を 200 m以上と大きぐ空孔率 (Pr)を 0 . 8以上に大きくし、多層構造を持った再生セルロース平膜で分子間水素結合の発 達度を 40%以下にする製膜法があつたとしても、濾過による処理量は小さぐ膜処理 コストは大幅に上昇し実用化されない。
[0034] (非破壊式の平膜検査方法)
温和な条件下で物質を分離する技術として膜分離技術は重要である。特にバイオ 医薬品や食品の製造等に利用される膜には感染性粒子 (ウィルスや細菌など)を除 去する役割も期待される。
[0035] ノィォテクノロジーにおいて、その原料物質中に含まれる微粒子には、プリオン'ゥ ィルス ·細菌などの感染性微粒子の他に、タンパク質などの会合体や変性物などが ある。これらの微粒子が最終製品の中に混入すると、種々の感染症や発熱の原因と なる。
そのため、バイオ技術で得られる製品の製造工程では、上記の微粒子の除去、あ るいは、不活ィ匕工程が必要である。特に、バイオ医薬品や食品の製造工程中では、 微粒子対策は不可欠である。
[0036] ウィルス除去膜や除菌用フィルタ一は既に商品化され、除プリオン膜技術も近 ヽ将 来巿場に出現する可能性がある。
膜分離方法として、膜濾過技術 ·孔拡散技術 ·拡散透析技術が知られて!/ヽる。 膜濾過技術は、膜間差圧を物質移動の駆動力とする。
孔拡散技術は、膜中の孔を通して、物質の濃度勾配を駆動力とし、物質の分子自 身の持つ熱運動性 (いわゆるブラウン運動)の差を利用した分離と膜中の孔の径と粒 子径との関係で生じるふる 、効果によって分離する。
拡散透析技術は、半透膜をへだてた濃度差を物質移動の駆動力として、膜と物質 との親和力差と膜素材高分子の熱運動性 (ミクロブラウン運動)で生じる自由体積の 空間部の大きさと分子の大きさとの差で分子を分離する。 [0037] バイオ医薬品の製造工程では、ウィルス除去膜が濾過技術で利用されている。 ここで、ウィルス除去膜とは、(1)ウィルス除去性能が対数除去係数として 4以上 (す なわち 104個のウィルスに対して処理液中のウィルスは 1個以下)、(2)ウィルス除去 機構がふるい機構であること、 (3)除去性能に再現性がある膜である。
[0038] ウィルス除去膜ゃ除菌膜、あるいは、将来出現が予測されるプリオン除去膜におい ては、使用後の膜について完全性試験の実施が義務付けられている。即ち、膜を実 際に使用されている間に、膜があらかじめ設定された除去性能以上の性能を保持し ていたことを実証する試験を、膜使用者が実施しなくてはならない。
完全性試験とは、使用後の膜に対して膜の使用者が、膜の利用状況下では当初の 設定通りの膜の機能が発する状況であったことを確認する試験である。
[0039] 膜の完全性試験法には直接法と間接法との二種類が提案されてきた。
直接法とは、ある特定された大きさを持つ微粒子を同等の大きさのウィルスのモデ ル物質とみなし、この微粒子を分散した水溶液を用いた膜の微粒子除去性能を測定 する試験法である。実際に使用されている微粒子は金コロイド粒子である(例えば特 許文献 3参照)。
濾過による除去性能を測定し、その値があら力じめ設定した値以上であることを確 認する。
[0040] この方法では、粒子の膜による除去性能を直接測定しているため、原理上明解で あり、大きさで除去する機能を持つ膜の完全性試験法として優れている。しかし、この 方法による検査では、検査後には金コロイド粒子が膜内部に残存するため、検査後 の膜を再利用することができない。孔中の金を完全に除去することは不可能に近い ため、実際には試験後の膜は廃棄物として取り扱われる。すなわち膜の孔構造は完 全性試験によって破壊されたことになる。即ち、検査としては破壊検査である。
[0041] 金粒子濃度の分光器による測定にぉ 、て、除去性能としての測定では、対数阻止 係数表示で 3 (原液中の濃度と処理液中の濃度の比が 1000)であり、直接法の性能 試験としての精度が不十分であるという問題点を持つ。現在では、この方法で確認さ れるのは、孔径分布の広がりの変化であると解釈されている。
[0042] また、金コロイド粒子はタンパク質と結合しやすぐそのため、完全性試験を行う前 に使用後の膜を、苛性ソーダ等を用いて洗浄する必要があるという問題点を持つ。 ここで、微粒子対数阻止係数とは以下の数 2の式で定義される。
[0043] [数 2] 微粒子対数阻止係数 = 1 o g (処理前液中の微粒子濃度ノ処理後の微粒子濃度)
[0044] 一方、完全性試験での間接法では、膜による微粒子の除去性能を直接測定するこ とはなぐ膜の孔特性に関連した特定の物性値を測定する。この物性値によって、使 用後の膜について間接的に微粒子の除去性能が設定された基準以上に保持されて いることを確認する。し力も、孔特性自体を直接的に観察しているのではなぐ大部分 は界面特性を確認している検査方法といえる。そのため、使用後の膜を洗浄して界 面特性を設定した範囲内に入れることが不可欠である。
[0045] 間接法での実際例では、例えば、一定の膜間差圧を与えた際の液体の膜透過速 度を測定する(例えば特許文献 4参照)。或いは、膜中の孔を介して平衛状態にある 2種の液体相を接触された際に生じる界面張力に抗して、一液体を加圧して液体が 孔を通過する瞬間の圧力より孔径が定まり、この圧力が所定の圧力以上であることで 、膜中の最大の孔の大きさが設定された孔径内であることが原理上確認できる(例え ば特許文献 4参照)。
[0046] 現在までに提案されて!ヽる間接法は、何れも界面特性を利用して!/ヽるため膜の洗 浄が不可欠である。また、界面張力の大きな流体の場合は膜への負荷圧が大きくな るため、完全性試験によって孔が力学的に変形あるいは破壊される。従って、利用す る液体の種類によっては、試験法としては破壊試験法となって 、る場合が多 、。
[0047] 従来力 提案されてきた直接法あるいは間接法の完全性試験法では、 V、ずれの方 法でも使用後の膜を洗浄して完全性試験の正確度を高めなくてはならない現状であ る。その理由は、 2つある。 1つめの理由は、直接法では、採用されている微粒子が 金のコロイド粒子であり、この粒子はタンパクとの相互作用が強ぐ膜中にこれらの物 質が残存すると、金コロイド粒子の孔中の捕捉能力に変化を起す。 2つめの理由は、 膜分離技術として膜濾過技術を採用しているため、膜表面には濾過対象水溶中の 成分が濃度分極を起こしてこれらの成分が膜表面或いは膜内部の孔中に濃縮して V、る。そのため完全性試験前の膜の洗浄は不可避である。 [0048] 膜の微粒子除去能を確定する性能試験 (膜のバリデーシヨンテストと言われ、通常、 膜メーカーが実施する)の方法として、直接法と間接法との二種類がある。性能試験 は膜の使用前に膜のメーカーが行なう試験である。直接法としては金コロイド粒子を 用いる方法があり、これは破壊テストとなるので抜取り検査となる。即ち、現在までは 提案された直接法は製造ロット内での集団としての平均値としての性能試験の位置 づけである。
[0049] 全数検査での性能試験は、現在まで間接法のみが提案されている。全数検査であ るので検査によって膜が破壊されてはならない。この試験法としては、例えば、孔を 介して気体と液体との表面張力を利用して、最大径またはその近傍の孔の寄与によ る気体の透過速度を測定する。この際の液体として表面張力は小さぐまた検査後膜 に残留する可能性が少ない低沸点の液体が選定される。
この方法では、膜としては乾燥状態であることが必要であり、また使用液体中への 膜からの溶解成分がないことが必要である。孔径が小さくなると本検査法で適用とさ れる膜間差圧は 10気圧以上となる。
[0050] また完全性試験自体が膜の孔構造を破壊するものとの考えが定着し、膜を再利用 する試みがなされていない。特に膜の供給側である膜の製造者力もは再利用を禁止 する傾向さえある。そのため完全性試験の終了後には膜を破棄するのが一般的であ る。
このように、膜の再利用は微粒子除去分野では不可能と考えられていた。その理由 として、(1)一度使用した膜の微粒子除去能が不明であり、しかも完全性試験の大部 分が破壊テストである、(2)使用後の膜中に残存する物質は完全に除去することは 不可能に近ぐ除去を定量ィ匕できない。(3)膜の再生工程を入れたプロセスバリデー シヨンは困難である、という点がある。
[0051] 理由(2)、 (3)については、定められた再生処理後の膜において、膜メーカーが実 施する方法で微粒子除去性能が確定されているならば、すなわち理由(1)が解消さ れて 、るならば、 、ずれの理由も適正な膜処理法システムを採用すれば容易に解消 される。
例えば、再生処理を 4回繰り返しても微粒子除去性能が目標値以上であったとする と、膜処理プロセスは、未使用膜 · 1回再生後膜 · 2回 · 3回 ·4回再生処理前の 5本を 単位とした膜処理システムを想定すれば、膜システム全体として常に膜システムとは 同一性能を再現性良く実現できる。プロセスノ リデーシヨンで必要とされるワーストケ ースとして 4回再処理後の膜のみで構成された膜処理プロセスが対応する。
特許文献 1:特公昭 62— 044017号公報
特許文献 2 :特公平 2— 46608号公報
特許文献 3 :特開 2005— 40756号公報
特許文献 4:特開平 7 - 132215号公報
非特許文献 1 :分離膜に関する調査第 1卷、第 2卷、第 3卷 (株)大阪ケミカルマーケ ティングセンター(1980, 1981, 1982)
非特許文献 2 :高分子学会編、「高分子の物性 (3)」共立出願、 50項、 1995年 非特許文献 3 : S, Manabe etal. Polymer J. Vol. 18 (Nol7)、 ppl— 14 (1986
)
発明の開示
発明が解決しょうとする課題
[0052] 本発明の第 1の目的は、孔拡散式平膜分離装置に関し、固液分離方法を膜間差 圧の付加が必要な濾過ではなぐ孔拡散を用いることで膜の目詰まりを緩和し、さら に膜の再利用が可能な孔拡散式平膜分離装置を安価に提供することにある。
[0053] 本発明の第 2の目的は、孔拡散の欠点となる目的物質の濃度低下を解消する平膜 濃縮装置に関し、溶液中の特定成分を濃縮する機能を持ち、かつ軽量であり構成が 単純であるため取り扱いが容易であるという特徴をもった平膜濃縮装置を提供するこ とにある。
すなわち(a)濃縮された成分の回収率の増大 (b)濃縮中での浸透圧増加の極小化 (c)軽量ィ匕 (d)分子量 1000以上の中分子量の成分の濃縮 (e)連続的に濃縮可能 (f )サニタリー性を持たせ膜ハウジングが再利用可能な濃縮装置を提供することを目的 とする。
[0054] 本発明の第 3の目的は、再生セルロース多孔膜に関し、孔拡散の実用化の観点よ り微生物除去のみでなぐ有用物質の透過性、利用の容易さを考慮した多孔膜を設 計し、該多孔膜の製法を提供することにある。
[0055] 本発明の第 4の目的は、平膜検査方法に関し、微粒子除去用膜として膜の再利用 を可能にするため、非破壊式で直接法の膜の完全性試験法を用いる平膜検査方法 を提供することを目的とする。
課題を解決するための手段
[0056] [1]孔拡散式平膜分離装置
本発明でいう孔拡散とは、膜中の孔を通して濃度差を利用した物質移動であり、物 質分子のブラウン運動の活発度によって分離する機能を持つ。従来の拡散透析では 半透膜を通した物質移動で、膜と物質との親和力と膜素材分子の熱運動性 (即ち、ミ クロブラウン運動)で分離する。孔拡散では、物質と膜素材分子との親和力が大きく なると、拡散係数は低下するが透析拡散では逆に大きくなる。
[0057] そこで、発明者らはこの様な状況を鑑み、平膜モジュールの構成や構造、部材を検 討した結果、平膜部分を支持する支持板構造とし、孔拡散を行うのに適したモジユー ルの構造を種々検討して、上記問題を解決できることを見出した。
[0058] 上記第 1の目的を達成するための本発明の孔拡散式平膜分離装置の第一特徴構 成は、複数の孔を備えて孔拡散式によって溶液中の特定の分散物を分離する平膜 と、流路を片面あるいは両面に設けた平板状支持体とが交互に配置されるようにそ れぞれ複数備え、前記流路の空間体積と前記平膜の膜面積との比が 0. 04〜0. 4 の範囲となるように設定し、前記平膜を介して上下の前記平板状支持体の前記流路 における前記溶液の流れ方向が実質的に同一方向になるよう、前記平板状支持体 の側面の少なくとも 2箇所以上に、前記流路と連通する通水路を設け、前記平板状 支持体と前記平膜とが分解および組立てを可能とした点にある。
[0059] 本構成では、孔拡散式に限定した点に最大の特徴がある。孔拡散では膜間差圧を 事実上負荷してはならない。すなわち、膜には圧力 (膜間圧差)がほとんど負荷され ていない。そのため、濾過用の場合と異なり、大きな有効濾過面積の平膜モジュール が可能になる。孔拡散用モジュールにおいて膜の支持体の役割は液の流れ回路の 適正化と液体の流れに伴う圧力発生の防止にある。
[0060] 本構成の孔拡散式平膜分離装置において、複数の孔を備えて孔拡散式によって 溶液中の特定の分散物を分離する平膜と、流路を片面あるいは両面に設けた平板 状支持体とが交互に配置されるようにそれぞれ複数備え、流路の空間体積と平膜の 膜面積との比が 0. 04〜0. 4の範囲となるように設定し、前記平膜を介して上下の前 記平板状支持体の前記流路における前記溶液の流れ方向が実質的に同一方向に なるよう、前記平板状支持体の側面の少なくとも 2箇所以上に、前記流路と連通する 通水路を設けている。
実質的に同一方向とは、 2種類の液体を流すのに必要なそれぞれの圧力勾配の方 向が 90度以内で一致して 、ることを意味する。
[0061] 流路の空間体積と膜面積との比が 0. 04未満であると、液体の流れが著しく滞って しまう恐れがあり、スムーズな孔拡散の妨げとなる。また、この比が 0. 4を超えると液 体と膜との接触部分が減少し、効率良く孔拡散を行うことが難しくなる。
よって、これらの比が 0. 04-0. 4 (単位としてはセンチメートル)の範囲にあれば、 液の流れをスムーズに維持でき、効率よく孔拡散を行える点から孔拡散を行う際のメ リットが十分に得ることができる。
[0062] 孔拡散を行う為、膜を介して上下の支持体の流路を同一方向にすることにより、液 体の流れに伴う圧力(流れを生じさせる圧力勾配の方向が同一)を膜の上下で同一 にすることが可能となり、膜間差圧の発生を抑えることができる。
[0063] また、該支持体の側面に流路カも通じる通水路を 2箇所以上設けることにより、一定 速度で拡散処理を受ける液 (以降、被拡散液と略称)と拡散物質が流入する拡散液( 以降、拡散液と略称)を流すことができる。膜を介して孔拡散が起こり、一定速度で被 拡散液と拡散液とが混入することなく流れが起これば、拡散における定常状態が実 現できる。すなわち、定常拡散状態が達成される。
[0064] 定常状態での拡散が実現できれば、孔拡散を利用した物質分離工程として連続プ 口セスが可能となる。また、該支持体の通水路を側面に設けることにより該支持体を 積層することが可能となり、装置全体としてのコンパクトィ匕が可能となると共に、膜面 積の調節が容易に行えるため、有効膜面積を自由に変えることができる。
[0065] さらに、本構成では、前記平板状支持体と前記平膜とが分解および組立てを可能 としている。支持体の枚数を複数枚重ねることで、任意の膜面積に調節でき、平膜、 モジュール共に再利用が可能となる。
[0066] ここで、従来の濾過による分離方法では、膜に圧力をかけるため孔内で流体として の流れが生じ、液中の物質にもずり応力がかかり、孔内で分子の力学的変化と目詰 まりが生じる。また、膜にも圧力がかかるため、膜自身も圧密化が起こり好ましくない。 つまり、膜、支持体とも濾過で分離を行った場合再利用することが難しぐ結果として コストが高くなるという問題がある。
[0067] 本構成において、孔拡散による分離方法は、物質の分子自身の持つ熱運動性で あるブラウン運動を利用するため、孔の目詰まりも緩和され、また、分子の力学的変 形もない。よって、膜には力学的に大きな負担力かからないため、例えば、膜表面の みを洗浄するなどの簡単な再生処理を施すことで、膜と支持体と含むモジュールは 再利用することが出来るので、使用する膜コストが下げられる。
[0068] 本発明の孔拡散式平膜分離装置の第二特徴構成は、前記平板状支持体の上面 及び下面の少なくとも一方の周縁部に高分子弾性体力もなるパッキングを備えた点 にある。
[0069] 本構成によれば、膜が支持体に密着固定され、かつ液の漏れを防止し孔拡散を促 すために、膜支持体の片面或いは両面上にパッキングを施し支持体と一体ィ匕させる ことにより取り扱 、と組立てが容易となる。ノ¾ /キング素材として高分子弾性体で耐熱 性と耐アルカリ性を持つ素材が望ま ヽ。
[0070] 本発明の孔拡散式平膜分離装置の第三特徴構成は、前記平板状支持体が、耐熱 性 ·耐衝撃性 ·耐アルカリ性 ·耐酸性 ·軽量かつ透明性を兼ね備えた素材であるポリ カーボネート'ポリアミド ·ポリアセタール ·ポリスルホン ·ポリエーテルスルホン ·ポリエ 一テルエーテルケトン力 なる群力 選択される点にある。
[0071] 本構成によれば、膜支持体が耐熱性、強靭性、耐アルカリ性、耐酸性であり、軽量 かつ透明性を兼ね備る。ここで、耐熱性とは 100°Cの熱水あるいは 110°Cの蒸気処 理に耐えられる性質を意味し、耐アルカリ性とは 0. 1規定の水酸化ナトリウム水溶液 に対しての耐性で、耐酸性とは 0. 1規定の塩酸に対する耐性を意味する。具体的に は、膜支持体は、ポリカーボネート、ポリアミド、ポリアセタール、ポリスルホン、ポリエ 一テルスルホン、ポリエーテルエーテルケトン、の素材から選ばれる。 [0072] 本発明の孔拡散式平膜分離装置の第四特徴構成は、前記平板状支持体の通水 路に着脱可能な耐熱性の連結部材を有し、かつ前記平板状支持体をポリカーボネ ートとした点にある。
[0073] 本構成によれば、モジュールのサニタリー性をより確実にするために、膜支持体の 通水路に着脱可能な連結部材を用いると良い。使用後のモジュールを洗浄する際に は、この連結部材を外し洗浄しやすくする。連結材の素材としては、ポリカーボネート 製で、耐熱性を有するものが望ましい。
[0074] [2]平膜濃縮装置
上記第 2の目的を達成するための本発明の平膜濃縮装置の第一特徴構成は、平 均孔径が l〜3nmとなる複数の孔を備えて膜濾過によって溶液中の特定の分散物を 分離する平膜を、平板状の支持体で狭み、少なくとも 2枚の前記平膜と、少なくとも 3 枚の前記支持体を有し、前記支持体には前記溶液の流入口と流路と流出口を形成 し、前記平膜に対して、原液である前記溶液側の圧力を大気圧以上に加圧し、同時 に、前記平膜を通過した濾液側を大気圧以下に減圧することで膜間差圧を発生させ 、濾過と同時にパーベーパレーシヨンを起こさせ、前記溶液を前記平膜の表面に対 して略平行に流動させながら濾過する平行濾過により前記溶液中の成分を濃縮する にめる。
[0075] 本構成の最大の特徴は膜として平膜を利用した点にある。平膜を利用することによ り濃縮の際の回収率を高めることができる。中空糸膜を用いた場合には支持体なし で膜間差圧を高めることが可能であり、原理上濃縮率を高めることが可能である。し かし、中空糸内壁部に濃縮率が最も高い成分が残存することが多く成分の回収率は 低下する。膜表面での濃度の高い部分を効率良く回収することが回収率を高めるた めに不可欠である。
本構成のように平膜ィ匕することで、膜表面の濃度の高 ヽ部分を少量の水等を用い て溶解回収が容易であり、さらに平膜モジュールを個々に分解し、平膜の表面を物 理的に洗浄回収することも可能である。
平膜の厚さは、操作性と水の膜透過速度より 10〜50 mとするのが好ましい。
[0076] 本構成では、平均孔径 lnm以上で 3nm以下の膜を使用する。平均孔径を lnm以 上にすることで分子量 200以下の水溶性物質 (例えば金属塩、アミノ酸、酢酸、ェチ ルアルコール等)の濃縮率を低く抑え、膜間差圧を 1気圧以下での膜濃縮を可能に する。平均孔径を 3nm以下にすることにより、分子量 1000以上の物質を濃縮するこ とが可能である。
[0077] また、本構成では、前記平膜に対して、原液である前記溶液側の圧力を大気圧以 上に加圧し、同時に、前記平膜を通過した濾液側を大気圧以下に減圧することで膜 間差圧を発生させ、さらに平行濾過により前記溶液中の成分を濃縮することが可能 なように支持板には複数の液体の流出口を設けて 、る。
膜間差圧の発生を、膜を介して加圧と減圧とを組み合せることによりモジュール全 体として負荷される圧力を大幅に減少させることが可能となり、膜モジュールの軽量 化が可能となる。また、濾過とパーベーパレーシヨンが同時に起こるため、濃縮速度 が増加する。
[0078] 本発明の平膜濃縮装置の第二特徴構成は、前記平膜'前記支持体'前記流入口- 前記流出口のそれぞれを分解可能に構成し、さらに、洗浄可能かつ再組み立てを可 能とした点にある。
[0079] 本構成によれば、平膜を用いることにより平膜'支持体 ·流入口'流出口のそれぞれ の部材を分解および組立てが容易な設計が可能になる。使用後の平膜モジュール を分解し洗浄、組立てをすることにより膜モジュールとしてのサニタリー性が確保され る。
平膜 ·支持体 ·流入口'流出口をそれぞれ自在に分解できるようにすることで、支持 体や流入口'流出口の洗浄、消耗部品や平膜の交換を容易に行うことが可能である また使用後の平膜のみを集めて膜表面の濃縮成分を集めることにより、回収率を高 めることができる。
[0080] 本発明の平膜濃縮装置の第三特徴構成は、前記支持体はポリカーボネート製であ り、前記支持体の表面には、前記流路として前記溶液の流れ方向に沿った溝が彫ら れ、前記流入口および前記流出口が前記支持体の側面にあり、かつ、前記支持体 の上面および下面の少なくとも一方の周縁部にパッキングを貼り付けた点にある。 [0081] 本構成によれば、軽量であるプラスチックの中でも耐圧性ゃ耐薬品性に優れたポリ カーボネートを支持体として用いることで装置全体の重量を軽くし、装置の運搬や組 み立て及び分解、洗浄時の作業を容易にすることができる。
[0082] 支持板の表面には液の流れ方向の制御のために溝を形成して 、る。
流入口および流出口を支持体の側面に設定することにより、濾過面積を容易に変 えることができる。
さらに、支持体の上面および下面の少なくとも一方の周縁部にあら力じめパッキン グを貼り付けておくことで、装置の組み立て作業が簡便化される。ノ^キングは手によ つて容易にはがすことが可能な程度の密着状態が望ま 、。
[0083] 本発明の平膜濃縮装置の第四特徴構成は、組み立てた際に最も外側に配置され る 2枚の前記支持体と、それぞれに隣接する前記平膜との間を減圧状態とした点に ある。
[0084] 本構成によれば、例えば支持体であるポリカーボネートは、ステンレスなどの金属に 比べると頑強さに欠けるという難点があるが、支持体を複数枚重ね、最も外側の支持 体と平膜との間の空間を減圧状態にすることで、装置全体が内側方向に向けて力が かかり、安定状態を保つことができるため、この難点は解決される。
[0085] 本発明の平膜濃縮装置の第五特徴構成は、前記平膜の平均孔径を 2nm以下とし た にある。
[0086] 本構成によれば、平均孔径を 2nm以下にすることにより、ペプチド等の中分子量物 質を有効に濃縮することができる。そのため多孔膜中の孔を利用した拡散分離にお ける拡散液中の機能物質を効果的に濃縮できる。
尚、平均孔径が lnm未満の場合には分子量 200未満の多種の物質が混在してい る通常の水溶液での膜濃縮では、濃縮率の増大に伴い膜間差圧を増大させなくて はならない。膜間差圧の増大は支持板の耐圧性を高めなくてはならなくなり、モジュ ールは重くなり取り扱いが難しくなる。
[0087] 本発明の平膜濃縮装置の第六特徴構成は、前記平膜を親水性高分子で構成した にめる。
[0088] 本構成のように平膜を親水性高分子で構成すると、平膜にタンパク等の水溶性物 質が吸着し難くなる。
[0089] 本発明の平膜濃縮装置の第七特徴構成は、前記親水性高分子を再生セルロース とした点にある。
[0090] 本構成によれば、再生セルロースは他物質 (タンパクなど)との吸着性が低ぐ耐熱 性が高ぐ高圧蒸気滅菌が可能であるため、取り扱いが容易となる。
[0091] [3]再生セルロース多孔膜
上記第 3の目的を達成するための本発明の再生セルロース多孔膜の第一特徴構 成は、平均孔径(2rf)力 〜 500nm、膜厚 (d)力 0〜500 μ m、空孔率(Pr)が 0. 6 〜0. 9の多層構造を有する再生セルロース膜で、分子間水素結合の発達度が 40% 以下とした点にある。
[0092] 本構成の特徴は、膜としては孔拡散用平膜とした点にある。孔拡散を利用すると原 理上膜間差圧は零でも良いので、膜に対する力学的性質への要求機能は低レベル で良い。孔拡散では物質の膜拡散速度のみに依存し、平均孔径とはほぼ無関係で ある。孔拡散では膜内部の孔の目詰りは起らない。平膜モジュールでは、液体を流 動させるための流動抵抗がほとんど発生しないため孔拡散に最適である。もちろん本 発明の平膜は濾過にも流用できるが、濾過では孔拡散の特徴は消失する。
[0093] 本構成では、再生セルロースを膜素材として利用している。水溶液からの有用物質 を分離回収する際、再生セルロースは他物質 (タンパクなど)との吸着性が低ぐ耐熱 性が高ぐ高圧蒸気滅菌が可能である。微粒子除去を目的とする分離膜では微粒子 除去機構が明確でなくてはならない。この目的には再生セルロース多孔膜が好適で ある。
再生セルロースは、セルロース誘導体、特にセルロースエステルをケン化処理する ことにより得られた再生セルロース膜の結晶化度を低めるのに適する。結晶化度の増 加は粒子の積層構造を破壊する。
[0094] 本構成では、平均孔径を 5ηπ!〜 500nmとした。ここで、平均孔径は水の濾過速度 法で測定された。従来の分離膜は濾過法で利用されているため、分離用膜では平均 孔径が lOnm以下の膜は開発されて 、な 、。
血漿分画製剤あるいは牛血清等力ものプリオン除去が要求されている。この目的を 達成するには平均孔径 5〜: LOnmの平膜での孔拡散法が最も期待される。従来のミ クロ相分離法では平均孔径が小さくなると空孔率も小さくなる。そのため、たとえ平均 孔径が lOnm以下の膜が開発されても濾過用膜であれば、濾過速度が小さく実用化 は困難である。
本発明のように孔拡散法を採用することによって、初めて 5ηπ!〜 lOnmの小孔径膜 は実用化の可能性が生じる。
例えば平均孔径 9〜: LOnmをプリオン用、平均孔径 20nmをウィルス除去用、平均 孔径 500nmを除菌用および除マイコプラズマ用として利用する。
[0095] ここで、平均孔径が 5nm未満では、水溶液中のタンパク等の有用物質の膜中の透 過速度が低下し、産業用分離膜としての実用性は消失する。場合によっては浸透圧 が発生し、浸透圧による水の流れが起る。一方、平均孔径が 500nm以上では、単位 膜面積当りの物質透過速度や処理液量のいずれもが孔拡散より濾過法が有利となる
[0096] 本構成では、乾燥状態での膜厚 (d)が 50 μ m以上 500 μ m以下であり、し力も多 層構造を有する。
膜中での物質の移動速度は膜厚に反比例するので、膜厚は一般には小さければ 小さいほど良い。一方多層構造を持つ膜の微粒子除去性能は、膜厚が大きければ 大きいほど良い。膜厚が 50 m未満になると膜中に存在するピンホールの影響によ り微粒子除去性能が著しく低下する。 500 mを越えると物質の膜透過速度が減少 する。
孔拡散法では膜に対する力学的強度の必要度は低ぐそのため、膜強度の上昇の ための膜厚を大きくする理由はない。孔拡散による膜分離では膜厚を 500 m以上 にすると、拡散液中の有用物質濃度が著しく減少する。
[0097] 本構成では、空孔率 (Pr)を 0. 6以上 0. 9以下とした。孔拡散の特徴として物質の 膜透過速度に対して平均孔径はほとんど寄与せず、空孔率 (Pr)が寄与することが明 らかになつた。従って、空孔率 (Pr)として 0. 7以上 0. 85以下がより好ましい。
[0098] 本構成では、分子間水素結合の発達度を 40%以下とした。この発達度の低下は、 一般的には結晶化度の減少をもたらす。さらに、水の膨潤の際の形態変化の異方性 の減少をもたらす。該発達度が 40%以下にあると水へ浸漬した際の膜の形態変化が なくなり、平膜を支持体へ固定した際の膜の破損の可能性が減少する。さらに、高圧 蒸気滅菌処理に伴う孔特性 (平均孔径、空孔率、膜厚)や膜の形態変化がほとんど 起らない。
[0099] 本発明の再生セルロース多孔膜の第二特徴構成は、平均孔径(2rf)が 8〜: LOOn m、膜厚 (d)が 100〜300 μ m、空孔率 (Pr)と膜厚 (d)との積を 50 μ m以上とした点 にある。
[0100] 本構成のように、平均孔径が 8nm以上 lOOnm以下であれば、除去対象物をプリオ ンとウィルス等に好適に適用できる。
また、膜分離の除去対象の微粒子が、ウィルスやプリオンの場合には膜厚 (d)は 10 0 μ m以上で 300 μ m以下であることが、除去性能と有用物質の透過性のバランスよ り好ましい。
[0101] 孔拡散では膜間差圧は零に近いので、膜への力学的負荷が小さぐ空孔率 (Pr)を 極限まで大きくすることは可能であるが、微粒子除去性能は空孔率 (Pr)が大きくなる と低下する。この低下は膜厚 (d)を大きくすることで防止できる。空孔率 (Pr)と膜厚 (d )との積が 50 μ m以上であれば、微粒子除去性能と有用物質の膜透過速度とのバラ ンスをとることができる。
[0102] 本発明の再生セルロース多孔膜の第三特徴構成は、空孔率 (Pr)と膜厚 (d)との積 を 100 μ m〜200 μ mとした点にある。
[0103] 本構成のように、空孔率 (Pr)と膜厚 (d)との積が 100 μ m以上で 200 μ m以下であ れば、微粒子除去性能と有用物質の膜透過速度とのバランスをさらに良好にとること ができる。
[0104] 本発明の再生セルロース多孔膜の製造方法の第一特徴構成は、上記再生セル口 ース多孔膜の第一特徴構成に記載の孔拡散用再生セルロース多孔膜の製造方法 であって、セルロース誘導体であるセルロースエステルの溶液中に金属塩を 1重量0 /0 以上添加した状態でミクロ相分離法で多孔膜とし、その後、 PHが 11〜13の 50°C以 下のアルカリ水溶液でケンィ匕処理することによって製造する点にある。
[0105] 本構成によれば、当該孔拡散用再生セルロース多孔膜は、(1)セルロース誘導体 のミクロ相分離法による成膜法、 (2)セルロース誘導体をケンィ匕反応による再生セル ロースにする方法、によって作製される。特に、ミクロ相分離用溶液中に金属塩を 1重 量%以上含むこと、特定されたケンィ匕条件を選定することの組み合わせで作製でき る。
[0106] セルロース誘導体としてセルロースエステル、特にセルロースアセテートがその入 手の容易さとミクロ相分離を起させる溶媒系として非水系の溶媒が選定できる点で特 に好ましい。非水系溶媒を用いることによりミクロ相分離を短時間で起こすことが可能 であり、乾式法でのミクロ相分離が利用できる。
ミクロ相分離を短時間で生起させることが可能になれば、膜厚の大きな多層構造膜 の作製が容易となる。セルロースアセテートの場合、良溶媒の種類も多ぐ重金属を 含まない有機溶媒も簡単に溶媒系として選定可能である。特にこの場合、アセトンが 好適である。
[0107] セルロース誘導体をケンィ匕反応によって再生セルロース固体とした場合には、分子 間水素結合の発達度が低くなることを発見した。この結合の発達度が低くなると耐熱 性は低くなるが孔拡散用膜としては耐熱性の低下は問題とならない温度(200°C以 上)である。
[0108] またセルロースアセテートのケンィ匕反応の場合では、ミクロ相分離後の膜内での分 子間水素結合の方向がランダムのため、水に対する膨潤の異方性は生じない。また 、高圧 ·高温での熱水処理に伴う変形にも異方性を示さない。ケン化反応によって一 般には空孔率が増加し、同時に平均孔径は小さくなる。
ただし、ケンィ匕前の膜の平均孔径が 9nm以下の場合には、ケン化反応によって逆 に平均孔径は大きくなる。この性質を利用して平均孔径 lOnm以下の再生セルロー ス膜を作製できる。
[0109] 流延用溶液中には良溶媒、貧溶媒、および界面張力制御剤の他に金属塩を 1重 量%以上含ませると、ミクロ相分離後の膜の支持体力 のはく離、および表裏面の膜 の孔特性を制御するのが容易となる。
金属塩としてはアルカリ土類金属の塩酸塩や酢酸塩が良 、。特に塩ィ匕カルシウム が良い。金属塩を添加する際は結晶水を結合した化学物とすることにより、一定量の 水分を含ませるのが良い。添加量はこの結晶水も含めた総重量で定める。
[0110] ミクロ相分離後の平膜をケンィ匕処理する際には、セルロース誘導体の分子量低下 が顕著でない条件下で行う必要がある。即ち、 PHが 11以上で 13以下のアルカリ水 溶液で温度は 50°C以下の温和な条件で実施する。
アルカリ水溶液は苛性ソーダや苛性カリで調製する。このような温和な条件下でも 反応時間は 24時間以内で十分であり、ミクロ相分離後の膜を乾燥、または、湿潤状 態の何れでも力まわない。ケンィ匕反応の進行が早いのはミクロ相分離後の平膜が多 孔体であり、かつ固体部分が非晶状態にあるためであろう。
[0111] 本発明の再生セルロース多孔膜の製造方法の第二特徴構成は、上記再生セル口 ース多孔膜の第二特徴構成に記載の孔拡散用再生セルロース多孔膜の製造方法 であって、セルロース誘導体である酢酸セルロースの溶液中に金属塩を 1重量%以 上添加した状態でミクロ相分離法で多孔膜とし、その後、 PHが 11〜13の 50°C以下 のアルカリ水溶液でケンィ匕処理することによって製造する点にある。
[0112] 本構成によれば、セルロースエステルとして酢酸セルロースを適用しているため、上 述した再生セルロース多孔膜の製造方法の第一特徴構成の作用効果に加えて、入 手の容易さおよび安全性よりに優れた方法となる。
[0113] 本発明の再生セルロース多孔膜の製造方法の第三特徴構成は、上記再生セル口 ース多孔膜の第三特徴構成に記載の孔拡散用再生セルロース多孔膜の製造方法 であって、セルロース誘導体であるセルロースエステルの溶液中に金属塩を 1重量0 /0 以上添加した状態で、前記セルロースエステルの良溶媒の蒸発によって生起される ミクロ相分離法で多孔膜とし、その後、 PHが 11〜13の 50°C以下のアルカリ水溶液 でケンィ匕処理することによって製造する点にある。
[0114] 本構成によれば、ミクロ相分離法を、セルロースエステルの良溶媒の蒸発によって 生起されることとして 、るため、上述した再生セルロース多孔膜の製造方法の第一特 徴構成の作用効果に加えて、蒸発過程でミクロ相分離を良好に生じさせることができ る方法となる。
[0115] [4]非破壊式の平膜検査方法
上記第 4の目的を達成するための本発明の非破壊式の平膜検査方法の第一特徴 構成は、溶液中の特定の分散物を分離する平膜の再利用を可能とするため、貴金 属以外の微粒子を利用した直接法によって、複数の孔を備えて孔拡散式によって前 記平膜の粒子除去能が低下して ヽな ヽことを確認する完全性試験工程を有する点 にある。
[0116] 本構成では、微粒子除去性能の検査法と膜の完全性試験法とが同一となる。微粒 子除去性能の検査法は膜メーカーが実施し、完全性試験は膜の使用者が行って ヽ たため、両試験法は異なるのが一般的である。膜メーカーは膜の使い捨てを指導し ていたため、完全性試験は破壊試験であり、しかも、検出感度は除去性能の検査法 としては不十分な状態のままほとんど技術進歩がない。両方法を同一にすることによ り完全性試験で得られた実測値はそのまま除去性能の値を示している。
[0117] 本構成では、完全性試験法として非破壊式で直接法を用いる。非破壊式であるた めに、使用後の膜は、完全性試験で得られた微生物除去性能を有する膜であること を確認したことになる。即ち、完全性試験が再利用する際の膜の性能試験の役割を 果すことになる。
また、直接法であるため膜の界面的変化の影響を極小化することができる。完全性 試験を行う前に膜に再生処理を施すとさらに好ま Uヽ。
[0118] 完全性試験および除去性能試験のいずれでもコロイド分散液で膜処理する際、孔 拡散を採用すると、試験に伴うコロイド粒子が膜内部に残留することがないので、試 験後の膜再生は容易である。性能試験後に膜を利用して分離精製する工程におい て孔拡散法を利用すれば、膜の孔中にはほとんど残存物はなぐ膜の再生利用がよ り容易となる。
[0119] 本構成では、平膜を用いた膜分離技術での使用後の膜に完全試験を行う。平膜を 用いた膜分離技術で完全性試験を必要とするのは、微粒子除去性能の確認のため である。この場合には膜分離技術としては膜濾過技術と孔拡散技術とが採用される。 前者の場合には溶液を流しながら濾過(平行濾過、タンジュンシャルフロー濾過、ク ロスフロー濾過と 、われて 、る濾過)であり、負荷される膜間差圧もデッドエンド濾過 に比較して小さ!/、。すなわち平膜を用いた微粒子除去の膜分離技術では濃度分極 の効果を小さくした条件下で膜分離が実施される。そのため完全性試験を実施する 前に必ずしも常に使用後の膜を溶解除去処理する必要がない。膜に吸着している成 分と完全性試験で使用する微粒子とが水溶液中で吸着することがないことがあらかじ め確認されておれば、完全性試験前の膜の溶解除去は必ずしも必要な ヽ。
[0120] 平膜を用いた膜分離技術が孔拡散技術であれば完全性試験前の膜の溶解除去 はほとんどの場合必要ない。孔拡散技術では膜内部に粒子等が目詰まりすることは ほとんどない。そのため、孔拡散技術を膜分離技術として利用することが望ましい。し かし膜表面に特定の成分が吸着し積層化する場合がある。この場合には完全性試 験に利用する微粒子と積層化した物質との間で吸着等の相互作用を起す可能性が あるので、完全性試験前に膜の溶解除去が必要となる。
[0121] 完全性試験前に膜の溶解除去の必要とする場合には、一般的には以下の順で溶 解除去すれば膜の再利用にも好都合である。即ち、(1)膜の滅菌処理;過塩素酸水 溶液中に浸漬するか、または過酸ィ匕水素水をモジュール内に充填する、(2)界面活 性剤入りの 0. 1規定の水酸ィ匕ナトリウム水溶液でモジュール内を充填する、(3)蒸留 水等の純水で逆洗し、さらに、 (4) 0. 1規定の水酸ィ匕ナトリウム水溶液中に浸漬し、 ( 5)モジュール内外を水洗し、 (6) 0. 1規定の塩酸水溶液に浸漬し、(7)水洗すること により PHをほぼ 7にする。
[0122] 従来の平膜での完全性試験法は間接法であった。平膜での間接法では負荷され る膜間差圧は、モジュールの力学的制限のため通常 1気圧以下である。そのため完 全性試験に信用される溶媒は水以外であり、該試験後には膜内部に残存し、膜の物 理ィ匕学的性質を変化させるため膜にとっては、完全性試験は破壊試験である。直接 法で非破壊型の完全性試験の必要性は、従来のように微粒子除去膜が使 、捨てで ある限りない。
膜を再利用する目的を膜分離技術開発に与えることにより、初めて平膜に対して直 接法で非破壊型の完全性試験の必要性が生じ、本発明に達することができる。
非破壊型の完全性試験であるためには、該試験で利用する微粒子が化学的およ び物理的に安定であってはならな 、。具体的には貴金属以外の微粒子である必要 がある。そのため従来の直接法で採用されている金コロイド粒子は不適である。
[0123] 完全性試験としての非破壊型で直接法にぉ 、て、貴金属以外の微粒子を用いるこ とによって、完全性試験後に膜に付着した微粒子を除去することが容易である。
[0124] 本発明の非破壊式の平膜検査方法の第二特徴構成は、前記完全性試験工程の 後に、前記微粒子を溶解除去する溶解除去工程を行う点にある。
[0125] 本構成によれば、完全性試験によって使用された膜には、吸着や目詰りにより膜以 外の物質が膜中に残存する。特に膜処理法として濾過を採用すると残存物は膜内部 に存在する量が増える。この残存物を溶解除去工程によって溶解させることにより膜 は再生される。
微粒子除去性能は、この膜に対する完全性試験で確認される。完全性試験によつ て大きな孔の物質輸送への寄与は明らかにできるが、孔全体の平均的性能は再生さ れていない可能性がある。より確実に再利用の可能性を確認するために、再生後の 膜に対して、一定の膜間差圧下での水の濾過速度を測定し、設定範囲内にあること を確認するのが好ましい。
[0126] 溶解させる方法として完全性試験終了後の膜を (A)溶解除去する溶液に浸漬、(B )膜を洗浄液で逆洗、(C)モジュール内に溶解除去する溶液を充填し、ある期間保 存後に当該溶液を除去する方法がある。
[0127] 本発明の非破壊式の平膜検査方法の第三特徴構成は、前記溶解除去工程に用 いる溶解除去剤が、前記平膜を構成する素材と化学反応して溶解'膨潤することなく 前記完全性試験工程で用いた前記微粒子を溶解する性質を有する点にある。
[0128] 本構成によれば、溶解除去工程に用いる溶解除去剤が、平膜を構成する素材と化 学反応して溶解'膨潤することがないため、安定的に溶解除去工程を行うことができ る。
[0129] 本発明の非破壊式の平膜検査方法の第四特徴構成は、前記微粒子を水酸化第 二鉄コロイド粒子とした点にある。
[0130] 直接法の完全性試験で用いる微粒子としては無定形の低分子コロイド粒子が良!ヽ 。無定形であるために溶解除去液による溶解速度が早 、。
本構成のように、微粒子を水酸ィ匕第二鉄コロイド粒子とすれば、コロイド粒子の調整 の容易さと、安定性、およびコロイド粒子濃度の測定が容易となる。
尚、水酸ィ匕第二鉄コロイド粒子の濃度は、塩酸等で水酸ィ匕第二鉄をイオンィ匕して 鉄イオンとし、分光法で測定する。
[0131] 水酸ィ匕第二鉄コロイド粒子では、完全性試験後に酸を用いて簡単に該粒子を溶解 除去できる。水酸化第二鉄コロイド粒子を分散した水溶液中に、親水性高分子添カロ 剤と陽イオン界面活性剤あるいは非イオン性界面活性剤を添加すると、完全性試験 時のコロイド粒子の安定性が増加する。
[0132] 本発明の非破壊式の平膜検査方法の第五特徴構成は、前記平膜の素材が親水 性高分子であり、かつ、前記溶解除去剤を塩酸とした点にある。
[0133] 完全性試験を実施する前に必要に応じて膜の再生処理を行う。水溶液の溶解また は分散した粒子等が膜処理時に吸着することを防止するには、微粒子除去用の膜の 素材として親水性高分子が好適である。
[0134] 試験後に水酸ィ匕第二鉄コロイド粒子を溶解除去するには、試験直後に酸処理する と、微粒子を容易に溶解することができる。当該酸としては、塩酸が入手および取り扱 いの容易さ等から好ましい。
塩酸濃度としては、 0. 1〜1規定が高分子膜素材への影響が無視できる場合が多 いため、望ましい。溶解除去剤を用いて微粒子の溶解除去を完全に実施するには、 予め該微粒子を含む水溶液中に溶解除去剤を混合し、処理時間と微粒子成分のィ オン化率との関係を定め、完全にイオン化する時間の 2倍以上の処理時間と、処理 温度を完全性試験の際の温度より 10°C高温に設定すれば良!、。溶解除去後に水洗 して溶解除去剤を完全に除去する。
[0135] 本発明の非破壊式の平膜検査方法の第六特徴構成は、前記親水性高分子を再 生セルロースとした点にある。
[0136] 本構成によれば、特にタンパク質を含む水溶液の膜処理では素材高分子として再 生セルロースが最適である。再生セルロース膜の再生処理法の典型的な方法は 0. 1 〜0. 2規定の苛性ソーダ溶液中に非イオン性界面活性剤を 0. 01〜0. 1重量%溶 解した溶液に一定条件下で浸漬処理する。完全性試験前の再生処理の目的は、使 用後の膜に吸着あるいは目詰りした成分によって、完全性試験用のコロイド粒子の分 散状態が変化するのを防止するためであり、膜を使用前の状態に再生することでは ない。 発明を実施するための最良の形態
[0137] [1]孔拡散式平膜分離装置
以下に、膜の孔拡散機構を利用して固液の分離を行う孔拡散式平膜分離装置に 関して説明する。
[0138] 図 1〜3に示したように、本発明の孔拡散式平膜分離装置 Xは、複数の孔を備えて 孔拡散式によって溶液中の特定の分散物を分離する平膜 7と、流路 2を片面あるい は両面に設けた平板状支持体 1とが交互に配置されるようにそれぞれ複数備えてい る。
流路 2の空間体積と平膜 7の膜面積との比が 0. 04〜0. 4の範囲となるように設定 している。
平膜 7を介して上下の平板状支持体 1の流路 2における溶液の流れ方向が実質的 に同一方向になるよう、平板状支持体 1の側面の少なくとも 2箇所以上に、流路 2と連 通する通水路 3を設ける。
[0139] 図 1に、 3枚の平板状支持体 1、 2枚の平膜 7を用いて組み立てた孔拡散式平膜分 離装置 Xを示し、図 2に平板状支持体 1の平面視概略図を示す。本発明に使用する 平板状支持体 1は、平膜 7を上下力 挟むようにして平膜 7を支持して 、る。
[0140] 形状は、固液分離方法を拡散式とすること、使用する膜が薄い平板上の平膜であ ることから、支持体は平板状としている。また、平板状支持体 1の片面或いは両面に 処理液をスムーズに通すための流路 2を設けてある。
流路 2は、拡散物質を含み一定速度で拡散処理を受ける溶液である処理液が、通 水路 3の入口 3aから出口 3bに向かって流れる。また、流路 2は、平板状支持体 1の表 面に凹型にカ卩ェされ、通水路 3の入口 3aから出口 3bまで屈折して蛇行するように形 成される。これにより、平膜 7の全体に処理液を接触させることができるため、孔拡散 効率が向上する。また、支持体 1に流路 2が設けてあることで、平膜 7の全体が支持 体 1に密着するのを防ぐことができる。
[0141] 流路 2の深さは、孔拡散を効率よく行うことが出来ればどのような厚みでも良いが、 処理液の平膜 7に触れる面積がなるべく多くなるよう、薄い方が良い。好ましくは、 0. 05センチメートル〜 0. 3センチメートル程度である。 0. 3センチメートルを超えると、 それに伴い平板状支持体 1の厚みも厚くしなければならず取り扱いが難しくなる。ま た、 0. 05センチメートル以下であると、処理液の平膜 7に触れる面積が減少するた め効率よく孔拡散を行うことができず、液の流れが滞ってしまう。
[0142] 平板状支持体 1の側面 2箇所以上に流路 2に通じる通水路 3を設け、処理液の出入 口とする。この時、平膜 7に圧力が力かることなく拡散を行うようにするために、平膜 7 を介した上下の液の流れは同一方向になるようにする。
[0143] 本発明の孔拡散式平膜分離装置 Xは、該支持体の複数枚を垂直方向に積層する ことで、任意の膜面積に調節することができる。
[0144] 平板状支持体 1の固定は、平板状支持体 1の周囲に螺子穴 4を開け、固定部材で ある螺子 8,ナット 9によって固定するのが好ましい。螺子穴 4の個数、間隔は、モジュ ールの大きさ、面積によって調節すればよい。固定部材 8, 9としては、腐食性に優れ ているステンレス製などが使用できる。また、平膜 7と平板状支持体 1を接着剤などで 固定しないので、これらの分解'組立てが可能となる。そのため、平膜 7と平板状支持 体 1の一部が破損したとしてもその部分のみを取り替えることができ、さらに膜の再生 処理がしゃすくなり孔拡散式平膜分離装置 Xのコストを抑えることができる。
[0145] 平板状支持体 1の上面及び下面の少なくとも一方の周縁部に、高分子弾性体から なるパッキング 5を備える。
パッキング 5の素材としては、平板状支持体 1の当該周縁部を囲むように施し、平膜 7をパッキング 5で固定すること、処理液が孔拡散式平膜分離装置 Xの側面から漏れ ることを防ぐこと、孔拡散を効率よく行うことができればどのようなものでも良い。
好ましくは、耐熱性 '耐薬品性を兼ね備えた高分子弾性体であり、例えば、シリコー ン系ゴムなどが使用できる。パッキング 5と平板状支持体 1との接着の程度は固定部 材 8, 9で加圧した状態では密着し、平膜 7と平板状支持体 1とを分離した状態では 弱く接着し、必要ならばパッキングを手で剥がす事が可能な状態であるのが好まし 、
[0146] 平板状支持体 1の素材としては、ポリカーボネート'ポリアミド 'ポリアセタール'ポリス ルホン.ポリエーテルスルホン.ポリエーテルエーテルケトン.ポリエチレンなどのプラ スチックや、ステンレス 'セラミックなどの無機材料などが適用できる。繰り返し使用す ることなどを考慮して、耐熱性 ·耐衝撃性 ·耐アルカリ性 ·耐酸性で軽量かつある程度 の透明性を兼ね備えて 、ることが望ま U、。そのような性質を持つプラスチックとして はエンジニアリングプラスチックがある。例えば、ポリカーボネートが特に好適に使用 できる。
[0147] 平板状支持体 1の通水路 3には、外部の流路と連結する連結部材 6が着脱可能に 設けてある。当該連結部材 6の素材としては、どのようなものでも良ぐ例えばポリェチ レンやテフロン (登録商標)などのプラスチックが使用できる。ただし、インライン滅菌 などを可能にするためには耐熱性ゃ耐蒸気性を持つ材料、例えばポリエチレン 'ポリ プロピレンの結晶性高分子材料が好まし 、。
[0148] 本発明の平膜 7は、平板状支持体 1と特別な接着固定を必要とせず、また、平膜 7 自体も特別な加工を行う必要がないため、平板状の膜であればどのような膜でも良 い。し力しながら、分離方法に孔拡散を用いるため、平均孔径が約 2nm以上 以下程度であり空孔率カ 0%〜90%の多孔膜であることが望ましい。
[0149] (実施例 1)
ポリカーボネート板で作製した平板状支持体 1 (以下、支持体という)は、板厚約 0. 6センチメートル、縦 40センチメートル、横 50センチメートルの平板状である。片面あ るいは両面に幅 1. 5センチメートル、深さ 0. 1センチメートルの凹型の流路 2力 通 水路 3の入口 3a'出口 3bに亘つて連通するように加工してある。
[0150] 通水路 3は処理液の出入口となる。この通水路 3は、支持体 1の側面において、流 路 2の先端と末端にくるように直径約 0. 4センチメートルの穴を、流路 2とつながるよう に形成してある。これにより、処理液は一定方向の流れを確保することが出来る。
[0151] 螺子穴 4において、穴間隔は 5センチメートルとした。支持体 1に直接穴を開けてい る。ここに螺子 8を差込み、支持体 1を固定する。螺子 8は、螺子穴 4すべてを用いて 固定する必要はなぐ必要に応じて数と場所を調節すればよい。
[0152] ノ¾ /キング 5は、支持体 1の流路 2と螺子穴 4の間に、幅約 0. 7センチメートルとなる ようにシリコーン系の接着剤を直接支持体 1に接着し、重合固化後に、厚さは 0. 05 センチメートルのパッキングとして形成した。このパッキング 5により、孔拡散式平膜分 離装置 X内をさらに密封して平膜 7を固定できる。 [0153] 図 1において、 3枚の支持体 1、 2枚の平膜 7を用いて組み立てた孔拡散式平膜分 離装置 Xを示す。外側の支持体 laは、流路 2、 ノ ッキング 5を片面に設けており、側 面に通水路 3を設けてある。中間の支持体 lbは、流路 2、パッキング 5を両面に設け 、側面に通水路 3を設けてある。
[0154] 平膜 7は再生セルロース製の多孔性平膜であり、平均孔径 30nm、空孔率 65%、 膜厚 170ミクロンであった。この平膜 7は支持体 1に形成したパッキング 5と同等以上 の大きさの膜面積 (2000平方センチメートル程度)を有する 1枚膜である。この平膜 7 を支持体 1で挟み螺子 8で固定する。この時、支持体 1の向きは流路 2の向きが同じ になるようにする。通水路 3にポリエチレンの連結部材 6を挿入し、孔拡散式平膜分 離装置 Xを作製して、連動ポンプにより孔拡散が可能な装置を み立てた。
[0155] 処理液として、平均粒径 27nmの水酸ィ匕鉄コロイド溶液を用いた。本発明の孔拡散 式平膜分離装置 Xは、拡散時、一定速度で拡散処理を受ける処理液は平膜 7の下を 流れるように、入口側の通水路 3aからそれぞれ流路 2に沿って流れていき、出口側 の通水路 3bを通り外部に集められた。また、拡散物質が流入する拡散液は平膜 7の 上を流れるように、入口側の通水路 3aから流路 2に沿って流れていき、出口側の通 水路 3bを通り外部に集められた。
このとき、平膜 7を介して孔拡散が起こり、処理液に存在する拡散物質が拡散液に 流入し、さらに、一定速度で被拡散液と拡散液とが混入することなく流れが起これば 、拡散における定常状態が実現できる。
[0156] また、ノ ッキング 5により、装置の密封度を上げ、平膜 7の固定も十分に行うことがで きる。さらに、平膜 7と平板状支持体 1とがそれぞれ独立しているので、孔拡散式平膜 分離装置 Xを分解後に再度組立て直したり、平膜 7の枚数を増やして膜面積を増加 することが容易に行うことができた。
[0157] 尚、処理液において、入口側の通水路 3aから流入させた処理液量 V、濃度 C 、
A AIN
出口側の通水路 3bから流出した濃度 C 、および、拡散液において、入口側の通
AOUT
水路 3aから流入させた処理液量 V、濃度 C 、出口側の通水路 3bから流出した濃
B BIN
度 C に基づき、以下の数 3, 4の式が成立する。
BOUT
このとき、 D:孔内拡散定数、 S :膜面積、 d:平膜の厚さ、である。 [0158] [数 3] C
Figure imgf000034_0001
[0159] [数 4]
Figure imgf000034_0002
[0160] 例えば、運転条件を V =V =V C =0とした場合、以下の数 5, 6の式が成立
BIN
する。このとき、 C
AOUTは処理液の濃度変化、 C
BOUTは拡散液の濃度変化となる。
[0161] [数 5]
Figure imgf000034_0003
[0162] [数 6]
C c Ain
し Bout = 1― exp ―
2 vd ノ
[0163] 処理液と拡散液におけるそれぞれの滞留時間 (h) '濃度 (g/dL)の関係を示したグ ラフを図 11に示した。尚、滞留時間は、流路の容積を流量で割ることにより求めること ができる。
[0164] 回収率(%)は、処理液濃度減少量を処理液入り口濃度で割ること〖こより求めること 力 Sできる。回収率(%)と流量 (L/h'm2)との関係を示したグラフを図 12に示した。
[0165] 上述した孔拡散式平膜分離装置 Xでは、多孔膜が備える孔を介した物質の拡散現 象を利用した平膜 7が再利用でき、それによつて孔拡散式平膜分離装置 Xを安価に 提供できる。
[0166] [2]平膜濃縮装置
以下に、生理活性物質を含む水溶液や産業廃棄物より抽出処理液中の有用物質 等を含んだ溶液を、平膜を用いた平行濾過により有用物質を高い回収率で濃縮する 平膜濃縮装置に関して説明する。 [0167] 当該平膜濃縮装置は、平均孔径が l〜3nmとなる複数の孔を備えて膜濾過によつ て溶液中の特定の分散物を分離する平膜を備える。図 4〜6に示したように、平膜濃 縮装置 Yは、平膜 7を平板状の支持体 1で狭み、少なくとも 2枚の平膜 7と、少なくとも 3枚の支持体 1を有し、支持体 1には溶液の流入口 3aと流路 2と流出口 3bを形成して ある。
平膜濃縮装置 Yは、平膜 7に対して、原液である溶液側の圧力を大気圧以上にカロ 圧し、同時に、平膜 7を通過した濾液側を大気圧以下に減圧することで膜間差圧を 発生させ、溶液を平膜 7の表面に対して略平行に流動させながら濾過する平行濾過 により溶液中の成分を濃縮する。
[0168] 公知の方法で湿式成膜されたセロハン膜を、 95°Cの熱水中において自由端で 1時 間処理する。処理後に水を切り、窒素気圧中にて 180°Cで乾熱処理して平均孔径を 1. 5nm.空孔率 20%の再生セルロース膜を作製した。再生セルロースは親水性高 分子の一例である。
空孔率は見掛けが密度法により、再生セルロースの密度を 1. 54gZmlとして膜の 見掛け密度の実測値より算出する。平均孔径は、純水の一定膜間差圧下での濾過 速度を測定することにより算出する (濾過速度法と呼称されている方法)。
[0169] ポリカーボネート製の支持体 1 (厚さ 6mm,縦 45cm X横 55cm)に深さ約 lmmの 溝を形成して流路 2を構成してある。支持体 1の周囲には、シリコン系の充填剤を接 着してパッキング 5を形成する。ノ ッキング 5の厚さは、例えば 0. 5〜lmmである。流 路 2には、支持体 1の外部の流路と連結するための流入口 3a'流出口 3b (内径 3mm )が側面に二箇所設置され、流入口 3a'流出口 3bには着脱可能な連結部材が挿入 される。
[0170] 上記の方法で作製した再生セルロース膜を支持体 1で挟むようにして、 2枚の再生 セルロース膜と 3枚の支持体 1とを組み付け、支持体 1をボトルで締め、固定化する。 その後、連結部材を流入口 3a '流出口 3bに挿入して外部流路に接続する。外側の 2 枚の支持体 laの空間部を 0. 2気圧下で膜間差圧が 0. 3気圧になるように、中間 の支持体 lbに加圧状態で処理液を流入させる。例えば、 3Lの処理前液を 300mL に濃縮するには、有効濾過面積 lm2の場合で約 12時間の濾過が必要である。 [0171] (実施例 2)
図 4は平膜濃縮装置 Yを簡易的に示した図であり、平膜濃縮装置 Yは支持体 1と平 膜 7が交互に重なった構造となっている。外側の支持体 laには大気圧が作用し、支 持体相互の密着性が増大しパッキングの効果が増大する。
[0172] 図 5は図 4の平膜濃縮装置 Yの縦断面図を簡略的に示した図である。点線は、間に 挟まれる複数枚の支持体と平膜を省略したことを示す。このとき、外側に配置される 支持体 laと平膜 7との間の空間 10は減圧状態であり、空間 11は加圧状態とする。加 圧側の支持体にも流路が形成してある。この流路により、濃縮液の回収が容易となり 、必要ならば逆洗が可能となる。
[0173] 図 5の中間に配置される支持体 lbと平膜 7に関しては、平膜 7を挟んで上側の空間 を加圧、下側の空間を減圧とする。加圧側と減圧側との区別を容易にするために連 結部材の位置を予めずらして挿入するとよ 、。
[0174] 加圧状態にある空間に処理液を流すと、減圧状態にある空間との膜間差圧により 濾過が行われ、平膜 7を透過した処理液は減圧状態にある空間のほうへと流れ込む 膜面積を有効に濾過に利用するためには、加圧状態にある空間部の空気を除去し なくてはならない。そのため、流入口 3a ·流出口 3bへ空気が流出しやすくするために 、平膜濃縮装置 Yを垂直に立てたり傾斜させる必要がある。処理液の濃縮率を高め るには、溶液の流れ速度を遅くしたり、あるいは繰り返し濾過を実行する。回収率の 低下が起こらな ヽためには濃縮率は 10倍以下が良 、。
[0175] 図 6は支持体 1の平面図である。支持体 1の上面および下面の少なくとも一方の周 縁部にパッキング 5が形成してあり、処理液の流れる面の全体に処理液の流れ方向 に沿って流路 2が形成してある。これらの加工は両面に施してある力 最も外側に配 置される支持体 laに関しては片面のみである。支持体 1の素材はポリカーボネート製 で、耐熱性と耐衝撃性に優れる。
[0176] モジュールの状態で長期保存する場合、 PH > 9のアルカリ性水溶液を入れた状態 での保存は、支持体 1にひび割れが生じる虞があるため、避けるべきである。そのた め、アルカリ性水溶液に代えて、 50%のエタノール水溶液が良い。 [0177] 支持体 1に流路 2が設けてあることで、平膜 7の全体が支持体 1に密着するのを防ぎ 、処理液を平膜 7の全体に円滑に流すことが可能である。流路 2の溝の形状は前記 作用の他に濃縮液の回収の容易さ、洗浄の際にも平膜 7が支持体に密着しないよう に設計すべきである。溝の深さは l〜2mm、溝間の間隔は 2cm以下であることが好 ましい。
[0178] 図 5の空間 10を減圧状態にすることで、外側の支持体 1は平膜濃縮装置 Yの内部 に向って凹状に変形し、パッキングの効果は上がり、液漏れを防ぐ。
[0179] また、支持体 1と平膜 7の枚数を目的に応じて調節できるため、膜面積を変動させる ことが可能である。そのため少量から多量の種々の処理液の処理を行える力 目詰ま りを防ぎ、濃縮効率を上げるという観点からみると、孔拡散式平膜分離装置を通した 後の拡散液を流すことが最も好まし 、。
[0180] 上述のように本発明の平膜濃縮装置は、装置全体の軽量化に成功し、また装置の 構造を単純化し、分解及び組み立てを容易にしたことにより簡便な取り扱いが可能で ある。
[0181] 本発明により温和な条件下での成分の濃縮が可能となる。また従来の膜濃縮法に 比べて、
(1) 1気圧以下の低い膜間差圧での操作で連続濃縮が可能、
(2)濃縮される成分は、ペプチド等の分子量 500以上の成分で、分子量 1000以上 の成分については 1%以下の稀簿濃度からの濃縮率 10倍が達成される、
(3)アミノ酸等の分子量 200以下の成分による膜表面での濃度上昇が防止され、連 続濃縮が可能となる、
(4)糸且立て、分解、再利用可能なハウジングとなる、
(5)濃縮側の液流れが均等に維持されサニタリー性が保持される、
(6)軽量で有効膜面積を 0. 001m2〜: LOm2にわたつて変化させる、
ことが容易である。
[0182] [3]再生セルロース多孔膜
以下に、孔拡散式平膜分離装置に装着する膜としての再生セルロース多孔膜およ び該膜の製造方法について説明する。より詳しくは多孔膜中の孔を通した物質の拡 散 (孔拡散)により目的物質を分離精製する技術に最適な平膜およびその製造方法 である。
[0183] 本発明の再生セルロース多孔膜は、平均孔径(2rf)が 5〜500nm、膜厚(d)が 50 〜500 /ζ πι、空孔率(Pr)が 0. 6〜0. 9の多層構造を有する再生セルロース膜で、 分子間水素結合の発達度が 40%以下である。
好ましくは、平均孔径(2rf)が 8〜: LOOnm、膜厚(d)が 100〜300 /ζ m、空孔率(Pr )と膜厚 (d)との積が 50 μ m以上である。
さらに好ましくは、空孔率 (Pr)と膜厚 (d)との積が 100 μ m〜200 μ mである。
[0184] 当該再生セルロース多孔膜は、セルロース誘導体であるセルロースエステルの溶 液中に金属塩を 1重量%以上添加した状態でミクロ相分離法で多孔膜とし、その後、 PHが 11〜13の 50°C以下のアルカリ水溶液でケン化処理することによって製造する 前記セルロースエステルは、酢酸セルロースが好まし!/、。
金属塩としては、アルカリ土類金属の塩酸塩や酢酸塩が例示され、特に塩ィ匕カル シゥムが好ましい。
また、前記ミクロ相分離法は、セルロースエステルの良溶媒の蒸発によって生起さ れることが好ましい。
[0185] 平均置換度 2. 46の酢酸セルロース(重合 190)を流延溶液中の濃度を 3〜13重 量%になるように、アセトンに溶解する。一方、メタノール/ CaCl · 2Η ΟΖ
2 2 シクロへ キサノールの濃度が流延溶液中で、 4〜8重量%Zl〜: L0重量%Ζ15〜35重量% になるような混合溶液を作製する。これら二溶液を自転と公転を繰り返す溶解機で完 全に溶解する脱胞と濾過により、溶液の清浄度を高めて流延用溶液を作製する。
[0186] ガラス板上に厚さ 0. 5mn!〜 2mmで流延し、外気温とガラス板の温度差が 10°C以 上であるように、主として良溶媒 (この場合、アセトン)を蒸発させる。蒸発過程でミクロ 相分離が起り、流延液は白色となる。 20〜60分後に作製した流延膜とガラス板とをメ タノール中に浸漬し、膜中に残存する溶媒および塩化カルシウムを除去する。
膜中のメタノールを純水で置換し、 50°C以下の苛性ソーダ水溶液 (PH= 12)に浸 漬し、時々攪拌し、ケン化反応を 20時間行い、その後水洗すると本発明の再生セル ロース多孔膜が得られる。この多孔膜をポリカーボネート製の平板上の支持体に保 持すると、孔拡散式平膜分離装置が完成する。
[0187] (実施例 3)
平均置換度 2. 50の酢酸セルロース(平均重合度 210)を重量濃度 (流延用原液中 での重量濃度) 11. 5%,アセトン 51. 6重量0んメタノーノレ 6. 5重量0ん CaCl · 2Η
2 2
Ο 1. 2重量%,シクロへキサノール 29. 2重量%となるように、それぞれを溶解した 。溶解後の溶液について脱胞と濾過を実施した。
[0188] 1mmの流延厚さとなるようにガラス板上に流延した。 25°Cで 30分間放置し、ミクロ 相分離を起こさせ、その後、ガラス板と共に 25°Cのメタノール中に浸漬し、ミクロ相分 離の進行を停止させた。相分離後の膜中に残存する成分を純水で洗浄除去した。 苛性ソーダにより PH= 12. 0に調整した 25°Cの水中に 12時間浸漬し、ケン化反 応を起こさせた。
ケンィ匕反応後の再生セルロース多孔膜の膜厚は 180 m、平均孔径 9. 5nm、空 孔率 0. 82であった。
[0189] また、上述した方法と同様な方法で再生セルロース多孔膜を作製した。このとき、メ タノールは 15重量%、シクロへキサノールは 20. 7重量%とし、得られた再生セル口 ース多孔膜は、平均孔径 40nm、空孔率 0. 67であった。
得られた多孔膜を乾燥後、オスミウム酸で染色した後の膜断面の超薄切片 (膜厚 1 OOnm)を電子顕微鏡にて観察を行った。その結果、膜面に平行した厚さ 100〜200 nmの層状構造が観察された。図 7に 3万倍の電子顕微鏡写真を示す。図 7において は、縦方向が膜の厚さ方向となる。層数 1000〜2000の層状構造が確認された。
[0190] 得られた再生セルロース多孔膜を、孔拡散型平膜分離装置に装着した。有効膜面 積を 100cm2で膜の表面に処理前溶液を流し (2mLZ分)、膜の裏面側に純水(拡 散液)を流した (流速 3mLZ分)。
[0191] 膜間差圧を事実上零にするために、純水側の流入口と流出口とに連動ポンプを設 置した。処理液として市販の牛乳をそのまま用いた。拡散液中には牛乳中の溶解し た成分のみが流出し、粒子成分は完全に除去されていた。タンパクの透過率は 5〜7 %であった。処理液量が 5Lとなっても拡散液中のタンパク濃度の低下はほとんど観 察されなかった。
[0192] 本発明の再生セルロース多孔膜は、孔拡散式平膜分離装置に装着でき、高い微 粒子除去性能を発揮する。当然、濾過用の膜としても利用され、従来のウィルス除去 用中空糸膜に比較してウィルス除去性能を高めることは容易である。
例えば膜厚を 200 mに設定することは平膜では簡単であるが、中空糸膜では不 可能に近い。この膜厚の差は、ウィルス除去性能に直接関係する。膜のみを取り替 えることが可能であるので、膜モジュールのコストは中空糸膜モジュールに比較して、 処理液量当り 1Z5以下にすることも容易である。
また、本発明の再生セルロース多孔膜では殆ど目詰まりが起こらないため、多くの 産業での微粒子除去技術、および、微粒子のみを閉空間に、その他の分子は開空 間とするための隔膜技術として機能する。
[0193] [4]非破壊式の平膜検査方法
以下に、微粒子除去用膜の検査法について説明する。この平膜検査方法は、プリ オン 'ウィルス'細菌等の微粒子の除去能を持つ膜に対する微粒子除去能の検査法 で、該検査法を適用後も微粒子除去用膜として再利用可能な非破壊検査法である。
[0194] 本発明の非破壊式の平膜検査方法は、溶液中の特定の分散物を分離する平膜の 再利用を可能とするため、貴金属以外の微粒子を利用した直接法によって、複数の 孔を備えて孔拡散式によって平膜の粒子除去能が低下して 、な 、ことを確認する完 全性試験工程を有する。そして、完全性試験工程の後に、微粒子を溶解除去する溶 解除去工程を行う。
[0195] 図 8に孔拡散式平膜分離装置 (MDPM) 33の完全性試験用装置の全体図を示す 図中の符号は、以下の通りである。
21;完全性試験用装置の一式を載せる架台
22;完全性試験用コロイド粒子分散液 (IS)と純水 (W)とを載せる架台で、架台 26と 一体的に上下へ移動
23 ;架台の一段目(固定)
24;架台の二段目の高さを制御する電動モータ 25のコントローラー 25;二段目の架台 26を上下させる電動モーター
26;二段目の架台で、上下に移動する
27 ;架台 21を支える台
28;架台 26を移動させるためのチェーン、電動モータで上下移動
29 ;純水 (W)を入れる容器
30;コロイド粒子分散液 (IS)を 、れる容器
31 ;拡散液の受器
32;コロイド粒子分散液の完全性試験後の液の受器
33;孔拡散式平膜分離装置 (MDPM)
34 ;純水 (W)中に物質拡散をさせるための連動式送液ポンプ
35;コロイド粒子分散液 (IS)の流れ速度を制御するためのコック
36;孔を拡散した物質 (回収目的物質)分散用純水 (W)の輸送チューブ
37 ;目的物質を拡散回収用チューブ
38;容器 29を外気と連絡するためのウィルス除去能を持つ通気筒
[0196] グロブリン (分子量約 40万)水溶液 (濃度 1重量%)を平均孔径 30nmの再生セル口 ース製多孔膜 (空孔率 68%,膜厚 170ミクロン:親水性高分子の一例)の平膜 (膜面 積 100平方センチメートル)を用いた場合での本発明を実施するための最良な形態 を示す。
[0197] 容器 30にグロブリン水溶液を、容器 29に純水を入れ、連動ポンプ 34により孔拡散 式平膜分離装置 33中に純水を満たし、ポンプ 34による流れ速度を 2ミリリットル Z分 に設定する。グロブリン水溶液が 1ミリリットル Z分で流れるように、流量調節用コック 3 5で設定する。受器 32でのグロブリン水溶液のグロブリン濃度は、容器 30での濃度 の 50〜90%になるように流量を調節する。
グロブリン水溶液 10Lを孔拡散式平膜分離装置 33で処理した後、ポンプ 34を用い て孔拡散式平膜分離装置 33中の平膜を、容器 29中の純水で逆洗する。
[0198] 直接法の完全性試験用の水溶液として、粒子径 30nmの水酸ィ匕第二鉄コロイド粒 子を含み、安定剤としてポリビニルアルコールと陽イオン界面活性剤を含む水溶液を 選定し、これを容器 30内に充填しコック 35を締める。ポンプ 34で純水を 100ミリリット ル流した後、ポンプ 34を停止させる。 10分間停止させた後、ポンプ 34を作動させて 回路 36内の試験液を採取し、この液中の鉄濃度を測定する。容器 30内の水溶液中 の鉄濃度の比より微粒子対数除去係数 Φを以下の数 7の式で計算する。
[0199] [数 7]
Φ = 1 o g C o / C d
(Coは容器 10内の水溶液中の鉄濃度、 Cdは回路 16内の水溶液の鉄濃度を示す)
[0200] 鉄濃度測定では液中の水酸ィ匕第二鉄をイオンィ匕し、これを錯体形成法が着色し、 その液を分光器で測定し、吸光度を求める。 Coおよび Cdは共に吸光度に比例する ので Φを決定できる。 Φの値があら力じめ設定した値以上であれば、使用された膜は 微粒子除去性能を保持して ヽることが確認される。上記の場合には具体的には Φは 3以上である。
[0201] 完全性試験後に溶解除去液として、 0. 2規定の塩酸を容器 29、 30に入れ、孔拡 散式平膜分離装置 33内の水溶液をすベてこの溶解除去液に変える。 1時間後に容 器 29, 30に純水を入れて水溶液の PHを 1. 0とし、この水溶液で孔拡散式平膜分離 装置 33内を満たす。
12時間放置後容器 29, 30に純水を入れ、コック 35と連動ポンプ 34を用いて孔拡 散式平膜分離装置 33の水溶液内を純水に置換する。置換後の孔拡散式平膜分離 装置 33は、再びグロブリン水溶液中からの微粒子除去膜として再利用される。
[0202] 完全性試験後に溶解除去処理した孔拡散式平膜分離装置 33中には、水酸化第 二鉄コロイド粒子は残存していないが、孔拡散式平膜分離装置 33を他の物質の水 溶液に適用する目的があれば完全性試験前または後に以下の工程を加えると良い
[0203] 即ち、(A)過塩素酸水溶液を MDPM中に充填し、 1時間後(B)界面活性剤を含む 水溶液で溶解除去し、次に、(C)水酸ィ匕ナトリウム水溶液を添加し 0. 1規定水溶液と し、この溶液を MDPMに充填する。約 10時間後、(D)純水で MDPM内部を置換し 、(E)さらに、 0. 1規定の水酸ィ匕ナトリウム水溶液で純水を置換し、仮に孔拡散式平 膜分離装置 33が組み立て式であれば平膜とハウジングとを分解して再使用時までこ のまま保管する。(F)再使用前に 0. 1規定の塩酸水溶液を孔拡散式平膜分離装置 33中に流入させて水酸ィ匕ナトリウム水溶液を中和し、さらに、(G)純水で MDPMを 溶解除去する。
[0204] (実施例 4 1)
ゥナギに対してタンパク質分解酵素(サモアーゼ PC— 10、大和化成社製)で酵素 分解後、遠心分離により水溶液成分を回収した。この水溶液約 2Lを、平均孔径 25η m、空孔率 65パーセント、膜厚 180ミクロンの再生セルロース多孔膜で構成された孔 拡散式平膜分離装置 (ハウジングはポリカーボネード製)を用いた孔拡散法で分離し た。
有効拡散面積は 100平方センチメートルであった。
拡散液中の主成分はペプチドおよびアミノ酸であり、酵素は拡散残液中に残留して いた。
[0205] 使用後の孔拡散式平膜分離装置を図 8のように設置した。容器 29に純水を、容器 30に平均粒径 25nmの水酸化第二鉄コロイド粒子(0. 02重量%)、ポリビュルアル コール (0. 01重量%)、および、陽イオン界面活性剤(1重量%日本油脂製カチオン AB)を含む水溶液 (IS)を充填する。
連動ポンプ 34を運転し、孔拡散式平膜分離装置 33中に純水を充填する。流速制 御用コック 35を開き、当該水溶液 ISを孔拡散式平膜分離装置 33内に充填し、該コッ ク 35を閉じる。 10分後に連動ポンプ 34を運転して拡散液を採取した。
[0206] 当該水溶液 IS中の鉄および拡散液中の鉄濃度を測定した。即ち、それぞれの液中 に塩酸をカ卩え、 PH= 1. 0として、さらに 50°Cに 10分間加熱し、チォシアン酸カリウム を微量添加し着色した。
この溶液の吸光度を分光器で測定した。その結果、数 3の式で算出される Φは 3以 上であった。容器 10に 1規定の塩酸水溶液を満たし、孔拡散式平膜分離装置 33の 入口側の連動ポンプ 34によって該塩酸水液で溶解除去後、直ちに孔拡散式平膜分 離装置 33を回路より外し、孔拡散式平膜分離装置 33ごと 0. 1規定の NaOH水溶液 中に浸漬した。
[0207] 浸漬した状態のまま孔拡散式平膜分離装置 33を平膜とハウジングとに分解した。
モジュールを構成しているハウジングは水洗し 110°Cで加熱乾燥した。平膜は 0. 1 規定の NaOH水溶液に 2日間浸漬を続けた後、水洗した。水洗後の平膜を再び組 立てて孔拡散式平膜分離装置 33を作製した。
以下、上述と同様に孔拡散実験に再生後の孔拡散式平膜分離装置 33を利用した 。この再生操作を 5回繰り返したが孔拡散特性は変化な力つた。
[0208] 微粒子除去を目的とした膜分離技術では使用後の膜に対して完全性試験が義務 付けられて 、る。従来技術ではこの完全性試験が破壊型であったため該試験を行う ことによって膜の再利用の道が閉ざされていた。本発明の完全性試験によって該試 験後の膜に再利用の可能性が生じた。
特に、孔拡散技術との組み合わせによって膜の再利用が可能となった。平膜に対 しても直接法の完全性試験の適応が可能となり、安全性試験前の膜の表面に沈着し た成分の溶解除去の必要性が低滅できるだけでなぐ完全性試験に力かるコストの 低減につながる。即ち、本発明での直接法で利用する微粒子は、貴金属以外の微 粒子であるためその調製は容易でかつ安価である。
[0209] (実施例 4 2)
酢酸セルロースのアセトン溶液より流延法で製膜後、ケンィ匕処理により作製した再 生セルロース多孔膜 (平均孔径 9nm、空孔率 85%、膜厚 160ミクロン)の微粒子除 去性能を、平均粒子径 20nmの水酸ィ匕鉄コロイド粒子分散液で孔拡散法により評価 した。
分散液中には、ポリビニルアルコールと非イオン界面活性剤を混合している。粒子 対数阻止係数は 4. 5以上である。除去性能検査後の膜を 1規定の 40°Cの塩酸水溶 液中に 3時間浸漬した。膜表面の水酸ィ匕第二鉄が完全に溶解除去されているのを確 認するために、再び 1規定の 40°Cの塩酸に浸漬し、チォシアン酸カリウムを添カ卩して 水溶液中の鉄イオン濃度を分光光度計で確認した。確認後の膜を純水で洗浄した。
[0210] 洗浄後の膜を用いて 1%のグロブリン水溶液を、孔拡散法で膜面積 1平方メートル 当り 500リットル処理後、上記性能検査と同一の水酸化第二鉄コロイド粒子分散液で 孔拡散法により完全性試験を行った結果、粒子対数阻止係数は 4. 5以上であった。
[0211] 完全性試験後に 1規定の塩酸水溶液中に室温で 24時間浸漬放置した。次に、 0.
15規定の苛性ソーダ液中に 48時間浸漬し、その後水洗した。水洗後の膜の濾過速 度 (0. 15気圧)の膜間差圧は、使用前のそれと完全に一致した。
[0212] (実施例 4 3)
0. 0045モル Zリットルの塩ィ匕第二鉄と塩ィ匕第一鉄の混合物(モル比 1: 2)を水で 溶解後、重合度 500のポリビュルアルコールを濃度 0. 01重量%となるように溶解し た。さら〖こ、陽イオン界面活性剤(商品名カチオン AB、日本油脂製)を 2重量%とな るように混入し、 75°Cで加熱して平均粒子径 20nmの水酸ィ匕第二鉄コロイド粒子の 分散液を作製した。
[0213] 一方、ミクロ相分離法とケンィ匕法とを利用して平均孔径 25ηπι·空孔率 80% ·膜厚 1
80ミクロンの再生セルロース平膜を作製した。当該平膜において、 20nm径の水酸 化第二鉄コロイド粒子を使用した孔拡散法での粒子除去性能を測定した結果、対数 阻止係数は 5以上であった。
試験後の膜を直ちに 0. 2規定の塩酸水溶液に 30°Cで 1時間浸漬することにより、 残留する水酸ィ匕第二鉄コロイド粒子を溶解除去した。
[0214] 溶解除去後の膜を用いて、孔拡散法で 3重量%のガンマ一グロブリン水溶液を 50
0リットル Z平方メートルの割合で処理後、上記コロイド粒子の分散液を使用して拡拡 散法で完全性試験を行った。
[0215] 粒子対数阻止係数は 5以上であった。完全性試験後の膜を、 0. 1規定の苛性ソー ダ水溶液に浸漬した。
水酸化第二鉄粒子の濃度測定は、次のようにして行った。まず、試験液を 0. 5規定 の塩酸水溶液の組成にして 50°Cで 30分攪拌し、水酸化第二鉄を 3価の鉄イオンとし
、これにチォシアン酸カリを添加した。これを分光光度計で波長 480nmの吸光度を 測定することにより、濃度を測定した。
[0216] 本発明により微粒子除去用膜を使用した後の完全性試験後にも、平膜を再利用で きる可能性が確立された。特に孔拡散法での微粒子除去用膜では、完全性試験後 に平膜が再利用可能となる。
産業上の利用可能性
[0217] 本発明の孔拡散式平膜分離装置は、温和な条件下で分離、精製が求められる産 業 (例、製薬産業、食品産業)、特にタンパク質などの生理活性を持つ物質の分離、 精製に利用できる。また、コロイド粒子系を取り扱う工業においてコロイド粒子を含め て特定の微粒子を精製、分離する方法として工業的プロセスに組み込むことが出来 る。特にウィルス除去性の高い平膜を長期間利用するのに好適である。
本発明の平膜濃縮装置は、バイオ医薬品の製造工程で微粒子除去を孔拡散式平 膜分離装置で実施した拡散液中の成分濃縮に利用できる。当該平膜濃縮装置の膜 濃縮では、水溶性金属塩濃度は上昇することなく目的とする分子量物質を濃縮する 本発明の再生セルロース多孔膜は、孔拡散式平膜分離装置に装着して利用でき、 高い微粒子除去性能を発揮する。また、当該再生セルロース多孔膜では殆ど目詰ま りが起こらないため、多くの産業での微粒子除去技術、および、微粒子のみを閉空間 に、その他の分子は開空間とするための隔膜技術として機能する。
本発明の非破壊式の平膜検査方法は、プリオン ·ウィルス ·細菌等の微粒子の除去 能を持つ膜に対する微粒子除去能の検査法に利用できる。
図面の簡単な説明
[0218] [図 1]本発明の孔拡散式平膜分離装置の概略図
[図 2]平膜の上面視概略図
[図 3]孔拡散式平膜分離装置の断面概略図
[図 4]本発明の平膜濃縮装置の概略図
[図 5]平膜濃縮装置の断面概略図
[図 6]支持体の上面視概略図
[図 7]再生セルロース多孔膜の膜断面の電子顕微鏡写真(3万倍)を示した図
[図 8]完全性試験用装置の全体図を示した図
[図 9]孔拡散に用いる膜を膜平面に対して平行に断面視した模式図を示した図
[図 10]孔拡散技術の模式図を示した図
[図 11]処理液と拡散液におけるそれぞれの滞留時間 ·濃度の関係を示したグラフ [図 12]回収率と流量との関係を示したグラフ
符号の説明
[0219] X 孔拡散式平膜分離装置 平板状支持体 流路 通水路 平膜

Claims

請求の範囲
[1] 複数の孔を備えて孔拡散式によって溶液中の特定の分散物を分離する平膜と、流 路を片面あるいは両面に設けた平板状支持体とが交互に配置されるようにそれぞれ 複数備え、
前記流路の空間体積と前記平膜の膜面積との比が 0. 04〜0. 4の範囲となるよう に設定し、
前記平膜を介して上下の前記平板状支持体の前記流路における前記溶液の流れ 方向が実質的に同一方向になるよう、前記平板状支持体の側面の少なくとも 2箇所 以上に、前記流路と連通する通水路を設け、
前記平板状支持体と前記平膜とが分解および組立てが可能である孔拡散式平膜 分離装置。
[2] 前記平板状支持体の上面及び下面の少なくとも一方の周縁部に高分子弾性体か らなるパッキングを備えた請求項 1に記載の孔拡散式平膜分離装置。
[3] 前記平板状支持体が、耐熱性 ·耐衝撃性 ·耐アルカリ性 ·耐酸性 ·軽量かつ透明性 を兼ね備えた素材であるポリカーボネート'ポリアミド ·ポリアセタール ·ポリスルホン ·ポ リエーテルスルホン.ポリエーテルエーテルケトン力もなる群力も選択されることを特徴 とする請求項 1又は 2に記載の孔拡散式平膜分離装置。
[4] 前記平板状支持体の通水路に着脱可能な耐熱性の連結部材を有し、かつ前記平 板状支持体がポリカーボネートであることを特徴とする請求項 1又は 2に記載の孔拡 散式平膜分離装置。
[5] 平均孔径力^〜 3nmとなる複数の孔を備えて膜濾過によって溶液中の特定の分散 物を分離する平膜を、平板状の支持体で狭み、少なくとも 2枚の前記平膜と、少なくと も 3枚の前記支持体を有し、
前記支持体には前記溶液の流入口と流路と流出口を形成し、
前記平膜に対して、原液である前記溶液側の圧力を大気圧以上に加圧し、同時に 、前記平膜を通過した濾液側を大気圧以下に減圧することで膜間差圧を発生させ、 前記溶液を前記平膜の表面に対して略平行に流動させながら濾過する平行濾過に より前記溶液中の成分を濃縮する平膜濃縮装置。
[6] 前記平膜 '前記支持体'前記流入口'前記流出口のそれぞれを分解可能に構成し 、さらに、洗浄可能かつ再組み立てが可能な請求項 5に記載の平膜濃縮装置。
[7] 前記支持体はポリカーボネート製であり、前記支持体の表面には、前記流路として 前記溶液の流れ方向に沿った溝が彫られ、前記流入口および前記流出口が前記支 持体の側面にあり、かつ、前記支持体の上面および下面の少なくとも一方の周縁部 にパッキングが貼り付けてある請求項 5又は 6に記載の平膜濃縮装置。
[8] 組み立てた際に最も外側に配置される 2枚の前記支持体と、それぞれに隣接する 前記平膜との間を減圧状態としてある請求項 5又は 6に記載の平膜濃縮装置。
[9] 前記平膜の平均孔径が 2nm以下である請求項 5又は 6に記載の平膜濃縮装置。
[10] 前記平膜は親水性高分子で構成されていることを特徴とする請求項 5又は 6に記載 の平膜濃縮装置。
[11] 前記親水性高分子が再生セルロースである請求項 10に記載の平膜濃縮装置。
[12] 平均孔径(2rf)力 〜 500nm、膜厚 (d)力 0〜500 μ m、空孔率(Pr)が 0. 6〜0
. 9の多層構造を有する再生セルロース膜で、分子間水素結合の発達度が 40%以 下である孔拡散用再生セルロース多孔膜。
[13] 平均孔径(2rf)が 8〜: LOOnm、膜厚(d)が 100〜300 /ζ m、空孔率(Pr)と膜厚(d) との積が 50 m以上である請求項 12に記載の孔拡散用再生セルロース多孔膜。
[14] 空孔率 (Pr)と膜厚(d)との積が 100 πι〜200 /ζ mである請求項 13に記載の孔拡 散用再生セルロース多孔膜。
[15] 請求項 12に記載の孔拡散用再生セルロース多孔膜の製造方法であって、セル口 ース誘導体であるセルロースエステルの溶液中に金属塩を 1重量%以上添加した状 態でミクロ相分離法で多孔膜とし、その後、 PHが 11〜13の 50°C以下のアルカリ水 溶液でケン化処理することによって製造する孔拡散用再生セルロース多孔膜の製造 方法。
[16] 請求項 13に記載の孔拡散用再生セルロース多孔膜の製造方法であって、セル口 ース誘導体である酢酸セルロースの溶液中に金属塩を 1重量%以上添加した状態で ミクロ相分離法で多孔膜とし、その後、 PHが 11〜13の 50°C以下のアルカリ水溶液 でケン化処理することによって製造する孔拡散用再生セルロース多孔膜の製造方法
[17] 請求項 14に記載の孔拡散用再生セルロース多孔膜の製造方法であって、セル口 ース誘導体であるセルロースエステルの溶液中に金属塩を 1重量%以上添加した状 態で、前記セルロースエステルの良溶媒の蒸発によって生起されるミクロ相分離法で 多孔膜とし、その後、 PHが 11〜13の 50°C以下のアルカリ水溶液でケンィ匕処理する ことによって製造する孔拡散用再生セルロース多孔膜の製造方法。
[18] 溶液中の特定の分散物を分離する平膜の再利用を可能とするため、
貴金属以外の微粒子を利用した直接法によって、複数の孔を備えて孔拡散式によ つて前記平膜の粒子除去能が低下して!/ヽな ヽことを確認する完全性試験工程を有 する非破壊式の平膜検査方法。
[19] 前記完全性試験工程の後に、前記微粒子を溶解除去する溶解除去工程を行う請 求項 18に記載の非破壊式の平膜検査方法。
[20] 前記溶解除去工程に用いる溶解除去剤が、前記平膜を構成する素材と化学反応 して溶解'膨潤することなく前記完全性試験工程で用いた前記微粒子を溶解する性 質を有する請求項 19に記載の非破壊式の平膜検査方法。
[21] 前記微粒子が、水酸ィ匕第二鉄コロイド粒子である請求項 18〜20の何れか一項に 記載の非破壊式の平膜検査方法。
[22] 前記平膜の素材が親水性高分子であり、かつ、前記溶解除去剤が塩酸である請求 項 18〜20の何れか一項に記載の非破壊式の平膜検査方法。
[23] 前記親水性高分子が再生セルロースである請求項 22に記載の非破壊式の平膜検 查方法。
PCT/JP2007/054055 2006-03-02 2007-03-02 孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法 WO2007102427A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/224,626 US8623210B2 (en) 2006-03-02 2007-03-02 Pore diffusion type flat membrane separating apparatus
CN2007800075805A CN101394917B (zh) 2006-03-02 2007-03-02 孔扩散式平膜分离装置
EP07715149A EP2006016A4 (en) 2006-03-02 2007-03-02 FLAT FILM POROUS DIFFUSION SEPARATION DEVICE, FLAT FILM CONDENSING DEVICE, POROUS REGENERATED CELLULOSE FILM FOR POROUS DIFFUSION, AND NON-DESTRUCTIVE FLAT FILM CONTROL METHOD
JP2008503826A JPWO2007102427A1 (ja) 2006-03-02 2007-03-02 孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法
AU2007223448A AU2007223448B2 (en) 2006-03-02 2007-03-02 Pore diffusion type flat membrane separating apparatus, flat membrane concentrating apparatus, regenerated cellulose porous membrane for pore diffusion, and method of non-destructive inspection of flat membrane
US14/099,520 US20140116934A1 (en) 2006-03-02 2013-12-06 Regenerated cellulose porous membrane for porous diffusion and method of manufacturing same
US14/099,555 US20140096594A1 (en) 2006-03-02 2013-12-06 Method of non-destructive inspection of flat membrane

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006055645 2006-03-02
JP2006-055645 2006-03-02
JP2006081759 2006-03-23
JP2006-081759 2006-03-23
JP2006133022 2006-05-11
JP2006-133022 2006-05-11
JP2006-144764 2006-05-25
JP2006144764 2006-05-25
JP2006-166752 2006-06-15
JP2006166752 2006-06-15

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/224,626 A-371-Of-International US8623210B2 (en) 2006-03-02 2007-03-02 Pore diffusion type flat membrane separating apparatus
US14/099,520 Division US20140116934A1 (en) 2006-03-02 2013-12-06 Regenerated cellulose porous membrane for porous diffusion and method of manufacturing same
US14/099,555 Division US20140096594A1 (en) 2006-03-02 2013-12-06 Method of non-destructive inspection of flat membrane

Publications (1)

Publication Number Publication Date
WO2007102427A1 true WO2007102427A1 (ja) 2007-09-13

Family

ID=38474858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054055 WO2007102427A1 (ja) 2006-03-02 2007-03-02 孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法

Country Status (6)

Country Link
US (3) US8623210B2 (ja)
EP (3) EP2476480A1 (ja)
JP (3) JPWO2007102427A1 (ja)
CN (3) CN102210977A (ja)
AU (1) AU2007223448B2 (ja)
WO (1) WO2007102427A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095701A (ja) * 2007-10-15 2009-05-07 Seiichi Manabe 多段積多層平膜
JP2009095702A (ja) * 2007-10-15 2009-05-07 Seiichi Manabe 孔拡散・濾過による膜分離法
JP2009204437A (ja) * 2008-02-27 2009-09-10 Seiichi Manabe 完全性試験装置
JP2009274010A (ja) * 2008-05-14 2009-11-26 Seiichi Manabe 微粒子捕捉性能が表裏面で異なる多層構造膜およびその製法。
JP2010253334A (ja) * 2009-04-21 2010-11-11 Sepa Sigma Inc 非破壊型である膜の性能および完全性試験用の水酸化第二鉄コロイド粒子を分散した水溶液およびその製法
JP2010269258A (ja) * 2009-05-22 2010-12-02 Sepa Sigma Inc 平膜孔拡散分離方法およびその装置
JP2016013501A (ja) * 2014-07-01 2016-01-28 聡 竹下 Pd膜分離装置
JP2016145272A (ja) * 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 透明セルロースシート、および、製造方法
JP2017000922A (ja) * 2015-06-05 2017-01-05 日本特殊膜開発株式会社 流動分別型の孔拡散膜分離モジュール
JP2017087097A (ja) * 2015-11-04 2017-05-25 日本特殊膜開発株式会社 流動分別型の濃縮用孔拡散膜分離モジュール
WO2019059241A1 (ja) * 2017-09-25 2019-03-28 富士フイルム株式会社 濾過装置、濾過システム及び濾過方法
JP2020028819A (ja) * 2018-08-20 2020-02-27 日本特殊膜開発株式会社 流動分別を利用した孔拡散平膜分離モジュールおよび同モジュールを適用した膜分離装置
WO2022118943A1 (ja) * 2020-12-04 2022-06-09 旭化成メディカル株式会社 多孔質中空糸膜及び完全性試験方法

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991235B2 (en) 2009-05-07 2015-03-31 Dow Global Technologies Llc Method of testing membranes and membrane-based systems
WO2011066498A2 (en) 2009-11-28 2011-06-03 Smartflow Technologies, Inc. Portable filtration unit
DE102010004190A1 (de) * 2010-01-08 2011-07-14 Sartorius Stedim Biotech GmbH, 37079 Verfahren zur Qualifizierung eines nichtpartikulären Adsorbens mittels Sekundärreaktion
CN105588236B (zh) 2010-05-25 2019-07-09 7Ac技术公司 使用液体干燥剂进行空气调节及其它处理的方法和系统
TWI461230B (zh) * 2010-10-07 2014-11-21 Univ Nat Cheng Kung 用於過濾血清之過濾薄膜及其製造方法與過濾裝置
TWI395612B (zh) * 2010-12-24 2013-05-11 Univ Nat Cheng Kung 血液分離方法
TWI395610B (zh) * 2010-12-24 2013-05-11 Univ Nat Cheng Kung 液體過濾裝置及其過濾方法
CN102141504B (zh) * 2011-01-27 2013-06-12 中国商用飞机有限责任公司 在铺层厚度方向上测试气体渗透率的测试装置及其方法
CN102183444B (zh) * 2011-01-27 2013-09-25 中国商用飞机有限责任公司 在铺层面内方向上测试气体渗透率的测试装置及其方法
CA2844658A1 (en) * 2011-08-10 2013-02-14 Oasys Water, Inc. Membrane modules
KR101285568B1 (ko) * 2011-11-01 2013-07-15 한국에너지기술연구원 수소분리용 다층 모듈
RU2014141210A (ru) * 2012-03-28 2016-05-20 РЭЙЗИРК, Инк. Способ доставки технологического газа из многокомпонентного раствора
TWI498135B (zh) * 2012-04-12 2015-09-01 Univ Nat Cheng Kung 液體樣本過濾裝置
KR102189997B1 (ko) * 2012-06-11 2020-12-11 7에이씨 테크놀로지스, 아이엔씨. 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들
US10786784B2 (en) 2012-09-06 2020-09-29 Smartflow Technologies, Inc. Permeate channel alterations for counter current filtration for use in cross-flow filtration modules useful in osmotic systems
WO2014047016A1 (en) * 2012-09-19 2014-03-27 3M Innovative Properties Company Fluid separation unit
EP2922616B1 (en) 2012-11-26 2021-05-12 Parkway Process Technologies Pty Ltd Membrane distillation arrangement
EP2929256A4 (en) 2012-12-04 2016-08-03 7Ac Technologies Inc METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH HIGH THERMAL LOADS THROUGH DESICCANT COOLERS
US9492795B2 (en) * 2013-02-22 2016-11-15 Battelle Memorial Institute Membrane device and process for mass exchange, separation, and filtration
KR20200009148A (ko) 2013-03-01 2020-01-29 7에이씨 테크놀로지스, 아이엔씨. 흡습제 공기 조화 방법 및 시스템
WO2014134666A1 (en) * 2013-03-06 2014-09-12 University Of Western Sydney Method and apparatus for separation of mixtures
US9709285B2 (en) 2013-03-14 2017-07-18 7Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
EP2972009B1 (en) 2013-03-14 2019-09-18 7AC Technologies, Inc. Split liquid desiccant air conditioning system
EP3667191B1 (en) 2013-06-12 2024-05-29 Copeland LP Liquid desiccant air conditioning system and method of dehumidifying and cooling an air stream in a building
CN105339077B (zh) * 2013-06-25 2019-02-12 利乐拉瓦尔集团及财务有限公司 具有改善的设计的膜过滤设备
CN105339076B (zh) 2013-06-25 2018-11-23 利乐拉瓦尔集团及财务有限公司 具有卫生悬挂装置的膜过滤设备
US10323867B2 (en) 2014-03-20 2019-06-18 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
ES2843689T3 (es) * 2014-04-11 2021-07-20 Asahi Kasei Medical Co Ltd Membrana de eliminación de virus
KR101822773B1 (ko) * 2014-04-11 2018-01-26 아사히 가세이 메디컬 가부시키가이샤 바이러스 제거막
US10196685B2 (en) 2014-05-13 2019-02-05 Rasirc, Inc. Methods and systems for delivering process gases to critical process applications
CN104147937B (zh) * 2014-07-25 2016-04-27 清华大学 一种滤膜完整性的检测方法
CN104276653B (zh) * 2014-08-27 2017-03-15 浙江竟成环保科技有限公司 一种高截留膜生物反应器处理污水的方法
US10150048B2 (en) 2014-10-23 2018-12-11 Rasirc, Inc. Method, system, and device for delivery of process gas
JP6718871B2 (ja) 2014-11-21 2020-07-08 7エーシー テクノロジーズ,インコーポレイテッド 液体乾燥剤空調システム
WO2016136846A1 (ja) * 2015-02-25 2016-09-01 三菱化学株式会社 分離膜モジュール及びその補修方法
CN104826498B (zh) * 2015-04-30 2017-02-22 天津大学 一种多用途分离膜评价装置
CN108602026B (zh) * 2016-03-31 2021-12-28 旭化成医疗株式会社 去除病毒的膜及去除病毒的膜的制造方法
CN105709460A (zh) * 2016-04-25 2016-06-29 中国科学院新疆理化技术研究所 一种纤维素基纤维材料的制备方法
CN105817143B (zh) * 2016-05-12 2018-11-30 中国石油集团东北炼化工程有限公司葫芦岛设计院 一种超滤膜表面铁胶体的清洗方法
CN106512741A (zh) * 2016-12-30 2017-03-22 天津沃驰科技有限公司 一种新型板式膜池
CN106730991A (zh) * 2016-12-30 2017-05-31 天津沃驰科技有限公司 一种板式膜接触器
CA3055135A1 (en) * 2017-03-07 2018-09-13 1934612 Ontario Inc. Systems and methods of marker based direct integrity testing of membranes
EP3704416B1 (en) 2017-11-01 2023-04-12 Emerson Climate Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
EP3704415A4 (en) 2017-11-01 2021-11-03 7AC Technologies, Inc. TANK SYSTEM FOR AN AIR CONDITIONING SYSTEM WITH LIQUID DRYING AGENTS
US10155182B1 (en) * 2017-11-17 2018-12-18 Split Rock Filter Systems Llc Diffusiophoretic water filtration device with closed channel structure
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
WO2019227400A1 (en) * 2018-05-31 2019-12-05 Goertek Inc. Test device and calibrating method
CN108931365B (zh) * 2018-07-24 2020-03-31 江苏科技大学 一种空间膜结构试验装置
JP7103715B2 (ja) * 2018-10-26 2022-07-20 帝人株式会社 ポリオレフィン微多孔膜、フィルター、クロマトグラフィー担体及びイムノクロマトグラフ用ストリップ
US11117090B2 (en) 2018-11-26 2021-09-14 Palo Alto Research Center Incorporated Electrodialytic liquid desiccant dehumidifying system
EP3894049A4 (en) * 2018-12-12 2022-08-10 Split Rock Filter Systems LLC GAS ACTIVATED DIFFUSIOPHORETIC WATER FILTRATION DEVICE WITH ADVANCED INLET, OUTLET AND MEMBRANE STRUCTURES
US11668723B2 (en) 2019-07-09 2023-06-06 Logan Instruments Corporation Automated dissolution/permeation testing system
JP7382565B2 (ja) * 2019-08-30 2023-11-17 パナソニックIpマネジメント株式会社 多孔質材料、分散液、及び美容方法
US11458437B2 (en) 2019-09-05 2022-10-04 Molecule Works Inc. Universal planar membrane device for mass transfer
CN110882610A (zh) * 2020-01-06 2020-03-17 瓮福(集团)有限责任公司 一种气体膜分离装置
US12085293B2 (en) 2021-03-17 2024-09-10 Mojave Energy Systems, Inc. Staged regenerated liquid desiccant dehumidification systems
KR102489275B1 (ko) * 2021-05-12 2023-01-17 주식회사 킹메이커 막의 수소 투과율 측정 장치 및 방법
US12011692B2 (en) * 2021-07-19 2024-06-18 Spf Technologies Llc Separation device
KR102606358B1 (ko) * 2021-08-09 2023-11-24 주식회사 움틀 셀룰로오스 멤브레인의 제조방법
CN114047202A (zh) * 2021-11-11 2022-02-15 中电化合物半导体有限公司 一种晶片贯穿型缺陷的检测方法及装置
US11944934B2 (en) 2021-12-22 2024-04-02 Mojave Energy Systems, Inc. Electrochemically regenerated liquid desiccant dehumidification system using a secondary heat pump
CN114588787B (zh) * 2022-01-20 2023-04-14 清华大学 一种利用金属-多酚改性直通孔膜通道内壁的方法
CN114873684B (zh) * 2022-03-25 2023-06-09 山东大学 一种膜蒸馏组件、混合式膜蒸馏水处理系统及方法
WO2024129618A1 (en) 2022-12-12 2024-06-20 Mojave Energy Systems, Inc. Liquid desiccant air conditioning system and control methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183008A (ja) * 1984-03-02 1985-09-18 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai プレートアンドフレーム型膜分離装置
JPH01107804A (ja) * 1987-10-20 1989-04-25 Fuji Photo Film Co Ltd フィルターカートリッジの製造方法
JPH07194946A (ja) * 1994-01-07 1995-08-01 Kubota Corp 膜モジュール
JPH10180052A (ja) * 1996-12-27 1998-07-07 Inax Corp 膜分離装置
JPH11216341A (ja) * 1998-01-30 1999-08-10 Yuasa Corp 平板型膜モジユール
JP2006055780A (ja) * 2004-08-20 2006-03-02 Seiichi Manabe 平膜孔拡散分離機

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3412006A (en) * 1965-01-11 1968-11-19 Ionics Ion-exchange membranes
JPS5020985B2 (ja) * 1971-08-30 1975-07-18
JPS5514045A (en) * 1978-07-17 1980-01-31 Aaru Rabendaa Aadeisu Concurrent system matter transmission gear
JPS6043443B2 (ja) * 1978-08-22 1985-09-28 三菱レイヨン株式会社 再生セルロ−ス中空繊維の製造方法
JPS5755205A (en) 1980-09-19 1982-04-02 Toyo Tire & Rubber Co Ltd Tire tread for construction car
JPS57162609A (en) * 1981-03-31 1982-10-06 Teijin Ltd Dialyzing and filtration membrane made of cellulose and its production
JPS5889626A (ja) 1981-11-25 1983-05-28 Asahi Chem Ind Co Ltd 強靭な再生セルロ−ス多孔膜
US4581140A (en) * 1981-11-25 1986-04-08 Asahi Kasei Kogyo Kabushiki Kaisha Porous regenerated cellulose membrane and process for the preparation thereof
US4980054A (en) * 1983-08-15 1990-12-25 Lavender Ardis R System and method for mass transfer between fluids
JPS61129007A (ja) * 1984-11-26 1986-06-17 Kurita Water Ind Ltd 液透過方法
JPS6244017A (ja) 1985-08-19 1987-02-26 三菱電機株式会社 ネツトワ−ク変圧器二次側短絡事故保護方式
JPS62234510A (ja) * 1986-04-05 1987-10-14 Asahi Chem Ind Co Ltd 再生セルロ−ス中空糸の乾燥方法
US5094750A (en) * 1986-09-12 1992-03-10 Memtec Limited Hollow fibre filter cartridge and header
JPH0246608A (ja) 1988-08-05 1990-02-16 Canon Inc 超伝導部材用保護膜
JPH0281623U (ja) * 1988-12-09 1990-06-25
US5114581A (en) * 1991-01-10 1992-05-19 Ceramem Corporation Back-flushable filtration device and method of forming and using same
US5282380A (en) * 1992-06-30 1994-02-01 Millipore Corporation Integrity test for membranes
JP3221095B2 (ja) * 1992-09-25 2001-10-22 住友電気工業株式会社 チューブ状多孔質複層膜及びその製造方法
JP3328857B2 (ja) 1993-11-10 2002-09-30 旭化成株式会社 ウイルス除去膜のインテグリティテスト方法
JP3386904B2 (ja) * 1994-10-12 2003-03-17 ダイセル化学工業株式会社 酢酸セルロース中空糸分離膜およびその製造法
FR2809636B1 (fr) * 2000-06-02 2003-01-24 Vivendi Procede de controle de l'integrite d'un module, ou d'un systeme de modules, de nanofiltration ou d'osmose inverse
US7011758B2 (en) * 2002-02-11 2006-03-14 The Board Of Trustees Of The University Of Illinois Methods and systems for membrane testing
WO2004103917A1 (en) * 2003-05-21 2004-12-02 Infilco Degremont, Inc. Water treatment method and apparatus using pretreatment and membranes
CN2656401Y (zh) * 2003-07-09 2004-11-17 天津泰达新水源科技开发有限公司 中空纤维分离膜的自动在线检测装置
JP2005040756A (ja) 2003-07-25 2005-02-17 Asahi Kasei Pharma Kk ウイルス除去及び洗浄、完全性試験のシステム
JP5023430B2 (ja) * 2004-03-17 2012-09-12 東レ株式会社 中空糸膜モジュールおよびその製造方法
JP2005349268A (ja) * 2004-06-09 2005-12-22 Seiichi Manabe 多孔性膜の拡散現象を利用した物質分離精製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183008A (ja) * 1984-03-02 1985-09-18 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai プレートアンドフレーム型膜分離装置
JPH01107804A (ja) * 1987-10-20 1989-04-25 Fuji Photo Film Co Ltd フィルターカートリッジの製造方法
JPH07194946A (ja) * 1994-01-07 1995-08-01 Kubota Corp 膜モジュール
JPH10180052A (ja) * 1996-12-27 1998-07-07 Inax Corp 膜分離装置
JPH11216341A (ja) * 1998-01-30 1999-08-10 Yuasa Corp 平板型膜モジユール
JP2006055780A (ja) * 2004-08-20 2006-03-02 Seiichi Manabe 平膜孔拡散分離機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006016A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095701A (ja) * 2007-10-15 2009-05-07 Seiichi Manabe 多段積多層平膜
JP2009095702A (ja) * 2007-10-15 2009-05-07 Seiichi Manabe 孔拡散・濾過による膜分離法
JP2009204437A (ja) * 2008-02-27 2009-09-10 Seiichi Manabe 完全性試験装置
JP2009274010A (ja) * 2008-05-14 2009-11-26 Seiichi Manabe 微粒子捕捉性能が表裏面で異なる多層構造膜およびその製法。
JP2010253334A (ja) * 2009-04-21 2010-11-11 Sepa Sigma Inc 非破壊型である膜の性能および完全性試験用の水酸化第二鉄コロイド粒子を分散した水溶液およびその製法
JP2010269258A (ja) * 2009-05-22 2010-12-02 Sepa Sigma Inc 平膜孔拡散分離方法およびその装置
JP2016013501A (ja) * 2014-07-01 2016-01-28 聡 竹下 Pd膜分離装置
JP2016145272A (ja) * 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 透明セルロースシート、および、製造方法
JP2017000922A (ja) * 2015-06-05 2017-01-05 日本特殊膜開発株式会社 流動分別型の孔拡散膜分離モジュール
JP2017087097A (ja) * 2015-11-04 2017-05-25 日本特殊膜開発株式会社 流動分別型の濃縮用孔拡散膜分離モジュール
WO2019059241A1 (ja) * 2017-09-25 2019-03-28 富士フイルム株式会社 濾過装置、濾過システム及び濾過方法
JPWO2019059241A1 (ja) * 2017-09-25 2020-10-15 富士フイルム株式会社 濾過装置、濾過システム及び濾過方法
JP2020028819A (ja) * 2018-08-20 2020-02-27 日本特殊膜開発株式会社 流動分別を利用した孔拡散平膜分離モジュールおよび同モジュールを適用した膜分離装置
WO2022118943A1 (ja) * 2020-12-04 2022-06-09 旭化成メディカル株式会社 多孔質中空糸膜及び完全性試験方法

Also Published As

Publication number Publication date
EP2006016A1 (en) 2008-12-24
JP2014024064A (ja) 2014-02-06
EP2006016A4 (en) 2010-06-02
CN101394917A (zh) 2009-03-25
CN102210977A (zh) 2011-10-12
JP2014036958A (ja) 2014-02-27
EP2476479A1 (en) 2012-07-18
JPWO2007102427A1 (ja) 2009-07-23
CN102218269B (zh) 2013-04-03
US20090145831A1 (en) 2009-06-11
US8623210B2 (en) 2014-01-07
EP2476480A1 (en) 2012-07-18
US20140096594A1 (en) 2014-04-10
US20140116934A1 (en) 2014-05-01
CN102218269A (zh) 2011-10-19
AU2007223448B2 (en) 2011-10-20
CN101394917B (zh) 2012-03-07
AU2007223448A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2007102427A1 (ja) 孔拡散式平膜分離装置・平膜濃縮装置・孔拡散用再生セルロース多孔膜および非破壊式の平膜検査方法
Dehghani et al. Tangential flow microfluidics for the capture and release of nanoparticles and extracellular vesicles on conventional and ultrathin membranes
Hashino et al. Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling
EP2401065B1 (en) Membrane with sulfonic groups for removing protein aggregates
Syedain et al. Protein fouling of virus filtration membranes: Effects of membrane orientation and operating conditions
JP2007014854A (ja) 濾過フィルター、濾過フィルターの製造方法および血液濾過方法
JP2012196590A (ja) ろ過膜、ろ過膜の洗浄手段および前処理手段の選択方法
WO1998035749A1 (fr) Appareil de filtrage a raccordements croises
Kim et al. Virus concentration and purification by a microfluidic filtering system with an integrated PEGylated antifouling membrane
AU2013204302B2 (en) Method of Non-Destructive Inspection of Flat Membrane
WO2023038997A9 (en) Articles, systems, and methods related to nanoporous membranes
JP2010269258A (ja) 平膜孔拡散分離方法およびその装置
JP4451039B2 (ja) ウィルス除去装置及び膜
WO2024024336A1 (ja) 微小有用物質を含む液の精製濃縮装置及びそれを用いた微小有用物質の精製濃縮液の製造方法
WO2024024337A1 (ja) 微小有用物質を含む液の精製濃縮装置及びそれを用いた微小有用物質を含む精製濃縮液の製造方法
CN116272431A (zh) 一种湿度感应小孔层厚度可控超滤膜的制备方法和超滤设备
JPH04317730A (ja) 複合濾過膜
JPH04317729A (ja) 複合濾過膜
JPH04317728A (ja) 複合濾過膜
JPS5922558A (ja) 体液分離用限外ろ過モジユ−ルのパイロジエン汚染防止法
Pisco Assessment of Protein Fouling in Poly (ether sulfone) Membranes following Radiation-induced Surface Modification
Borriello et al. Transient permeation of butanes through zeolite membranes
ANSARI et al. 16 MEMBRANE SCIENCE AND SEPARATION TECHNOLOGY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008503826

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780007580.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007223448

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007223448

Country of ref document: AU

Date of ref document: 20070302

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007715149

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12224626

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)