KR102189997B1 - 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들 - Google Patents

난류형 내식성 열 교환기들을 위한 방법들 및 시스템들 Download PDF

Info

Publication number
KR102189997B1
KR102189997B1 KR1020147036005A KR20147036005A KR102189997B1 KR 102189997 B1 KR102189997 B1 KR 102189997B1 KR 1020147036005 A KR1020147036005 A KR 1020147036005A KR 20147036005 A KR20147036005 A KR 20147036005A KR 102189997 B1 KR102189997 B1 KR 102189997B1
Authority
KR
South Korea
Prior art keywords
membrane
air
plate
desiccant
heat exchanger
Prior art date
Application number
KR1020147036005A
Other languages
English (en)
Other versions
KR20150029650A (ko
Inventor
피터 에프. 반데르물렌
마크 알렌
아서 라플램
Original Assignee
7에이씨 테크놀로지스, 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 7에이씨 테크놀로지스, 아이엔씨. filed Critical 7에이씨 테크놀로지스, 아이엔씨.
Publication of KR20150029650A publication Critical patent/KR20150029650A/ko
Application granted granted Critical
Publication of KR102189997B1 publication Critical patent/KR102189997B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • B01D2053/222Devices with plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/084Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes
    • B01D63/085Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes specially adapted for two fluids in mass exchange flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1435Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification comprising semi-permeable membrane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0038Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for drying or dehumidifying gases or vapours

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

건조제 공기 조절 시스템들에 사용된 다양한 난류형 내식성 열 교환기들이 개시된다.

Description

난류형 내식성 열 교환기들을 위한 방법들 및 시스템들{METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS}
본 출원은 다음의 출원들, (1) "METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS"라는 명칭으로 2012년 6월 11일에 출원된 미국 가특허 출원 번호 61/658,205와; (2) "METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS"라는 명칭으로 2012년 11월 21일에 출원된 미국 가특허 출원 번호 61/729,139와; (3) "METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS"라는 명칭으로 2012년 11월 29일에 출원된 미국 가특허 출원 번호 61/731,227과; (4) "METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS"라는 명칭으로 2012년 12월 12일에 출원된 미국 가특허 출원 번호 61/736,213과; (5) "METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS"라는 명칭으로 2013년 1월 29일에 출원된 미국 가특허 출원 번호 61/758,035와; (6) "METHODS AND SYSTEMS FOR TURBULENT, CORROSION RESISTANT HEAT EXCHANGERS"라는 명칭으로 2013년 3월 15일에 출원된 미국 가특허 출원 번호 61/789,357의 우선권을 주장하며, 이들 출원 각각은 참조에 의해 본 출원에 포함된다.
본 출원은 일반적으로 공간에 들어가는 공기 흐름(air stream)을 제습 및 냉각(및 몇몇 경우에, 가습 및 가열)하기 위한 액체 건조제들의 이용에 관한 것이다. 더 구체적으로, 본 출원은 공기 흐름으로부터 액체 건조제를 분리하기 위해 미공성(micro-porous) 및 다른 막들의 이용에 관한 것으로, 상기 유체 흐름들(공기, 열 전달 유체들, 및 액체 건조제들)은 유체들 사이의 높은 열 및 습기 전달율이 발생할 수 있도록 난류를 일으키면서 흐르도록 만들어진다. 본 출원은 2가지 또는 3가지 유체들 사이에서 내식성 열 교환기들에 추가로 관련된다. 그러한 열 교환기들은 열 교환기 구조에 적절히 부착된 미공성 막들을 유지하기 위해 중력 유도된 압력들(사이퍼닝(siphoning))을 이용할 수 있다.
액체 건조제들은 공간에서, 특히 다량의 외부 공기가 필요하거나 빌딩 공간 자체 내에 큰 습도 부하들을 갖는 공간들에서, 습도를 감소시키는 데 도움을 주는 종래의 증기 압축 HVAC 기기와 함께 사용되었다. 예를 들어, 플로리다(FL), 마이애미(Miami)와 같이, 습기가 있는 기후들은 공간의 거주자 안락에 필요한 신선한 공기를 적절히 처리(제습 및 냉각)하기 위해 다량의 에너지(energy)가 필요하다. 종래의 증기 압축 시스템들은 습기를 제거할 수 있는 제한된 능력만을 갖고, 공기를 과냉각(overcool)하는 경향이 있어, 종종 에너지 집약형 재가열 시스템들이 필요하고, 이러한 시스템은, 재가열이 추가 열-부하를 냉각 코일(coil)에 추가하기 때문에 전체적인 에너지 비용을 크게 증가시킨다. 액체 건조제 시스템들은 오랜 세월동안 사용되어 왔고, 일반적으로 공기 흐름으로부터 습기를 제거하는 데 매우 효과적이다. 하지만, 액체 건조제 시스템들은 일반적으로 물 및 LiCl, LiBr 또는 CaCl2의 용액들과 같은 농축된 염 용액들을 이용한다. 그러한 염수들은 심지어 작은 양으로도 크게 부식성이 있어, 처리되어야 하는 공기 흐름에까지 건조제가 잔재하는 것을 방지하기 위한 다수의 시도가 수년에 걸쳐 이루어졌다. 일반적으로 폐쇄형 건조제 시스템들로서 분류된 하나의 접근법은 흡수식 냉방기들이라고 칭하는 장비에 흔히 사용되고, 건조제를 포함하는 진공 용기에 염수를 두고, 공기가 건조제에 직접적으로 노출되지 않기 때문에; 그러한 시스템들은 공급 공기 흐름에까지 건조제 입자들의 잔재가 있을 위험은 없다. 하지만, 흡수식 냉방기들은 초기 비용 및 유지 보수 비용의 면에서 비용이 많이 드는 경향이 있다. 개방형 건조제 시스템들은 일반적으로 냉각 타워들(towers)에서 사용된 것들과 유사한 충전층(packed bed)을 너머 건조제를 흐르게 함으로써 공기 흐름과 건조제 사이의 직접적인 접촉을 허용한다. 그러한 충전층 시스템들은 잔재 위험을 여전히 갖는 것 외에도 다른 단점들을 겪는다: 공기 흐름에 대한 충전층의 높은 저항은 충전층 전역에 더 큰 팬(fan) 전력 및 압력 강하들을 초래하여, 더 많은 에너지가 필요하다. 더욱이, 제습 프로세스(process)는 단열성인데, 이는 건조제 내로 수증기가 흡수되는 동안 방출되는 응축 열이 갈 곳이 없기 때문이다. 그 결과, 건조제와 공기 흐름, 양자 모두는 응축 열의 방출에 의해 가열된다. 이렇게 되면 차갑고 건조한 공기 흐름이 필요하였던 곳에 따뜻하고 건조한 공기 흐름을 초래하여, 제습 후 냉각 코일이 부득이 필요하게 된다. 더 따뜻한 건조제는 또한 흡수 수증기에서 기하급수적으로 효과가 떨어지며, 이로 인해 그 시스템은 훨씬 더 많은 양의 건조제를 충전층에 공급하게 되고, 이렇게 되면 다시 더 큰 건조제 펌프(pump) 전력이 필요하게 되는 데, 이는 그 건조제가 건조제로서의 역할은 물론 열전달 유체로서의 역할도 하는 이중 역할을 하기 때문이다. 더 큰 건조제 침수율(flooding rate)은 또한 건조제 잔재의 증가된 위험도 초래한다. 일반적으로, 공기 흐름율들은 잔재를 방지하기 위해 난류 영역(~2,400 미만의 레이놀즈 수들(Reynolds numbers)) 아래에서 잘 유지될 필요가 있다.
막 모듈들(membrane modules)은 종종 접착물(glue) 또는 접착층들이 다양한 구성요소들 양단의 온도차들에 의해 응력을 받게 되는(stressed) 문제점들을 겪는다. 이것은 액체 건조제 재생기들(regenerators)과 같이 고온 하에서 동작하는 구성요소들에서 특히 곤란하다. 플라스틱들의 균열 또는 접합들(bonds) 또는 접착제들(adhesives)의 장애들을 방지하기 위해, 2-부분 판 구조가 개시되며, 이러한 2-부분 판 구조는 더 단단한 플라스틱(예를 들어, ABS(아크릴로니트릴 부타디엔 스티렌)와 같은)으로 만들어진 제 1 부분과, 유연성(compliant) 물질(예를 들어, EPDM(에틸렌 프로필렌 디엔 모노머) 고무 또는 폴리우레탄(Polyurethane)과 같은)로 만들어진 제 2 부분을 갖는다. 이러한 구조의 한 가지 장점은, 유연성 물질이 팽창 계수들의 차이들을 쉽게 흡수하면서, 유체 통로들, 및 공기 통로들을 위한 에지 밀봉부들(edge seals)과 이들 동일한 공기 통로들을 위한 난류를 일으키는 특징부들(features)과 같은 다른 특징부들을 제공한다는 것이다.
따라서, 공기 흐름으로부터 습기를 포착하면서, 그러한 공기 흐름을 동시에 냉각하고, 또한 그러한 공기 흐름의 오염 위험을 제거하는 비용 효율적이고, 제조가능하며 열적으로 효율적인 방법을 제공하는 시스템이 필요하게 된다.
(대개 2가지 유체를 사용하는) 열 교환기들은 열 전달 및 에너지 회수를 위한 많은 적용개소들에서 매우 흔히 사용된다. 대부분의 열 교환기들은 구리, 스테인리스 스틸(stainless steel) 및 알루미늄(aluminum)과 같은 금속들로 구성된다. 일반적으로 말하면, 그러한 열 교환기들은 유체와 금속 표면들 사이의 열 전달을 개선하기 위해 유체 흐름들을 방해하도록 시도하는 특징부를 포함한다. 금속들의 표면에서의 경계 층들은 열 전달에 더 큰 저항성을 생성한다. 소수의 적용개소들에서, 유체들 중 하나 또는 양자 모두는 흔히 사용된 금속들에 대해 부식성이 있을 수 있다. 표면 코팅들은 부식을 방지하는 데 도움을 주지만, 또한 감소된 열 전달을 갖는 경향이 있다. 티타늄(Titanium)과 같이 부식에 대해 민감하지 않은 금속들은 일반적으로 사용하기에 비용이 많이 들고 작업하기에 어려운 것으로 간주된다. 플라스틱들이 사용될 수 있지만, 이들은 종종 일반적으로 유체들에 사용되는 작동 압력들 및 온도들을 견딜 수 없다. 따라서, 비용-효과적인 내식성 액체 대 액체 열 교환기가 필요하다.
액체 건조제를 이용하여 공기 흐름의 효율적인 제습에 사용된 방법들 및 시스템들이 본 명세서에 제공된다. 하나 이상의 실시예들에 따라, 액체 건조제는 강하막(falling film)으로서 지지판의 면 아래로 이어진다. 하나 이상의 실시예들에 따라, 액체 건조제는 미공성 막에 의해 덮혀, 액체 건조제는 공기 흐름에 들어갈 수 없지만, 공기 흐름의 수증기는 액체 건조제 내로 흡수될 수 있다. 몇몇 실시예들에서, 공기 흐름은 난류발생기(turbulator)를 포함한다: 공기가 건조제의 표면에 걸쳐 층류(laminar)가 되지 않도록 공기 흐름에서 난류를 유도하는 물질 또는 특징부. 몇몇 실시예들에서, 난류발생기는 플라스틱 망상(netting) 물질이다. 몇몇 실시예들에서, 난류발생기는 공기 흐름에 걸쳐 있는 일련의 플라스틱 와이어들(wires)이다. 몇몇 실시예들에서, 막은 양축으로 신장된 폴리프로필렌(polypropylene) 막이다. 몇몇 실시예들에서, 액체 건조제는 직물 또는 얇은 스크린(screen) 물질과 같은 심지 물질을 통해 흐르고, 직물 또는 스크린 물질은 지지판과 막 사이의 고정된 거리를 설정한다. 몇몇 실시예들에서, 스크린 물질 또는 직물은 건조제에 대한 혼합 또는 난류를 제공하여, 신선한 건조제는 막에 가까워지게 되고, 소비된 건조제는 막 근처의 표면으로부터 제거된다. 몇몇 실시예들에서, 막은 스크린 또는 심지(wicking) 물질을 통해 지지판 상에 접합된다. 몇몇 실시예들에서, 지지판은 섬유 유리 강화 플라스틱과 같은 약간 열적으로 전도성의 강성 플라스틱이다. 몇몇 실시예들에서, 지지판은 냉각 유체에 의해 대향 측부에서 냉각된다. 몇몇 실시예들에서, 냉각 유체는 물 또는 물/글리콜(glycol) 혼합물이다. 몇몇 실시예들에서, 냉각 유체는 플라스틱 메쉬(mesh)를 통해 이어지며, 여기서 플라스틱 메쉬는 지지판과 제 2 지지판 사이의 거리를 설정하고, 냉각 유체가 메쉬에 의해 난류가 되도록 한다. 몇몇 실시예들에서, 메쉬는 이중 평면 다이아몬드 플라스틱 메쉬이다. 몇몇 실시예들에서, 제 2 지지판은 일련의 접착점들에 의해 제 1 지지판에 접합되어, 판들은 냉각 유체 압력으로 인해 부풀지 않는다. 몇몇 실시예들에서, 지지판들은, 다이아몬드 메쉬의 유사한 특징부들이 지지판 내로 직접 형성되도록 형성된다. 몇몇 실시예들에서, 지지판은 제 2 지지판에 결합되고, 여기서 양쪽 판들은 다이아몬드 메쉬의 기능들을 달성하는 특징부들을 포함한다: 2개의 지지판들 사이의 고정된 거리를 설정하고 냉각 유체 흐름을 혼합하는 난류를 생성. 몇몇 실시예들에서, 건조제 측면의 심지 물질 또는 스크린 물질의 특징부들도 또한 지지판들 내에 포함된다. 몇몇 실시예들에서, 건조제 또는 냉각 유체 측면 중 어느 하나 또는 양자 모두의 접착점들은 막 또는 제 2 지지판과 연결하기 위해 열 접합, 초음파 접합, 또는 몇몇 다른 접합 방법으로 대체된다. 몇몇 실시예들에서, 지지판 자체는 몇몇 프로세스에 의해, 열 또는 초음파음 또는 극초단파들 또는 몇몇 다른 적합한 방법에 의해 활성화되는 플라스틱에 접착제를 포함한다.
몇몇 실시예들에서, 다이아몬드 메쉬는 공압출된(co-extruded) 플라스틱 및 접착제를 포함한다. 몇몇 실시예들에서, 플라스틱은 개별적인 프로세스 단계에서 접착제로 코팅된다. 몇몇 실시예들에서, 제 2 지지판은 제 2 스크린 및 메쉬를 제공하고, 제 2 공기 난류발생기를 포함하는 제 2 공기 간극(air gap)을 향한다. 몇몇 실시예들에서, 이렇게 구성된 막판 조립체는 다중 액체 공급- 및 배출 포트들(ports)을 구비하여, 균일한 액체 분배가 막의 표면들과 지지판들에 걸쳐서 달성된다. 몇몇 실시예들에서, 포트들은, 공기가 막들에 걸쳐서 수평 또는 수직 방식으로 향하게 될 수 있도록 재구성가능하다. 몇몇 실시예들에서, 공기 난류발생기는 수평 또는 수직 공기 흐름에 대해 효율적이 되도록 구성된다. 몇몇 실시예들에서, 액체 포트들은, 냉각 유체가 공기 흐름 방향에 반하여 항상 흘러 역류(counter-flow) 열 교환 기능이 얻어지도록 구성될 수 있다. 몇몇 실시예들에서, 판에 대한 배출 포트들은, 남겨진 액체들의 사이퍼닝을 제공하는 방식으로 구성됨으로써, 대기압에 대한 지지판들 사이의 부압(negative pressure) 및 지지판과 막 사이의 부압을 생성하여, 막이 스크리닝(screening) 물질 또는 심지 직물에 대해 평평하게 유지하는 것을 보장한다. 몇몇 실시예들에서, 지지판들 사이의 메인 밀봉부들은 자가-배수 기능을 제공하도록 구성되어, 막판 시스템 내부에 어떠한 액체도 머무르지 않는다. 몇몇 실시예들에서, 그러한 자가-배수 밀봉부들은 액체 건조제들 및 냉각 유체들을 위한 개별적인 영역들을 생성하여, 밀봉부들 중 하나의 밀봉부에서의 누출은 다른 유체에 영향을 미치지 않을 것이다. 다른 실시예들에서, 지지판은 막에 의해 부분적으로만 덮여, 냉각만을 감지하기 위한 추가 영역을 제공한다. 몇몇 실시예들에서, 부분적으로 덮인 지지판들은 수직 공기 흐름 및 공기 흐름에 마주보는 방향 또는 반대 방향으로 향하는 수직 열 전달 유체 흐름에 직면하게 된다. 몇몇 실시예들에서, 부분적으로 덮인 지지판은 수평 공기 흐름 및 공기 흐름에 주로 반대 방향으로 향하는 수평 열 전달 유체 흐름을 지지한다. 몇몇 실시예들에서, 접착점들은 판의 채널들(channels)에 남아있는 액체들의 사이퍼닝의 장점을 취하도록 최소화되어, 이용가능한 막 영역을 극대화시킨다.
앞에 나온 절에서 설명된 막판 조립체들이 유연한 스페이서(pliable spacer)에 의해 연결되는 시스템들 및 방법들이 제공된다. 몇몇 실시예들에서, 스페이서는 EPDM과 같은 고무 물질로 만들어진다. 몇몇 실시예들에서, 스페이서는, 액체들 사이의 분리를 제공하고 지지판의 표면에 대한 스페이서를 밀봉하는 고리형 밀봉부들을 갖는다. 몇몇 실시예들에서, 스페이서는 접착제로 완전히 코팅된다. 몇몇 실시예들에서, 스페이서는 또한 공기 망상 난류발생기를 지지하기 위한 특징부들을 포함한다. 몇몇 실시예들에서, 스페이서는 장력 하에 공기 난류발생기를 유지하는 특징부들을 포함한다. 몇몇 실시예들에서, 스페이서는, 또한 공기 흐름을 적절한 방향으로 전환하기 위한 벽을 제공하도록 성형된다. 몇몇 실시예들에서, 고무 물질은 지지판에서 오버-몰딩(over-molding)된다. 몇몇 실시예들에서, 스페이서 및 공기 망상 난류발생기는 단일 제조된 구성요소를 형성한다. 몇몇 실시예들에서, 공기 망상 및 스페이서는 개별적인 구성요소들이다. 몇몇 실시예들에서, 공기 망상 난류발생기는 막을 고정된 장소에 유지하도록 설계된 지지 구조들을 포함한다. 몇몇 실시예들에서, 공기 망상 난류발생기, 막들 및 지지판들은 냉각 유체 중심들을 갖거나 갖지 않고도 적층되며, 여기서 스페이서 및 지지 망상은 접착제들을 필요없게 만든다. 몇몇 실시예들에서, 판들, 지지 구조들 및 스페이서들은 유연성이 있는 물질들로 만들어져서, 구조물들은 원통형 형태 내로 압연(rolling)될 수 있다. 몇몇 실시예들에서, 막판들 사이에 공기 간극을 조정하기 위해 유연 공간들에 힘이 가해진다. 몇몇 실시예들에서, 그 힘은 막판의 일단부 근처에 더 많은 양으로 가해지고, 막판의 대향 단부 근처에 더 적은 양이 가해져서, 대향 단부 상에 있는 경우 일단부 상에서 더 작은 공기 간극을 초래한다. 몇몇 실시예들에서, 가변 공기 간극은 채널에서 공기의 수축 또는 팽창과 일치된다. 몇몇 실시예들에서, 가변 공기 간극은 채널에서 공기 압력 강하와 막 효율 사이에서 최적화하도록 동적으로 조정된다. 몇몇 실시예들에서, 스페이서들은 막 모듈의 일측부 상에서 더 넓어지고 막 모듈의 대향 측부에서 더 좁아지도록 이루어진다. 몇몇 실시예들에서, 공기 간극들은 막판들 사이에서 공기의 팽창 또는 수축과 일치하도록 조정된다.
몇몇 실시예들에서, 전술한 바와 같이 이렇게 구성된 일련의 판들 및 스페이서들은 블록(block)에 위치된다. 몇몇 실시예들에서, 블록은 더 큰 일련의 판들을 포함한다. 몇몇 실시예들에서, 블록은, 공기 흐름이 수평 양상 또는 수직 양상 중 어느 하나로부터 판들 내에 들어가도록 재구성될 수 있다. 몇몇 실시예들에서, 블록에서의 포트들은, 냉각 유체가 항상 공기 흐름의 플로우(flow)에 반대로 향하게 되도록 재구성될 수 있다. 몇몇 실시예들에서, 냉각 유체는 가열 유체로 대체된다. 몇몇 실시예들에서, 가열 유체는, 유체가 냉각될 때 수증기를 건조제 내로 흡수하기보다는 막을 통해 수증기를 건조제로부터 공기 흐름 내로 증발시키는 데 사용된다.
하나 이상의 실시예들에 따라, 강성(rigid) 및 연성(flexible) 물질들을 교대로 포함하는 공기 처리 모듈들이 개시된다. 몇몇 실시예들에서, 강성 요소는 모듈의 상부에서 액체 분배 헤더(header) 및 모듈의 하부에서 유사한 액체 분배 헤더를 이용하며, 이들은 2개의 지지판들에 의해 연결된다. 몇몇 실시예들에서, 헤더들은 2가지 유체들을 일련의 막들에 공급하도록 분리된다. 몇몇 실시예들에서, 막들의 한 세트는 상부 헤더의 한 부분으로부터 유체를 수용하는 한편, 막들의 제 2 세트는 헤더의 제 2 부분으로부터 유체들을 수용한다. 몇몇 실시예들에서, 헤더들은 예를 들어, EPDM 고무와 같은 연성 물질로 만들어지는 한편, 지지판들은 예를 들어, ABS 또는 PET와 같은 더 강성인 물질로 만들어진다. 몇몇 실시예들에서, 지지판들은 내화 첨가제들 또는 열적 전도성 첨가제들로 도핑(doping)된다. 몇몇 실시예들에서, 지지판들은 유체 공급을 위한 홀들(hole)과, 이 홀들에 포함된 유체 배수구를 갖는다. 몇몇 실시예들에서, 지지판들은 이들 전역에 부착된 일련의 막들을 갖는다. 몇몇 실시예들에서, 막들은 접착제를 이용하여 지지판에 연결된다. 몇몇 실시예들에서, 접착제는 또한 액체의 난류 혼합을 제공하는 스크린 물질에 함유된다. 몇몇 실시예들에서, 접착제는 유체의 난류 혼합을 제공하는 얇은 스크린 물질을 통해 연결된다. 몇몇 실시예들에서, 난류 특징부들은 지지판 내에 일체화된다. 몇몇 실시예들에서, 지지판들은 이들 중 어느 한 측부에 난류 특징부들을 갖는다. 몇몇 실시예들에서, 스크린 물질은 공기 흐름에서 표면 난류를 제공하는 방식으로 형성된다. 몇몇 실시예들에서, 막은 공기 흐름에 난류를 제공하는 방식으로 형성된다. 몇몇 실시예들에서, 막은 스크린 물질의 특징부들 전역에 접착되어, 그 결합은 공기 흐름에 난류를 생성한다. 몇몇 실시예들에서, 지지판은, 스크린 물질 및 막들이 공기 흐름에서 난류를 생성하도록 형성되는 리지들(ridges)을 생성하는 추가 특징부들을 갖는다. 몇몇 실시예들에서, 지지판들 사이의 공기 간극들은 막들을 지지하기 위해 잘 연성 구조 물질로 채워진다. 몇몇 실시예들에서, 연성 구조 물질은 공기 간극들을 위한 에지 밀봉부를 제공한다. 몇몇 실시예들에서, 연성 구조 물질은 공기 흐름에 난류를 제공한다. 몇몇 실시예들에서, 난류 특징부는 막들의 표면에 위치된다. 몇몇 실시예들에서, 난류 특징부는 공기 간극의 중간에 위치된다. 몇몇 실시예들에서, 연성 구조 물질은 막들에서부터 공급 액체들 또는 배수 액체들까지 액체 통로들을 제공한다. 몇몇 실시예들에서, 난류발생기는 공기 흐름에 일정 각도로 경사진 벽들을 갖는다. 몇몇 실시예들에서, 난류발생기 벽들은 공기 흐름에 반대 각도들로 대안적으로 경사진다. 몇몇 실시예들에서, 난류발생기 벽들은 하향(downstream) 방향으로 더 작다. 몇몇 실시예들에서, 난류발생기는, 공기 흐름의 회전이 개선되는 방식으로 공기 흐름을 1차 벽 구조로부터 반대 방향쪽으로 다시 향하게 하는 벽들을 포함하는 2차 구조를 갖는다. 몇몇 실시예들에서, 1차 및 2차 벽들의 조합은 공기 채널 아래로 역회전하는 공기 흐름을 초래한다.
또한 방법들 및 시스템들이 제공되며, 여기서 여러 개의 2-부분 강성 및 연성 막판은 막 공기 처리 모듈을 얻도록 적층된다. 몇몇 실시예들에서, 그러한 공기 처리 모듈은 주로 수직 배향으로의 1차 공기 흐름 및 주로 수평 배향으로의 2차 공기 흐름을 수용한다. 몇몇 실시예들에서, 수직 공기 흐름은 막들 중 하나의 세트에 노출되는 반면, 수평 공기 흐름은 막들의 제 2 세트에 노출된다. 몇몇 실시예들에서, 한 세트 또는 양 세트들의 모든 막들은 막 지지판의 표면에서 플로킹(flocking), 직물, 망상 또는 다른 친수성 물질로 대체된다. 몇몇 실시예들에서, 1차 공기 흐름은 한 세트의 막들을 통해 하나의 유체에 노출되고, 2차 공기 흐름은 다른 세트의 막들을 통해 제 2 유체에 노출된다. 몇몇 실시예들에서, 제 1 유체는 LiCl 및 물, CaCl2 및 물 또는 다른 적합한 액체 건조제와 같은 건조제 용액이다. 몇몇 실시예들에서, 제 2 유체는 물 또는 해수 또는 폐수 또는 다른 저렴한 물 소스(source)이다. 몇몇 실시예들에서, 유체들은 동일하다. 몇몇 실시예들에서, 1차 및 2차 공기 채널들은 모두 일반적으로 수평이 되도록 배향된다. 몇몇 실시예들에서, 채널들 모두는 일련의 막들을 지나는 동일한 액체에 공기를 노출시킨다.
몇몇 실시예들에서, 1차 공기 채널은 일반적으로 수평이며, 여기서 공기는 액체 건조제에 노출되고, 이에 따라 처리된 부분은 2차 채널로 전환되고, 처리된 공기는 2차 공기 흐름과 혼합되며, 물과 같은 상이한 액체에 노출된다. 몇몇 실시예들에서, 물은 해수 또는 폐수로 대체된다. 몇몇 실시예들에서, 전환된 공기 흐름은 전환된 공기의 양이 변경될 수 있는 것으로 조정가능하다. 몇몇 실시예들에서, 전환된 공기 흐름은 전환된 공기와 2차 공기 흐름 사이의 혼합비를 변경시키도록 조정가능하다. 몇몇 실시예들에서, 전환된 공기 흐름은 1차 공기 흐름 채널들의 후방 입구 근처로 향하게 되고, 여기서 건조된 1차 공기의 효과는, 공기 흐름이 1차 공기 흐름 채널들의 후방 배출부 근처로 향하게 된 경우보다 2차 공기 흐름에서 더 큰 냉각 효과를 갖는다.
방법들 및 시스템들이 제공되며, 여기서 2가지 유체들은 일련의 평행한 판들을 통해 이들 유체들 사이에서 열을 교환한다. 몇몇 실시예들에서, 유체들은 부식성 유체들이다. 몇몇 실시예들에서, 유체들은 건조제들로서 기능한다. 몇몇 실시예들에서, 건조제들은 LiCl, CaCl2, Ca(NO3)2, LiBr 및 물 또는 다른 염 용액들을 함유한다. 몇몇 실시예들에서, 하나의 액체는 고온이고, 다른 액체는 저온이다. 몇몇 실시예들에서, 평행한 판 구조는 접착성 에지 밀봉부를 갖는 판들을 포함한다. 몇몇 실시예들에서, 판들은 플라스틱 물질로 만들어진다. 몇몇 실시예들에서, 플라스틱 물질은 섬유 유리 강화 플라스틱, 또는 폴리-에틸렌-테레프탈레이트(PET; Poly-Ethylene-Terephthalate) 또는 다른 플라스틱 물질이다. 몇몇 실시예들에서, 판 물질은 티타늄(Titanium)과 같은 내식성 물질의 시트(sheet)이다. 몇몇 실시예들에서, 판 물질은 열적으로 도핑된 공학 플라스틱이다. 몇몇 실시예들에서, 도펀트들(dopants)은 미국 특허 출원 공보 2012/0125581에 개시된 것과 같이 세라믹들(ceramics)이다. 몇몇 실시예들에서, 판들 사이의 공간은 이중 평면 다이아몬드 압출된 메쉬로 채워진다. 몇몇 실시예들에서, 메쉬는 유체들의 통과를 허용하면서, 판들 사이의 고정된 거리를 제공한다. 몇몇 실시예들에서, 메쉬는 유체들에 난류를 생성한다. 몇몇 실시예들에서, 메쉬는 공압출된 플라스틱 및 접착제를 포함한다. 몇몇 실시예들에서, 플라스틱은 개별적인 프로세스 단계에서 접착제로 코팅된다. 몇몇 실시예들에서, 접착제는 판 물질의 2개의 시트들 사이에서 메쉬를 통해 도달하는 접착점들을 포함한다. 몇몇 실시예들에서, 평행한 판들 사이의 밀봉부들은 접착제로 만들어진다. 몇몇 실시예들에서, 접착제는 3M 550 또는 5200 접착제 또는 유사한 폴리우레탄(polyurethane) 접착제이다. 몇몇 실시예들에서, 밀봉부들은 대향하는 판들 사이에서 대향하는 플로우 프로파일들(flow profiles)을 생성하도록 성형된다.
막 모듈들은 종종 접착물 또는 접착층들이 다양한 구성요소들에 걸쳐 온도 차이들에 의해 응력을 받게 되는 문제들을 겪는다. 이것은 건조제의 재생성에 사용된 구성요소들에서 특히 곤란한데, 이는 많이 있는 흔한 플라스틱들이 높은 열 팽창 계수들을 갖기 때문이다. 종종, 특수한 고온 플라스틱들이 이용되며, 이들은 제조에 사용하기에 비용이 많이 든다. 접합하는 큰 표면 영역들은 다함께 또한 접착이 갖는 문제점들을 야기하고, 시간이 지남에 따라 응력 균열들을 일으킬 수 있다. 포팅(potting) 기술들(일반적으로 액체가 부어진 플라스틱)은, 포팅 물질이 경화 후에도 약간 유연하게 남아있는 경우 약간 탄성을 갖는다. 하지만, 본 명세서에 설명된 시스템들 및 방법들은 고온에 의해 야기된 팽창에 상당히 더 많은 내성을 갖고, 이것은 제조 프로세스를 단순하고 강건하게 유지시킨다.
더욱이, 2-방향 액체 건조제들을 위한 냉방기 및 재생기 시스템들을 제작할 때 문제는, 플라스틱 지지 물질의 얇은 시트의 양 측부들에 균일한 건조제 분배를 제공하는 시스템을 설계하는 것이 어렵다는 것이다. 본 명세서에 설명된 시스템들 및 방법들은 건조제를 덮는 일련의 막들에 공기 흐름을 노출시키기 위한 단순한 방법을 제시한다.
본 명세서에서 방법들 및 시스템들이 제공되는데, 여기서 2-방향 막 모듈은 일련의 막들 뒤에 흐르는 건조제를 활성적으로 냉각시키기 위해 일단의 냉각 라인들을 이용한다. 구리 냉각 라인들과 같은 금속 튜브들 바로 위에서 건조제를 흐르게 하는 것은 문제가 있는데, 이는 건조제들(일반적으로 할로겐화 염)이 대부분의 금속들에 크게 부식성이 있기 때문이다. 티타늄은 예외일 수 있지만, 이용하기에는 엄청나게 고가이다. 티타늄 배관(piping)을 이용하기보다는, 본 명세서에 설명된 시스템들 및 방법들은 구리 냉각 라인들 주위에 감싸여서, 건조제의 냉각을 위해 간접적인 증발 채널을 이용하기보다 건조제의 직접적인 냉각을 달성하는 플라스틱 지지 시트를 제시한다. 몇몇 실시예들에서, 냉각제는 구리관을 통해 흐른다. 몇몇 실시예들에서, 구리관은 플라스틱 지지 시트에 의해 감싸진다. 몇몇 실시예들에서, 플라스틱 지지 시트는 막을 위한 지지 구조를 형성하고, 이것은 다시 건조제 유체를 포함한다.
건조제 공기 조절 시스템에 사용하기 위한 하나 이상의 실시예들에 따른 열 교환기는 복수의 막-판 조립체들을 포함하며, 이러한 복수의 막-판 조립체들은 일반적으로 평행한 배치로 서로 향하고, 상기 건조제 공기 조절 시스템에 의해 처리될 공기가 흐를 수 있는 그 사이의 공기 간극들을 한정하도록 이격되고, 상기 막-판 조립체들 각각은 (a) 판 구조 및 (b) 2개의 막들을 포함하고, 각각은 상기 판 구조의 대향 측부를 향하고, 액체가 흐를 수 있는 그 사이의 액체 간극을 한정하도록 상기 판 구조로부터 이격되고, 상기 막-판 조립체들은, 상기 공기 간극들이 1차 및 2차 채널들을 교대로 형성하도록 교차-흐름 배치를 갖고, 상기 1차 채널들에서의 공기 흐름은 상기 2차 채널에서의 공기 흐름에 대해 교차 흐름이고, 각각의 상기 막은 판 구조에 밀봉되는 하부 부분을 가져, 액체 건조제가 하나 이상의 배수 포트들을 통해 흐르도록 강제되어, 각 막과 상기 판 구조 사이의 상기 간극에서 부압(negative pressure)을 생성한다.
건조제 공기 조절 시스템에 사용하기 위한 하나 이상의 실시예들에 따른 열 교환기는 일반적으로 평행한 배치로 서로 향하고 상기 건조제 공기 조절 시스템에 의해 처리될 공기 흐를 수 있는 그 사이의 공기 간극들을 한정하기 위해 이격된 복수의 막-판 조립체들로서, 상기 막-판 조립체들 각각은 (a) 판 구조 및 (b) 2개의 막들을 포함하고, 각각은 상기 판 구조의 대향 측부를 향하고, 액체가 흐를 수 있는 그 사이의 액체 간극을 한정하기 위해 상기 판 구조로부터 이격되고, 상기 막-판 조립체들은, 상기 공기 간극들이 1차 및 2차 채널들을 교대로 형성하도록 교차-흐름 배치를 갖고, 상기 1차 채널들에서의 공기 흐름은 상기 2차 채널에서의 공기 흐름에 대해 교차 흐름인, 상기 복수의 막-판 조립체들; 및 증발 냉각을 제공하기 위해 상기 2차 채널들에 들어가는 상기 공기 흐름의 부분이 되도록 상기 1차 채널들을 빠져나가는 상기 공기 흐름의 적어도 일부분을 전환하기 위한 전환기(diverter)를 포함한다.
건조제 공기 조절 시스템에서 열 교환기에 사용하기 위한 하나 이상의 실시예들에 따른 지지 구조는 서로 등을 맞대어 부착된 2개의 몰딩(molding)된 지지판들을 포함하고, 각 지지판은 막을 위한 접합 표면을 제공하기 위해 그리고 상기 막과 상기 지지판의 전방 측부 사이에 흐르는 액체 건조제의 흐름을 혼합 또는 난류를 일으키기 위해 그것의 상기 전방 측부 상의 일체로-형성된 상승형 특징부들의 배열을 포함하고, 각 지지판은 또한 다른 지지판로부터의 거리를 설정하기 위해, 상기 지지판들 사이에 흐르는 열 전달 유체의 흐름을 혼합 또는 난류를 일으키기 위해, 그리고 상기 지지판들을 부착하기 위한 접합 표면을 제공하기 위해 그것의 후방 측부 상에 복수의 일체로-형성된 상승형 특징부들을 포함하며, 각 지지판은 또한 하나 이상의 개구부들(openings)을 포함하고, 이들 하나 이상의 개구부들을 통해 상기 액체 건조제는 상기 액체 건조제를 수집하기 위해 상기 판의 상기 전방 측부 및 하나 이상의 개구부들에 유입될 수 있다.
하나 이상의 실시예들에 따라 열을 제 1 액체로부터 제 2 액체로 전달하기 위한 2-방향 열 교환기는 각각 인접한 판 조립체들 사이에, 복수의 채널들을 한정하는 일반적으로 평행한 배치의 복수의 판 조립체들을 포함하고, 상기 채널들은 각각 상기 제 1 액체 및 상기 제 2 액체의 개별적인 흐름을 위해 제 1 및 제 2 채널들 사이에서 교대로 이루어지고, 각각의 상기 판 조립체는, 인접한 판 조립체 및 상기 지지판이 한정된 채널을 통해 흐르는 액체를 혼합 또는 난류를 일으키기 위해 그리고 상기 지지판들 사이의 거리를 설정하기 위해 메쉬 난류발생기를 이용하는 지지판, 상기 채널 내로의 액체의 흐름을 위한 주입 개구부, 상기 채널로부터 액체를 방출하기 위한 배출 개구부, 및 상기 채널을 통해 상기 제 1 액체 및 상기 제 2 액체 중 하나만의 통과를 허용하기 위한 밀봉 구조를 포함한다.
하나 이상의 실시예들에 따라 건조제 공기 조절 시스템에 사용하기 위한 열 교환기는 복수의 막-판 조립체들을 포함하고, 복수의 막-판 조립체들은 일반적으로 평행한 배치로 서로 향하고 상기 건조제 공기 조절 시스템에 의해 처리될 공기가 흐를 수 있는 그 사이의 공기 간극을 한정하기 위해 이격되고, 상기 막-판 조립체들 각각은 (a) 판 구조 및 (b) 2개의 막들을 포함하고, 각각은 상기 판 구조의 대향 측부를 향하고 액체 건조제가 흐를 수 있는 그 사이의 간극을 한정하기 위해 상기 판 구조로부터 이격되고, 각각의 상기 판 구조는 열을 상기 액체 건조제로 또는 상기 액체 건조제로부터 전달하기 위해 금속 열 전달 파이프를 포함하고, 상기 금속 열 전달 파이프는 상기 액체 건조제에 의해 상기 금속 열 전달 파이프의 부식을 방지하기 위해 비-부식 물질에 의해 캡슐화(encapsulated)된다.
상기 막은 폴리프로필렌(polypropylene), 에틸렌 클로로트리플루오로에틸렌(ECTFE; Ethylene chlorotrifluoroethylene), 폴리에틸렌(polyethylene), 폴리올레핀(polyolefin), 셀룰로오스 아세테이트(cellulose acetate), 니트로셀룰로오스(Nitrocellulose), 셀룰로오스 에스테르(cellulose esters), 폴리설폰(PS; polysulfone), 폴리에테르 설폰(PES; polyether sulfone), 폴리아크릴로니트릴(PAN; polyacrilonitrile), 폴리아미드(polyamide), 폴리이미드(polyimide), 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(PVDF; polyvinylidene fluoride), 또는 폴리비닐클로라이드(PVC; polyvinylchloride)를 포함할 수 있다.
각 접착점은 공기 간극의 폭의 1/10 내지 2배의 거리만큼 인접한 접착점으로부터 이격될 수 있다.
상기 심지 물질 또는 스크린 물질은 상기 판 구조와 각 막 사이의 상기 간극을 통해 흐르는 건조제에 대한 건조제 확산, 혼합, 또는 난류를 제공할 수 있다.
본 출원들의 설명은 본 발명을 이들 출원들에 국한하려고 하는 것이 결코 아니다. 많은 구성의 변경들은 각각 그 자체 장점들 및 단점들을 갖는 전술한 다양한 요소들을 조합하도록 구상될 수 있다. 본 발명은 그러한 요소들의 특정한 세트 또는 조합에 국한되지 않는다.
도 1은 이중(double) U-형 냉각 액체 경로, 강하막 건조제 흐름(하향) 및 수평 공기 흐름을 이용하는 종래 기술의 3-방향, 교차-흐름 열 교환기를 예시한다.
도 2는 도 1의 세부사항을 예시한다.
도 3은 미국 특허 출원 공보 2012/0125581에 도시된 플라스틱 2-방향 액체 간 열 교환기를 도시한다.
도 4는 막 뒤에 수직 공기 흐름(하향), 수직 냉각 유체 흐름(상향) 및 수직 강하막 건조제(하향)를 갖고 설정된 다양한 실시예들에 따라 3-방향 재구성가능 역류 열 교환기를 도시한다.
도 5는 막 뒤에 수평 공기 흐름, 수직 냉각 유체 흐름(상향) 및 강하막 건조제(하향)를 갖는 교차-흐름 시스템으로서 설정된 도 4로부터의 열 교환기의 상이한 구성을 설명한다.
도 6은 다시 막 뒤에 수평 공기 흐름을 갖지만, 수평 냉각 유체 흐름(공기 흐름의 방향에 반대로) 및 강하막 건조제(하향)를 갖는 역류 설정에서의 도 5의 열 교환기를 도시한다.
도 7은 유체들이 중력 배수 순환 시스템을 통해 수집되는 도 4의 3-방향 열 교환기의 개략적인 플로우를 도시한다.
도 8은 유체들이 중력 배수 순환 시스템을 통해 수집되는 도 5의 3-방향 열 교환기의 개략적인 플로우를 도시한다.
도 9는 유체들이 중력 배수 순환 시스템을 통해 수집되는 도 6의 3-방향 열 교환기의 개략적인 플로우를 도시한다.
도 10은 공기, 건조제 및 물 채널들에서 난류를 생성하는 물질들을 포함하는, 공기, 건조제와 냉각 유체 사이에 3-방향 열 교환기를 제공하는 개별적인 판들의 단면도를 도시한다.
도 11은 막들이 지지 구조에 대해 평평하게 유지하도록 하는 도 10의 3-방향 열 교환기 판을 위한 사이퍼닝 배수구를 설명한다. 막들 중 하나는 예시 목적을 위해 제거되었다.
도 12는 동일한 3-방향 열 교환기를 위한 사이퍼닝 배수구를 예시하지만, 막이 공기 간극 내로 팽창(bulge)하는 것을 도시한다. 막들 중 하나는 예시 목적을 위해 제거되었다.
도 13은 3-방향 열 교환기 판들의 거의 수평의 평평한 배향을 허용하는, 도 10의 3-방향 열 교환기 판을 위한 사이퍼닝 배수구의 대안적인 배향을 예시한다.
도 14는 건조제 및 냉각 유체를 위한 개별적인 유체 밀봉부들을 갖는 도 600의 2개의 막판들 사이에 사용된 스페이서(spacer)를 도시한다.
도 15는 건조제 및 냉각 유체 모두를 둘러싸는 전체 밀봉부를 갖는 도 10의 2개의 막판들 사이에 사용된 스페이서를 예시한다.
도 16은 판들 사이에 최종 연결을 이루기 위한 접착제를 갖는, 도 10의 개별적인 판들의 각 측부 상에 오버(over)-몰딩된 스페이서의 실시예를 도시한다.
도 17은 판들 사이에 최종 연결을 이루기 위한 접착제를 갖는, 도 10의 개별적인 판들의 한 측부 상에만 오버-몰딩된 스페이서의 실시예를 도시한다.
도 18은 스페이서들이 막판들 사이의 균일한 채널 폭들을 생성하는 동일한 두께를 갖는, 도 10에 도시된 일단의 막판들을 연결하는 데 사용된 도 14의 일단의 스페이서들의 실시예를 도시한다.
도 19는 스페이서들이 막판들 사이의 가변 채널 폭들을 생성하는 동일하지 않은 두께를 갖는, 도 10에 도시된 일단의 막판들을 연결하는데 사용된 도 14의 일단의 스페이서들의 세트의 실시예를 도시한다.
도 20은 제 1 공기 채널이 보이도록 전방 덮개 면 판이 제거된, 도 4의 3-방향 열 교환기를 도시한다.
도 21은 예시 목적을 위해 여러 개의 추가 막판들이 제거된, 도 20의 3-방향 열 교환기를 도시한다.
도 22는 제 1 공기 채널이 보이도록 전방 덮개 면 판이 제거된, 도 5의 3-방향 열 교환기를 도시한다.
도 23은 예시 목적을 위해 여러 개의 추가 막판들이 제거된, 도 5의 3-방향 열 교환기를 도시한다.
도 24는 도 21에 도시된 공기 채널들을 위한 대안적인 난류발생기를 예시한다.
도 25는 도 23에 도시된 공기 채널들을 위한 대안적인 난류발생기를 예시한다.
도 26은 하나 이상의 실시예들에 따른 단일 막판의 분해 조립체 도면을 도시한다.
도 27은 하나 이상의 실시예들에 따른 막판의 코어(core)에 대한 밀봉부 및 난류발생기 세부사항을 예시한다.
도 28은 일체형 유닛으로서 밀봉부, 난류발생기 및 접착점들을 예시한다.
도 29는 건조제 및 냉각 유체들이 개별적인 밀봉 영역들에 있고 밀봉부가 자가-배수되는 방식으로 성형되는, 밀봉부의 대안적인 구성을 도시한다.
도 30은 유체들을 위한 배수- 및 공급-홀들을 갖는 열적 전도성 덮개 판에 대해 장착된 도 29의 밀봉부를 도시한다.
도 31은 냉각 유체 영역의 중간에 설치된 접착점들 및 난류 메쉬를 갖는 도 30의 조립체를 도시한다.
도 32는 단일 막판 및 스페이서들의 최종 조립체를 통해 도 31의 조립체로부터 조립 단계들을 예시한다.
도 33은 다중 막판들의 조립 프로세스를 예시한다.
도 34는 도 33의 세부사항을 예시한다.
도 35는 종래 기술의 일단의 표면 난류발생기들을 도시한다.
도 36은 난류 흐름을 생성하는 수단으로서 막 및 지지 구조를 이용하는 일단의 표면 난류발생기들을 예시한다.
도 37은 좁은 공기 채널에서 역회전 흐름을 발생할 수 있는 난류발생기를 도시한다.
도 38은 하나 이상의 실시예들에 따라 부착된 막 및 오버-몰딩된 스페이서를 갖는 하프(half)-판 조립체를 도시한다.
도 39는 하나 이상의 실시예들에 따라 도 38의 하프-판 조립체의 분해도를 도시한다.
도 40은 하나 이상의 실시예들에 따라 단일 막판을 형성하도록 2개의 하프-판들이 어떻게 접착되는 지를 예시한다.
도 41은 또한 기계적 지지를 막 구조에 제공할 수 있는 공기-난류 망상 물질을 도시한다.
도 42는 2개의 3-방향 막판들에 연결된 2개의 막들이 공기-난류 망상에 의해 지지되는 도 41의 세부사항을 도시한다.
도 43은 2개의 2-방향 막판들에 연결된 2개의 막들이 공기-난류 망상에 의해 지지되는 도 42의 유사한 세부사항을 도시한다.
도 44는 망상이 또한 막들을 적소에 기계적으로 유지하도록 설계된 지지 구조들을 포함하고 에지(edge) 스페이서들이 그 설계에 일체화되는, 공기 난류 망상의 실시예를 도시한다.
도 45는 공기 난류 망상이 원통형 구조물 내로 압연되는 막 구조를 어떻게 지지할 수 있는 지를 도시한다. 상세 "A"는 2-방향 열 교환기 판 구조를 도시한다. 상세 "B"는 3-방향 열 교환기 판 구조를 도시한다.
도 46은 공기 난류 망상이 3-방향 열 교환기 판 구조를 위한 평평한 막 구조를 어떻게 지지할 수 있는 지를 도시한다.
도 47은 공기 난류 망상이 2-방향 열 교환기 판 구조를 위한 평평한 막 구조를 어떻게 지지할 수 있는 지를 도시한다.
도 48은 냉각 유체 및 건조제 분배를 위한 특징부들을 포함하도록 다이-컷(die-cut)되고 열 성형된 지지판을 도시한다.
도 49는 도 48로부터의 지지판이 완전한 판 구조를 형성하기 위해 도 48로부터의 다른 지지판과 어떻게 결합될 수 있는 지를 도시한다.
도 50은 도 49로부터의 2개의 지지판들이 투명 양상에서 단일 판을 형성하기 위해 어떻게 결합되는지를 예시한다.
도 51은 도 48의 지지판의 코너(corner)에 대한 세부사항을 도시한다.
도 52는 도 10의 액체 건조제, 막 및 냉각 유체들을 위한 밀봉부들의 배치를 도시한다.
도 53은, 건조제가 구역("A")에서 막 뒤로 흐르고 구역("B")만이 감지가능 냉각을 제공하는 밀봉부들의 대안적인 배치를 도시한다.
도 54는 건조제가 막판의 제 1 섹션("A") 상에 흐르고 막판의 제 2 섹션("B") 상에 막이 존재하지 않는 밀봉부들의 대안적인 배치를 도시한다.
도 55는 하나 이상의 실시예들에 따른 2-방향 열 교환기를 도시한다.
도 56은 홀수 레벨의 교차에서 2-방향 열 교환기의 세부사항을 절단하여 도시한다.
도 57은 짝수 레벨의 교차에서 2-방향 열 교환기의 세부사항을 절단하여 도시한다.
도 58은 도 55의 2-방향 열 교환기의 단일 판의 조립체를 예시한다.
도 59는 2-방향 열 교환기의 홀수-레벨의 판 조립체를 도시한다.
도 60은 2-방향 열 교환기의 짝수-레벨의 판 조립체를 도시한다.
도 61은 교차 흐름 공기 흐름이 메인 공기 흐름에 간접적인 냉각을 제공하는, 수직 배향으로의 1차 공기 흐름 및 교차 흐름의 수평 배향으로의 2차 공기 흐름을 이용하는 2-부분 막판 조립체를 예시한다.
도 62는 예시 목적을 위해 외부 막이 제거된, 도 61의 2-부분 막판 조립체를 도시한다.
도 63은 도 61의 2-부분 막판 조립체의 후방 측부를 도시한다.
도 64는 도 63의 세부적인 코너를 도시한다.
도 65는 명백함을 위해 내부 막 및 공기 난류발생기가 제거된, 도 64의 상이한 양상을 도시한다.
도 66은 도 61의 2-부분 막판 조립체의 분해도를 도시한다.
도 67은 도 66의 세부 양상을 도시한다.
도 68은 도 61의 2-부분 막판 조립체의 상부의 단면도를 도시한다.
도 69는 도 61의 2-부분 막판 조립체의 하부의 단면도를 도시한다.
도 70은 도 61로부터의 2-부분 막판 조립체의 다중 복사본들을 이용하는 교차 흐름 판 모듈을 도시한다.
도 71은 1차 공급 공기 흐름의 부분이 전환되어 2차 교차 흐름 공기 흐름과 혼합되는, 공기 처리 모듈 내로 일체화된 도 70의 교차 흐름 판 모듈을 도시한다.
도 72는 교차 흐름 공기 흐름으로 전환될 메인 흐름으로부터의 공기량을 변경할 수 있는 능력을 예시하기 위해 하나의 측부 덮개가 제거된, 도 71의 공기 처리 모듈을 예시한다.
도 73은 도 72의 세부사항을 도시한다.
도 74는 공기 흐름이 교차 흐름 판 모듈의 상부 부분으로 향하게 되는, 도 71의 시스템의 대안적인 실시예를 예시한다.
도 75는 하나의 판이 공기 흐름에 노출될 액체들을 위한 4개의 흐름 경로들을 제공하고 공기 흐름이 주로 수평인 2-부분 모듈을 도시한다.
도 76은 도 75의 2-부분 모듈의 분해도를 도시한다.
도 77은 도 76의 분해도에 대한 세부사항을 도시한다.
도 78은 공기 흐름이 모듈에서의 각 채널들 상의 액체들에 노출되는 수평 공기 흐름을 갖는 공기 처리 모듈을 도시한다.
도 79는 덮개 판들이 제거된 도 78의 공기 처리 모듈을 도시한다.
도 80은 건조제의 직접적인 냉각이 제공되도록 지지판이 지지판 내부에 흐르는 일단의 냉각 라인들을 수용하도록 변형된, 도 2000의 공기 처리 모듈을 예시한다.
도 1은 공기가 수직 판들의 스택(stack)에 들어가는 종래 기술의 3-방향 열 교환기를 도시한다. 수직 판들은 냉각 유체(38)를 제공하고, 플로킹(flocking) 물질로 코팅(coating)된다. 액체 건조제는, 공기 흐름으로부터 수증기를 흡수하고 응축물로부터 열 및 냉각 유체 내로 공기를 전도하면서, 판의 표면에 천천히 흘러 내려가는 플로킹 물질에 도포된다.
도 2는 냉각 유체가 장소(34)에 들어가고, 하부 장소(38)로 아래로 흘러 다시 상부 장소(38)까지 흐르는 종래 기술의 도 1의 판의 단면도를 도시한다. 유체는 이후 다시 하부로 흐르고, 다시 배출 포트(36)로 흐른다. 유체 흐름에서의 긴 좁은 통로들은 층류(laminar) 유체 흐름들이 되고, 도면에서 알 수 있듯이, 10에 들어가는 공기 흐름은 냉각 유체 흐름들에 대해 직각에 있다.
도 3은 교대로 된 패턴들이 일련의 판들에 적용되는 2-방향 열 교환기를 예시한다. 패턴들은 유체 흐름들을 방해(난류)하는 것으로 의도된다. 종종 2-방향 열 교환기들은, 고압 및 고온이 2-방향 열 교환기들에서 일반적이기 때문에 금속들을 이용하여 구성된다. 부식성 유체들을 수용하기 위해, 티타늄(Titanium) 열 교환기들이 이용될 수 있지만, 티타늄은 비용이 많이 들고, 일반적으로 작업(드릴링(drilling), 용접 등)하기 어렵다. 플라스틱 열-교환기들이 제작되고 제안되지만, 통상적으로 매우 높은 압력 또는 온도를 견딜 수 없다.
도 4는 공기 흐름으로부터 수증기를 포착하는 동시에, 공기 흐름을 냉각하게 되는 연성(flexible)의, 완전히 난류 흐름의, 내식성, 자가-배수, 부압(negative pressure), 막 보호된, 역류 3-방향 열 교환기를 도시한다. 고온, 고습의 공기 흐름(301)은 공기 흐름을 냉각하고 제습하는 일련의 막판들(303)에 들어간다. 차갑고, 건조한 떠나는 공기(302)는 예를 들어 빌딩에서의 공간과 같은 공간에 공급된다. 건조제는 공급 포트들(304)을 통해 공급된다. 2개의 포트들은 판 블록 구조(300)의 각 측부 상에 제공된다. 공급 포트들은 막판들(303)을 가로질러 균일한 건조제 필름 흐름을 제공하는 방식으로 이격된다. 건조제 필름은 중력을 통해 떨어지고, 판 블록(300)의 하부에서 수집되며, 배수 포트들(305)을 통해 빠져나간다. 냉각 유체(또는 경우에 따라 가열 유체가 될 수 있는)는 판 블록(300)의 하부에서 포트들(306)을 통해 공급된다. 다시, 냉각 유체 공급 포트들은 막판들(300) 내부에 균일한 냉각 유체 흐름을 제공하는 방식으로 이격된다. 냉각 유체는 막판들(303) 내부에서 상향으로 흐르고, 포트들(307)을 통해 판 블록(300)을 떠난다. 전방/후방 덮개들(308) 및 측면 덮개들(309)은 구조적 지지 및 단열을 제공하고, 공기가 블록의 측부들을 통해 떠나지 않는 것을 보장한다.
도 5는 공기 흐름이 이제 수평 배향으로 블록에 들어갈 수 있는 방식으로 재구성된 도 4의 판 블록을 도시한다. 공기는 401에서 들어가고, 402에서 블록을 떠난다. 상부 및 하부 덮개들(403)은 구조적 지지를 보장하고, 판 블록의 상부 및 하부로부터 공기가 누출되는 것을 방지한다.
도 6은 도 5의 판 블록을 예시하지만, 냉각 유체 흐름은, 유체가 하부 우측 상의 포트들(306) 및 상부 우측 상의 포트(405)에서 블록의 우측 상에 들어가도록 재구성되었다. 유체는 이제 상부 좌측 상의 포트들(307) 및 하부 좌측 상의 포트(404)에서 블록을 떠난다. 도면에서 알 수 있듯이, 냉각 유체는 공기 흐름 플로우에 반대 방향으로 흘러, 공기와 건조제와 냉각수 사이에 더 양호한 열 및 습기 전달을 초래한다.
도 7은 도 4의 판 블록 구성에 따른 간략화된 유체 플로우를 예시한다. 공기 흐름은 지점(501)에서 시작하여 막판 표면에 걸쳐 흐른다. 막판(504)은 유체 통로들을 갖는 중공 구조로서 구성된다. 냉각 유체 펌프(507)는 유체(502)가 분배되는 중공 판 내로 유체(502)를 펌핑한다. 그 후 유체는 상향으로 흐르고, 배출 포트(505)에서 떠난다. 유체는 도면에 도시된 바와 같이 균일한 유체 분배를 보장하기 위해 하나보다 많은 포트에서 판에 들어갈 수 있다. 배수구(505)는, 액체가 탱크(tank)(509) 내로 배수될 때 사이퍼닝(siphoning) 효과를 생성하는 방식으로 구성된다. 이것은 판 구조에서 부압을 약간 초래한다. 부압은 판이 팽창하는 것을 방지하는 데 도움을 준다. 일반적인 판 높이는 500 내지 600mm이고, 일반적인 두께는 3mm이고, 폭은 400 내지 500mm이다. 판이 물로 채워질 때, 수압은 판의 벽들을 서로 떨어지게 밀어낼 수 있어서, 판들 사이의 공기 간극들의 좁아짐과, 최악의 경우에 공기 간극이 함께 핀치오프되는 것(pinching off)을 초래한다. 사이퍼닝 및 부압은 판들을 바깥쪽이 아니라 안쪽으로 밀어내고, 공기 간극은 적절히 유지된다.
유사하게, 건조제(503)는 판의 외부 표면 상의 강하막(falling film)으로서 아래로 이어지는 판의 상부로 펌프(506)에 의해 펌핑된다. 액체 건조제는 얇은 미공성(microporous) 막(미도시)에 의해 판의 표면에 포함된다. 막은 액체 건조제를 냉각 유체와 유사하게, 및 판에서의 배수 채널 내로 밀어내고, 건조제는 사이퍼닝 배수구(510)를 통해 건조제 탱크(508) 내로 배수된다. 사이퍼닝 효과는 시스템의 건조제 측 상에서 더욱 더 중요한데, 이는 막이 일반적으로 매우 얇아서(약 2㎛) 공기 간극 내로 훨씬 더 쉽게 팽창할 수 있기 때문이다.
도 8은 도 5의 판 블록 구성에 대응하는 플로우를 예시한다. 공기 흐름은 판 표면을 가로질러 501에서 들어간다. 냉각 유체 및 건조제의 다른 흐름들의 플로우들은 도 7에서의 플로우들로부터 변경되지 않는다.
이중(dual) 포트들의 이용은 도 8의 시스템을 도 9에 도시된 시스템 내로 재구성하도록 할 수 있고, 냉각 유체를 판의 상부 및 하부 모두에 공급함으로써, 이를 통해 냉각 액체 플로우를 공기 흐름에 대해 역류로 전환하고, 막판(504)의 열 교환기 기능의 효율을 크게 증가시킨다. 빌딩 공기 조절 시스템들이 빌딩들의 광범위한 변경들을 수용하도록 구축되고 기후가 열 교환기의 효율을 크게 변화시키지 않고도 수평 또는 수직 방식으로 공기 조절 시스템 밖으로 공기를 흐르게 할 수 있는 것이 유리하다. 막판에서 플로우 패턴을 변화시킬 수 있음으로써, 판은 공기 흐름 배향 중 어느 하나에서 최적의 효율을 유지한다.
도 10은 단일 막판 조립체의 세부사항의 단면 구성을 도시한다. 인입 공기(601)는 2개의 메쉬(mesh)-형태의 공기-난류발생기들(602)에 걸쳐 향하게 된다. 공기-난류발생기들(602)은 폴리-프로필렌(poly-propylene) 압출된 플라스틱 망상 또는 플라스틱 라인들, 또는 다른 종래의 물질들과 같은 다양한 저렴한 물질들로 구성될 수 있다. 공기-난류발생기로서 기능할 수 있는 망상의 일례는 미국, MN 55445, Setzler Pkwy N. Minneapolis 7681, Industrial Netting에 의해 제작된 블랙 폴리-프로필렌 OB1200 망상이다. 막판들이 액체들이 공기 흐름에 들어가는 것을 방지하는데 도움을 주는 막(603)을 갖기 때문에, 막들을 갖지 않는 시스템들과 달리 막판들은 난류 공기 플로우들을 수용할 수 있는데, 이는 난류 흐름이 건조제를 공기 흐름 내로 부딪히게 할 수 없기 때문이다. 이에 따라 공기-난류발생기는 건조제 잔재 위험에 미치지 않고도 공기 흐름으로부터 액체 건조제 내로 열 및 습기 전달을 개선할 수 있다. 막은 예를 들어 NC 28273, South Lakes Drive Charlotte 13800, Celgard, LLC에 의해 제조된 EZ2090 폴리-프로필렌, 미공성 막이다. 막은 대략 65% 개방 영역이고, 약 20㎛의 일반적인 두께를 갖는다. 이러한 유형의 막은 기공 크기에 있어서 구조적으로 매우 균일하고, 상당한 열 배리어(barrier)를 생성하지 않을 정도로 충분히 얇다. 균일한 기공 크기는 막을 통해 파손되는 액체 건조제의 영역들 또는 스팟들(spots)이 없는 것을 보장한다. 개방 영역은 공기와 건조제 사이의 양호한 접촉을 허용한다. 하지만, 폴리프로필렌(polypropylene)은 종래의 접착제들에 의해 접합하기에 어렵게 하는 매우 낮은 표면 에너지를 갖는다. 열-접합은 가능하지만, 핀-홀들(pin-holes)을 생성함으로써 막에 손상을 줄 위험을 수반한다. 또한 막은 일반적으로 90℃보다 훨씬 더 높은 온도를 견딜 수 없고, 이것은 열 용접이 잘-제어된 프로세스(process)가 될 필요가 있다는 것을 의미한다. 다른 옵션(option)은 접착점들(607)에 의해 접합된 막(603)을 얇은 열적 전도성 플라스틱 시트(609)에 접합하는 것이다. 접착점들(adhesive dots)은 예를 들어 MN 55144-1000, 3M Center St. Paul, 3M Corp.에 의해 제조된 접착제 550 또는 5200일 수 있다. 이들 비-용매 기반의 접착체들은 막 구조를 기계적으로 "잡을(grab)" 수 있고 이에 따라 막(603) 및 판 구조(609) 모두에 잘 부착될 수 있다. 접착점들(607)은 판 구조(609)의 전체 면에 가로질러 양호한 접착을 생성하는데 적합한 패턴에서 약 2.5cm 이격된다. 판 구조(609)는 건조제 용액들에 대해 비활성 및 강성도를 위해 선택된 섬유 유리 강화 플라스틱 시트, PET 필름 또는 가공된 플라스틱과 같은 강화 폴리머(polymer)를 포함한다. 판 구조(609)는 일반적으로 거의 450mm 폭, 600mm의 높이 및 0.4mm 두께를 갖는 시트이다. 판 플라스틱은 건조제(606)와 냉각 유체(608) 사이의 열 전달을 개선하기 위해 열 도핑(doping)될 수 있다. 접착점들(607)은 미세한 스크린 물질(606)을 통해 도포된다. 스크린 물질(606)은 예를 들어, 미국, MN 55445, Setzler Pkwy N. Minneapolis 7681, Industrial Netting에 의해 제조된 얇은 폴리프로필렌 스크린 XN 4900이다. 스크린(606)은 2가지 주요한 기능들을 작용한다: 지지판(609)의 표면 아래로 흐를 때 건조제(610)를 난류시킨다. 이것은 또한 지지판(609) 아래로 흐를 때 고정된 거리의 건조제 분배 및 건조제 필름(610)의 균일한 두께를 설정한다. 접착점들(607)을 이용하기보다는, 막을 스크린(606) 및 지지판(609)에 접합하는 다른 방법들이 예를 들어, 스크린(606)을 접착제로 코팅함으로써, 또는 스크린(606)이 열 또는 몇몇 다른 활성 메커니즘에 의해 활성화될 수 있는 접착제를 미리 포함하도록 스크린(606)을 접착제로 공압출함으로써 고안될 수 있다는 것이 당업자에게 명백하다.
건조제는 공급 포트(611)를 통해 막판에 들어가고, 이것은 도 26에 도시될 바와 같이 막 영역으로부터 수평으로 오프셋(offset)된다. 건조제는 분배 헤더(header)(604)를 통해 흐르고, 이는 도 26에 또한 도시될 바와 같이 접착성 밀봉부 또는 플라스틱 부분을 이용하여 제조될 수 있다. 분배 헤더(604)는 일련의 작은 대략 0.5mm 홀들(616)을 갖고, 이는 지지판(609)의 상부 상에 일반적으로 균일한 건조제 필름 분배를 보장한다. 그 후 건조제는 스크린(606)을 통해 난류로 흐르도록 진행된다. 막은 접착점들(607)을 통해 지지판에 접착될 뿐 아니라 에지(edge) 밀봉부(617)와 접착된다. 에지 밀봉부는 앞서 언급된 3M 550 또는 5200과 같은 접착제로 만들어질 수 있거나, 3M Corp.에 의해 제조된 3MTM Adhesive Transfer Tape 950 3M Id: 70-0060-3055-8과 같은 고온 가능한 양면 접착 테이프로 만들어질 수 있다. 어느 경우에나, 건조제는 지지판의 하부에 도달하고, 하부 밀봉부는 건조제를 지지판 배수 홀들(619) 내로 밀어낸다. 그 후 건조제는 배수 포트(615)로 진행되며, 여기서 사이퍼닝 배수구(615)는 건조제를 탱크(미도시) 내로 수집한다.
냉각 유체는 냉각 공급 포트(613)에 들어간다. 냉각 유체는 2개의 지지판들(609) 사이의 중공 영역에 들어간다. 중공 영역은 대략 550mm x 430mm x 2.5mm 두께로 측정된다. 중공 영역은 밀봉부들(604)에 의해 건조제 영역으로부터 완전히 분리된다. 중공 영역은 또한 냉각-유체 난류발생기(608)에 의해 채워진다. 이러한 난류발생기(608)는 미국, MN 55445, Setzler Pkwy N. Minneapolis 7681, Industrial Netting에 의해 제조된 XN 4700 다이아몬드 메쉬와 같은 거친 다이아몬드 형태의 스크린을 포함할 수 있다. 다이아몬드 메쉬는 2가지 기능들을 작용하는 2-평면 물질이다: 이것은 2개의 지지판들(609) 사이의 거리를 정밀하게 제어되고 균일한 거리로 설정한다. 이것은 또한 중공 영역을 통해 흐를 때 냉각 유체에서 난류를 생성하거나 저어서, 지지판들(609)로부터 열을 효율적으로 흡수한다. 2-평면 다이아몬드 메쉬는 액체 플로우를 크게 차단하지 않는 와이어 두께들에서의 충분한 변경을 포함하는 장점을 갖는다. 다이아몬드 구조는 또한 막판 구조의 균일하지 않은 냉각 성능을 초래할 수 있는 비활성 흐름 영역들을 갖지 않는 중공 영역에 냉각 유체를 균일하게 분배한다. 마지막으로, 지지판들(609)은 유사한 물질로부터 접착점들(607)로 만들어질 수 있는 추가 접착점들(620)에 의해 서로 연결된다. 이들 추가 접착점들은, 판들이, 심지어 중공 영역이 판들(609)을 분리시키는 힘을 가하는 냉각 유체로 채워질 때, 서로 균일하게 연결된 상태로 유지되는 것을 보장한다. 접착점들(620)은 또한 중공 영역을 채우는 냉각 유체의 힘에 대해 적절한 지지를 생성하도록 일반적으로 2.5cm 떨어진, 2개의 판들 사이의 균일한 연결을 보장하는 규칙적인 패턴에 위치된다. 접착점들(620)을 이용하기보다는, 지지판들(609)을 난류발생기 메쉬(608) 및 대향하는 지지판(609)에 접합하는 다른 방법들이 예를 들어, 메쉬(608)를 접착제로 코팅함으로써, 또는 메쉬(608)가 열 또는 몇몇 다른 활성 메커니즘에 의해 활성화될 수 있는 접착제를 미리 포함하도록 접착제로 메쉬(608)를 공압출함으로써 고안될 수 있다는 것이 당업자에게 명백하다.
이에 따라 도 10의 막판 조립체는 역류 배치에서 3개의 난류 유체 플로우들을 갖고, 저렴한 물질들로 구성되고, 내식성이며, 쉽게 제조된다. 막판은 또한 역류 배치에서 냉각 유체로 수평 및 수직 공기 플로우를 수용하도록 쉽게 재구성가능하다. 또한 롤-투-롤(roll-to-roll) 프로세스에서 막(603), 스크린(606), 접착점들(607) 및 지지판(609)을 접착하는 것이 가능하다. 그러한 프로세스에서, 선택된 접착제들은 상이할 수 있거나, 예를 들어 스크린 프린팅 시스템(screen printing systsem)을 통해 도포될 수 있다.
도 11 및 도 12는, 건조제 압력이 매우 얇은 막(603)의 형태를 가질 수 있다는 효과를 예시한다. 액체 건조제는 포트(611)에서 막판 구조에 들어간다. 이 액체 건조제는 작은 포트(미도시)를 통해 앞서 설명된 미세한 스크리닝(screening) 물질(606) 내로 흐르고, 그 후 스크리닝 물질(606)을 통해 강하막으로서 진행된다. 예시의 용이함을 위해, 막들(603) 중 하나만이 도시된다. 접착점들(607)이 스크리닝 물질(606)에 대해 막(603)을 유지하지만, 후방 압력은 막판(701)의 하부 근처에서 전개될 수 있고, 이것은 막이 공기-간극 내로 팽창하게 하여, 도 12에 도시된 바와 같이 공기 흐름을 감소시키거나 차단한다. 도 11에서, 적절한 사이퍼닝 배수구(614)가 부착되었고, 이것은 건조제가 배수구(614) 아래로 및 수집 탱크(508) 내로 흡입되도록 하여, 영역(702)에서 부압을 초래한다. 이것은 다시 막(603)이 스크리닝 물질(606)에 대해 평평하게 프레스(press)되도록 한다. 도 12에 도시된 것과 같은 비(non)-사이퍼닝 배수구는 후방 압력을 개선하고, 막의 팽창을 초래한다. 사이퍼닝 배수구를 이용하는 장점은 막(603)과 지지판(609) 사이의 접착점들(607)에 대한 필요성을 감소시킨다는 것이다.
사이퍼닝 배수구는 도 13에 도시된 것과 같이 거의 수평 배향으로 건조제 판이 사용되도록 하는 고유한 특징부이다. 사이퍼닝 배수구(614)는 판의 하부 에지에서 액체 건조제를 수집한다. 장소(701)에서의 막들은 부압에 의해 스크리닝 물질(606)에 대해 평평하게 유지된다. 사이퍼닝 특징부는 또한 메인 물 채널(608)에 사용될 수 있으며, 이것은 유사하게 지지판들(609)을 연결하는 접착점들(620)에 대한 필요성을 감소시킨다.
도 14는 도 10에 도시된 바와 같이 막 지지판들(609) 중 2개를 연결하는데 사용된 스페이서(750A)를 도시한다. 스페이서(750A)는 일반적으로 EPDM과 같은 약간 유연한(compliant) 고무 또는 다른 적합한 물질로 만들어진다. 스페이서는 2개의 유체 연결들을 제공한다. 연결(753)은 도 10에 도시된 막판들에/로부터 냉각 유체를 제공하거나 배수하는데 사용되고, 연결(755)은 막판들로부터 건조제를 공급하거나 배수하는데 사용된다. 어느 연결도 밀봉 물질(752 및 754)에 의해 둘러싸인다. 밀봉 물질은 접착제일 수 있거나, 3M VHB Adhesive Transfer Tape F9473PC 또는 유사한 물질로 만들어진 링(ring)과 같은 링의 양쪽 측부들 상에 접착제들을 갖는 개별적인 밀봉 링일 수 있다. 도 14에 도시된 2개의 개별적인 밀봉부들을 갖는 장점은, 밀봉부들 중 하나가 누출을 전개하면, 누출이 다른 밀봉부에 영향을 미치지 않는다는 것이다. 양상(757)은 또한 보이는 밀봉부(752)뿐 아니라 2개의 막 지지판들(609)을 갖는 스페이서 구조의 측면 배향을 도시한다.
도 15는 전체 스페이서(750B)가 접착제(756)에 의해 코팅된 스페이서의 대안적인 구현을 도시한다. 양상(758)은 다시 공간 구조의 측면 배향을 도시한다. 밀봉부들 및 접착제들의 많은 변경들 및 조합들이 도 10의 막판들을 연결하는 데 적합하게 이루어질 수 있다는 것이 당업자에게 명백할 것이다.
도 16은 EPDM 물질(761)이 지지판(609) 상에서 오버(over)-몰딩되는 측면 배향 실시예를 도시한다. 접착제(760)는 2개의 오버-몰빙된 부분들 사이에 연결을 이루어, 2개의 막판들을 연결시킨다.
도 17은 오버-몰딩(762)이 2개의 지지판들(609) 중 하나에만 적용되는 대안적인 실시예를 도시한다.
도 18은 모든 스페이서들이 막판들(764) 사이의 균일한 이격을 허용하는 동일한 두께를 갖는 도 14의 스페이서들(763)의 이용을 예시한다. 인입 공기 흐름(765)은 스페이서들(763) 사이로 향하게 되고, 판들(767)을 빠져나가기 전에 영역(766)에서 처리된다. 하지만, 막판들(764)은 공기 흐름을 처리한다. 냉각 모드에서, 막판들이 온도가 낮을 때, 공기 흐름은 수축되는데, 이는 공기 흐름이 냉각되고 동시에 제습되기 때문이다. 그 환경에서 판 조립체 상에 힘들(768 및 769)을 가하여, 판들 사이에 공기 간극 폭을 감소시킨다는 것이 유리할 수 있고, 이것은 유연성 EPDM 스페이서들이 허용한다. 공기 간극을 감소시킴으로써, 냉각 및 제습 효율은 증가한다. 하지만, 공기는 또한 채널들에서의 플로우에 대해 더 큰 저항을 경험할 것이므로, 냉각 효율과 압력 강하 사이에 절충(tradeoff)이 있을 것이다. 힘들(768 및 769)이 동일하게 가해질 수 있어서, 공기 간극의 더 많은 감소를 초래할 수 있거나, 균일하지 않게 가해질 수 있어서, 판들의 다른 측부에 비해 막판들의 한 측부에서 공기 간극을 더 많이 감소시킨다는 것이 당업자들에게 명백할 것이다. 이것은 공기 부피 상에서 감소를 보상하기에 유리할 수 있다. 예를 들어, 35C의 온도로 막판들에 들어가는 공기는 약 1.13 kg/m3의 밀도를 갖고, 20C의 떠나는 온도에서 1.20kg/m3의 밀도를 갖는다. 밀도에서의 이러한 증가는 막판들의 배출구 근처에서 표면 속도에서의 감소를 초래한다. 막판들의 배출구 근처에서 공기 간극을 감소시킴으로써(예를 들어, 막판들의 입구 근처의 힘(769)보다 막판들의 배출구 근처에 더 큰 힘(768)을 가함으로써), 막들에 걸친 공기의 표면 속도는 일정하게 유지될 수 있고, 이것은 막 표면을 따라 더 최적의 효율을 허용한다.
도 19는 도 18의 막 모듈의 대안적인 실시예를 도시하고, 여기서 막판들(764)의 입구 근처의 스페이서들(773)은 막판들의 배출구 근처의 스페이서들(774)보다 더 넓게 이루어진다. 더 따뜻하게 들어가는 공기(770)는 막판들(764)에 들어가고, 공기 채널(771)에서 막판들에 의해 냉각된 것처럼 점차 수축된다. 떠나는 공기(772)는 막 모듈의 배출구 근처의 스페이서들(774)의 폭에 더 밀접하게 매칭된 더 작은 크기로 수축되었다. 모듈이 재생기로서 기능하는 경우에서와 같이, 막 모듈에 의해 공기가 가열되는 경우, 막판들이 막판들을 통해 이동할 때 팽창하는 공기를 수용하기 위해 공기 간극들을 증가시키도록 배치될 수 있다는 것이 당업자들에게 명백할 것이다.
도 20은 이제 전방 덮개 면 판이 제거되어 제 1 공기 간극 및 제 1 막판이 보이는 도 4의 판 블록을 예시한다. 4개의 스페이서들(750A)은 제 1 막판(802)에 유체 연결들을 제공하도록 도시된다. 또한 공기 난류발생기(801)가 보일 수 있으며, 이는 앞서 논의된 바와 같이, 공기 플로우 차단부는 난류에 가장 큰 영향을 주는 공기 간극의 중간에 놓이는 방식으로 측면 덮개 판들(309)에 부착된 일련의 플라스틱 라인들 또는 메쉬 물질일 수 있다.
도 21은 다중 판들이 제거되어 막판들(803) 내로 유체 연결이 보일 수 있는 도 20의 판 블록을 도시한다. 건조제는 포트(611)를 통해 공급되고, 포트(614)를 통해 밖으로 배수된다. 냉각 유체는 포트(613)를 통해 들어가고, 포트(612)를 통해 나간다.
도 22는, 이제 전방 덮개 면 판이 제거되어 제 1 공기 간극 및 제 1 막판이 보이는 도 5의 판 블록을 예시한다. 4개의 스페이서들(750A)은 제 1 막판(902)에 유체 연결들을 제공하도록 도시된다. 또한 공기 난류발생기(901)가 보일 수 있으며, 이는 앞서 논의된 바와 같이, 공기 플로우 차단부가 난류에 가장 큰 영향을 주는 공기 간극의 중간에 놓이는 방식으로 상부 및 하부 덮개 판들(403)에 부착된 일련의 플라스틱 라인들 또는 메쉬 물질일 수 있다.
도 23은 다중 판들이 제거되어 막판(903) 내로의 유체 연결이 보이는 도 22의 판 블록을 도시한다. 건조제는 포트(611)를 통해 공급되고, 포트(614)를 통해 밖으로 배수된다. 냉각 유체는 포트(613)를 통해 들어가고, 포트(612)를 통해 나간다.
도 24는 난류가 막판들 사이의 간극들에서 공기를 차단하는 수평 플라스틱 라인들(1001)에 의해 제공되는 대안적인 공기-메쉬를 예시한다. 이 실시예는 덜 연성인데, 이는 공기 플로우 방향이 도 25에 도시된 바와 같이 수평 흐름으로 변환되는 경우, 와이어들(1002)도 또한 재위치될 필요가 있기 때문이다.
도 26은 도 10에서 논의된 바와 같은 막판의 실시예의 분해도를 예시한다. 막(1101)은 절단된 유체 통로들을 위한 설비들(provisions)(1106)을 갖거나, 막의 코너들은 1107에 도시된 바와 같이 간단히 제거될 수 있다. 앞서 논의된 바와 같이, 접착부-또는 테이프 밀봉부(1102)는 막(1101)의 에지들을 지지판(609)에 밀봉한다. 스크린 물질 또는 심지 직물(606)은 앞서 논의된 바와 같이 접착부 점들(607)로 지지판(609)에 접착된다. 지지판(609)은 섬유 유리 강화 플라스틱 또는 열 도핑된 공학 플라스틱들과 같은 다양한 플라스틱들로 만들어질 수 있다. 지지판은 유체들을 위한 설비들 뿐 아니라 일련의 작은 건조제 공급 홀들(1108) 및 건조제 배수 홀들(1103)을 갖는다. 지지판(609)은 다시 다이아몬드 메쉬(1105)에 접합되고, 메인 밀봉부(604)는 이러한 다이아몬드 메쉬(1105)를 둘러싼다. 메인 밀봉부(604)는 액체 밀봉부를 제공할 뿐 아니라 냉각 유체들, 및 건조제들을 위한 영역들을 한정한다. 냉각 유체 난류발생기(608)가 또한 도시된다. 도면에서 알 수 있듯이, 시스템은 중간(mean) 밀봉부(604) 및 냉각 유체 난류발생기(608) 주위에 대칭적이다. 그러므로, 제 2 지지판(609), 스크린(606) 및 막(1101)은 중간 밀봉부(604)의 대향 측부 상에 접착된다. 4개의 스페이서들(750A)을 막판의 4개의 코너들에 접합하는 것은 다음의 막판에 대한 연결을 허용한다. 도 26의 조립을 반복하는 것은 다중-판 스택이 구축되도록 하고, 완전한 판 블록으로 균일하게 구성되도록 한다.
도 27은, 이전에 논의된 바와 같이, 접착제로 덮인 표면을 갖는 사출 몰딩된 플라스틱 부분 또는 접착제로 완전히 만들어질 수 있는 중간 밀봉부(604)를 도시한다. 중간 밀봉부(604)는 건조제 공급(1201) 및 건조제 배수(1202)를 위한 영역들을 생성하고, 이들 영역들은 냉각 유체 영역(1203)으로부터 분리된다. 다이아몬드 메쉬 난류발생기(608)는 밀봉부(604)의 중간에 위치된다. 구성요소들의 최종 조립체는 도 28에 도시되고, 도 28은 또한 조립체를 도 26에 도시된 2개의 지지판들에 접합하는데 사용된 접착점들(620)의 패턴을 도시한다.
도 29는 도 27로부터의 배치에 대한 대안적인 밀봉 배치를 도시한다. 냉각 유체 밀봉부(1301)는 이제 건조제 공급 밀봉부(1302) 및 건조제 배수 밀봉부(1303)로부터 별개로 개별적인 밀봉부이다. 밀봉부들(1302 및 1303)은 건조제가 쉽게 배수하는 것이 가능하도록 성형되는 채널들(1304 및 1305)을 형성한다. 유사하게, 냉각 유체 밀봉부(1301)는 냉각 유체를 쉽게 배수는 것이 가능하도록 성형된다. 이러한 자가-배수 특징부는 서비스를 위한 시스템을 배수하는 것을 상당히 더 용이하게 그리고 덜 복잡하게 만든다. 도 30은 지지판들(609) 중 하나의 지지판의 상부에 위치된 도 29의 밀봉 조립체를 도시한다. 도면에서 알 수 있듯이, 건조제 공급 홀들(1108) 및 배수 홀들(1103)은 수평 라인 상에 위치되는 반면, 밀봉부들은 수평 평면으로 구성되고, 수평 평면에 대해 일정 각도로 구성된다. 밀봉 형태의 결과로서, 상부에서의 건조제 분배는 균일하고, 하부에서의 사이퍼닝이 개선된다. 지지판(609)에서의 홀들(611, 612, 613 및 614)이 또한 도시되고, 이들은, 액체들이 수집될 수 있는 포켓(poket)을 생성하지 않도록 밀봉부들의 코너에 위치된다. 도 31은 2개의 지지판들(609)을 연결하는 접착점들(620) 및 다이아몬드 메쉬 난류발생기(608)의 설치를 최종적으로 도시한다.
도 32는 나머지 조립 프로세스를 도시한다. 양상(1401)은 도 31에 도시된 것과 동일하다. 양상(1402)은 막을 부착하기 위한 접착점들(607) 및 미세한 스크리닝 물질(606)과 함께 설치된 제 2 지지판(609)를 예시한다. 양상(1403)은 앞서 논의된 바와 같이, 막(1101) 및 스페이서들(750A)의 적용개소를 도시한다.
도 33은 또한 와이어들(1503) 및 측면 덮개(1502)를 일체화하는 대안적인 스페이서 설계(1501)를 도시한다. 일체형 스페이서들(1501)은 막판들(1504) 주위에 수직으로 적층될 수 있고, 공기 플로우를 위한 측면 밀봉부를 제공하여, 예를 들어 도 300에 도시된 바와 같이 개별적인 측면 덮개(309)를 위한 필요성을 제거한다. 일체형 스페이서들(1501)은 와이어들(1503)에 걸쳐 몰딩된 플라스틱 물질일 수 있거나, 대안적으로 메쉬도 오버-몰딩될 수 있다.
도 34는 도 33의 하부 코너의 세부사항을 도시한다. 세부사항은 또한 스프링 응력을 와이어들(1503)에 제공하는 일체형 스페이서(1501) 내로 특징부(1551)를 설계하는 것이 가능하다는 것을 예시한다. 스프링 특징부(1551)는 와이어들(1503)이 상이한 온도들을 통해 적절히 응력을 받게 유지하여 와이어들에서의 처짐 또는 진동이 억제되는 것을 보장하는데 도움을 준다.
도 35는 종래 기술에서 설명된 표면 난류발생기를 예시한다. 공기 흐름(1555)은 막들일 수 있는 2개의 표면들(1552) 사이의 채널 내로 향하게 된다. 표면 난류발생기들(1553)은 채널의 교대로 된 측부들에서 채널의 폭의 일반적으로 10 내지 15배인 거리에 위치된다. 표면 난류발생기는 난류발생기 뒤에서 작은 소용돌이들 또는 와동들(vortices)(1554)을 야기하여, 이것은 공기 흐름에서의 다량의 분자들이 막 표면들쪽으로 향하게 되도록 한다. 하지만, 표면 난류발생기들은 또한 난류발생기에 의해 덮여 막을 통해 분자들의 운송을 위해 비활성화되는 작은 영역(1556)을 야기한다.
도 36은 공기 흐름에서 소용돌이들 및 와동들을 생성하기 위해 막 자체를 이용하는 표면 난류발생기를 도시한다. 막이 비교적 얇기 때문에, 요소(1559)에 의해 예시된 바와 같이 공기 흐름에 대해 예각에 막을 유지하는 방식으로 스크린(606)을 형성하는 것이 가능하다. 지지 표면(609)은 또한 리지(ridge)(1557)를 생성하도록 형성될 수 있고, 이것은 그 후 다시 스크린(606)에서 리지를 형성한다. 또한 지지 물질 자체를 형성하기보다는 개별적인 물질(1558)을 지지 표면(609)에 접착하는 것이 가능하다. 이들 방법들의 장점은, 스크린 물질(606)에서 이어지는 건조제가 이제 막(1552)에 가까이 머무르도록 강제되고, 이것은 공기 흐름과 건조제 흐름들 사이의 상호 작용을 개선한다는 것이다. 도면에서 알 수 있듯이, 이들 리지들에 걸쳐 막을 형성함으로써, 표면적이 증가하여, 시스템의 효율도 또한 개선된다.
도 37은 좁은 공기 채널에서 역회전 공기 플로우를 발생할 수 있는 난류발생기를 도시한다. 난류발생기는 또한 도 78에 도시된 것과 같은 막 구조를 지지할 수 있고, 예를 들어 사출 몰딩 기술을 이용하여 쉽게 제조가능하다. 도면에서, 공기 흐름(1556-3)은 난류발생기 구조로 향하게 된다. 구조는 2개의 막 표면들 사이에서 좁은 슬롯(slot)으로 클램핑(clamping)된다. 난류발생기 구조(1556-1)의 상부는 막 또는 표면과 접촉하고, 도시되지 않는다. 난류발생기 구조(1556-2)의 하부는 제 2 막 또는 표면과 접촉하고, 또한 도시되지 않는다. 공기 흐름(1556-3)이 난류발생기에 도달할 때, 공기 흐름(1556-4)의 섹션은 공기 흐름에 대해 일정 각도로 위치되는 벽(1556-6)과 접촉한다. 벽(1556-6)은 하향 방향으로 점점 더 짧아지게 된다. 그 결과, 공기 흐름(1556-3)은 공기 흐름(1556-4)에 의해 도시된 바와 같이 회전 운동으로 강제된다. 더욱이, 선택적인 차단부(1556-7)는, 공기 흐름이 벽(1556-6)에 강제로 밀어낸 반대 방향으로 공기 흐름을 다시 강제로 밀어낸다. 그 결과, 공기 흐름은 우측 회전으로 강요된다. 유사하게, 공기 흐름(1556-4)으로부터 작은 거리에 있는 공기 흐름(1556-5)의 섹션은 공기 흐름에 대해 일정 각도로, 하지만 벽(1556-6)의 반대 각도로 위치되는 벽(1556-9)과 접촉한다. 다시, 이러한 벽은 공기 흐름의 방향으로 아래로 경사진다. 그 결과, 공기 흐름(1556-5)은 벽에 걸쳐 회전 상태로 강제된다. 다시, 선택적인 차단부(1556-8)는 공기 흐름을 다른 방향으로 강제로 밀어내어, 공기 흐름의 좌측 회전을 초래한다. 2개의 흐름들은 공기 흐름들(1556-4 및 1556-5)에 의해 도시된 바와 같이 난류발생기 뒤에서 역회전 공기 흐름과 조합된다.
도 38은 하프(half)-막판 구조(1560)에 대한 대안적인 구성을 도시한다. 앞서 논의된 지지판(609)은 이제 오버-몰딩된 스페이서(1561)를 갖는다. 스페이서(1561)는 또한 도 33과 유사한 공기 흐름을 위한 측면 밀봉부로서 작용한다. 막(1562)은 얇은 스크린(1563)을 덮는다.
도 39에서의 분해도는, 막(1562)이 얇은 스크린(1563)에 걸쳐 위치되는 것을 도시한다. 구조는 다이(die)-절단, 오버-몰딩, 스텐실 프린팅(stencil printing) 및 롤-투-롤(roll-to-roll) 조립 프로세스들과 같은 간단한 제조 동작들로 제조될 수 있다.
도 40은 2개의 하프-판들(1560)이 도 1300으로부터의 밀봉 배치를 이용함으로써 어떻게 연결될 수 있는지를 예시한다. 메인 밀봉부(1301)는 냉각 유체를 함유한다. 건조제 공급 밀봉부(1302) 및 건조제 수집 밀봉부(1303)는 조립체를 완료한다. 도면에 도시된 바와 같은 2개의 하프-판들을 연결한 후에, 다중 판들은 판들의 완전한 블록을 생성하도록 적층될 수 있다.
도 41은 설계의 하프-판 양상에서 기계적 지지를 막 구조에 또한 제공할 수 있는 공기-난류 망상 물질을 도시한다. 막이 전술한 바와 같이 비교적 얇기(~20㎛) 때문에, 막이 지지 구조로부터 떨어지지 않고 공기-흐름 내에 들어가는 것을 보장하기 위해 여러 가지 기술들이 이용될 필요가 있다. 도 700에 도시된 바와 같이, 액체 건조제 흐름에서 사이퍼닝 부압은 막(603)이 지지 스크린(606)에 대해 평평하게 머무르는 것을 보장하는데 도움을 줄 수 있다. 접착점들(607)은, 스크린 및 막이 적소에 머무르는 것을 보장한다. 도 41은 접착점들(607)에 대한 대안적인 공기 메쉬 지지 구조(1572)를 도시한다. 공기 메쉬 지지 구조(1572)는 2가지 기능들을 갖는다: 공기 흐름의 난류 혼합의 레벨을 제공하고, 그것의 지지판에 대해 이를 유지하도록 막과 접촉한다. 에지 및 액체 경로 밀봉부들(1502)은 앞서 도 33에서 논의되었다.
도 42는 도 41의 세부적인 절단을 도시하며, 여기서 2개의 3-방향 막판들에 연결된 2개의 막들은 공기-난류 망상(1572)에 의해 지지된다. 막들(603)은 공기-간극 측으로부터의 공기 메쉬 지지 구조(1572)에 의해 그리고 액체 건조제 측으로부터의 스크린 물질(606)에 의해 접촉된다. 3-방향 열 교환기(공기, 액체 건조제, 및 냉각 유체를 이용하는)는 또한 앞서 도시된 바와 같이 물 난류 메쉬(608) 및 물 밀봉 구조(1302)를 갖는다. 더욱이, 지지판들(609)은 스크린(606)을 통해 이어지는 액체 건조제와 판 메쉬(608)를 통해 이어지는 냉각 유체 사이에 기계적 격리를 제공한다.
도 43은 도 42와 유사한 세부사항을 도시하며, 여기서 2개의 2-방향 막판들에 연결된 2개의 막들은 공기-난류 망상에 의해 지지된다. 2-방향 막 열 교환기(냉각 유체 없이 공기 및 건조제)에서, 동일한 공기 메쉬 지지 구조(1572)가 전개될 수 있다. 냉각 유체 층은 판 구조들로부터 간단히 제거된다.
도 44는 공기 난류 망상의 실시예를 도시하며, 여기서 망상은 또한 막들을 적소에 기계적으로 유지하도록 설계된 지지 구조들뿐 아니라 2개의 막판들 사이의 슬롯에 포함된 공기 흐름을 유지하도록 의도된 일단의 스페이서들을 포함한다. 지지 구조들의 형태는 여전히 양호한 지지를 달성하면서, 막 상에서 손실된 영역을 일반적으로 최소화하도록 설계될 수 있다. 마찬가지로, 지지 구조들 사이의 "와이어들"의 형태는 공기 난류 및 혼합을 최적화도록 설계될 수 있다. 에지 스페이서들(1502)은 막판들의 스택들 사이에 하나 이상의 유체 연결들을 제공하도록 설계된다. 공기 난류 망상은 형성, 사출 몰딩, 또는 다른 공통적인 제조 단계들과 같은 많은 상이한 기술들로 제조될 수 있다. EPDM과 같이 연성 물질로부터 공기 난류 망상을 형성함으로써, 망상은 탄성 상태로 남아있고 힘을 막들에 공급할 수 있다.
도 45는 공기 난류 망상이 원통형 구조 내에 압연된 막 구조를 어떻게 지지할 수 있는지를 도시한다. 상세 "A"는 2-방향 열 교환기 판 구조를 도시한다. 상세 "B"는 3-방향 열 교환기 판 구조를 도시한다. 건조제 메쉬(606) 및 공기 난류 망상을 위한 연성 물질들을 선택함으로써, 구조는 다중층 원통형 구조로 압연될 수 있다. 힘들(화살표들(1576)로 표시됨)은 압연된 구조를 제약한다. 공급 및 배수 벌크 헤드들(bulkheads)(1575)은 냉각 유체들 및 건조제를 위한 유체 연결들을 제공한다. 공기 흐름은 도면의 평면에 수직이고 압연된 구조를 통해서만 이어지도록 향하게 된다. 상세 "A"는 2-방향 공기-건조제 열 교환기를 위한 압연된 구조를 도시하는 반면, 상세 "B"는 3-방향 공기, 건조제 및 냉각 유체 구조를 위한 압연된 구조를 도시한다.
도 46은 공기 난류 망상이 3-방향 열 교환기 판 구조를 위한 평평한 막 구조를 어떻게 지지할 수 있는지를 도시한다. 도면에 도시된 구조는 도 10의 설계에서 5개의 3-방향 액체 건조제 판들을 포함한다. 단부 판들(1578)은 5개의 판들 및 6개의 공기 메쉬 지지 구조들 상에 힘(1577)을 제공한다. 도시된 조립체는 접착제들에 대한 필요성을 감소시키고, 도 10으로부터의 접착점들(607 및 620)은 제거될 수 있다.
도 47은 공기 난류 망상이 2-방향 열 교환기 판 구조를 위한 평평한 막 구조를 어떻게 지지할 수 있는지를 도시한다. 도면에 도시된 구조는 5개의 2-방향 액체 건조제 판들을 포함한다. 단부 판들(1578)은 5개의 판들 및 6개의 공기 메쉬 지지 구조들 상에 힘(1577)을 제공한다. 도시된 조립체는 접착제들에 대한 필요성을 감소시킨다.
도 48에서, 열-성형되고 다이-절단된 지지판(1581)이 도시된다. 지지판(1581)의 기능은 도 10에서의 지지판(609)의 기능과 동일하지만, 다이아몬드 메쉬(608), 심지 직물 또는 스크린 물질(606) 및 건조제 및 냉각 유체 공급 및 배수 채널들(도 10에서 611, 612, 613 및 614로 번호가 매겨짐)은 몰드 설계 내에 일체화되었다. 건조제 공급 채널(611)은 건조제가 건조제 헤더(1585)를 따라 이어지도록 한다. 건조제는 홀들(1108)을 통해 헤더(1585)를 빠져나가고, 지지판(1581)의 외부 상에 이어질 수 있다. 건조제 수집 홀들(1103)은 건조제가 지지판에 다시 들어가도록 하고, 건조제 배수 헤더(1584)를 통해 이어져서 배수구(614)에서 빠져나간다. 도 10과 유사하게, 냉각 유체는 개구부(614)를 통해 지지판에 들어가고, 612에서 판의 상부에서 빠져나간다. 특징부(1582)는 앞선 도면들에 도시된 다이아몬드 메쉬와 같은 기능들을 하는 내부 형성된(formed-in) 특징부이다. 특징부(1582)는 많은 상이한 방식들로 형성될 수 있지만, 3개의 메인 기능들을 달성해야 한다: 1) 2개의 지지판들 사이의 거리를 설정, 2) 균일한 냉각 유체 플로우 패턴들을 유지하면서 냉각 유체에서 난류 혼합을 생성, 및 3) 접합 표면을 제 2 지지판에 제공.
작은 특징부들(1583)은 건조제의 방향 내로 지지판의 표면 위에 약간 상승된다. 이들 특징부들은 도 10에 도시된 바와 같이 심지 직물 또는 스크린 물질(606)과 유사한 기능을 제공한다. 특징부들은 건조제의 혼합을 제공하며, 이들은 막(미도시)이 지지판에 접합되도록 하며, 이들은 막과 지지판 사이에 균일한 견고한 거리를 설정하여, 균일한 열- 및 수증기 운반이 발생한다. 이들 목적들을 달성하기 위해 가능한 한 많은 특징부(1583)의 구성들이 존재한다.
도 49는 도 48로부터의 2개의 지지판들이 전체 판 구조를 제공하기 위해 어떻게 등을 맞대어 부착될 수 있는지를 도시한다. 명백함을 위해, 2개의 판들은 작은 거리로 분리되게 도시된다. 지지판(1581) 상의 특징부(1582)는 지지판(1586) 상의 유사한 특징부(1587)에 짝을 이룬다. 2개의 지지판들이 함께 결합될 때, 전체 건조제 공급 헤더, 건조제 배수 헤더 및 냉각 유체 섹션이 형성된다. 특징부들(1582 및 1587)은 냉각 유체 플로우를 위한 종래의 경로를 생성하는 다수의 위치들에 접촉된다.
도 50은 2개의 결합된 판들을 도시한다. 도면에서, 판들 중 하나는 투명하게 도시되어, 중첩하는 특징부들(1582 및 1587)은 지지판들 사이에서 견고한 거리, 난류 혼합 및 유체 통과를 허용하기 위해 보여질 수 있다.
도 51은 도 48에 도시된 바와 같이 지지판(1581)의 하부-좌측 코너의 상세 후면도를 최종적으로 도시한다. 작은 특징부들(1583)은 일반적으로 0.5mm만큼 건조제 영역 내로 돌출한다. 냉각 유체 특징부들(1582)은 일반적으로 1.5 내지 2.0mm만큼 냉각 유체 영역 내로 돌출한다. 냉각 유체 공급 포트(613)는 일반적으로 도 14에 도시된 바와 같이 유연 스페이서에 의해 건조제 측 상에 연결된다. 건조제는 포트들(1103)을 통해 헤더(1584) 내로 수집되고, 결국 포트들(614)을 통해 배수된다.
도 52는 도 10의 판 설계(609)에 수반된 밀봉부들의 배치를 도시한다. 이전에 논의된 바와 같이, 액체 건조제(1591)는 포트(611)를 통해 들어가고, 밀봉 영역(1304) 내부로 이어진다. 건조제는 휘핑(weeping) 홀들(1108)을 통해 밀봉 영역(1304)을 빠져나가고, 막 에지 밀봉부(1102)에 의해 포함된다. 막판의 하부에서, 건조제 밀봉부(1102)는 배수 홀들(1103)을 통해 건조제를 판 내로 유도하고, 그 후에 하부 건조제 밀봉부(1303)는 포트(614)를 통해 건조제를 배수한다. 냉각 유체(1592)는 포트(613)에서 판에 들어가고, 포트(612)에서 빠져나갈 때까지 상향으로 이어진다.
도 53은, 막을 통한 제습 없이 추가 감지가능 냉각이 바람직한 경우 유용할 수 있는 대안적인 배치를 도시한다. 건조제 배수구(613)는 이제, 건조제가 멀리 배수되고 막 밀봉부(1102)(및 막 - 미도시)가 이제 판의 상부 부분만을 덮는 방식으로 판의 상부 부분 근처에 어디서나 위치된다. 이전과 같이, 건조제(1591)는 포트(611)를 통해 들어가고, 휘핑 홀들(1108)을 통해 판의 표면 아래로 흐르고, 수집 홀들(1103) 및 배수 포트(613)를 통해 밖으로 배수된다. 밀봉부(1593)는 이제 냉각 유체(1592)가 개구부(1594)를 통해 판의 중간에서 통과하도록 하는 방식으로 성형된다. 건조제 수집 밀봉부(1595)는 이제 개별적인 포트(613)를 통해 배수되는 각 측부를 갖는 2개 부분들로 분리된다.
도 54는 도 53의 배치의 다른 실시예를 예시하며, 여기서 공기 흐름(601)은 막 표면(1102)을 가로지르는 막을 가로질러 주로 수평 방식으로 향하게 된다. 섹션 "A"에서, 막은 막 뒤에서 건조제와 함께 존재하고, 공기는 제습될뿐 아니라 냉각된다. 섹션 "B"은 막을 갖지 않으므로, 단지 추가 감지가능 냉각을 공기 흐름에 제공한다. 냉각 유체 공급부들(15967 및 1597)은 이제 예를 들어 포트들(612 및 613)에 들어갈 수 있고, 유체 채널(1598)은 역류를 공기 흐름(601)에 제공하는 방식으로 성형될 수 있다. 이러한 배치의 장점은 냉각 섹션 "B"가 이미 제습된 공기 상에서 작용하므로 섹션 "B"에서 더 이상 응축이 발생하지 않는다는 것이다.
도 55는 전술한 개념들과 유사한 개념들을 이용하는 2-방향 액체 간 열 교환기를 예시한다. 2개의 메인 강화 덮개 판들(1601 및 1602)은 플라스틱 판들(1603)의 스택(stack)을 포함한다. 액체 공급 포트들(1604 및 1606) 및 액체 배수 포트들(1605 및 1607)은 역류 배치를 제공한다.
도 56은 덮개들 중 하나가 제거된 도 55로부터의 2-방향 열 교환기를 도시한다. 홀(1701)은 다이아몬드 메쉬 난류발생기(1707)를 통해 및 배수 홀(1703) 내로 위로 흐르는 액체 "A"의 통로를 제공한다. 메인 밀봉부(1705)는 액체 "A" 및 "B" 와 외부 환경 사이의 분리를 제공한다. 도면에서 알 수 있듯이, 액체 "B"는, 밀봉부(1705)가 이를 다음 판로 간단히 운송할 때 채널 내로 흐르지 않는다. 3-방향 열 교환기 하에서 논의된 바와 같이, 다이아몬드 메쉬 난류발생기(1707)는 2가지 메인 기능들을 제공한다: 지지판들(1706) 사이의 거리를 설정하고, 판들을 가로질러 난류 액체 플로우를 생성한다. 도 57은 추가 판(1705)이 제거된 도 55로부터의 2-방향 열 교환기를 도시한다. 도면에서 알 수 있듯이, 밀봉부(1705)는 이제 홀들의 대향 세트를 에워싸서, 유체 "B"는 다이아몬드 메쉬 난류발생기(1707)를 통해 흐를 수 있다.
도 58은 섬유 유리 강화 플라스틱 또는 열적 전도성 공학 플라스틱으로부터 3-방향 열 교환기의 지지판(609)와 유사하게 만들어질 수 있는 지지판(1706)을 도시한다. 밀봉부(1705)는 다시 이전에 논의된 바와 같은 접착제, 예를 들어, 3M 550 또는 5200 폴리우레탄 접착제들로 만들어질 수 있다. 그러한 접착제들은 손으로 또는 특수하게 설계된 접착제 로봇(robot) 시스템을 통해 도포될 수 있다. 다이아몬드 메쉬 난류발생기(1707)는 도 56에 도시된 바와 같이 접착제 밀봉부 내부에 도포된다.
도 59 및 도 60은 도 55에 도시된 바와 같이 전체 판 스택(1603)을 구성하는 대안적인 판들을 도시한다.
도 61은 2-부분 막판 모듈을 도시하며, 여기서 하나의 부분은 폴리우레탄 또는 EPDM 고무와 같은 연성 물질로 만들어진다. 막 모듈들이 더 높은 온도를 받을 수 있기 때문에, 모듈의 조립체는, 온도 변화도가 물질들이 균열되지 않도록 하거나 접착제 접합들이 실패하지 않게 하는 것을 보장하는데 중요하다. 종종 그러한 실패들은 플라스틱들(큰 열 팽창 계수들을 갖는 경향이 있는)이 확장되고 접합들 및 접착제들 상에 응력을 발생시킬 때 관찰된다. 막들은 종종 "포팅(pottiing)"(액체 플라스틱이 다양한 구성요소들 사이에 밀봉들을 생성하는데 사용된다는 것을 의미함)되지만, 그러한 포팅 물질들은 일단 경화되면 또한 쉽게 실패할 수 있다. 액체 건조제 열 교환기들에서, 이것은 특히 재생기에 중요하고, 더 적은 정도로 조절기에 중요하다. 더욱이, 비-일체형으로 냉각된 얇은 판들의 대향 측부들 상에 액체들을 균일하게 공급하는 것은 종종 어렵다. 하나의 부분이 EPDM 또는 폴리우레탄과 같은 유연한 물질로 만들어지는 2-부분 구조는 상당히 더 너그럽다.
도 61은 2개의 별도의 공기 통로들(2006 및 2011) 및 2개의 별도의 섹션들(2007 및 2008)을 갖는 모듈을 도시한다. 전방-측 외부 막(2001)은 반-강성 판(2015)(도 62에서 더 쉽게 보여짐)에 부착된다. 구조의 상부에서의 액체 헤더(2007)는, 연성 EPDM 또는 유사한 물질 섹션(2008), 외부 막을 위한 공급 유체 채널(2005) 및 내부 막들(2012)을 위한 제 2 공급 유체 채널(2004)과 조합되어 형성된다. 구조의 어느 한 단부 상에 2개의 포트들(2005 및 2004)이 있다는 것은 관찰할만한 가치가 있다. 이것은 유체들이 바람직하게 막의 표면을 가로질러 균일하게 분배되어야 하기 때문이다. 유체가 입구 포트로부터 너무 멀어지는 경우 균일한 층을 제공하기에 매우 어렵다. 사실상, 2개의 포트들 사이의 약 400 내지 500mm의 거리가 달성가능하지만, 막의 중간이 결핍된 유체가 되는 곳을 너머 달성가능하다. 그러므로, 헤더에 하나의 포트만을 갖는 것은 판의 폭을 약 300mm로 제한할 수 있다. 추가 포트들이 2-판 구조의 폭을 500mm 이상으로 증가시키기 원하는 경우 헤더에 추가될 수 있다는 것이 명백해야 한다.
액체들은 내부 막들을 위한 배수구(2002) 및 외부 막들을 위한 배수구(2003)를 통해 배수된다. 연성 물질(2008)은 또한 특정한 양의 난류 공기 혼합을 제공하면서, 도 10에서의 물질(602)과 유사하게, 연성 물질(2008)을 통해 수직 양상으로 공기(2006)를 인도하기 위해 에지 밀봉부(2009)를 또한 선택적으로 제공할 수 있다. 연성 구성요소(2008)는 여러 가지 기능들을 작용한다: 판들(2007)의 스택들 사이에 유연한 경계면을 제공하고; 판들(2007)의 스택들 사이에 액체들을 위한 통로들을 제공하고; 공기 채널 에지 밀봉부(2009)를 제공하고; 판들(2007)의 스택들 사이에 외부 막들을 위한 지지부를 제공하며; 공기 채널에서 측정된 양의 공기 난류를 제공한다. 도 62는 막(2001)이 제거된 도 61의 2-부분 판 스택을 도시한다. 강성 지지판(2015)은 액체 공급 홀들(2013)(막(2001) 뒤에 액체를 제공하도록 작용하는) 및 액체 배수 홀들(2014)과 함께 명확히 보일 수 있다. 도면은 액체(2014)가 도면의 상부에서 2-부분 구조(2007/2008)에 어떻게 들어가고, 지지판(2015)의 외부 표면에 걸쳐 및 공급 홀(2013)을 통해 유체 헤더 내로 어떻게 들어가는지를 도시한다. 도면에서 알 수 있듯이, 지지판(2015)은, 막(2001)을 접착하고 또한 도 10의 설명에 논의된 바와 같이 유체의 난류 흐름을 제공하기 위해 다양한 특징부들로 공급된다.
도 63은 도 61의 2-부분 판 스택의 후방-측을 도시한다. 후방-측 외부 막(2016)은 또한 후방-외부 막(2016)을 위한 지지부들(2017)을 포함하는 연성 구조(2008)에 의해 지지된다.
도 64는 도 63의 하부 좌측 코너의 세부적인 양상을 도시한다. 도면은 지지판(2015)에 부착된 전방 외부-막(2001)을 도시한다. 2개의 내부 막들(2012) 중 하나가 또한 도시된다. 2차 공기 흐름(2011)은 막 지지 구조(2010)에 의해 난류된다. 내부 막 지지 구조(2010)를 외부 막 지지 구조(2008)와 유사한 물질로 만드는 것이 가능하다. 구조(2010)는 또한 내부 막(2012)과 지지판(2015) 사이의 액체들이 유체 배수 홀들(2025)(도 65에 도시됨) 내로 배수될 수 있는 방식으로 설정되는 막 에지 밀봉부(2021)를 포함한다. 하부 유체 헤더(2007)는 상부 유체 헤더와 구조면에서 유사하거나, 동일할 수 있다. 유체 헤더들은 AGS와 같은 압출된 플라스틱 또는 EPDM과 같은 연성 플라스틱으로 만들어질 수 있다. 헤더 단부-캡은 명백함을 위해 제거되어 도시되었다. 내부 막 유체 배수 채널(2022) 및 외부 막 유체 배수 채널(2023)은 또한 도면에서 보일 수 있다. 도면은 또한 연성 구조(2008)의 부분이 만들어진 난류발생기(2019)를 도시한다. 막 지지 패드들(pads)(2020)은 막(2016)을 적소에 유지한다. 지지 패드들(2020)이 도 41에서의 지지부들(1572)과 동일한 기능을 작용하는 것이 명백해야 한다. 또한 막들이 도 700 하에 논의된 바와 같이 사이퍼닝 효과에 의해 지지판(2015)에 대해 유지될 수 있다는 것이 명백하다.
도 65는 내부 막(2012) 및 내부 지지 구조(2010)가 제거된 도 64와 동일한 양상을 도시한다. 도면은 또한 막들을 부착하는 것과 유체 흐름들을 전환하는 것 중 어느 하나 또는 양자 모두를 위해 사용된 막 지지 특징부들(2015A)을 도시한다. 더욱이, 내부 막 뒤의 유체를 위한 유체 경로(2024)가 도시된다. 하부 헤더에서의 유체 배수 홀들(2025)이 또한 보일 수 있다.
도 66은 도 61로부터의 2-부분 막판 조립체를 "분해도" 양상으로 도시한다. 내부 막 지지 구조(2010)는 구조의 어느 한 측부 상에 2개의 내부 막들(2012)을 갖는다. 상부 및 하부 유체 헤더들(2007)은 내부 및 외부 막들 모두를 위한 막 구조들로부터 유체를 공급 및 배수한다. 지지판들(2015)은 유체들을 난류하기 위해 강성 지지부 및 특징부들을 제공한다. 외부 막들(2001 및 2016)은 지지판들(2015)의 외부 상에 부착된다. 연성 구조(2008)는 최종적으로 구조를 완료한다.
도 67은 외부 막들을 위한 유체 공급 채널(2026) 및 내부 막들을 위한 유체 공급 채널(2027)이 보이는 상부 유체 헤더의 확대도를 도시한다. 외부 막들은 공급 홀들(2029)을 통해 유체를 수용하고, 내부 막들은 공급 홀들(2028)을 통해 유체를 수용한다.
도 68은 외부 막(2029)을 위한 유체 공급 경로들뿐 아니라 내부 막을 위한 유체 경로(2033)를 예시한다.
도 69는 외부 막을 위한 유체 배수 경로(2032)뿐 아니라 내부 막을 위한 유체 배수 경로(2024)를 예시한다. 내부 막들을 위한 배수 홀들(2025) 및 유체 채널(2022)은 유체 채널(2023) 상의 외부 막들을 위한 하부 배수 홀들(2031)인 것으로 도시된다.
도 70은 교차-플로우 공기 처리 모듈에 배치된 다중 2-판 구조들의 스택을 도시한다. 액체들은 외부 막들을 가로질러 더 균일한 유체 분배를 달성하기 위해 2개의 포트들(2005)을 통해 구조의 상부에 공급된다. 마찬가지로, 2개의 포트들(2004)은 내부 막들을 가로질러 균일한 유체 분배를 제공한다. 배수 포트들(2002 및 2003)은 각각 내부 막들 및 외부 막들을 위한 배수부를 제공한다. 내부 및 외부 막들 뒤의 유체들이 상이하거나 동일할 수 있다는 것이 주지된다. 예를 들어, 유체들 중 하나는 건조제일 수 있고, 다른 것은 담수, 또는 해수 또는 폐수일 수 있다. 다른 유체들도 또한 가능하다. 전술한 바와 같이, 1차 공기 흐름(2007)은 하향 또는 상향 양상으로 이루어질 수 있고, 교차-플로우 공기 흐름(2010)은 어느 한 측부로부터 모듈에 들어갈 수 있다.
도 71은 도 70의 막 모듈의 적용을 설명하며, 여기서 외부 공기를 포함하는 1차 공기 흐름(2006)은 모듈을 통해 일반적으로 수직으로 흐르고, 전환기(2503)에 의해 부분적으로 전환되어, 2차 공기 흐름의 부분이 모듈을 통해 일반적으로 수평으로 흐르게 된다. 예를 들어, 또한 외부 공기 흐름일 수 있는 추가적인 2차 공기 흐름(2501)도 또한 적용된다. 이제 포트들(2005)을 통해 액체 건조제를 제공함으로써, 1차 공기 흐름(2006)은 외부 막들을 통해 제습된다. 물이 포트들(2004)을 통해 제공되면, 2차 공기 흐름은 이전에 도시된 지지판들(2015)의 후방 측부 상에 증발 냉각 효과를 야기할 것이다. 이러한 간접적인 증발 냉각 효과는 1차 공기 흐름으로부터 잠재적인 열뿐 아니라 감지가능한 열을 제거한다. 이러한 냉각 효과는 다시 1차 채널에서 제습을 개선하고, 이것은 자가-강화 시스템으로서 2차 채널에서 더 큰 냉각 효과를 제공한다. 단부 판들(2502 및 2504)은 판 스택들의 지지 및 장착뿐 아니라 유체들을 위한 편리한 경계면을 제공한다.
도 72는 단부 판(2504)이 제거된 도 71의 시스템을 도시한다. 도면에서 알 수 있듯이, 전환기(2503)는 채널에서 공기의 일부분(2507)을 전환한다. 전환기는 연성 또는 조정가능한 물질 또는 부분들로 만들어져서, 전환된 공기 부분은 예를 들어, 이동 섹션(2505)에 의해 2차 공기 혼합비 또는 흡기 개구부(2506)를 이동함으로써 변할 수 있다. 이것은 2차 공기 흐름 조성물이 변하도록 한다; 예를 들어, 건조한 고온 날씨에서, 임의의 1차 건조 공기를 이용할 필요가 적을 수 있다.
도 73은 도 72의 하부 좌측 코너에 대한 세부사항을 도시하며, 이것은 수직 슬롯들에서의 1차 공기 경로가 2차 공기 흐름에서 수평 공기 경로가 되도록 어떻게 변경되는 지를 명백히 도시한다.
도 74는 도 71에서의 시스템의 대안적인 실시예를 도시하며, 여기서 1차 공기 흐름(2006)의 부분(2507)은 막 모듈 판들(2513)에 의해 처리된 후에, 덕트들(ducts)(2510)에서 위로 흐르도록(2508) 그리고 막 모듈의 상부로 향하게 되고, 수평 슬롯들에 의해 형성된 대안적인 채널들에서 이어지도록 하는 방식으로 수평 2차 공기 흐름으로 전환된다. 이러한 배치의 장점은, 처리된 건조 공기(2509)가 이제 2차 채널의 상부 근처의 가장 유리한 장소에서 혼합되고, 여기서 1차 공기 흐름(2006)에 대한 가장 큰 냉각 효과를 갖는다는 것이다. 2차 공기 흐름(2501)은 이제 막판들(2513)의 하부 근처에 냉각을 제공한다. 빠져나가는 공기(2511)는 그 후 전환된 공기 흐름(2507)의 결과인 빠져나가는 공기(2512)와 조합된다. 덕트 작업으로서 더 복잡하지만, 공기 흐름을 막 패널들의 상부 근처에서 다시 향하게 하는 것의 장점은 더 효율적인 시스템을 초래한다. 1차 공기 흐름(2006) 및 2차 공기 흐름(2501)은, 1차 공기 흐름이 수평이 되고 2차 공기 흐름이 수직이 되도록(경우에 따라 위로 또는 아래로 흐르는 것 중 어느 하나) 전환될 수 있다는 것이 당업자에게 명백할 것이다.
도 75는 도 61의 2-부분 판 스택의 대안적인 실시예를 예시한다. 이 경우에, 수직 공기 흐름 막 지지 구조(2008)는 수평 공기 흐름을 허용하도록 변형되었다. 새로운 막 지지 구조(2601)는 다시 폴리우레탄 또는 EPDM 고무와 같은 유연성 물질로 구성된다. 그것은 공기 난류 및 막 지지 특징부들뿐 아니라 에지 밀봉부 및 액체 통로들을 제공할 수 있다.
도 76은 도 75의 2-부분 판 스택의 "분해도"를 도시한다. 구조는, 이제 수평 공기 흐름을 제공하는 막 지지 구조(2601)를 제외하고 도 66의 구조로부터 본질적으로 변경되지 않는다.
도 77은 도 76의 하부 좌측 코너의 세부사항을 도시한다. 전방 외부-막(2001)은 지지판(2015)에 부착되고, 이러한 지지판(2015)은 다시 하부 헤더(2007)에 접착된다. 막 지지 구조(2010)는 내부 막들(2012)을 위한 지지를 제공한다. 내부 막들을 위한 유체 배수구들(2025)은 유체들이 채널(2002) 내로 배수하도록 한다. 지지판(2015)에서의 배수 홀들(2031)은 외부 막들(2001 및 2016)이 하부 유체 채널(2003) 내로 배수하도록 한다.
도 78은 이제 수평 양상에서의 공기가 막들 뒤에서 유체들에 의해 접촉되는 막 모듈을 예시한다. 포트들(2005)은 유체들을 외부 막들에 제공하고, 포트들(2004)은 유체들을 내부 막들에 제공한다. 포트들(2002)은 내부 막들로부터 유체들을 배수하고, 포트들(2003)은 외부 막들을 배수한다. 포트들(2005 및 2004)에 제공된 유체들이 동일하면(예를 들어, 양자 모두가 동일한 건조제를 포함하면), 유체 채널들 및 공급 채널들이 단일 채널 내로 조합될 수 있다는 것이 명백해야 한다. 이것은 막 모듈들의 구성을 간략하게 한다. 마찬가지로, 3개 또는 4개의 개별적인 공급 및 배수 통로들을 이용함으로써 공기 흐름에 노출된 2개 이상의 유체들을 갖는 구조를 구상하는 것은 용이하다.
도 80은 도 2100A, 2100B, 2200A, 2200B, 2300A, 및 2300B에 도시된 것과 유사한 구조의 세부사항들과 함께, 도 2000 하에 설명된 모듈의 단면도를 예시하며, 여기서 지지판(2015)은, 판(2802)에서 팽창에 의해 도시된 바와 같이 냉각 라인(2801) 주위를 감쌀 수 있도록 변형되었다. 냉각제들은 일반적으로 200부터 600 psi로 변할 수 있는 고압에서 동작하고, 이것은 금속 라인들의 이용을 필요로 한다. 냉각 라인들(2801)은 지지판(2015)을 통한 열 전도에 의해 냉각(또는 경우에 따라 가열)을 건조제에 제공할 수 있다. 막들(2012 및 2016) 뒤에서 이어지는 액체 건조제는 크게 부식성이어서, 금속 냉각 라인들과의 직접적인 접촉은 냉각 라인들이 비용이 많이 들 수 있는 티타늄과 같은 높은 비활성 금속으로 만들어지지 않으면 바람직하지 않다. 냉각 라인들(2801) 주위에 지지판(2015)을 감싸는 것에 의해, 양호한 열 접촉은 티타늄 파이프 및 간단한 구리 튜빙(tubing)(냉각제들에 흔히 사용되는)이 이용될 필요 없이 달성될 수 있다. 또한 막(2802)에서의 "팽창(bulge)"이 도 35 및 1555B에 도시된 바와 같이 표면 난류발생기들과 유사한 기능들을 하도록, 공기 흐름에 대해 일정 각도로 냉각 라인들을 구성하는 것이 가능하다. 냉각 라인들은 건조제의 직접 냉각을 허용하고, 수 인치들(inches)마다 반복될 수 있어서, 막판의 상부로부터 하부로 이어질 때 건조제가 너무 많이 가열되는 것을 방지할 수 있다. 이러한 접근법의 장점은, 공기가 이제 예를 들어 도 71에 도시된 것과 같은 간접적인 후방 측부 증발 냉각을 이용하기보다는, 종래의 증기 압축 시스템을 통해 제습 및 냉각될 수 있다는 것이다.
이렇게 설명된 여러 가지 예시적인 실시예들을 가져, 다양한 변경들, 변형들 및 개선들이 당업자들에게 쉽게 발생할 것임이 인식될 것이다. 그러한 변경들, 변형들 및 개선들은 본 발명의 부분을 형성하도록 의도되고, 본 발명의 사상 및 범주 내에 있도록 의도된다. 본 명세서에 제시된 몇몇 예들이 기능들 또는 구조적 요소들의 특정한 조합들을 수반하지만, 그러한 기능들 및 요소들이 동일하거나 상이한 목적들을 달성하기 위해 본 발명에 따라 다른 방식들로 조합될 수 있다는 것이 이해되어야 한다. 특히, 일 실시예와 연계하여 논의된 작용들, 요소들, 및 특징들은 다른 실시예들에서 유사하거나 다른 역할들에서 배제되도록 의도되지 않는다. 추가로, 본 명세서에 설명된 요소들 및 구성요소들은 추가 구성요소들로 추가로 분리될 수 있거나, 함께 결합되어, 동일한 기능들을 수행하기 위한 더 적은 구성요소들을 형성하게 된다. 따라서, 이전 설명 및 첨부된 도면들은 단지 예에 불과하고, 제한하려고 의도되는 것이 아니다.

Claims (45)

  1. 건조제 공기 조절 시스템에 사용하기 위한 열 교환기로서, 상기 열 교환기는:
    일반적으로 평행한 배치로 서로 향하고 상기 건조제 공기 조절 시스템에 의해 처리될 공기가 흐를 수 있는 그 사이의 공기 간극들을 한정하도록 이격되는 복수의 막(membrane)-판(plate) 조립체들로서, 상기 막-판 조립체들 각각은,
    (a) 판 구조,
    (b) 2개의 막들로서, 각각이 상기 판 구조의 대향 측부를 향하고, 액체 건조제가 흐를 수 있는 그 사이의 간극을 한정하도록 상기 판 구조로부터 이격되는, 2개의 막들, 및
    (c) 적어도 하나의 건조제 배수 포트(drain port)를 포함하고,
    각각의 상기 막은 상기 판 구조에 밀봉되는 하부 부분을 가져, 상기 액체 건조제가 상기 적어도 하나의 배수 포트를 통해 흐르도록 강제로 밀어내어짐으로써, 각 막과 상기 판 구조 사이의 상기 간극에 부압(negative pressure)을 생성하는, 건조제 공기 조절 시스템에 사용하기 위한 열 교환기.
  2. 청구항 1에 있어서,
    상기 열 교환기를 통해 흐르는 상기 공기에서의 난류(turbulence)를 유도하기 위해 인접한 막-판 조립체들 사이의 각 공기 간극에 공기 난류발생기(turbulator)를 더 포함하는, 열 교환기.
  3. 청구항 2에 있어서,
    상기 공기 난류발생기는 플라스틱 망상(netting) 물질을 포함하는, 열 교환기.
  4. 청구항 2에 있어서,
    상기 공기 난류발생기는 인접한 막-판 조립체들 사이의 각 간극에 가로질러 걸쳐있는 일련의 와이어들(wires)을 포함하는, 열 교환기.
  5. 청구항 2에 있어서,
    상기 공기 난류발생기는 상기 공기 간극을 통하는 역회전(counter-rotating) 공기 흐름들을 발생시키는, 열 교환기.
  6. 청구항 5에 있어서,
    상기 공기 난류발생기는 복수의 구조들을 포함하고, 상기 복수의 구조들 각각은 상기 공기 간극을 통하는 공기 흐름에 대해 일정 각도로 배향된 벽을 갖고, 상기 벽은 상기 벽에 부딪히는 공기에 회전 운동을 전달하기 위해 상기 공기 흐름의 방향 또는 상기 공기 흐름 방향에 대해 반대 방향으로 점점 더 짧아지게 되는, 열 교환기.
  7. 청구항 6에 있어서,
    인접한 구조들의 쌍들은 상기 공기 간극을 통해 흐르는 공기에 역회전 운동을 전달하도록 배향되는, 열 교환기.
  8. 청구항 7에 있어서,
    상기 구조들의 하류에 위치된 인접한 구조들의 각 쌍 사이에 차단부(obstruction)를 더 포함하는, 열 교환기.
  9. 청구항 1에 있어서,
    상기 막은 폴리프로필렌(polypropylene), 에틸렌 클로로트리플루오로에틸렌(ECTFE; Ethylene chlorotrifluoroethylene), 폴리에틸렌(polyethylene), 폴리올레핀(polyolefin), 셀룰로오스 아세테이트(cellulose acetate), 니트로셀룰로오스(Nitrocellulose), 셀룰로오스 에스테르(cellulose esters), 폴리설폰(PS; polysulfone), 폴리에테르 설폰(PES; polyether sulfone), 폴리아크릴로니트릴(PAN; polyacrilonitrile), 폴리아미드(polyamide), 폴리이미드(polyimide), 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(PVDF; polyvinylidene fluoride), 또는 폴리비닐클로라이드(PVC; polyvinylchloride)를 포함하는, 열 교환기.
  10. 청구항 1에 있어서,
    상기 막은 미공성(microporous) 막인, 열 교환기.
  11. 청구항 1에 있어서,
    각 막은 상기 막에 가로질러 이격된 접착점들(adhesive dots)의 배열에 의해 판 구조에 부착되는, 열 교환기.
  12. 청구항 11에 있어서,
    각 접착점은 공기 간극의 폭의 1/10 내지 2배의 거리만큼 인접한 접착점으로부터 이격되는, 열 교환기.
  13. 청구항 1에 있어서,
    상기 막-판 조립체들 각각은 상기 판 구조와 각 막 사이의 상기 간극에서 심지(wicking) 물질 또는 스크린(screen) 물질을 포함하는, 열 교환기.
  14. 청구항 13에 있어서,
    상기 심지 물질 또는 스크린 물질은 상기 판 구조와 각 막 사이의 상기 간극을 통해 흐르는 건조제에 대한 건조제 확산, 혼합, 또는 난류를 제공하는, 열 교환기.
  15. 청구항 1에 있어서,
    상기 판 구조 각각은 열적 전도성 강성 플라스틱 물질을 포함하는, 열 교환기.
  16. 청구항 1에 있어서,
    상기 판 구조 각각은 2개의 이격된 지지판들을 포함하며, 상기 2개의 이격된 지지판들은 서로 대향하고, 그 사이에 열 전달 유체가 흐를 수 있는 간극을 갖는, 열 교환기.
  17. 청구항 16에 있어서,
    상기 2개의 이격된 지지판들 사이에 하나 이상의 스페이서들(spacers)을 더 포함하고, 상기 스페이서들 각각은 열 전달 유체를 배수하기 위한 유체 연결부 및 건조제를 공급하거나 배수하기 위한 유체 연결부를 포함하고, 상기 스페이서들은 접착제로 코팅(coating)된 유연한(compliant) 물질을 포함하는, 열 교환기.
  18. 청구항 17에 있어서,
    열 전달 유체를 배수하기 위한 상기 유체 연결부 및 건조제를 공급하거나 배수하기 위한 상기 유체 연결부는 개별적인 밀봉부들을 가져, 하나의 유체 연결부를 위한 밀봉부에서의 누출은 다른 유체 연결부에 영향을 미치지 않는, 열 교환기.
  19. 청구항 16에 있어서,
    상기 판 구조 각각은 적어도 하나의 배수 포트로의 상기 열 전달 유체의 자가-배수(self-draining)를 촉진시키도록 구성된 채널(channel)을 형성하는 상기 지지판들 사이의 유체 밀봉부를 더 포함하는, 열 교환기.
  20. 청구항 16에 있어서,
    상기 열 전달 유체는 물 또는 물/글리콜(glycol) 혼합물인, 열 교환기.
  21. 청구항 16에 있어서,
    상기 열 전달 유체에서 난류를 유도하기 위해 각 판 구조에서 2개의 상기 지지판들 사이의 상기 간극에 위치된 플라스틱 메쉬(mesh)를 더 포함하는, 열 교환기.
  22. 청구항 21에 있어서,
    상기 플라스틱 메쉬는 이중 평면 다이아몬드 메쉬를 포함하는, 열 교환기.
  23. 청구항 16에 있어서,
    각 판 구조에서의 2개의 상기 지지판들은 상기 지지판들의 내부 표면들에 걸쳐 배치된 일련의 접착점들에 의해 서로 연결되는, 열 교환기.
  24. 청구항 1에 있어서,
    상기 막-판 조립체들 각각은 각 막과 상기 판 구조 사이의 상기 간극을 통해 건조제의 일반적으로 균일한 분배를 제공하기 위해 복수의 이격된 건조제 공급 및 배수 포트들을 포함하는, 열 교환기.
  25. 청구항 1에 있어서,
    상기 복수의 막-판 조립체들은 일반적으로 수평 방향으로 이를 통하는 공기 흐름을 허용하도록 구성되는, 열 교환기.
  26. 청구항 1에 있어서,
    상기 복수의 막-판 조립체들은 일반적으로 수직 방향으로 이를 통하는 공기 흐름을 허용하도록 구성되는, 열 교환기.
  27. 청구항 1에 있어서,
    각 막의 상기 하부 부분들을 상기 판 구조에 밀봉하기 위해 사용된 밀봉부들은 상기 적어도 하나의 배수 포트로의 상기 액체 건조제의 자가-배수를 촉진시키도록 구성된 채널들을 형성하는, 열 교환기.
  28. 청구항 1에 있어서,
    인접한 막-판 조립체들 사이에 스페이서 구조를 더 포함하고, 상기 스페이서 구조는 공기 밀봉을 제공하기 위해 상기 인접한 막-판 조립체들의 대향 측부들에 측면 밀봉부들을 포함하고, 상기 스페이서 구조는 또한 공기 난류발생기를 형성하는 상기 측면 밀봉부들 사이로 연장하는 복수의 스프링(spring) 요소들을 포함하는, 열 교환기.
  29. 청구항 28에 있어서,
    상기 측면 밀봉부들 및 스프링 요소들은 몰딩(molding)된 플라스틱 구조를 포함하는, 열 교환기.
  30. 청구항 1에 있어서,
    인접한 막-판 조립체들의 각 쌍 사이의 상기 공기 간극을 한정하는 상기 막들은 상기 공기 간극을 통해 흐르는 상기 공기에서 소용돌이들(eddies) 및 와동들(vortices)을 생성하기 위해 상기 공기 간극 내로 팽창하는 난류발생기 요소들을 형성하는, 열 교환기.
  31. 청구항 30에 있어서,
    각 막은 상기 막과 판 구조 사이에 스크린 구조에 의해 지지되고, 상기 스크린 구조는 상기 막에 상기 난류발생기 요소들을 형성하도록 성형되는, 열 교환기.
  32. 청구항 1에 있어서,
    상기 열 교환기를 통해 흐르는 상기 공기에서 난류를 유도하고 상기 판 구조들 상의 적소에 상기 막들을 유지하기 위해 인접한 막-판 조립체들 사이의 각 공기 간극에 공기 메쉬 지지 구조를 더 포함하는, 열 교환기.
  33. 청구항 32에 있어서,
    상기 공기 메쉬 지지 구조는 공기 난류를 유도하기 위해 상기 지지 구조들 사이로 연장하는 와이어들 및 상기 막들을 지지하기 위한 지지 구조들의 배열을 포함하는, 열 교환기.
  34. 청구항 33에 있어서,
    상기 복수의 막-판 조립체들 상에 압축력을 제공하는, 상기 열 교환기의 대향 단부들에 단부 판들을 더 포함하는, 열 교환기.
  35. 청구항 1에 있어서,
    인접한 막-판 조립체들 사이에 유연 스페이서들을 더 포함하고, 상기 스페이서들은, 상기 복수의 막-판 조립체들이 인접한 막-판 조립체들 사이의 상기 공기 간극을 감소시키기 위해 함께 프레스(press)될 수 있도록 압축가능한, 열 교환기.
  36. 청구항 35에 있어서,
    상기 유연한 스페이서들은 대향 단부보다 상기 막-판 조립체들의 일단부에서 더 압축되어, 인접한 막-판 조립체들 사이의 공기 간극들을 변화시키게 하는, 열 교환기.
  37. 청구항 36에 있어서,
    상기 일단부는 공기 입구 단부를 포함하는, 열 교환기.
  38. 청구항 36에 있어서,
    상기 일단부는 공기 출구 단부를 포함하는, 열 교환기.
  39. 청구항 36에 있어서,
    각 판 구조는 2개의 이격된 지지판들을 포함하고, 상기 2개의 이격된 지지판들은 서로 대향하고 그 사이에 냉각 유체가 흐를 수 있는 간극을 갖는, 열 교환기.
  40. 청구항 36에 있어서,
    각 판 구조는 2개의 이격된 지지판들을 포함하고, 상기 2개의 이격된 지지판들은 서로 대향하고 그 사이에 가열 유체가 흐를 수 있는 그 사이의 간극을 갖는, 열 교환기.
  41. 청구항 1에 있어서,
    각 판 구조는 2개의 이격된 지지판들을 포함하고, 상기 2개의 이격된 지지판들은 서로 대향하고 그 사이에 열 전달 유체가 흐를 수 있는 간극을 갖고,
    상기 막들은 각 판 구조의 일부분만을 덮고, 액체 건조제는 상기 판 구조의 상기 부분에만 가로질러 흐르고, 상기 열 전달 유체는 실질적으로 전체 판 구조를 가로질러 흘러서, 상기 공기 흐름이 상기 막을 가로질러 흐를 때 제습되고 냉각되며, 상기 막에 의해 덮이지 않은 상기 판 구조를 가로질러 흐를 때만 냉각되는, 열 교환기.
  42. 청구항 41에 있어서,
    상기 복수의 막-판 조립체들은 일반적으로 수평 방향으로 이를 통하는 공기 흐름을 허용하도록 구성되는, 열 교환기.
  43. 청구항 41에 있어서,
    상기 복수의 막-판 조립체들은 일반적으로 수직 방향으로 이를 통하는 공기 흐름을 허용하도록 구성되는, 열 교환기.
  44. 청구항 41에 있어서,
    상기 열 전달 유체는 상기 공기 흐름에 대해 역류 방향으로 흐르는, 열 교환기.
  45. 건조제 공기 조절 시스템에 사용하기 위한 열 교환기로서, 상기 열 교환기는:
    일반적으로 평행한 배치로 서로 향하고 상기 건조제 공기 조절 시스템에 의해 처리될 공기가 흐를 수 있는 그 사이의 공기 간극들을 한정하도록 이격되는 복수의 막-판 조립체들로서, 상기 막-판 조립체들 각각은,
    (a) 판 구조,
    (b) 2개의 막들로서, 각각이 상기 판 구조의 대향 측부를 향하고, 액체 건조제가 흐를 수 있는 그 사이의 간극을 한정하도록 상기 판 구조로부터 이격되는, 상기 2개의 막들,
    (c) 적어도 하나의 건조제 배수 포트, 및
    (d) 사이퍼닝(siphoning) 배수구를 포함하고,
    상기 액체 건조제는 상기 적어도 하나의 배수 포트를 통해 상기 사이퍼닝 배수구로 흘러, 각 막과 상기 판 구조 사이의 상기 간극에 부압을 생성하는, 열 교환기.
KR1020147036005A 2012-06-11 2013-06-11 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들 KR102189997B1 (ko)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201261658205P 2012-06-11 2012-06-11
US61/658,205 2012-06-11
US201261729139P 2012-11-21 2012-11-21
US61/729,139 2012-11-21
US201261731227P 2012-11-29 2012-11-29
US61/731,227 2012-11-29
US201261736213P 2012-12-12 2012-12-12
US61/736,213 2012-12-12
US201361758035P 2013-01-29 2013-01-29
US61/758,035 2013-01-29
US201361789357P 2013-03-15 2013-03-15
US61/789,357 2013-03-15
PCT/US2013/045161 WO2013188388A2 (en) 2012-06-11 2013-06-11 Methods and systems for turbulent, corrosion resistant heat exchangers

Publications (2)

Publication Number Publication Date
KR20150029650A KR20150029650A (ko) 2015-03-18
KR102189997B1 true KR102189997B1 (ko) 2020-12-11

Family

ID=49758855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147036005A KR102189997B1 (ko) 2012-06-11 2013-06-11 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들

Country Status (6)

Country Link
US (6) US9101874B2 (ko)
EP (2) EP3686538A1 (ko)
KR (1) KR102189997B1 (ko)
CN (1) CN104508417B (ko)
ES (1) ES2755800T3 (ko)
WO (1) WO2013188388A2 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9004284B2 (en) * 2009-10-01 2015-04-14 Vitrinite Services, Llc Mineral slurry drying method and system
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
CN103180032A (zh) * 2010-05-26 2013-06-26 查尔斯斯塔克布料实验室公司 微制造的人造肺辅助装置及其使用和制造方法
WO2012170887A2 (en) * 2011-06-08 2012-12-13 Ail Research Inc. Heat and mass exchangers having extruded plates
US9101874B2 (en) * 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
WO2014089164A1 (en) 2012-12-04 2014-06-12 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
US9492795B2 (en) * 2013-02-22 2016-11-15 Battelle Memorial Institute Membrane device and process for mass exchange, separation, and filtration
CN108443996B (zh) 2013-03-01 2021-04-20 7Ac技术公司 干燥剂空气调节方法和系统
ES2761585T3 (es) 2013-03-14 2020-05-20 7Ac Tech Inc Sistema de aire acondicionado con desecante líquido dividido
WO2014152888A1 (en) 2013-03-14 2014-09-25 7 Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
EP3008396B1 (en) 2013-06-12 2019-10-23 7AC Technologies, Inc. Liquid desiccant air conditioning system
US20160138817A1 (en) * 2013-06-25 2016-05-19 3M Innovative Properties Company Flexible liquid desiccant heat and mass transfer panels
US10739079B2 (en) 2014-01-16 2020-08-11 Ail Research Inc. Dewpoint indirect evaporative cooler
EP3120082A4 (en) 2014-02-16 2018-04-18 BE Power Tech, Inc. Liquid desiccant regeneration system and method of operating the same
US20160377302A1 (en) * 2014-02-28 2016-12-29 3M Innovative Properties Company Flexible liquid desiccant heat and mass transfer panels with a hydrophilic layer
JP6391264B2 (ja) * 2014-03-20 2018-09-19 住友精密工業株式会社 熱交換器
CN114935180B (zh) 2014-03-20 2023-08-15 艾默生环境优化技术有限公司 空气调节系统、冷却和除湿的方法和加热和加湿的方法
WO2015164618A1 (en) 2014-04-23 2015-10-29 The Charles Stark Draper Laboratory, Inc. Blood oxygenator
US10161690B2 (en) 2014-09-22 2018-12-25 Hamilton Sundstrand Space Systems International, Inc. Multi-layer heat exchanger and method of distributing flow within a fluid layer of a multi-layer heat exchanger
US20160123683A1 (en) * 2014-10-30 2016-05-05 Ford Global Technologies, Llc Inlet air turbulent grid mixer and dimpled surface resonant charge air cooler core
KR20170086496A (ko) 2014-11-21 2017-07-26 7에이씨 테크놀로지스, 아이엔씨. 미니-스플릿 액체 데시컨트 공기 조화를 위한 방법 및 시스템
SG10201503433XA (en) * 2015-04-30 2016-11-29 Matthias Enzenhofer Humidity Management Device And Method
US10533810B2 (en) 2015-05-20 2020-01-14 Other Lab, Llc Near-isothermal compressor/expander
EP3144485A1 (en) * 2015-09-16 2017-03-22 Siemens Aktiengesellschaft Turbomachine component with cooling features and a method for manufacturing such a turbomachine component
US20170106639A1 (en) * 2015-10-20 2017-04-20 7Ac Technologies, Inc. Methods and systems for thermoforming two and three way heat exchangers
AT518082B1 (de) * 2016-03-31 2017-07-15 Gerhard Kunze Dr Klimatisierung durch Mehrphasen-Plattenwärmetauscher
US11391474B2 (en) * 2016-08-04 2022-07-19 Energy Wall Llc System, components, and methods for air, heat, and humidity exchanger
US10168114B2 (en) 2016-08-30 2019-01-01 Hamilton Sundstrand Corporation Integral drain assembly for a heat exchanger and method of forming
IT201700018072A1 (it) * 2017-02-17 2018-08-17 Univ Degli Studi Genova Contattore a membrana a tre fluidi perfezionato e impianto integrato di climatizzazione ad alta efficienza energetica utilizzante tale contattore.
CN106949577A (zh) * 2017-05-13 2017-07-14 昆山斯莱姆节能科技有限公司 全热交换芯及使用该全热交换芯的新风机
US11054194B2 (en) 2017-10-10 2021-07-06 Other Lab, Llc Conformable heat exchanger system and method
US10941948B2 (en) 2017-11-01 2021-03-09 7Ac Technologies, Inc. Tank system for liquid desiccant air conditioning system
JP7321157B2 (ja) * 2017-11-01 2023-08-04 エマーソン クライメイト テクノロジーズ,インコーポレイテッド 液体乾燥剤空調システムにおける膜モジュール内での液体乾燥剤の均一分散のための方法及び装置
US11022330B2 (en) * 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
CN108954527A (zh) * 2018-08-16 2018-12-07 中山路得斯空调有限公司 一种用于小型分体式液体除湿空调的系统及其使用方法
KR102069074B1 (ko) * 2018-08-23 2020-01-22 엘지전자 주식회사 제습기
CN109186008B (zh) * 2018-10-19 2023-11-28 际高科技有限公司 一种户式水源双板热回收新风机组
JP7278172B2 (ja) * 2018-10-23 2023-05-19 東京エレクトロン株式会社 基板処理装置
US11117090B2 (en) 2018-11-26 2021-09-14 Palo Alto Research Center Incorporated Electrodialytic liquid desiccant dehumidifying system
US11173575B2 (en) * 2019-01-29 2021-11-16 Treau, Inc. Film heat exchanger coupling system and method
WO2020181192A1 (en) 2019-03-07 2020-09-10 Emerson Climate Technologies, Inc. Climate-control system with absorption chiller
JP6822525B2 (ja) * 2019-06-28 2021-01-27 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
US11439948B2 (en) * 2019-12-09 2022-09-13 Mahle International Gmbh Membrane module for mitigating evaporative fuel emissions of automobiles
US11385000B2 (en) 2020-09-25 2022-07-12 Emerson Climate Technologies, Inc. Systems and methods for a non-pressurized closed loop water sub-system
IT202000026251A1 (it) * 2020-11-04 2022-05-04 Ibs Tech Spa Scambiatore di calore
DE102020129403A1 (de) * 2020-11-09 2022-05-12 GMT Membrantechnik GmbH Membrankontaktor zur Übertragung von Wasserdampf zwischen zwei Gasströmen
US11808527B2 (en) * 2021-03-05 2023-11-07 Copeland Lp Plastic film heat exchanger for low pressure and corrosive fluids
EP4384759A2 (en) * 2021-08-13 2024-06-19 Nortek Air Solutions Canada, Inc. Liquid desiccant absorption chiller
US11944934B2 (en) 2021-12-22 2024-04-02 Mojave Energy Systems, Inc. Electrochemically regenerated liquid desiccant dehumidification system using a secondary heat pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517773A (ja) * 1997-09-19 2001-10-09 ミリポア・コーポレイション 熱交換装置
JP2011511244A (ja) * 2008-01-25 2011-04-07 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー 除湿のために、膜に含有された液体乾燥剤を用いる間接蒸発冷却器

Family Cites Families (308)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1791086A (en) 1926-10-11 1931-02-03 Koppers Co Inc Process for dehydrating gas
US2221787A (en) 1936-08-31 1940-11-19 Calorider Corp Method and apparatus for conditioning air and other gases
US2290465A (en) 1939-04-20 1942-07-21 Robert B P Crawford Air conditioning system
US2235322A (en) 1940-01-29 1941-03-18 J F Pritchard & Company Air drying
US2433741A (en) 1943-02-13 1947-12-30 Robert B P Crawford Chemical dehumidifying method and means
US2634958A (en) * 1948-12-03 1953-04-14 Modine Mfg Co Heat exchanger
US2660159A (en) * 1950-06-30 1953-11-24 Surface Combustion Corp Unit heater with draft hood
US2708915A (en) * 1952-11-13 1955-05-24 Manville Boiler Co Inc Crossed duct vertical boiler construction
US2939686A (en) 1955-02-04 1960-06-07 Cherry Burrell Corp Double port heat exchanger plate
US2988171A (en) 1959-01-29 1961-06-13 Dow Chemical Co Salt-alkylene glycol dew point depressant
US3119446A (en) * 1959-09-17 1964-01-28 American Thermocatalytic Corp Heat exchangers
GB990459A (en) * 1960-06-24 1965-04-28 Arnot Alfred E R Improvements in or relating to water dispensers
US3193001A (en) 1963-02-05 1965-07-06 Lithonia Lighting Inc Comfort conditioning system
US3409969A (en) * 1965-06-28 1968-11-12 Westinghouse Electric Corp Method of explosively welding tubes to tube plates
GB1172247A (en) 1966-04-20 1969-11-26 Apv Co Ltd Improvements in or relating to Plate Heat Exchangers
US3410581A (en) * 1967-01-26 1968-11-12 Young Radiator Co Shell-and-tube type heat-exchanger
US3455338A (en) * 1967-06-19 1969-07-15 Walter M Pollit Composite pipe composition
US3718181A (en) 1970-08-17 1973-02-27 Du Pont Plastic heat exchange apparatus
US4180126A (en) 1973-11-13 1979-12-25 Gas Developments Corporation Air conditioning apparatus and method
JPS5371686A (en) * 1976-12-09 1978-06-26 Efu Konerii Robaato Tubular molecule filtering apparatus
US4100331A (en) 1977-02-03 1978-07-11 Nasa Dual membrane, hollow fiber fuel cell and method of operating same
US4305456A (en) 1977-08-12 1981-12-15 Paul Mueller Company Condenser and hot water system
FR2405081A1 (fr) 1977-10-06 1979-05-04 Commissariat Energie Atomique Procede de separation de gaz dans un melange
US4164125A (en) 1977-10-17 1979-08-14 Midland-Ross Corporation Solar energy assisted air-conditioning apparatus and method
US4176523A (en) 1978-02-17 1979-12-04 The Garrett Corporation Adsorption air conditioner
US4209368A (en) 1978-08-07 1980-06-24 General Electric Company Production of halogens by electrolysis of alkali metal halides in a cell having catalytic electrodes bonded to the surface of a porous membrane/separator
US4222244A (en) 1978-11-07 1980-09-16 Gershon Meckler Associates, P.C. Air conditioning apparatus utilizing solar energy and method
US4205529A (en) 1978-12-04 1980-06-03 The United States Of America As Represented By The United States Department Of Energy LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery
US4259849A (en) 1979-02-15 1981-04-07 Midland-Ross Corporation Chemical dehumidification system which utilizes a refrigeration unit for supplying energy to the system
US4324947A (en) 1979-05-16 1982-04-13 Dumbeck Robert F Solar energy collector system
US4435339A (en) 1979-08-06 1984-03-06 Tower Systems, Inc. Falling film heat exchanger
US4235221A (en) 1979-08-23 1980-11-25 Murphy Gerald G Solar energy system and apparatus
US4882907A (en) 1980-02-14 1989-11-28 Brown Ii William G Solar power generation
US4341263A (en) 1980-11-11 1982-07-27 Morteza Arbabian Waste water heat recovery apparatus
US4444992A (en) 1980-11-12 1984-04-24 Massachusetts Institute Of Technology Photovoltaic-thermal collectors
US4429545A (en) 1981-08-03 1984-02-07 Ocean & Atmospheric Science, Inc. Solar heating system
US4399862A (en) 1981-08-17 1983-08-23 Carrier Corporation Method and apparatus for proven demand air conditioning control
US4730600A (en) * 1981-12-16 1988-03-15 The Coleman Company, Inc. Condensing furnace
US4612019A (en) 1982-07-22 1986-09-16 The Dow Chemical Company Method and device for separating water vapor from air
JPS6099328A (ja) 1983-11-04 1985-06-03 Toyota Central Res & Dev Lab Inc 凝縮性ガス分離装置
US5181387A (en) 1985-04-03 1993-01-26 Gershon Meckler Air conditioning apparatus
US4786301A (en) 1985-07-01 1988-11-22 Rhodes Barry V Desiccant air conditioning system
US4649899A (en) 1985-07-24 1987-03-17 Moore Roy A Solar tracker
US4607132A (en) 1985-08-13 1986-08-19 Jarnagin William S Integrated PV-thermal panel and process for production
US4766952A (en) * 1985-11-15 1988-08-30 The Furukawa Electric Co., Ltd. Waste heat recovery apparatus
US4660390A (en) 1986-03-25 1987-04-28 Worthington Mark N Air conditioner with three stages of indirect regeneration
JPS62297647A (ja) 1986-06-18 1987-12-24 Ohbayashigumi Ltd 建築物の除湿システム
US4987750A (en) 1986-07-08 1991-01-29 Gershon Meckler Air conditioning apparatus
US4832115A (en) 1986-07-09 1989-05-23 Albers Technologies Corporation Method and apparatus for simultaneous heat and mass transfer
US4744414A (en) * 1986-09-02 1988-05-17 Arco Chemical Company Plastic film plate-type heat exchanger
US4691530A (en) 1986-09-05 1987-09-08 Milton Meckler Cogeneration and central regeneration multi-contactor air conditioning system
US4686938A (en) 1986-09-26 1987-08-18 Process Equipment & Service Co., Inc. System for heating liquid in a separator
EP0327574B1 (en) * 1986-10-22 1994-04-13 Alfa-Laval Thermal Ab Plate heat exchanger with a double-wall structure
US4703629A (en) 1986-12-15 1987-11-03 Moore Roy A Solar cooling apparatus
US4910971A (en) 1988-02-05 1990-03-27 Hydro Thermal Engineering Pty. Ltd. Indirect air conditioning system
US4900448A (en) 1988-03-29 1990-02-13 Honeywell Inc. Membrane dehumidification
US5605628A (en) 1988-05-24 1997-02-25 North West Water Group Plc Composite membranes
US4872578A (en) * 1988-06-20 1989-10-10 Itt Standard Of Itt Corporation Plate type heat exchanger
SE464853B (sv) 1988-08-01 1991-06-24 Ahlstroem Foeretagen Foerfarande foer avfuktning av en gas, speciellt luft
US4971142A (en) * 1989-01-03 1990-11-20 The Air Preheater Company, Inc. Heat exchanger and heat pipe therefor
US4955205A (en) 1989-01-27 1990-09-11 Gas Research Institute Method of conditioning building air
US4887438A (en) 1989-02-27 1989-12-19 Milton Meckler Desiccant assisted air conditioner
US4966007A (en) 1989-05-12 1990-10-30 Baltimore Aircoil Company, Inc. Absorption refrigeration method and apparatus
US4939906A (en) 1989-06-09 1990-07-10 Gas Research Institute Multi-stage boiler/regenerator for liquid desiccant dehumidifiers
JPH0391660A (ja) 1989-09-04 1991-04-17 Nishiyodo Kuuchiyouki Kk 吸着式蓄熱装置及び該装置を利用した吸着式蓄熱システム
US4984434A (en) 1989-09-12 1991-01-15 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
US4941324A (en) 1989-09-12 1990-07-17 Peterson John L Hybrid vapor-compression/liquid desiccant air conditioner
JPH0759996B2 (ja) 1989-10-09 1995-06-28 ダイキン工業株式会社 湿度調節機
JPH03213921A (ja) 1990-01-18 1991-09-19 Mitsubishi Electric Corp 表示画面付空気調和装置
JPH04273555A (ja) 1991-02-28 1992-09-29 Nec Corp コミットメント方式
US5471852A (en) 1991-07-05 1995-12-05 Meckler; Milton Polymer enhanced glycol desiccant heat-pipe air dehumidifier preconditioning system
US5191771A (en) 1991-07-05 1993-03-09 Milton Meckler Polymer desiccant and system for dehumidified air conditioning
US5221520A (en) 1991-09-27 1993-06-22 North Carolina Center For Scientific Research, Inc. Apparatus for treating indoor air
US5186903A (en) 1991-09-27 1993-02-16 North Carolina Center For Scientific Research, Inc. Apparatus for treating indoor air
US5353606A (en) 1991-10-15 1994-10-11 Yoho Robert W Desiccant multi-fuel hot air/water air conditioning unit
US5182921A (en) 1992-04-10 1993-02-02 Industrial Technology Research Institute Solar dehumidifier
JPH0674522A (ja) 1992-06-26 1994-03-15 Sanyo Electric Co Ltd 空気調和機の制御方法
US5582026A (en) 1992-07-07 1996-12-10 Barto, Sr.; Stephen W. Air conditioning system
US5351497A (en) 1992-12-17 1994-10-04 Gas Research Institute Low-flow internally-cooled liquid-desiccant absorber
US5448895A (en) 1993-01-08 1995-09-12 Engelhard/Icc Hybrid heat pump and desiccant space conditioning system and control method
US5361828A (en) 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
US5534186A (en) 1993-12-15 1996-07-09 Gel Sciences, Inc. Gel-based vapor extractor and methods
GB9405249D0 (en) 1994-03-17 1994-04-27 Smithkline Beecham Plc Container
DE4409848A1 (de) * 1994-03-22 1995-10-19 Siemens Ag Vorrichtung zur Zumessung und Zerstäubung von Fluiden
US5528905A (en) 1994-03-25 1996-06-25 Essex Invention S.A. Contactor, particularly a vapour exchanger for the control of the air hygrometric content, and a device for air handling
AUPM592694A0 (en) 1994-05-30 1994-06-23 F F Seeley Nominees Pty Ltd Vacuum dewatering of desiccant brines
US5462113A (en) 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
CA2127525A1 (en) 1994-07-06 1996-01-07 Leofred Caron Portable air cooler
JPH08105669A (ja) 1994-10-04 1996-04-23 Tokyo Gas Co Ltd 吸収冷凍機用再生器
US5638900A (en) 1995-01-27 1997-06-17 Ail Research, Inc. Heat exchange assembly
US5685152A (en) 1995-04-19 1997-11-11 Sterling; Jeffrey S. Apparatus and method for converting thermal energy to mechanical energy
US6018954A (en) 1995-04-20 2000-02-01 Assaf; Gad Heat pump system and method for air-conditioning
US5661983A (en) 1995-06-02 1997-09-02 Energy International, Inc. Fluidized bed desiccant cooling system
PL325441A1 (en) 1995-09-06 1998-07-20 Universal Air Technology Method of disinfecting air by a photocatalytic process
US5901783A (en) 1995-10-12 1999-05-11 Croyogen, Inc. Cryogenic heat exchanger
US6004691A (en) 1995-10-30 1999-12-21 Eshraghi; Ray R. Fibrous battery cells
NL1001834C2 (nl) * 1995-12-06 1997-06-10 Indupal B V Doorstroom-warmtewisselaar, inrichting die deze omvat en indamp- inrichting.
US5641337A (en) * 1995-12-08 1997-06-24 Permea, Inc. Process for the dehydration of a gas
US5595690A (en) 1995-12-11 1997-01-21 Hamilton Standard Method for improving water transport and reducing shrinkage stress in membrane humidifying devices and membrane humidifying devices
JPH09184692A (ja) 1995-12-28 1997-07-15 Ebara Corp 熱交換エレメント
US5816065A (en) 1996-01-12 1998-10-06 Ebara Corporation Desiccant assisted air conditioning system
US5950442A (en) 1996-05-24 1999-09-14 Ebara Corporation Air conditioning system
US6083387A (en) * 1996-06-20 2000-07-04 Burnham Technologies Ltd. Apparatus for the disinfection of fluids
US5860284A (en) 1996-07-19 1999-01-19 Novel Aire Technologies, L.L.C. Thermally regenerated desiccant air conditioner with indirect evaporative cooler
JPH10220914A (ja) 1997-02-07 1998-08-21 Osaka Gas Co Ltd 吸収式冷凍機のプレート型蒸発器及び吸収器
US5860285A (en) 1997-06-06 1999-01-19 Carrier Corporation System for monitoring outdoor heat exchanger coil
US6012296A (en) 1997-08-28 2000-01-11 Honeywell Inc. Auctioneering temperature and humidity controller with reheat
IL122065A (en) 1997-10-29 2000-12-06 Agam Energy Systems Ltd Heat pump/engine system and a method utilizing same
JPH11137948A (ja) 1997-11-07 1999-05-25 Daikin Ind Ltd 除湿装置
IL141579A0 (en) 2001-02-21 2002-03-10 Drykor Ltd Dehumidifier/air-conditioning system
WO1999026025A1 (en) 1997-11-16 1999-05-27 Drykor Ltd. Dehumidifier system
US6138470A (en) 1997-12-04 2000-10-31 Fedders Corporation Portable liquid desiccant dehumidifier
US6134903A (en) 1997-12-04 2000-10-24 Fedders Corporation Portable liquid desiccant dehumidifier
US6216489B1 (en) 1997-12-04 2001-04-17 Fedders Corporation Liquid desiccant air conditioner
US6216483B1 (en) 1997-12-04 2001-04-17 Fedders Corporation Liquid desiccant air conditioner
JPH11197439A (ja) 1998-01-14 1999-07-27 Ebara Corp 除湿空調装置
US6171374B1 (en) 1998-05-29 2001-01-09 Ballard Power Systems Inc. Plate and frame fluid exchanging assembly with unitary plates and seals
JP3305653B2 (ja) 1998-06-08 2002-07-24 大阪瓦斯株式会社 吸収式冷凍機のプレート型蒸発器及び吸収器
US6442951B1 (en) 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
IL125927A0 (en) 1998-08-25 1999-04-11 Agam Energy Systems Ltd An evaporative media and a cooling tower utilizing same
US6417423B1 (en) 1998-09-15 2002-07-09 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6488900B1 (en) 1998-10-20 2002-12-03 Mesosystems Technology, Inc. Method and apparatus for air purification
US6156102A (en) 1998-11-10 2000-12-05 Fantom Technologies Inc. Method and apparatus for recovering water from air
JP4273555B2 (ja) 1999-02-08 2009-06-03 ダイキン工業株式会社 空気調和システム
ES2251357T3 (es) 1999-03-14 2006-05-01 Drykor Ltd. Sistema deshumidificador/de acondicionamiento de aire.
US6513339B1 (en) 1999-04-16 2003-02-04 Work Smart Energy Enterprises, Inc. Solar air conditioner
US20030000230A1 (en) 1999-06-25 2003-01-02 Kopko William L. High-efficiency air handler
KR100338794B1 (ko) * 1999-08-16 2002-05-31 김병주 모세관력을 이용한 유하액막식 열 및 물질교환기
US6723441B1 (en) * 1999-09-22 2004-04-20 Nkk Corporation Resin film laminated metal sheet for can and method for fabricating the same
WO2001027552A1 (en) * 1999-10-08 2001-04-19 Carrier Corporation A plate-type heat exchanger
US6684649B1 (en) 1999-11-05 2004-02-03 David A. Thompson Enthalpy pump
US6103969A (en) 1999-11-29 2000-08-15 Bussey; Clifford Solar energy collector
US6244062B1 (en) 1999-11-29 2001-06-12 David Prado Solar collector system
US6926068B2 (en) 2000-01-13 2005-08-09 Denso Corporation Air passage switching device and vehicle air conditioner
JP3927344B2 (ja) 2000-01-19 2007-06-06 本田技研工業株式会社 加湿装置
IL134196A (en) 2000-01-24 2003-06-24 Agam Energy Systems Ltd System for dehumidification of air in an enclosure
DE10026344A1 (de) * 2000-04-01 2001-10-04 Membraflow Gmbh & Co Kg Filter Filtermodul
US6568466B2 (en) 2000-06-23 2003-05-27 Andrew Lowenstein Heat exchange assembly
US6497107B2 (en) 2000-07-27 2002-12-24 Idalex Technologies, Inc. Method and apparatus of indirect-evaporation cooling
US6453678B1 (en) 2000-09-05 2002-09-24 Kabin Komfort Inc Direct current mini air conditioning system
US6592515B2 (en) 2000-09-07 2003-07-15 Ams Research Corporation Implantable article and method
US7197887B2 (en) 2000-09-27 2007-04-03 Idalex Technologies, Inc. Method and plate apparatus for dew point evaporative cooler
US6514321B1 (en) 2000-10-18 2003-02-04 Powermax, Inc. Dehumidification using desiccants and multiple effect evaporators
AU2002214877A1 (en) 2000-11-13 2002-05-21 Mcmaster University Gas separation device
DE10059910C2 (de) 2000-12-01 2003-01-16 Daimler Chrysler Ag Vorrichtung zur kontinuierlichen Befeuchtung und Entfeuchtung der Zuluft von Fertigungsprozessen oder Raumlufttechnik-Anlagen
US6739142B2 (en) 2000-12-04 2004-05-25 Amos Korin Membrane desiccation heat pump
JP3348848B2 (ja) 2000-12-28 2002-11-20 株式会社西部技研 間接気化冷却装置
JP5189719B2 (ja) 2001-01-22 2013-04-24 本田技研工業株式会社 燃料電池システム
US6711907B2 (en) 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
US6557365B2 (en) 2001-02-28 2003-05-06 Munters Corporation Desiccant refrigerant dehumidifier
GB2389063A (en) 2001-03-13 2003-12-03 Dais Analytic Corp Heat and moisture exchange device
JP3765531B2 (ja) 2001-03-30 2006-04-12 本田技研工業株式会社 加湿モジュール
US6539731B2 (en) 2001-03-30 2003-04-01 Arthus S. Kesten Dehumidification process and apparatus
US6497749B2 (en) 2001-03-30 2002-12-24 United Technologies Corporation Dehumidification process and apparatus using collodion membrane
JP4732609B2 (ja) 2001-04-11 2011-07-27 株式会社ティラド 熱交換器コア
IL158536A0 (en) 2001-04-23 2004-05-12 Drykor Ltd Apparatus for air-conditioning
FR2823995B1 (fr) 2001-04-25 2008-06-06 Alfa Laval Vicarb Dispositif perfectionne d'echange et/ou de reaction entre fluides
IL144119A (en) 2001-07-03 2006-07-05 Gad Assaf Air conditioning system
US6660069B2 (en) * 2001-07-23 2003-12-09 Toyota Jidosha Kabushiki Kaisha Hydrogen extraction unit
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
WO2003016808A2 (en) * 2001-08-20 2003-02-27 Idalex Technologies, Inc. Method of evaporative cooling of a fluid and apparatus therefor
US6557266B2 (en) 2001-09-17 2003-05-06 John Griffin Conditioning apparatus
US6595020B2 (en) 2001-09-17 2003-07-22 David I. Sanford Hybrid powered evaporative cooler and method therefor
JP2003161465A (ja) 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
AU2002217401A1 (en) 2001-12-27 2003-07-15 Drykor Ltd. High efficiency dehumidifiers and combined dehumidifying/air-conditioning systems
US6938434B1 (en) 2002-01-28 2005-09-06 Shields Fair Cooling system
US6848265B2 (en) 2002-04-24 2005-02-01 Ail Research, Inc. Air conditioning system
CA2384712A1 (en) * 2002-05-03 2003-11-03 Michel St. Pierre Heat exchanger with nest flange-formed passageway
US20050218535A1 (en) 2002-08-05 2005-10-06 Valeriy Maisotsenko Indirect evaporative cooling mechanism
US20040061245A1 (en) 2002-08-05 2004-04-01 Valeriy Maisotsenko Indirect evaporative cooling mechanism
SE523674C2 (sv) 2002-09-10 2004-05-11 Alfa Laval Corp Ab Plattvärmeväxlare med två separata dragplåtar samt förfarande för tillverkning av densamma
WO2004027336A1 (en) * 2002-09-17 2004-04-01 Midwest Research Institute Carbon nanotube heat-exchange systems
KR20040026242A (ko) 2002-09-23 2004-03-31 주식회사 에어필 열펌프를 이용한 액체 제습식 냉방장치
NL1022794C2 (nl) * 2002-10-31 2004-09-06 Oxycell Holding Bv Werkwijze voor het vervaardigen van een warmtewisselaar, alsmede met de werkwijze verkregen warmtewisselaar.
IL152885A0 (en) 2002-11-17 2003-06-24 Agam Energy Systems Ltd Air conditioning systems and methods
ATE389857T1 (de) 2002-12-02 2008-04-15 Lg Electronics Inc Wärmetauscher einer lüftungsanlage
US6837056B2 (en) 2002-12-19 2005-01-04 General Electric Company Turbine inlet air-cooling system and method
KR100463550B1 (ko) 2003-01-14 2004-12-29 엘지전자 주식회사 냉난방시스템
US7306650B2 (en) 2003-02-28 2007-12-11 Midwest Research Institute Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants
BRPI0409399A (pt) 2003-04-16 2006-04-18 James J Reidy dispositivo termoelétrico para geração de água, de alta eficiência
US6986428B2 (en) 2003-05-14 2006-01-17 3M Innovative Properties Company Fluid separation membrane module
DE10324300B4 (de) 2003-05-21 2006-06-14 Thomas Dr. Weimer Thermodynamische Maschine und Verfahren zur Aufnahme von Wärme
WO2004106649A1 (de) 2003-05-26 2004-12-09 Logos-Innovationen Gmbh Vorrichtung zur gewinnung von wasser aus atmosphärischer luft
KR100510774B1 (ko) 2003-05-26 2005-08-30 한국생산기술연구원 복합식 제습냉방시스템
US6854279B1 (en) 2003-06-09 2005-02-15 The United States Of America As Represented By The Secretary Of The Navy Dynamic desiccation cooling system for ships
ITTO20030547A1 (it) 2003-07-15 2005-01-16 Fiat Ricerche Sistema di climatizzazione con un circuito a compressione
WO2005033585A2 (en) 2003-09-30 2005-04-14 Albers Walter F Systems and methods for conditoning air and transferring heat and mass between airflows
US7258923B2 (en) 2003-10-31 2007-08-21 General Electric Company Multilayered articles and method of manufacture thereof
JP4341373B2 (ja) 2003-10-31 2009-10-07 ダイキン工業株式会社 調湿装置
US7186084B2 (en) * 2003-11-19 2007-03-06 General Electric Company Hot gas path component with mesh and dimpled cooling
US7279215B2 (en) 2003-12-03 2007-10-09 3M Innovative Properties Company Membrane modules and integrated membrane cassettes
JP3668786B2 (ja) 2003-12-04 2005-07-06 ダイキン工業株式会社 空気調和装置
US20050133082A1 (en) 2003-12-20 2005-06-23 Konold Annemarie H. Integrated solar energy roofing construction panel
US20050210907A1 (en) 2004-03-17 2005-09-29 Gillan Leland E Indirect evaporative cooling of a gas using common product and working gas in a partial counterflow configuration
CN1997861A (zh) 2004-04-09 2007-07-11 艾尔研究公司 热质交换器
WO2005114072A2 (en) 2004-05-22 2005-12-01 Gerald Landry Desiccant-assisted air conditioning system and process
US7143597B2 (en) 2004-06-30 2006-12-05 Speakman Company Indirect-direct evaporative cooling system operable from sustainable energy source
IL163015A (en) 2004-07-14 2009-07-20 Gad Assaf Systems and methods for dehumidification
CN101076701A (zh) 2004-10-12 2007-11-21 Gpm股份有限公司 冷却组件
JP2006263508A (ja) 2005-03-22 2006-10-05 Seiichiro Deguchi 吸湿器、乾燥箱、空気乾燥装置及び空調装置
NL1030538C1 (nl) 2005-11-28 2007-05-30 Eurocore Trading & Consultancy Inrichting voor het indirect door verdamping koelen van een luchtstroom.
MX2008008113A (es) 2005-12-22 2008-09-30 Oxycom Beheer Bv Dispositivo de enfriamiento evaporatorio.
SE530820C2 (sv) * 2005-12-22 2008-09-16 Alfa Laval Corp Ab Ett mixningssystem för värmeväxlare
US8648209B1 (en) * 2005-12-31 2014-02-11 Joseph P. Lastella Loop reactor for making biodiesel fuel
CA2637064C (en) 2006-01-17 2015-11-24 Henkel Corporation Bonded fuel cell assembly, methods, systems and sealant compositions for producing the same
US20070169916A1 (en) * 2006-01-20 2007-07-26 Wand Steven M Double-wall, vented heat exchanger
AU2007223448B2 (en) 2006-03-02 2011-10-20 Sei-Ichi Manabe Pore diffusion type flat membrane separating apparatus, flat membrane concentrating apparatus, regenerated cellulose porous membrane for pore diffusion, and method of non-destructive inspection of flat membrane
EP2341301A3 (de) 2006-04-04 2011-10-05 Efficient Energy GmbH Wärmepumpe
US20090238685A1 (en) 2006-05-08 2009-09-24 Roland Santa Ana Disguised air displacement device
NL2000079C2 (nl) 2006-05-22 2007-11-23 Statiqcooling B V Enthalpie-uitwisselaar.
JP2008020138A (ja) 2006-07-13 2008-01-31 Daikin Ind Ltd 湿度調節装置
US7758671B2 (en) 2006-08-14 2010-07-20 Nanocap Technologies, Llc Versatile dehumidification process and apparatus
US20080085437A1 (en) * 2006-09-29 2008-04-10 Dean James F Pleated heat and humidity exchanger with flow field elements
GB0622355D0 (en) 2006-11-09 2006-12-20 Oxycell Holding Bv High efficiency heat exchanger and dehumidifier
US20080127965A1 (en) 2006-12-05 2008-06-05 Andy Burton Method and apparatus for solar heating air in a forced draft heating system
EP2102497A4 (en) 2006-12-27 2012-08-29 Dennis Mcguire PORTABLE, SELF-SUPPORTIVE POWER STATION
KR100826023B1 (ko) 2006-12-28 2008-04-28 엘지전자 주식회사 환기 장치의 열교환기
CN103203185B (zh) 2007-01-20 2016-01-13 戴斯分析公司 具有包含经加热空气的干燥腔室的干燥器
US20080203866A1 (en) 2007-01-26 2008-08-28 Chamberlain Cliff S Rooftop modular fan coil unit
US20080302357A1 (en) 2007-06-05 2008-12-11 Denault Roger Solar photovoltaic collector hybrid
WO2009021328A1 (en) * 2007-08-14 2009-02-19 Marc Hoffman Heat exchanger
US8268060B2 (en) 2007-10-15 2012-09-18 Green Comfort Systems, Inc. Dehumidifier system
WO2009052054A1 (en) * 2007-10-19 2009-04-23 Shell Oil Company Systems, methods, and processes utilized for treating subsurface formations
GB0720627D0 (en) * 2007-10-19 2007-11-28 Applied Cooling Technology Ltd Turbulator for heat exchanger tube and method of manufacture
US20090126913A1 (en) 2007-11-16 2009-05-21 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US8353175B2 (en) 2008-01-08 2013-01-15 Calvin Wade Wohlert Roof top air conditioning units having a centralized refrigeration system
JP5294191B2 (ja) 2008-01-31 2013-09-18 国立大学法人東北大学 湿式デシカント空調機
FR2927422B1 (fr) 2008-02-08 2014-10-10 R & I Alliance Dispositif de prelevement d'un echantillon de gaz,et procede pour la restitution d'un echantillon preleve.
JP5183236B2 (ja) 2008-02-12 2013-04-17 国立大学法人 東京大学 置換空調システム
DE102008022504B4 (de) * 2008-05-07 2012-11-29 Airbus Operations Gmbh Schaltbarer Vortexgenerator und damit gebildetes Array sowie Verwendungen derselben
JP4384699B2 (ja) 2008-05-22 2009-12-16 ダイナエアー株式会社 調湿装置
JP4374393B1 (ja) 2008-05-27 2009-12-02 ダイナエアー株式会社 調湿装置
JP2009293831A (ja) 2008-06-03 2009-12-17 Dyna-Air Co Ltd 調湿装置
JP2010002162A (ja) 2008-06-22 2010-01-07 Kiyoshi Yanagimachi 空気調和設備
US20100000247A1 (en) 2008-07-07 2010-01-07 Bhatti Mohinder S Solar-assisted climate control system
EP2321140A1 (en) 2008-07-30 2011-05-18 Solaris Synergy Ltd. Photovoltaic solar power generation system
CN102149980B (zh) 2008-08-08 2015-08-19 技术研究及发展基金有限公司 液体干燥剂除湿系统及用于其的热/质量的交换器
US20100051083A1 (en) 2008-09-03 2010-03-04 Boyk Bill Solar tracking platform with rotating truss
US20100077783A1 (en) 2008-09-30 2010-04-01 Bhatti Mohinder S Solid oxide fuel cell assisted air conditioning system
DE102009048060A1 (de) 2008-10-03 2010-04-08 Modine Manufacturing Co., Racine Wärmetauscher und Verfahren
US20100090356A1 (en) 2008-10-10 2010-04-15 Ldworks, Llc Liquid desiccant dehumidifier
BRPI0920141A2 (pt) * 2008-10-13 2017-06-27 Shell Int Research sistema e método para tratar uma formação de subsuperfície.
JP4502065B1 (ja) 2009-01-30 2010-07-14 ダイキン工業株式会社 ドレンレス空気調和装置
ITMI20090563A1 (it) 2009-04-08 2010-10-09 Donato Alfonso Di Riscaldamento e/o condizionamento e/o trattamento aria con sostanze fotocatalitiche utilizzando impianti fotovoltaici a concentrazione con raffreddamento con pompa di calore e/o essicamento dell'aria
JP4799635B2 (ja) 2009-04-13 2011-10-26 三菱電機株式会社 液体デシカント再生装置及びデシカント除湿空調装置
SE534745C2 (sv) * 2009-04-15 2011-12-06 Alfa Laval Corp Ab Flödesmodul
KR101018475B1 (ko) 2009-08-28 2011-03-02 기재권 발전기능을 갖는 물탱크
WO2011031333A1 (en) * 2009-09-14 2011-03-17 Random Technologies Llc Apparatus and methods for changing the concentration of gases in liquids
JP4536147B1 (ja) 2009-09-15 2010-09-01 ダイナエアー株式会社 調湿装置
KR101184925B1 (ko) 2009-09-30 2012-09-20 한국과학기술연구원 액체식 제습장치용 열물질교환기 및 그를 이용한 액체식 제습장치
JP5089672B2 (ja) 2009-10-27 2012-12-05 ダイナエアー株式会社 除湿装置
US8286442B2 (en) 2009-11-02 2012-10-16 Exaflop Llc Data center with low power usage effectiveness
EP2504630A1 (en) 2009-11-23 2012-10-03 Carrier Corporation Method and device for air conditioning with humidity control
JP5417213B2 (ja) 2010-02-10 2014-02-12 株式会社朝日工業社 間接蒸発冷却型外調機システム
JP5697481B2 (ja) 2010-02-23 2015-04-08 中部電力株式会社 加熱冷却装置
JP3159566U (ja) 2010-02-26 2010-05-27 株式会社アースクリーン東北 間接式気化式冷却装置
US10808948B2 (en) 2010-05-18 2020-10-20 Energy & Environmental Research Center Heat dissipation systems with hygroscopic working fluid
US9429332B2 (en) 2010-05-25 2016-08-30 7Ac Technologies, Inc. Desiccant air conditioning methods and systems using evaporative chiller
EP2585784A4 (en) 2010-06-24 2016-02-24 Venmar Ces Inc ENERGY EXCHANGER FOR A LIQUID AIR MEMBRANE
JP5621413B2 (ja) 2010-08-25 2014-11-12 富士通株式会社 冷却システム、及び冷却方法
US8500848B2 (en) * 2010-11-12 2013-08-06 The Texas A&M University System Systems and methods for air dehumidification and cooling with membrane water vapor rejection
KR20140022777A (ko) 2010-11-23 2014-02-25 듀쿨, 엘티디. 공기조화 시스템
US8141379B2 (en) 2010-12-02 2012-03-27 King Fahd University Of Petroleum & Minerals Hybrid solar air-conditioning system
EP2652410A1 (en) 2010-12-13 2013-10-23 Ducool, Ltd. Method and apparatus for conditioning air
US8695363B2 (en) 2011-03-24 2014-04-15 General Electric Company Thermal energy management system and method
KR20120113608A (ko) 2011-04-05 2012-10-15 한국과학기술연구원 확장표면판을 갖는 열물질 교환기 및 이를 갖는 액체식 제습 장치
CN202229469U (zh) 2011-08-30 2012-05-23 福建成信绿集成有限公司 一种具液体除湿功能的压缩式热泵系统
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
JP2013064549A (ja) 2011-09-16 2013-04-11 Daikin Industries Ltd 空調システム
DE102012019541A1 (de) * 2011-10-24 2013-04-25 Mann+Hummel Gmbh Befeuchtungseinrichtung für eine Brennstoffzelle
EP2815271A4 (en) 2012-02-17 2015-09-30 3M Innovative Properties Co ANAMORPHER LIGHT LEADER
WO2013172789A1 (en) 2012-05-16 2013-11-21 Nanyang Technological University A dehumidifying system, a method of dehumidifying and a cooling system
US9101874B2 (en) * 2012-06-11 2015-08-11 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
US20130340449A1 (en) 2012-06-20 2013-12-26 Alliance For Sustainable Energy, Llc Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
CN202734094U (zh) 2012-08-09 2013-02-13 上海理工大学 余热回收利用空调系统
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US20140054004A1 (en) 2012-08-24 2014-02-27 Venmar Ces, Inc. Membrane support assembly for an energy exchanger
SE538217C2 (sv) * 2012-11-07 2016-04-05 Andri Engineering Ab Värmeväxlare och ventilationsaggregat innefattande denna
WO2014089164A1 (en) 2012-12-04 2014-06-12 7Ac Technologies, Inc. Methods and systems for cooling buildings with large heat loads using desiccant chillers
EP2938935A1 (en) 2012-12-28 2015-11-04 Abengoa Solar LLC Flow control systems and methods for a phase change material solar receiver
US9511322B2 (en) 2013-02-13 2016-12-06 Carrier Corporation Dehumidification system for air conditioning
US10041692B2 (en) 2013-02-26 2018-08-07 Carrier Corporation Regeneration air mixing for a membrane based hygroscopic material dehumidification system
CN108443996B (zh) 2013-03-01 2021-04-20 7Ac技术公司 干燥剂空气调节方法和系统
US9267696B2 (en) 2013-03-04 2016-02-23 Carrier Corporation Integrated membrane dehumidification system
US9523537B2 (en) 2013-03-11 2016-12-20 General Electric Company Desiccant based chilling system
US9140471B2 (en) 2013-03-13 2015-09-22 Alliance For Sustainable Energy, Llc Indirect evaporative coolers with enhanced heat transfer
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
WO2014152888A1 (en) 2013-03-14 2014-09-25 7 Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US20140262125A1 (en) 2013-03-14 2014-09-18 Venmar Ces, Inc. Energy exchange assembly with microporous membrane
ES2761585T3 (es) 2013-03-14 2020-05-20 7Ac Tech Inc Sistema de aire acondicionado con desecante líquido dividido
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
US9279598B2 (en) 2013-03-15 2016-03-08 Nortek Air Solutions Canada, Inc. System and method for forming an energy exchange assembly
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
WO2014196159A1 (ja) * 2013-06-04 2014-12-11 パナソニックIpマネジメント株式会社 膜電極接合体及びその製造方法、並びに固体高分子形燃料電池
US20140360373A1 (en) 2013-06-11 2014-12-11 Hamilton Sundstrand Corporation Air separation module with removable core
EP3008396B1 (en) 2013-06-12 2019-10-23 7AC Technologies, Inc. Liquid desiccant air conditioning system
US20150300754A1 (en) 2013-11-19 2015-10-22 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
WO2015085025A1 (en) 2013-12-04 2015-06-11 Gilbarco Inc. Fuel dispenser coriolis flow meter
EP3087331B1 (en) 2013-12-24 2020-11-25 Carrier Corporation Refrigerant riser for evaporator
CN114935180B (zh) 2014-03-20 2023-08-15 艾默生环境优化技术有限公司 空气调节系统、冷却和除湿的方法和加热和加湿的方法
US20150308711A1 (en) * 2014-04-28 2015-10-29 Idalex Technologies, Inc. Heat Recovery Method and Apparatus
NL2013989B1 (en) 2014-10-02 2016-09-07 2Ndair B V A method of conditioning air and an air-conditioner module.
KR20170086496A (ko) 2014-11-21 2017-07-26 7에이씨 테크놀로지스, 아이엔씨. 미니-스플릿 액체 데시컨트 공기 조화를 위한 방법 및 시스템
US10527367B2 (en) * 2015-08-14 2020-01-07 Trane International Inc. Heat exchange assembly in an air to air heat exchanger
US20170106639A1 (en) 2015-10-20 2017-04-20 7Ac Technologies, Inc. Methods and systems for thermoforming two and three way heat exchangers
US9631824B1 (en) 2016-09-14 2017-04-25 Grahame Ernest Maisey Liquid desiccant HVAC system
WO2020117808A1 (en) 2018-12-03 2020-06-11 7Ac Technologies, Inc. Liquid desiccant air-conditioning systems using antifreeze-free heat transfer fluids
WO2020118241A1 (en) 2018-12-06 2020-06-11 7Ac Technologies, Inc. Liquid desiccant air-conditioning systems and methods for greenhouses and growth cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517773A (ja) * 1997-09-19 2001-10-09 ミリポア・コーポレイション 熱交換装置
JP2011511244A (ja) * 2008-01-25 2011-04-07 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー 除湿のために、膜に含有された液体乾燥剤を用いる間接蒸発冷却器

Also Published As

Publication number Publication date
EP3686538A1 (en) 2020-07-29
US9101875B2 (en) 2015-08-11
US20180051897A1 (en) 2018-02-22
US10443868B2 (en) 2019-10-15
US11098909B2 (en) 2021-08-24
CN104508417A (zh) 2015-04-08
WO2013188388A3 (en) 2014-04-10
CN104508417B (zh) 2017-03-29
US9835340B2 (en) 2017-12-05
US9101874B2 (en) 2015-08-11
US9308490B2 (en) 2016-04-12
ES2755800T3 (es) 2020-04-23
EP2859294A4 (en) 2016-03-09
US20140150662A1 (en) 2014-06-05
EP2859294B1 (en) 2019-09-11
US20140150657A1 (en) 2014-06-05
EP2859294A2 (en) 2015-04-15
US20140150656A1 (en) 2014-06-05
WO2013188388A2 (en) 2013-12-19
US20200141593A1 (en) 2020-05-07
US20160187008A1 (en) 2016-06-30
KR20150029650A (ko) 2015-03-18

Similar Documents

Publication Publication Date Title
KR102189997B1 (ko) 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들
EP3071893B1 (en) Methods and systems for turbulent, corrosion resistant heat exchangers
US11906199B2 (en) Enthalpy exchanger
EP2577178B1 (en) Methods and systems using liquid desiccants for air-conditioning and other processes
EP1969300B1 (en) Evaporative cooling device
JP2010509559A (ja) 高効率の熱交換器および除湿器
TWI429874B (zh) 蒸發式冷卻裝置
JP2022083366A (ja) 全熱交換型コンタミレス換気ユニット

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant