- -
VERFAHREN ZUM EINBAU VON NANOPHOSPHOREN IN MIKROOPTISCHE STRUKTUREN
Die Erfindung betrifft ein Verfahren zum Einbau von Nanophosphoren in mikrooptische Strukturen sowie entsprechende Beleuchtungsmittel.
In heute gebräuchlichen weißen LEDs werden blau-emittierende InGaN Halbleiter als Primärlichtquelle verwendet, die je nach der Zusammensetzung des Halbleitermischkristalls eine Emissionsbande zwischen 400 und 480 nm aufweisen.
Die Emission weißen Lichts wird durch eine Beschichtung mit dem Leuchtstoff (Y1Gd)3(AI1Ga)5Oi2)Ce (YAG:Ce) erreicht, der blaue Strahlung stark absorbiert und je nach Zusammensatzung bei 560 - 580 nm breitbandig emittiert. Das Resultat ist eine weiße LED-Lichtquelle, die bei einer sehr hohen Farbtemperatur von 5000 K eine hohe Farbwiedergabe von CRI « 80 und eine Lichtausbeute von bis zu 30 Im/W erreicht (M. Born, T. Jüstel, Umweltfreundliche Lichtquellen, Physik Journal 2 (2003) 43). Die weitere Verbreitung von LEDs in der Allgemein- und Automobilbeleuchtung setzt allerdings die Lösung einiger technischer Probleme voraus.
Erstens zeigen heutige weiße LEDs noch eine zu geringe Lichtausbeute. Das erfordert einerseits die Weiterentwicklung des Halbleiters und andererseits die Optimierung der Leuchtstoffe im Hinblick auf deren Quantenausbeute und Emissionsspektrum. Zweitens ist die Farbwiedergabe weißer LEDs, insbesondere bei niedrigen Farbtemperaturen noch zu gering (CRI< 70), um breite Anwendung in der Allgemeinbeleuchtung zu finden. Die aktuelle Entwicklung von rot emittierenden Linienleuchtstoffen stellt die einzige Möglichkeit dar, um die genannten Probleme zu lösen.
Es werden mikrooptische Strukturen verwendet, um die optischen
Eigenschaften von in ihrem Inneren eingebauten Systemen zu beeinflussen.
Beispielsweise ist es möglich, durch Resonanzerscheinungen die
Anregung von Leuchtstoffen im Inneren von inversen Opalen zu verstärken.
Für eine technische Umsetzung solcher Systeme ist aber zwingend erforderlich, dass eine einfach durchzuführende Beladung größerer
Mengen von mikrooptischen Systemen mit Leuchtstoffen (bzw. Farbmittel) ermöglicht wird.
Es wurde nun überraschend ein geeignetes Imprägnierungsverfahren gefunden, bei dem ein mikrooptisches System aus inversen Opalen mit einer Dispersion eines Nanoleuchtstoffes (auch Nanophosphor genannt) oder Precursoren von Nanoleuchtstoffen durch Diffusion befüllt wird.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung eines photonischen Materials mit regelmäßig angeordneten Kavitäten, enthaltend mindestens ein Farbmittel, wobei a) Opaltemplat-Kugeln regelmäßig angeordnet werden, b) die Kugelzwischenräume mit einem oder mehreren Precursoren für das Wandmaterial gefüllt werden, c) das Wandmaterial gebildet wird und die Opaltemplat-Kugeln entfernt werden, d) das Farbmittel in die Kavitäten eingebracht wird, wobei gelöste Precursoren für das Farbmittel mittels Lösungsimprägnierung unter Ausnutzung von Porendiffusion in die Kavitäten des inversen Opals eingebracht werden, e) das Lösungsmittel entfernt wird, f) die Precursoren in einem anschließenden Schritt in das Farbmittel überführt wird.
Photonische Materialien aus Anordnungen von Kavitäten mit einer im wesentlichen monodispersen Größenverteilung im Sinne der vorliegenden Erfindung sind Materialien, die dreidimensionale photonische Strukturen aufweisen. Unter dreidimensionalen photonischen Strukturen werden i. a. Systeme verstanden, die eine regelmäßige, dreidimensionale Modulation der Dielektrizitätskonstanten (und dadurch auch des Brechungsindex) aufweisen. Entspricht die periodische Modulationslänge in etwa der Wellenlänge des (sichtbaren) Lichtes, so tritt die Struktur mit dem Licht nach Art eines dreidimensionalen Beugungsgitters in Wechselwirkung, was sich in winkelabhängigen Farberscheinungen äußert.
Die inverse Struktur zur Opalstruktur (= Anordnung von Kavitäten mit einer im wesentlichen monodispersen Größenverteilung) entsteht gedanklich dadurch, dass in einem massiven Material regelmäßige sphärische Hohlvolumina in einer dichtesten Packung angeordnet werden. Ein Vorteil von derartigen inversen Strukturen gegenüber den normalen Strukturen ist das Entstehen von photonischen Bänderlücken bei bereits viel geringeren Dielektrizitätskonstantenkontrasten (K. Busch et al. Phys. Rev. Letters E, 198, 50, 3896).
Photonische Materialien, welche Kavitäten aufweisen, müssen folglich eine feste Wand besitzen. Erfindungsgemäß geeignet sind solche Wandmaterialien, die dielektrische Eigenschaften aufweisen und als solche im wesentlichen nicht absorbierend für die Wellenlänge einer Absorptionsbande des jeweiligen Farbmittels wirken und im wesentlichen transparent sind für die Wellenlänge einer durch die Absorptionswellenlänge anregbaren Emission des Farbmittels. Das Wandmaterial des photonischen Materials sollte als solches die Strahlung der Wellenlänge der Absorptionsbande des Farbmittels zu mindestens 95% passieren lassen.
Dabei besteht die Matrix im wesentlichen aus einem strahlungsstabilen organischen Polymeren, das vorzugsweise vernetzt ist, beispielsweise einem Epoxidharz. In einer anderen Erfindungsvariante besteht die Matrix um die Kavitäten im wesentlichen aus einem anorganischen Material, vorzugsweise einem Metallchalcogenid oder Metallpnictid bestehen, wobei insbesondere Silciumdioxid, Aluminiumoxid, Zirkonoxid, Eisenoxide, Titandioxid, Cerdioxid, Galliumnitrid, Bor- und Aluminiumnitrid sowie Silicium- und Phosphornitrid oder Mischungen davon zu nennen sind. Dabei ist es erfindungsgemäß insbesondere bevorzugt, wenn die Wand des photonischen Materials im wesentlichen aus einem Oxid oder Mischoxid von Silicium, Titan, Zirkonium und/oder Aluminium, vorzugsweise aus Siliciumdioxid besteht.
Dreidimensionale inverse Strukturen d. h. erfindungsgemäß einzusetzende mikrooptische Systeme mit regelmäßigen Anordnungen von Kavitäten können beispielsweise durch eine Templatsynthese hergestellt werden:
Synthesis of monodisperse Arranging of spheres colloidal spheres into colloidal crystal
Opal
Reaction of precursor into solid, removal of spheres Impregnation with precursor
Abb. 1 Schema der Herstellung eines inversen Opals
Als primäre Bausteine zum Aufbau von inversen Opalen werden einheitliche kolloide Kugeln verwendet (Pkt.1 in Abb. 1). Die Kugeln müssen neben weiteren Charakteristika einer möglichst engen Größenverteilung gehorchen (5% Größenabweichung ist tolerabel). Erfindungsgemäß bevorzugt sind dabei, durch wässrige Emulsionspolymerisation hergestellte, monodisperse PMMA-Kugeln mit einem Durchmesser im sub-μm-Bereich. Im zweiten Schritt werden die einheitlichen Kolloidkugeln nach Isolierung und Zentrifugation oder Sedimentation in eine dreidimensionale regelmäßige Opal-Struktur angeordnet (Pkt. 2 in Abb. 1). Diese Templat-Struktur entspricht einer dichtesten Kugelpackung, d.h. 74% des Raumes sind mit Kugeln befüllt und 26% des Raumes sind leer (Zwickel oder Hohlvolumina). Sie kann dann durch Temperierung verfestigt werden.
Im folgenden Arbeitsschritt (Pkt. 3 in Abb. 1) werden die Hohlräume des Templates mit einer Substanz befüllt, welche die Wände des späteren inversen Opals ausbildet. Bei der Substanz kann es sich beispielsweise um eine Lösung eines Precursors (vorzugsweise Tetraethoxysilan) handeln. Danach wird der Precursor durch Kalzinierung verfestigt und die Templatkugeln ebenfalls durch Kalzinierung entfernt (Pkt. 4 in Abb. 1). Dies ist dann möglich, wenn es sich bei den Kugeln um Polymere handelt und der Precursor beispielsweise in der Lage ist, eine Sol-Gel-Reaktion durchzuführen (Transformation von z.B. Kieselestern in SiO2). Erhalten wird nach vollständiger Kalzinierung eine Replik des Templates, der sog. inverse Opal.
In der Literatur sind viele solcher Verfahren bekannt, die zur Herstellung von Hohlraumstrukturen zum Einsatz gemäß der vorliegenden Erfindung genutzt werden können (z.B. S. G. Romanov et al., Handbook of Nanostructered Materials and Nanotechnology, Vol. 4, 2000, 231 ff.; V.
Colvin et al. Adv. Mater. 2001 , 13, 180; De La Rue et al. Synth. Metals, 2001 , 116, 469; M. Martinelli et al. Optical Mater. 2001 , 17, 11 ; A. Stein et al. Science, 1998, 281 , 538). Kern-Mantel Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist, sind in der DE-A- 10145450 beschrieben. Die Verwendung solcher Kern-Mantel-Partikel, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist als Template zur Herstellung inverser Opalstrukturen und ein Verfahren zur Herstellung inverser opalartiger Strukturen unter Einsatz solcher Kern- Mantel-Partikel ist in der Internationalen Patentanmeldung WO 2004/031102 beschrieben. Die beschriebenen Formkörper mit homogenen, regelmäßig angeordneten Kavitäten besitzen vorzugsweise Wände aus Metalloxiden oder aus Elastomeren. Folglich sind die beschriebenen Formkörper entweder hart und spröde oder zeigen elastomeren Charakter.
Die Entfernung der regelmäßig angeordneten Templat-Keme kann auf verschiedenen Wegen erfolgen. Wenn die Kerne aus geeigneten anorganischen Materialien bestehen, können diese durch Ätzen entfernt werden. Vorzugsweise können zum Beispiel Siliciumdioxid-Kerne mit HF, insbesondere verdünnter HF-Lösung entfernt werden.
Wenn die Kerne in den Kern-Mantel-Partikeln aus einem mit UV-Strahlung abbaubaren Material, vorzugsweise einem UV-abbaubaren organischen Polymeren aufgebaut sind, erfolgt die Entfernung der Kerne durch UV- Bestrahlung. Auch bei diesem Vorgehen kann es wiederum bevorzugt sein, wenn vor oder nach der Entfernung der Kerne eine Vernetzung des Mantels erfolgt. Geeignete Kernmaterialien sind dann insbesondere Poly(tert-butylmethacrylat), Poly(methylmethacrylat), Poly(n-butylmeth- acrylat) oder Copolymere, die eines dieser Polymere enthalten.
Weiter kann es insbesondere bevorzugt sein, wenn der abbaubare Kern thermisch abbaubar ist und aus Polymeren besteht, die entweder thermisch depolymerisierbar sind, d.h. unter Temperatureinwirkung in ihre Monomere zerfallen oder der Kern aus Polymeren besteht, die beim Abbau in niedermolekulare Bestandteile zerfallen, die von den Monomeren verschieden sind. Geeignete Polymere finden sich beispielsweise in der Tabelle „Thermal Degradation of Polymers" in Brandrup, J. (Ed.).: Polymer Handbook. Chichester Wiley 1966, S. V-6 - V-10, wobei alle Polymere geeignet sind, die flüchtige Abbauprodukte liefern. Der Inhalt dieser Tabelle gehört ausdrücklich zur Offenbarung der vorliegenden Anmeldung.
Bevorzugt ist dabei der Einsatz von Poly(styrol) und Derivaten, wie Poly(α- methylstyro!) bzw. Poly(styrol)-derivate, die am aromatischen Ring Substituenten tragen, wie insbesondere teil- oder perfluorierte Derivaten, Poly(acrylat)- und Poly(methacrylat)-derivaten sowie deren Estern, insbesondere bevorzugt Poly(methylmethacrylat) oder Poly(cyclohexylmethacrylat), bzw. Copolymeren dieser Polymere mit anderen abbaubaren Polymeren, wie vorzugsweise Styrol-Ethylacrylat- Copolymeren oder Methylmethacrylat-Ethylacrylat-Copolymeren, und Polyolefinen, Polyolefinoxiden, Polyethylenterephthalat, Polyformaldehyd, Polyamiden, Polyvinylacetat, Polyvinylchlorid oder Polyvinylalkohol.
Hinsichtlich der Beschreibung der resultierenden Formkörper und der Herstellverfahren für Formkörper wird auf die WO 2004/031102 verwiesen, deren Offenbarung ausdrücklich zum Inhalt der vorliegenden Anmeldung gehört.
Insbesondere bevorzugt ist es erfindungsgemäß, wenn der mittlere Durchmesser der Kavitäten in dem photonischen Material im Bereich von etwa 100 - 600 nm, bevorzugt im Bereich von 150 - 350 nm liegt.
Die Formkörper des inversen Opals fallen bei den entsprechenden Verfahren entweder direkt in Pulverform an oder können durch Mahlen zerkleinert werden. Die resultierenden Partikel können dann im erfindungsgemäßen Sinne weiter verarbeitet werden.
Wie schon erwähnt, besitzt die Struktur des inversen Opals eine Porosität von 74 %, wodurch sie leicht mit weiteren Substanzen beladen werden kann. Das Porensystem des inversen Opals besteht aus kugelförmigen Kavitäten (entsprechend den Kugeln des Templates), welche durch ein Kanalsystem (entspricht den vorherigen Berührungspunkten der Templatkugeln miteinander) dreidimensional miteinander verbunden sind. In das Innere der Opalstruktur können nun Leuchtstoffe (bzw. Farbmittel) oder Leuchtstoffprecursoren eingebracht werden, welche die Verbindungskanäle ("Linking Channel", Abb. 2) passieren können.
CavitV Phosphor on outer surface particle
Abb.2 Phosphor-Einbau in eine Opal-Struktur mittels Lösungsimprägnierung
- y —
Das Einbringen der Farbmittel oder Farbmittelprecursoren in die Porensysteme des inversen Opalpulvers erfolgt durch eine Lösungsimprägnierung und zwar unter Ausnutzung kapillarer Effekte.
Dabei ist der Beladungs- oder Füllgrad der Kavitäten mit Farbmittel oder Farbmittelprecursoren ein wichtiges Kriterium. Erfindungsgemäß bevorzugt ist es, die Beladungsschritte mehrfach zu wiederholen (siehe Abb. 4). Dabei hat sich gezeigt, dass zu hohe Füllgrade der Kavitäten die photonischen Eigenschaften beeinflussen. Daher ist erfindungsgemäß bevorzugt, wenn die Kavitäten des photonischen Materials zu mindestens 1 Vol.-% und maximal zu 50 Vol.-% mit dem mindestens einem Farbmittel befüllt sind, wobei die Kavitäten insbesondere bevorzugt zu mindestens 5 Vol.-% und maximal zu 30 Vol.-% mit dem mindestens einem Farbmittel befüllt sind.
Für erfindungsgemäß bevorzugt einzusetzende Farbmittel, welche eine Dichte von etwa 4 g/cm3 aufweisen, gilt daher, dass das mindestens eine Farbmittel 5 bis 75 Gew.-% des photonischen Materials ausmacht, wobei das mindestens eine Farbmittel vorzugsweise 25 bis 66 Gew.-% des photonischen Materials ausmacht.
Dabei kann das Farbmittel in einer bevorzugten Verfahrensvariante nach Entfernung der Opaltemplat-Kugeln in die Kavitäten eingebracht werden. Dies gelingt beispielsweise dadurch, das das photonische Material mit regelmäßig angeordneten Kavitäten mit einer Farbmittel-Dispersion oder einer Dispersion von Farbmittel-Precursoren infiltriert wird und das Dispergiermittel anschließend entfernt wird.
Die nanoskaligen Farbmittel können in die oben beschriebenen inversen Opale infiltriert werden, wenn die Partikelgröße der Farbmittelpartikel kleiner als der Durchmesser der Verbindungskanäle zwischen den
- -
Kavitäten der inversen Opale ist. In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegen die nanoskaligen Phosphorpartikel vor der Infiltration weitgehend agglomeratfrei in einer Flüssigkeit, vorzugsweise Wasser oder einem anderen flüchtigen Lösungsmittel (z.B. Ethanol) dispergiert vor (siehe Abb. 3). Diese Verfahrensvariante wird bevorzugt bei denjenigen Leuchtstoffen angewendet, die sich ausschließlich durch Festkörperreaktionen der Ausgangsstoffe herstellen lassen.
Abb. 3 Phosphor-Einbau in eine Opal-Struktur mittels Dispersions- Infiltrierung
Des weiteren ist es bei der Infiltrationsmethode sinnvoll auf das vollständige Befüllen der Hohlräume des inversen Opals mit der Suspensionsflüssigkeit zu achten. Dies gelingt beispielsweise mit folgender Methode:
Die Farbmitteldispersion wird zu dem inversen Opalpulver (vorzugsweise SiO2) gegeben und die Suspension evakuiert, um die in den Hohlräumen des inversen Opals eingeschlossene Luft zu entfernen. Dann wird die Suspension belüftet, um die Hohlräume vollständig mit der Nanophosphor Suspension zu füllen. Die infiltrierten Partikel werden über einen
Membranfilter von der überschüssigen Nanophosphor Suspension abgetrennt, gewaschen und getrocknet. Anschließend erfolgt eine Kalzinierung.
In einer zweiten Variante des erfindungsgemäßen Verfahrens ("Precursorimprägnierung", siehe Abb. 2) wird ein oder mehrere in Wasser oder in einem Alkohol gelöster Precursor oder Precursoren für das Farbmittel zu dem inversen Opalpulver gegeben und die Suspension evakuiert und mehrere Stunden gerührt, um die in den Hohlräumen des inversen Opals eingeschlossene Luft zu entfernen. Dann wird die Suspension belüftet, um die Hohlräume vollständig mit der Precursoren- Suspension zu füllen. Die infiltrierten inversen Opal-Partikel werden abgetrennt, gewaschen und getrocknet. Durch die anschließende Kalzinierung werden die Precursor-Partikel im Inneren des inversen Opals in Phophor-Partikel transformiert.
Die zuletzt genannte Verfahrensvariante hat den Vorteil, dass wässrige oder alkoholische Precursor-Lösungen bestehend aus gelösten Molekülen oder Salzen (wie z.B. einer Mischung aus Y(NO3)3 oder Eu(NO3)3) leichter in das Porensystem des inversen Opals eindringen können als Nanoleuchtstoffpartikel bzw. Farbmitteldispersionen (wie z.B. wässrige (Yo.93Eu3+o.o7)VO4-Dispersionen, siehe Abb. 3). Denn Nanoleuchtstoffpartikel können nicht beliebig klein hergestellt werden, um ein Verstopfen der Verbindungskanäle zwischen den Kavitäten im Opal zu vermeiden. Denn bei manchen Nanoleuchtstoffen nimmt die Effizienz mit abnehmender Partikelgröße (< 10 nm) rapide ab.
In einer weiteren Variante des erfindungsgemäßen Verfahrens zur Herstellung eines photonischen Materials wird mindestens ein Farbmittel oder Farbmittel-Precursor vor dem Schritt a) in die Opaltemplat-Kugeln eingebracht. Bei der Zersetzung der Precursor-Kerne verbleiben die Farbmittel-Partikel dann in den resultierenden Hohlräumen. Bei dieser
Verfahrensvariante ist die Größe der Farbmittelpartikel nur durch die Größe der Opaltemplat-Kugeln limitiert.
Erfindungsgemäß bevorzugt ist es, wenn im Schritt b) des Verfahrens zur Herstellung eines photonischen Materials neben den Precursoren für das Wandmaterial zusätzlich eine oder mehrere Precursoren für Farbmittel und/oder nanopartikuläre Farbmittel in die Kugelzwischenräume gefüllt werden.
Weiterhin bevorzugt ist es, dass es sich bei Schritt c) des erfindungsgemäßen Verfahrens um eine Kalzinierung, vorzugsweise oberhalb 200 0C, insbesondere bevorzugt oberhalb 400 0C handelt.
Außerdem kann es insbesondere bevorzugt sein, wenn im Schritt f) des erfindungsgemäßen Verfahrens neben der Kalzinierung, vorzugsweise oberhalb 200 0C, insbesondere bevorzugt oberhalb 400 0C, noch ein reaktives Gas zugesetzt wird. Als reaktive Gase können je nach verwendeten Phosphor-Partikeln H2S, H2/N2, O2, CO etc. eingesetzt werden. Dabei ist die Wahl des geeigneten Gases abhängig von der Art und chemischen Zusammensetzung des Phosphors und des inversen Opals, was dem Fachmann bekannt bzw. geläufig ist.
Erfindungsgemäß bevorzugt ist es auch, wenn das Lösungmittel im Schritt e) des Verfahrens bei verminderten Druck und/oder erhöhter Temperatur durchgeführt wird.
Bei dem erfindungsgemäßen Farbmittel oder Leuchtstoff handelt es sich vorzugsweise um nanoskalige Phosphorpartikel. Dabei sind die Farbmittel chemisch in der Regel aus einem Wirtsmaterial und einem oder mehreren Dotierstoffen zusammengesetzt.
" 1 j "
In bevorzugter Weise kann das Wirtsmaterial Verbindungen aus der Gruppe der Sulfide, Selenide, Sulfoselenide, Oxysulfide, Borate, Aluminate, Gallate, Silikate, Germanate, Phosphate, Halophosphate, Oxide, Arsenate, Vanadate, Niobate, Tantalate, Sulfate, Wolframate, Molybdate, Alkalihalogenate, Nitride, Nitridosilikate, Oxynitridosilikate sowie andere Halogenide enthalten. Vorzugsweise handelt es sich bei den Wirtsmaterialien dabei um Alkali-, Erdalkali- oder Seltenerdverbindungen.
Dabei liegt das Farbmittel vorzugsweise in nanopartikulärer Form vor. Bevorzugte Partikel zeigen dabei eine mittlere Teilchengröße von weniger als 50 nm, bestimmt als hydraulischer Durchmesser mittels dynamischer Lichtstreuung, wobei es insbesondere bevorzugt ist, wenn der mittlere Partikeldurchmesser bei weniger als 25 nm liegt.
In einer Erfindungsvariante soll das Licht blauer Lichtquellen um rote Anteile ergänzt werden. In diesem Fall handelt es sich bei dem Farbmittel in einer bevorzugten Ausführungsform der vorliegenden Erfindung um einen Emitter für Strahlung im Bereich von 550 bis 700 nm. Zu den bevorzugten Dotierstoffen gehören dabei insbesondere mit Europium, Samarium, Terbium oder Praseodym, vorzugsweise mit dreifach positiv geladenen Europium-Ionen dotierte Seltenerdverbindungen.
Des weiteren werden gemäß einem Aspekt der vorliegenden Erfindung als Dotierung ein oder mehrere Elemente aus einer Menge enthaltend Elemente der Hauptgruppen 1a, 2a oder AI, Cr, Tl, Mn, Ag, Cu, As, Nb, Ni, Ti, In, Sb, Ga, Si, Pb, Bi, Zn, Co und oder Elemente der sogenannten Seltenerdmetalle verwendet.
Bevorzugt kann, ggf. pro gewünschter Fluoreszenzfarbe, ein aufeinander abgestimmtes Dotandenpärchen, beispielsweise Cer und Terbium, mit gutem Energieübertrag verwendet werden, wobei der eine als
Energieabsorber, insbesondere als UV- Lichtabsorber und der andere als Fluoreszenzlichtemitter wirkt.
Insbesondere können als Material für die dotierten Nanopartikel folgende Verbindungen gewählt werden, wobei in der folgenden Notation links vom Doppelpunkt die Wirtsverbindung und rechts vom Doppelpunkt ein oder mehrere Dotierelemente aufgeführt sind. Wenn chemische Elemente durch Kommata voneinander getrennt und eingeklammert sind, können sie wahlweise verwendet werden. Je nach gewünschter Fluoreszenzeigenschaft der Nanopartikel können eine oder auch mehrere der zur Auswahl gestellten Verbindungen herangezogen werden:
BaAI2O4:Eu2+, BaAI2S4:Eu2+, BaB8O1-3)Eu2+, BaF2, BaFBrEu2+, BaFChEu2+, BaFCIiEu2+, Pb2+, BaGa2S4:Ce3+, BaGa2S4:Eu2+, Ba2Li2Si2 O7:Eu2+, Ba2Li2Si2 O7:Sn2+, Ba2Li2Si2 O7:Sn2+, Mn2+, BaMgAI,0O17:Ce3+, BaMgAIi0O17IEu2+, BaMgAli0O17:Eu2+, Mn2+, Ba2Mg3F10: Eu2+, BaMg3F8:Eu2+,Mn2+, Ba2MgSi2O7:Eu2+, BaMg2Si2O7:Eu2+, Ba5(PO4)3CI:Eu2+, Ba5(PO4)3CI:U, Ba3(PO4)2:Eu2+, BaS:Au,K, BaSO4:Ce3+, BaSO4:Eu2+, Ba2SiO4:Ce3+,Li+,Mn2+, Ba5SiO4CI6: Eu2+, BaSi2O5:Eu2+, Ba2SiO4:Eu2+, BaSi2O5Pb2+, BaxSri1-xF2:Eu2+, BaSrMgSi2O7:Eu2+, BaTiP2O7, (Ba1Ti)2P2O7Ti, Ba3WO6:U, BaY2F8 Er3+,Yb+, Be2SiO4:Mn2+, Bi4Ge3O12, CaAI2O4:Ce3+, CaLa4O7:Ce3+, CaAI2O4:Eu2+, CaAI2O4:Mn2+, CaAI4O7:Pb2+,Mn2+, CaAI2O4Tb3+, Ca3AI2Si3O12Oe3+, Ca3AI2Si3Oi2:Ce3+, Ca3AI2Si30, 2:Eu2+, Ca2B5O9BrEu2+, Ca2B5O9CkEu2+, Ca2B5O9ChPb2+, CaB2O4:Mn2+, Ca2B2O5:Mn2+, CaB2O4:Pb2+, CaB2P2O9:Eu2+, Ca5B2SiO10:Eu3+, Cao.sBao.sAhsO^^e^.Mn^, Ca2Ba3(PO4)3CI:Eu2+, CaBr2:Eu2+ in SiO2, CaCI2:Eu2+ in SiO2, CaCI2:Eu2+,Mn2+ in SiO2, CaF2:Ce3+, CaF2:Ce3+,Mn2+, CaF2:Ce3+,Tb3+, CaF2:Eu2+, CaF2:Mn2+, CaF2:U, CaGa2O4:Mn2+, CaGa4O7:Mn2+, CaGa2S4:Ce3+, CaGa2S4:Eu2+, CaGa2S4:Mn2+, CaGa2S4Pb2+, CaGeO3:Mn2+, Cal2:Eu2+ in SiO2, Cal2:Eu2+,Mn2+ in SiO2, CaLaBO4:Eu3+, CaLaB3O7:Ce3+,Mn2+, Ca2La2BO6.5:Pb2+, Ca2MgSi2O7, Ca2MgSi2O7Oe3+, CaMgSi2O6:Eu2+, Ca3MgSi2O8:Eu2+, Ca2MgSi2O7:Eu2+, CaMgSi2O6:Eu2+,Mn2+, Ca2MgSi2O7:Eu2+,Mn2+, CaMoO4, CaMoO4:Eu3+, CaO:Bi3+, CaO:Cd2+,
CaO:Cu+, CaOiEu3+, CaOiEu3+, Na+, CaO:Mn2+, CaOPb2+, CaO:Sb3+, CaOiSm3+, CaOTb3+, CaOTI, CaO-Zn2+, Ca2P2O7ICe3+, α-Ca3(PO4)2:Ce3+, ß-Ca3(PO4)2:Ce3+, Ca5(PO4)SCLEu2+, Ca5(PO-O3CIiMn2+, Ca5(PO4)3CI:Sb3+, Ca5(PO4)3CI:Sn2+, ß-Ca3(PO4)2:Eu2+,Mn2+, Ca5(PO4)3F:Mn2+, Cas(PO4)3F:Sb3+, Cas(PO4)3F:Sn2+, α-Ca3(PO4)2:Eu2+, ß-Ca3(PO4)2:Eu2+, Ca2P2O7:Eu2+, Ca2P2O7:Eu2+,Mn2+, CaP2O6:Mn2+, α-Ca3(PO4)2:Pb2+, α- Ca3(PO4)2:Sn2+, ß-Ca3(PO4)2:Sn2+, ß-Ca2P2O7:Sn,Mn, α-Ca3(PO4)2:Tr, CaSiBi3+, CaS:Bi3+,Na, CaSiCe3+, CaSiEu2+, CaS:Cu+,Na+, CaSiLa3+, CaSiMn2+, CaSO4:Bi, CaSO4:Ce3+, CaSO4:Ce3+,Mn2+, CaSO4:Eu2+, CaSO4:Eu2+,Mn2+, CaSO4Pb2+, CaSiPb2+, CaS:Pb2+,CI, CaS:Pb2+,Mn2+, CaS:Pr3+,Pb2+,CI, CaSiSb3+, CaS:Sb3+,Na, CaSiSm3+, CaSiSn2+, CaS:Sn2+,F, CaSiTb3+, CaS:Tb3+,CI, CaSiY3+, CaSiYb2+, CaS:Yb2+,CI, CaSiO3:Ce3+, Ca3SiO4CI2:Eu2+, Ca3SiO4CI2: Pb2+, CaSiO3:Eu2+, CaSiO3:Mn2+,Pb, CaSiO3Pb2+, CaSiO3:Pb2+,Mn2+, CaSiO3:Ti4+, CaSr2(PO4)2:Bi3+, ß-(Ca,Sr)3(PO4)2:Sn2+Mn2+, CaTi0.9AI0.iO3:Bi3+, CaTiO3:Eu3+, CaTiO3Pr3+, Ca5(VO4)3CI, CaWO4, CaWO4:Pb2+, CaWO4:W, Ca3WO6:U, CaYAIO4:Eu3+, CaYBO4:Bi3+, CaYBO4:Eu3+, CaYBo.8O3.7:Eu3+, CaY2ZrO6: Eu3+, (Ca,Zn,Mg)3(PO4)2:Sn, CeF3, (Ce1Mg)BaAI11O1SiCe, (Ce1Mg)SrAI11O1SiCe, CeMgAlπO^iCeTb, Cd2B6O-HiMn2+, CdS:Ag+,Cr, CdSiIn, CdSiIn, CdSiIn1Te, CdSiTe, CdWO4, CsF1 CsI, CsIiNa+, CsIiTI1 (ErCI3)o.25(BaCI2)0.75, GaNiZn1 Gd3Ga5012:Cr3+, Gd3Ga5O12:Cr,Ce, GdNbO4:Bi3+, Gd2O2SiEu3+, Gd2O2Pr3*, Gd2O2SiPr1Ce1F, Gd2O2SiTb3+, Gd2SiO5:Ce3+, KAI11O17TI+, KGa11OUiMn2+, K2La2Ti3O10:Eu, KMgF3:Eu2+, KMgF3:Mn2+, K2SiF6:Mn4+, LaAI3B4O12:Eu3+, LaAIB2OSiEu3+, LaAIO3:Eu3+, LaAI03:Sm3+, LaAsO4:Eu3+, LaBr3:Ce3+, LaBO3:Eu3+, (La1Ce1Tb)PO4OeTb, LaCI3:Ce3+, La2O3:Bi3+, LaOBrTb3+, LaOBrTm3+, LaOCIiBi3+, LaOCIiEu3+, LaOFiEu3+, La2O3:Eu3+, La2O3:Pr3+, La2O2SiTb3+, LaPO4:Ce3+, LaPO4:Eu3+, LaSiO3CIiCe3+, LaSiO3CIiCe3+Jb3+, LaVO4:Eu3+, La2W3O12:Eu3+, LiAIF4:Mn2+, LiAI5O8:Fe3+, LiAIO2:Fe3+, LiAIO2:Mn2+, LiAI5O8:Mn2+, Li2CaP2O7:Ce3+,Mn2+, LiCeBa4Si4O14:Mn2+, LiCeSrBa3Si4O14:Mn2+, LilnO2:Eu3+, LilnO2:Sm3+, LiLaO2:Eu3+, LuAIO3:Ce3+, (Lu,Gd)2Si05:Ce3+, Lu2SiO5:Ce3+, Lu2Si2O7:Ce3+, LuTaO4:Nb5+, Lu1-xYxAIO3:Ce3+, MgAI2O4:Mn2+, MgSrAI10O17:Ce, MgB2O4:Mn2+, MgBa2(PO4)2:Sn2+, MgBa2(PO4)2:U, MgBaP2O7:Eu2+, MgBaP2O7:Eu2+,Mn2+, MgBa3Si208:Eu2+, MgBa(SO4)2:Eu2+, Mg3Ca3(PO4)4:Eu2+, MgCaP2O7:Mn2+, Mg2Ca(SO4)3:Eu2+, Mg2Ca(SO4)3:Eu2+,Mn2, MgCeAln019:Tb3+,
Mg4(F)Ge06:Mn2+, Mg4(F)(Ge,Sn)O6:Mn2+, MgF2:Mn2+, MgGa2O4:Mn2+, Mg8Ge2O11F2IMn4+, MgSiEu2+, MgSiO3:Mn2+, Mg2SiO4:Mn2+, Mg3SiO3F4Ti4+, MgSO4:Eu2+, MgSO4Pb2+, MgSrBa2Si207:Eu2+, MgSrP2O7)Eu2+, MgSr5(PO4)4:Sn2+, MgSr3Si208:Eu2+,Mn2+, Mg2Sr(SO4)3:Eu2+, Mg2TiO4:Mn4+, MgWO4, MgYBO4:Eu3+, Na3Ce(PO4)2:Tb3+, NaIiTI1 Na1123K(M2Eu(M2TiSi4O11)Eu3+, Na1 23K0 42Eu0 12TiSi5O13 xH2O:Eu3+, Na1 MKo 4SEr0 OaTiSi4O11 IEu3+, Na2Mg3AI2Si2O1 OiTb, Na(Mg2-xMnx)LiSi4O10F2:Mn, NaYF4:Er3+, Yb3+, NaYO2:Eu3+, P46(70%) + P47 (30%), SrAI12O19Oe3+, Mn2+, SrAI2O4:Eu2+, SrAI4O7:Eu3+, SrAI12O19IEu2+, SrAI2S4:Eu2+, Sr2B5O9ChEu2+, SrB4O7:Eu2+(F,CI,Br), SrB4O7Pb2+, SrB4O7Pb2+, Mn2+, SrB8O13:Sm2+, SrxBayCI2AI2O4-z/2: Mn2+, Ce3+, SrBaSiO4:Eu2+, Sr(CI,Br,l)2:Eu2+ in SiO2, SrCI2:Eu2+ in SiO2, Sr5CI(PO4)3:Eu, SrwFxB4O6 5:Eu2+, SrwFxByOz:Eu2+,Sm2+, SrF2:Eu2+, SrGa12O19:Mn2+, SrGa2S4:Ce3+, SrGa2S4)Eu2+, SrGa2S4Pb2+, SrIn2O4Pr3+, Al3+, (Sr,Mg)3(PO4)2:Sn, SrMgSi2O6)Eu2+, Sr2MgSi2O7)Eu2+, Sr3MgSi2O8)Eu2+, SrMoO4)U, SrO-3B2O3:Eu2+,CI, ß-SrO-3B2O3:Pb2+, ß- SrO-3B203 :Pb2+,Mn2+, α-SrO-3B2O3:Sm2+, Sr6P5BO20)Eu1 Sr5(PO4)3CI:Eu2+, Sr5(PO4)3CI:Eu2+,Pr3+, Sr5(PO4)3CI:Mn2+, Sr5(PO4J3CI)Sb3+, Sr2P2O7)Eu2+, ß-Sr3(PO4)2:Eu2+, Sr5(PO4J3F)Mn2+, Sr5(PO4J3F)Sb3+, Sr5(PO4)3F:Sb3+,Mn2+, Sr5(PO4J3F)Sn2+, Sr2P2O7)Sn2+, ß- Sr3(PO4J2)Sn2+, ß-Sr3(PO4)2:Sn2+,Mn2+(AI), SrS)Ce3+, SrS)Eu2+, SrS)Mn2+, SrS:Cu+,Na, SrSO4)Bi, SrSO4)Ce3+, SrSO4)Eu2+, SrSO4:Eu2+,Mn2+, Sr5Si4O10CI6)Eu2+, Sr2SiO4)Eu2+, SrTiO3)Pr3+, SrTiO3: Pr3+,AI3+, Sr3WO6)U, SrY2O3)Eu3+, ThO2)Eu3+, ThO2)Pr3+, ThO2)Tb3+, YAI3B4O12)Bi3+, YAI3B4O12)Ce3+, YAI3B4O12:Ce3+,Mn, YAI3B4O12)Ce3+Jb3+, YAI3B4O12)Eu3+, YAI3B4O12:Eu3+,Cr3+, YAI3B4O12:Th4+,Ce3+,Mn2+, YAIO3)Ce3+, Y3AI5O12)Ce3+, Y3AI5O12)Cr3+, YAIO3)Eu3+, Y3AI5O12)Eu3', Y4AI2O9)Eu3+, Y3AI5O12)Mn4+, YAIO3)Sm3+, YAIO3)Tb3+, Y3AI5O12)Tb3+, YAsO4)Eu3+, YBO3)Ce3+, YBO3)Eu3+, YF3: Er3+, Yb3+, YF3)Mn2+, YF3)Mn2+Jh4+, YF3:Tm3+,Yb3+, (Y1Gd)BO3)Eu, (Y1Gd)BO3Jb, (Y1Gd)2O3)Eu3+, Y1 34Gd0 60O3(Eu1Pr), Y2O3)Bi3+, YOBDEU3+, Y2O3)Ce, Y2O3)Er3+, Y2O3)Eu3+(YOE), Y2O3)Ce3+Jb3+, YOCI)Ce3+, YOCI)Eu3+, YOF)Eu3+, YOF)Tb3+, Y2O3)Ho3+, Y2O2S)Eu3+, Y2O2S)Pr3+, Y2O2S)Tb3+, Y2O3)Tb3+, YPO4)Ce3+, YPO4)Ce3+Jb3+, YPO4)Eu3+, YPO4)Mn2+Jh4+, YPO4)V5+, Y(P1V)O4)Eu, Y2SiO5)Ce3+, YTaO4, YTaO4)Nb5+, YVO4)Dy3+, YVO4)Eu3+, ZnAI2O4)Mn2+, ZnB2O4)Mn2+, ZnBa2S3)Mn2+, (Zn1Be)2SiO4)Mn2+, Zn0 4Cd0 6S)Ag,
Zn06Cd04SiAg1 (Zn,Cd)S:Ag,CI, (Zn,Cd)S:Cu, ZnF2:Mn2+, ZnGa2O4, ZnGa2O4)Mn2+, ZnGa2S4)Mn2+, Zn2GeO4)Mn2+, (Zn1Mg)F2)Mn2+, ZnMg2(PO4)2:Mn2+, (Zn,Mg)3(PO4)2:Mn2+, ZnO:AI3+,Ga3+, ZnO)Bi3+, ZnO)Ga3+, ZnO)Ga, ZnO-CdO)Ga, ZnO)S, ZnO)Se, ZnO)Zn, ZnS:Ag+,Cr, ZnS)Ag1Cu1CI, ZnS)Ag1Ni, ZnS)Au1In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS)Ag1Br1Ni1 ZnS-CdS:Ag+,CI, ZnS-CdS)Cu1Br1 ZnS-CdS)Cu1I1 ZnS)CI", ZnS)Eu2+, ZnS)Cu1 ZnS:Cu+,AI3+, ZnS:Cu+,Cr, ZnS)Cu1Sn1 ZnS)Eu2+, ZnS)Mn2+, ZnS)Mn1Cu, ZnS)Mn2+Je2+, ZnS)P, ZnSiP3^ 1CI", ZnS)Pb2+, ZnS)Pb^1CI", ZnS)Pb1Cu, Zn3(PO4)2:Mn2+, Zn2SiO4)Mn2+, Zn2SiO4)Mn2+As5+, Zn2SiO4)Mn1Sb2O2, Zn2SiO4:Mn2+,P, Zn2SiO4)Ti4+, ZnS)Sn2+, ZnS)Sn1Ag, ZnS:Sn2+,Li+, ZnS)Te1Mn, ZnS- ZnTe)Mn2+, ZnSe:Cu+,CI, ZnWO4
Gemäß einer weiteren Auswahlliste handelt es sich bei dem Farbmittel um mindestens eine Verbindung M'2θ3:M" mit M1 = Y, Sc1 La, Gd1 Lu und M11 = Eu, Pr1 Ce, Nd, Tb, Dy, Ho, Er, Tm, Yb oder mindestens eine Verbindung M 2O2S)M11 oder mindestens eine Verbindung MIIIS:MIV,MV,X mit M1" = Mg1 Ca1 Sr, Ba1 Zn und Mιv = Eu, Pr, Ce, Mn, Nd1 Tb, Dy1 Ho, Er, Tm1 Yb und Mv = Li1 Na, K, Rb und X = F, Cl, Br, I oder um mindestens eine Verbindung M1V2S4)M11 mit Mvι = AI, Ga1 In, Y, Sc, La, Gd, Lu.
Gemäß einer weiteren Auswahlliste handelt es ich bei dem Farbmittel um mindestens eine Verbindung Ln2O3)Eu mit Ln = Lu, Gd1 Y oder mindestens eine Verbindung Ln (P, V) O4)Eu mit Ln = Lu, Gd, Y oder mindestens eine Verbindung MeMoO4)Eu, Na mit Me = Ba, Sr, Ca oder mindestens eine Verbindung MeWO4)Eu mit Me = Ba, Sr1 Ca.
Derartige Farbmittel sind entweder im Handel erhältlich oder können nach aus der Literatur bekannten Herstellverfahren erhalten werden. Bevorzugt anzuwendende Herstellverfahren werden insbesondere in den Internationalen Patentanmeldungen WO 2002/20696 und WO 2004/096714 beschrieben, deren entsprechende Offenbarung ausdrücklich zum Offenbarungsgehalt der vorliegenden Erfindung gehört.
Gemäß dieser Aufgabenstellung ist ein weiterer Gegenstand der vorliegenden Erfindung ein Beleuchtungsmittel enthaltend mindestens eine Lichtquelle, welches dadurch gekennzeichnet ist, dass es mindestens ein photonisches Material, hergestellt nach dem erfindungsgemäßen Verfahren, enthält.
Bei dem Beleuchtungsmittel handelt es sich in bevorzugten Ausführungsformen der vorliegenden Erfindung um eine Leuchtdiode (LED), eine organische Leuchtdiode (OLED), eine polymere Leuchtdiode (PLED) oder eine Fluoreszenzlampe.
Für die erfindungsgemäß bevorzugte Anwendung in Leuchtdioden ist es dabei vorteilhaft, wenn Strahlung ausgewählt aus dem Wellenlängenbereich von 250 bis 500 nm in dem photonischen Material gespeichert wird.
Zu den blauen bis violetten Leuchtdioden, die für die hier beschriebene Erfindung besonders geeignet sind, gehören Halbleiterbauteile auf GaN- Basis (InAIGaN). Geeignete GaN-Halbleitermaterialien zur Herstellung Licht-emittierender Komponenten werden durch die allgemeine Formel InjGajAlkN beschrieben, wobei 0 < i, 0 < j, 0 < k und i+j+k=1. Zu diesen Nitrid-Halbleitermaterialien gehören also auch Stoffe wie IndiumGalliumNitrid und GaN. Diese Halbleitermaterialien können mit Spuren weiterer Stoffe dotiert sein, beispielsweise um die Intensität zu erhöhen oder die Farbe des emittierten Lichts nachzujustieren. Auch Leuchtdioden auf Zinkoxid-Basis sind bevorzugt. Laserdioden (LDs) sind in ähnlicher Weise aus einer Anordnung von GaN- Schichten aufgebaut. Herstellverfahren für LEDs und LDs sind Fachleuten auf diesem Gebiet wohlbekannt.
Mögliche Konfigurationen, bei denen eine photonische Struktur mit einer Leuchtdiode oder einer Anordnung von Leuchtdioden gekoppelt werden kann, sind in einem Halterahmen oder auf der Oberfläche montierte LEDs.
Derartige photonische Strukturen sind in allen Konfigurationen von Beleuchtungssystemen nützlich, die eine Primärstrahlungsquelle enthalten, einschließlich, aber nicht beschränkt auf, Entladungslampen, Fluoreszenzlampen, LEDs, LDs (Laserdioden), OLEDs und Röntgenröhren. In diesem Text umfasst der Ausdruck „Strahlung" Strahlung im UV- und IR-Bereich und im sichtbaren Bereich des elektromagnetischen Spektrums. Unter den OLEDs kann insbesondere die Verwendung von PLEDs - OLEDs mit polymeren elektroluminescenten Verbindungen - bevorzugt sein.
Ein Beispiel für eine Konstruktion eines solchen Beleuchtungssystems ist ausführlich in EP 050174853 (Merck Patent GmbH) beschrieben, deren Offenbarung ausdrücklich zum Inhalt der vorliegenden Anmeldung gehört.
Die folgenden Beispiele sollen die vorliegende Erfindung verdeutlichen. Sie sind jedoch keinesfalls als limitierend zu betrachten. Alle Verbindungen oder Komponenten, die in den Zubereitungen verwendet werden können, sind entweder bekannt und käuflich erhältlich oder können nach bekannten Methoden synthetisiert werden.
Beispiele
Beispiel 1: Herstellung einer photonischen Hohlraumstruktur mit SiO2-Wand und Stopband im blau-grünen Bereich des Spektrums
Zunächst werden monodisperse PMMA-Nanokugeln hergestellt. Dies geschieht mit Hilfe einer emulgatorfreien, wässrigen Emulsionspolymerisation. Dazu wird ein 2-l-Doppelmantelrührgefäß mit Ankerrührer (300 U/min Rührerdrehzahl) und Rückflusskühler mit 1260 ml deionisiertem Wasser und 236 ml Methylmethycrylat beschickt und die Mischung auf 8O0C temperiert. In die Mischung wird 1 h lang schwach Stickstoff eingeleitet, welches über ein Überdruckventil auf dem Rückflusskühler entweichen kann, bevor 1 ,18 g Azodiisobutyramidindihydrochlorid als Radikalinitiator hinzugegeben wird. Die Bildung der Latexpartikel kann durch die sofort einsetzende Trübung erkannt werden. Die Polymerisationsreaktion wird thermisch verfolgt, wobei ein leichtes Ansteigen der Temperatur durch die Reaktionsenthalpie beobachtet wird. Nach 2 Stunden hat sich die Temperatur wieder auf 800C stabilisiert, wodurch das Ende der Reaktion angezeigt wird. Nach Abkühlen wird die Mischung über Glaswolle filtriert. Die Untersuchung der eingetrockneten Dispersion mit dem SEM zeigt einheitliche, kugelförmige Partikel eines mittleren Durchmessers von 317 nm.
Diese Kugeln werden als Templat zur Herstellung der photonischen Struktur verwendet. Hierzu werden 10 g getrocknete PMMA-Kugeln in deionisiertem Wasser aufgeschlämmt und über einem Büchnertrichter abgesaugt.
Variante: Alternativ wird die aus der Emulsionspolymerisation resultierende Dispersion direkt geschleudert oder zentrifugiert, um die Partikel geordnet
absetzen zu lassen, die überstehende Flüssigkeit entfernt und der Rückstand, wie nachfolgend beschrieben, weiter verarbeitet.
Weitere Variante: Alternativ kann die aus der Emulsionspolymerisation resultierende Dispersion oder Sedimentation der Kugeln in der Dispersion auch langsam eingedampft werden. Weitere Verarbeitung wie nachfolgend beschrieben.
Der Filterkuchen wird mit 10 ml einer Precursorlösung, bestehend aus 3 ml Ethanol, 4 ml Tetraethoxysilan, 0,7 ml HCl konz in 2 ml deionisiertem Wasser, unter Aufrechterhaltung des Saugvakuums benetzt. Nach Abschalten des Saugvakuums wird der Filterkuchen für 1 h getrocknet und danach in einem Korundbehälter in einem Rohrofen an Luft kalziniert. Die Kalzinierung erfolgt nach den folgenden Temperaturrampen: a) in 2h von RT auf 1000C Temperatur, 2 h bei 1000C halten. b) in 4h von 1000C auf 35O0C Temperatur, 2 h bei 35O0C halten. c) in 3h von 35O0C auf 550°C Temperatur. d) das Material wird weitere 14 Tage bei 5500C behandelt, anschließend e) mit 10°C/min von 55O0C auf RT ( in 1 h von 5500C auf RT) abgekühlt.
Das resultierende inverse Opalpulver besitzt einen mittleren Porendurchmesser von ca. 275 nm (vgl. Fig. 1). Die Pulverteilchen des inversen Opals haben eine unregelmäßige Form mit einem sphärischen Äquivalentdurchmesser von 100 bis 300 μm. Die Hohlräume haben einen Durchmesser von etwa 300 nm und sind untereinander durch etwa 60 nm große Öffnungen verbunden.
Beispiel 2: Imprägnierung einer alkoholischen Lösung aus molekularen Leuchtstoffvorstufen in die Poren des inversen Opals und Umsetzung der Precursoren im Inneren des Opals in den Leuchtstoff
5 g Tris(tetramethyl-heptandionato)yttrium Y(CiiH19O2)3 und Tris(tetramethyl-heptandionato)europium Eu(Ci iH19O2)3 in einem Gewichtsverhältnis von 23:1 werden in 50 ml Ethanol gelöst und in ein Behältnis gespritzt, in dem sich 0.5 g getrocknetes inverses SiO2 Pulver im statischen Vakuum (1x10"3 mbar) befinden. Diese Mischung wird über 8 h im aufrechterhaltenen statischen Vakuum gerührt. Danach wird die Mischung entnommen, abfiltriert und der Filterkuchen im Trockenschrank getrocknet. Schließlich erfolgt die Kalzinierung des Filterkuchens bei 600 0C. Es resultiert ein weißliches, feines Pulver, welches aus Y2θ3:Eu- Partikeln, eingebettet im inversen Opal, besteht.
Beispiel 3: Imprägnierung einer wässrigen Lösung aus molekularen Leuchtstoffvorstufen in die Poren des inversen Opals und Umsetzung der Precursoren im Inneren des Opals in den Leuchtstoff
0.01 Mol Y(NOa)3 x 6 H2O und 0.0004 Mol Eu(NO3)3 werden in 70 ml Wasser gelöst und in ein Behältnis gespritzt, in dem sich 0.5 g getrocknetes inverses SiO2-Pulver im statischen Vakuum befinden. Diese Mischung wird 8 h lang im Vakuum gerührt. Danach wird die Mischung entnommen, abfiltriert und der Filterkuchen im Trockenschrank getrocknet. Anschließend erfolgt die Kalzinierung des Filterkuchens bei 600 0C. Es resultiert ein weißliches, feines Pulver, welches aus Y2O3: Eu-Partikeln, eingebettet im inversen Opal besteht.
Beispiel 4: Infiltrierung von Nanoleuchtstoff Partikeln über Dispersionsdiffusion in die Poren des inversen Opals
Bei der Leuchtstoffdispersion handelt es sich um eine 1 wt-% wässrige Dispersion von 10 nm großen Nanopartikeln (Yo.93Eu3+o.o7) VO4, welche als
10 wt-% wässrige Dispersion von der Fa. Nanosolutions GmbH unter der Bezeichnung REN-X rot vertrieben wird.
100 mg inverses Opalpulver wird im Öldrehschieberpumpenvakuum (1x10~3 mbar) bei einer Temperatur von 2000 C einen Tag lang erhitzt. Durch diesen Vorgang wird sichergestellt, dass sich in den Poren des Opalpulvers befindliche Adsorbate entfernt werden. Nach Abkühlen auf Raumtemperatur wird 10 ml einer 1wt-% wässrigen Leuchtstoffdispersion in das statische Vakuum, in welchem sich das inverse Opalpulver befindet, eingespritzt, wobei das inverse Opalpulver überschichtet wird. Hierbei kommt es zu einer Diffusion der Leuchtstoffpartikel in die Poren getrieben von Kapillarkräften. Es wird über Nacht stehen gelassen, wobei sich das statische Vakuum abbaut, bis Atmosphärendruck über dem System herrscht. Anschließend wird das System 5 mal jeweils 15 min lang evakuiert, um in die Poren eingedrungene Gasblasen zu entfernen und weitere Leuchtstoffpartikel zur Diffusion in die Poren zu bewegen. Die Diffusion kann durch Kaviationskräfte verstärkt werden, welche durch vorsichtiges Rühren während der Belüftungsphasen eingeleitet werden. Danach wird die überstehende Dispersion abdekantiert und das Pulver mehrmals mit Wasser gewaschen, im Trockenschrank getrocknet und anschließend in einer Korundschale im Ofen innerhalb von 3 h auf 600 0C erhitzt und 3 h lang bei dieser Temperatur kalziniert, bevor auf Raumtemperatur abgekühlt wird.
Beispiel 5: Imprägnierung einer wässrigen Lösung aus molekularen Leuchtstoffvorstufen (Komplexen) in die Poren des inversen Opals und thermische Umsetzung der Vorstufen im Inneren des Opals in den Leuchtstoff
0.6 mmol La(NO3)3 und 0.4 mmol Eu(NO3)3 und 2 mmol Citronensäure werden in 10 ml H2O gelöst. Anschließend werden 1.5 mmol WO2 durch Erwärmen in wenig H2O2 (erst 15 %, dann 35 % H2O2) gelöst, woraus eine
dunkelblaue, klare Lösung resultiert. Diese Komplexlösung wird in ein Behältnis gespritzt, in dem sich 0.5 g getrocknetes inverses Siθ2-Pulver im statischen Vakuum befinden. Die Suspension wird 8 h lang gerührt. Danach wird abfiltriert und der Filterkuchen im Trockenschrank bei 1200C getrocknet. Anschließend erfolgt die Kalzinierung des Filterkuchens bei 8000C. Man erhält ein weißes, feines Pulver, welches aus La2W3Oi2:Eu- Partikeln, eingebettet im inversen Opal, besteht.
Beispiel 6: Imprägnierung einer wässrigen Lösung aus molekularen Leuchtstoffvorstufen (Komplexen) in die Poren des inversen Opals und thermische Umsetzung der Vorstufen im Inneren des Opals in den Leuchtstoff
2.32 mmol Gd(NO3)3 und 0.12 mmol Eu(NO3)3 und 5 mmol Citronensäure werden in 10 ml H2O gelöst. Anschließend werden 2.5 mmol Na3VO4 durch Erwärmen in 5 ml H2O gelöst und diese Lösung zu der Lösung der Lanthanoiden gegeben. Dann wird der pH-Wert auf 8.4 eingestellt und diese Komplexlösung in ein Behältnis gespritzt, in dem sich 0.2 g getrocknetes inverses SiO2-Pulver im statischen Vakuum befinden. Die Suspension wird 8 h lang gerührt. Danach wird abfiltriert und der Filterkuchen im Trockenschrank bei 1100C getrocknet. Anschließend erfolgt die Kalzinierung des Filterkuchens bei 6000C. Man erhält ein weißes, feines Pulver, welches aus GdVO4:Eu-Partikeln, eingebettet im inversen Opal, besteht.
Beispiel 7: Mehrfachimprägnierung einer wässrigen Lösung aus molekularen Leuchtstoffvorstufen in die Poren des inversen Opals und Umsetzung der Precursoren im Inneren des Opals in den Leuchtstoff
0.095 Mol Y(NOs)36H2O und 0.005 Mol Eu(NO3)36H2O und 0.1 mmol Ethylendiamintetraacetat werden in 70 ml Wasser gelöst und der pH-Wert der Lösung auf 8 eingestellt. Die Lösung wird in ein Behältnis gespritzt, in dem sich 0.5 g getrocknetes inverses SiO2-Pulver im statischen Vakuum befinden. Die Suspension wird 8 h lang gerührt. Danach wird die Mischung abfiltriert und der Filterkuchen im Trockenschrank bei 11O0C getrocknet. Anschließend erfolgt die Kalzinierung des Filterkuchens bei 600 C. Es resultiert ein weißliches, feines Pulver, welches aus Y2O3: Eu-Partikeln, eingebettet im inversen Opal besteht, wobei der Opal mit 4 Gew.-% Y2O3:Eu beladen ist.
Dieser Prozess wird nun noch dreimal wiederholt, wobei der Beladungsgrad bis auf 15 Gew.-% ansteigt.
400 450 500 550 600 650 700 750
DU073YOX-05
Wavelength [nm]
Abb. 4: Emissionsspektren von Y2O3:5%Eu in inv. SiO2 für verschiedene Beladungsgrade (Anregung bei 254 nm).
- -
Verzeichnis der Figuren:
Fig. 1 zeigt eine SEM-Aufnahme der photonischen Hohlraumstruktur (Opal- Struktur) aus SiO2. Die regelmäßige Anordnung bestehend aus den Kavitäten (Hohlvolumina mit einem typischen Durchmesser von 275 nm) ist deutlich zu erkennen. Die Kavitäten sind durch kleinere Verbindungskanäle miteinander verbunden, wodurch sich die Möglichkeit der Befüllung z.B. über die flüssige Phase ergibt, (siehe Beispiel 1)