WO2016132888A1 - 蛍光体セラミックスの製造方法 - Google Patents
蛍光体セラミックスの製造方法 Download PDFInfo
- Publication number
- WO2016132888A1 WO2016132888A1 PCT/JP2016/053052 JP2016053052W WO2016132888A1 WO 2016132888 A1 WO2016132888 A1 WO 2016132888A1 JP 2016053052 W JP2016053052 W JP 2016053052W WO 2016132888 A1 WO2016132888 A1 WO 2016132888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- less
- ceramic plate
- volume
- phosphor ceramic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
Definitions
- the present invention relates to a method for producing a phosphor ceramic.
- a light emitting device such as an optical semiconductor device generally includes, for example, an LED (light emitting diode element) or LD (laser diode) that emits blue light, and a phosphor that can convert blue light into yellow light and is provided on the LED. With layers.
- the light emitting device emits white light by mixing color of blue light emitted from the LED and transmitted through the phosphor layer and yellow light obtained by wavelength-converting part of the blue light in the phosphor layer.
- a conversion element made of a ceramic material is known as such a phosphor layer (see, for example, Patent Document 1).
- Patent Document 1 discloses a conversion element having a density of 97% or more of the theoretical solid state density of the ceramic material, and the pores in the conversion element having a diameter substantially between 250 nm and 2900 nm. ing.
- Patent Document 1 has improved transparency in a wide viewing angle by having nano-order minute holes.
- An object of the present invention is to provide a method for producing a phosphor ceramic having good permeability and excellent reproducibility.
- the present invention [1] includes a step of preparing a phosphor composition containing a phosphor material and organic particles, and a step of firing the phosphor composition, and the average particle size of the organic particles is 3.4 ⁇ m. It is the above and includes the manufacturing method of the fluorescent ceramics whose content of the said organic particle is 1.5 volume% or more with respect to the total content of the said fluorescent substance material and the said organic particle.
- the present invention [2] includes the method for producing a phosphor ceramic according to [1], wherein in the phosphor ceramic, the volume ratio of pores having a pore diameter of less than 3.0 ⁇ m is 1.5% by volume or less. It is out.
- the production method of the present invention since the phosphor composition before firing contains a predetermined amount of organic particles having an average particle size of 3.4 ⁇ m or more, voids disappear due to the growth of ceramic crystals during firing. This can be suppressed. Therefore, a desired void
- FIG. 1A and 1B are process diagrams showing a process of manufacturing an embodiment of the phosphor ceramic of the present invention, in which FIG. 1A shows a green sheet manufacturing process and FIG. 1B shows a firing process.
- 2A and 2B are process diagrams showing a process of manufacturing an embodiment of an optical semiconductor device using the phosphor ceramic shown in FIG. 1B, where FIG. 2A is a process for producing a fluorescent adhesive sheet, and FIG. Adhesive sheet arrangement process, FIG. 2C shows the adhesion process.
- FIG. 3 is a schematic diagram of a method for measuring the pores of the phosphor ceramic in the embodiment.
- the vertical direction of the paper surface of FIGS. 1A and 1B is the “vertical direction” (first direction, thickness direction), the upper side of the paper surface is the upper side, and the lower side of the paper surface is the lower side.
- 1A and 1B is the “plane direction” (second direction, a direction orthogonal to the first direction), the right side of the page is the one side of the plane, and the left side of FIG. 1A and FIG. 1B The direction is the other side in the plane direction.
- the phosphor ceramic plate 1 is formed in a plate shape from a ceramic (fired body) of phosphor material and contains a phosphor.
- the phosphor contained in the phosphor ceramic plate 1 has a wavelength conversion function, for example, a yellow phosphor capable of converting blue light into yellow light, and can convert blue light into red light. Examples include red phosphors.
- yellow phosphors include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca) 3 (Al, Si, Ge, B, P, Ga) 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium) Aluminum garnet): Garnet-type phosphors having a garnet-type crystal structure such as Ce), for example, oxynitride phosphors such as Ca- ⁇ -SiAlON.
- red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
- the manufacturing method of the phosphor ceramic plate 1 includes, for example, a green sheet manufacturing process (see FIG. 1A) and a firing process (FIG. 1B). Hereinafter, each process is explained in full detail.
- a phosphor composition containing a phosphor material and organic particles is baked.
- the slurry (phosphor composition slurry) containing a phosphor composition is apply
- FIG. Thereby, the green sheet 4 is obtained.
- the phosphor composition slurry contains a phosphor composition containing a phosphor material and organic particles, and a solvent. That is, the phosphor composition slurry contains a phosphor material, organic particles, and a solvent.
- the phosphor material is a raw material that constitutes the phosphor, and is appropriately selected according to the phosphor.
- the phosphor material include a single metal constituting the phosphor, a metal oxide thereof, and a metal nitride.
- examples of the phosphor material include yttrium-containing compounds such as yttrium oxide, aluminum-containing compounds such as aluminum oxide, and cerium oxide. Examples include metal oxides such as cerium-containing compounds.
- the phosphor material is formed, for example, in the form of particles.
- the purity of the phosphor material is, for example, 99.0% by mass or more, and preferably 99.9% by mass or more. Thereby, impurities contained in the phosphor ceramic plate 1 can be reduced.
- Organic particles are contained in the phosphor composition in order to form predetermined holes in the phosphor ceramic plate 1.
- the material of the organic particles may be any material that can be completely pyrolyzed during the firing process, and examples thereof include thermoplastic resins and thermosetting resins.
- thermoplastic resin examples include acrylic resin, styrene resin, acrylic-styrene resin, polycarbonate resin, benzoguanamine resin, polyolefin resin, polyester resin, polyamide resin, and polyimide resin.
- acrylic resin particularly polymethyl methacrylate is used.
- thermosetting resin examples include an epoxy resin, a silicone resin, and a urethane resin.
- the average particle diameter of the organic particles is 3.4 ⁇ m or more, preferably 4.0 ⁇ m or more.
- an upper limit is 25.0 micrometers or less, for example, Preferably, it is 20.0 micrometers or less, More preferably, it is 8.0 micrometers or less.
- the average particle diameter of the organic particles exceeds the above upper limit, a large amount of large pores are formed inside the phosphor ceramic plate 1, and the permeability and strength of the phosphor ceramic plate 1 may be reduced. Moreover, there exists a possibility that the impurity contained in the fluorescent substance ceramic plate 1 may increase.
- the average particle diameter of the organic particles can be measured by a laser diffraction scattering method using, for example, a particle size distribution measuring device (“LS13 320” manufactured by Beckman Coulter, Inc.).
- the content ratio of the organic particles is, for example, 1.5% by volume or more, preferably 2.0% by volume or more, and, for example, 12.0% by volume with respect to the total content of the phosphor material and the organic particles. % Or less, preferably 10.0% by volume or less, and more preferably 8.0% by volume or less.
- the volume ratio of pores formed in the phosphor ceramic plate 1 can be adjusted to an appropriate range by setting the content ratio of the organic particles within the above range.
- the phosphor composition may further contain a binder resin as necessary.
- a known binder resin used for producing the green sheet 4 may be used, and examples thereof include an acrylic polymer, a butyral polymer, a vinyl polymer, and a urethane polymer.
- an acrylic polymer is used.
- the content ratio of the binder resin is, for example, 5 parts by volume or more, preferably 15 parts by volume or more, and, for example, 120 parts by volume or less, preferably 80 parts by volume or less with respect to 100 parts by volume of the phosphor material. More preferably, it is 60 parts by volume or less.
- the phosphor composition may further contain known additives such as a dispersant, a plasticizer, and a sintering aid as necessary.
- Examples of the solvent contained in the phosphor composition slurry include water and organic solvents such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, methyl propionate, and methyl cellosolve.
- the content ratio of the solvent is, for example, 1 to 30% by mass in the phosphor composition slurry.
- the phosphor composition slurry is prepared by blending the above components in the above proportions and wet-mixing with a ball mill or the like. That is, a phosphor composition slurry is prepared.
- the above components may be wet mixed together.
- the phosphor composition slurry may be prepared by wet-mixing components excluding organic particles to prepare a first slurry, and then wet-mixing the organic particles into the first slurry.
- the release substrate 9 examples include a polyester film such as a polyethylene terephthalate (PET) film, a polycarbonate film such as a polyolefin film such as a polyethylene film and a polypropylene film, such as a polystyrene film, such as an acrylic film, such as silicone, and the like.
- the resin film include resin films and fluororesin films.
- metal foils, such as copper foil and stainless steel foil, are also mentioned, for example.
- a resin film is preferable, and a polyester film is more preferable.
- the surface of the peeling substrate 9 is subjected to a peeling treatment as necessary in order to improve the peelability.
- the thickness of the peeling substrate 9 is, for example, 10 to 200 ⁇ m from the viewpoint of handling properties and cost.
- Examples of a method for applying the phosphor composition slurry to the release substrate 9 include known application methods such as doctor blade coating, gravure coating, fountain coating, cast coating, spin coating, and roll coating.
- the drying temperature is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
- the drying time is, for example, 1 minute or more, preferably 2 minutes or more, and for example, 24 hours or less, preferably 5 hours or less.
- the green sheet 4 obtained in this way is a ceramic before sintering of the phosphor ceramic plate 1 and is formed in a plate shape.
- the peeling substrate 9 is peeled from the green sheet 4 as shown by the phantom line in FIG. 1A.
- the green sheet 4 can also be formed by laminating a plurality (multiple layers) of green sheets 4 by thermal lamination.
- the thickness of the green sheet 4 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
- the green sheet 4 is fired as shown in FIG. 1B. Thereby, the phosphor ceramic plate 1 is obtained.
- Calcination temperature is, for example, 1300 ° C. or higher, preferably 1500 ° C. or higher, and for example, 2000 ° C. or lower, preferably 1800 ° C. or lower.
- Calcination time is, for example, 1 hour or more, preferably 2 hours or more, and for example, 24 hours or less, preferably 8 hours or less.
- Calcination may be performed under normal pressure, or may be performed under reduced pressure or under vacuum.
- the rate of temperature increase in the firing is, for example, 0.5 to 20 ° C./min.
- preheating is performed in the air at, for example, 600 to 1300 ° C. using an electric furnace to remove the binder. Processing may be performed.
- the organic particles are baked through baking (when baking is performed, baking and binder processing), and pores are formed in the phosphor ceramic plate 1.
- the phosphor ceramic plate 1 obtained in this way is formed in a plate shape.
- the thickness T of the phosphor ceramic plate 1 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
- the volume ratio of the holes having a hole diameter of less than 3.0 ⁇ m (hereinafter also referred to as “small holes”) to the phosphor ceramic plate 1 is, for example, 15.0 vol% or less. Preferably, it is 1.5 volume% or less.
- the volume ratio of the small holes is not more than the above upper limit, the transparency of the phosphor ceramic plate 1 is excellent.
- the minimum of the hole diameter of a small hole is 0.3 micrometer or more, for example.
- the phosphor ceramic plate 1 preferably has pores (hereinafter also referred to as “hollow holes”) having a pore diameter of 3.0 ⁇ m or more and 12.0 ⁇ m or less.
- the lower limit of the volume ratio of the hollow holes in the phosphor ceramic plate 1 is, for example, 0.5 volume or more, preferably 1.5 volume% or more, more preferably 2.0 volume% or more, 9.5% by volume or less, preferably 8.0% by volume or less.
- the transparency and scattering of the phosphor ceramic plate 1 can be improved.
- the volume ratio of the large holes in the phosphor ceramic plate 1 is, for example, 12.0% by volume or less, and preferably 9.0% by volume or less.
- the upper limit of the hole diameter of a large hole is 30.0 micrometers or less, for example.
- the hole diameter is the maximum length of the holes, and the cut surface of the phosphor ceramic plate 1 is measured using a laser microscope (device name: Lasertec, VL2000D, objective lens 20 times, magnification 1800 times). It is measured by observing.
- the volume of the hole is calculated by converting the hole diameter of the hole (maximum length of the hole) into a true sphere as the diameter of the hole.
- the average pore diameter of the pores is, for example, 2.5 ⁇ m or more, preferably 3.0 ⁇ m or more, more preferably 3.5 ⁇ m or more, and for example, 20.0 ⁇ m or less, preferably 16.0 ⁇ m or less, More preferably, it is 10.0 ⁇ m or less.
- the phosphor ceramic plate 1 preferably satisfies the following formula.
- V ⁇ 1.30 ⁇ ( ⁇ log T)
- V indicates the volume ratio (%) of pores (small pores) having a pore diameter of less than 3.0 ⁇ m.
- T represents the thickness (mm) of the phosphor ceramic plate 1.
- the sodium element is 67 ppm or less, preferably 50 ppm or less.
- Magnesium element is 23 ppm or less, preferably 20 ppm or less.
- the iron element is 21 ppm or less, preferably 15 ppm or less, more preferably 10 ppm or less.
- the above elements can be measured by, for example, ICP-MS analysis.
- the element is an impurity, and the quantum efficiency is excellent by setting the impurity to the upper limit or less.
- impurities can be a starting point during crystal growth, the reproducibility of crystal growth is excellent by reducing the impurity content.
- this fluorescent substance ceramic plate 1 the fluorescent substance composition which contains the organic particle of a specific particle diameter by specific content is prepared, a green sheet is formed from a fluorescent substance composition, and baking is carried out. To do. Therefore, it can suppress that a void
- the obtained phosphor ceramic has relatively large pores (for example, hollow holes), it has excellent permeability.
- a phosphor ceramic having good transparency can be manufactured with good reproducibility, and this manufacturing method has a good yield and excellent productivity.
- Such a phosphor ceramic plate 1 is an object of commercial transaction as a part of the optical semiconductor device 8 alone.
- One embodiment of the method for manufacturing the optical semiconductor device 8 includes, for example, a fluorescent adhesive sheet manufacturing step (see FIG. 2A), a fluorescent adhesive sheet arranging step (see FIG. 2B), and an adhesive step (see FIG. 2C).
- the adhesive layer 2 is laminated on the phosphor ceramic plate 1.
- the adhesive layer 2 is disposed on the entire upper surface (one surface) of the phosphor ceramic plate 1 and is formed into a sheet shape from the adhesive composition.
- an adhesive composition for example, pressure sensitive adhesive compositions such as silicone and acrylic, for example, thermosetting adhesive compositions such as silicone and epoxy, such as glass and ceramic And an inorganic adhesive composition.
- a silicone type composition is mentioned from a viewpoint of mass productivity, durability, and heat resistance.
- the thickness of the adhesive layer 2 is, for example, 5 ⁇ m or more from the viewpoint of pressure-sensitive adhesiveness, and is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of thermal conductivity. .
- the varnish is applied to the entire lower surface of the phosphor ceramic plate 1, for example, It is applied by a known application method such as a bar coater. Thereby, a film of the adhesive composition is formed. Subsequently, if necessary, the solvent is distilled off.
- a film can be formed by applying varnish to the surface of a release sheet or the like, and the film can be transferred to the phosphor ceramic plate 1 from the release sheet after the solvent is distilled off if necessary.
- the fluorescent adhesive sheet 6 includes the phosphor ceramic plate 1 and the adhesive layer 2, does not include the optical semiconductor element 5, and is an object of commercial transaction as a component of the optical semiconductor device 8.
- the substrate 7 on which the optical semiconductor element 5 is mounted and the fluorescent adhesive sheet 6 are arranged to face each other. That is, the substrate 7 and the fluorescent adhesive sheet 6 are arranged to face each other with an interval so that the optical semiconductor element 5 and the adhesive layer 2 face each other.
- the substrate 7 is formed in a plate shape larger than the optical semiconductor element 5 in plan view.
- the substrate 7 is made of an insulating substrate such as a silicon substrate, a ceramic substrate, a polyimide resin substrate, or a laminated substrate in which an insulating layer is laminated on a metal substrate.
- a conductor pattern (not shown) including electrodes is formed on the upper surface of the substrate 7.
- the optical semiconductor element 5 is, for example, an element that emits blue light (specifically, a blue LED or a blue LD) and is, for example, flip-chip mounted or wire-bonded to an electrode (not shown) of the substrate 7. Connected by connection.
- the fluorescent adhesive sheet 6 bonded to the optical semiconductor element 5 is formed in a shape that avoids (bypasses) the wire.
- the fluorescent adhesive sheet 6 is attached to the optical semiconductor element 5.
- the phosphor ceramic plate 1 is pressure-bonded to the upper surface of the optical semiconductor element 5 via the adhesive layer 2.
- the lamination of the fluorescent adhesive sheet 6 and the optical semiconductor element 5 is performed at room temperature (specifically, 20 to 25 ° C.). If necessary, the fluorescent adhesive sheet 6 can be heated to 30 to 150 ° C., for example.
- the optical semiconductor device 8 to which the phosphor ceramic plate 1 is bonded by the adhesive layer 2 is obtained.
- the optical semiconductor device 8 is disposed on the substrate 7, the optical semiconductor element 5 mounted on the substrate 7, the adhesive layer 2 formed on the optical semiconductor element 5, and the adhesive layer 2.
- a phosphor ceramic plate 1 disposed opposite to the element 5 is provided.
- the optical semiconductor device 8 is obtained as a white light emitting device.
- the sealing layer 3 can be provided on the optical semiconductor device 8 as indicated by a virtual line in FIG. 2C.
- the sealing layer 3 is disposed on the substrate 7 so as to cover the optical semiconductor element 5 and the fluorescent adhesive sheet 6.
- Sealing layer 3 is formed from a sealing resin composition.
- the sealing resin composition includes a known transparent resin used for embedding and sealing the optical semiconductor element 5, and examples of the transparent resin include thermosetting resins such as silicone resins, epoxy resins, and urethane resins, Examples thereof include thermoplastic resins such as acrylic resin, styrene resin, polycarbonate resin, and polyolefin resin.
- a method of providing the sealing layer 3 in the optical semiconductor device 8 for example, a method of directly forming the sealing layer 3 on the optical semiconductor device 8, or after forming the sealing layer 3 on another release sheet or the like, the sealing is performed. Examples include a method of transferring the layer 3 from the release sheet to the optical semiconductor device 8 by a laminator, thermocompression bonding, or the like.
- the phosphor ceramic plate 1 having excellent reproducibility is used, the yield is good and the productivity is excellent. Further, since the phosphor ceramic plate 1 having good transparency is used, the transparency of light emitted from the optical semiconductor element 5 can be improved. Therefore, it is possible to suppress a decrease in the light emission efficiency of the optical semiconductor device 8.
- Example 1 Yttrium oxide particles (purity 99.99% by mass, lot: N—YT4CP, manufactured by Japan Yttrium Co.) 11.34 g, aluminum oxide particles (purity 99.99% by mass, product number “AKP-30”, manufactured by Sumitomo Chemical) 8 A phosphor material powder composed of .577 g and cerium oxide particles (purity 99.99 mass%) 0.087 g was prepared.
- organic particles polymethyl methacrylate, average particle size of 3.5 ⁇ m
- wet mixing was performed to obtain a phosphor composition slurry.
- the obtained phosphor composition slurry was tape-cast on a PET film by a doctor blade method and dried at 70 ° C. for 5 minutes to obtain a green sheet having a thickness of 90 ⁇ m. Thereafter, the green sheet was peeled from the PET film.
- the green sheet was cut into a size of 20 mm ⁇ 20 mm. Two cut green sheets were produced, and the two green sheets were thermally laminated using a biaxial hot press to produce a green sheet laminate.
- the produced green sheet laminate was heated to 1200 ° C. in the air at a heating rate of 1 ° C./min in an electric muffle furnace, and a binder removal treatment for decomposing and removing organic components such as a binder resin was performed. . Thereafter, the green sheet laminate is transferred to a high-temperature environment furnace, heated to 1750 ° C. at a rate of temperature increase of 5 ° C./min in a reducing atmosphere, and baked at that temperature for 5 hours. A phosphor ceramic plate made of Y 3 Al 5 O 12 : Ce was manufactured.
- Example 2 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 1.5% by volume of organic particles (polymethyl methacrylate, average particle size 4.0 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
- Example 3 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 10.0% by volume of organic particles (polymethyl methacrylate, average particle size 25.0 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
- Comparative Example 1 Instead of adding 3.0% by volume of organic particles (polymethyl methacrylate, average particle size 3.5 ⁇ m), 4.0% by volume of organic particles (polymethyl methacrylate, average particle size 2.5 ⁇ m) was added. Produced a phosphor ceramic plate in the same manner as in Example 1.
- Each hole has a hole diameter of less than 3.0 ⁇ m (small hole), a hole of 3.0 ⁇ m or more and 12.0 ⁇ m or less (hollow hole), and a hole of more than 12.0 ⁇ m (large hole).
- the volume of holes was calculated in terms of a true sphere, and the total volume of the divided holes was calculated. By dividing the calculated total volume by the volume of the phosphor ceramic plate (the portion where the pores were measured, including the pores), the volume ratio (surface direction) of the pore diameter was determined.
- the phosphor ceramic plate is cut in the thickness direction, and the cut surface (thickness direction) is also observed for 15 surfaces in the same manner as described above, and the volume ratio of the pore diameter (thickness direction) in the same manner as described above. Asked.
- the average of the volume ratio of the pore diameter (plane direction) and the volume ratio of the pore diameter (thickness direction) was defined as the volume ratio of the pore diameter of the phosphor ceramic plate of the present invention.
- the results are shown in Table 1.
- the method for producing phosphor ceramics of the present invention can be applied to various industrial products, and can be used for optical applications such as optical semiconductor devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Led Device Packages (AREA)
- Luminescent Compositions (AREA)
Abstract
蛍光体セラミックスの製造方法は、蛍光体材料および有機粒子を含有する蛍光体組成物を用意する工程と、蛍光体組成物を焼成する工程とを備え、有機粒子の平均粒子径が3.4μm以上であり、蛍光体材料および前記有機粒子の合計含有量に対する、有機粒子の含有量が1.5体積%以上である。
Description
本発明は、蛍光体セラミックスの製造方法に関する。
光半導体装置などの発光装置は、一般的に、例えば青色光を発光するLED(発光ダイオード素子)やLD(レーザーダイオード)と、青色光を黄色光に変換でき、LEDの上に設けられる蛍光体層とを備えている。発光装置は、LEDから発光され、蛍光体層を透過した青色光と、蛍光体層において青色光の一部が波長変換された黄色光との混色によって、白色光を発光する。
このような蛍光体層としては、例えば、セラミック材料からなる変換素子が知られている(例えば、特許文献1参照。)。
特許文献1には、セラミック材料の理論的な固体状態の密度の97%以上の密度を有し、変換素子内の孔は、実質的に250nm~2900nmの間の径を有する変換素子が開示されている。
特許文献1の変換素子は、ナノオーダーの微小な孔を有することにより、幅広い視野角での透過性を改善している。
しかるに、特許文献1の変換素子では、ナノオーダーの孔径を有する孔を製造する必要があるが、セラミックである変換素子の製造(高温焼結過程)時に、セラミックの結晶が成長するため、ナノオーダーの孔は消失し易い。すなわち、特許文献1の変換素子では、ナノオーダーの孔が消失したり消失しなかったりするので、その孔の大きさの調整が難しく、再現性に劣るという不具合が生じる。
また、ナノオーダーの孔径が、変換素子内部に多量に形成されると、透明性が低下するという不具合も生じる。
本発明の目的は、透過性が良好であり、再現性に優れる蛍光体セラミックスの製造方法を提供することにある。
本発明[1]は、蛍光体材料および有機粒子を含有する蛍光体組成物を用意する工程と、前記蛍光体組成物を焼成する工程とを備え、前記有機粒子の平均粒子径が3.4μm以上であり、前記蛍光体材料および前記有機粒子の合計含有量に対する、前記有機粒子の含有量が1.5体積%以上である蛍光体セラミックスの製造方法を含んでいる。
本発明[2]は、前記蛍光体セラミックスにおいて、孔径が3.0μm未満である空孔の体積割合が、1.5体積%以下である[1]に記載の蛍光体セラミックスの製造方法を含んでいる。
本発明の蛍光体セラミックスの製造方法では、焼成前の蛍光体組成物が平均粒子径3.4μm以上の有機粒子を所定量含有するので、焼成時においてセラミックスの結晶の成長により空孔が消滅することを抑制できる。よって、確実に所望の空孔を所望の体積割合で製造することができる。そのため、透過性が良好な蛍光体セラミックスを、再現性良く製造することができる。したがって、本発明の製造方法は、歩留まりが良く、生産性に優れる。
図1Aおよび図1Bにおいて、図1Aおよび図1Bの紙面上下方向を「上下方向」(第1方向、厚み方向)とし、紙面上側が上側であり、紙面下側が下側である。また、図1Aおよび図1Bの紙面左右方向を「面方向」(第2方向、第1方向に直交する方向)とし、紙面右方向が面方向一方側であり、図1Aおよび図1Bの紙面左方向が面方向他方側である。図Aおよび図1B以外の図についても、図1Aおよび図1Bの方向を基準する。
1.蛍光体セラミックスの製造方法
図1Bを参照して、本発明の蛍光体セラミックスの製造方法の一実施形態に係る蛍光体セラミックスプレート1の製造方法について説明する。
図1Bを参照して、本発明の蛍光体セラミックスの製造方法の一実施形態に係る蛍光体セラミックスプレート1の製造方法について説明する。
蛍光体セラミックスプレート1は、図1Bに示すように、蛍光体材料のセラミックス(焼成体)から板状に形成されており、蛍光体を含有している。
蛍光体セラミックスプレート1に含有される蛍光体は、波長変換機能を有しており、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。
黄色蛍光体としては、例えば、(Ba,Sr,Ca)2SiO4;Eu、(Sr,Ba)2SiO4:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、(Y、Gd、Ba、Ca)3(Al、Si、Ge、B、P、Ga)5O12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、Tb3Al3O12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。赤色蛍光体としては、例えば、CaAlSiN3:Eu、CaSiN2:Euなどの窒化物蛍光体などが挙げられる。
次に、蛍光体セラミックスプレート1を製造する方法について、図1A~図1Bを参照して説明する。
蛍光体セラミックスプレート1の製造方法は、例えば、グリーンシート作製工程(図1A参照)、および、焼成工程(図1B)を備える。以下、各工程を詳述する。
グリーンシート作製工程では、蛍光体材料および有機粒子を含有する蛍光体組成物を焼成する。好ましくは、図1Aに示すように、蛍光体組成物を含有するスラリー(蛍光体組成物スラリー)を、剥離基材9の上面に塗布および乾燥する。これによって、グリーンシート4を得る。
蛍光体組成物スラリーは、蛍光体材料および有機粒子を含有する蛍光体組成物と、溶媒とを含有する。すなわち、蛍光体組成物スラリーは、蛍光体材料、有機粒子および溶媒を含有する。
蛍光体材料は、上記の蛍光体を構成する原材料であって、蛍光体に応じて適宜選択される。蛍光体材料としては、例えば、蛍光体を構成する金属単体、その金属酸化物、金属窒化物などが挙げられる。具体的には、蛍光体としてY3Al5O12:Ceを形成する場合は、蛍光体材料としては、例えば、酸化イットリウムなどのイットリウム含有化合物、酸化アルミニウムなどのアルミニウム含有化合物、酸化セリウムなどのセリウム含有化合物などの金属酸化物が挙げられる。蛍光体材料は、例えば、粒子状に形成されている。
蛍光体材料の純度は、例えば、99.0質量%以上、好ましくは、99.9質量%以上である。これにより、蛍光体セラミックスプレート1に含まれる不純物を低減することができる。
有機粒子は、蛍光体セラミックスプレート1に所定の空孔を形成するために蛍光体組成物に含有される。
有機粒子の材料としては、焼成工程時に完全に熱分解される材料であればよく、例えば、熱可塑性樹脂および熱硬化性樹脂が挙げられる。
熱可塑性樹脂としては、例えば、アクリル樹脂、スチレン樹脂、アクリル-スチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂などが挙げられる。好ましくは、再現性の観点から、アクリル樹脂(特に、ポリメタクリル酸メチルなど)が挙げられる。
熱硬化性樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂などが挙げられる。
有機粒子の平均粒子径は、3.4μm以上であり、好ましくは、4.0μm以上である。また、上限は、例えば、25.0μm以下、好ましくは、20.0μm以下、より好ましくは、8.0μm以下である。有機粒子の平均粒子径が上記下限を下回ると、グリーンシート4を焼成し、蛍光体セラミックスプレート1を製造する際に、蛍光体セラミックスプレート1の結晶が空孔内部に向って過度に成長し、空孔を消失させるおそれがある。一方、有機粒子の平均粒子径が上記上限を上回ると、大空孔が多量に蛍光体セラミックスプレート1内部に形成され、蛍光体セラミックスプレート1の透過性、強度などが低下するおそれがある。また、蛍光体セラミックスプレート1内に含まれる不純物が増加するおそれがある。
有機粒子の平均粒子径は、例えば、粒度分布測定装置(ベックマン・コールター社製、「LS13 320」)を用いて、レーザー回折散乱法によって測定することができる。
有機粒子の含有割合は、蛍光体材料と有機粒子の合計含有量に対して、例えば、1.5体積%以上、好ましくは、2.0体積%以上であり、また、例えば、12.0体積%以下、好ましくは、10.0体積%以下、より好ましくは、8.0体積%以下である。
有機粒子の含有割合を上記範囲内にすることにより、蛍光体セラミックスプレート1内に形成される空孔の体積割合を適切な範囲に調節することができる。
蛍光体組成物には、必要に応じて、さらにバインダー樹脂を含有することができる。
バインダー樹脂は、グリーンシート4の作製に用いられる公知のバインダー樹脂を使用すればよく、例えば、アクリル系ポリマー、ブチラール系ポリマー、ビニル系ポリマー、ウレタン系ポリマーなどが挙げられる。好ましくは、アクリル系ポリマーが挙げられる。
バインダー樹脂の含有割合は、蛍光体材料100体積部に対して、例えば、5体積部以上、好ましくは、15体積部以上であり、また、例えば、120体積部以下、好ましくは、80体積部以下、より好ましくは、60体積部以下である。
蛍光体組成物には、必要に応じて、さらに分散剤、可塑剤、焼結助剤などの公知の添加剤を含有することができる。
蛍光体組成物スラリーに含有される溶媒としては、例えば、水、例えば、アセトン、メチルエチルケトン、メタノール、エタノール、トルエン、プロピオン酸メチル、メチルセルソルブなどの有機溶媒が挙げられる。
溶媒の含有割合は、蛍光体組成物スラリーにおいて、例えば、1~30質量%である。
蛍光体組成物スラリーは、上記成分を上記割合で配合し、ボールミルなどで湿式混合することにより調製される。すなわち、蛍光体組成物スラリーが用意される。
なお、この際、上記成分を一括で湿式混合してもよい。また、有機粒子を除く成分を湿式混合して第1スラリーを調製し、次いで、その第1スラリーに有機粒子を湿式混合することにより、蛍光体組成物スラリーを調製してもよい。
剥離基材9としては、例えば、ポリエチレンテレフタレート(PET)フィルムなどのポリエステルフィルム、例えば、ポリカーボネートフィルム、例えば、ポリエチレンフィルム、ポリプロピレンフィルムなどのポリオレフィンフィルム、例えば、ポリスチレンフィルム、例えば、アクリルフィルム、例えば、シリコーン樹脂フィルム、フッ素樹脂フィルムなどの樹脂フィルムなどが挙げられる。さらに、例えば、銅箔、ステンレス箔などの金属箔も挙げられる。好ましくは、樹脂フィルム、さらに好ましくは、ポリエステルフィルムが挙げられる。剥離基材9の表面には、剥離性を高めるため、必要により剥離処理が施されている。
剥離基材9の厚みは、例えば、取扱性、コストの観点から、例えば、10~200μmである。
蛍光体組成物スラリーを剥離基材9に塗布する方法としては、ドクターブレードコート、グラビアコート、ファウンテンコート、キャストコート、スピンコート、ロールコートなどの公知の塗布方法が挙げられる。
乾燥温度は、例えば、20℃以上、好ましくは、50℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。
乾燥時間は、例えば、1分以上、好ましくは、2分以上であり、また、例えば、24時間以下、好ましくは、5時間以下である。
このようにして得られるグリーンシート4は、蛍光体セラミックスプレート1の焼結前セラミックスであって、板状に形成されている。
その後、図1Aの仮想線に示すように、剥離基材9をグリーンシート4から剥離する。
なお、グリーンシート4は、所望の厚みを得るために、複数(複層)のグリーンシート4を熱ラミネートによって積層することにより形成することもできる。
グリーンシート4の厚みは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。
焼成工程では、図1Bに示すように、グリーンシート4を焼成する。これによって、蛍光体セラミックスプレート1を得る。
焼成温度は、例えば、1300℃以上、好ましくは、1500℃以上であり、また、例えば、2000℃以下、好ましくは、1800℃以下である。
焼成時間は、例えば、1時間以上、好ましくは、2時間以上であり、また、例えば、24時間以下、好ましくは、8時間以下である。
焼成は、常圧下で実施してもよく、また、減圧下または真空下で実施してもよい。
また、焼成における昇温速度は、例えば、0.5~20℃/分である。
上記焼成(本焼成)の前に、バインダー樹脂や分散剤などの有機成分を熱分解および除去するために、電気炉を用いて、空気中、例えば、600~1300℃で予備加熱し、脱バインダー処理を実施してもよい。
焼成(バインダー処理を実施する場合は、焼成およびバインダー処理)を通じて、有機粒子が焼成し、蛍光体セラミックスプレート1に空孔が形成される。
このようにして得られる蛍光体セラミックスプレート1は、板状に形成されている。
蛍光体セラミックスプレート1の厚みTは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。
蛍光体セラミックスプレート1において、孔径が3.0μm未満である空孔(以下、「小空孔」とも称する。)の、蛍光体セラミックスプレート1に占める体積割合は、例えば、15.0体積%以下、好ましくは、1.5体積%以下である。小空孔の体積割合が上記上限以下であると、蛍光体セラミックスプレート1の透明性が優れる。なお、小空孔の孔径の下限は、例えば、0.3μm以上である。
蛍光体セラミックスプレート1は、好ましくは、孔径が3.0μm以上12.0μm以下である空孔(以下、「中空孔」とも称する。)を有する。
蛍光体セラミックスプレート1に占める中空孔の体積割合の下限は、例えば、0.5体積以上、好ましくは、1.5体積%以上、より好ましくは、2.0体積%以上であり、また、例えば、9.5体積%以下、好ましくは、8.0体積%以下である。
中空孔の体積割合が上記範囲内とすることにより、蛍光体セラミックスプレート1の透過性および散乱性を向上させることができる。
蛍光体セラミックスプレート1に占める大空孔の体積割合は、例えば、12.0体積%以下、好ましくは、9.0体積%以下である。なお、大空孔の孔径の上限は、例えば、30.0μm以下である。
空孔の孔径は、空孔の最大長さであって、蛍光体セラミックスプレート1の切断表面を、レーザー顕微鏡(装置名:レーザーテック、VL2000D、対物レンズ20倍、倍率1800倍)を用いて、孔径を観察することにより測定される。
空孔の体積は、上記空孔の孔径(空孔の最大長さ)を空孔の直径として、真球換算することにより算出される。
空孔の平均孔径は、例えば、2.5μm以上、好ましくは、3.0μm以上、より好ましくは、3.5μm以上であり、また、例えば、20.0μm以下、好ましくは、16.0μm以下、より好ましくは、10.0μm以下である。
蛍光体セラミックスプレート1は、好ましくは、下記の式を満たす。
V ≦ 1.30×(-log T)
Vは、孔径が3.0μm未満である空孔(小空孔)の体積割合(%)を示す。Tは、蛍光体セラミックスプレート1の厚さ(mm)を示す。
Vは、孔径が3.0μm未満である空孔(小空孔)の体積割合(%)を示す。Tは、蛍光体セラミックスプレート1の厚さ(mm)を示す。
これにより、厚さが十分厚いときの過剰な空孔の発生を低減させ、蛍光体セラミックスプレート1の透過性、強度などの低下を抑制することができる
蛍光体セラミックスプレート1は、好ましくは、下記(1)~(3)の少なくとも1つの要件を満たす。
(1)ナトリウム元素が、67ppm以下、好ましくは、50ppm以下である。
(2)マグネシウム元素が、23ppm以下、好ましくは、20ppm以下である。
(3)鉄元素が、21ppm以下、好ましくは、15ppm以下、より好ましくは、10ppm以下である。
蛍光体セラミックスプレート1は、好ましくは、下記(1)~(3)の少なくとも1つの要件を満たす。
(1)ナトリウム元素が、67ppm以下、好ましくは、50ppm以下である。
(2)マグネシウム元素が、23ppm以下、好ましくは、20ppm以下である。
(3)鉄元素が、21ppm以下、好ましくは、15ppm以下、より好ましくは、10ppm以下である。
上記元素は、例えば、ICP-MS分析により測定することができる。
上記元素は、不純物であり、上記不純物を上記上限以下とすることにより、量子効率に優れる。また、不純物は結晶成長時の起点となり得るため、不純物の含有量を低減させることにより、結晶成長の再現性にも優れる。
そして、この蛍光体セラミックスプレート1の製造方法によれば、特定の粒子径の有機粒子を特定の含有量で含有する蛍光体組成物を用意し、蛍光体組成物からグリーンシートを形成し、焼成する。そのため、焼成時においてセラミックスの結晶の成長により空孔が消滅することを抑制できる。よって、確実に所望の空孔を所望の体積割合で製造することができる。
また、得られる蛍光体セラミックスは、比較的大きな空孔(例えば、中空孔)を備えているため、透過性に優れる。
したがって、この製造方法では、透過性が良好な蛍光体セラミックスを、再現性良く製造することができるので、この製造方法は、歩留まりが良く、生産性に優れる。
このような蛍光体セラミックスプレート1は、光半導体装置8の部品として単独で商取引の対象となる。
2.光半導体装置の製造方法
次に、蛍光体セラミックスプレート1の製造方法に引き続いて、光半導体装置8の一実施形態を製造する方法について、図2A~図2Cを参照して説明する。
次に、蛍光体セラミックスプレート1の製造方法に引き続いて、光半導体装置8の一実施形態を製造する方法について、図2A~図2Cを参照して説明する。
光半導体装置8の製造方法の一実施形態は、例えば、蛍光接着シート作製工程(図2A参照)、蛍光接着シート配置工程(図2B参照)、および、接着工程(図2C参照)を備える。
蛍光接着シート作製工程では、図2Aに示すように、蛍光体セラミックスプレート1に接着層2を積層させる。
接着層2は、蛍光体セラミックスプレート1の上面(一方面)全面に配置されており、接着剤組成物からシート状に形成されている。
接着剤組成物としては限定的でないが、例えば、シリコーン系、アクリル系などの感圧接着剤組成物、例えば、シリコーン系、エポキシ系などの熱硬化型接着剤組成物、例えば、ガラスやセラミックなどの無機系接着剤組成物が挙げられる。好ましくは、量産性、耐久性、耐熱性の観点から、シリコーン系組成物が挙げられる。
接着層2の厚みは、感圧接着性の観点から、例えば、5μm以上であり、また、例えば、200μm以下、好ましくは、熱伝導性の観点から、100μm以下、より好ましくは、50μm以下である。
接着層2を蛍光体セラミックスプレート1の上面に積層するには、具体的には、接着剤組成物がワニスとして調製される場合には、ワニスを蛍光体セラミックスプレート1の下面全面に、例えば、バーコータなど、公知の塗布方法によって塗布する。これによって、接着剤組成物の皮膜を形成する。続いて、必要により、溶媒を留去する。
あるいは、ワニスを離型シートなどの表面に塗布して皮膜を形成し、その皮膜を必要により溶媒を留去した後、剥離シートから蛍光体セラミックスプレート1に転写することもできる。
これによって、蛍光体セラミックスプレート1、および、その上に積層される接着層2を備える蛍光接着シート6を得る。蛍光接着シート6は、蛍光体セラミックスプレート1および接着層2からなり、光半導体素子5を含まず、光半導体装置8の部品として単独で商取引の対象となる。
蛍光接着シート配置工程では、図2Bに示すように、光半導体素子5が実装された基板7と、蛍光接着シート6とを対向配置する。すなわち、光半導体素子5と接着層2とが向かい合うように、基板7と蛍光接着シート6とを間隔を隔てて対向配置する。
基板7は、平面視において光半導体素子5より大きい平板状に形成されている。基板7は、例えば、シリコン基板、セラミック基板、ポリイミド樹脂基板、金属基板に絶縁層が積層された積層基板などの絶縁基板からなる。基板7の上面には、電極を含む導体パターン(図示せず)が形成されている。
光半導体素子5は、例えば、青色光を発光する素子(具体的には、青色LEDや青色LD)であり、基板7の電極(図示せず)に対して、例えば、フリップチップ実装またはワイヤボンディング接続によって、接続される。なお、光半導体素子5が基板7にワイヤボンディング接続される場合には、光半導体素子5に接着する蛍光接着シート6は、ワイヤーを避ける(迂回する)形状に形成される。
接着工程では、図2Cに示すように、蛍光接着シート6を光半導体素子5に貼着する。
具体的には、蛍光体セラミックスプレート1を、接着層2を介して、光半導体素子5の上面に感圧接着する。
蛍光接着シート6と光半導体素子5との貼り合わせは、常温(具体的には、20~25℃)で実施する。必要により、蛍光接着シート6を、例えば、30~150℃に加熱して実施することもできる。
これによって、接着層2によって蛍光体セラミックスプレート1が接着された光半導体装置8を得る。
つまり、光半導体装置8は、基板7と、基板7に実装される光半導体素子5と、光半導体素子5の上に形成される接着層2と、接着層2の上に配置され、光半導体素子5と対向配置される蛍光体セラミックスプレート1とを備える。
なお、光半導体素子5が青色LEDである場合には、光半導体装置8を白色発光装置として得る。
その後、必要により、図2Cの仮想線で示すように、封止層3を光半導体装置8に設けることもできる。封止層3は、光半導体素子5および蛍光接着シート6を被覆するように、基板7の上に配置されている。
封止層3は、封止樹脂組成物から形成されている。封止樹脂組成物は、光半導体素子5の埋設および封止に用いられる公知の透明性樹脂を含み、透明性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂、例えば、アクリル樹脂、スチレン樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂などの熱可塑性樹脂なども挙げられる。
封止層3を光半導体装置8に設ける方法としては、例えば、封止層3を光半導体装置8に直接形成する方法、封止層3を別の剥離シートなどに形成した後、その封止層3を、ラミネータ、熱圧着などによって、その剥離シートから光半導体装置8に転写する方法などが挙げられる。
そして、光半導体装置8の製造方法では、再現性の優れる蛍光体セラミックスプレート1を用いるため、歩留まりが良く、生産性に優れる。また、透過性の良好な蛍光体セラミックスプレート1を用いるため、光半導体素子5から発光される光の透過性を向上させることができる。そのため、光半導体装置8の発光効率の低下を抑制できる。
以下に、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はそれらに限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
(実施例1)
酸化イットリウム粒子(純度99.99質量%、lot:N-YT4CP、日本イットリウム社製)11.34g、酸化アルミニウム粒子(純度99.99質量%、品番「AKP-30」、住友化学社製)8.577g、および、酸化セリウム粒子(純度99.99質量%)0.087gからなる蛍光体材料の粉末を調製した。
酸化イットリウム粒子(純度99.99質量%、lot:N-YT4CP、日本イットリウム社製)11.34g、酸化アルミニウム粒子(純度99.99質量%、品番「AKP-30」、住友化学社製)8.577g、および、酸化セリウム粒子(純度99.99質量%)0.087gからなる蛍光体材料の粉末を調製した。
調製した蛍光体材料の粉末20gと、水溶性バインダー樹脂(「WB4101」、Polymer Inovations,Inc社製)とを、固形分の体積比率が60:40となるように混合し、さらに蒸留水を加えてアルミナ製容器に入れ、直径3mmのジルコニアボールを加えて24時間、ボールミルにより湿式混合することで、蛍光体の原料粒子のスラリーを調製した。
次いで、調製したスラリーに、有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を、蛍光体材料粉末と有機粒子との合計含有量に対して、3.0体積%となるように添加して、さらに湿式混合して、蛍光体組成物スラリーを得た。
次いで、得られた蛍光体組成物スラリーを、PETフィルム上にドクターブレード法によりテープキャスティングして70℃、5分にて乾燥し、厚み90μmのグリーンシートを得た。その後、グリーンシートをPETフィルムから剥離した。
次いで、グリーンシートを20mm×20mmのサイズに切り出した。切り出したグリーンシートを2枚作製し、この2枚のグリーンシートを2軸ホットプレスを用いて熱ラミネートすることにより、グリーンシート積層体を作製した。
次いで、作製したグリーンシート積層体を、電気マッフル炉にて、大気中、1℃/分の昇温速度で1200℃まで加熱し、バインダー樹脂などの有機成分を分解除去する脱バインダー処理を実施した。その後、高温環境炉にグリーンシート積層体を移し、還元雰囲気下で、5℃/分の昇温速度で1750℃まで加熱し、その温度で5時間焼成することにより、厚み(T)120μmの、Y3Al5O12:Ceからなる蛍光体セラミックスプレートを製造した。
実施例2
有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径4.0μm)を1.5体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径4.0μm)を1.5体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
実施例3
有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径25.0μm)を10.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径25.0μm)を10.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
比較例1
有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径2.5μm)を4.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を3.0体積%添加する代わりに、有機粒子(ポリメタクリル酸メチル、平均粒子径2.5μm)を4.0体積%添加した以外は、実施例1と同様にして、蛍光体セラミックスプレートを製造した。
(孔径の体積の算出)
各実施例および各比較例の蛍光体セラミックスプレートを面方向(厚み方向と直交方向、水平方向)に切断し、その切断表面(面方向)を、レーザー顕微鏡(装置名:レーザーテック、VL2000D、対物レンズ20倍、倍率:1800倍)を用いて、孔径を観察した。その後、さらに0.5μm間隔で面方向に切断していき、合計15面(厚み方向7.5μm)の切断表面を観察した。このとき、切断表面に観察される各空孔のうち同一空孔においては、15面の切断表面のうちの最大長さを各空孔の孔径(面方向)とした(図3参照。)。
各実施例および各比較例の蛍光体セラミックスプレートを面方向(厚み方向と直交方向、水平方向)に切断し、その切断表面(面方向)を、レーザー顕微鏡(装置名:レーザーテック、VL2000D、対物レンズ20倍、倍率:1800倍)を用いて、孔径を観察した。その後、さらに0.5μm間隔で面方向に切断していき、合計15面(厚み方向7.5μm)の切断表面を観察した。このとき、切断表面に観察される各空孔のうち同一空孔においては、15面の切断表面のうちの最大長さを各空孔の孔径(面方向)とした(図3参照。)。
各空孔を、孔径が3.0μm未満の空孔(小空孔)と、3.0μm以上12.0μm以下の空孔(中空孔)と、12.0μm超過の空孔(大空孔)とに区分けし、それぞれを真球換算にて空孔体積を計算し、区分けした空孔の総体積を算出した。算出した総体積を、蛍光体セラミックスプレートの体積(空孔を測定した部分、空孔も含む)で除することにより、孔径の体積割合(面方向)を求めた。
また、蛍光体セラミックスプレートの厚み方向に切断し、その切断表面(厚み方向)についても、上記と同様に15面分を観察し、上記と同様の方法にて、孔径の体積割合(厚み方向)を求めた。
孔径の体積割合(面方向)および孔径の体積割合(厚み方向)の平均を、本発明の蛍光体セラミックスプレートの孔径の体積割合とした。結果を表1に示す。
(平均孔径の算出)
上記で算出した各空孔の孔径から、各空孔の孔径の平均(各空孔の孔径の合計/空孔の数)を求めた。なお、孔径(面方向)の平均と孔径(厚み方向)の平均との平均を、平均孔径とした。結果を表1に示す。
上記で算出した各空孔の孔径から、各空孔の孔径の平均(各空孔の孔径の合計/空孔の数)を求めた。なお、孔径(面方向)の平均と孔径(厚み方向)の平均との平均を、平均孔径とした。結果を表1に示す。
(透過率)
各実施例および各比較例の蛍光体セラミックスプレートについて、分光光度計(紫外可視近赤外分光光度計V-670、日本分光社製)を用いて任意の3点で全光線透過率(波長800nm)を測定し、3点の平均値を透過率とした。結果を表1に示す。
各実施例および各比較例の蛍光体セラミックスプレートについて、分光光度計(紫外可視近赤外分光光度計V-670、日本分光社製)を用いて任意の3点で全光線透過率(波長800nm)を測定し、3点の平均値を透過率とした。結果を表1に示す。
(透過率再現性)
各実施例および各比較例の蛍光体セラミックスプレートを同様の方法で、それぞれ
20枚作製し、20枚の透過率を測定し、ばらつきを算出した。
各実施例および各比較例の蛍光体セラミックスプレートを同様の方法で、それぞれ
20枚作製し、20枚の透過率を測定し、ばらつきを算出した。
透過率差が2.0%以内である場合を○と評価し、透過率差が2.0%を超過する場合を×と評価した。結果を表1に示す。
(不純物の測定)
各実施例および各比較例の蛍光体セラミックスプレートのNa元素、Mg元素およびFe元素の不純物をICP-MS分析により測定した。結果を表1に示す。
各実施例および各比較例の蛍光体セラミックスプレートのNa元素、Mg元素およびFe元素の不純物をICP-MS分析により測定した。結果を表1に示す。
(量子効率の測定)
各実施例および比較例の蛍光体セラミックプレートの量子効率を、量子効率測定システム(大塚電子社製、「QE2100」)にて測定した。結果を表1に示す。
各実施例および比較例の蛍光体セラミックプレートの量子効率を、量子効率測定システム(大塚電子社製、「QE2100」)にて測定した。結果を表1に示す。
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
本発明の蛍光体セラミックスの製造方法は、各種の工業製品に適用することができ、例えば、光半導体装置などの光学用途などに用いることができる。
1 蛍光体セラミックスプレート
Claims (2)
- 蛍光体材料および有機粒子を含有する蛍光体組成物を用意する工程と、
前記蛍光体組成物を焼成する工程と
を備え、
前記有機粒子の平均粒子径が3.4μm以上であり、
前記蛍光体材料および前記有機粒子の合計含有量に対する、前記有機粒子の含有量が1.5体積%以上であることを特徴とする、蛍光体セラミックスの製造方法。 - 前記蛍光体セラミックスにおいて、孔径が3.0μm未満である空孔の体積割合が、1.5体積%以下であることを特徴とする、請求項1に記載の蛍光体セラミックスの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-029596 | 2015-02-18 | ||
JP2015029596A JP2016150989A (ja) | 2015-02-18 | 2015-02-18 | 蛍光体セラミックスの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132888A1 true WO2016132888A1 (ja) | 2016-08-25 |
Family
ID=56692202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053052 WO2016132888A1 (ja) | 2015-02-18 | 2016-02-02 | 蛍光体セラミックスの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016150989A (ja) |
TW (1) | TW201638052A (ja) |
WO (1) | WO2016132888A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113207302A (zh) * | 2018-12-18 | 2021-08-03 | 松下知识产权经营株式会社 | 波长转换构件、光学装置、投影器及波长转换构件的制造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04234480A (ja) * | 1990-12-15 | 1992-08-24 | Samsung Display Devices Co Ltd | 顔料付着赤色発光蛍光体およびその製造方法 |
JPH1077468A (ja) * | 1996-08-30 | 1998-03-24 | Kasei Optonix Co Ltd | 蛍光体 |
JP2001147537A (ja) * | 1999-11-18 | 2001-05-29 | Kuraray Co Ltd | カラーブラウン管の蛍光面作成方法 |
JP2001302337A (ja) * | 2000-04-25 | 2001-10-31 | Nitsukatoo:Kk | 耐熱衝撃抵抗性に優れたセラミック製熱処理用部材 |
JP2002137962A (ja) * | 2000-10-24 | 2002-05-14 | Nitsukatoo:Kk | ムライト質焼結体からなる熱処理用部材 |
JP2003040688A (ja) * | 2001-07-25 | 2003-02-13 | Nitsukatoo:Kk | 軽量セラミック焼結体 |
JP2005105116A (ja) * | 2003-09-30 | 2005-04-21 | Seiko Epson Corp | 蓄光性蛍光体の焼結体製造方法および射出成型用原料ペレット製造方法 |
WO2007098838A1 (de) * | 2006-02-27 | 2007-09-07 | Merck Patent Gmbh | Verfahren zum einbau von nan0ph0sph0ren in mikrooptische strukturen |
JP2010126560A (ja) * | 2008-11-25 | 2010-06-10 | Samsung Sdi Co Ltd | ペースト組成物、プラズマディスプレイパネル用パネル基板の製造方法およびプラズマディスプレイパネル |
WO2014162893A1 (ja) * | 2013-04-01 | 2014-10-09 | 旭硝子株式会社 | 光変換部材、その製造方法、照明光源および液晶表示装置 |
JP5900563B1 (ja) * | 2014-09-09 | 2016-04-06 | ウシオ電機株式会社 | 蛍光光源装置 |
-
2015
- 2015-02-18 JP JP2015029596A patent/JP2016150989A/ja active Pending
-
2016
- 2016-02-02 WO PCT/JP2016/053052 patent/WO2016132888A1/ja active Application Filing
- 2016-02-17 TW TW105104655A patent/TW201638052A/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04234480A (ja) * | 1990-12-15 | 1992-08-24 | Samsung Display Devices Co Ltd | 顔料付着赤色発光蛍光体およびその製造方法 |
JPH1077468A (ja) * | 1996-08-30 | 1998-03-24 | Kasei Optonix Co Ltd | 蛍光体 |
JP2001147537A (ja) * | 1999-11-18 | 2001-05-29 | Kuraray Co Ltd | カラーブラウン管の蛍光面作成方法 |
JP2001302337A (ja) * | 2000-04-25 | 2001-10-31 | Nitsukatoo:Kk | 耐熱衝撃抵抗性に優れたセラミック製熱処理用部材 |
JP2002137962A (ja) * | 2000-10-24 | 2002-05-14 | Nitsukatoo:Kk | ムライト質焼結体からなる熱処理用部材 |
JP2003040688A (ja) * | 2001-07-25 | 2003-02-13 | Nitsukatoo:Kk | 軽量セラミック焼結体 |
JP2005105116A (ja) * | 2003-09-30 | 2005-04-21 | Seiko Epson Corp | 蓄光性蛍光体の焼結体製造方法および射出成型用原料ペレット製造方法 |
WO2007098838A1 (de) * | 2006-02-27 | 2007-09-07 | Merck Patent Gmbh | Verfahren zum einbau von nan0ph0sph0ren in mikrooptische strukturen |
JP2010126560A (ja) * | 2008-11-25 | 2010-06-10 | Samsung Sdi Co Ltd | ペースト組成物、プラズマディスプレイパネル用パネル基板の製造方法およびプラズマディスプレイパネル |
WO2014162893A1 (ja) * | 2013-04-01 | 2014-10-09 | 旭硝子株式会社 | 光変換部材、その製造方法、照明光源および液晶表示装置 |
JP5900563B1 (ja) * | 2014-09-09 | 2016-04-06 | ウシオ電機株式会社 | 蛍光光源装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113207302A (zh) * | 2018-12-18 | 2021-08-03 | 松下知识产权经营株式会社 | 波长转换构件、光学装置、投影器及波长转换构件的制造方法 |
CN113207302B (zh) * | 2018-12-18 | 2023-07-14 | 松下知识产权经营株式会社 | 波长转换构件、光学装置、投影器及波长转换构件的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016150989A (ja) | 2016-08-22 |
TW201638052A (zh) | 2016-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5989268B2 (ja) | 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置 | |
US10557614B2 (en) | Projector light source including wavelength conversion member having porous ceramic substrate | |
US10580944B2 (en) | Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member | |
JP5738438B2 (ja) | セラミック変換素子、セラミック変換素子を備えた半導体チップおよびセラミック変換素子の製造方法 | |
US20170030556A1 (en) | Wavelength conversion member and production method thereof | |
TW201201420A (en) | Phosphor ceramic and light-emitting device | |
TW201545863A (zh) | 陶瓷磷光板及包括其之照明裝置 | |
WO2015163108A1 (ja) | 波長変換接合部材、波長変換放熱部材および発光装置 | |
JP2015065425A (ja) | 発光装置及びその製造方法 | |
US20190044037A1 (en) | Ceramic plate, producing method thereof, and optical semiconductor device | |
TWI660526B (zh) | 發光元件、發光裝置及彼等之製造方法 | |
WO2016132888A1 (ja) | 蛍光体セラミックスの製造方法 | |
WO2015140854A1 (ja) | 波長変換素子の製造方法 | |
JP6119192B2 (ja) | 波長変換部材の製造方法及び波長変換部材 | |
WO2015163110A1 (ja) | 波長変換部材およびその製造方法 | |
JP5994575B2 (ja) | 波長変換部材の製造方法及び波長変換部材 | |
WO2016132890A1 (ja) | 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置 | |
CN105084760B (zh) | 一种超薄发光玻璃的制备方法及相关发光装置 | |
WO2017138180A1 (ja) | セラミックスプレート、その製造方法および光半導体装置 | |
TWI729330B (zh) | 玻璃中螢光體顏色轉換元件的製造方法 | |
TW202046521A (zh) | 波長轉換構件及其製造方法、以及發光裝置 | |
JP2024522334A (ja) | 波長変換部材および発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752275 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16752275 Country of ref document: EP Kind code of ref document: A1 |