WO2017138180A1 - セラミックスプレート、その製造方法および光半導体装置 - Google Patents

セラミックスプレート、その製造方法および光半導体装置 Download PDF

Info

Publication number
WO2017138180A1
WO2017138180A1 PCT/JP2016/075824 JP2016075824W WO2017138180A1 WO 2017138180 A1 WO2017138180 A1 WO 2017138180A1 JP 2016075824 W JP2016075824 W JP 2016075824W WO 2017138180 A1 WO2017138180 A1 WO 2017138180A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
optical semiconductor
plate
ceramic plate
ceramic
Prior art date
Application number
PCT/JP2016/075824
Other languages
English (en)
French (fr)
Inventor
宏中 藤井
康弘 天野
池村 和弘
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016096807A external-priority patent/JP2017143236A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP16889881.5A priority Critical patent/EP3416203A4/en
Priority to CN201680078556.XA priority patent/CN108604627A/zh
Priority to US16/073,983 priority patent/US20190044037A1/en
Publication of WO2017138180A1 publication Critical patent/WO2017138180A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • the present invention relates to a ceramic plate, a manufacturing method thereof, and an optical semiconductor device, and more particularly to a ceramic plate, a manufacturing method of the ceramic plate, and an optical semiconductor device including the ceramic plate.
  • a luminescence conversion element including a ceramic material is used for an optoelectronic component together with a radiation-emitting semiconductor chip.
  • the luminescence conversion element is formed in, for example, an L-shaped plate having a cutout (see, for example, Patent Document 1).
  • Patent Document 1 proposes an optoelectronic component in which the lower surface of a luminescence conversion element is bonded to the upper surface of a radiation-emitting semiconductor chip, and bonding pads provided in corner areas of the radiation-emitting semiconductor chip exposed from the cut-out portion are connected by bonding wires. Has been.
  • An object of the present invention is to provide a ceramic plate excellent in mountability, a manufacturing method thereof, and an optical semiconductor device.
  • the present invention is a ceramic plate having a flat plate shape, provided with a notch portion that is notched inward from a peripheral end surface, and an end surface that defines the notch portion is in a thickness direction of the ceramic plate. And an inclined ceramic plate.
  • one of the angles formed by the end surface and the upper surface or the lower surface of the ceramic plate is 30 degrees or more and 89 degrees or less with respect to the virtual surface [1].
  • the ceramic plate described in 1. is included.
  • the present invention [3] includes the ceramic plate according to [1] or [2], wherein the end surface has a curved shape in plan view.
  • the present invention [4] includes an optical semiconductor device comprising an optical semiconductor element and the ceramic plate according to any one of [1] to [3] disposed on one surface of the optical semiconductor element.
  • the present invention [5] is the ceramic plate according to [4], wherein the ceramic plate is disposed on one surface of the optical semiconductor element such that an angle formed by the one surface of the optical semiconductor element and the end surface is an acute angle.
  • An optical semiconductor device is included.
  • the present invention [6] is the ceramic plate according to [4], wherein the ceramic plate is disposed on one surface of the optical semiconductor element such that an angle formed between the one surface of the optical semiconductor element and the end surface is an obtuse angle.
  • An optical semiconductor device is included.
  • the present invention [7] includes a step of preparing a ceramic sheet, a step of forming a through hole in the ceramic sheet, exposing an end face defining the through hole, and cutting the ceramic sheet to include the end face.
  • the present invention [8] includes the method for producing a ceramic plate according to [7], wherein a side surface exposed when the ceramic sheet is cut is inclined with respect to a thickness direction of the ceramic sheet.
  • the ceramic plate of the present invention is excellent in mountability for connecting the bonding pads provided on the optical semiconductor element with bonding wires.
  • the yield is good.
  • FIG. 1A to 1D are perspective views of process diagrams showing an embodiment of a method for producing a ceramic plate according to the present invention.
  • FIG. 1A is a process for preparing a phosphor green sheet
  • FIG. 1B is a process for preparing phosphor green.
  • FIG. 1C is the step of forming a through-hole in the phosphor ceramic sheet
  • FIG. 1D is the step of cutting the phosphor ceramic sheet with a cutting blade, The process of obtaining a body ceramics plate is shown.
  • FIG. 2 is a sectional side view of the through hole of the phosphor ceramic sheet of FIG. 1C.
  • 3A to 3C show an embodiment of the ceramic plate of the present invention.
  • FIG. 3A is a perspective view
  • FIG. 3B is a plan view
  • FIG. 3C is a cross-sectional view along AA in FIG. 3B
  • 4A to 4C are cross-sectional views of the process for manufacturing the first embodiment of the optical semiconductor device of the present invention.
  • FIG. 4A is a process for preparing a substrate with an element
  • FIG. 4C shows a process of obtaining an optical semiconductor device by wire bonding.
  • FIG. 5 shows a perspective view of the optical semiconductor device of FIG. 4C.
  • 6A to 6C are cross-sectional views of process diagrams for manufacturing the second embodiment of the optical semiconductor device of the present invention.
  • FIG. 6A is a process of preparing a substrate with an optical semiconductor element
  • FIG. 6B is wire bonding.
  • FIG. 6A is a process of preparing a substrate with an optical semiconductor element
  • FIG. 6B is wire bonding.
  • FIG. 6C shows a step of obtaining an optical semiconductor device by disposing a phosphor ceramic plate on the optical semiconductor element.
  • FIG. 7 shows a cross-sectional view of another embodiment of the through hole of the phosphor ceramic sheet shown in FIG. 1C.
  • 8A to 8C show modified examples of the phosphor ceramic sheet shown in FIG. 1C.
  • FIG. 8A is a perspective view
  • FIG. 8B is a plan view
  • FIG. 8C is a cross-sectional view along AA in FIG.
  • Show. 9A to 9B are sectional views showing a modification of the optical semiconductor device of the present invention using the phosphor ceramic sheet shown in FIG. 8A.
  • FIG. 9A is a modification of the first embodiment of the optical semiconductor device.
  • 9B shows a modification of the second embodiment of the optical semiconductor device.
  • FIG. 10 is a sectional view of a conventional optical semiconductor device.
  • a phosphor ceramic plate will be described as one embodiment of the ceramic plate of the present invention.
  • the vertical direction of the paper surface is the vertical direction (first direction, thickness direction), the upper side of the paper surface is the upper side (one side in the first direction), and the lower side of the paper surface is the lower side (the other side in the first direction).
  • the left-right direction of the drawing is the front-rear direction (second direction orthogonal to the first direction), the left side of the drawing is the front side (one side in the second direction), and the right side of the drawing is the rear side (the other side in the second direction).
  • the paper thickness direction is the left-right direction (a third direction orthogonal to the first direction and the second direction), the front side of the paper is the right side (the third direction on one side), and the back side of the paper is the left side (the other side in the third direction).
  • Drawings other than FIG. 2 also conform to the direction of FIG.
  • a method for manufacturing the phosphor plate 1 includes a preparation step of preparing a phosphor ceramic sheet 4 as an embodiment of a ceramic sheet, and forming a through hole 2 in the phosphor ceramic sheet 4 And the through-hole formation process which exposes the end surface 3 which divides the through-hole 2, and the cutting process which cut
  • each step will be described in detail.
  • the phosphor ceramic sheet 4 is prepared. Specifically, the phosphor green sheet 9 is prepared, and then the phosphor green sheet 9 is fired.
  • a phosphor green sheet 9 is prepared.
  • slurry (slurry) molding for example, compression molding such as cold isostatic pressing (CIP), hot isostatic pressing (HIP), for example, Examples include injection molding.
  • CIP cold isostatic pressing
  • HIP hot isostatic pressing
  • slurry molding and compression molding are exemplified, and more preferably, slurry molding is exemplified.
  • slurry molding first, for example, a slurry containing a phosphor composition containing a phosphor material, organic particles and a binder, and a dispersion medium is prepared.
  • the phosphor material is a raw material of the phosphor and is appropriately selected according to the phosphor.
  • the phosphor has a wavelength conversion function, and examples thereof include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphors examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca, Lu) 3 (Al, Si, Ge, B, P, Ga) 5 O 12 : Ce (YAG (Yttrium Aluminum Garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (Terbium, aluminum, garnet): A garnet-type phosphor having a garnet-type crystal structure such as Ce), for example, an oxynitride phosphor such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca, Lu) 3 (Al, Si, Ge, B
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • a garnet-type phosphor is preferable, and YAG: Ce (Y 3 Al 5 O 12 : Ce) is more preferable.
  • the phosphor material includes, for example, a single metal constituting the phosphor, a metal oxide thereof, a metal nitride, and the like.
  • examples of the phosphor material include yttrium-containing compounds such as yttrium oxide, aluminum-containing compounds such as aluminum oxide, and cerium-containing compounds such as cerium oxide.
  • a metal oxide is mentioned.
  • the phosphor material is formed in, for example, a particulate form (or a powder form).
  • the purity of the phosphor material is, for example, 99.0% by mass or more, and preferably 99.9% by mass or more.
  • Organic particles are contained in the phosphor composition as necessary in order to form fine pores (not shown) in the phosphor ceramic sheet 4.
  • the organic material for forming the organic particles may be any material that can be completely pyrolyzed during firing (described later).
  • an acrylic resin specifically, polymethyl methacrylate
  • a styrene resin an acrylic-styrene type
  • thermoplastic resins such as resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimide resins
  • thermosetting resins such as epoxy resins and silicone resins.
  • a thermoplastic resin is used, and more preferably an acrylic resin is used.
  • the average particle diameter of the organic particles is not particularly limited, and is, for example, 3.4 ⁇ m or more, preferably 4.0 ⁇ m or more, and, for example, 25.0 ⁇ m or less, preferably 20.0 ⁇ m or less, more preferably 8.0 ⁇ m or less.
  • the content ratio of the organic particles is, for example, 1.5% by volume or more, preferably 2.0% by volume or more, and, for example, 12.0% by volume with respect to the total content of the phosphor material and the organic particles. % Or less, preferably 10.0% by volume or less, and more preferably 8.0% by volume or less.
  • binder examples include resins such as acrylic polymer, butyral polymer, vinyl polymer, and urethane polymer. Moreover, a water-soluble binder is mentioned as a binder. An acrylic polymer is preferable, and a water-soluble acrylic polymer is more preferable.
  • the content ratio of the binder is, for example, 10 parts by volume or more, preferably 20 parts by volume or more, more preferably 30 parts by volume or more with respect to a total of 100 parts by volume of the phosphor material and the binder. It is set to be not more than volume part, preferably not more than 50 volume part, more preferably not more than 40 volume part.
  • the phosphor composition may further contain additives such as a dispersant, a plasticizer, and a firing aid, if necessary.
  • the dispersion medium is not particularly limited as long as the phosphor material and the organic particles can be dispersed.
  • the dispersion medium include water, for example, an organic dispersion medium such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, methyl propionate, and methyl cellosolve.
  • water is used.
  • the content rate of a dispersion medium is 1 mass% or more and 30 mass% or less with respect to a slurry, for example.
  • the above components are blended in the above proportions and wet-mixed with, for example, a ball mill.
  • a component other than organic particles can be wet mixed to prepare a preliminary slurry, and then the organic particles can be wet mixed with the preliminary slurry to prepare a slurry.
  • the slurry is applied to the surface of the release sheet 10 and then dried.
  • the release sheet 10 is made of a flexible material.
  • a polyester sheet such as a polyethylene terephthalate (PET) sheet, a polycarbonate sheet such as a polyolefin sheet such as a polyethylene sheet and a polypropylene sheet, such as a polystyrene sheet, such as an acrylic sheet, such as silicone, and the like.
  • resin sheets such as resin sheets and fluororesin sheets.
  • metal foils, such as copper foil and stainless steel foil are also mentioned, for example.
  • a resin sheet is preferable, and a polyester sheet is more preferable.
  • the surface of the release sheet 10 may be subjected to a release treatment as necessary in order to improve the release property.
  • the thickness of the release sheet 10 is appropriately set from the viewpoints of handleability and cost, and specifically, is 10 ⁇ m or more and 200 ⁇ m or less.
  • the drying temperature is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
  • the drying time is, for example, 1 minute or more, preferably 2 minutes or more, and for example, 24 hours or less, preferably 5 hours or less.
  • the phosphor green sheet 9 is obtained while being supported by the release sheet 10.
  • the phosphor green sheet 9 is a sheet before firing the phosphor ceramic sheet 4 (see FIG. 1B), and has a plate shape extending in the front-rear direction and the left-right direction.
  • the release sheet 10 is released from the phosphor green sheet 9.
  • a plurality of (multi-layer) phosphor green sheets 9 can be laminated by thermal lamination to obtain a phosphor green sheet laminate 9.
  • the thickness of the phosphor green sheet 9 is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the phosphor green sheet 9 is fired.
  • Calcination temperature is, for example, 1300 ° C. or higher, preferably 1500 ° C. or higher, and for example, 2000 ° C. or lower, preferably 1800 ° C. or lower.
  • Calcination time is, for example, 1 hour or more, preferably 2 hours or more, and for example, 24 hours or less, preferably 8 hours or less.
  • the temperature increase rate in the firing is, for example, 0.5 ° C./min or more and 20 ° C./min or less.
  • a deorganic component treatment can also be performed.
  • the phosphor ceramic sheet 4 after firing (see FIG. 1B) is contracted with respect to the phosphor green sheet 9 (FIG. 1B) before firing.
  • the thickness T1 in the phosphor ceramic sheet 4 after firing is, for example, 99% or less, preferably 95% or less, more preferably 90% or less, with respect to the phosphor green sheet 9 before firing. For example, it is 60% or more.
  • the thickness T1 of the fired phosphor ceramic sheet 4 is, for example, 0.03 mm or more, preferably 0.05 mm or more, and, for example, 1.0 mm or less, preferably 0.3 mm. It is as follows.
  • the phosphor ceramic sheet 4 has a plurality of fine holes (not shown).
  • the average pore diameter of the pores is, for example, 2.5 ⁇ m or more, preferably 3.0 ⁇ m or more, more preferably 3.5 ⁇ m or more, and for example, 20.0 ⁇ m or less, preferably 16.0 ⁇ m or less, More preferably, it is 10.0 ⁇ m or less.
  • the through hole 2 is formed in the phosphor ceramic sheet 4 as shown in FIG. 1C.
  • Examples of the method for forming the through hole 2 include blasting.
  • Examples of blasting include direct pressure blasting and siphoning.
  • a resist is disposed on the phosphor ceramic sheet 4 to cover the portions other than the portions where the through holes 2 are provided with the resist, and then the spray material is sprayed onto the phosphor ceramic sheet 4.
  • the size of the through hole 2 and the inclination angle ( ⁇ ) of the end face 3 are appropriately adjusted by appropriately adjusting the type, particle size, spray speed, and method (direct pressure type, siphon type) of the injection material used for blasting. can do.
  • each of the plurality of end faces 3 partitioning each of the plurality of through holes 2 is formed in the phosphor ceramic sheet 4. That is, in the through hole forming step, the through hole 2 and the end surface 3 are formed simultaneously.
  • a plurality of through-holes 2 are arranged in a row (two front and rear rows and two left and right rows) at intervals in the front-rear direction and the left-right direction.
  • the through hole 2 penetrates the phosphor ceramic sheet 4 in the thickness direction (vertical direction).
  • the through hole 2 has a substantially rectangular shape in plan view (specifically, a substantially square shape in plan view). More specifically, in the substantially rectangular shape of the through hole 2, all (four) corners (corners) are rounded, that is, all the corners are formed in an arc shape. As shown in FIG. 2, the through hole 2 has a substantially tapered shape in a sectional view that becomes narrower toward the lower side while maintaining a substantially rectangular shape in a plan view.
  • the end surface 3 defines the inner peripheral surface of the through hole 2. As shown in FIG. 2, the end face 3 is inclined with respect to the thickness direction (vertical direction) in the phosphor ceramic sheet 4 (and eventually the phosphor plate 1 described later) in a cross-sectional view. Further, the inclination angle ⁇ formed by the end face 3 and the lower surface of the phosphor ceramic sheet 4 is an acute angle, and will be specifically described later.
  • the dimensions of the through-hole 2 are appropriately set according to the dimensions of a connecting portion 27 and a wire 29 (see FIG. 3C) of the optical semiconductor device 20 described later.
  • the length of the through-hole 2 (front-rear direction length W1 or left-right direction length W2) is, for example, 0.1 mm or more, preferably 0.3 mm or more, and, for example, 5 0.0 mm or less, preferably 1.0 mm or less.
  • the pitch (W3) between adjacent through holes 2, that is, the distance from one end of the through hole 2 to one end of the adjacent through hole 2 is, for example, 0.1 mm or more, preferably 1 mm or more. For example, it is 20 mm or less, preferably 10 mm or less.
  • the support sheet 5 As the support sheet 5, the support sheet 5 is supported in order to reliably cut the phosphor ceramic sheet 4, and then the cut phosphor ceramic sheet 4 (specifically, the phosphor plate 1) is peeled off. And a dicing tape having slight adhesiveness. Further, the dimensions of the support sheet 5 are appropriately adjusted according to the dimensions of the phosphor ceramic sheet 4. For example, the length of the support sheet 5 in the front-rear direction and the length in the left-right direction are the same as those of the phosphor ceramic sheet 4. On the other hand, it is long.
  • the phosphor ceramic sheet 4 is cut to form a plurality of phosphor plates 1 including the end faces 3.
  • the phosphor ceramic sheet 4 is cut by the cutting blade 6.
  • a dicing saw (dicing blade) that has a disk shape and is rotatable with respect to the axis thereof, for example, a cutter (not shown) having a cutting edge extending substantially horizontally.
  • the cutting blade 6 is preferably a dicing saw.
  • a dicing apparatus including a dicing saw and a cutting apparatus (not shown) including a cutter are used.
  • a dicing apparatus is used.
  • the phosphor ceramic sheet 4 is cut so that the first cutting line 11 formed by the cutting blade 6 passes through the plurality of through holes 2 to manufacture the phosphor plate 1.
  • the end surface 3 that divides one through hole 2 is given to each of the plurality of phosphor plates 1, and the phosphor ceramic sheet 4 is cut so that one end surface 3 is divided.
  • the phosphor ceramic sheet 4 is cut so that the end surfaces 3 that define one through hole 2 are provided to each of the four phosphor plates 1 and the one end surface 3 is divided into four.
  • the phosphor ceramic sheet 4 is cut so that the first cutting lines 11 pass through the centers of the plurality of through holes 2. Then, one end face 3 is divided into a plurality.
  • the first cutting line 11 extends in the front-rear direction and is disposed in the left-right direction with a space therebetween
  • the first front-rear cutting line 12 extends in the left-right direction and is disposed in the front-rear direction with a space therebetween.
  • a cutting line 13 extends in the front-rear direction and is disposed in the front-rear direction with a space therebetween.
  • the first front / rear cutting line 12 and the first left / right cutting line 13 intersect so as to be orthogonal to each other at the centers of the plurality of through holes 2.
  • the phosphor ceramic sheet 4 along the second cutting line 14 is cut along with the cutting of the phosphor ceramic sheet 4 along the first cutting line 11.
  • the second cutting line 14 does not pass through the through hole 2, and specifically passes between adjacent through holes 2.
  • the second cutting line 14 extends in the front-rear direction, the second front-rear cutting line 16 that is parallel to the first front-rear cutting line 12, and the second front-rear cutting line 14 that extends in the left-right direction and is parallel to the first left-right cutting line 13. 2 left and right cutting lines 17.
  • the second front and rear cutting lines 16 and the first front and rear cutting lines 12 are alternately arranged at equal intervals in the left-right direction.
  • the second left and right cutting lines 17 and the first left and right cutting lines 13 are alternately arranged at equal intervals in the front-rear direction.
  • each of the plurality of phosphor plates 1 is peeled off from the support sheet 5 by a pickup device (not shown) including a collet, for example.
  • the phosphor plate 1 has a flat plate shape having a flat upper surface and a flat lower surface.
  • the peripheral side surface of the phosphor plate 1 is continuous with the end surface 3 divided from the end surface 3 of one through-hole 2 and the two first cutting lines 11 that are continuous with both end portions of the end surface 3 and are orthogonal to each other.
  • Two first side surfaces 18 (two side surfaces) and two second side surfaces 19 are continuous to both ends of the first side surface 18 along the second cutting line 14 or the peripheral surface of the phosphor ceramic sheet 4 orthogonal to each other) 2 side surfaces).
  • the phosphor plate 1 has a substantially rectangular shape in plan view (specifically, a substantially square shape in plan view) as shown in FIG. 3B.
  • the phosphor plate 1 has a cutout portion 7 formed by dividing the phosphor plate 1 into four through holes 2.
  • the cutout portion 7 is formed so as to be cut out in a substantially rectangular shape in plan view (substantially square shape in plan view) inward from the peripheral end surface of the corner portion (corner) of the phosphor plate 1. That is, the notch 7 is formed in a substantially rectangular shape in plan view at the corner of the phosphor plate 1.
  • the end surface 3 that defines the notch 7 is inclined with respect to the thickness direction (vertical direction) of the phosphor plate 1 in a cross-sectional view.
  • angular part 8 of the end surface 3 has a curved shape in planar view, as shown to FIG. 3B.
  • the end surface 3 has a substantially L shape with a predetermined width in a plan view, and the corner portion 8 of the L shape in the plan view is formed to be round. That is, it is formed in an arc shape.
  • the first side surface 18 and the second side surface 19 are perpendicular to the surface direction (front-rear direction and left-right direction) of the phosphor plate 1 along the thickness direction of the phosphor plate 1 in a cross-sectional view.
  • the dimensions of the plurality of phosphor plates 1 are appropriately set according to the dimensions of the optical semiconductor element 28 described later.
  • the front-rear direction length L1 and the left-right direction length L2 of the phosphor plate 1 are, for example, 0.1 mm or more, preferably 0.5 mm or more, and for example, 10 mm or less, preferably 2.0 mm or less. is there.
  • the thickness is the same as the thickness T1 of the phosphor ceramic sheet 4 described above.
  • the radius of curvature R of the corner 8 of the end face 3 is, for example, 0.01 mm or more, preferably 0.05 mm or more, and, for example, 0.20 mm or less, preferably 0.15 mm or less.
  • the inclination angle ⁇ of the end face 3 is, for example, 30 degrees or more, preferably 51 degrees or more, for example, 89 degrees or less, preferably 80 degrees or less with respect to the lower surface of the phosphor plate 1.
  • the inclination angle ⁇ is the angle formed between the lower surface of the phosphor plate 1 and the end surface 3, but the inclination angle sheet is the angle formed between the lower surface of the phosphor plate 1 and the end surface 3, or Of the angles formed by the upper surface of the phosphor plate 1 and the end surface 3, the angle is defined as the smaller one (the acute angle).
  • the front-rear direction length D1 and the left-right direction length D2 at the upper end of the cutout part 7 are, for example, 0. It is 05 mm or more, preferably 0.10 mm or more, and is, for example, 1.0 mm or less, preferably 0.5 mm or less.
  • the front-rear direction length D3 and the left-right direction length D4 at the lower end of the cutout portion 7 are D1 and For D2, for example, it is 95% or less, preferably 90% or less, and for example, 40% or more, preferably 50% or more. Specifically, for example, it is 0.03 mm or more, preferably 0.05 mm or more, and for example, 1.0 mm or less, preferably 0.5 mm or less.
  • the phosphor plate 1 is not the optical semiconductor device 20 described in the next FIG. 4C.
  • the phosphor plate 1 is one part of the optical semiconductor device 20, that is, a part for producing the optical semiconductor device 20, and does not include the optical semiconductor element 28.
  • the phosphor plate 1 is a device that circulates by itself and is industrially usable, but is not limited thereto.
  • an element-equipped substrate 30 including a substrate 26 and an optical semiconductor element 28 is prepared.
  • the substrate 26 has a substantially plate shape and is made of, for example, an insulating material.
  • a conductor pattern including the terminal portion 25 is formed on the upper surface of the substrate 26.
  • the optical semiconductor element 28 is fixed to the upper surface of the substrate 26 and is arranged at a distance from the terminal portion 25.
  • the optical semiconductor element 28 has a substantially rectangular plate shape and is made of an optical semiconductor material. Further, a connection portion (terminal) 27 for wire bonding is formed at one corner (corner) of the upper surface (one surface) of the optical semiconductor element 28.
  • the element-attached substrate 30 is manufactured by a step of preparing the substrate 26 and a step of mounting the optical semiconductor element 28 on the upper surface of the substrate 26.
  • the phosphor plate 1 is disposed on the upper surface of the optical semiconductor element 28.
  • the phosphor plate 1 is disposed on the upper surface of the optical semiconductor element 28 so that the angle formed by the upper surface of the optical semiconductor element 28 and the end surface 3 is an acute angle.
  • the phosphor plate 1 is arranged so that the connecting portion 27 is exposed. That is, the cutout portion 7 is arranged so as to include the connection portion 27 when projected in the thickness direction.
  • the phosphor plate 1 when the phosphor plate 1 is projected in the thickness direction, the phosphor plate 1 is disposed so as to include the optical semiconductor element 28 in a portion excluding the notch portion 7. That is, the peripheral edge of the phosphor plate 1 is located outside the peripheral edge of the optical semiconductor element 28 in the portion excluding the notch 7.
  • the phosphor plate 1 is fixed to the optical semiconductor element 28 via the adhesive by interposing an adhesive (not shown) between the phosphor plate 1 and the optical semiconductor element 28.
  • connection portion 27 of the optical semiconductor element 28 and the terminal portion 25 of the substrate 26 are wire-bonded.
  • one end portion of the wire 29 is connected to the connection portion 27, and the other end portion of the wire 29 is connected to the terminal portion 25.
  • the wire 29 is arranged so as to be bent into a substantially U-shape opened downward. Further, the wire 29 is arranged so that the upper end of the wire 29 is positioned above the upper surface of the optical semiconductor element 28.
  • optical semiconductor device 20 of the first embodiment is obtained.
  • the optical semiconductor device 20 includes a substrate 26 having terminal portions 25, an optical semiconductor element 28 having a connection portion 27 disposed on the upper surface of the substrate 26, and fluorescence disposed on the upper surface of the optical semiconductor element 28.
  • the body plate 1 and a wire 29 for connecting the connecting portion 27 and the terminal portion 25 are provided.
  • the phosphor plate 1 is disposed on the upper surface of the optical semiconductor element 28 so that the angle formed between the upper surface of the optical semiconductor element 28 and the end surface 3 is an acute angle.
  • the acute angle is the same as the inclination angle ⁇ of the end face 3.
  • a light reflection layer 31 is disposed on the optical semiconductor device 20 as indicated by a virtual line in FIG. 4C.
  • connection portion 27 and the peripheral side surface of the optical semiconductor element 28 the peripheral side surface of the phosphor plate 1, and the wire 29, and to expose the upper surface of the phosphor plate 1.
  • Layer 31 is disposed.
  • a liquid reflecting resin composition containing a light reflecting component for example, aluminum oxide, titanium oxide
  • a curable resin for example, a thermosetting resin such as a silicone resin.
  • the mountability for connecting the connection portion 27 of the optical semiconductor element 28 and the terminal portion 25 of the substrate 26 with the wire 29 is excellent.
  • the end surface 3 of the notch 7 is perpendicular to the upper and lower surfaces of the optical semiconductor device 20 (that is, ⁇ is 90 degrees) as shown in FIG. It is formed to become. Therefore, for example, when wire bonding is performed from the upper rear side in FIG. 10, the upper end portion 40 of the corner portion of the phosphor plate 1 becomes an obstacle, and the visibility of the connection portion 27 and the wire bonding operation to the connection portion 27 are performed. Sex is reduced.
  • the phosphor plate 1 is provided with a notch portion 7 that is notched inward from a corner portion that is substantially rectangular in plan view, and the end surface 3 that defines the notch portion 7 is: It is inclined with respect to the vertical direction. Then, the phosphor plate 1 is disposed on the upper surface of the optical semiconductor element 28 so that the angle ⁇ formed by the upper surface of the optical semiconductor element 28 and the end face 3 is an acute angle. Therefore, there is no upper end portion 40 at the corner of the phosphor plate 1. As a result, the visibility of the connecting portion 27 from obliquely above is ensured. In addition, the wire bonding workability is improved with respect to the connection portion 27.
  • the corner 8 of the end surface 3 of the notch 7 of the phosphor plate 1 has a curved shape in plan view. Therefore, compared with the case where the corner portion 8 of the end surface 3 has a right-angle shape in plan view, the stress concentration on the corner portion 8 of the end surface 3 is alleviated. As a result, the occurrence of cracks can be suppressed.
  • the optical semiconductor device 20 of the first embodiment obtained by this manufacturing method has a good yield.
  • Second Embodiment of Optical Semiconductor Device and Manufacturing Method Thereof A method for manufacturing the optical semiconductor device 20 according to the second embodiment of the present invention using the phosphor plate 1 will be described.
  • an element-equipped substrate 30 including a substrate 26 and an optical semiconductor element 28 is prepared. This step is the same as in the first embodiment.
  • connection portion 27 of the optical semiconductor element 28 and the terminal portion 25 of the substrate 26 are wire-bonded.
  • the wire bonding method is the same as in the first embodiment.
  • the phosphor plate 1 is disposed on the upper surface of the optical semiconductor element 28.
  • the phosphor plate 1 is arranged on the upper surface of the optical semiconductor element 28 so that the angle ( ⁇ ′) formed by the upper surface of the optical semiconductor element 28 and the end surface 3 becomes an obtuse angle.
  • the phosphor plate 1 is arranged so that the connecting portion 27 is exposed. That is, the cutout portion 7 is arranged so as to include the connection portion 27 when projected in the thickness direction.
  • the phosphor plate 1 when the phosphor plate 1 is projected in the thickness direction, the phosphor plate 1 is disposed so as to include the optical semiconductor element 28 in a portion excluding the notch portion 7. That is, the peripheral edge of the phosphor plate 1 is located outside the peripheral edge of the optical semiconductor element 28 in the portion excluding the notch 7.
  • the phosphor plate 1 is fixed to the optical semiconductor element 28 via the adhesive by interposing an adhesive (not shown) between the phosphor plate 1 and the optical semiconductor element 28.
  • the optical semiconductor device 20 includes a substrate 26 having terminal portions 25, an optical semiconductor element 28 having a connection portion 27 disposed on the upper surface of the substrate 26, and fluorescence disposed on the upper surface of the optical semiconductor element 28.
  • the body plate 1 and a wire 29 for connecting the connecting portion 27 and the terminal portion 25 are provided.
  • the phosphor plate 1 is disposed on the upper surface of the optical semiconductor element 28 so that an angle ( ⁇ ′) formed between the upper surface of the optical semiconductor element 28 and the end surface 3 is an obtuse angle.
  • the obtuse angle ⁇ ′ is, for example, 91 degrees or more, preferably 100 degrees or more, and for example, 150 degrees or less, preferably 129 degrees or less.
  • the phosphor plate 1 is disposed so as to include the optical semiconductor element 28 in a portion excluding the cutout portion 7 when projected in the thickness direction. That is, the peripheral edge of the phosphor plate 1 is located outside the peripheral edge of the optical semiconductor element 28 in the portion excluding the notch 7.
  • a light reflecting layer 31 is disposed on the optical semiconductor device 20 as indicated by a virtual line in FIG. 6C.
  • the mountability for connecting the connection portion 27 of the optical semiconductor element 28 and the terminal portion 25 of the substrate 26 with a wire is excellent.
  • the end surface of the notch 7 is perpendicular to the upper and lower surfaces of the optical semiconductor device 20 (that is, ⁇ is 90 degrees) as shown in FIG. It is formed as follows. Therefore, for example, when the phosphor plate 1 is disposed after wire bonding first, if the position of the phosphor plate 1 is shifted, the phosphor plate is located at the base of the wire 29 (that is, near the bonding with the terminal portion 25). 1 is in contact, and there is a problem (contact failure) in which the wire 29 is detached from the terminal portion 25.
  • the phosphor plate 1 is provided with a notch portion 7 that is notched inward from a corner portion that is substantially rectangular in plan view, and the end surface 3 that defines the notch portion 7 is: It is inclined with respect to the vertical direction. Then, the phosphor plate 1 is arranged on the upper surface of the optical semiconductor element 28 so that the angle ⁇ ′ formed by the upper surface of the optical semiconductor element 28 and the end surface 3 becomes an obtuse angle. Therefore, the lower surface of the phosphor plate 1 can increase the distance with respect to the connection portion 27, and the contact of the phosphor plate 1 at the base of the wire 29 can be suppressed. As a result, contact failure can be suppressed.
  • the corner 8 of the end surface 3 of the notch 7 of the phosphor plate 1 has a curved shape in plan view. Therefore, compared with the case where the corner portion 8 of the end surface 3 has a right-angle shape in plan view, the stress concentration on the corner portion 8 of the end surface 3 is alleviated. As a result, the occurrence of cracks can be suppressed.
  • the optical semiconductor device 20 of the second embodiment obtained by this manufacturing method has a good yield.
  • the through-hole 2 is formed by blasting, the through-hole 2 can also be formed by laser processing, for example.
  • an ultrashort pulse laser is preferable, and a picosecond laser and a femtosecond laser are more preferable.
  • the cross-sectional view becomes narrower toward the upper side while maintaining a substantially rectangular shape in plan view.
  • the through hole 2 having a substantially tapered shape can be formed.
  • the output, frequency, pulse width, etc. of the laser oscillator used for laser processing By appropriately adjusting the output, frequency, pulse width, etc. of the laser oscillator used for laser processing, the size of the through hole, the inclination angle, etc. can be adjusted as appropriate.
  • blasting is preferable.
  • the plan view shape of the phosphor plate 1 is substantially square, but for example, although not shown, the plan view shape of the phosphor plate
  • a rectangular shape (rectangular shape) other than a square shape for example, a polygonal shape such as a pentagonal shape or a hexagonal shape, for example, an arc shape or the like can be used.
  • the fluorescent substance plate 1 when the fluorescent substance plate 1 is projected in the thickness direction, in the part except the notch part 7, the fluorescent substance plate 1 is an optical semiconductor.
  • the phosphor plate 1 coincides with the optical semiconductor element 28 in the portion excluding the notch portion 7 when projected in the thickness direction (same as the same).
  • the peripheral edge of the phosphor plate 1 can be made to coincide with the peripheral edge of the optical semiconductor element 28 in a portion excluding the notch 7.
  • the notches 7 are formed only at a single corner (corner) of the phosphor plate 1.
  • the notch 7 can be formed at a plurality of corners.
  • the position of the notch part 7 can also be formed in places other than a corner
  • planar view shape of the notch part 7 is substantially square shape, for example, although not shown in figure, the planar view shape of the notch part 7 is rectangular shape (rectangular shape) other than square shape, for example, a polygonal shape such as a pentagonal shape or a hexagonal shape, for example, an arc shape.
  • the number of through holes 2 is not limited to four, but may be three or less, and may be four or more. Depending on the number of through holes 2, the number and position of the second front and rear cutting lines and the second left and right cutting lines are appropriately adjusted.
  • the phosphor ceramic sheet 4 is cut by the cutting blade 6.
  • the first cutting line 11 and the second cutting line 14 can be formed by blasting. The blasting is the same as the method described in the formation of the through hole 2.
  • the first side surface 18 and the second side surface 19 are inclined with respect to the thickness direction (vertical direction) of the phosphor plate 1 in a cross-sectional view.
  • the inclination angles of the first side surface 18 and the second side surface 19 are the same as the inclination angle ⁇ of the end surface 3.
  • the optical semiconductor device 20 shown in FIG. 9A or 9B is manufactured in the same manner as the manufacturing method shown in FIGS. 4A to 4C or the manufacturing method shown in FIGS. 6A to 6B. Can be manufactured.
  • the formation of the through hole 2 and the cutting of the phosphor ceramic sheet 4 can be performed by the same means of blasting, so that the productivity is improved.
  • the phosphor ceramic sheet 4 is cut by the cutting blade 6.
  • the phosphor ceramic sheet 4 can be scribed and broken. Further, the phosphor ceramic sheet 4 can be cut by a laser.
  • the phosphor ceramic plate and the optical semiconductor device including the phosphor ceramic plate are described as an embodiment of the ceramic plate of the present invention.
  • Examples include an optical ceramic plate that does not contain a body.
  • Examples of such an optical ceramic plate include a light diffusion layer. In the light diffusion layer, a light reflection component made of inorganic particles such as titanium oxide and aluminum oxide is used instead of the phosphor material.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc.
  • the upper limit value number defined as “less than” or “less than”
  • lower limit value number defined as “greater than” or “exceeded”
  • Example 1 (Preparation process) A phosphor comprising 11.34 g of yttrium oxide particles (purity 99.99%, manufactured by Japan Yttrium Co.), 8.577 g of aluminum oxide particles (purity 99.99%, manufactured by Sumitomo Chemical Co., Ltd.), and 0.087 g of cerium oxide particles. A powder of material was prepared.
  • phosphor material powder 20 g
  • a water-soluble binder (“WB4101”, manufactured by Polymer Innovations, Inc.) were mixed so that the volume ratio of the solid content was 62:38, and distilled water was further added.
  • a pre-slurry was prepared by placing in a container made of alumina, adding zirconia balls having a diameter of 3 mm, and wet mixing with a ball mill for 24 hours.
  • organic particles polymethyl methacrylate, average particle size 3.5 ⁇ m
  • the total content of the phosphor material and the organic particles is 3.0% by volume
  • the slurry was applied to the surface of a release sheet made of a PET sheet by a doctor blade method and dried at 70 ° C. for 5 minutes to obtain a phosphor green sheet 9 having a thickness of 55 ⁇ m (see FIG. 1A).
  • the phosphor green sheet 9 was peeled from the PET sheet, and then the phosphor green sheet 9 was cut into a size of 20 mm ⁇ 20 mm. Two phosphor green sheets 9 that were cut were laminated and thermally laminated using a hot press to prepare a phosphor green sheet laminate 9 having a thickness of 110 ⁇ m.
  • the phosphor green sheet laminate 9 is heated (preliminarily heated) to 1200 ° C. in the air at a temperature rising rate of 2 ° C./min in an electric muffle furnace, thereby thermally decomposing and dissolving the water-soluble binder and the organic particles. Removed.
  • the phosphor green sheet laminate 9 is transferred to a high-temperature environmental furnace, heated to 1800 ° C. at a rate of temperature increase of 5 ° C./min in a reducing atmosphere, and baked at that temperature for 5 hours, whereby a fluorescent material having a thickness of 100 ⁇ m is obtained.
  • the body ceramic sheet 4 was manufactured (see FIG. 1B).
  • the irradiation beam diameter was set to 4 mm ⁇ , and drilling was performed at 600 uJ (see FIGS. 1C and 7).
  • the through-hole 2 has a substantially rectangular shape in plan view, the length of each side (W1, W2) is 0.40 mm, the radius of curvature (R) of the corner 8 is 0.1 mm, and the inclination angle ( ⁇ ) of the end face is It was 67 degrees. Moreover, the pitch (W3) of the through holes 2 was 2.1 mm.
  • the length (L1, L2) of each side of the obtained phosphor ceramic plate 1 is 1.0 mm, and the length (D1, D2) of each side of the cutout portion 7 is 0. It was 18 mm.
  • Example 2 A phosphor ceramic plate 1 was manufactured in the same manner as in Example 1 except that in the through hole forming step, direct pressure blasting was performed instead of ultrashort pulse laser processing (see FIG. 2).
  • a resist film was pasted on the phosphor ceramic sheet 4 and patterning exposure was performed so that the predetermined through hole 2 was formed.
  • blasting with alumina particles was performed using a direct pressure type alumina blasting apparatus (Nitsch, “trade name PAM102”).
  • the through-hole 2 has a substantially rectangular shape in plan view, the length of each side (W1, W2) is 0.40 mm, the radius of curvature (R) of the corner 8 is 0.1 mm, and the inclination angle ( ⁇ ) of the end face is It was 79 degrees.
  • the length (L1, L2) of each side of the obtained phosphor ceramic plate 1 is 1.0 mm, and the length (D1, D2) of each side of the cutout portion 7 is 0. It was 18 mm.
  • Example 3 In the through hole forming step, a phosphor ceramic plate 1 was manufactured in the same manner as in Example 1 except that siphon blasting was performed instead of ultrashort pulse laser processing (see FIG. 2).
  • a resist film was pasted on the phosphor ceramic sheet 4 and patterning exposure was performed so that the predetermined through hole 2 was formed.
  • blasting with alumina particles was performed using a siphon-type alumina blasting apparatus (Nitsch, “trade name PAM102”).
  • the through-hole 2 has a substantially rectangular shape in plan view, the length of each side (W1, W2) is 0.40 mm, the radius of curvature (R) of the corner 8 is 0.1 mm, and the inclination angle ( ⁇ ) of the end face is It was 46 degrees.
  • the length (L1, L2) of each side of the obtained phosphor ceramic plate 1 is 1.0 mm, and the length (D1, D2) of each side of the cutout portion 7 is 0. It was 18 mm.
  • Example 4 In addition to the through hole forming step, the phosphor ceramic plate 1 was manufactured in the same manner as in Example 2 except that the cutting step was also blasted.
  • the through-hole 2 has a substantially rectangular shape in plan view, the length of each side (W1, W2) is 0.40 mm, the radius of curvature (R) of the corner 8 is 0.1 mm, the end face, the first side face 18 and the first side face 18.
  • the inclination angle ( ⁇ ) of the two side surfaces 19 was 79 degrees.
  • the length (L1, L2) of each side of the obtained phosphor ceramic plate 1 is 1.0 mm, and the length (D1, D2) of each side of the cutout portion 7 is 0. It was 18 mm.
  • Example 1 In Example 1, after the preparation step, the phosphor ceramic sheet 4 is temporarily fixed to a support sheet 5 made of a dicing tape, and cut in a front and rear direction and a left and right direction at a pitch of 1.05 mm with a dicing saw having a blade thickness of 40 ⁇ m, A phosphor ceramic plate 1 having a substantially square shape in a plan view having a side of 1.0 mm was produced.
  • the length (W1, W2) of each side of the notch 7 is 0.18 mm, and the angle of the corner 8 of the notch 7 is a right-angle shape in plan view (90 The inclination angle ( ⁇ ) of the end face was 90 degrees.
  • Comparative Example 2 Instead of using a 90-degree V-shaped blade (Disco, “B1E8 series”, blade thickness 100 ⁇ m), a notch was formed using a trapezoidal blade (Disco, “B1N8 series”, blade thickness 100 ⁇ m). Except for the above, a phosphor ceramic plate 1 was produced in the same manner as in Comparative Example 1.
  • the length (D1) of each side of the notch 7 is 0.18 mm, and the radius of curvature (R) of the corner 8 of the notch 7 is 0.1 mm.
  • the inclination angle ( ⁇ ) of the end face was 90 degrees.
  • a multilayer ceramic substrate with a cavity (manufactured by Sumitomo Metal Electrodevices, “Part No. 207806”, housing height 0.6 mmt, housing material alumina reflectance 75%) was prepared.
  • a one-wire type blue light-emitting diode chip having a square shape in plan view and having a side length of 40 mil (1.0 mm) having a connecting portion 27 formed at one corner (corner) on the upper surface (optical semiconductor element) And a thickness of 100 ⁇ m).
  • the diode chip 28 was die-attached to the multilayer ceramic substrate 26 with Au—Sn solder to produce a substrate 30 with an element.
  • the phosphor ceramic plate 1 of each of the examples is mounted on the blue light-emitting diode chip so that the connecting portion 27 is exposed and the end surface 3 of the phosphor ceramic plate 1 is at an acute angle ( ⁇ ) with respect to the upper surface of the diode chip. 28 on the top surface.
  • the optical semiconductor device 20 of the first embodiment was manufactured by wire bonding the connection part 27 and the terminal part 25 of the multilayer ceramic substrate 26 with Au wire.
  • the length L (refer to FIG. 4C) in the left-right direction of the portion covered with the light reflecting layer 31 on the end surface 3 of the notch 7 was measured.
  • the length L is shorter than the thickness T1 of the phosphor ceramic plate 1 since the area of the color change occurring at the peripheral edge is small, it is evaluated as ⁇ , and when it is almost equal, it is evaluated as ⁇ .
  • the long case was evaluated as x. The results are shown in Table 1.
  • the element-attached substrate 30 was manufactured in the same manner as the optical semiconductor device 20 of the first embodiment. Subsequently, the connection part 27 and the terminal part 25 of the multilayer ceramic substrate 26 were wire-bonded with Au wires.
  • the phosphor ceramic plate 1 of each example is a diode so that the connecting portion 27 is exposed and the end surface of the phosphor ceramic plate 1 is at an obtuse angle ( ⁇ ′) with respect to the upper surface of the diode chip 28. It was arranged on the upper surface of the chip 28. Thereby, the optical semiconductor device 20 of the second embodiment was manufactured.
  • the phosphor ceramic plate 1 When the phosphor ceramic plate 1 is disposed on the upper surface of the diode chip 28, the phosphor ceramic plate 1 is displaced by 25 ⁇ m from the normal alignment position in either the front-rear direction or the left-right direction toward the wire. did.
  • the wire near the terminal part of the optical semiconductor device was observed using a microscope (manufactured by Keyence Corporation, “Digital Microscope VHX-2000”). The case where the phosphor ceramic plate was not in contact with the wire was evaluated as ⁇ , and the case where it was in contact was evaluated as x.
  • the phosphor ceramic sheet 1 was produced by cutting the phosphor ceramic sheet 4 in a high speed mode.
  • the ceramic plate of the present invention is used for manufacturing an optical semiconductor device, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

セラミックスプレートは、平板形状を有するセラミックスプレートであって、周端面から内側に切り欠かれる切り欠き部が設けられており、切り欠き部を区画する端面が、セラミックスプレートの厚み方向に対して、傾斜する。

Description

セラミックスプレート、その製造方法および光半導体装置
 本発明は、セラミックスプレート、その製造方法および光半導体装置、詳しくは、セラミックスプレート、そのセラミックスプレートの製造方法、および、そのセラミックスプレートを備える光半導体装置に関する。
 従来、セラミック材料を含むルミネセンス変換要素を、放射放出半導体チップとともにオプトエレクトロニクス部品に用いることが知られている。
 ルミネセンス変換要素は、例えば、切取り部を有するL字板形状に形成されている(例えば、特許文献1参照。)。特許文献1では、ルミネセンス変換要素の下面を放射放出半導体チップの上面に接合し、切取り部から露出する放射放出半導体チップの角領域に設けられるボンディングパッドをボンディングワイヤで接続したオプトエレクトロニクス部品が提案されている。
特表2014-502368号公報
 しかるに、近年、オプトエレクトロニクス部品において、ボンディングパッドをボンディングワイヤで接続するための実装性の向上が求められている。
 本発明の目的は、実装性に優れるセラミックスプレート、その製造方法および光半導体装置を提供することにある。
 本発明[1]は、平板形状を有するセラミックスプレートであって、周端面から内側に切り欠かれる切り欠き部が設けられ、前記切り欠き部を区画する端面が、前記セラミックスプレートの厚み方向に対して、傾斜するセラミックスプレートを含んでいる。
 本発明[2]は、前記端面の傾斜角度が、前記端面と前記セラミックスプレートの上面または下面とのなす角度のうち一方が、仮想面に対して、30度以上89度以下である[1]に記載のセラミックスプレートを含んでいる。
 本発明[3]は、前記端面は、平面視において、湾曲形状を有する[1]または[2]に記載のセラミックスプレートを含んでいる。
 本発明[4]は、光半導体素子と、光半導体素子の一方面に配置される[1]~[3]のいずれかに記載のセラミックスプレートとを備える光半導体装置を含んでいる。
 本発明[5]は、前記セラミックスプレートは、前記光半導体素子の一方面および前記端面がなす角度が鋭角となるように、前記光半導体素子の一方面に配置されている[4]に記載の光半導体装置を含んでいる。
 本発明[6]は、前記セラミックスプレートは、前記光半導体素子の一方面および前記端面がなす角度が鈍角となるように、前記光半導体素子の一方面に配置されている[4]に記載の光半導体装置を含んでいる。
 本発明[7]は、セラミックスシートを用意する工程と、前記セラミックスシートに貫通孔を形成し、前記貫通孔を区画する端面を露出する工程と、前記セラミックスシートを切断して、前記端面を含む複数のセラミックスプレートを形成する工程とを順に備え、前記端面が、前記セラミックスシートの厚み方向に対して、傾斜するセラミックスプレートの製造方法を含んでいる。
 本発明[8]は、前記セラミックスシートを切断する際に露出する側面が、前記セラミックスシートの厚み方向に対して、傾斜する、[7]に記載のセラミックスプレートの製造方法を含んでいる。
 本発明のセラミックスプレートによれば、光半導体素子に設けられているボンディングパッドをボンディングワイヤで接続するための実装性に優れる。
 本発明のセラミックスプレートの製造方法によれば、ボンディングワイヤの実装性に優れるセラミックスプレートを製造することができる。
 本発明の光半導体装置によれば、本発明のセラミックスプレートを用いているため、歩留まりが良好である。
図1A~図1Dは、本発明のセラミックスプレートの製造方法の一実施形態を示す工程図の斜視図であって、図1Aは、蛍光体グリーンシートを用意する工程、図1Bは、蛍光体グリーンシートを焼成して、蛍光体セラミックスシートを形成する工程、図1Cは、蛍光体セラミックスシートに貫通孔を形成する工程、図1Dは、蛍光体セラミックスシートを切断刃により切断して、複数の蛍光体セラミックスプレートを得る工程を示す。 図2は、図1Cの蛍光体セラミックスシートの貫通孔における側断面図を示す。 図3A~図3Cは、本発明のセラミックスプレートの一実施形態を示し、 図3Aは、斜視図、 図3Bは、平面図、図3Cは、図3BのA-Aに沿う断面図を示す。 図4A~図4Cは、本発明の光半導体装置の第1実施形態を製造する工程図の断面図であって、図4Aは、素子付基板を用意する工程、図4Bは、光半導体素子の上に蛍光体セラミックスプレートを配置する工程、図4Cは、ワイヤボンディングして、光半導体装置を得る工程を示す。 図5は、図4Cの光半導体装置の斜視図を示す。 図6A~図6Cは、本発明の光半導体装置の第2実施形態を製造する工程図の断面図であって、図6Aは、光半導体素子付基板を用意する工程、図6Bは、ワイヤボンディングする工程、図6Cは、光半導体素子の上に蛍光体セラミックスプレートを配置して、光半導体装置を得る工程を示す。 図7は、図1Cに示す蛍光体セラミックスシートの貫通孔の他の実施形態の断面図を示す。 図8A~図8Cは、図1Cに示す蛍光体セラミックスシートの変形例を示し、 図8Aは、斜視図、図8Bは、平面図、図8Cは、図8BのA-Aに沿う断面図を示す。 図9A~図9Bは、図8Aに示す蛍光体セラミックスシートを用いた本発明の光半導体装置の変形例の断面図を示し、図9Aは、光半導体装置の第1実施形態の変形例、図9Bは、光半導体装置の第2実施形態の変形例を示す。 図10は、従来の光半導体装置の断面図を示す。
 <蛍光体セラミックスプレート>
 本発明のセラミックスプレートの一実施形態として、蛍光体セラミックスプレートについて説明する。
 1.蛍光体セラミックスプレートの製造方法
 まず、本発明の一実施形態の蛍光体セラミックスプレート1(以下、単に蛍光体プレート1ともいう。)の製造方法の一実施形態を図1A~図3Cを用いて説明する。
 図2において、紙面上下方向は、上下方向(第1方向、厚み方向)であり、紙面上側が上側(第1方向一方側)、紙面下側が下側(第1方向他方側)である。紙面左右方向は、前後方向(第1方向に直交する第2方向)であり、紙面左側が前側(第2方向一方側)、紙面右側が後側(第2方向他方側)である。紙厚方向は、左右方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が右側(第3方向一方側)、紙面奥側が左側(第3方向他方側)である。図2以外の図面についても図2の方向に準拠する。
 蛍光体プレート1の製造方法は、図1A~図1Cに示すように、セラミックスシートの一実施形態としての蛍光体セラミックスシート4を用意する用意工程と、蛍光体セラミックスシート4に貫通孔2を形成し、貫通孔2を区画する端面3を露出する貫通孔形成工程と、蛍光体セラミックスシート4を切断して、端面3を含む複数の蛍光体プレート1を形成する切断工程とを順に備える。以下、各工程について詳説する。
 (用意工程)
 用意工程では、蛍光体セラミックスシート4を用意する。具体的には、蛍光体グリーンシート9を用意し、次いで、蛍光体グリーンシート9を焼成する。
 まず、図1Aに示すように、蛍光体グリーンシート9を用意する。
 蛍光体グリーンシート9を用意する方法としては、例えば、スラリー(泥漿)成形、例えば、冷間等静圧圧縮成形(CIP)、熱間等静圧圧縮成形(HIP)などの圧縮成形、例えば、射出成形などが挙げられる。好ましくは、蛍光体グリーンシート9の厚み精度の観点から、スラリー成形、圧縮成形が挙げられ、より好ましくは、スラリー成形が挙げられる。
 スラリー成形では、まず、例えば、蛍光体材料、有機粒子およびバインダーを含有する蛍光体組成物と、分散媒とを含有するスラリーを調製する。
 蛍光体材料は、蛍光体の原材料であって、蛍光体に応じて適宜選択される。
 蛍光体は、波長変換機能を有しており、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、(Y、Gd、Ba、Ca、Lu)(Al、Si、Ge、B、P、Ga)12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。好ましくは、ガーネット型蛍光体、より好ましくは、YAG:Ce(YAl12:Ce)が挙げられる。
 そして、蛍光体材料としては、例えば、蛍光体を構成する金属単体、その金属酸化物、金属窒化物などが挙げられる。具体的には、蛍光体としてYAG:Ceを形成する場合は、蛍光体材料としては、例えば、酸化イットリウムなどのイットリウム含有化合物、酸化アルミニウムなどのアルミニウム含有化合物、酸化セリウムなどのセリウム含有化合物などの金属酸化物が挙げられる。蛍光体材料は、例えば、粒子状(あるいは粉末状)に形成されている。
 蛍光体材料の純度は、例えば、99.0質量%以上、好ましくは、99.9質量%以上である。
 有機粒子は、蛍光体セラミックスシート4に微細な空孔(図示せず)を形成するために蛍光体組成物に必要により含有される。有機粒子を形成する有機材料としては、焼成において(後述)完全に熱分解される材料であればよく、例えば、アクリル樹脂(具体的には、ポリメタクリル酸メチル)、スチレン樹脂、アクリル-スチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂などの熱可塑性樹脂、例えば、エポキシ樹脂、シリコーン樹脂などの熱硬化性樹脂が挙げられる。好ましくは、熱可塑性樹脂、より好ましくは、アクリル樹脂が挙げられる。有機粒子の平均粒子径は、特に限定されず、例えば、3.4μm以上、好ましくは、4.0μm以上であり、また、例えば、25.0μm以下、好ましくは、20.0μm以下、より好ましくは、8.0μm以下である。
 有機粒子の含有割合は、蛍光体材料と有機粒子の合計含有量に対して、例えば、1.5体積%以上、好ましくは、2.0体積%以上であり、また、例えば、12.0体積%以下、好ましくは、10.0体積%以下、より好ましくは、8.0体積%以下である。
 バインダーとしては、例えば、アクリル系ポリマー、ブチラール系ポリマー、ビニル系ポリマー、ウレタン系ポリマーなどの樹脂が挙げられる。また、バインダーは、水溶性バインダーが挙げられる。好ましくは、アクリル系ポリマー、より好ましくは、水溶性アクリル系ポリマーが挙げられる。バインダーの含有割合は、蛍光体材料とバインダーとの合計100体積部に対して、例えば、10体積部以上、好ましくは、20体積部以上、より好ましくは、30体積部以上、また、例えば、60体積部以下、好ましくは、50体積部以下、より好ましくは、40体積部以下となるように、設定される。
 蛍光体組成物は、例えば、必要に応じて、分散剤、可塑剤、焼成助剤などの添加剤をさらに含有することができる。
 分散媒は、蛍光体材料および有機粒子を分散できれば特に限定されない。分散媒としては、例えば、水、例えば、アセトン、メチルエチルケトン、メタノール、エタノール、トルエン、プロピオン酸メチル、メチルセルソルブなどの有機系分散媒が挙げられる。好ましくは、水が挙げられる。分散媒の含有割合は、スラリーに対して、例えば、1質量%以上、30質量%以下である。
 スラリーを調製するには、まず、上記成分を上記割合で配合し、例えば、ボールミルなどで湿式混合する。
 なお、スラリーを調製するときには、上記成分を一括で湿式混合してもよい。また、有機粒子を除く成分を湿式混合して予備スラリーを調製し、次いで、その予備スラリーに有機粒子を湿式混合して、スラリーを調製することもできる。
 続いて、スラリーを剥離シート10の表面に塗布し、その後、乾燥する。
 剥離シート10は、可撓性の材料から形成されている。そのような材料としては、例えば、ポリエチレンテレフタレート(PET)シートなどのポリエステルシート、例えば、ポリカーボネートシート、例えば、ポリエチレンシート、ポリプロピレンシートなどのポリオレフィンシート、例えば、ポリスチレンシート、例えば、アクリルシート、例えば、シリコーン樹脂シート、フッ素樹脂シートなどの樹脂シートなどが挙げられる。さらに、例えば、銅箔、ステンレス箔などの金属箔も挙げられる。好ましくは、樹脂シート、さらに好ましくは、ポリエステルシートが挙げられる。剥離シート10の表面には、剥離性を高めるため、必要により剥離処理が施されていてもよい。剥離シート10の厚みは、例えば、取扱性、コストの観点から適宜設定され、具体的には、10μm以上、200μm以下である。
 スラリーを剥離シート10に塗布する方法としては、ドクターブレードコート、グラビアコート、ファウンテンコート、キャストコート、スピンコート、ロールコートなどの塗布方法が用いられる。
 これにより、スラリーからなる塗膜を剥離シート10の表面に形成する。続いて、塗膜を乾燥する。
 乾燥温度は、例えば、20℃以上、好ましくは、50℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。
 乾燥時間は、例えば、1分以上、好ましくは、2分以上であり、また、例えば、24時間以下、好ましくは、5時間以下である。
 これによって、蛍光体グリーンシート9を、剥離シート10によって支持された状態で得る。
 この蛍光体グリーンシート9は、蛍光体セラミックスシート4(図1B参照)の焼成前のシートであって、前後方向および左右方向に延びる板状を有している。
 その後、剥離シート10を蛍光体グリーンシート9から剥離する。
 その後、必要により、所望の厚みを得るために、複数(複層)の蛍光体グリーンシート9を熱ラミネートによって積層して、蛍光体グリーンシート積層体9とすることもできる。
 蛍光体グリーンシート9(または蛍光体グリーンシート積層体9)の厚みは、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。
 次いで、図1Bに示すように、蛍光体グリーンシート9を焼成する。
 焼成温度は、例えば、1300℃以上、好ましくは、1500℃以上であり、また、例えば、2000℃以下、好ましくは、1800℃以下である。
 焼成時間は、例えば、1時間以上、好ましくは、2時間以上であり、また、例えば、24時間以下、好ましくは、8時間以下である。
 焼成における昇温速度は、例えば、0.5℃/分以上、20℃/分以下である。
 上記焼成(本焼成)の前に、バインダーや分散剤などの有機成分を熱分解および除去するために、電気炉を用いて、例えば、空気中、600℃以上、1300℃以下で予備加熱し、脱有機成分処理を実施することもできる。
 焼成後の蛍光体セラミックスシート4(図1B参照)は、焼成前の蛍光体グリーンシート9(図1B)に対して収縮している。例えば、焼成後の蛍光体セラミックスシート4における厚みT1は、焼成前の蛍光体グリーンシート9に対して、例えば、99%以下、好ましくは、95%以下、より好ましくは、90%以下であり、また、例えば、60%以上である。
 具体的には、焼成後の蛍光体セラミックスシート4における厚みT1は、例えば、0.03mm以上、好ましくは、0.05mm以上であり、また、例えば、1.0mm以下、好ましくは、0.3mm以下である。
 また、蛍光体セラミックスシート4には、微細な空孔(図示せず)が複数形成されている。空孔の平均孔径は、例えば、2.5μm以上、好ましくは、3.0μm以上、より好ましくは、3.5μm以上であり、また、例えば、20.0μm以下、好ましくは、16.0μm以下、より好ましくは、10.0μm以下である。
 (貫通孔形成工程)
 貫通孔形成工程では、図1Cに示すように、蛍光体セラミックスシート4に貫通孔2を形成する。
 貫通孔2を形成する方法として、例えば、ブラスト加工などが挙げられる。ブラスト加工としては、直圧式ブラスト加工、サイフォン式加工などが挙げられる。
 ブラスト加工では、具体的に、蛍光体セラミックスシート4にレジストを配置することにより、貫通孔2を設ける箇所以外をレジストにて被覆した後に、噴射材料を蛍光体セラミックスシート4に噴射する。
 ブラスト加工に用いる噴射材料の種類や粒径、噴射速度、方式(直圧式、サイフォン式)などを適宜調整することにより、貫通孔2の大きさ、端面3の傾斜角度(θ)などを適宜調整することができる。
 そして、複数の貫通孔2が蛍光体セラミックスシート4に形成されることによって、蛍光体セラミックスシート4には、複数の貫通孔2のそれぞれを区画する複数の端面3のそれぞれが形成される。つまり、貫通孔形成工程では、貫通孔2および端面3が同時に形成される。
 貫通孔2は、蛍光体セラミックスシート4において、前後方向および左右方向に互いに間隔を隔てて複数(前後2列、左右2列)整列配置されている。
 貫通孔2は、蛍光体セラミックスシート4を厚み方向(上下方向)に貫通している。貫通孔2は、平面視略矩形状(具体的には、平面視略正方形状)を有する。より具体的には、貫通孔2の略矩形状は、全て(4つ)の角部(隅)が丸くなっている、すなわち、全ての角部が円弧状に形成されている。貫通孔2は、図2に示すように、平面視略矩形状を維持しながら、下側に向かって幅狭となる断面視略テーパ形状を有している。
 端面3は、貫通孔2の内周面を区画している。端面3は、図2に示すように、断面視において、蛍光体セラミックスシート4(ひいては、後述する蛍光体プレート1)において厚み方向(上下方向)に対して傾斜する。また、端面3と、蛍光体セラミックスシート4の下面とがなす傾斜角度θは、鋭角であり、具体的には、後述する。
 貫通孔2の寸法は、後述する光半導体装置20の接続部27およびワイヤ29(図3C参照)の寸法に応じて適宜設定される。具体的には、貫通孔2の長さ(前後方向長さW1または左右方向長さW2)は、それぞれ、例えば、0.1mm以上、好ましくは、0.3mm以上であり、また、例えば、5.0mm以下、好ましくは、1.0mm以下である。隣接する貫通孔2のピッチ(W3)、すなわち、貫通孔2の一方端から、隣接する貫通孔2の一方端までの間隔は、例えば、0.1mm以上、好ましくは、1mm以上であり、また、例えば、20mm以下、好ましくは、10mm以下である。
 (切断工程)
 切断工程では、図1Dに示すように、まず、蛍光体セラミックスシート4を支持シート5に支持させる。
 支持シート5としては、蛍光体セラミックスシート4を確実に切断するために支持シート5を支持し、その後、切断された蛍光体セラミックスシート4(具体的には、蛍光体プレート1)を引き剥がすことができる、微粘着性を有するダイシングテープが挙げられる。また、支持シート5の寸法は、蛍光体セラミックスシート4の寸法に応じて適宜調節されており、例えば、支持シート5の前後方向長さおよび左右方向長さは、蛍光体セラミックスシート4のそれらに対して、長い。
 次いで、この切断工程において、蛍光体セラミックスシート4を切断して、端面3を含む複数の蛍光体プレート1を形成する。
 具体的には、蛍光体セラミックスシート4を、切断刃6により切断する。
 切断刃としては、図1Dで示すように、例えば、円盤状を有し、その軸に対して回転可能なダイシングソー(ダイシングブレード)、例えば、略水平に沿う刃先を有するカッタ(図示せず)が挙げられる。切断刃6として、好ましくは、ダイシングソーが挙げられる。
 蛍光体セラミックスシート4を切断するには、具体的には、例えば、ダイシングソーを備えるダイシング装置、カッタを備えるカッティング装置(図示せず)が用いられる。好ましくは、ダイシング装置が挙げられる。
 そして、上記した切断刃6により形成される第1切断線11が複数の貫通孔2を通過するように、蛍光体セラミックスシート4を切断して、蛍光体プレート1を製造する。具体的には、1つの貫通孔2を区画する端面3が複数の蛍光体プレート1のそれぞれに分け与えられて、1つの端面3を分割するように、蛍光体セラミックスシート4を切断する。詳しくは、1つの貫通孔2を区画する端面3が4つの蛍光体プレート1のそれぞれに分け与えられて、1つの端面3を4分割するように、蛍光体セラミックスシート4を切断する。
 具体的には、第1切断線11が、複数の貫通孔2のそれぞれの中心を通過するように、蛍光体セラミックスシート4を切断する。すると、1つの端面3が複数に分割される。
 第1切断線11は、前後方向に延び、左右方向に互いに間隔を隔てて配置される第1前後切断線12と、左右方向に延び、前後方向に互いに間隔を隔てて配置される第1左右切断線13とを有している。
 第1前後切断線12および第1左右切断線13は、複数の貫通孔2のそれぞれの中心において、直交するように、交差している。
 また、第1切断線11に沿う蛍光体セラミックスシート4の切断とともに、第2切断線14に沿う蛍光体セラミックスシート4の切断を実施する。
 第2切断線14は、貫通孔2を通過せず、具体的には、隣接する貫通孔2の間を通過する。第2切断線14は、前後方向に延び、第1前後切断線12に隣接して並行する第2前後切断線16と、左右方向に延び、第1左右切断線13に隣接して並行する第2左右切断線17とを有している。
 第2前後切断線16と第1前後切断線12とは、左右方向において、交互に等間隔で配置されている。第2左右切断線17と第1左右切断線13とは、前後方向において、交互に等間隔で配置されている。
 そして、上記した第1切断線11および第2切断線14に沿う蛍光体セラミックスシート4の切断により、複数の蛍光体プレート1が支持シート5の上面に支持された状態で得られる。次いで、複数の蛍光体プレート1のそれぞれを、例えば、コレットを備えるピックアップ装置(図示せず)によって支持シート5から引き剥がす。
 これにより、個片化された複数の蛍光体プレート1が得られる。
 2.蛍光体セラミックスプレート(蛍光体プレート)
 蛍光体プレート1は、図3A~図3Cに示すように、平坦な上面および平坦な下面を有する平板形状を有している。また、蛍光体プレート1の周側面は、1つの貫通孔2の端面3から分割された端面3と、その端面3の両端部に連続し、互いに直交する2つの第1切断線11に沿う2つの第1側面18(2面の側面)と、互いに直交する第2切断線14または蛍光体セラミックスシート4の周側面に沿い、第1側面18の両端部に連続する2つの第2側面19(2面の側面)とを有している。
 蛍光体プレート1は、図3Bに示すように、平面視略矩形状(具体的には、平面視略正方形状)を有している。また、蛍光体プレート1は、1つの貫通孔2から4つに分割されて形成される切り欠き部7を有している。
 切り欠き部7は、蛍光体プレート1の角部(隅)の周端面から、内側に向かって、平面視略矩形状(平面視略正方形状)に切り欠かれるように形成されている。すなわち、切り欠き部7は、蛍光体プレート1の角部において、平面視略矩形状に形成されている。
 切り欠き部7を区画する端面3は、図3Cに示すように、断面視において、蛍光体プレート1の厚み方向(上下方向)に対して傾斜する。また、端面3の角部8は、図3Bに示すように、平面視において、湾曲形状を有する。具体的には、端面3は、平面視において、所定の幅を持った略L字形状を有しており、その平面視L字状の角部8が、丸くなるように形成されている、すなわち、円弧状に形成されている。
 第1側面18および第2側面19は、断面視において、蛍光体プレー1の厚み方向に沿い、蛍光体プレート1の面方向(前後方向および左右方向)に対して直交する。
 複数の蛍光体プレート1のそれぞれの寸法は、後述する光半導体素子28の寸法に応じて適宜設定される。蛍光体プレート1の前後方向長さL1および左右方向長さL2は、例えば、0.1mm以上、好ましくは、0.5mm以上であり、また、例えば、10mm以下、好ましくは、2.0mm以下である。厚みは、上記した蛍光体セラミックスシート4の厚みT1と同様である。
 端面3の角部8の曲率半径Rは、例えば、0.01mm以上、好ましくは、0.05mm以上であり、また、例えば、0.20mm以下、好ましくは、0.15mm以下である。
 端面3の傾斜角度θは、蛍光体プレート1の下面に対して、例えば、30度以上、好ましくは、51度以上であり、また、例えば、89度以下、好ましくは、80度以下である。端面3の傾斜角度θを上記範囲とすることにより、光半導体装置20の実装時において、接続部27の視認性やワイヤボンディング作業性が向上し、また、ワイヤ29の接触不良を改良することができる。さらに、端面3の傾斜角度θを51度以上とすることにより、蛍光体プレート1の周端縁に生じる色味変化(ブルーエッジ)の面積を低減できるため、発光性が優れる。
 なお、傾斜角度θは、上記の説明では、蛍光体プレート1の下面と端面3とのなす角度としたが、傾斜角度シートは、蛍光体プレート1の下面と端面3とのなす角度、または、蛍光体プレート1の上面と端面3とのなす角度のうち、角度が小さい方(鋭角である方)と定義される。
 切り欠き部7の上端における前後方向長さD1および左右方向長さD2(すなわち、切り欠き部7において、最も長くなる場合の前後方向長さおよび左右方向長さ)は、それぞれ、例えば、0.05mm以上、好ましくは、0.10mm以上であり、また、例えば、1.0mm以下、好ましくは、0.5mm以下である。
 切り欠き部7の下端における前後方向長さD3および左右方向長さD4(すなわち、切り欠き部7において、最も短くなる場合の前後方向長さおよび左右方向長さ)は、それぞれ、上端におけるD1およびD2に対して、例えば、95%以下、好ましくは、90%以下であり、また、例えば、40%以上、好ましくは、50%以上である。具体的には、例えば、0.03mm以上、好ましくは、0.05mm以上であり、また、例えば、1.0mm以下、好ましくは、0.5mm以下である。
 蛍光体プレート1は、次の図4Cにおいて説明する光半導体装置20ではない。蛍光体プレート1は、光半導体装置20の一部品、すなわち、光半導体装置20を作製するための部品であり、光半導体素子28を備えない。蛍光体プレート1は、部品単独で流通し、産業上利用可能なデバイスであるが、それに限定されない。
 3.光半導体装置の第1実施形態およびその製造方法
 蛍光体プレート1を用いて、本発明の第1実施形態の光半導体装置20を製造する方法を説明する。
 まず、図4Aに示すように、基板26および光半導体素子28を備える素子付基板30を用意する。
 基板26は、略板形状を有しており、例えば、絶縁材料からなる。なお、基板26の上面には、端子部25を含む導体パターンが形成されている。
 光半導体素子28は、基板26の上面に固定されており、端子部25と間隔を隔てて配置されている。光半導体素子28は、略矩形板形状を有しており、光半導体材料からなる。また、光半導体素子28の上面(一方面)の1つの角部(隅)には、ワイヤボンディングするための接続部(端子)27が形成されている。
 素子付基板30は、基板26を用意する工程、および、基板26の上面に光半導体素子28を搭載する工程により製造される。
 次いで、図4Bに示すように、蛍光体プレート1を光半導体素子28の上面に配置する。
 具体的には、蛍光体プレート1を、光半導体素子28の上面と端面3とがなす角度が鋭角となるように、光半導体素子28の上面に配置する。
 また、蛍光体プレート1を、接続部27が露出するように配置する。すなわち、厚み方向に投影したときに、切り欠き部7が接続部27を含むように配置する。
 さらに、蛍光体プレート1を、厚み方向に投影したときに、切り欠き部7を除く部分において、蛍光体プレート1が光半導体素子28を含むように配置する。すなわち、切り欠き部7を除く部分において、蛍光体プレート1の周端縁は、光半導体素子28の周端縁よりも外側に位置する。
 このとき、蛍光体プレート1と光半導体素子28との間に図示しない接着剤を介在させることにより、接着剤を介して、蛍光体プレート1を光半導体素子28に固定する。
 次いで、図4Cに示すように、光半導体素子28の接続部27と基板26の端子部25とをワイヤボンディングする。
 具体的には、ワイヤ29の一端部を接続部27に接続し、ワイヤ29の他端部を端子部25に接続する。
 この際、ワイヤ29を、下方に向かって開放される略U字形状に撓むように配置する。また、ワイヤ29を、ワイヤ29の上端が、光半導体素子28の上面よりも上側に位置するように、配置する。
 これにより、第1実施形態の光半導体装置20が得られる。
 第1実施形態の光半導体装置20は、端子部25を有する基板26と、基板26の上面に配置され、接続部27を有する光半導体素子28と、光半導体素子28の上面に配置される蛍光体プレート1と、接続部27および端子部25を接続するワイヤ29とを備えている。
 蛍光体プレート1は、光半導体素子28の上面と、端面3とがなす角度が鋭角となるように、光半導体素子28の上面に配置されている。上記鋭角の角度は、端面3の傾斜角度θと同一である。
 次いで、必要に応じて、図4Cの仮想線に示すように、光半導体装置20に光反射層31を配置する。
 具体的には、光半導体素子28の接続部27および周側面、蛍光体プレート1の周側面、および、ワイヤ29を被覆するように、かつ、蛍光体プレート1の上面を露出するように光反射層31を配置する。
 光反射層31を配置する方法としては、例えば、光反射成分(例えば、酸化アルミニウム、酸化チタン)および硬化性樹脂(例えば、シリコーン樹脂などの熱硬化性樹脂)を含有する液状の反射樹脂組成物を光半導体装置20の基板26上に塗布またはポッティングした後、反射樹脂組成物を硬化する方法、半硬化状態の反射樹脂組成物からなる光反射層31を光半導体装置20に転写した後、完全硬化する方法などが挙げられる。
 このような光半導体装置20の第1実施形態の製造方法によれば、光半導体素子28の接続部27と基板26の端子部25とをワイヤ29で接続するための実装性に優れる。
 すなわち、従来の方法では、ワイヤボンディングする際に、切り欠き部7の端面3は、図10に示すように、光半導体装置20の上面および下面に対して垂直(すなわち、θが90度)となるように形成されている。そのため、例えば、図10において後側上方からワイヤボンディングする際に、蛍光体プレート1の角部の上端部40が障害となって、接続部27の視認性や、接続部27へのワイヤボンディング作業性が低下する。
 一方、第1実施形態の製造方法では、蛍光体プレート1が、平面視略矩形状の角部から内側に切り欠かれる切り欠き部7が設けられ、切り欠き部7を区画する端面3が、上下方向に対して傾斜している。そして、その蛍光体プレート1を、光半導体素子28の上面と端面3とがなす角度θが鋭角となるように、光半導体素子28の上面に配置する。そのため、蛍光体プレート1の角部の上端部40が存在しない。その結果、斜め上方からの接続部27の視認性が確保されている。また、接続部27に対して、ワイヤボンディングの作業性が良好となる。
 また、蛍光体プレート1の切り欠き部7の端面3における角部8が、平面視において、湾曲形状を有する。そのため、端面3の角部8が平面視直角形状である場合に比較して、端面3の角部8に対する応力集中が緩和される。その結果、クラックの発生を抑制することができる。
 従って、この製造方法によって得られる第1実施形態の光半導体装置20は、歩留まりが良好となる。
 4.光半導体装置の第2実施形態およびその製造方法
 蛍光体プレート1を用いて、本発明の第2実施形態の光半導体装置20を製造する方法を説明する。
 まず、図6Aに示すように、基板26および光半導体素子28を備える素子付基板30を用意する。この工程は、第1実施形態と同様である。
 次いで、図6Bに示すように、光半導体素子28の接続部27と、基板26の端子部25とをワイヤボンディングする。ワイヤボンディングの方法は、第1実施形態と同様である。
 次いで、図6Cに示すように、蛍光体プレート1を光半導体素子28の上面に配置する。
 具体的には、蛍光体プレート1を、光半導体素子28の上面と端面3とがなす角度(θ´)が鈍角となるように、光半導体素子28の上面に配置する。
 また、蛍光体プレート1は、接続部27が露出するように配置する。すなわち、厚み方向に投影したときに、切り欠き部7が接続部27を含むように配置する。
 さらに、蛍光体プレート1を、厚み方向に投影したときに、蛍光体プレート1が切り欠き部7を除く部分において、光半導体素子28を含むように配置する。すなわち、切り欠き部7を除く部分において、蛍光体プレート1の周端縁は、光半導体素子28の周端縁よりも外側に位置する。
 このとき、蛍光体プレート1と光半導体素子28との間に図示しない接着剤を介在させることにより、接着剤を介して、蛍光体プレート1を光半導体素子28に固定する。
 これにより、第2実施形態の光半導体装置20が得られる。
 第2実施形態の光半導体装置20は、端子部25を有する基板26と、基板26の上面に配置され、接続部27を有する光半導体素子28と、光半導体素子28の上面に配置される蛍光体プレート1と、接続部27および端子部25を接続するワイヤ29とを備えている。
 蛍光体プレート1は、光半導体素子28の上面と、端面3とがなす角度(θ´)が鈍角となるように、光半導体素子28の上面に配置されている。上記鈍角の角度θ´は、例えば、91度以上、好ましくは、100度以上であり、また、例えば、150度以下、好ましくは、129度以下である。
 蛍光体プレート1は、厚み方向に投影したときに、切り欠き部7を除く部分において、光半導体素子28を含むように配置されている。すなわち、切り欠き部7を除く部分において、蛍光体プレート1の周端縁は、光半導体素子28の周端縁よりも外側に位置している。
 次いで、必要に応じて、図6Cの仮想線に示すように、光半導体装置20に光反射層31を配置する。
 このような光半導体装置の第2実施形態の製造方法によれば、光半導体素子28の接続部27と基板26の端子部25とをワイヤで接続するための実装性に優れる。
 すなわち、従来の方法では、ワイヤボンディングする際に、切り欠き部7の端面は、図10に示すように、光半導体装置20の上面および下面に対して垂直(すなわち、θが90度)となるように形成されている。そのため、例えば、先に、ワイヤボンディングした後、蛍光体プレート1を配置する場合、蛍光体プレート1の位置がずれると、ワイヤ29の根元(すなわち、端子部25とのボンディング付近)に蛍光体プレート1が接触してしまい、ワイヤ29が端子部25から外れる不具合(接触不良)がある。
 一方、第2実施形態の製造方法では、蛍光体プレート1が、平面視略矩形状の角部から内側に切り欠かれる切り欠き部7が設けられ、切り欠き部7を区画する端面3が、上下方向に対して傾斜している。そして、その蛍光体プレート1を、光半導体素子28の上面と端面3とがなす角度θ´が鈍角となるように、光半導体素子28の上面に配置する。そのため、蛍光体プレート1の下面は、接続部27に対して距離を広げることができ、ワイヤ29の根元における蛍光体プレート1の接触を抑制することができる。その結果、接触不良を抑制することができる。
 また、蛍光体プレート1の切り欠き部7の端面3における角部8が、平面視において、湾曲形状を有する。そのため、端面3の角部8が平面視直角形状である場合に比較して、端面3の角部8に対する応力集中が緩和される。その結果、クラックの発生を抑制することができる。
 従って、この製造方法によって得られる第2実施形態の光半導体装置20は、歩留まりが良好となる。
 5.変形例
 変形例において、上記実施形態と同一の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 (1)貫通孔の形成方法
 上記実施形態では、ブラスト加工により、貫通孔2を形成しているが、例えば、レーザー加工により貫通孔2を形成することもできる。
 レーザー加工としては、好ましくは、超短パルスレーザーが挙げられ、より好ましくは、ピコ秒レーザー、フェムト秒レーザーが挙げられる。
 このようなレーザー加工を採用し、上側からレーザーを蛍光体セラミックスシートに照射することにより、図7に示すように、平面視略矩形状を維持しながら、上側に向かって幅狭となる断面視略テーパ形状を有する貫通孔2を形成することができる。
 レーザー加工に用いるレーザー発振器の出力、周波数、パルス幅などを適宜調整することにより、貫通孔の大きさ、傾斜角度などを適宜調整することができる。
 生産性の観点から、好ましくは、ブラスト加工が挙げられる。
 (2)蛍光体プレートの形状
 上記実施形態では、図1Dに示すように、蛍光体プレート1の平面視形状は、略正方形状であるが、例えば、図示しないが、蛍光体プレートの平面視形状は、例えば、正方形状以外の矩形形状(長方形状)、例えば、五角形や六角形状などの多角形状、例えば、円弧状などにすることもできる。
 また、上記実施形態では、図4Cに示すように、光半導体装置20において、蛍光体プレート1は、厚み方向に投影したときに、切り欠き部7を除く部分において、蛍光体プレート1が光半導体素子28を含むように配置しているが、例えば、図示しないが、蛍光体プレート1は、厚み方向に投影したときに、切り欠き部7を除く部分において、光半導体素子28と一致する(同一となる)ように配置することもできる。すなわち、切り欠き部7を除く部分において、蛍光体プレート1の周端縁は、光半導体素子28の周端縁と一致させることもできる。
 (3)切り欠き部の数および位置、形状
 上記実施形態では、図3Aに示すように、切り欠き部7は、蛍光体プレート1の単数の角部(隅)にのみ形成しているが、例えば、図示しないが、切り欠き部7は、複数の角部に形成することもできる。また、切り欠き部7の位置は、角部以外の場所、例えば、各辺の前後方向途中または左右方向途中に形成することもできる。
 また、上記実施形態では、切り欠き部7の平面視形状は、略正方形状であるが、例えば、図示しないが、切り欠き部7の平面視形状は、例えば、正方形状以外の矩形形状(長方形状など)、例えば、五角形や六角形状などの多角形状、例えば、円弧状などにすることもできる。
 (4)貫通孔の数
 貫通孔形成工程において、貫通孔2の数は、4つに限定されず、3つ以下であって、4つ以上であってもよい。貫通孔2の数に応じて、第2前後切断線および第2左右切断線の数や位置を適宜調整する。
 (5)切断工程
 上記実施形態において、切断工程では、図1Dに示すように、蛍光体セラミックスシート4を切断刃6により切断しているが、例えば、図8A~図8Cが参照されるように、ブラスト加工により、切断することもできる。すなわち、第1切断線11および第2切断線14をブラスト加工により形成することができる。ブラスト加工は、貫通孔2の形成で説明した方法と同様である。
 このようにして得られる図8A~図8Cに示す蛍光体プレート1において、第1側面18および第2側面19は、断面視において、蛍光体プレート1の厚み方向(上下方向)に対して傾斜する。第1側面18および第2側面19の傾斜角度は、端面3の傾斜角度θと同様である。
 図8A~図8Cに示す蛍光体プレート1を用いて、図4A~図4Cに示す製造方法または図6A~図6Bに示す製造方法と同様にして、図9Aまたは図9Bに示す光半導体装置20を製造することができる。
 図8A~図8Cに示す蛍光体プレート1では、貫通孔2の形成と、蛍光体セラミックスシート4の切断とが、ブラスト加工という同一手段で実施することができるため、生産性が良好となる。
 上記実施形態において、切断工程では、図1Dに示すように、蛍光体セラミックスシート4を切断刃6により切断しているが、図示しないが、蛍光体セラミックスシート4をスクライビングおよびブレイキングすることもできる。また、レーザーにより蛍光体セラミックスシート4を切断することもできる。
 <その他の実施形態>
 上記実施形態では、本発明のセラミックスプレートの一実施形態として蛍光体セラミックスプレート、および、それを備える光半導体装置について説明しているが、図示しないが、本発明のセラミックスプレートの一実施形態として蛍光体を含有しない光学用セラミックスプレートが挙げられる。このような光学用セラミックスプレートとしては、例えば、光拡散層が挙げられる。光拡散層では、蛍光体材料の代わりに、例えば、酸化チタン、酸化アルミニウムなどの無機粒子からなる光反射成分を用いる。
 この実施形態においても、上記実施形態と同様の作用効果を発現する。
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1
 (用意工程)
 酸化イットリウム粒子(純度99.99%、日本イットリウム社製)11.34g、酸化アルミニウム粒子(純度99.99%、住友化学社製)8.577g、および、酸化セリウム粒子0.087gからなる蛍光体材料の粉末を調製した。
 次いで、蛍光体材料の粉末20gと、水溶性バインダー(「WB4101」、Polymer Inovations,Inc社製)とを、固形分の体積比率が62:38となるように混合し、さらに蒸留水を加えてアルミナ製容器に入れ、直径3mmのジルコニアボールを加えて24時間、ボールミルにより湿式混合して、予備スラリーを調製した。
 次いで、予備スラリーに、有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を、蛍光体材料と有機粒子との合計含有量に対して3.0体積%となるように添加して、さらに湿式混合して、スラリーを調製した。
 次いで、スラリーをPETシートからなる剥離シートの表面に、ドクターブレード法により塗布して、70℃、5分で乾燥し、厚み55μmの蛍光体グリーンシート9を得た(図1A参照)。
 その後、蛍光体グリーンシート9をPETシートから剥離し、続いて、蛍光体グリーンシート9を20mm×20mmの寸法に切断した。切断した蛍光体グリーンシート9を2枚積層し、それらをホットプレスを用いて熱ラミネートすることにより、厚み110μmの蛍光体グリーンシート積層体9を作製した。
 次いで、蛍光体グリーンシート積層体9を、電気マッフル炉で、大気中、2℃/分の昇温速度で1200℃まで加熱(予備加熱)することにより、水溶性バインダーおよび有機粒子を熱分解および除去した。
 その後、高温環境炉に蛍光体グリーンシート積層体9を移し、還元雰囲気下で、5℃/分の昇温速度で1800℃まで加熱し、その温度で5時間焼成することにより、厚み100μmの蛍光体セラミックスシート4を製造した(図1B参照)。
 (貫通孔形成工程)
 蛍光体セラミックスシート4に、複数の貫通孔2を形成した。
 Pharos超短パルスレーザー(ピコ秒レーザー、Light Conversion社製)を用いて、照射ビーム径を4mmΦに設定し、600uJで穿孔した(図1C、図7参照)。
 貫通孔2は、平面視略矩形状であり、各辺の長さ(W1、W2)が0.40mm、角部8の曲率半径(R)が0.1mm、端面の傾斜角度(θ)が67度であった。また、貫通孔2のピッチ(W3)を2.1mmとした。
 (切断工程)
 その後、蛍光体セラミックスシート4を、ダイシングテープからなる支持シート5に仮固定した。
 次いで、それらを、ダイシングソーを備えるダイシング装置(Disco社製、「DFD6361」)に設置し、刃厚40μmのダイシングソー6で貫通孔の中心を通過するように切断して、個片化した(図1D参照)。
 得られた蛍光体セラミックスプレート1の各辺の長さ(L1、L2)は、それぞれ、1.0mmであり、切り欠き部7の各辺の長さ(D1、D2)は、それぞれ、0.18mmであった。
  実施例2
 貫通孔形成工程において、超短パルスレーザー加工に代えて、直圧式ブラスト加工を実施した以外は、実施例1と同様にして、蛍光体セラミックスプレート1を製造した(図2参照)。
 すなわち、貫通孔形成工程において、蛍光体セラミックスシート4上にレジストフィルムを貼付け、所定の貫通孔2が形成されるように、パターニング露光した。次いで、直圧式アルミナブラスト加工装置(ニッチュー社、「商品名PAM102」)を用いて、アルミナ粒子によるブラスト加工を施した。
 貫通孔2は、平面視略矩形状であり、各辺の長さ(W1、W2)が0.40mm、角部8の曲率半径(R)が0.1mm、端面の傾斜角度(θ)が79度であった。
 得られた蛍光体セラミックスプレート1の各辺の長さ(L1、L2)は、それぞれ、1.0mmであり、切り欠き部7の各辺の長さ(D1、D2)は、それぞれ、0.18mmであった。
  実施例3
 貫通孔形成工程において、超短パルスレーザー加工に代えて、サイフォン式ブラスト加工を実施した以外は、実施例1と同様にして、蛍光体セラミックスプレート1を製造した(図2参照)。
 すなわち、貫通孔形成工程において、蛍光体セラミックスシート4上にレジストフィルムを貼付け、所定の貫通孔2が形成されるように、パターニング露光した。次いで、サイフォン式アルミナブラスト加工装置(ニッチュー社、「商品名PAM102」)を用いて、アルミナ粒子によるブラスト加工を施した。
 貫通孔2は、平面視略矩形状であり、各辺の長さ(W1、W2)が0.40mm、角部8の曲率半径(R)が0.1mm、端面の傾斜角度(θ)が46度であった。
 得られた蛍光体セラミックスプレート1の各辺の長さ(L1、L2)は、それぞれ、1.0mmであり、切り欠き部7の各辺の長さ(D1、D2)は、それぞれ、0.18mmであった。
  実施例4
 貫通孔形成工程に加えて、切断工程もブラスト加工を実施した以外は、実施例2と同様にして、蛍光体セラミックスプレート1を製造した。 
 貫通孔2は、平面視略矩形状であり、各辺の長さ(W1、W2)が0.40mm、角部8の曲率半径(R)が0.1mm、端面、第1側面18および第2側面19の傾斜角度(θ)が79度であった。
 得られた蛍光体セラミックスプレート1の各辺の長さ(L1、L2)は、それぞれ、1.0mmであり、切り欠き部7の各辺の長さ(D1、D2)は、それぞれ、0.18mmであった。
  比較例1
 実施例1において、用意工程後、蛍光体セラミックスシート4を、ダイシングテープからなる支持シート5に仮固定し、刃厚40μmのダイシングソーでピッチ1.05mmに前後方向および左右方向に切断して、一辺が1.0mmである平面視略正方形状の蛍光体セラミックスプレート1を作製した。
 次いで、90度のV字ブレイド(Disco社製、「B1E8シリーズ」、刃厚100μm)で、この蛍光体セラミックスプレートの角を切断することにより、切り欠き部を形成した。
 得られた蛍光体セラミックスプレート1において、切り欠き部7の各辺の長さ(W1、W2)は、それぞれ、0.18mm、切り欠き部7の角部8の角度は平面視直角形状(90度)、端面の傾斜角度(θ)は90度であった。
  比較例2
 90度のV字ブレイド(Disco社製、「B1E8シリーズ」、刃厚100μm)を用いる代わりに、台形ブレイド(Disco社製、「B1N8シリーズ」、刃厚100μm)を用いて切り欠き部を形成した以外は、比較例1と同様にして、蛍光体セラミックスプレート1を作製した。
 得られた蛍光体セラミックスプレート1において、切り欠き部7の各辺の長さ(D1)は、それぞれ、0.18mm、切り欠き部7の角部8の曲率半径(R)は0.1mm、端面の傾斜角度(θ)は90度であった。
 <第1実施形態の光半導体装置の製造>
 キャビティー付き多層セラミック基板(住友金属エレクトロデバイス社製、「品番207806」、ハウジング高さ0.6mmt、ハウジング材質アルミナ反射率75%)を用意した。また、上面の1つの角部(隅)に接続部27が形成されている、一辺の長さが40mil(1.0mm)である平面視正方形状の1ワイヤタイプ青色発光ダイオードチップ(光半導体素子、厚み100μm)を用意した。ダイオードチップ28を多層セラミック基板26に対して、Au-Snハンダでダイアタッチして、素子付基板30を作製した。
 接続部27が露出するように、かつ、蛍光体セラミックスプレート1の端面3がダイオードチップの上面に対して鋭角(θ)となるように、各実施例の蛍光体セラミックスプレート1を青色発光ダイオードチップ28の上面に配置した。
 次いで、接続部27および多層セラミック基板26の端子部25をAu線にてワイヤボンディングすることにより、第1実施形態の光半導体装置20を製造した。
 <比較例の半導体装置の製造>
 上記<第1実施形態の光半導体装置の製造>において、各実施例の蛍光体セラミックスプレート1の代わりに、各比較例の蛍光体セラミックスプレート1を用いた以外は、同様にして、比較例の光半導体装置20を製造した。
 (視認性評価)
 上記光半導体装置の製造において、蛍光体セラミックスプレート1を青色発光ダイオードチップ28の上面に配置した際に、顕微鏡(キーエンス社製、「デジタルマイクロスコープVHX―2000」)で、垂直方向90度と65度の角度から接続部27を観察し、接続部27の表面を撮影した。90度において視認できた接続部27の面積の対する、65度において視認できた面積の割合(65度面積/90度面積)を算出した。98%以上であった場合を〇、98%未満であった場合を×とした。結果を表1に示す。
 (発光性評価)
 上記光半導体装置に対して、シリコーン樹脂およびアルミナを含有する液状の反射樹脂組成物を用いて、ワイヤ29全体が封止され、かつ、蛍光体セラミックスプレート1の上面が露出するように、光反射層31を形成した。
 次いで、切り欠き部7の端面3において、光反射層31によって被覆されている部分の左右方向長さL(図4C参照)を測定した。長さLが、蛍光体セラミックスプレート1の厚みT1に対して、短かった場合を、周端縁で生じる色味変化の面積が少ないため、○と評価し、ほぼ同等である場合を△と評価し、周端縁で生じる色味変化の面積が多いため、長い場合を×と評価した。結果を表1に示す。
 <第2実施形態の光半導体装置の製造と、ワイヤ接触性の評価>
 第1実施形態の光半導体装置20と同様にして、素子付基板30を作製した。次いで、接続部27および多層セラミック基板26の端子部25をAu線にてワイヤボンディングした。
 次いで、接続部27が露出するように、かつ、蛍光体セラミックスプレート1の端面がダイオードチップ28の上面に対して鈍角(θ´)となるように、各実施例の蛍光体セラミックスプレート1をダイオードチップ28の上面に配置した。これにより、第2実施形態の光半導体装置20を製造した。
 なお、蛍光体セラミックスプレート1をダイオードチップ28の上面に配置する際に、正常なアライメント位置から、前後方向または左右方向のいずれか一方向であってワイヤに近づく方向に向かって、25μmずらして配置した。
 このとき、顕微鏡(キーエンス社製、「デジタルマイクロスコープVHX―2000」)を用いて、光半導体装置の端子部付近におけるワイヤを、観察した。蛍光体セラミックスプレートがワイヤと接触していなかった場合を○と評価し、接触していた場合を×と評価した。
 また、各比較例の蛍光体セラミックスプレート1についても、上記と同様に実施して、評価した。結果を表1に示す。
 (クラック評価)
 各実施例および各比較例における切断工程において、高速モードで蛍光体セラミックスシート4を切断することにより、蛍光体セラミックスプレート1を作製した。
 蛍光体セラミックスプレート1にクラックが発生しなかった場合を○と評価し、クラックが発生した場合を×と評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 本発明のセラミックスプレートは、例えば、光半導体装置の製造に用いられる。
1 蛍光体セラミックスプレート
2 貫通孔
3 端面
4 蛍光体セラミックスシート
7 切り欠き部
18 第1側面
19 第2側面
20 光半導体装置
28 光半導体素子

Claims (8)

  1.  平板形状を有するセラミックスプレートであって、
     周端面から内側に切り欠かれる切り欠き部が設けられ、
     前記切り欠き部を区画する端面が、前記セラミックスプレートの厚み方向に対して、傾斜することを特徴とする、セラミックスプレート。
  2.  前記端面の傾斜角度が、前記端面と前記セラミックスプレートの上面または下面とのなす角度のうち一方が、30度以上89度以下であることを特徴とする、請求項1に記載のセラミックスプレート。
  3.  前記端面は、平面視において、湾曲形状を有することを特徴とする、請求項1に記載のセラミックスプレート。
  4.  光半導体素子と、
     光半導体素子の一方面に配置される請求項1に記載のセラミックスプレートとを備えることを特徴とする、光半導体装置。
  5.  前記セラミックスプレートは、前記光半導体素子の一方面および前記端面がなす角度が鋭角となるように、前記光半導体素子の一方面に配置されていることを特徴とする、請求項4に記載の光半導体装置。
  6.  前記セラミックスプレートは、前記光半導体素子の一方面および前記端面がなす角度が鈍角となるように、前記光半導体素子の一方面に配置されていることを特徴とする、請求項4に記載の光半導体装置。
  7.  セラミックスシートを用意する工程と、
     前記セラミックスシートに貫通孔を形成し、前記貫通孔を区画する端面を露出する工程と、
     前記セラミックスシートを切断して、前記端面を含む複数のセラミックスプレートを形成する工程と
    を順に備え、
     前記端面が、前記セラミックスシートの厚み方向に対して、傾斜することを特徴とする、セラミックスプレートの製造方法。
  8.  前記セラミックスシートを切断する際に露出する側面が、前記セラミックスシートの厚み方向に対して、傾斜することを特徴とする、請求項7に記載のセラミックスプレートの製造方法。
     
PCT/JP2016/075824 2016-02-09 2016-09-02 セラミックスプレート、その製造方法および光半導体装置 WO2017138180A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16889881.5A EP3416203A4 (en) 2016-02-09 2016-09-02 CERAMIC PLATE, METHOD FOR MANUFACTURING SAME, AND SEMICONDUCTOR OPTICAL DEVICE
CN201680078556.XA CN108604627A (zh) 2016-02-09 2016-09-02 陶瓷板、该陶瓷板的制造方法以及光半导体装置
US16/073,983 US20190044037A1 (en) 2016-02-09 2016-09-02 Ceramic plate, producing method thereof, and optical semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016023008 2016-02-09
JP2016-023008 2016-02-09
JP2016096807A JP2017143236A (ja) 2016-02-09 2016-05-13 セラミックスプレート、その製造方法および光半導体装置
JP2016-096807 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017138180A1 true WO2017138180A1 (ja) 2017-08-17

Family

ID=59562986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075824 WO2017138180A1 (ja) 2016-02-09 2016-09-02 セラミックスプレート、その製造方法および光半導体装置

Country Status (1)

Country Link
WO (1) WO2017138180A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061592A1 (ja) * 2008-11-28 2010-06-03 株式会社小糸製作所 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2010141273A (ja) * 2008-12-15 2010-06-24 Koito Mfg Co Ltd 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2012104531A (ja) * 2010-11-08 2012-05-31 Koito Mfg Co Ltd 発光モジュール
WO2014139789A1 (de) * 2013-03-12 2014-09-18 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061592A1 (ja) * 2008-11-28 2010-06-03 株式会社小糸製作所 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2010141273A (ja) * 2008-12-15 2010-06-24 Koito Mfg Co Ltd 発光モジュール、発光モジュールの製造方法、および灯具ユニット
JP2012104531A (ja) * 2010-11-08 2012-05-31 Koito Mfg Co Ltd 発光モジュール
WO2014139789A1 (de) * 2013-03-12 2014-09-18 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3416203A4 *

Similar Documents

Publication Publication Date Title
US10557614B2 (en) Projector light source including wavelength conversion member having porous ceramic substrate
CN108026442B (zh) 波长变换部件和发光设备
KR102262769B1 (ko) 발광 장치의 제조 방법
JP6459354B2 (ja) 透光部材及びその製造方法ならびに発光装置及びその製造方法
JP2017143236A (ja) セラミックスプレート、その製造方法および光半導体装置
US10001657B2 (en) Phosphor ceramic, encapsulated optical semiconductor element, circuit board, optical semiconductor device and light-emitting device
WO2015163109A1 (ja) 波長変換部材およびその製造方法
WO2015163108A1 (ja) 波長変換接合部材、波長変換放熱部材および発光装置
WO2017221606A1 (ja) 蛍光体層付光半導体素子およびその製造方法
WO2016194746A1 (ja) 蛍光体プレートの製造方法
JP2016222902A (ja) 蛍光体プレートの製造方法
JP6119192B2 (ja) 波長変換部材の製造方法及び波長変換部材
WO2015163110A1 (ja) 波長変換部材およびその製造方法
WO2017138180A1 (ja) セラミックスプレート、その製造方法および光半導体装置
WO2017221608A1 (ja) 蛍光体層シート、および、蛍光体層付光半導体素子の製造方法
JP2022007638A (ja) 成形体、発光装置及び成形体の製造方法
WO2017221607A1 (ja) 蛍光体層付光半導体素子
WO2016132888A1 (ja) 蛍光体セラミックスの製造方法
WO2016132890A1 (ja) 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置
JP7260776B2 (ja) 光学部品の製造方法及び発光装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889881

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889881

Country of ref document: EP

Effective date: 20180910