WO2016194746A1 - 蛍光体プレートの製造方法 - Google Patents

蛍光体プレートの製造方法 Download PDF

Info

Publication number
WO2016194746A1
WO2016194746A1 PCT/JP2016/065528 JP2016065528W WO2016194746A1 WO 2016194746 A1 WO2016194746 A1 WO 2016194746A1 JP 2016065528 W JP2016065528 W JP 2016065528W WO 2016194746 A1 WO2016194746 A1 WO 2016194746A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
sheet
ceramic plate
plate
cutting
Prior art date
Application number
PCT/JP2016/065528
Other languages
English (en)
French (fr)
Inventor
宏中 藤井
真広 白川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016096805A external-priority patent/JP2016222902A/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP16803181.3A priority Critical patent/EP3306363A4/en
Priority to KR1020177034727A priority patent/KR20180015146A/ko
Priority to CN201680032335.9A priority patent/CN107710033A/zh
Priority to US15/577,043 priority patent/US20180145231A1/en
Publication of WO2016194746A1 publication Critical patent/WO2016194746A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/14Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a method for manufacturing a phosphor plate, and more particularly, to a phosphor plate suitably used for an optical semiconductor device.
  • a luminescence conversion element including a ceramic material is used for an optoelectronic component together with a radiation-emitting semiconductor chip.
  • the luminescence conversion element is formed in, for example, an L-shaped plate having a cutout (see, for example, Patent Document 1).
  • Patent Document 1 proposes an optoelectronic component in which the lower surface of a luminescence conversion element is bonded to the upper surface of a radiation-emitting semiconductor chip, and bonding pads provided in corner areas of the radiation-emitting semiconductor chip exposed from the cut-out portion are connected by bonding wires. Has been.
  • a partial molded body made of a luminescence conversion material is formed on a support in the shape of a bar having a rectangular cross section and extending in the front-rear direction, and then the right corner of the partial molded body in the cross-sectional view along the front-rear direction. Then, the partially molded body is cut along a direction orthogonal to the front-rear direction (up-down, left-right direction).
  • Patent Document 1 In the method described in Patent Document 1, first, it is necessary to form a rod-shaped partial molded body, and thus there is a problem that the manufacturing efficiency cannot be sufficiently improved.
  • Patent Document 1 has a problem in that the formation of the cut-out portion is complicated because the partial molded body is ground along the front-rear direction after the rod-shaped partial molded body is formed.
  • An object of the present invention is to provide a method of manufacturing a phosphor plate that is simple and excellent in manufacturing efficiency.
  • the present invention includes a step (1) of preparing a phosphor sheet, a step (2) of forming a through hole and a through surface facing the through hole in the phosphor sheet, and cutting the phosphor sheet. And the manufacturing method of a fluorescent substance plate equipped with the process (3) of forming the several fluorescent substance plate containing the said penetration surface in order is included.
  • a phosphor sheet is prepared without forming a rod-shaped molded body, and then a through hole is formed in the phosphor sheet and then cut. Therefore, the through hole can be easily formed, and the phosphor plate can be manufactured with excellent manufacturing efficiency.
  • the phosphor sheet is cut so that a cutting line passes through the through-hole, whereby a plurality of the through-surfaces defining one through-hole are provided.
  • the through surface is divided so that the through surface defining one through hole is divided into each of the plurality of phosphor plates by cutting the phosphor sheet with a cutting line. Even better.
  • the phosphor sheet is a green sheet containing a phosphor
  • the fluorescent sheet is disposed after the step (2) and before the step (3).
  • a phosphor sheet made of a green sheet can be prepared, and a phosphor plate made of a ceramic plate can be manufactured.
  • the present invention includes a step (5) of supporting the ceramic plate on a support sheet after the step (4) and before the step (3), and a plurality of steps after the step (3). After the step of transferring the phosphor plate from the support sheet to the transfer sheet and / or after the step (3), the plurality of phosphor plates are peeled off from the support sheet, and the through surfaces thereof are the same.
  • the support sheet has debris and / or cut grooves produced by cutting in the support sheet, the debris and / or cut grooves may affect the subsequent process.
  • the handling properties of the plurality of phosphor plates are improved. Can be improved.
  • step (3) a method of cutting the phosphor sheet with a cutting blade, a method of scribing and breaking the phosphor sheet, a method of cutting the phosphor sheet with a laser, and The method for producing a phosphor plate according to any one of the above [1] to [4], wherein at least one of the methods for cutting the phosphor sheet by blasting is performed.
  • the phosphor sheet can be reliably cut by the above-described method.
  • step (2) the method of punching the phosphor sheet, the method of blasting the phosphor sheet, the method of laser processing the phosphor sheet, and the phosphor sheet.
  • the phosphor sheet is a green sheet containing a phosphor
  • the fluorescent sheet is disposed after the step (1) and before the step (2).
  • a green sheet can be used as a ceramic plate, and then a through hole and a through surface can be formed in a hard ceramic plate.
  • the through hole and the through surface can be reliably formed in the hard ceramic plate.
  • the through hole can be easily formed, and the phosphor plate can be manufactured with excellent manufacturing efficiency.
  • FIGS. 1A to 1G are perspective views of process diagrams showing an embodiment of a phosphor plate manufacturing method and an optical semiconductor device manufacturing method according to the present invention, and FIGS. 1A to 1E and 1G are viewed from above.
  • 1F is a perspective view seen from below
  • FIG. 1A is a step (1) of preparing a green sheet
  • FIG. 1B is a step of forming a through hole and a through surface in the green sheet.
  • FIG. 1C is a step (4) of firing a green sheet to form a ceramic plate
  • FIG. 1D is a step of supporting the ceramic plate on a support sheet
  • FIG. 1E is a step of cutting the ceramic plate with a cutting blade.
  • FIG. 1A is a step (1) of preparing a green sheet
  • FIG. 1B is a step of forming a through hole and a through surface in the green sheet.
  • FIG. 1C is a step (4) of firing a green sheet to form a ceramic plate
  • FIG. 1F shows a step (6) of transferring a plurality of phosphor plates from a support sheet to a transfer sheet
  • FIG. 1G shows a step of manufacturing an optical semiconductor device
  • 2A to 2C are process diagrams of a modification of the process (3) shown in FIG. 1E, in which FIG. 2A is a process of scribing a ceramic plate, FIG. 2B is a process of breaking the ceramic plate with a breaking member, FIG. 2C shows a step of breaking the ceramic plate with a grind member.
  • 3A and 3B are process diagrams of a modified example of the process (6) shown in FIG. 1F.
  • FIG. 3A is a process of peeling and rotating the phosphor plate from the support sheet
  • FIG. 3A is a process of peeling and rotating the phosphor plate from the support sheet
  • FIGS. 1B, 1E, and 1F are process diagrams of modified examples of the process (2) and the process (3) shown in FIGS. 1B, 1E, and 1F.
  • FIG. 4A shows a green sheet, a square hole, a front surface, Step (2) of forming a rear surface and a through surface having two connecting surfaces
  • FIG. 4B shows a step of cutting a ceramic plate (3)
  • FIG. 4C shows a step of obtaining a phosphor plate.
  • 5A to 5C are process diagrams of modified examples of the process (2) and the process (3) shown in FIGS. 1B, 1E, and 1F.
  • FIG. 5A shows a green sheet, a square hole, and a front left surface.
  • FIG. 5B shows a step (3) for cutting a ceramic plate
  • FIG. 5C shows a step for obtaining a phosphor plate.
  • 6A to 6C are process diagrams of modified examples of the process (2) and the process (3) shown in FIGS. 1B, 1E, and 1F
  • FIG. 6A forms a plurality of through holes in the green sheet.
  • FIG. 6B is a step (3) of cutting the ceramic plate so that the second cutting line has only the second left and right cutting lines
  • FIG. 6C is a phosphor plate having two through surfaces. A process is shown.
  • FIGS. 7A and 7B are process diagrams of modified examples of the process (2) and the process (3) shown in FIGS. 1B, 1E, and 1F, and FIG. 7A forms a plurality of through holes in the green sheet.
  • Step (2), FIG. 7B is a step (3) of cutting the ceramic plate so that only the first cutting line is formed without forming the second cutting line, and FIG. 7C includes one through hole. The process of obtaining a phosphor plate is shown.
  • FIGS. 1A to 1G An embodiment of a method for manufacturing a phosphor plate according to the present invention and a method for manufacturing an optical semiconductor device will be described with reference to FIGS. 1A to 1G. In each figure, the direction is based on the direction arrow.
  • a method for producing a phosphor plate includes a step (1) of preparing the phosphor sheet of the present invention as a green sheet 1 (see FIG. 1A), a through hole 2 and a through hole 2 in the green sheet 1. (2) (refer FIG. 1B) which forms the through-surface 3 which faces a surface, and the process (4) which forms the fluorescent substance plate of this invention as the ceramic plate 4 obtained by baking the green sheet 1 (FIG. 1C) (Refer to FIG. 1D and FIG. 1E), and a step of transferring the phosphor plate 15 from the support sheet 5 by cutting the ceramic plate 4 to form a plurality of phosphor plates 15 including the through-surface 3. Step (6) of transferring to the sheet 20 (see FIG. 1F) is provided in order.
  • step (1) see FIG. 1A
  • step (2) see FIG. 1B
  • step (4) see FIG. 1C
  • step (3) FIG. 1D and FIG. 1E
  • a process (6) (refer FIG. 1F) are implemented in order.
  • each step will be described in detail.
  • a green sheet 1 is prepared as shown in FIG. 1A.
  • slurry (sludge) molding for example, compression molding such as cold isostatic pressing (CIP), hot isostatic pressing (HIP), for example, injection molding Etc.
  • CIP cold isostatic pressing
  • HIP hot isostatic pressing
  • injection molding Etc injection molding Etc.
  • slurry molding and compression molding are exemplified, and more preferably, slurry molding is exemplified.
  • a slurry containing a phosphor material, organic particles, a phosphor composition containing a binder, and a dispersion medium is prepared.
  • the phosphor material is a raw material constituting the phosphor, and is appropriately selected according to the phosphor.
  • the phosphor has a wavelength conversion function, and examples thereof include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphors examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca, Lu) 3 (Al, Si, Ge, B, P, Ga) 5 O 12 : Ce (YAG (Yttrium Aluminum Garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (Terbium, aluminum, garnet): A garnet-type phosphor having a garnet-type crystal structure such as Ce), for example, an oxynitride phosphor such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), such as (Y, Gd, Ba, Ca, Lu) 3 (Al, Si, Ge, B
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • a garnet-type phosphor is preferable, and YAG: Ce (Y 3 Al 5 O 12 : Ce) is more preferable.
  • the phosphor material includes, for example, a single metal constituting the phosphor, a metal oxide thereof, a metal nitride, and the like.
  • examples of the phosphor material include yttrium-containing compounds such as yttrium oxide, aluminum-containing compounds such as aluminum oxide, and cerium-containing compounds such as cerium oxide.
  • a metal oxide is mentioned.
  • the phosphor material is formed in, for example, a particulate form (or a powder form).
  • the purity of the phosphor material is, for example, 99.0% by mass or more, and preferably 99.9% by mass or more.
  • Organic particles are contained in the phosphor composition as necessary in order to form fine pores (not shown) in the ceramic plate 4.
  • the organic material that forms the organic particles may be any material that is completely thermally decomposed in step (4) (detailed later).
  • an acrylic resin specifically, polymethyl methacrylate
  • thermoplastic resins such as styrene resin, acrylic-styrene resin, polycarbonate resin, benzoguanamine resin, polyolefin resin, polyester resin, polyamide resin, and polyimide resin
  • thermosetting resins such as epoxy resin and silicone resin.
  • a thermoplastic resin is used, and more preferably an acrylic resin is used.
  • the average particle diameter of the organic particles is not particularly limited, and is, for example, 3.4 ⁇ m or more, preferably 4.0 ⁇ m or more, and, for example, 25.0 ⁇ m or less, preferably 20.0 ⁇ m or less, more preferably 8.0 ⁇ m or less.
  • the content ratio of the organic particles is, for example, 1.5% by volume or more, preferably 2.0% by volume or more, and, for example, 12.0% by volume with respect to the total content of the phosphor material and the organic particles. % Or less, preferably 10.0% by volume or less, and more preferably 8.0% by volume or less.
  • binder examples include resins such as acrylic polymer, butyral polymer, vinyl polymer, and urethane polymer. Moreover, a water-soluble binder is mentioned as a binder. An acrylic polymer is preferable, and a water-soluble acrylic polymer is more preferable.
  • the content ratio of the binder is, for example, 10 parts by volume or more, preferably 20 parts by volume or more, more preferably 30 parts by volume or more with respect to the total volume part 100 of the phosphor material and the binder. It is set to be not more than volume part, preferably not more than 50 volume part, more preferably not more than 40 volume part.
  • the phosphor composition may further contain additives such as a dispersant, a plasticizer, and a firing aid, if necessary.
  • the dispersion medium is not particularly limited as long as the phosphor material and the organic particles can be dispersed.
  • the dispersion medium include water, for example, an organic dispersion medium such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, methyl propionate, and methyl cellosolve.
  • water is used.
  • the content rate of a dispersion medium is 1 mass% or more, for example, 30 mass% or less with respect to a slurry.
  • the above components are blended in the above proportions and wet-mixed with, for example, a ball mill.
  • the components other than the organic particles can be wet mixed to prepare a first slurry, and then the organic particles can be wet mixed to the first slurry to prepare a slurry.
  • the slurry is applied to the surface of the release sheet 10 and then dried.
  • the release sheet 10 is made of a flexible material.
  • a polyester sheet such as a polyethylene terephthalate (PET) sheet, a polycarbonate sheet such as a polyolefin sheet such as a polyethylene sheet and a polypropylene sheet, such as a polystyrene sheet, such as an acrylic sheet, such as silicone, and the like.
  • resin sheets such as resin sheets and fluororesin sheets.
  • metal foils, such as copper foil and stainless steel foil are also mentioned, for example.
  • a resin sheet is preferable, and a polyester sheet is more preferable.
  • the surface of the release sheet 10 may be subjected to a release treatment as necessary in order to improve the release property.
  • the thickness of the release sheet 10 is appropriately set from the viewpoints of handleability and cost, and specifically, is 10 ⁇ m or more and 200 ⁇ m or less.
  • the drying temperature is, for example, 20 ° C. or higher, preferably 50 ° C. or higher, and for example, 200 ° C. or lower, preferably 150 ° C. or lower.
  • the drying time is, for example, 1 minute or more, preferably 2 minutes or more, and for example, 24 hours or less, preferably 5 hours or less.
  • the green sheet 1 is a sheet before firing of the ceramic plate 4 (see FIG. 1C), and has a plate shape extending in the front-rear direction and the left-right direction.
  • the release sheet 10 is peeled from the green sheet 1.
  • a plurality of (multi-layer) green sheets 1 can be laminated by thermal lamination to obtain a green sheet laminate 1.
  • the thickness T1 of the green sheet 1 (or the green sheet laminate 1) is, for example, 10 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • Step (2) In this step (2), as shown in FIG. 1B, a through hole 2 is formed in the green sheet 1.
  • a plurality of through-holes 2 are arranged in alignment in the front-rear direction and the left-right direction with a space therebetween.
  • Each of the plurality of through holes 2 is a round hole that penetrates the green sheet 1 in the thickness direction (vertical direction).
  • a method of performing the step (2) for example, a method of punching the green sheet 1, for example, a method of blasting the green sheet 1, for example, a method of drilling the green sheet 1, for example, a laser using a YAG laser or the like
  • a method of the drilling method include a processing method.
  • blasting examples include direct pressure blasting and siphoning.
  • a portion other than the portion where the through hole 2 is formed is covered with a resist, and then a spray material is sprayed onto the green sheet 1.
  • the dimensions of the through-hole 2 are appropriately adjusted by appropriately adjusting the type, particle size, injection speed, method (direct pressure type, siphon type), and the like of the injection material used for blasting.
  • Blasting is preferable from the viewpoint of productivity compared to laser processing.
  • a method of punching the green sheet 1 and a method of drilling the green sheet 1 are preferable.
  • each of the plurality of through surfaces 3 facing each of the plurality of through holes 2 is formed in the green sheet 1. That is, in this step (2), the through hole 2 and the through surface 3 are formed simultaneously.
  • the through surface 3 is an inner peripheral surface of the through hole 2 extending in the thickness direction (vertical direction) in the green sheet 1.
  • the dimensions of the through hole 2 and the through surface 3 are appropriately set according to the dimensions of the connecting portion 25 and the wire 29 (see FIG. 1G) of the optical semiconductor device 30 described later.
  • the inner diameter L1 of the through hole 2 is, for example, 0.1 mm or more, preferably 0.3 mm or more, and, for example, 5.0 mm or less, preferably 1.0 mm or less.
  • the interval L2 between the through-holes 2 adjacent in the front-rear direction and the left-right direction is, for example, 0.5 mm or more, preferably 1.0 mm or more, and, for example, 20 mm or less, preferably 10 mm or less.
  • the pitch L3 of the adjacent through holes 2, that is, the sum of the inner diameter L1 and the interval L2 of the through holes 2 is, for example, 0.1 mm or more, preferably 1 mm or more, and, for example, 20 mm or less, preferably Is 10 mm or less.
  • step (4) As shown in FIG. 1C, the green sheet 1 (see FIG. 1B) is fired.
  • Calcination temperature is, for example, 1300 ° C. or higher, preferably 1500 ° C. or higher, and for example, 2000 ° C. or lower, preferably 1800 ° C. or lower.
  • Calcination time is, for example, 1 hour or more, preferably 2 hours or more, and for example, 24 hours or less, preferably 8 hours or less.
  • the temperature increase rate in the firing is, for example, 0.5 ° C./min or more and 20 ° C./min or less.
  • a deorganic component treatment can also be performed.
  • the ceramic plate 4 having the through hole 2 and the through surface 3 is obtained by firing the green sheet 1 described above.
  • the fired ceramic plate 4 (see FIG. 1C) is contracted with respect to the green sheet 1 (FIG. 1B) before firing.
  • the thickness T1 in the ceramic plate 4 after firing, the inner diameter L1 of the through holes 2, the interval L2 between the adjacent through holes 2, and the pitch L3 of the adjacent through holes 2 are T1 in the green sheet 1 before firing,
  • the thickness T1 of the fired ceramic plate 4 is, for example, 0.03 mm or more, preferably 0.05 mm or more, and, for example, 1.0 mm or less, preferably 0.3 mm or less. is there.
  • the inner diameter L1 of the through hole 2 in the fired ceramic plate 4 is, for example, 0.1 mm or more, and is, for example, 1.0 mm or less, preferably 0.5 mm or less.
  • the interval L2 between the through holes 2 adjacent in the front-rear direction and the left-right direction in the ceramic plate 4 after firing is, for example, 0.5 mm or more, preferably 1.0 mm or more, and for example, 20 mm or less, preferably 10 mm or less.
  • the pitch L3 of the through holes 2 in the fired ceramic plate 4 is, for example, 0.6 mm or more, preferably 1.1 mm or more, and, for example, 20.5 mm or less, preferably 10.5 mm or less. .
  • the ceramic plate 4 is formed with a plurality of fine holes (not shown).
  • the average pore diameter of the pores is, for example, 2.5 ⁇ m or more, preferably 3.0 ⁇ m or more, more preferably 3.5 ⁇ m or more, and for example, 20.0 ⁇ m or less, preferably 16.0 ⁇ m or less, More preferably, it is 10.0 ⁇ m or less.
  • step (3) as shown in FIG. 1D and FIG. 1E, the ceramic plate 4 is cut to form a plurality of phosphor plates including the through surface 3.
  • step (3) as shown in FIG. 1D, first, the ceramic plate 4 is supported on the support sheet 5.
  • the support sheet 5 As the support sheet 5, the support sheet 5 is supported in order to reliably cut the ceramic plate 4, and then the cut ceramic plate 4 (specifically, a phosphor plate 15 described later) can be pulled apart. A dicing tape having slight adhesiveness may be mentioned.
  • the dimensions of the support sheet 5 are appropriately adjusted according to the dimensions of the ceramic plate 4, and the longitudinal length and the lateral length of the support sheet 5 are, for example, longer than those of the ceramic plate 4. .
  • the green sheet 1 is cut with the cutting blade 6 as shown in FIG. 1E.
  • a dicing saw 7 is preferable.
  • a dicing apparatus including a dicing saw 7 and a cutting apparatus (not shown) including a cutter are used.
  • a dicing apparatus is used.
  • the ceramic plate 4 is cut so that the first cutting line 11 as an example of the cutting line formed by the cutting blade 6 passes through the plurality of through holes 2 to manufacture the phosphor plate 15. Specifically, the ceramic plate 4 is cut so that the through surface 3 that divides one through hole 2 is given to each of the plurality of phosphor plates 15 and the single through surface 3 is divided. Specifically, the ceramic plate 4 is cut so that the through surface 3 that divides one through hole 2 is given to each of the four phosphor plates 15 and the one through surface 3 is divided into four.
  • the ceramic plate 4 is cut so that the first cutting line 11 passes through the center of each of the plurality of through holes 2. Then, one penetration surface 3 is divided into a plurality.
  • the first cutting line 11 extends in the front-rear direction and is disposed in the left-right direction with a space therebetween
  • the first front-rear cutting line 12 extends in the left-right direction and is disposed in the front-rear direction with a space therebetween.
  • a cutting line 13 extends in the front-rear direction and is disposed in the front-rear direction with a space therebetween.
  • the first front / rear cutting line 12 and the first left / right cutting line 13 intersect so as to be orthogonal to each other at the centers of the plurality of through holes 2.
  • the cutting of the ceramic plate 4 along the second cutting line 14 is performed.
  • the second cutting line 14 does not pass through the through hole 2, and specifically passes between adjacent through holes 2.
  • the second cutting line 14 extends in the front-rear direction, the second front-rear cutting line 16 that is parallel to the first front-rear cutting line 12, and the second front-rear cutting line 14 that extends in the left-right direction and is parallel to the first left-right cutting line 13. 2 left and right cutting lines 17.
  • the second front and rear cutting lines 16 and the first front and rear cutting lines 12 are alternately arranged at equal intervals in the left-right direction.
  • the second left and right cutting lines 17 and the first left and right cutting lines 13 are alternately arranged at equal intervals in the front-rear direction.
  • the ceramic plate 4 is cut so that the lower end portion of the cutting blade 6 enters the support sheet 5. Therefore, a cutting groove 21 corresponding to the first cutting line 11 and the second cutting line 14 is formed on the support sheet 5.
  • the phosphor plate 15 has a plate shape having a flat upper surface and a flat lower surface.
  • the side surface of the phosphor plate 15 is continuous with the through surface 3 divided (provided) from one through surface 3 and the end of the through surface 3, and the two second surfaces along the first cutting line 11. It has one side surface 18 (two surfaces) and two second side surfaces 19 (two surfaces) continuous with the end of the first side surface 18 along the second cutting line 14.
  • the first phosphor plate 15 ⁇ / b> A (see the hatched portion in FIG. 1E) is located in the center of the support sheet 5 (a portion excluding a peripheral end portion described later) and the through surface 3 is formed on the rear left side surface. ),
  • the first side surface 18 along the first front / rear cutting line 12 is continuous with the front end portion of the through surface 3, and the first side surface 18 along the first left / right cutting line 13 is the rear end portion of the through surface 3. It is continuous.
  • the second side surface 19 along the second front / rear cutting line 16 is continuous with the right end portion of the first side surface 18 along the first left / right cutting line 13, and the second side surface 19 along the second left / right cutting line 17 is The front end portion of the first side surface 18 along the first front-rear cutting line 12 and the front end portion of the second side surface 19 along the second front-rear cutting line 16 are continuous. Thereby, the penetration surface 3, the first side surface 18, and the second side surface 19 of the phosphor plate 15 are continuous.
  • the second phosphor plate 15B located at the peripheral end of the support sheet 5 has at least two first cutting lines 11 and one outer peripheral surface corresponding to the outer peripheral surface of the ceramic plate 4.
  • the second phosphor plate 15B includes a plurality (four) of third phosphor plates 15B3 and a plurality of fourth phosphor plates 15B4.
  • the third phosphor plate 15B3 is located at the corner of the support sheet 5 and has two first cutting lines 11 (specifically, one first front / rear cutting line 12 and one first left / right cutting line 13). ) And two outer peripheral surfaces corresponding to the outer peripheral surface of the ceramic plate 4.
  • the fourth phosphor plate 15B4 is located between the third phosphor plates 15B3, and includes two first cutting lines 11 and one second cutting line 14 (second front / rear cutting line 16 or second left / right cutting line). 17) and one outer peripheral surface corresponding to the outer peripheral surface of the ceramic plate 4.
  • the front-rear direction length and the left-right direction length of the phosphor plate 15 are, for example, each of the front-rear direction length and the left-right direction length of the through surface 3 (that is, half the inner diameter L1 of the through-hole 2) It is 2 times or more, preferably 4 times or more, and for example, 20 times or less, preferably 10 times or less.
  • the longitudinal length and the lateral length of the phosphor plate 15 are, for example, 0.1 mm or more, preferably 0.5 mm or more, and for example, 10 mm or less, preferably 2. 0 mm or less.
  • Step (6) the plurality of phosphor plates 15 are transferred from the support sheet 5 to the transfer sheet 20 as shown in FIG. 1F.
  • the transfer sheet 20 is prepared, and the transfer sheet 20 is arranged on the plurality of phosphor plates 15 so as to face each other.
  • the transfer sheet 20 can be stretched in the front-rear direction and the left-right direction (plane direction), and has slight adhesiveness.
  • the dimensions of the transfer sheet 20 are appropriately adjusted according to the dimensions of the plurality of phosphor plates 15, and the total length in the front-rear direction of the plurality of transfer sheets 20 and the total length in the left-right direction of the plurality of transfer sheets 20. It has a longitudinal length and a lateral length longer than the length.
  • the lower surface of the transfer sheet 20 is brought into contact with the upper surfaces of the plurality of phosphor plates 15, and then the plurality of phosphor plates 15 are peeled from the support sheet 5.
  • the plurality of phosphor plates 15 are transferred from the support sheet 5 to the transfer sheet 20. That is, the plurality of phosphor plates 15 are temporarily fixed to the transfer sheet 20.
  • the phosphor plate 15 is not the optical semiconductor element 28 described in the next FIG. 1G.
  • the phosphor plate 15 is a component for manufacturing the optical semiconductor device 30, that is, a component for manufacturing the optical semiconductor device 30, and does not include the optical semiconductor element 28.
  • the phosphor plate 15 is a device that circulates by itself and is industrially usable, but is not limited thereto.
  • Step of Manufacturing Optical Semiconductor Device Thereafter, the optical semiconductor device 30 is manufactured using the phosphor plate 15.
  • each of the plurality of phosphor plates 15 is peeled off from the transfer sheet 20 by, for example, a pickup device (not shown) provided with a collet, and then in FIG. 1G. As shown, it is laminated on the upper surface of the optical semiconductor element 28.
  • the optical semiconductor element 28 is provided in the optical semiconductor device 30.
  • the optical semiconductor device 30 includes a substrate 26, a terminal 27, an optical semiconductor element 28, a phosphor plate 15, and a wire 29.
  • the substrate 26 has a substantially plate shape and is made of an insulating material.
  • the terminal 27 is disposed on the upper surface of the substrate 26.
  • the optical semiconductor element 28 is fixed to the upper surface of the substrate 26 and is spaced from the terminal 27.
  • the optical semiconductor element 28 has a substantially rectangular plate shape and is made of an optical semiconductor material.
  • connection portions 25 are formed at corners of the upper surface of the optical semiconductor element 28.
  • the phosphor plate 15 is disposed on the upper surface of the optical semiconductor element 28 so as to expose the connection portion 25.
  • the phosphor plate 15 is bonded to the upper surface of the optical semiconductor element 28 via an adhesive (not shown).
  • the wire 29 is disposed so as to bend upward. Further, the wire 29 is bent into a substantially U shape that is opened downward. One end of the wire 29 is connected to the connection unit 25, and the other end of the wire 29 is connected to the terminal 27. That is, the wire 29 connects the connection portion 25 and the wire 29 (wire bonding). The wire 29 is disposed so as to bypass the phosphor plate 15.
  • the substrate 26 on which the terminal 27 and the optical semiconductor element 28 are arranged is prepared.
  • the lower surface of the phosphor plate 15 is bonded to the upper surface of the optical semiconductor element 28 via an adhesive (not shown).
  • the phosphor plate 15 is laminated on the optical semiconductor element 28 so that the connecting portion 25 is exposed from the through surface 3.
  • the connecting portion 25 and the terminal 27 are connected (wire bonding) by the wire 29.
  • the above is an example, and for example, the method of arranging the phosphor plate 15 and the optical semiconductor element 28 on the substrate 26 after joining them can be appropriately adapted and changed.
  • the green sheet 1 is first prepared without forming a rod-shaped molded body as in the method described in Patent Document 1, and then, As shown to 1B, the through-hole 2 is formed in the green sheet 1, and then the ceramic plate 4 obtained from the green sheet 1 is cut
  • the through surface 3 that divides one through hole 2 is provided to each of a plurality (four) of the phosphor plates 15. Furthermore, since the through surface 3 is divided into (4), the manufacturing efficiency is further improved.
  • a phosphor sheet made of the green sheet 1 can be prepared, and a phosphor plate 15 made of the ceramic plate 4 can be manufactured.
  • the support sheet 5 has scraps (not shown in FIG. 1E) and / or cutting grooves 21 generated by cutting, the subsequent steps, specifically, the pickup device When the phosphor plate 15 is peeled off, the dust and / or the cutting groove 21 may affect the peeling of the phosphor plate 15 by the pickup device.
  • the ceramic plate 4 can be cut reliably.
  • step (2) any one of a method of punching the green sheet 1, a method of blasting the green sheet 1, a method of laser processing of the green sheet 1, and a method of drilling the green sheet 1 is selected. If one method is implemented, the through-hole 2 can be reliably formed in the green sheet 1 while shortening the tact time and reducing the processing cost.
  • the ceramic plate 4 is cut so that there is a single second front / rear cutting line 16.
  • the ceramic plate 4 can be cut so that there are a plurality of second front and rear cutting lines 16.
  • the through holes 2 are arranged in, for example, three or more rows on the left and right, and in the step (3), each of the second front and rear cutting lines 16 is It is formed every two through holes 2 adjacent in the left-right direction.
  • the ceramic plate 4 is cut so that the number of the second left and right cutting lines 17 is single.
  • the ceramic plate 4 can be cut.
  • the through holes 2 are arranged in, for example, three or more rows before and after, and in the step (3), each of the second left and right cutting lines 17 is front and rear. It is formed between two through holes 2 adjacent in the direction.
  • one penetration surface 3 is divided into four.
  • the number of divisions of the through surface 3 is not particularly limited. Although not shown, for example, it can be divided into two, three, five, six, seven, etc.
  • step (3) the ceramic plate 4 is cut by the cutting blade 6 as shown in FIG. 1E. As shown in FIG. 2B, the ceramic plate 4 can also be scribed and broken.
  • the upper part of the ceramic plate 4 is scribed (cut off) along the first cutting line 11 and the second cutting line 14.
  • a dicing saw 7 (see solid line) and a cutter 8 (see virtual line) are used.
  • the cutter 8 has a cutting edge 48 that is movable in the vertical direction.
  • the cutting edge 48 is parallel to the upper surface of the ceramic plate 4.
  • a groove 22 corresponding to the first cutting line 11 and the second cutting line 14 is formed in the upper part of the ceramic plate 4.
  • the groove 22 has a substantially V-shaped cross section that opens upward.
  • the depth of the groove 22 is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, and for example, 20 ⁇ m or less, preferably 10 ⁇ m or less.
  • the ceramic plate 4 is broken along the groove 22.
  • the breaking member 23 pointed downward is pressed against the groove 22, and the breaking member 23 is pushed downward.
  • the grind member 24 having a flat lower surface is ground in the front-rear direction and the left-right direction while pressing the upper surface of the ceramic plate 4 downward ( Grind breaking). Then, when the end of the lower surface of the grind member 24 overlaps with the position of the groove 22, the pressing force applied from the grind member 24 is concentrated on the groove 22, and the ceramic plate 4 positioned below the groove 22 is destroyed. (Breaking).
  • the ceramic plate 4 can be cut with a laser.
  • Examples of the laser include a YAG laser and a CO 2 laser, and a YAG laser is preferable.
  • the ceramic plate 4 can be cut by blasting instead of or in addition to cutting with a cutting blade, scribing and breaking.
  • blasting examples include direct pressure blasting and siphoning.
  • the ceramic plate 4 is coated with a resist except for the portions where the first cutting lines 11 and the second cutting lines 14 are formed, and then the spray material is sprayed onto the ceramic plate 4.
  • the dimensions of the first cutting line 11 and the second cutting line 14 are appropriately adjusted by appropriately adjusting the type, particle size, spraying speed, method (direct pressure type, siphon type), etc. of the injection material used for blasting.
  • Blasting is preferable from the viewpoint of productivity compared to laser processing.
  • step (3) a method of cutting the ceramic plate 4 with a cutting blade, a method of scribing and breaking the ceramic plate 4, a method of cutting the ceramic plate 4 with a laser (laser processing), and blasting the ceramic plate 4
  • the ceramic plate 4 is preferably cut to prevent melting marks (specifically, laser ablation marks) from remaining on the side surfaces of the phosphor plate 15 due to heat generated by laser irradiation.
  • a method of cutting with a blade and a method of scribing and breaking the ceramic plate 4 are used.
  • step (3) more preferably, from the viewpoint of dimensional accuracy of the phosphor plate 15, a method of cutting the ceramic plate 4 with a cutting blade is used.
  • step (7) Arrangement of a plurality of phosphor plates (arrangement step (7))
  • the step (6) of transferring the plurality of phosphor plates 15 from the support sheet 5 to the transfer sheet 20 is performed.
  • the plurality of phosphor plates 15 are peeled off from the support sheet 5, and subsequently, as shown in FIG. 3B, the through surfaces 3 of the phosphor plates 15 are directed in the same direction.
  • the step (7) of arranging the plurality of phosphor plates 15 can also be performed.
  • each of the plurality of phosphor plates 15 is peeled off from the support sheet 5 using the pickup device 44, and then placed on the surface of another support sheet 35.
  • the pickup device 44 includes a collet 45 extending in the vertical direction and having a suction port on the lower surface.
  • the collet 45 is configured to be rotatable about an axis extending in the vertical direction. Then, the suction port of the collet 45 is brought into contact with the upper surface of the phosphor plate 15 to suck it, and then the phosphor plate 15 is pulled up, and then the collet is rotated (rotated) by a desired angle. Thereafter, the plurality of phosphor plates 15 are arranged on the surface of another support sheet 35 so that the respective through surfaces 3 of the plurality of phosphor plates 15 are directed in the same direction, for example, diagonally right frontward.
  • the plurality of phosphor plates 15 are arranged on the surface of another support sheet 35, for example, with a distance L4 therebetween in the front-rear direction and the left-right direction.
  • the other support sheet 35 is formed of the same material as the support sheet 5.
  • the plurality of phosphor plates 15 are peeled off from the support sheet 5 and the plurality of phosphor plates 15 are arranged so that the through surfaces 3 face the same direction.
  • the handleability of the plurality of phosphor plates 15 can be improved.
  • step (6) and the step (7) are alternatively performed, but both of them can be performed.
  • the through hole 2 is a round hole, but the shape of the through hole 2 is not particularly limited.
  • the through hole 2 can be formed in, for example, a polygonal shape, and specifically, can be formed in a rectangular shape as shown in FIGS. 4A and 5A. That is, the through hole 2 can be a square hole.
  • the through surface 3 facing the through hole 2 has a front surface 31 and a rear surface 32 that face each other in the front-rear direction, and two connection surfaces 33 that connect the left and right ends thereof. Both the front surface 31 and the rear surface 32 extend in the left-right direction. Both of the two connecting surfaces 33 extend in the front-rear direction.
  • the front-rear direction length and the left-right direction length L1 of the through hole 2 are the same as the inner diameter L1 of the round hole in one embodiment.
  • step (3) as shown in FIG. 4B, the through surface 3 is divided and provided to each of a plurality of (four) phosphor plates 15 by cutting the green sheet 1.
  • the fluorescent substance plate 15 has planar view substantially L-shape.
  • the through surface 3 facing the through hole 2 includes a front left surface 37 and a rear right surface 38 that face each other in the first inclination direction ID1 that inclines to the left side toward the front side, and both front and rear direction ends thereof.
  • the front right surface 39 and the rear left surface 40 facing each other in a second inclination direction (direction inclined to the right side toward the front side) ID2 orthogonal to the first inclination direction ID1 are continuously connected.
  • the length of the front left surface 37 and the rear right surface 38 (length along the first tilt direction ID2) L5 and the length of the front right surface 39 and the rear left surface 40 (length along the second tilt direction ID1) L5 are mutually They may be the same or different, and each is, for example, 50% or more, preferably 65% or more, and, for example, 200% or less, preferably 100% or less with respect to the above-described L1.
  • L5 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 5 mm or less, preferably 1 mm or less.
  • step (3) as shown in FIG. 5B, the front left surface 37, the rear right surface 38, the front right surface 39, and the rear left surface 40 are each cut into a plurality of (four) phosphor plates 15 by cutting the green sheet 1. Divided into two.
  • the phosphor plate 15 has a substantially pentagonal shape and forms an inclined surface 36 composed of any one of the front left surface 37, the rear right surface 38, the front right surface 39, and the rear left surface 40.
  • one phosphor plate 15 has one penetration surface 3.
  • the number of the through surfaces 3 is not particularly limited.
  • one phosphor plate 15 can have a plurality of through surfaces 3.
  • step (2) as shown in FIG. 6A, in the green sheet 1, the plurality of through holes 2 and the cutout portions 52 are arranged in two rows (front and rear) (n rows) and left and right rows (2 n rows).
  • the notch 52 has a shape obtained by notching each of the right side surface and the left side surface of the ceramic plate 4 into a semicircular shape.
  • step (3) the ceramic plate 4 is cut so that each of the two through surfaces 3 adjacent in the left-right direction is divided and given to at least one phosphor plate 15. To do.
  • the second cutting line 14 does not have the second front-rear cutting line 16 (see FIG. 1F), but has only the second left-right cutting line 17.
  • the phosphor plate 15 has a plurality (two) of through-surfaces 3 as shown in FIG. 6C.
  • the two through surfaces 3 are connected by a first cutting line 11 (specifically, a first left / right cutting line 13).
  • the two through surfaces 3 are adjacently arranged in the left-right direction on the phosphor plate 15.
  • step (3) the ceramic plate 4 is cut so that the first cutting line 11 passes through the through-hole 2 as shown in FIG. Yes.
  • the present invention is not limited to this.
  • the first cutting line 11 is not formed and the through hole 2 is not passed, that is, the second cut that passes between the adjacent through holes 2.
  • the ceramic plate 4 can also be cut so that only the line 14 is formed.
  • the second cutting line 14 passes between the adjacent through holes 2.
  • the phosphor plate 15 has a through hole 2 at an end (corner) and has a substantially rectangular outer shape.
  • One phosphor plate 15 includes one through hole 2.
  • the phosphor sheet of the present invention is a green sheet containing a phosphor.
  • the phosphor sheet of the present invention is a ceramic plate 4 obtained by firing the green sheet 1.
  • the phosphor sheet of the present invention is a B stage sheet 41 made of a phosphor resin composition containing a phosphor and a thermosetting resin
  • the phosphor sheet of the present invention can be a C stage sheet 42 obtained by thermosetting the B stage sheet 41 in step (4).
  • the blending ratio of the phosphor is, for example, 5% by mass or more, preferably 10% by mass or more, and, for example, 80% by mass or less, preferably 70% by mass or less with respect to the fluorescent resin composition. .
  • thermosetting resin examples include a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • a semi-solid or solid state that is smaller than the elastic modulus of the state.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • Such a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • thermosetting resin is a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a thermosetting resin Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned, More preferably, a phenyl-type silicone resin is mentioned.
  • the above-mentioned thermosetting resin may be the same type or a plurality of types.
  • the blending ratio of the thermosetting resin is the remainder of the blending ratio of the phosphor.
  • step (1) first, a fluorescent resin composition is prepared.
  • the above-described phosphor and a thermosetting resin are blended to prepare a varnish of the fluorescent resin composition.
  • step (2) is performed as shown in FIG. 1B.
  • a method of punching the green sheet 1 and a method of drilling the green sheet 1 are used.
  • the B stage sheet 41 is thermally cured.
  • a C stage sheet 42 is obtained.
  • step (2) and step (4) are sequentially performed. That is, first, as shown in FIG. 1B, the through-hole 2 is formed in the green sheet 1, and then the green sheet 1 is used as the ceramic plate 4 as shown in FIG. 1C.
  • step (4) and the step (2) can be performed sequentially. That is, although not shown, first, the green sheet 1 is used as the ceramic plate 4, and then the through hole 2 is formed in the ceramic plate 4.
  • a method of forming the through hole 2 in the ceramic plate 4 for example, in one embodiment, a method of forming the through hole 2 in the green sheet 1 can be mentioned, preferably blasting, laser Processing is mentioned. These can be used alone or in combination. If it is blast processing and laser processing, the through-hole 2 and the through-surface 3 can be reliably formed in the hard ceramic plate 4.
  • Blasting is preferable from the viewpoint of productivity compared to laser processing.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc.
  • the upper limit value number defined as “less than” or “less than”
  • lower limit value number defined as “greater than” or “exceeded”
  • Example 1 Provides (1)> A phosphor comprising 11.34 g of yttrium oxide particles (purity 99.99%, manufactured by Japan Yttrium Co.), 8.577 g of aluminum oxide particles (purity 99.99%, manufactured by Sumitomo Chemical Co., Ltd.), and 0.087 g of cerium oxide particles. A powder of material was prepared.
  • a first slurry was prepared by placing in a container made of alumina, adding zirconia balls having a diameter of 3 mm, and wet mixing with a ball mill for 24 hours.
  • organic particles polymethyl methacrylate, average particle size 3.5 ⁇ m
  • wet mixing was performed to prepare a slurry.
  • the slurry is applied to the surface of the release sheet 10 made of a PET sheet by the doctor blade method, dried at 70 ° C. for 5 minutes, and a green sheet having a thickness of 55 ⁇ m. 1 was obtained.
  • the green sheet 1 was peeled from the PET sheet, and then the green sheet 1 was cut into a size of 20 mm ⁇ 20 mm. Two pieces of the cut green sheet 1 were laminated and thermally laminated using a hot press to produce a green sheet laminate 1 having a thickness of 110 ⁇ m.
  • a plurality of through holes 2 and a plurality of through surfaces 3 were formed in the green sheet laminate 1.
  • the green sheet laminate 1 was drilled by an NC drill machine manufactured by Via Mechanics Co., Ltd. equipped with a drill having a diameter of 0.7 mm, and the green sheet laminate 1 was drilled.
  • the green sheet laminate 1 is transferred to a high-temperature environment furnace, heated to 1800 ° C. at a heating rate of 5 ° C./min in a reducing atmosphere, and baked at that temperature for 5 hours, as shown in FIG. 1C.
  • a ceramic plate 4 having a thickness of 120 ⁇ m was manufactured.
  • the fired ceramic plate 4 is contracted by about 16% with respect to the green sheet laminate 1 before firing. Specifically, the inner diameter L1 of the through hole 2 in the fired ceramic plate 4 is 0. The distance L2 between the adjacent through holes 2 was 1.4 mm.
  • DFD 6361 manufactured by Disco was used as a dicing apparatus.
  • Step (6)> Thereafter, as shown in FIG. 1F, the plurality of phosphor plates 15 were transferred (temporarily fixed) from the support sheet 5 to the transfer sheet 20.
  • Example 2 In the step (2), the green sheet laminate 1 is processed in the same manner as in Example 1 except that laser processing is performed on the green sheet laminate 1 instead of drilling.
  • the phosphor plate 15 was manufactured.
  • Model 5330 UV-YAG laser manufactured by esi was used.
  • step (2) instead of drilling, the green sheet laminate 1 was processed in the same manner as in Example 1 except that the green sheet laminate 1 was punched, and then the green sheet laminate 1 was perforated, and then a plurality of phosphor plates 15 was produced.
  • Example 4 In the step (2), instead of drilling, the green sheet laminate 1 is punched, and the shape of the through hole 2 is changed from the round shape to the rectangular shape shown in FIG. In the same manner, the green sheet laminate 1 was perforated, and subsequently, a plurality of phosphor plates 15 were manufactured.
  • a through surface 3 having a front left surface 37, a rear right surface 38, a front right surface 39 and a rear left surface 40 faces.
  • the front-rear direction length (diagonal length) and the left-right direction length (diagonal length) L1 of the through-hole 2 are 1.0 mm, the lengths of the front left surface 37 and the rear right surface 38, the front right surface 39, and the rear The length of the left surface 40 was 0.7 mm or more.
  • Example 5 In the step (3), the ceramic plate 4 is cut in the same manner as in Example 1 except that the ceramic plate 4 is laser processed by a laser processing machine instead of the dicing apparatus, and the ceramic plate 4 is cut to obtain a plurality of phosphor plates. 15 was produced.
  • Model 5330 UV-YAG laser manufactured by esi was used as a laser processing machine.
  • Step (2) and step (3) are evaluated as follows and the results are listed in Table 1.
  • Step (2) The perforation of the green sheet laminate 1 in the step (2) was evaluated according to the following criteria. A: No burr or melting mark was observed on the through surface 3 and the through hole 2 having a desired size was formed, and the time required to form the four through holes 2 was less than 2 seconds. The speed was high. ⁇ : No burrs or melting marks were observed on the through surface 3, and the through hole 2 having a desired size could be formed. However, the time required to form the four through holes 2 was 5 seconds or more, and the drilling speed was low. ⁇ : The time required to form the four through holes 2 was less than 5 seconds, and the drilling speed was high. However, burrs and melting marks were observed on the through surface 3, and the through hole 2 having a desired size could not be formed.
  • Step (3) The cutting of the ceramic plate 4 in the step (3) was evaluated according to the following criteria. (Double-circle): The burr
  • the phosphor plate obtained by the phosphor plate manufacturing method is used for manufacturing an optical semiconductor device.

Abstract

蛍光体プレートの製造方法は、蛍光体シートを用意する工程(1)と、蛍光体シートに、貫通孔および貫通孔に臨む貫通面を形成する工程(2)と、蛍光体シートを切断して、貫通面を含む複数の蛍光体プレートを形成する工程(3)とを、順に備える。

Description

蛍光体プレートの製造方法
 本発明は、蛍光体プレートの製造方法、詳しくは、光半導体装置に好適に用いられる蛍光体プレートに関する。
 従来、セラミック材料を含むルミネセンス変換要素を、放射放出半導体チップとともにオプトエレクトロニクス部品に用いることが知られている。
 ルミネセンス変換要素は、例えば、切取り部を有するL字板形状に形成されている(例えば、特許文献1参照。)。特許文献1では、ルミネセンス変換要素の下面を放射放出半導体チップの上面に接合し、切取り部から露出する放射放出半導体チップの角領域に設けられるボンディングパッドをボンディングワイヤで接続したオプトエレクトロニクス部品が提案されている。
 そして、特許文献1では、ルミネセンス変換要素を製造する方法として以下の方法が提案されている。つまり、まず、支持体の上に、ルミネセンス変換材料からなる部分成形体を断面矩形で前後方向に延びる棒状に成形し、次いで、部分成形体における断面視上右隅部を、前後方向に沿って研削し、その後、前後方向に対する直交方向(上下左右方向)に沿って、部分成形体を切断している。
特表2014-502368号公報
 しかし、特許文献1に記載の方法では、まず、棒状の部分成形体を成形する必要があり、そのため、製造効率を十分に向上させることができないという不具合がある。
 また、特許文献1に記載の方法では、棒状の部分成形体を成形した後、部分成形体を前後方向に沿って研削するので、切取り部の形成が複雑であるという不具合がある。
 本発明の目的は、簡単で製造効率に優れる蛍光体プレートの製造方法を提供することにある。
 [1]本発明は、蛍光体シートを用意する工程(1)と、前記蛍光体シートに、貫通孔および前記貫通孔に臨む貫通面を形成する工程(2)と、前記蛍光体シートを切断して、前記貫通面を含む複数の蛍光体プレートを形成する工程(3)とを、順に備える、蛍光体プレートの製造方法を含む。
 この方法によれば、特許文献1に記載の方法のように、棒状の成形体を成形することなく、蛍光体シートを用意し、次いで、それに貫通孔を形成し、その後、切断する。そのため、貫通孔を簡単に形成でき、蛍光体プレートを優れた製造効率で製造することができる。
 [2]本発明は、前記工程(3)では、切断線が前記貫通孔を通過するように、前記蛍光体シートを切断し、それによって、1つの前記貫通孔を区画する前記貫通面が複数の前記蛍光体プレートのそれぞれに分け与えられるように、前記貫通面を分割する、上記[1]に記載の蛍光体プレートの製造方法を含む。
 この方法によれば、切断線を伴う蛍光体シートの切断によって、1つの貫通孔を区画する貫通面が複数の蛍光体プレートのそれぞれに分け与えられるように、貫通面を分割するため、製造効率により一層優れる。
 [3]本発明は、前記工程(1)では、前記蛍光体シートを、蛍光体を含有するグリーンシートとし、前記工程(2)の後、かつ、前記工程(3)の前に、前記蛍光体シートを、前記グリーンシートを焼成することにより得られる前記セラミックスプレートとする工程(4)をさらに備える、上記[1]または[2]に記載の蛍光体プレートの製造方法を含む。
 この方法では、グリーンシートからなる蛍光体シートを用意でき、また、セラミックスプレートからなる蛍光体プレートを製造することができる。
 [4]本発明は、前記工程(4)の後、かつ、前記工程(3)の前に、前記セラミックスプレートを支持シートに支持させる工程(5)と、前記工程(3)の後に、複数の前記蛍光体プレートを前記支持シートから転写シートに転写する工程、および/または、前記工程(3)の後に、複数の前記蛍光体プレートを前記支持シートから引き剥がし、それらの前記貫通面が同一方向に向かうように、複数の前記蛍光体プレートを並べる工程(6)とをさらに備えること、上記[3]に記載の蛍光体プレートの製造方法を含む。
 支持シートにおいて切断により生じる屑および/または切断溝が支持シートにあると、その後の工程において、かかる屑および/または切断溝が影響を及ぼす場合がある。
 しかし、本発明のように、工程(3)の後に、複数の蛍光体プレートを支持シートから転写シートに転写すれば、上記の影響を排除することができる。
 また、工程(3)の後に、複数の蛍光体プレートを支持シートから引き剥がし、それらの貫通面が同一方向に向かうように、複数の蛍光体プレートを並べれば、複数の蛍光体プレートの取扱性を向上させることができる。
 [5]本発明は、前記工程(3)では、前記蛍光体シートを切断刃により切断する方法、前記蛍光体シートをスクライビングおよびブレイキングする方法、前記蛍光体シートをレーザにより切断する方法、および、前記蛍光体シートをブラスト加工により切断する方法のうち、少なくともいずれか1つの方法を実施する、上記[1]~[4]のいずれか一項に記載の蛍光体プレートの製造方法を含む。
 この方法によれば、上記した方法により、蛍光体シートを確実に切断することができる。
 [6]本発明は、前記工程(2)では、前記蛍光体シートをパンチングする方法、前記蛍光体シートをブラスト加工する方法、前記蛍光体シートをレーザ加工する方法、および、前記蛍光体シートをドリル加工する方法のうち、いずれか1つの方法を実施する、上記[1]~[5]のいずれか一項に記載の蛍光体プレートの製造方法を含む。
 この方法によれば、上記した方法により、蛍光体シートに貫通孔を確実に形成することができる。
 [7]本発明は、前記工程(1)では、前記蛍光体シートを、蛍光体を含有するグリーンシートとし、前記工程(1)の後、かつ、前記工程(2)の前に、前記蛍光体シートを、前記グリーンシートを焼成することにより得られる前記セラミックスプレートとする工程(4)をさらに備える、上記[1]または[2]に記載の蛍光体プレートの製造方法を含む。
 この方法では、グリーンシートをセラミックスプレートとし、その後、硬質のセラミックスプレートに貫通孔および貫通面を形成することができる。
 [8]前記工程(2)では、前記セラミックスプレートをブラスト加工する方法、および、前記セラミックスプレートをレーザ加工する方法のうち、いずれか1つの方法を実施する、上記[7]に記載の蛍光体プレートの製造方法を含む。
 この方法では、硬質のセラミックスプレートに貫通孔および貫通面を確実に形成することができる。
 本発明によれば、貫通孔を簡単に形成でき、蛍光体プレートを優れた製造効率で製造することができる。
図1A~図1Gは、本発明の蛍光体プレートの製造方法の一実施形態および光半導体装置の製造方法を示す工程図の斜視図であり、図1A~図1Eおよび図1Gは、上から見た斜視図であり、図1Fは、下から見た斜視図であって、図1Aは、グリーンシートを用意する工程(1)、図1Bは、グリーンシートに貫通孔および貫通面を形成する工程(2)、図1Cは、グリーンシートを焼成して、セラミックスプレートを形成する工程(4)、図1Dは、セラミックスプレートを支持シートに支持させる工程、図1Eは、セラミックスプレートを切断刃により切断する工程(3)、図1Fは、複数の蛍光体プレートを支持シートから転写シートに転写する工程(6)、図1Gは、光半導体装置を製造する工程を示す。 図2A~図2Cは、図1Eに示す工程(3)の変形例の工程図であって、図2Aは、セラミックスプレートをスクライビングする工程、図2Bは、セラミックスプレートをブレイキング部材によりブレイキングする工程、図2Cは、セラミックスプレートをグラインド部材によりブレイキングする工程を示す。 図3Aおよび図3Bは、図1Fに示す工程(6)の変形例の工程図であって、図3Aは、蛍光体プレートを支持シートから引き剥がし、回転させる工程、図3Bは、複数の蛍光体プレートを別の支持シートに並べる工程(7)を示す。 図4A~図4Cは、図1B、図1Eおよび図1Fに示す工程(2)および工程(3)の変形例の工程図であって、図4Aは、グリーンシートに、角孔と、前面、後面および2つの連結面を有する貫通面とを形成する工程(2)、図4Bは、セラミックスプレートを切断する工程(3)、図4Cは、蛍光体プレートを得る工程を示す。 図5A~図5Cは、図1B、図1Eおよび図1Fに示す工程(2)および工程(3)の変形例の工程図であって、図5Aは、グリーンシートに、角孔と、前左面、後右面、前右面および後左面を有する貫通面を形成する工程(2)、図5Bは、セラミックスプレートを切断する工程(3)、図5Cは、蛍光体プレートを得る工程を示す。 図6A~図6Cは、図1B、図1Eおよび図1Fに示す工程(2)および工程(3)の変形例の工程図であって、図6Aは、グリーンシートに複数の貫通孔を形成する工程(2)、図6Bは、第2切断線が第2左右切断線のみを有するように、セラミックスプレートを切断する工程(3)、図6Cは、2つの貫通面を有する蛍光体プレートを得る工程を示す。 図7Aおよび図7Bは、図1B、図1Eおよび図1Fに示す工程(2)および工程(3)の変形例の工程図であって、図7Aは、グリーンシートに複数の貫通孔を形成する工程(2)、図7Bは、第2切断線が形成されず、第1切断線のみが形成されるように、セラミックスプレートを切断する工程(3)、図7Cは、1つ貫通孔を含む蛍光体プレートを得る工程を示す。
 <本発明の蛍光体プレートの製造方法の一実施形態>
 本発明の蛍光体プレートの製造方法の一実施形態および光半導体装置の製造方法を図1A~図1Gを用いて説明する。なお、各図において、方向は、方向矢印に準拠する。
 1.蛍光体プレートの製造方法
 蛍光体プレートの製造方法は、本発明の蛍光体シートをグリーンシート1として用意する工程(1)(図1A参照)と、グリーンシート1に、貫通孔2および貫通孔2に臨む貫通面3を形成する工程(2)(図1B参照)と、本発明の蛍光体プレートを、グリーンシート1を焼成することにより得られるセラミックスプレート4として形成する工程(4)(図1C参照)と、セラミックスプレート4を切断して、貫通面3を含む複数の蛍光体プレート15を形成する工程(3)(図1Dおよび図1E参照)と、蛍光体プレート15を支持シート5から転写シート20に転写する工程(6)(図1F参照)とを、順に備える。
 つまり、この蛍光体プレートの製造方法では、工程(1)(図1A参照)と、工程(2)(図1B参照)と、工程(4)(図1C参照)と、工程(3)(図1Dおよび図1E参照)と、工程(6)(図1F参照)とが順に実施される。以下、各工程について詳説する。
 2.工程(1)
 この工程(1)では、図1Aに示すように、グリーンシート1を用意する。
 グリーンシート1を用意する方法としては、例えば、スラリー(泥漿)成形、例えば、冷間等静圧圧縮成形(CIP)、熱間等静圧圧縮成形(HIP)などの圧縮成形、例えば、射出成形などが挙げられる。好ましくは、グリーンシート1の厚み精度の観点から、スラリー成形、圧縮成形が挙げられ、より好ましくは、スラリー成形が挙げられる。
 スラリー成形では、まず、例えば、蛍光体材料と、有機粒子と、バインダーとを含有する蛍光体組成物と、分散媒とを含有するスラリーを調製する。
 蛍光体材料は、蛍光体を構成する原材料であって、蛍光体に応じて適宜選択される。
 蛍光体は、波長変換機能を有しており、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、(Y、Gd、Ba、Ca、Lu)(Al、Si、Ge、B、P、Ga)12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。好ましくは、ガーネット型蛍光体、より好ましくは、YAG:Ce(YAl12:Ce)が挙げられる。
 そして、蛍光体材料としては、例えば、蛍光体を構成する金属単体、その金属酸化物、金属窒化物などが挙げられる。具体的には、蛍光体としてYAG:Ceを形成する場合は、蛍光体材料としては、例えば、酸化イットリウムなどのイットリウム含有化合物、酸化アルミニウムなどのアルミニウム含有化合物、酸化セリウムなどのセリウム含有化合物などの金属酸化物が挙げられる。蛍光体材料は、例えば、粒子状(あるいは粉末状)に形成されている。
 蛍光体材料の純度は、例えば、99.0質量%以上、好ましくは、99.9質量%以上である。
 有機粒子は、セラミックスプレート4に微細な空孔(図示せず)を形成するために蛍光体組成物に必要により含有される。有機粒子を形成する有機材料としては、工程(4)において(後で詳述)に完全に熱分解される材料であればよく、例えば、アクリル樹脂(具体的には、ポリメタクリル酸メチル)、スチレン樹脂、アクリル-スチレン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂などの熱可塑性樹脂、例えば、エポキシ樹脂、シリコーン樹脂などの熱硬化性樹脂が挙げられる。好ましくは、熱可塑性樹脂、より好ましくは、アクリル樹脂が挙げられる。有機粒子の平均粒子径は、特に限定されず、例えば、3.4μm以上、好ましくは、4.0μm以上であり、また、例えば、25.0μm以下、好ましくは、20.0μm以下、より好ましくは、8.0μm以下である。
 有機粒子の含有割合は、蛍光体材料と有機粒子の合計含有量に対して、例えば、1.5体積%以上、好ましくは、2.0体積%以上であり、また、例えば、12.0体積%以下、好ましくは、10.0体積%以下、より好ましくは、8.0体積%以下である。
 バインダーとしては、例えば、アクリル系ポリマー、ブチラール系ポリマー、ビニル系ポリマー、ウレタン系ポリマーなどの樹脂が挙げられる。また、バインダーは、水溶性バインダーが挙げられる。好ましくは、アクリル系ポリマー、より好ましくは、水溶性アクリル系ポリマーが挙げられる。バインダーの含有割合は、蛍光体材料とバインダーとの合計体積部100に対して、例えば、10体積部以上、好ましくは、20体積部以上、より好ましくは、30体積部以上、また、例えば、60体積部以下、好ましくは、50体積部以下、より好ましくは、40体積部以下となるように、設定される。
 蛍光体組成物は、例えば、必要に応じて、分散剤、可塑剤、焼成助剤などの添加剤をさらに含有することができる。
 分散媒は、蛍光体材料および有機粒子を分散できれば特に限定されない。分散媒としては、例えば、水、例えば、アセトン、メチルエチルケトン、メタノール、エタノール、トルエン、プロピオン酸メチル、メチルセルソルブなどの有機系分散媒が挙げられる。好ましくは、水が挙げられる。分散媒の含有割合は、スラリーに対して、例えば、1質量%以上、例えば、30質量%以下である。
 スラリーを調製するには、まず、上記成分を上記割合で配合し、例えば、ボールミルなどで湿式混合する。
 なお、スラリーを調製するときには、上記成分を一括で湿式混合してもよい。また、有機粒子を除く成分を湿式混合して第1スラリーを調製し、次いで、その第1スラリーに有機粒子を湿式混合して、スラリーを調製することもできる。
 次いで、この工程(1)では、スラリーを剥離シート10の表面に塗布し、その後、乾燥する。
 剥離シート10は、可撓性の材料から形成されている。そのような材料としては、例えば、ポリエチレンテレフタレート(PET)シートなどのポリエステルシート、例えば、ポリカーボネートシート、例えば、ポリエチレンシート、ポリプロピレンシートなどのポリオレフィンシート、例えば、ポリスチレンシート、例えば、アクリルシート、例えば、シリコーン樹脂シート、フッ素樹脂シートなどの樹脂シートなどが挙げられる。さらに、例えば、銅箔、ステンレス箔などの金属箔も挙げられる。好ましくは、樹脂シート、さらに好ましくは、ポリエステルシートが挙げられる。剥離シート10の表面には、剥離性を高めるため、必要により剥離処理が施されていてもよい。剥離シート10の厚みは、例えば、取扱性、コストの観点から適宜設定され、具体的には、10μm以上、200μm以下である。
 スラリーを剥離シート10に塗布する方法としては、ドクターブレードコート、グラビアコート、ファウンテンコート、キャストコート、スピンコート、ロールコートなどの塗布方法が用いられる。
 これにより、スラリーからなる塗膜を剥離シート10の表面に形成する。
 次いで、塗膜を乾燥する。
 乾燥温度は、例えば、20℃以上、好ましくは、50℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。
 乾燥時間は、例えば、1分以上、好ましくは、2分以上であり、また、例えば、24時間以下、好ましくは、5時間以下である。
 これによって、グリーンシート1を、剥離シート10によって支持された状態で得る。
 このグリーンシート1は、セラミックスプレート4(図1C参照)の焼成前のシートであって、前後方向および左右方向に延びる板状を有している。
 その後、剥離シート10をグリーンシート1から剥離する。
 その後、必要により、所望の厚みを得るために、複数(複層)のグリーンシート1を熱ラミネートによって積層して、グリーンシート積層体1とすることもできる。
 グリーンシート1(またはグリーンシート積層体1)の厚みT1は、例えば、10μm以上、好ましくは、30μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。
 3.工程(2)
 この工程(2)では、図1Bに示すように、グリーンシート1に貫通孔2を形成する。
 貫通孔2は、グリーンシート1において、前後方向および左右方向に互いに間隔を隔てて複数(前後2列、左右2列)整列配置されている。複数の貫通孔2のそれぞれは、グリーンシート1を厚み方向(上下方向)に貫通する丸孔である。
 工程(2)を実施する方法として、例えば、グリーンシート1をパンチングする方法、例えば、グリーンシート1をブラスト加工する方法、例えば、グリーンシート1をドリル加工する方法、例えば、YAGレーザなどを用いるレーザ加工する方法などの穿孔方法が挙げられる。
 ブラスト加工として、例えば、直圧式ブラスト加工、サイフォン式加工などが挙げられる。ブラスト加工では、具体的に、グリーンシート1において、貫通孔2を形成する箇所以外をレジストを配置して被覆した後、噴射材料をグリーンシート1に噴射する。ブラスト加工に用いる噴射材料の種類や粒径、噴射速度、方式(直圧式、サイフォン式)などを適宜調整することにより、貫通孔2の寸法を適宜調整する。
 ブラスト加工は、レーザ加工に比べて、生産性の観点から、好ましい。
 工程(2)を実施する方法として、タクトタイムの短縮、加工費用の低減の観点から、好ましくは、グリーンシート1をパンチングする方法、グリーンシート1をドリル加工する方法が挙げられる。
 グリーンシート1をドリル加工する場合には、ドリルは、径が小さいことから、破損し(折れ)易いので、それを防止するためにドリル加工に長時間を要する。そのため、タクトタイムの短縮の観点から、より好ましくは、グリーンシート1をパンチングする方法が挙げられる。
 そして、複数の貫通孔2がグリーンシート1に形成されることによって、グリーンシート1には、複数の貫通孔2のそれぞれに臨む複数の貫通面3のそれぞれが形成される。つまり、この工程(2)では、貫通孔2および貫通面3が同時に形成される。
 貫通面3は、グリーンシート1において厚み方向(上下方向)に延びる貫通孔2の内周面である。
 貫通孔2および貫通面3の寸法は、後述する光半導体装置30の接続部25およびワイヤ29(図1G参照)の寸法に応じて適宜設定される。具体的には、貫通孔2の内径L1は、例えば、0.1mm以上、好ましくは、0.3mm以上であり、また、例えば、5.0mm以下、好ましくは、1.0mm以下である。前後方向および左右方向に隣接する貫通孔2間の間隔L2は、例えば、0.5mm以上、好ましくは、1.0mm以上であり、また、例えば、20mm以下、好ましくは、10mm以下である。また、隣接する貫通孔2のピッチL3、すなわち、貫通孔2の内径L1と間隔L2との和は、例えば、0.1mm以上、好ましくは、1mm以上であり、また、例えば、20mm以下、好ましくは、10mm以下である。
 4.工程(4)
 工程(4)では、図1Cに示すように、グリーンシート1(図1B参照)を焼成する。
 焼成温度は、例えば、1300℃以上、好ましくは、1500℃以上であり、また、例えば、2000℃以下、好ましくは、1800℃以下である。
 焼成時間は、例えば、1時間以上、好ましくは、2時間以上であり、また、例えば、24時間以下、好ましくは、8時間以下である。
 焼成における昇温速度は、例えば、0.5℃/分以上、20℃/分以下である。
 上記焼成(本焼成)の前に、バインダーや分散剤などの有機成分を熱分解および除去するために、電気炉を用いて、例えば、空気中、600℃以上、1300℃以下で予備加熱し、脱有機成分処理を実施することもできる。
 上記したグリーンシート1の焼成により、貫通孔2および貫通面3を有するセラミックスプレート4を得る。
 焼成後のセラミックスプレート4(図1C参照)は、焼成前のグリーンシート1(図1B)に対して収縮している。例えば、焼成後のセラミックスプレート4における厚みT1、貫通孔2の内径L1、隣接する貫通孔2間の間隔L2、および、隣接する貫通孔2のピッチL3は、焼成前のグリーンシート1におけるT1、L1、L2およびL3に対して、それぞれ、例えば、99%以下、好ましくは、95%以下、より好ましくは、90%以下であり、また、60%以上である。
 具体的には、焼成後のセラミックスプレート4における厚みT1は、例えば、0.03mm以上、好ましくは、0.05mm以上であり、また、例えば、1.0mm以下、好ましくは、0.3mm以下である。焼成後のセラミックスプレート4における貫通孔2の内径L1は、例えば、0.1mm以上であり、また、例えば、1.0mm以下、好ましくは、0.5mm以下である。焼成後のセラミックスプレート4における前後方向および左右方向に隣接する貫通孔2間の間隔L2は、例えば、0.5mm以上、好ましくは、1.0mm以上であり、また、例えば、20mm以下、好ましくは、10mm以下である。焼成後のセラミックスプレート4における貫通孔2のピッチL3は、例えば、0.6mm以上、好ましくは、1.1mm以上であり、また、例えば、20.5mm以下、好ましくは、10.5mm以下である。
 また、セラミックスプレート4には、微細な空孔(図示せず)が複数形成されている。空孔の平均孔径は、例えば、2.5μm以上、好ましくは、3.0μm以上、より好ましくは、3.5μm以上であり、また、例えば、20.0μm以下、好ましくは、16.0μm以下、より好ましくは、10.0μm以下である。
 5.工程(3)
 工程(3)では、図1Dおよび図1Eに示すように、セラミックスプレート4を切断して、貫通面3を含む複数の蛍光体プレートを形成する。
 この工程(3)では、図1Dに示すように、まず、セラミックスプレート4を支持シート5に支持させる。
 支持シート5としては、セラミックスプレート4を確実に切断するために支持シート5を支持し、その後、切断されたセラミックスプレート4(具体的には、後述する蛍光体プレート15)を引き離すことができる、微粘着性を有するダイシングテープが挙げられる。また、支持シート5の寸法は、セラミックスプレート4の寸法に応じて適宜調節されており、支持シート5の前後方向長さおよび左右方向長さは、セラミックスプレート4のそれらに対して、例えば、長い。
 次いで、この工程(3)において、図1Eに示すように、グリーンシート1を、切断刃6により切断する。
 切断刃としては、図1Eで示すように、例えば、円盤状を有し、その軸に対して回転可能なダイシングソー(ダイシングブレード)7、例えば、略水平に沿う刃先を有するカッタ(図示せず)が挙げられる。切断刃6として、好ましくは、ダイシングソー7が挙げられる。
 セラミックスプレート4を切断するには、具体的には、例えば、ダイシングソー7を備えるダイシング装置、カッタを備えるカッティング装置(図示せず)が用いられる。好ましくは、ダイシング装置が挙げられる。
 そして、上記した切断刃6により形成される切断線の一例としての第1切断線11が複数の貫通孔2を通過するように、セラミックスプレート4を切断して、蛍光体プレート15を製造する。具体的には、1つの貫通孔2を区画する貫通面3が複数の蛍光体プレート15のそれぞれに分け与えられて、1つの貫通面3を分割するように、セラミックスプレート4を切断する。詳しくは、1つの貫通孔2を区画する貫通面3が4つの蛍光体プレート15のそれぞれに分け与えられて、1つの貫通面3を4分割するように、セラミックスプレート4を切断する。
 具体的には、第1切断線11が、複数の貫通孔2のそれぞれの中心を通過するように、セラミックスプレート4を切断する。すると、1つの貫通面3が複数に分割される。
 第1切断線11は、前後方向に延び、左右方向に互いに間隔を隔てて配置される第1前後切断線12と、左右方向に延び、前後方向に互いに間隔を隔てて配置される第1左右切断線13とを有している。
 第1前後切断線12および第1左右切断線13は、複数の貫通孔2のそれぞれの中心において、直交するように、交差している。
 また、第1切断線11に沿うセラミックスプレート4の切断とともに、第2切断線14に沿うセラミックスプレート4の切断を実施する。
 第2切断線14は、貫通孔2を通過せず、具体的には、隣接する貫通孔2の間を通過する。第2切断線14は、前後方向に延び、第1前後切断線12に隣接して並行する第2前後切断線16と、左右方向に延び、第1左右切断線13に隣接して並行する第2左右切断線17とを有している。
 第2前後切断線16と第1前後切断線12とは、左右方向において、交互に等間隔で配置されている。第2左右切断線17と第1左右切断線13とは、前後方向において、交互に等間隔で配置されている。
 また、切断刃6の下端部が支持シート5内に進入するように、セラミックスプレート4を切断する。そのため、支持シート5の上部には、第1切断線11および第2切断線14に対応する切断溝21が形成される。
 そして、上記した第1切断線11および第2切断線14に沿うセラミックスプレート4の切断により、複数の蛍光体プレート15が支持シート5の上面に支持された状態で得られる。
 蛍光体プレート15は、平坦な上面および平坦な下面を有する板形状を有している。また、蛍光体プレート15の側面は、1つの貫通面3から分割された(分け与えられた)貫通面3と、その貫通面3の端部に連続し、第1切断線11に沿う2つの第1側面18(2面)と、第2切断線14に沿い、第1側面18の端部に連続する2つの第2側面19(2面)とを有している。
 具体的には、支持シート5の中央(後で説明する周端部を除く部分)に位置し、貫通面3が後左側面に形成された第1蛍光体プレート15A(図1Eのハッチ部分参照)では、第1前後切断線12に沿う第1側面18が、貫通面3の前端部に連続しており、第1左右切断線13に沿う第1側面18が、貫通面3の後端部に連続している。また、第2前後切断線16に沿う第2側面19が、第1左右切断線13に沿う第1側面18の右端部に連続しており、第2左右切断線17に沿う第2側面19が、第1前後切断線12に沿う第1側面18の前端部、および、第2前後切断線16に沿う第2側面19の前端部に連続している。これにより、蛍光体プレート15の貫通面3、第1側面18および第2側面19の側面は、連続している。
 他方、支持シート5の周端部に位置する第2蛍光体プレート15Bは、少なくとも、2つの第1切断線11と、セラミックスプレート4の外周面に対応する1つの外周面とを有している。第2蛍光体プレート15Bは、複数(4つ)の第3蛍光体プレート15B3と、複数の第4蛍光体プレート15B4とを備えている。第3蛍光体プレート15B3は、支持シート5の隅部に位置しており、2つの第1切断線11(具体的には、1つの第1前後切断線12および1つの第1左右切断線13)と、セラミックスプレート4の外周面に対応する2つの外周面とを有している。第4蛍光体プレート15B4は、第3蛍光体プレート15B3間に位置しており、2つの第1切断線11と、1つの第2切断線14(第2前後切断線16または第2左右切断線17)と、セラミックスプレート4の外周面に対応する1つの外周面とを有している。
 複数の蛍光体プレート15のそれぞれの寸法は、後述する光半導体素子28(図1G参照)の寸法に応じて適宜設定される。蛍光体プレート15の前後方向長さおよび左右方向長さのそれぞれは、貫通面3の前後方向長さおよび左右方向長さのそれぞれ(すなわち、貫通孔2の内径L1の半値)に対して、例えば、2倍以上、好ましくは、4倍以上であり、また、例えば、20倍以下、好ましくは、10倍以下である。具体的には、蛍光体プレート15の前後方向長さおよび左右方向長さは、例えば、0.1mm以上、好ましくは、0.5mm以上であり、また、例えば、10mm以下、好ましくは、2.0mm以下である。
 6.工程(6)
 工程(6)では、図1Fに示すように、複数の蛍光体プレート15を支持シート5から転写シート20に転写する。
 複数の蛍光体プレート15を支持シート5から転写シート20に転写するには、例えば、まず、転写シート20を用意し、その転写シート20を複数の蛍光体プレート15の上に対向配置する。
 転写シート20は、前後方向および左右方向(面方向)に延伸可能で、微粘着性を有する。転写シート20の寸法は、複数の蛍光体プレート15の寸法に応じて適宜調節されており、複数の転写シート20の合計の前後方向長さ、および、複数の転写シート20の合計の左右方向長さより長い、前後方向長さおよび左右方向長さを有している。
 次いで、転写シート20の下面を、複数の蛍光体プレート15の上面に接触させ、次いで、複数の蛍光体プレート15を支持シート5から剥離する。これによって、複数の蛍光体プレート15を支持シート5から転写シート20に転写する。つまり、複数の蛍光体プレート15は、転写シート20に仮固定される。
 これによって、複数の蛍光体プレート15を、転写シート20に仮固定された状態で得る。
 蛍光体プレート15は、次の図1Gにおいて説明する光半導体素子28ではない。蛍光体プレート15は、光半導体装置30の一部品、すなわち、光半導体装置30を作製するための部品であり、光半導体素子28を備えない。蛍光体プレート15は、部品単独で流通し、産業上利用可能なデバイスであるが、それに限定されない。
 7.光半導体装置を製造する工程
 その後、蛍光体プレート15を用いて光半導体装置30を製造する。
 具体的には、まず、図1Fに示すように、複数の蛍光体プレート15のそれぞれを、例えば、コレットを備えるピックアップ装置(図示せず)によって転写シート20から引き剥がし、続いて、図1Gに示すように、光半導体素子28の上面に積層する。
 光半導体素子28は、光半導体装置30に備えられている。
 光半導体装置30は、基板26と、端子27と、光半導体素子28と、蛍光体プレート15と、ワイヤ29とを備えている。
 基板26は、略板形状を有しており、絶縁材料からなる。
 端子27は、基板26の上面に配置されている。
 光半導体素子28は、基板26の上面に固定されており、端子27と間隔を隔てて配置されている。光半導体素子28は、略矩形板形状を有しており、光半導体材料からなる。また、光半導体素子28の上面の隅部には、接続部25が形成されている。
 蛍光体プレート15は、光半導体素子28の上面に、接続部25を露出するように、配置されている。蛍光体プレート15は、図示しない接着剤を介して、光半導体素子28の上面に接着されている。
 ワイヤ29は、上側に向かって撓むように配置されている。また、ワイヤ29は、下方に向かって開放される略U字形状に撓んでいる。ワイヤ29の一端部は、接続部25に接続され、ワイヤ29の他端部は、端子27に接続されている。つまり、ワイヤ29は、接続部25とワイヤ29とを接続(ワイヤボンディング)している。ワイヤ29は、蛍光体プレート15を迂回するように配置されている。
 そして、光半導体装置30を製造するには、まず、端子27および光半導体素子28が配置された基板26を用意する。次いで、蛍光体プレート15の下面を光半導体素子28の上面に、図示しない接着剤を介して、接着する。このとき、貫通面3から接続部25が露出するように、蛍光体プレート15を光半導体素子28に積層する。その後、ワイヤ29によって、接続部25と端子27とを接続(ワイヤボンディング)する。
 上記は一例であり、例えば、蛍光体プレート15と光半導体素子28とを接合した後に基板26に配置するなど方法は適宜適応、変更可能である。
 8.作用効果
 そして、この方法によれば、特許文献1に記載の方法のように、棒状の成形体を成形することなく、図1Aに示すように、まず、グリーンシート1を用意し、次いで、図1Bに示すように、グリーンシート1に、貫通孔2を形成し、次いで、図1Eに示すように、グリーンシート1から得られるセラミックスプレート4を切断する。そのため、貫通孔2を簡単に形成でき、蛍光体プレート15を優れた製造効率で製造することができる。
 また、この方法によれば、第1切断線11を伴うセラミックスプレート4の切断によって、1つの貫通孔2を区画する貫通面3が複数(4つ)の蛍光体プレート15のそれぞれに分け与えられるように、貫通面3を(4)分割するため、製造効率により一層優れる。
 また、この方法では、グリーンシート1からなる蛍光体シートを用意でき、また、セラミックスプレート4からなる蛍光体プレート15を製造することができる。
 また、図1Eに示すように、支持シート5において切断により生じる屑(図1Eにおいて図示せず)および/または切断溝21が支持シート5にあると、その後の工程、具体的には、ピックアップ装置によって蛍光体プレート15を引き剥がすときに、かかる屑および/または切断溝21が(ピックアップ装置による蛍光体プレート15の引き剥がしなどに)影響を及ぼす場合がある。
 しかし、図1Fに示すように、工程(3)の後に、複数の蛍光体プレート15を支持シート5から転写シート20に転写すれば、上記の影響を排除することができる。
 また、セラミックスプレート4を切断刃6により切断する方法であれば、セラミックスプレート4を確実に切断することができる。
 また、工程(2)では、グリーンシート1をパンチングする方法、グリーンシート1をブラスト加工する方法、グリーンシート1をレーザ加工する方法、および、グリーンシート1をドリル加工する方法のうち、いずれか1つの方法を実施すれば、タクトタイムの短縮および加工費用の低減を図りながら、グリーンシート1に貫通孔2を確実に形成することができる。
 9.変形例
 変形例において、一実施形態と同一の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 (1)第2前後切断線および第2左右切断線の数
 一実施形態では、図1Eに示すように、第2前後切断線16が単数となるように、セラミックスプレート4を切断しているが、例えば、図示しないが、第2前後切断線16が複数となるように、セラミックスプレート4を切断することもできる。上記の場合には、工程(2)では、グリーンシート1において、貫通孔2は、例えば、左右3列以上、配列されており、工程(3)では、第2前後切断線16のそれぞれは、左右方向に隣接する2つの貫通孔2の間毎に形成される。
 一実施形態では、図1Eに示すように、第2左右切断線17が単数となるように、セラミックスプレート4を切断しているが、例えば、図示しないが、第2左右切断線17が複数となるように、セラミックスプレート4を切断することもできる。この場合には、工程(2)では、グリーンシート1において、貫通孔2は、例えば、前後3列以上、配列されており、工程(3)では、第2左右切断線17のそれぞれは、前後方向に隣接する2つの貫通孔2の間毎に形成される。
 (2)貫通孔の数
 図示しないが、例えば、貫通孔2は、単数であってもよい。
 (3)貫通面の分割数
 一実施形態では、図1Eに示すように、1つの貫通面3を4分割している。しかし、貫通面3の分割数は特に限定されない。図示しないが、例えば、2分割、3分割、5分割、6分割、7分割などとすることもできる。
 (4)工程(3)におけるセラミックスプレートの切断方法
 一実施形態において、工程(3)では、図1Eに示すように、セラミックスプレート4を切断刃6により切断しているが、例えば、図2Aおよび図2Bに示すように、セラミックスプレート4をスクライビングおよびブレイキングすることもできる。
 この方法では、まず、図2Aに示すように、第1切断線11および第2切断線14に沿って、セラミックスプレート4の上部をスクライビングする(削り取る)。
 セラミックスプレート4をスクライビングするには、ダイシングソー7(実線参照)およびカッタ8(仮想線参照)が用いられる。カッタ8は、上下方向に移動可能な刃先48を有する。刃先48は、セラミックスプレート4の上面に対して平行である。
 これにより、第1切断線11および第2切断線14に対応する溝22が、セラミックスプレート4の上部に形成される。溝22は、上側に向かって開放される断面略V字形状を有している。溝22の深さは、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、20μm以下、好ましくは、10μm以下である。
 その後、図2Bに示すように、セラミックスプレート4を溝22に沿ってブレイキングする。
 セラミックスプレート4をブレイキングするには、下側に向かって尖るブレイキング部材23を溝22に押し当て、ブレイキング部材23を下側に向かって押し下げる。
 あるいは、図2Cに示すように、平坦な下面を有する円板形状を有するグラインド部材24を、セラミックスプレート4の上面を下側に押し付けしながら、グラインド部材24を前後方向および左右方向にグラインドさせる(グラインドブレイキング)。すると、グラインド部材24の下面の端部が、溝22の位置と重なったときに、グラインド部材24から加わる押圧力が溝22に集中し、溝22の下側に位置するセラミックスプレート4を破壊する(ブレイキングする)。
 これによって、セラミックスプレート4を溝22に沿ってブレイキングする。
 また、切断刃による切断、および、スクライビングおよびブレイキングに、代えて、または、加えて、レーザによりセラミックスプレート4を切断することもできる。
 レーザとしては、例えば、YAGレーザ、COレーザなどが挙げられ、好ましくは、YAGレーザが挙げられる。
 あるいは、切断刃による切断、スクライビングおよびブレイキングに、代えて、または、加えて、ブラスト加工によりセラミックスプレート4を切断することもできる。
 ブラスト加工として、例えば、直圧式ブラスト加工、サイフォン式加工などが挙げられる。ブラスト加工では、具体的に、セラミックスプレート4において、第1切断線11および第2切断線14を形成する箇所以外をレジストにて被覆した後に、噴射材料をセラミックスプレート4に噴射する。ブラスト加工に用いる噴射材料の種類や粒径、噴射速度、方式(直圧式、サイフォン式)などを適宜調整することにより、第1切断線11および第2切断線14の寸法を適宜調整する。
 ブラスト加工は、レーザ加工に比べて、生産性の観点から、好ましい。
 工程(3)において、セラミックスプレート4を切断刃により切断する方法、セラミックスプレート4をスクライビングおよびブレイキングする方法、セラミックスプレート4をレーザにより切断する方法(レーザ加工)、および、セラミックスプレート4をブラスト加工する方法のうち、レーザ照射に伴う発熱に起因して、蛍光体プレート15の側面が溶融痕(具体的には、レーザアブレーション痕)が残ることを防止するために、好ましくは、セラミックスプレート4を切断刃により切断する方法、および、セラミックスプレート4をスクライビングおよびブレイキングする方法が用いられる。
 工程(3)において、より好ましくは、蛍光体プレート15の寸法精度の観点から、セラミックスプレート4を切断刃により切断する方法が用いられる。
 (5)複数の蛍光体プレートの配列(並べる工程(7))
 一実施形態では、図1Eおよび図1Fに示すように、工程(3)の後に、複数の蛍光体プレート15を支持シート5から転写シート20に転写する工程(6)を実施しているが、それに代えて、例えば、図3Aに示すように、複数の蛍光体プレート15を支持シート5から引き剥がし、続いて、図3Bに示すように、蛍光体プレート15の貫通面3が同一方向に向かうように、複数の蛍光体プレート15を並べる工程(7)を実施することもできる。
 この方法では、まず、図3Aに示すように、複数の蛍光体プレート15のそれぞれを支持シート5から、ピックアップ装置44を用いて引き剥がし、続いて、別の支持シート35の表面に配置する。
 ピックアップ装置44は、上下方向に延び、下面に吸引口を有するコレット45を備えている。また、コレット45は、上下方向に延びる軸を中心として回転可能に構成されている。そして、コレット45の吸引口を蛍光体プレート15の上面に接触させて、これを吸引し、続いて、蛍光体プレート15を引き上げ、その後、コレットを所望の角度だけ回転(回動)させる。その後、複数の蛍光体プレート15のそれぞれの貫通面3が同一方向、例えば、前方斜め右側に向かうように、複数の蛍光体プレート15を別の支持シート35の表面に並べる。
 また、複数の蛍光体プレート15を別の支持シート35の表面に、例えば、前後方向および左右方向に互いに間隔L4を隔てて並べる。
 別の支持シート35は、支持シート5と同一の材料から形成されている。
 そして、この方法は、工程(3)の後に、複数の蛍光体プレート15を支持シート5から引き剥がし、それらの貫通面3が同一方向に向かうように、複数の蛍光体プレート15を並べれば、複数の蛍光体プレート15の取扱性を向上させることができる。
 また、上記した説明では、工程(6)および工程(7)を択一的に実施しているが、それらの両方を実施することもできる。
 (6)貫通孔の形状 
 一実施形態では、工程(2)において、図1Bに示すように、貫通孔2を丸孔としているが、貫通孔2の形状は特に限定されない。貫通孔2を、例えば、多角形状に形成することができ、具体的には、図4Aおよび図5Aに示すように、矩形状に形成することもできる。つまり、貫通孔2を角孔とすることができる。
 図4Aに示すように、貫通孔2に臨む貫通面3は、前後方向に互いに対向する前面31および後面32と、それらの左右両端部を連結する2つの連結面33とを有している。前面31および後面32は、ともに、左右方向に延びている。2つの連結面33は、ともに、前後方向に延びている。
 貫通孔2の前後方向長さおよび左右方向長さL1は、一実施形態における丸孔の内径L1と同一である。
 工程(3)では、図4Bに示すように、グリーンシート1の切断によって、貫通面3は、複数(4つ)の蛍光体プレート15のそれぞれに分け与えられる。
 そして、図4Cに示すように、蛍光体プレート15は、平面視略L字形状を有している。
 あるいは、図5Aに示すように、貫通孔2に臨む貫通面3は、前側に向かうに従って左側に傾斜する第1傾斜方向ID1において互いに対向する前左面37および後右面38と、それらの前後方向両端部を連結し、第1傾斜方向ID1に直交する第2傾斜方向(前側に向かうに従って右側に傾斜する方向)ID2において互いに対向する前右面39および後左面40とを連続して有している。
 前左面37および後右面38の長さ(第1傾斜方向ID2に沿う長さ)L5と、前右面39および後左面40の長さ(第2傾斜方向ID1に沿う長さ)L5とは、互いに同一または相異なっていてもよく、それぞれ、上記したL1に対して、例えば、50%以上、好ましくは、65%以上であり、また、例えば、200%以下、好ましくは、100%以下であり、具体的には、L5は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、5mm以下、好ましくは、1mm以下である。
 工程(3)では、図5Bに示すように、グリーンシート1の切断によって、前左面37と後右面38と前右面39と後左面40とは、複数(4つ)の蛍光体プレート15のそれぞれに分け与えられる。
 そして、蛍光体プレート15は、略五角形状を有しており、前左面37、後右面38、前右面39および後左面40のいずれかからなる傾斜面36を形成している。
 (7)蛍光体プレートにおける貫通面の数
 一実施形態では、1つの蛍光体プレート15は、1つの貫通面3を有している。しかし、貫通面3の数は特に限定されない。例えば、図6Cに示すように、1つの蛍光体プレート15が、複数の貫通面3を有することもできる。
 工程(2)において、図6Aに示すように、グリーンシート1において、複数の貫通孔2および切欠部52は、前後2列(n列)、左右4列(2n列)、整列して配置される。なお、切欠部52は、セラミックスプレート4の右側面および左側面のそれぞれを半円形状に切り欠いた形状を有している。
 次いで、図6Bに示すように、工程(3)において、左右方向に隣接する2つの貫通面3のそれぞれが分割されて、少なくとも1つの蛍光体プレート15に与えられるように、セラミックスプレート4を切断する。
 この工程(3)では、図6Bに示すように、第2切断線14は、第2前後切断線16(図1F参照)を有さず、第2左右切断線17のみを有する。
 蛍光体プレート15は、図6Cに示すように、複数(2つ)の貫通面3を有する。蛍光体プレート15において、2つの貫通面3は、第1切断線11(具体的には、第1左右切断線13)によって連結されている。2つの貫通面3は、蛍光体プレート15において、左右方向に隣接配置されている。
 (8)貫通孔を含む蛍光体プレート
 一実施形態では、工程(3)において、図1Eに示すように、第1切断線11が貫通孔2を通過するように、セラミックスプレート4を切断している。しかし、これに限定されず、例えば、図7Bに示すように、第1切断線11を形成せず、貫通孔2を通過せず、つまり、隣接する貫通孔2の間を通過する第2切断線14のみを形成するように、セラミックスプレート4を切断することもできる。
 図7Bに示すように、第2切断線14は、隣接する貫通孔2の間を通過している。
 図7Cに示すように、蛍光体プレート15は、端部(隅部)に貫通孔2を有しており、略矩形の外形形状を有している。1つの蛍光体プレート15は、1つの貫通孔2を包含している。
 (9)Bステージの組成物シート、および、Cステージの硬化シート
 一実施形態では、工程(1)では、図1Aに示すように、本発明の蛍光体シートを、蛍光体を含有するグリーンシート1とし、工程(4)において、図1Cに示すように、本発明の蛍光体シートを、グリーンシート1を焼成することにより得られるセラミックスプレート4としている。
 しかし、図1Aの括弧書き符号に示すように、工程(1)において、本発明の蛍光体シートを、蛍光体および熱硬化性樹脂を含有する蛍光樹脂組成物からなる、Bステージシート41とし、図1Cの括弧書き符号に示すように、工程(4)において、本発明の蛍光体シートを、Bステージシート41を熱硬化することにより得られる、Cステージシート42とすることもできる。
 蛍光体の配合割合は、蛍光樹脂組成物に対して、例えば、5質量%以上、好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、70質量%以下である。
 熱硬化性樹脂としては、例えば、2段反応硬化性樹脂、1段反応硬化性樹脂が挙げられる。
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の弾性率よりも小さい半固体または固体状態である。
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂である。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。そのため、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する硬化性樹脂を含まない。
 要するに、熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。
 熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂、さらに好ましくは、フェニル系シリコーン樹脂が挙げられる。上記した熱硬化性樹脂は、同一種類または複数種類のいずれでもよい。
 熱硬化性樹脂の配合割合は、蛍光体の配合割合の残部である。
 工程(1)では、まず、蛍光樹脂組成物を調製する。蛍光樹脂組成物を調製するには、上記した蛍光体と、熱硬化性樹脂とを配合して、蛍光樹脂組成物のワニスを調製する。
 続いて、ワニスを、剥離シート10の表面に塗布する。その後、蛍光樹脂組成物を、加熱(ベイク)する。これにより、Bステージシート41を用意する。
 その後、Bステージシート41を剥離シート10から引き剥がす。
 続いて、図1Bに示すように、工程(2)を実施する。好ましくは、グリーンシート1をパンチングする方法、グリーンシート1をドリル加工する方法が用いられる。
 その後、図1Cに示すように、工程(4)において、Bステージシート41を熱硬化する。Cステージシート42を得る。
 (10)工程(4)のタイミング
 一実施形態では、図1B~図1Eに示すように、工程(2)および工程(4)を順次実施している。つまり、まず、図1Bに示すように、グリーンシート1に貫通孔2を形成し、その後、図1Cに示すように、グリーンシート1をセラミックスプレート4としている。
 しかし、図示しないが、工程(4)および工程(2)を順次実施することもできる。つまり、図示しないが、まず、グリーンシート1をセラミックスプレート4とし、次いで、セラミックスプレート4に貫通孔2を形成する。
 この際、工程(2)において、セラミックスプレート4に貫通孔2を形成する方法として、例えば、一実施形態においてグリーンシート1に貫通孔2を形成する方法が挙げられ、好ましくは、ブラスト加工、レーザ加工が挙げられる。これらは、単独使用または併用することができる。ブラスト加工、レーザ加工であれば、硬質のセラミックスプレート4に貫通孔2および貫通面3を確実に形成できる。
 ブラスト加工は、レーザ加工に比べて、生産性の観点から、好ましい。
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1
 <工程(1)>
 酸化イットリウム粒子(純度99.99%、日本イットリウム社製)11.34g、酸化アルミニウム粒子(純度99.99%、住友化学社製)8.577g、および、酸化セリウム粒子0.087gからなる蛍光体材料の粉末を調製した。
 次いで、蛍光体材料の粉末20gと、水溶性バインダー(「WB4101」、Polymer Inovations,Inc社製)とを、固形分の体積比率が62:38となるように混合し、さらに蒸留水を加えてアルミナ製容器に入れ、直径3mmのジルコニアボールを加えて24時間、ボールミルにより湿式混合して、第1スラリーを調製した。
 次いで、第1スラリーに、有機粒子(ポリメタクリル酸メチル、平均粒子径3.5μm)を、蛍光体材料と有機粒子との合計含有量に対して3.0体積%となるように添加して、さらに湿式混合して、スラリーを調製した。
 次いで、図1Aの仮想線および実線で示すように、スラリーを、PETシートからなる剥離シート10の表面に、ドクターブレード法により塗布して、70℃、5分で乾燥し、厚み55μmのグリーンシート1を得た。
 その後、グリーンシート1をPETシートから剥離し、続いて、グリーンシート1を20mm×20mmの寸法に切断した。切断したグリーンシート1を2枚積層し、それらをホットプレスを用いて熱ラミネートすることにより、厚み110μmのグリーンシート積層体1を作製した。
 <工程(2)>
 図1Bに示すように、グリーンシート積層体1に、複数の貫通孔2および複数の貫通面3を形成した。具体的には、直径0.7mmのドリルを備えるビアメカニクス社製NCドリルマシンでグリーンシート積層体1をドリル加工して、グリーンシート積層体1を穿孔した。
 これによって、内径L1が0.7mm、間隔L2が1.7mm、ピッチL3が2.4mmの、丸孔からなる貫通孔2をグリーンシート積層体1に形成した。
 <工程(4)>
 グリーンシート積層体1を、電気マッフル炉で、大気中、2℃/分の昇温速度で1200℃まで加熱(予備加熱)することにより、水溶性バインダーおよび有機粒子を熱分解および除去した。
 その後、高温環境炉にグリーンシート積層体1を移し、還元雰囲気下で、5℃/分の昇温速度で1800℃まで加熱し、その温度で5時間焼成することにより、図1Cに示すように、厚み120μmの、セラミックスプレート4を製造した。
 なお、焼成後のセラミックスプレート4は、焼成前のグリーンシート積層体1に対して16%程度収縮しており、具体的には、焼成後のセラミックスプレート4における貫通孔2の内径L1は、0.6mmであり、隣接する貫通孔2間の間隔L2は、1.4mmであった。
 <工程(3)>
 その後、図1Dに示すように、セラミックスプレート4を、ダイシングテープからなる支持シート5の表面に仮固定した。
 次いで、それらを、ダイシングソー7を備えるダイシング装置に設置し、図1Eに示すように、刃厚100μmのダイシングソー7で貫通孔2の中心を通過するように切断した。
 ダイシング装置として、Disco社製DFD6361を用いた。
 <工程(6)>
 その後、図1Fに示すように、複数の蛍光体プレート15を支持シート5から転写シート20に転写(仮固定)した。
 これにより、複数の蛍光体プレート15を、転写シート20に仮固定された状態で製造した。
  実施例2
 工程(2)において、ドリル加工に代えて、レーザ加工をグリーンシート積層体1に施した以外は、実施例1と同様に処理して、グリーンシート積層体1を穿孔し、続いて、複数の蛍光体プレート15を製造した。
 レーザ加工では、esi社製 Model 5330 UV-YAGレーザを用いた。
  実施例3
 工程(2)において、ドリル加工に代えて、グリーンシート積層体1をパンチングした以外は、実施例1と同様に処理して、グリーンシート積層体1を穿孔し、続いて、複数の蛍光体プレート15を製造した。
 パンチングでは、UHT社製 MPシリーズのパンチングマシンを用いた。
  実施例4
 工程(2)において、ドリル加工に代えて、グリーンシート積層体1をパンチングし、また、貫通孔2の形状を丸形状から、図5Aに示す、矩形状に変更した以外は、実施例1と同様に処理して、グリーンシート積層体1を穿孔し、続いて、複数の蛍光体プレート15を製造した。
 パンチングでは、UHT社製 MPシリーズのパンチングマシンを用いた。
 貫通孔2には、前左面37、後右面38、前右面39および後左面40を有する貫通面3が臨んでいる。
 また、貫通孔2の前後方向長さ(対角線長さ)および左右方向長さ(対角線長さ)L1は、1.0mmであり、前左面37および後右面38の長さと、前右面39および後左面40の長さとは、0.7mm以上であった。
  実施例5
 工程(3)において、ダイシング装置に代えて、レーザ加工機によって、セラミックスプレート4をレーザ加工した以外は、実施例1と同様に処理して、セラミックスプレート4を切断して、複数の蛍光体プレート15を製造した。
 レーザ加工機として、esi社製 Model 5330 UV-YAGレーザを用いた。
 (評価)
 工程(2)および工程(3)を下記の通りに評価し、その結果を表1に記載する。
 1. 工程(2)の評価
 工程(2)におけるグリーンシート積層体1の穿孔を下記の基準に従って、評価した。
◎:貫通面3にバリや溶融痕が観察されず、所望の寸法の貫通孔2を形成できたとともに、4つの貫通孔2を形成するのに要した時間が、2秒未満であり、穿孔速度が高かった。
○:貫通面3にバリや溶融痕が観察されず、所望の寸法の貫通孔2を形成できた。しかし、4つの貫通孔2を形成するのに要した時間が、5秒以上であり、穿孔速度が低かった。
△:4つの貫通孔2を形成するのに要した時間が、5秒未満であり、穿孔速度が高かった。しかし、貫通面3にバリや溶融痕が観察され、所望の寸法の貫通孔2を形成できなかった。
 2. 工程(3)の評価
 工程(3)におけるセラミックスプレート4の切断を下記の基準に従って、評価した。
◎:第1切断線11および第2切断線14にバリや溶融痕が観察されず、所望の寸法の蛍光体プレート15を製造できた。
○:第1切断線11および第2切断線14にバリや溶融痕がわずかに観察された。
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 蛍光体プレートの製造方法により得られる蛍光体プレートは、光半導体装置の製造に用いられる。
1     グリーンシート(グリーンシート積層体)
2     貫通孔
3     貫通面
4     セラミックスプレート
5     支持シート
6     切断刃
9     蛍光体プレート
11   第1切断線
12   第1前後切断線
13   第1左右切断線
15   蛍光体プレート
20   転写シート
23   ブレイキング部材
24   グラインド部材

Claims (8)

  1.  蛍光体シートを用意する工程(1)と、
     前記蛍光体シートに、貫通孔および前記貫通孔に臨む貫通面を形成する工程(2)と、
     前記蛍光体シートを切断して、前記貫通面を含む複数の蛍光体プレートを形成する工程(3)と
    を、順に備えることを特徴とする、蛍光体プレートの製造方法。
  2.  前記工程(3)では、切断線が前記貫通孔を通過するように、前記蛍光体シートを切断し、それによって、1つの前記貫通孔を区画する前記貫通面が複数の前記蛍光体プレートのそれぞれに分け与えられるように、前記貫通面を分割することを特徴とする、請求項1に記載の蛍光体プレートの製造方法。
  3.  前記工程(1)では、前記蛍光体シートを、蛍光体を含有するグリーンシートとし、
     前記工程(2)の後、かつ、前記工程(3)の前に、前記蛍光体シートを、前記グリーンシートを焼成することにより得られる前記セラミックスプレートとする工程(4)
    をさらに備えることを特徴とする、請求項1に記載の蛍光体プレートの製造方法。
  4.  前記工程(4)の後、かつ、前記工程(3)の前に、前記セラミックスプレートを支持シートに支持させる工程(5)と、
     前記工程(3)の後に、複数の前記蛍光体プレートを前記支持シートから転写シートに転写する工程(6)、および/または、前記工程(3)の後に、複数の前記蛍光体プレートを前記支持シートから引き剥がし、それらの前記貫通面が同一方向に向かうように、複数の前記蛍光体プレートを並べる工程(7)と
    をさらに備えることを特徴とする、請求項3に記載の蛍光体プレートの製造方法。
  5.  前記工程(3)では、
     前記蛍光体シートを切断刃により切断する方法、
     前記蛍光体シートをスクライビングおよびブレイキングする方法、
     前記蛍光体シートをレーザにより切断する方法、および、
     前記蛍光体シートをブラスト加工により切断する方法
    のうち、少なくともいずれか1つの方法を実施する
    ことを特徴とする、請求項1に記載の蛍光体プレートの製造方法。
  6.  前記工程(2)では、
     前記蛍光体シートをパンチングする方法、
     前記蛍光体シートをブラスト加工する方法、
     前記蛍光体シートをレーザ加工する方法、および、
     前記蛍光体シートをドリル加工する方法
    のうち、いずれか1つの方法を実施する
    ことを特徴とする、請求項1に記載の蛍光体プレートの製造方法。
  7.  前記工程(1)では、前記蛍光体シートを、蛍光体を含有するグリーンシートとし、
     前記工程(1)の後、かつ、前記工程(2)の前に、前記蛍光体シートを、前記グリーンシートを焼成することにより得られる前記セラミックスプレートとする工程(4)をさらに備えることを特徴とする、請求項1に記載の蛍光体プレートの製造方法。
  8.  前記工程(2)では、
     前記セラミックスプレートをブラスト加工する方法、および、
     前記セラミックスプレートをレーザ加工する方法
    のうち、いずれか1つの方法を実施する
    ことを特徴とする、請求項7に記載の蛍光体プレートの製造方法。
PCT/JP2016/065528 2015-06-02 2016-05-26 蛍光体プレートの製造方法 WO2016194746A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16803181.3A EP3306363A4 (en) 2015-06-02 2016-05-26 PROCESS FOR PRODUCING PHOSPHORUS PANELS
KR1020177034727A KR20180015146A (ko) 2015-06-02 2016-05-26 형광체 플레이트의 제조 방법
CN201680032335.9A CN107710033A (zh) 2015-06-02 2016-05-26 荧光体板的制造方法
US15/577,043 US20180145231A1 (en) 2015-06-02 2016-05-26 Method for producing phosphor plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-111873 2015-06-02
JP2015111873 2015-06-02
JP2016096805A JP2016222902A (ja) 2015-06-02 2016-05-13 蛍光体プレートの製造方法
JP2016-096805 2016-05-13

Publications (1)

Publication Number Publication Date
WO2016194746A1 true WO2016194746A1 (ja) 2016-12-08

Family

ID=57440590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065528 WO2016194746A1 (ja) 2015-06-02 2016-05-26 蛍光体プレートの製造方法

Country Status (1)

Country Link
WO (1) WO2016194746A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105374A1 (ja) * 2016-12-09 2018-06-14 日本電気硝子株式会社 波長変換部材の製造方法、波長変換部材及び発光デバイス
US20210187929A1 (en) * 2018-11-15 2021-06-24 Nippon Electric Glass Co., Ltd. Method of manufacturing plate-like member and laminate
TWI802097B (zh) * 2021-09-24 2023-05-11 南韓商羅茨股份有限公司 螢光體之製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243750A (ja) * 2004-02-25 2005-09-08 Ngk Spark Plug Co Ltd 多層セラミック基板およびユニットセラミック基板ならびにこれらの製造方法
JP2008060096A (ja) * 2006-08-29 2008-03-13 Ngk Spark Plug Co Ltd 多数個取り配線基板およびその製造方法
JP2012049427A (ja) * 2010-08-30 2012-03-08 Kyocera Corp グリーンシート積層体の製造方法および絶縁基板の製造方法
JP2014088519A (ja) * 2012-10-31 2014-05-15 Nippon Electric Glass Co Ltd 波長変換部材の製造方法及び波長変換部材
JP2014116587A (ja) * 2012-11-16 2014-06-26 Toray Ind Inc 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243750A (ja) * 2004-02-25 2005-09-08 Ngk Spark Plug Co Ltd 多層セラミック基板およびユニットセラミック基板ならびにこれらの製造方法
JP2008060096A (ja) * 2006-08-29 2008-03-13 Ngk Spark Plug Co Ltd 多数個取り配線基板およびその製造方法
JP2012049427A (ja) * 2010-08-30 2012-03-08 Kyocera Corp グリーンシート積層体の製造方法および絶縁基板の製造方法
JP2014088519A (ja) * 2012-10-31 2014-05-15 Nippon Electric Glass Co Ltd 波長変換部材の製造方法及び波長変換部材
JP2014116587A (ja) * 2012-11-16 2014-06-26 Toray Ind Inc 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306363A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105374A1 (ja) * 2016-12-09 2018-06-14 日本電気硝子株式会社 波長変換部材の製造方法、波長変換部材及び発光デバイス
JP2018097060A (ja) * 2016-12-09 2018-06-21 日本電気硝子株式会社 波長変換部材の製造方法、波長変換部材及び発光デバイス
CN110050207A (zh) * 2016-12-09 2019-07-23 日本电气硝子株式会社 波长转换部件的制造方法、波长转换部件和发光设备
KR20190088964A (ko) * 2016-12-09 2019-07-29 니폰 덴키 가라스 가부시키가이샤 파장 변환 부재의 제조 방법, 파장 변환 부재 및 발광 디바이스
US10818825B2 (en) 2016-12-09 2020-10-27 Nippon Electric Glass Co., Ltd. Method for manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
US11322659B2 (en) 2016-12-09 2022-05-03 Nippon Electric Glass Co., Ltd. Method for manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
KR102449025B1 (ko) * 2016-12-09 2022-09-28 니폰 덴키 가라스 가부시키가이샤 파장 변환 부재의 제조 방법, 파장 변환 부재 및 발광 디바이스
US20210187929A1 (en) * 2018-11-15 2021-06-24 Nippon Electric Glass Co., Ltd. Method of manufacturing plate-like member and laminate
US11975519B2 (en) * 2018-11-15 2024-05-07 Nippon Electric Glass Co., Ltd. Method of manufacturing plate-like member and laminate
TWI802097B (zh) * 2021-09-24 2023-05-11 南韓商羅茨股份有限公司 螢光體之製造方法

Similar Documents

Publication Publication Date Title
KR102262769B1 (ko) 발광 장치의 제조 방법
CN108026442B (zh) 波长变换部件和发光设备
CN108695423B (zh) 发光装置的制造方法
JP2017143236A (ja) セラミックスプレート、その製造方法および光半導体装置
WO2016194746A1 (ja) 蛍光体プレートの製造方法
JP2016222902A (ja) 蛍光体プレートの製造方法
CN106233475A (zh) 波长转换构件及其制造方法
US20170040502A1 (en) Wavelength conversion bonding member, wavelength conversion heat dissipation member, and light-emitting device
TWI514441B (zh) A substrate substrate, a composite substrate for a semiconductor, a semiconductor circuit substrate, and a method of manufacturing the same
TW201705546A (zh) 附螢光體層-密封層之光半導體元件之製造方法
JP2006278761A (ja) グリーン基板の製造方法、セラミック基板の切断方法およびチップ状電子部品の製造方法
KR20090113703A (ko) 다층 기판 및 그 제조방법
EP3136453A1 (en) Wavelength conversion member and method for producing same
WO2017138180A1 (ja) セラミックスプレート、その製造方法および光半導体装置
US10950760B2 (en) Two component glass body for tape casting phosphor in glass LED converters
WO2017221608A1 (ja) 蛍光体層シート、および、蛍光体層付光半導体素子の製造方法
JP2007258264A (ja) 集合基板および個別基板の製造方法
WO2017221607A1 (ja) 蛍光体層付光半導体素子
JP2016150989A (ja) 蛍光体セラミックスの製造方法
TW201815726A (zh) 螢光陶瓷板製備方法
TWI729330B (zh) 玻璃中螢光體顏色轉換元件的製造方法
JP2005131971A (ja) セラミックグリーンシート−樹脂シート複合体およびその製造方法
JP2009130370A (ja) 積層セラミック基板の製造方法
JP2003040683A (ja) 低温焼成セラミック基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15577043

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177034727

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016803181

Country of ref document: EP