WO2007091466A1 - 液晶ポリマーの改質方法 - Google Patents

液晶ポリマーの改質方法 Download PDF

Info

Publication number
WO2007091466A1
WO2007091466A1 PCT/JP2007/051612 JP2007051612W WO2007091466A1 WO 2007091466 A1 WO2007091466 A1 WO 2007091466A1 JP 2007051612 W JP2007051612 W JP 2007051612W WO 2007091466 A1 WO2007091466 A1 WO 2007091466A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mol
liquid crystal
crystal polymer
laser
Prior art date
Application number
PCT/JP2007/051612
Other languages
English (en)
French (fr)
Inventor
Ryuzo Ueno
Kunikazu Asaka
Kazuyuki Hirao
Shingo Kanehira
Masaya Kitayama
Original Assignee
Lef Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lef Technology, Inc. filed Critical Lef Technology, Inc.
Priority to JP2007557800A priority Critical patent/JP4208941B2/ja
Priority to CN2007800050687A priority patent/CN101384651B/zh
Priority to AU2007213255A priority patent/AU2007213255B2/en
Priority to US12/223,695 priority patent/US7608371B2/en
Priority to EP07707798.0A priority patent/EP1983020B1/en
Priority to CA2641808A priority patent/CA2641808C/en
Publication of WO2007091466A1 publication Critical patent/WO2007091466A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/065Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids the hydroxy and carboxylic ester groups being bound to aromatic rings

Definitions

  • the present invention relates to a method for modifying a liquid crystal polymer.
  • Liquid crystal polymer is liquid and is oriented in one direction when a shearing force is applied to facilitate the entanglement of molecules, and when cooled, the molecules solidify while being oriented, resulting in high strength and high elastic modulus. It is done.
  • wholly aromatic polyamides are known as fibers and films with high strength, high elastic modulus, and excellent heat resistance.
  • this is a solution type liquid crystal that dissolves in a solvent to form a liquid crystal, and there is a drawback that fibers and films cannot be made except by solution molding.
  • wholly aromatic polyesters are melt-type liquid crystals that form liquid crystals in a molten state, and have a great advantage that they can be melt-molded.
  • it is necessary to keep the melt viscosity low, and the degree of polymerization cannot be sufficiently increased before molding. For this reason, there is a limit to the improvement in physical strength compared to solution type liquid crystals.
  • a method for increasing the degree of polymerization by solid-phase polymerization after molding is also known, but it requires high-temperature treatment under vacuum, which increases the production cost.
  • a femtosecond laser generally refers to a laser having a laser pulse width of several to several hundred femtoseconds.
  • the femtosecond laser has a very short pulse width. Since the optical pulse is confined in a very short time of 10-15 seconds, the output power in one pulse is high.
  • energy can be instantaneously injected into the object before heat conduction occurs. For this reason, it is mainly used for fine processing where the area around the irradiation position is not easily damaged.
  • Patent Document 1 describes that when a polyester is melt-spun, the polyester emitted from the spinneret is irradiated with a laser at a predetermined energy density.
  • laser irradiation is used as a heating means for increasing the yarn temperature after discharge and reducing the yarn.
  • the spinning temperature is relatively low to prevent thermal degradation of the polyester. As a result, the stretchability of the fiber is improved.
  • Patent Document 2 describes that a polymer material is irradiated with an ultrashort pulse laser to change the orientation direction of the polymer.
  • Patent Document 3 describes that a plastic material is irradiated with an ultrashort pulse laser to change the plastic structure. In these methods, it has been confirmed that the optical properties of the polymer, such as the orientation and refractive index of the liquid crystal, have changed.
  • Patent Document 1 JP 2004-324017
  • Patent Document 2 JP 2003-253019
  • Patent Document 3 JP 2004-8881
  • the present invention solves the above-described conventional problems, and the object of the present invention is to provide a liquid crystal polymer having improved physical strength (for example, mechanical strength) as compared with a conventional liquid crystal polymer. It is an object of the present invention to provide a reforming method.
  • the present invention provides a method for modifying a liquid crystal polymer, which includes a step of irradiating the liquid crystal polymer with a laser having a pulse width of 10 to 12 seconds or less, whereby the above object is achieved.
  • the modified liquid crystal polymer of the present invention (especially the melt type) has a substantially improved degree of polymerization compared to the conventional one, and it is estimated that a crosslinked structure is present. "Irradiation intensity" is equivalent to "average output”.) By appropriately increasing the tensile strength and elastic modulus, It was observed to improve.
  • This modified liquid crystal polymer fiber has a high tensile strength at break and an initial Young's modulus, and at the same time, there is a possibility that a bending strength and a compressive elastic modulus are also increased.
  • fibers with improved characteristics for example, it can be used in place of steel cords used in carcass materials for radial tires for passenger cars, light trucks, especially heavy trucks. It is possible to improve wrinkles and the accompanying performance, and improve durability (flexural fatigue).
  • the physical strength and the longitudinal and lateral directions are obtained by optimally irradiating the film in the molten state before the die exit, or in the molten or semi-molten state after the die exit ( It is conceivable to improve the uniformity of strength in the flow direction: MD and the direction perpendicular to this: TD).
  • this modification method has the potential to make conventional liquid crystal polymers difficult to transmit electromagnetic waves in the high frequency (THz) region. It is thought that a film can be created.
  • the liquid crystal polymer to be modified may be a solution type or a melt type. However, the reforming effect that improves the degree of polymerization and physical strength is remarkable for the melt type.
  • a melt-type liquid crystal polymer is a polymer that forms an anisotropic melt phase. It is called Ma.
  • the properties of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times.
  • the polymer is optically anisotropic. In other words, light is transmitted when inspected between orthogonal polarizers. If the sample is optically anisotropic, polarized light is transmitted even if it is stationary.
  • liquid crystal polymer for example, an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, an aromatic diol, an aromatic hydroxyamine, an aromatic diamine, an aromatic amino carboxylic acid, or the like was selected.
  • aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 2-hydroxy-3-naphthoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-7-naphthoic acid, 3-methyl-4-hydroxybenzoic acid, 3, 5—Dimethyl-4-hydroxybenzoic acid, 2, 6 Dimethyl-4-hydroxybenzoic acid, 2 Hydroxy-5 methyl —6 Naphthoic acid, 2 Hydroxy-1-methoxy-6-naphthoic acid, 3 Chloroquinone 4 Hydroxybenzoic acid, 2 Chloro- 4-hydroxybenzoic acid, 2, 3 dichloro-4-hydroxybenzoic acid, 3 bromo 4-hydroxybenzoic acid, 2 hydroxy-5 chloro-6- naphthoic acid, 2 hydroxy-1 7 chlorohexa-6 naphthoic acid, 2 hydroxy-1 5, 7 dichloro Fragrances such as 1-naphthoic acid, 4-hydroxy-1,4-biphenylcarboxylic acid, 3-
  • Hydro Kishikarubon acid and its alkyl, an alkoxy or halogen-substituted derivatives include ester-forming derivatives thereof as well.
  • 4-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid are preferred because they are easy to adjust the properties and melting point of the polymer.
  • aromatic dicarboxylic acid examples include terephthalic acid, chloroterephthalic acid, dichloroterephthalic acid, bromoterephthalic acid, methylterephthalic acid, dimethylterephthalic acid, ethylterephthalic acid, methoxyterephthalic acid, and ethoxyterephthalic acid.
  • Acid isophthalic acid Acid, 4, 4, monobienoresin, norevonic acid, 3, 4, monobienoresin, norevonic acid, 4, 4, 1, monophenol dicarboxylic acid, 2, 6 naphthalene dicarboxylic acid, 2, 7 naphthalene dicarboxylic acid 1, 6 Naphthalene dicarboxylic acid, diphenyl ether 4, 4, dicarboxylic acid, diphenoxybutane 4, 4, dicarboxylic acid, diphenol 4, 4, dicarboxylic acid, diphenol ether 3, 3, dicarboxylic acid , Aromatic dicarboxylic acids such as diphenol-3,3, -dicarboxylic acid, and alkyl, alkoxy or nitro, rogen-substituted products thereof, and ester-forming derivatives thereof.
  • Aromatic dicarboxylic acids such as diphenol-3,3, -dicarboxylic acid, and alkyl, alkoxy or nitro, rogen-substituted products thereof, and este
  • terephthalic acid and 2, 6 naphthalenedicarboxylic acid are preferable because the liquid crystal polymer from which terephthalic acid and 2,6 naphthalenedicarboxylic acid can be easily adjusted to an appropriate level of mechanical properties, heat resistance, melting point temperature, and moldability.
  • aromatic diol examples include, for example, noduloquinone, chlorohydrin quinone, methylhydroquinone, 1-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, resorcin, 4-chlororesorcin, 4 —Methylresorcin, 4,4, -dihydroxybiphenyl, 4,4, -dihydroxyterphenyl, 2,6 naphthalenediol, 1,6 naphthalenediol, 2,7 naphthalenediol, 4,4'-dihydroxydiphenyl ether , Aromatic diols such as bis (4-hydroxyphenoxy) ethane, 3, 3, monodihydroxybiphenyl, 3,3'-dihydroxydiphenyl ether, 2,2 bis (4-hydroxyphenyl) methane, and alkyls thereof , Alkoxy or halogen
  • aromatic hydroxyamine, aromatic diamine, and aromatic aminocarboxylic acid include 4-aminophenol, N-methyl 4-aminophenol, 3-aminophenol, 3-methyl 4 Aminophenol, 4 amino-1-naphthol, 4 amino-4, —hydroxydiphenyl, 4-amino-4 monohydroxydiphenyl ether, 4-amino-4′-hydroxydiphenol methane, 4-aminoamino 4 , Monohydroxydiphenylsulfide, 4, 4, 1, Diaminodiphenylsulfone, and other aromatic hydroxyamines, 1,4 phenylenediamine, N-methyl 1,4 phenylenediamine, N, ⁇ '-dimethyl mono 1 , 4 Fenylene Diamine, 4,4'-Diaminodiphenylsulfide (Thiodialine), 2,5 Diaminotoluene, 4,4 'Ethylenedianiline, 4,4'-Diaminodiphenoxetane, 4,
  • liquid crystal polymer does not impair the object of the present invention! /
  • monomer units for example, alicyclic dicarboxylic acids, aliphatic diols, alicyclic diols, aromatic mercaptocarboxylic acids. Acids, aromatic dithiols, aromatic mercaptophenols and the like may be copolymerized.
  • alicyclic dicarboxylic acid examples include, for example, hexahydroterephthalic acid, trans 1,4-cyclohexanediol, cis 1,4-cyclohexane.
  • Diol trans 1,4-cyclohexane dimethanol, cis 1,4-cyclohexane dimethanol, trans 1,3 cyclohexane diol, cis 1,2 cyclohexane diol, trans 1,3 cyclohexane dimethanol,
  • Examples thereof include linear or branched aliphatic diols such as ethylene glycol, 1,3 propanediol, 1,4 butanediol and neopentyldaricol, and ester-forming derivatives thereof.
  • aromatic mercaptocarboxylic acid, aromatic dithiol, aromatic dithiol, and aromatic mercaptophenol include, for example, 4 mercaptobenzoic acid, 2 mercapto 6 naphthoic acid, 2 mercapto 7 naphthoic acid, benzene 1, 4-dithiol, benzene 1,3 dithiol, 2,6 naphthalene-dithiol, 2,7 naphthalene-dithiol, 4 mercaptophenol, 3-mercaptophenol, 6-mercaptophenol, 7-mercaptophenol, and their ester-forming derivatives Can be mentioned.
  • preferable liquid crystal polymers include those having the following monomer structural unit forces.
  • the melt acidolysis method is an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, an aromatic diol, an aromatic hydroxyamine, an aromatic diamine, an aromatic aminocarboxylic acid, or the like.
  • the monomer is first heated to form a molten solution of the reactant and then the reaction is carried out to obtain a molten polymer.
  • a vacuum may be applied at the final stage of the condensation to facilitate removal of by-product volatiles (specifically, acetic acid, water, etc.).
  • the slurry polymerization method is a method in which a monomer is reacted in a heat exchange medium, and the polymer is obtained in a state suspended in the heat exchange medium.
  • the monomer containing a hydroxyl group and a Z or amino group in the monomer used is preferably a low-grade fatty acid ester (preferably Is preferably subjected to the reaction as a acetyl group), or a lower fatty acid anhydride (preferably acetic anhydride) is simultaneously added to the system at the time of polymerization.
  • a low-grade fatty acid ester preferably Is preferably subjected to the reaction as a acetyl group
  • a lower fatty acid anhydride preferably acetic anhydride
  • a catalyst may be used as needed during the reaction.
  • the catalyst used as necessary include, for example, dialkyl stanoxide (eg, dibutyl stanoxide); organotin compounds such as diaryl stanoxide; titanium dioxide, trioxide Organotitanium compounds such as antimony, alkoxy titanium silicates, titanium alkoxides; alkali and alkaline earth metal salts of carboxylic acids (eg potassium acetate, sodium acetate, zinc acetate); Lewis acids (eg BF), halogenated hydrogen (
  • gaseous acid catalysts such as HC1
  • the proportion of the catalyst used is preferably 0.5 ppm to 20 wt%, more preferably 1 ppm to 10 wt%, based on the weight of the monomer.
  • the liquid crystal polymer used in the molding method of the present invention has a melting point force measured by a differential scanning calorimeter, preferably 250 to 400 ° C., more preferably 270 to 350, because of the balance between heat resistance and moldability. The one in the range of ° C is desirable.
  • Modification is performed by irradiating a powerful liquid crystal polymer with a femtosecond laser.
  • the liquid crystal polymer to be irradiated may have any form. For example, a shape formed into a fiber shape, a fine particle shape, a plate shape, a film shape, or the like, or a shape in which a solution and a melt are formed into a film shape or a fine particle shape is preferable.
  • As the molding method an injection molding method, an extrusion molding method, a melt spinning method, or the like may be used.
  • a molded body obtained by these methods may be used as an irradiation target.
  • the irradiation spot diameter of the femtosecond laser is not particularly limited, and the size of the target change portion It can be appropriately selected according to the type of the change, the degree of the change, the size, numerical aperture, or magnification of the lens.
  • the diameter is 50 / zm or less (preferably about 0.1 to about LO / zm). Range power can also be selected.
  • a line area of, for example, about 1 mm wide and about 5 mm long can be selected.
  • the femtosecond laser here refers to an ultrashort pulse laser having a pulse width of 10 to 12 seconds or less.
  • a pulsed laser with a pulse width of 1 X 10_ 15 seconds to 1 X 10_ 12 seconds, preferably 10 X 10_ 15 seconds to 500 X 10_ 15 seconds, more preferably 50 X 10_ 15 seconds to 300 X 10_ 15 seconds. That's fine.
  • the femtosecond laser can be obtained, for example, by reproducing and amplifying a laser using a titanium 'sapphire crystal as a medium, an erbium or ytterbium doped quartz fiber laser, or a dye laser.
  • the wavelength of the femtosecond laser is appropriately selected from 260 to 800 nm, for example. Further, the number of repetitions of the femtosecond laser is selected from the range of 1 ⁇ to 80 ⁇ , for example, and is generally about 10 Hz to 500 kHz.
  • the average output or irradiation energy of the femtosecond laser is not particularly limited, and can be appropriately selected according to the type and state of the object. In consideration of the condensing means to be used, it is preferable to adjust the range so that the condensing part of the irradiation object does not blur.
  • the average output is 0.06 to 0.16 m.
  • W preferably 0.08-0.14mW
  • converting the irradiation light into a line shape using a cylindrical lens, and condensing and irradiating a line area of about lmm wide and about 5mm long Adjust to 100-800mW, preferably ⁇ 300-700mW.
  • the pressure was reduced to lOOtorr in 90 minutes, and when the polymerization reaction was reached for 10 minutes under lOOtorr, the predetermined stirring torque was reached, so the polymerization tank was sealed and the inside of the polymerization tank was pressurized to 0. IMPa with nitrogen gas to react. finished.
  • the valve at the bottom of the polymerization tank is opened, the contents of the polymerization tank are pulled out into a strand shape through a die, and the strand is sent to a cutter by a water-cooled conveyor installed immediately below the polymerization tank, and cut into a pellet shape. To obtain polymer pellets.
  • melt viscosity measuring device (“Cyapyrograph 1A” manufactured by Toyo Seiki Co., Ltd.), the viscosity of the synthesized rosin was measured at a temperature of 320 ° C and a shear rate of 10 3 s _1 using a 0.7 mm x 10 mm capillary. It was measured. Thus, the melt viscosity measured at 320 ° C. was 22 Pa ′s.
  • the sample was cooled to room temperature under a temperature drop condition of 20 ° CZ, and the temperature at the peak top of the exothermic peak observed at that time was defined as the crystallization temperature (Tc) of the resin, and again 20 ° C. Observe the endothermic peak when measured under the temperature rising condition for the CZ component, and change the temperature indicating the peak top to The melting point crystal melting temperature (Tm) of reester rosin was used. Thus, the crystal melting temperature measured by the differential scanning calorimeter was 280 ° C.
  • the LCP synthesized in the preparation example was LCP with a length of 89 mm, a width of 54 mm, and a thickness of 0.8 mm at a cylinder temperature of 300 ° C. using an injection molding machine (“UH1000-110” manufactured by Nissei Sewa Kogyo Co., Ltd.). A plate was formed.
  • FIG. 1 is a photograph showing the appearance of an LCP plate with a femtosecond laser on the surface. This laser ablation mechanism is used to produce modified liquid crystal polymer fine particles (nanoparticles) and deposit them on the surface of the target material to create an organic thin film of modified liquid crystal polymer. It can be established. Also, by using this manufacturing method, it becomes possible to create new organic electronics materials from liquid crystal polymers and other organic substances.
  • the LCP synthesized in the preparation example was applied to Toyo Seiki's Laboplast Mill 100C100 equipped with a T-die with a die width of 150 mm and a compression ratio of 2.0 and a cylinder temperature of 300 ° C and a die temperature of 3 mZ. A film with a thickness of about 50 m was obtained while winding in minutes.
  • Fig. 2 shows a spectrum showing the GPC measurement results for the modified and unmodified parts of LCP. It is. The curve a indicating the reformed portion tends to be distributed in a direction in which the molecular weight is higher than the curve b indicating the unmodified portion.
  • the average molecular weight calculation results are shown in Table 1.
  • the number average molecular weight (Mn) of the part subjected to the modification treatment is about 15% higher than that of the part not subjected to the modification treatment. Hardness is expected to improve.
  • Example 2 Place the LCP film obtained in Example 2 (about 12mm X 12mm, plate thickness 50 ⁇ m) on the glass substrate, and heat it to about 320 ° C (initial heating rate 40 ° CZmin) on the hot stage. It was in a molten state.
  • the surface of the melted LCP film is focused and irradiated with an ultrashort pulse laser with a 5x objective lens (condensation area: circle with a diameter of about 50 ⁇ m) Area). Irradiation was performed by adjusting the average power within a range where laser ablation did not occur.
  • Modified LCP and modified! /, N! /, LCP was formed into a film, and solid state NMR measurement was performed. Table 2 shows the measurement conditions.
  • Fig. 3 is a CCP / MAS spectrum of the modified LCP film (central part).
  • Figure 4 shows the 13 CCPZMAS spectrum of the LCP film after modification! In the spectrum of Fig. 3, peak c, which may represent a crosslinked structure, was observed.
  • the modified LCP film has a larger value, and the molecular mobility of the modified LCP film is reduced. The existence of the structure was suggested.
  • FIG. 5 is a hydrogen nucleus TH plot of the modified LCP film (central part).
  • FIG. 6 is a hydrogen nucleus TH plot of the LCP film after the reforming treatment.
  • Fig. 7 is a contact time dependency plot (130 ppm) of the modified LCP film (center portion).
  • Figure 8 is a contact time dependence plot (13 Oppm) for an unmodified LCP film. According to these plots, the time constant of the contact time is 22.8 msec for the modified LCP film and 75 msec for the unmodified LCP film, and the time constant of the modified LCP film is the modified treatment. Not smaller than that of LCP film. This indicates that there is a crosslinked structure in the modified LCP film.
  • the modified LCP has a cross-linked structure, and as a result, the degree of polymerization is increased, and compared with the LCP not subjected to the modification treatment, the tensile strength, elastic modulus, impact strength, Hardness is considered to have improved.
  • Example 2 To prevent welding, place 5 sheets of LCP film (width approx. LOmm x length approx. 40 mm, plate thickness approx. 50 m) obtained in Example 2 on the glass substrate. It was heated to about 380 ° C on a hot stage to be in a molten state.
  • LCP film width approx. LOmm x length approx. 40 mm, plate thickness approx. 50 m
  • the LCP film is positioned with respect to the light source so that the length direction of the light collecting portion and the length direction of the LCP film are substantially perpendicular to each other. Therefore, the LCP film was moved relative to the light source so that it was scanned once.
  • the average power of the ultrashort pulse laser was changed to 50mW, 100mW, 300mW, and 500mW for each sample.
  • FIG. 9 is a graph plotting the initial Young's modulus against the irradiation intensity (average output), and FIG. 10 is a graph plotting the breaking strength against the irradiation intensity. As these graph power and irradiation intensity increased, the initial Young's modulus and the breaking strength tended to increase.
  • the irradiation conditions were optimized for the molten fiber before the nozzle exit of melt spinning, or the molten or semi-molten fiber after the nozzle exit in the molding case for fiberization of liquid crystal polymer.
  • the degree of polymerization can be increased and the physical strength can be improved by utilizing a non-thermal photochemical reaction.
  • a process for increasing the degree of polymerization by solid-phase polymerization by heat treatment after molding that is, a high-temperature treatment process under vacuum is unnecessary. There is a point.
  • This modified liquid crystal polymer fiber may have a high tensile strength at break and an initial Young's modulus, as well as a high bending strength and compressive modulus.
  • fibers with improved characteristics for example, it can be used in place of steel cords used in carcass materials for radial tires for passenger cars, light trucks, especially heavy trucks. It is possible to improve wrinkles and the accompanying performance, and improve durability (flexural fatigue).
  • Coherent Ti sapphire laser (wavelength: 780 nm, repetition rate: 200 kHz) on the surface of the LCP film obtained in Example 2 (width: about 10 mm ⁇ length: about 40 mm, plate thickness: about 50 m) With a pulse width of 150 femtoseconds and an average output of 500 mW), a cylindrical lens is used to convert the ultrashort pulse laser light into a line shape (condensed area: width approximately lmm x length approximately 5 mm line area) did.
  • the LCP film is positioned with respect to the light source so that the length direction of the light collecting portion and the length direction of the LCP film are substantially perpendicular to each other. Therefore, the LCP film was moved relative to the light source so that it was scanned once.
  • FIG. 11 is a spectrum showing the result of terahertz spectrum measurement performed on the irradiated film.
  • Figure 12 is a spectrum showing the results of measuring the terahertz spectrum for an unirradiated film.
  • Figure 13 is a spectrum showing the difference obtained by subtracting the spectrum for the unirradiated film from the vector for the irradiated film.
  • the modification method of the present invention has the possibility of imparting high-frequency (THz) region electromagnetic wave-preventing properties to conventional liquid crystal polymer films. It can be considered that a heat-resistant film excellent in dielectric loss) can be provided.
  • FIG. 1 is a photograph showing the appearance of an LCP plate whose surface is irradiated with a femtosecond laser.
  • FIG. 2 Spectrum showing the GPC measurement results for the modified and unmodified LCP parts.
  • FIG. 5 Hydrogen nucleus TH plot of modified LCP film (center).
  • FIG. 8 Contact time dependence plot (130 ppm) of LCP film without modification treatment.
  • FIG. 9 is a graph plotting initial Young's modulus against irradiation intensity in a LCP film tensile test.
  • FIG. 11 A spectrum showing the result of Terahertz spectroscopic measurement of the irradiated LCP film.
  • FIG. 12 A spectrum showing the result of terahertz spectroscopic measurement of an unirradiated LCP film.
  • FIG. 13 is a spectrum showing the difference obtained by subtracting the spectrum of the unirradiated film from the spectrum of the LCP film after irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 液晶ポリマーにパルス幅が10-12秒以下のレーザーを照射する工程を包含する、液晶ポリマーの改質方法。従来の液晶ポリマーと比較して物理的強度を向上させることができる。

Description

明 細 書
液晶ポリマーの改質方法
技術分野
[0001] 本発明は液晶ポリマーの改質方法に関する。
背景技術
[0002] 液晶ポリマー (LCP)は液状で分子のからみ合いがすくなぐ剪断力を加えると 1方 向に配向し、冷却すると分子が配向したまま固化するために、高強度、高弾性率が 得られる。例えば、全芳香族ポリアミドは高強度、高弾性率、耐熱性に優れた繊維や フィルムとして知られている。しかしながら、これは溶媒中に溶解して液晶を形成する 溶液型液晶であり、溶液成形による以外には繊維やフィルムをつくれな 、欠点がある
[0003] 他方、全芳香族ポリエステルは溶融状態で液晶を形成する溶融型液晶であり、溶 融成形できるという大きな利点がある。し力しながら、溶融状態の粘度を低く保つ必 要があり、成形前には重合度を十分に上げることができない。そのため、溶液型液晶 と比較して物理的な強度の向上には限界がある。成形後に固相重合させて重合度を 高める方法も知られているが、真空下での高温処理が必要となり、製造コストが高くな る。
[0004] フェムト秒レーザーは、一般にレーザーのパルス幅が数〜数百フェムト秒のレーザ 一をいう。フェムト秒レーザーはパルス幅が非常に短ぐ 10_15秒程度のごく短時間に 光パルスが閉じ込められているために、 1パルス中の到達出力が高い。このような超 高強度超短パルスレーザーを集光照射すると、熱伝導が起こる前に対象物に瞬時に エネルギーを注入することができる。そのため、照射位置周辺が損傷を受け難ぐ微 細加工を行う用途に主として用いられて 、る。
[0005] 特許文献 1にはポリエステルを溶融紡糸する際に、紡糸口金から出たポリエステル に所定のエネルギー密度でレーザーを照射することが記載されて 、る。この方法で は、吐出後の糸温度を上げて糸を細化するための加熱手段としてレーザー照射を用 いている。その一方で、紡糸温度は比較的低くしてポリエステルの熱分解を防止する ことにより、繊維の延伸性を向上させている。
[0006] 特許文献 2には、ポリマー材料に超短パルスレーザーを照射してポリマーの配向方 向を変化させることが記載されている。また、特許文献 3にはプラスチック材料に超短 パルスレーザーを照射してプラスチック構造を変化させることが記載されて 、る。これ らの方法では、液晶の配向性や屈折率のような、ポリマーの光学的特性が変化したこ とが確認されている。
[0007] 熱損傷を抑制しながら、ポリマーに瞬時にエネルギーを注入することにより、ポリマ 一の分子構造、重合度、分子量分布などを変化させる試みは、これまで行われてい ない。液晶ポリマーは分子の配向性に優れているため、エネルギーを注入する対象 物として液晶ポリマーを使用すると、物理的化学的特性の向上につながる実質的な 構造変化が期待される。
特許文献 1:特開 2004 - 324017
特許文献 2:特開 2003 - 253019
特許文献 3:特開 2004— 8881
発明の開示
発明が解決しょうとする課題
[0008] 本発明は上記従来の問題を解決するものであり、その目的とするところは、従来の 液晶ポリマーと比較して物理的強度 (例えば、機械的強度)等が向上する、液晶ポリ マーの改質方法を提供することにある。
課題を解決するための手段
[0009] 本発明は、液晶ポリマーにパルス幅が 10_12秒以下のレーザーを照射する工程を 包含する、液晶ポリマーの改質方法を提供するものであり、そのことにより上記目的 が達成される。
発明の効果
[0010] 本発明の改質液晶ポリマー(特に溶融型)は、従来のものと比較して重合度が実質 的に向上しており、架橋構造の存在が推定され、照射強度 (本明細書では、「照射強 度」は「平均出力」と同意義である。)を適切に上げることにより引張強度、弾性率が 向上することが認められた。
[0011] このことにより、液晶ポリマーの繊維化における成形カ卩ェにおいて、溶融紡糸のノズ ル出口以前の溶融状態、またはノズル出口以降の溶融又は半溶融状態のファイバ 一に、照射条件を最適化した超短パルスレーザーを照射することで、非熱的光化学 反応を利用することにより重合度を高め、物理的強度を向上させうると考えられる。こ の方法にぉ 、ては、従来法のように成形後に熱処理で固相重合をさせて重合度を高 めるためのプロセス、すなわち真空下における高温処理プロセスが不必要になる利 点がある。
[0012] この改質された液晶ポリマー繊維には引張破断強度及び初期ヤング率が高くなる と同時に、曲げ強度及び圧縮弾性率も高くなる可能性がある。この特性の向上した 繊維の応用として例えば、乗用車用、軽トラック用、特に大型トラック 'バス用のラジア ルタイヤのカーカス材に使用されるスチールコードの代わりに用いることにより、更な るタイヤの軽量ィ匕及びそれに伴う性能の向上、耐久性 (屈曲疲労性)の向上、などが 可會 になる。
[0013] また液晶ポリマーのフィルム化における成膜加工においても、ダイ出口以前の溶融 状態、またはダイ出口以降の溶融又は半溶融状態のフィルムに最適照射することに より、物理的強度及び縦横方向(流れ方向: MDとこれと直交する方向: TD)の強度 の均一性を向上させることが考えられる。更にこの改質方法には、従来の液晶ポリマ 一に高周波 (THz)領域の電磁波を透過しにくい特性を持たせる可能性があることか ら、高周波'誘電特性 (低誘電損失)により優れた耐熱フィルムを創製できうると考えら れる。
[0014] また、当該超短パルスレーザーによる光化学反応を利用する以外にも、その他の 種類のレーザー、又は光源による照射を最適設計することにより、同等の改質効果を 上げることができれば、改質における光変換効率をさらに向上させうると考えられる。 発明を実施するための最良の形態
[0015] 改質される液晶ポリマーは溶液型でも溶融型でもよい。し力しながら、重合度や物 理的強度が向上する改質効果は溶融型について顕著に得られる。溶融型液晶ポリ マーは異方性溶融相を形成するポリマーであり、当業者にサーモト口ピック液晶ポリ マーと呼ばれて 、るものである。
[0016] 異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認する ことができる。より具体的には、異方性溶融相の確認は、 Leitz偏光顕微鏡を使用し、 Leitzホットステージにのせた試料を窒素雰囲気下で 40倍の倍率で観察することによ り実施できる。上記ポリマーは光学的に異方性である。即ち、直交偏光子の間で検査 したときに光を透過させる。試料が光学的に異方性であると、たとえ静止状態であつ ても偏光は透過する。
[0017] 液晶ポリマーとしては、具体的には、例えば芳香族ヒドロキシカルボン酸、芳香族ジ カルボン酸、芳香族ジオール、芳香族ヒドロキシァミン、芳香族ジァミン、芳香族ァミノ カルボン酸など力 選ばれたモノマー単位、特には芳香族ジカルボン酸、芳香族ジ オール、芳香族ヒドロキシカルボン酸力も選ばれたモノマー単位を構成単位とする異 方性溶融相を形成する液晶ポリエステル榭脂ならびに液晶ポリステルアミドである。
[0018] 前記芳香族ヒドロキシカルボン酸の具体例としては、たとえば 4ーヒドロキシ安息香 酸、 2 ヒドロキシー3 ナフトェ酸、 2 ヒドロキシー6 ナフトェ酸、 2 ヒドロキシー 7—ナフトェ酸、 3—メチルー 4ーヒドロキシ安息香酸、 3, 5—ジメチルー 4ーヒドロキ シ安息香酸、 2, 6 ジメチルー 4ーヒドロキシ安息香酸、 2 ヒドロキシー5 メチル —6 ナフトェ酸、 2 ヒドロキシ一 5—メトキシ一 6 ナフトェ酸、 3 クロ口一 4 ヒド ロキシ安息香酸、 2 クロロー 4ーヒドロキシ安息香酸、 2, 3 ジクロロー 4ーヒドロキ シ安息香酸、 3 ブロモー 4ーヒドロキシ安息香酸、 2 ヒドロキシ 5 クロロー 6— ナフトェ酸、 2 ヒドロキシ一 7 クロ口一 6 ナフトェ酸、 2 ヒドロキシ一 5, 7 ジク ロロ一 6—ナフトェ酸、 4—ヒドロキシ一 4,一ビフエ-ルカルボン酸などの芳香族ヒドロ キシカルボン酸およびそのアルキル、アルコキシまたはハロゲン置換体など、ならび にそれらのエステル形成性誘導体が挙げられる。これらの中では 4ーヒドロキシ安息 香酸、 2 ヒドロキシ 6 ナフトェ酸が得られるポリマーの特性や融点を調整しやす いという点力 好ましい。
[0019] 前記芳香族ジカルボン酸の具体例としては、例えばテレフタル酸、クロロテレフタル 酸、ジクロロテレフタル酸、ブロモテレフタル酸、メチルテレフタル酸、ジメチルテレフ タル酸、ェチルテレフタル酸、メトキシテレフタル酸、エトキシテレフタル酸、イソフタル 酸、 4, 4,一ビフエニノレジ力ノレボン酸、 3, 4,一ビフエニノレジ力ノレボン酸、 4, 4, , 一タ 一フエ-ルジカルボン酸、 2, 6 ナフタレンジカルボン酸、 2, 7 ナフタレンジカル ボン酸、 1, 6 ナフタレンジカルボン酸、ジフエ-ルエーテル 4, 4,ージカルボン 酸、ジフエノキシブタン 4, 4,ージカルボン酸、ジフエ-ルェタン 4, 4,ージカル ボン酸、ジフエ-ルエーテル—3, 3,ージカルボン酸、ジフエ-ルェタン—3, 3,ージ カルボン酸などの芳香族ジカルボン酸、およびそれらのアルキル、アルコキシまたは ノ、ロゲン置換体など、ならびにそれらのエステル形成性誘導体が挙げられる。これら の中ではテレフタル酸、 2, 6 ナフタレンジカルボン酸が得られる液晶ポリマーの機 械物性、耐熱性、融点温度、成形性を適度なレベルに調節しやすいことから好ましい
[0020] 前記芳香族ジオールの具体例としては、たとえばノヽイドロキノン、クロロハイド口キノ ン、メチルハイドロキノン、 1 ブチルハイドロキノン、フエニルハイドロキノン、メトキシ ハイドロキノン、フエノキシハイドロキノン、レゾルシン、 4—クロルレゾルシン、 4—メチ ルレゾルシン、 4, 4,ージヒドロキシビフエニル、 4, 4,,ージヒドロキシターフェニル、 2 , 6 ナフタレンジオール、 1, 6 ナフタレンジオール、 2, 7 ナフタレンジオール、 4, 4'ージヒドロキシジフエニルエーテル、ビス(4ーヒドロキシフエノキシ)ェタン、 3, 3 , 一ジヒドロキシビフエニル、 3, 3'—ジヒドロキシジフエニルエーテル、 2, 2 ビス(4 ーヒドロキシフエ-ル)メタンなどの芳香族ジオールおよびそのアルキル、アルコキシ またはハロゲン置換体など、ならびにそれらのエステル形成性誘導体が挙げられる。 これらの中ではハイドロキノンおよび 4, 4,ージヒドロキシビフエ-ルが重合時の反応 性、得られる液晶ポリマーの特性などの点力も好ま 、。
[0021] 前記芳香族ヒドロキシァミン、芳香族ジァミン、芳香族ァミノカルボン酸の具体例とし ては、たとえば 4—ァミノフエノール、 N—メチル 4—ァミノフエノール、 3—ァミノフエ ノール、 3—メチル 4 ァミノフエノール、 4 アミノー 1—ナフトール、 4 アミノー 4, —ヒドロキシジフエ-ル、 4—アミノー 4,一ヒドロキシジフエ-ルエーテル、 4—アミノー 4'—ヒドロキシジフエ-ルメタン、 4—ァミノ一 4,一ヒドロキシジフエ-ルスルフイド、 4, 4, 一ジアミノジフエ-ルスルホンなどの芳香族ヒドロキシァミン、 1, 4 フエ-レンジァ ミン、 N—メチル 1, 4 フエ二レンジァミン、 N, Ν'—ジメチル一 1, 4 フエ二レン ジァミン、 4, 4'ージアミノジフエ-ルスルフイド(チォジァ-リン)、 2, 5 ジァミノトル ェン、 4, 4' エチレンジァニリン、 4, 4'ージアミノジフエノキシェタン、 4, 4'ージアミ ノジフエ-ルメタン (メチレンジァ-リン)、 4, 4'ージアミノジフエ-ルエーテル(ォキシ ジァ-リン)などの芳香族ジァミン、 4 ァミノ安息香酸、 2 ァミノ 6 ナフトェ酸、 2 アミノー 7—ナフトェ酸などの芳香族ァミノカルボン酸など、ならびにそれらのエス テル形成性誘導体が挙げられる。
[0022] また、液晶ポリマーは、本発明の目的を損なわな!/、範囲で前記モノマー単位のほ かに、たとえば脂環族ジカルボン酸、脂肪族ジオール、脂環族ジオール、芳香族メル カプトカルボン酸、芳香族ジチオール、芳香族メルカプトフエノールなどを共重合せし めてもよい。
[0023] 前記脂環族ジカルボン酸、脂環族ジオールおよび前記脂肪族ジオールの具体例と しては、例えばへキサヒドロテレフタル酸、トランス 1, 4ーシクロへキサンジオール、 シス 1, 4ーシクロへキサンジオール、トランス 1, 4ーシクロへキサンジメタノール 、シス 1, 4ーシクロへキサンジメタノール、トランス 1, 3 シクロへキサンジォー ル、シス 1, 2 シクロへキサンジオール、トランス 1, 3 シクロへキサンジメタノ ール、エチレングリコール、 1, 3 プロパンジオール、 1, 4 ブタンジオール、ネオ ペンチルダリコールなどの直鎖状または分鎖状脂肪族ジオールなど、ならびにそれ らのエステル形成性誘導体が挙げられる。
[0024] 前記芳香族メルカプトカルボン酸、芳香族ジチオール、芳香族ジチオール、芳香族 メルカプトフエノールの具体例としては、たとえば 4 メルカプト安息香酸、 2 メルカ プトー 6 ナフトェ酸、 2 メルカプト 7 ナフトェ酸、ベンゼン 1, 4ージチオール 、ベンゼン 1, 3 ジチオール、 2, 6 ナフタレンージチオール、 2, 7 ナフタレン ージチオール、 4 メルカプトフエノール、 3—メルカプトフエノール、 6—メルカプトフ ェノール、 7—メルカプトフエノールなど、ならびにそれらのエステル形成性誘導体が 挙げられる。
[0025] 好ましい液晶ポリマーの具体例としては、例えば下記のモノマー構成単位力もなる ものが挙げられる。
[0026] 4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6 ナフトェ酸共重合体; 4 ヒドロキシ安 息香酸 Zテレフタル酸 Z4, 4,ージヒドロキシビフエ-ル共重合体; 4ーヒドロキシ安 息香酸 Zテレフタル酸 Zイソフタル酸 Z4, 4,ージヒドロキシビフエ-ル共重合体; 4 ーヒドロキシ安息香酸 Zテレフタル酸 Zイソフタル酸 Z4, 4'—ジヒドロキシビフエ- ル Zハイドロキノン共重合体; 4 ヒドロキシ安息香酸 Zテレフタル酸 Zハイドロキノン 共重合体; 4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6—ナフトェ酸 Zテレフタル酸 Z 4, 4,ージヒドロキシビフエ-ル共重合体; 4ーヒドロキシ安息香酸 Z2—ヒドロキシー 6 ナフトェ酸 Zテレフタル酸 Zハイドロキノン共重合体; 4 ヒドロキシ安息香酸 Z2, 6—ナフタレンジカルボン酸 Z4, 4,ージヒドロキシビフエ-ル共重合体; 4ーヒドロキ シ安息香酸 Zテレフタル酸 Z2, 6 ナフタレンジカルボン酸 Zハイドロキノン共重合 体; 4 ヒドロキシ安息香酸 Z2, 6 ナフタレンジカルボン酸 Zハイドロキノン共重合 体; 4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6—ナフトェ酸 Z2, 6 ナフタレンジ力 ルボン酸 Zハイドロキノン共重合体; 4 ヒドロキシ安息香酸 Zテレフタル酸 Z2, 6 ナフタレンジカルボン酸 Zハイドロキノン Z4, 4,ージヒドロキシビフエ-ル共重合体; 4 ヒドロキシ安息香酸 Zテレフタル酸 Z4—ァミノフエノール共重合体; 4 ヒドロキ シ安息香酸 Zテレフタル酸 Z4, 4,ージヒドロキシビフエ-ル Z4—ァミノフエノール 共重合体; 2 ヒドロキシ 6—ナフトェ酸 Zテレフタル酸 Z4 ァミノフエノール共重 合体; 4 ヒドロキシ安息香酸 Zテレフタル酸 Z2, 6 ナフタレンジカルボン酸 Zハイ ドロキノン Z4, 4,ージヒドロキシビフエ-ル共重合体; 4ーヒドロキシ安息香酸 Z2—ヒ ドロキシ 6—ナフトェ酸 Zテレフタル酸 Z4—アミノフェノール共重合体; 4 ヒドロキ シ安息香酸 Z2—ヒドロキシー6—ナフトェ酸 Zテレフタル酸 Z4, 4,ージヒドロキシビ フエ-ル共重合体; 4 ァミノフエノール共重合体; 2 ヒドロキシ 6 ナフトェ酸 Z テレフタル酸 Zハイドロキノン共重合体; 2 ヒドロキシ 6 ナフトェ酸 Zテレフタル 酸 Z4, 4,ージヒドロキシビフエ-ル共重合体; 4ーヒドロキシ安息香酸 Zテレフタル 酸 Zエチレングリコール共重合体; 4ーヒドロキシ安息香酸 Zテレフタル酸 Z4, 4,一 ジヒドロキシビフエ-ル Zエチレングリコール共重合体; 4 ヒドロキシ安息香酸 Z2— ヒドロキシ 6—ナフトェ酸 Zテレフタル酸 Zエチレングリコール共重合体; 4 ヒドロ キシ安息香酸 Z2—ヒドロキシー 6—ナフトェ酸 Zテレフタル酸 Z4, 4'—ジヒドロキシ ビフエ-ル Zエチレングリコール共重合体。 [0027] 液晶ポリマーとしては、例えば、
4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6—ナフトェ酸共重合体、好ましくはこれ らの 73モル0 /oZ27モル0 /0共重合体;
4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6—ナフトェ酸 Zヒドロキノン Zテレフタル 酸共重合体、好ましくはこれらの 42モル%Z16モル%Z21モル%Z21モル%共 重合体;
4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6—ナフトェ酸 Zヒドロキノン Z2, 6—ナ フタレンジカルボン酸共重合体、好ましくはこれらの 70モル0 /oZ2モル0 /oZ 14モル %Z14モル%共重合体;
2 ヒドロキシ 6—ナフトェ酸 Z4 ァミノフエノール Zテレフタル酸共重合体、好 ましくはこれらの 60モル0 /oZ20モル0 /oZ20モル0 /0共重合体;
4 ヒドロキシ安息香酸 Z2—ヒドロキシ 6—ナフトェ酸 Z4—ァミノフエノール Z4 , 4,ージヒドロキシビフエ-ル Zテレフタル酸共重合体、好ましくはこれらの 60モル0 /0 Z4モル%Z4モル%Z14モル%Z16モル%共重合体;および
4ーヒドロキシ安息香酸 Z4, 4,ージヒドロキシビフエ-ル Zテレフタル酸 Zイソフタ ル酸共重合体、好ましくはこれらの 60モル%Z20モル%Zl 5モル%Z5モル%共 重合体;
力もなる群力 選択される少なくとも 1種のポリエステルを含むものが特に好ましい。
[0028] 液晶ポリエステル榭脂の製造方法には特に限定はなぐ前記構成成分の組み合わ せからなるエステル結合を形成させる公知のポリエステルの重縮合法、具体的には、 たとえば溶融ァシドリシス法、スラリー重合法などを用いることができる。
[0029] 前記溶融ァシドリシス法とは、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、 芳香族ジオール、芳香族ヒドロキシァミン、芳香族ジァミン、芳香族ァミノカルボン酸 など力 選ばれたモノマーを、熱交換流体を存在させずに反応させる方法であり、最 初にモノマーを加熱して反応物質の溶融溶液を形成し、 、て反応を行うことによつ て溶融ポリマーが得られる。この方法においては、副生する揮発物(具体的には、た とえば酢酸、水など)の除去を容易にするために、縮合の最終段階で真空を適用して ちょい。 [0030] 前記スラリー重合法とは、熱交換媒質中でモノマーを反応させる方法であり、ポリマ 一は熱交換媒質中に懸濁した状態で得られる。
[0031] 前記溶融ァシドリシス法およびスラリー重合法の!/、ずれの場合にお!、ても、使用す るモノマー中のヒドロキシル基および Zまたはアミノ基を含有するモノマーは予め低 級脂肪酸エステル (好ましくはァセチル体)として反応に供するか、あるいは重合時に 低級脂肪酸無水物 (好ましくは無水酢酸)を同時に系内に添加して反応させることが 好ましい。低級脂肪酸としては、炭素数 2〜6、さらには 2〜4のものが好ましぐ特に 酢酸が最も好ましい。
[0032] 前記溶融ァシドリシス法またはスラリー法の 、ずれの場合にお!、ても反応時、必要 に応じて触媒を用いてもよい。
[0033] 前記必要に応じて用いられる触媒の具体例としては、例えばジアルキルスズォキシ ド(例えばジブチルスズォキシドなど);ジァリールスズォキシドなどの有機スズィ匕合物 ;ニ酸化チタン、三酸化アンチモン、アルコキシチタンシリケート、チタンアルコキシド などの有機チタンィ匕合物;カルボン酸のアルカリおよびアルカリ土類金属塩 (例えば 酢酸カリウム、酢酸ナトリウム、酢酸亜鉛);ルイス酸 (たとえば BF )、ハロゲンィ匕水素(
3
例えば HC1)などの気体状酸触媒などが挙げられる。
[0034] 前記触媒の使用割合は、通常モノマーの重量を基準にして、 0. 5ppm〜20重量 %、更には lppm〜10重量%であるのが好ましい。また、本発明の成形法に使用さ れる液晶ポリマーは、その耐熱性および成形性のバランスから、示差走査熱量計に より測定された融点力 好ましくは 250〜400°C、より好ましくは 270〜350°Cの範囲 にあるものが望ましい。
[0035] 力かる液晶ポリマーにフェムト秒レーザーを照射することにより改質を行う。照射対 象の液晶ポリマーはどのような形態のものでもよい。例えば、繊維状、微粒子状、板 状、フィルム状などに成形した形態、溶液および溶融体を膜状、微粒子状にした形 態などが好ましい。上記成形方法としては、射出成形法、押出成形法や溶融紡糸法 などを用いてよい。当然、これらの方法で得られる成形体を照射対象として用いてよ い。
[0036] フェムト秒レーザーの照射スポット径は特に制限されず、 目的とする変化部の大きさ やその変化の種類又は該変化の程度、レンズの大きさや開口数又は倍率などに応じ て適宜選択することができ、例えば、直径 50 /z m以下 (好ましくは 0. 1〜: LO /z m程度 )の範囲力も選択することができる。またシリンドリカルレンズを用いてレーザー光をラ イン状に変換して集光照射する場合、例えば幅約 lmm X長さ約 5mmのライン面積 を選択することちできる。
[0037] ここでいうフェムト秒レーザーとは、パルス幅が 10_12秒以下の超短パルスレーザー をいう。例えば、パルス幅が 1 X 10_15秒〜 1 X 10_12秒、好ましくは 10 X 10_15秒〜 500 X 10_15秒より好ましくは 50 X 10_15秒〜 300 X 10_15秒であるパルスレーザー であればよい。
[0038] フェムト秒レーザーは、例えば、チタン'サファイア結晶を媒質とするレーザー、エル ビゥムまたはイツテリビゥムドープ石英のファイバーレーザーや色素レーザーを再生、 増幅して得ることができる。フェムト秒レーザーの波長は、例えば、 260〜800nmか ら適宜選択する。また、フェムト秒レーザーの繰り返し数は、例えば、 1Ηζ〜80ΜΗζ の範囲から選択し、通常、 10Hz〜500kHz程度である。
[0039] フェムト秒レーザーの平均出力又は照射エネルギーは特に制限されず、対象物の 種類や状態等に応じて適宜選択することができる。使用する集光手段をも考慮して、 照射対象物の集光部にアブレ一ジョンが起こらな 、範囲に調節することが好ま 、。
[0040] 例えば、固体フィルム状の液晶ポリマーに照射する場合、照射光を、対物レンズを 用いて直径約 50 mの円面積に集光照射するときは、平均出力を 0. 06〜0. 16m W、好ましくは 0. 08-0. 14mWに調節し、シリンドリカルレンズを用いて照射光をラ イン状に変換して、幅約 lmm X長さ約 5mmのライン面積に集光照射するときは、 10 0〜800mW、好まし <は 300〜700mWに調節する。
[0041] また、溶融されて液状又は液体フィルム状になった液晶ポリマーに照射する場合、 照射光を、対物レンズを用いて直径約 50 mの円面積に集光照射するときは、平均 出力をレーザーアブレ一ジョンが起こらない範囲に調節し、シリンドリカルレンズを用 V、て照射光をライン状に変換して、幅約 lmm X長さ約 5mmのライン面積に集光照 射するときは、 30〜2000mW、好ましくは 50〜500mWに調節する。
[0042] フ ムト秒レーザーの平均出力が低すぎると改質効果が不十分となり、高すぎると 照射対象物の照射スポット部に熱衝撃を伴うレーザーアブレ一ジョンが生じるおそれ がある。
[0043] 以下の実施例により本発明を更に具体的に説明する力 本発明はこれらに限定さ れない。実施例中、「部」などの量は、特に断らない限り重量基準である。
実施例
[0044] mmm
液晶ポリマー(LCP)の合成
4-ヒドロキシ安息香酸 256部、 2 -ヒドロキシ— 6—ナフトェ酸 129部及び無水酢酸 266部を、攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下に 40°C 〜145°Cを 1時間かけて昇温し、 145°Cで 0. 5時間保った後、 325°Cまで 7時間で昇 温し、さらに 325°Cで 30分反応させた後、 325°Cで減圧を行った。 90分で lOOtorr まで減圧し、更に lOOtorr下で 10分重合反応を行った時点で所定の攪拌トルクに達 したので重合槽を密閉し、窒素ガスにより重合槽内を 0. IMPaに加圧し反応を終了 した。
[0045] 次いで重合槽底部のバルブを開き、ダイスを通じ重合槽内容物をストランド状に抜 き出し、重合槽直下に設置された水冷式のコンベアによりストランドをカッターへ送り 、ペレット状に切断することによりポリマーのペレットを得た。
[0046] 溶融粘度測定
合成した榭脂を溶融粘度測定装置 (東洋精機 (株)製「キヤピログラフ 1 A」)を用い、 0. 7mm X 10mmのキヤビラリ一で測定温度 320°C、剪断速度 103s_1での粘度を 測定した。このように 320°Cで測定した溶融粘度は 22Pa' sであった。
[0047] 結晶融解温度測定
セイコーインスツルメンッ株式会社製「Exstar6000」を用い、合成した榭脂試料を 、室温力も 20°CZ分の昇温条件で測定した際に観測される吸熱ピーク温度 (Tml) の観測後、 330°Cで 10分間保持した。
[0048] ついで、 20°CZ分の降温条件で室温まで試料を冷却し、その際に観測される発熱 ピークのピークトップの温度を榭脂の結晶化温度 (Tc)とし、さらに、再度 20°CZ分の 昇温条件で測定した際の吸熱ピークを観測し、そのピークトップを示す温度を液晶ポ リエステル榭脂の融点結晶融解温度 (Tm)とした。このように示差走査熱量計により 測定される結晶融解温度は 280°Cであった。
[0049] 実施例 1
調製例で合成した LCPを射出成形機 (日精榭脂工業 (株)製「UH1000— 110」 ) を用いて 300°Cのシリンダー温度にて長さ 89mm、幅 54mm、厚さ 0. 8mmの LCP 板を成形した。
[0050] コヒーレント(Coherent)社製 Ti:サファイアレーザー(波長 780nm、平均出力 600 mW、繰り返し数 200kHz、パルス幅 200フェムト秒)を用い、得られた LCP板の表面 にフェムト秒レーザーを 5倍対物レンズで集光照射 (集光面積:直径約 50 mの円面 ゃ責)しに。
[0051] その結果、照射直後に青色の蛍光 (第二高調波: SHG)が発生し、照射スポットに おいては熱衝撃を伴うレーザーアブレ一ジョンによる 10 μ m〜20 μ m程度の穴があ き、その周辺に改質部分が観察された。図 1は表面にフェムト秒レーザーが照射され た LCP板の外観を示す写真である。このレーザーアブレ一ジョン機構を利用して、改 質された液晶ポリマーの微粒子 (ナノ粒子)を生成し、それを目標とする材料の表面 に堆積させ改質液晶ポリマーの有機薄膜を創製する製法を確立することが可能にな る。またその製法を用いることにより、液晶ポリマー及びそれ以外の有機物質から新 規有機エレクトロニクス材料を創製することが可能になる。
[0052] 実飾 12
ダイ幅 150mm、圧縮比 2. 0の Tダイを装着し、 300°Cのシリンダー温度およびダイ 温度に設定した東洋精機製ラボプラストミル 100C100に、調製例で合成した LCPを 供し、巻き取り速度 3mZ分で巻き取りながら厚み約 50 mのフィルムを得た。
[0053] サイバーレーザー(Cyber Laser)社製エルビウムドープ石英ファイバーレーザー
(波長 780nm、平均出力 0. 14mW、繰り返し数 lkHz、パルス幅 215フェムト秒)を 用い、上記 LCPフィルムの 6mm X 24mmの面積部分に対し、照射速度 10 /z mZp ulse (10000 μ m/s)でフェムト秒レーザーを照射して改質処理を行った。
[0054] その試料に対しゲル透過クロマトグラフ法 (GPC)により分子量分布を測定した。図 2は LCPの改質処理部と改質未処理部について GPC測定の結果を示すスペクトル である。改質処理部を示す曲線 aは改質未処理部を示す曲線 bよりも分子量が高くな る方向にシフトする分布傾向がある。平均分子量の計算結果を表 1に示す。
[0055] [表 1]
Figure imgf000014_0001
[0056] 表 1の結果によれば、改質処理をした部分の数平均分子量 (Mn)は改質処理して いない部分のものより約 15%上がっていることから、引張強度、衝撃強度、硬さなど が向上していると予想される。
[0057] 実施例 3
ガラス基板の上に、実施例 2で得られた LCPフィルム(約 12mm X 12mm、板厚 50 μ m)を乗せ、ホットステージ上で約 320°C (初期昇温速度 40°CZmin)に加熱し溶 融状態にした。
[0058] サイバーレーザー(Cyber Laser)社製エルビウムドープ石英ファイバーレーザー
(波長 780nm、繰り返し数 lkHz、パルス幅 215フェムト秒)を用い、溶融した LCPフ イルムの表面に超短パルスレーザーを 5倍対物レンズで集光照射 (集光面積:直径 約 50 μ mの円面積)した。照射はレーザーアブレ一ジョンが起こらない範囲に平均 出力を調節して行った。
[0059] 得られた改質 LCPに対しゲル透過クロマトグラフ法 (GPC)による分子量分布の測 定を行おうとしたところ、前処理用溶媒 (ペンタフロロフェノール)に溶けない物質に変 ィ匕していた。
[0060] 岡体 NMR測定
改質 LCPおよび改質処理して!/、な!/、LCPをフィルムに成形し、固体 NMR測定を 行なった。測定条件を表 2に示す。
[0061] [表 2] 装置 B r u k e r ¾® 「Av a n c e 4〇 0」
至 ½a
基準物質 グリシン (外部基準 176. 5 p pm)
測定核 1 00. 6248425MH z
パルス幅 3. 0 秒
パルス繰り返し時間 ACQTM 0. 0249994秒 PD=8秒 データー点 PO I NT 1892 SAMPO 1 7 56
スぺク トノレ幅 3 521 1. 270 Hz
パ /レスモード 水素核 T 1 β緩和時間測定モード
コンタタトタイム 2. 0 m秒
試料回転数 1 2 kHz
[0062] 図 3は改質 LCPフィルム(中央部)の CCP/MASスペクトルである。図 4は改質 処理して!/、な 、: LCPフィルムの13 CCPZMASスペクトルである。図 3のスペクトル中 には架橋構造を表わす可能性のあるピーク cが認められた。
[0063] 緩禾 D時間沏 I定
次に、架橋の有無を評価するため、改質 LCPフィルム及び改質処理していない LC Pフィルムについて、分子運動を反映すると考えられる水素核 T H緩和時間測定を 行なった。この結果を表 3に示す。
[0064] [表 3]
Figure imgf000015_0001
[0065] 改質 LCPフィルムと改質処理していない LCPフィルムとでは、改貧 LCPフィルムの 方が大きな値となっていることから、改質 LCPフィルムの分子運動性が低下しており、 架橋構造の存在が示唆された。
[0066] 図 5は、改質 LCPフィルム(中央部)の水素核 T Hプロットである。図 6は、改質処 理して 、な 、LCPフィルムの水素核 T Hプロットである。
[0067] 改質 LCPのスペクトル分布上のピーク No.7と No.8の緩和時間の平均値 16.61 m秒を、改質処理していない LCPのピーク No.3と No.4の緩和時間の平均値 13. 55m秒で割った値で、重合度の向上割合を近似したところ、重合度は約 23%向上し ていた。
[0068] コンタクトタイム依存性測定
更に、改質 LCPフィルム及び改質処理していない LCPフィルムについて、コンタクト タイム依存性の測定を行なった。測定条件を表 4に示す。
[0069] [表 4]
Figure imgf000016_0001
[0070] 図 7は、改質 LCPフィルム(中央部)のコンタクトタイム依存性プロット(130ppm)で ある。図 8は、改質処理していない LCPフィルムのコンタクトタイム依存性プロット(13 Oppm)である。これらのプロットによれば、コンタクトタイムの時定数は改質 LCPフィ ルムで 22. 8m秒、改質処理していない LCPフィルムで 75m秒であり、改質 LCPフィ ルムの時定数は改質処理していない LCPフィルムのものよりも小さい。このことは、改 質 LCPフィルム中に架橋構造があることを示して 、る。
[0071] 以上の分析結果から、改質 LCPは架橋構造を有し、その結果重合度が上がってお り、改質処理していない LCPと比較して、引張り強度、弾性率、衝撃強度、硬さなど が向上していると考えられる。
[0072] 実施例 4
溶着防止のためにアルミ箔を敷 、たガラス基板の上に、実施例 2で得られた LCPフ イルム(幅約 lOmm X長さ約 40mm、板厚約 50 m)を 5枚重ねて乗せ、ホットステ ージ上で約 380°Cに加熱し溶融状態にした。 [0073] コヒーレント(Coherent)社製 Ti:サファイアレーザー(波長 780nm、平均出力 50 mW〜500mW、繰り返し数 200kHz、パルス幅 150フェムト秒)を用い、溶融した LC Pフィルムの表面に超短パルスレーザー光をシリンドリカルレンズを用いてライン状に 変換して、集光照射 (集光面積:幅約 1mm X長さ約 5mmのライン面積)した。
[0074] 照射は、集光部の長さ方向と LCPフィルムの長さ方向がほぼ垂直になるように、光 源に対して LCPフィルムを位置させ、ついで、 LCPフィルムの表面全体が集光部に よって 1回走査されるように、光源に対して LCPフィルムを移動させて行った。超短パ ルスレーザーの平均出力は、試料ごとに、 50mW、 100mW、 300mW、及び 500m Wと変化させた。
[0075] 照射後の各フィルムにつ 、て引張り試験を行 、、初期ヤング率及び破断強度を測 定した。試験条件を表 5に示す。また、測定結果を表 6に示す。
[0076] [表 5]
Figure imgf000017_0001
[0077] [表 6]
Figure imgf000017_0002
[0078] 図 9は照射強度(平均出力)に対して初期ヤング率をプロットしたグラフである図 10 は照射強度に対して破断強度をプロットしたグラフである。これらのグラフ力 、照射 強度が増加すると、初期ヤング率および破断強度が高くなる傾向が認められた。
[0079] この結果より、液晶ポリマーの繊維化における成形カ卩ェにおいて、溶融紡糸のノズ ル出口以前の溶融状態、またはノズル出口以降の溶融又は半溶融状態のファイバ 一に、照射条件を最適化した超短パルスレーザーを照射することで、非熱的光化学 反応を利用することにより重合度を高め、物理的強度を向上させうると考えられる。こ の方法にぉ 、ては、従来法のように成形後に熱処理で固相重合をさせて重合度を高 めるためのプロセス、すなわち真空下における高温処理プロセスが不必要になる利 点がある。
[0080] この改質された液晶ポリマー繊維には引張破断強度及び初期ヤング率が高くなる と同時に、曲げ強度及び圧縮弾性率も高くなる可能性がある。この特性の向上した 繊維の応用として例えば、乗用車用、軽トラック用、特に大型トラック 'バス用のラジア ルタイヤのカーカス材に使用されるスチールコードの代わりに用いることにより、更な るタイヤの軽量ィ匕及びそれに伴う性能の向上、耐久性 (屈曲疲労性)の向上、などが 可會 になる。
[0081] また液晶ポリマーのフィルム化における成膜加工においても、ダイ出口以前の溶融 状態、またはダイ出口以降の溶融又は半溶融状態のフィルムに最適照射することに より、物理的強度及び縦横方向(流れ方向: MDとこれと直交する方向: TD)の強度 の均一性を向上させうると考えられる。更にこの改質方法には、従来の液晶ポリマー に高周波 (THz)領域の電磁波を透過しにくい特性を持たせる可能性があることから 、高周波'誘電特性 (低誘電損失)により優れた耐熱フィルム^ |IJ製できうると考えら れる。
[0082] また、当該超短パルスレーザーによる光化学反応を利用する以外にも、その他の 種類のレーザー、又は光源による照射を最適設計することにより、同等の改質効果を 上げることができれば、改質における光変換効率をさらに向上させうると考えられる。
[0083] 実飾 15
実施例 2で得られた LCPフィルム(幅約 10mm X長さ約 40mm、板厚約 50 m)の 表面に対し、コヒーレント(Coherent)社製 Ti:サファイアレーザー(波長 780nm、繰 り返し数 200kHz、パルス幅 150フェムト秒、平均出力 500mW)を用い、シリンドリカ ルレンズを用いて超短パルスレーザー光をライン状に変換して集光照射 (集光面積: 幅約 lmm X長さ約 5mmのライン面積)した。
[0084] 照射は、集光部の長さ方向と LCPフィルムの長さ方向がほぼ垂直になるように、光 源に対して LCPフィルムを位置させ、ついで、 LCPフィルムの表面全体が集光部に よって 1回走査されるように、光源に対して LCPフィルムを移動させて行った。
[0085] テラへルツ測定機 (先端赤外社製 rpulseIRS 2004」 )を用いて、照射後のフィル ムにつ 、てテラへルツ (THz)分光スペクトル測定を行った。 [0086] 図 11は照射後のフィルムにつ 、てテラへルツ分光スペクトル測定を行った結果を 示すスペクトルである。図 12は未照射のフィルムについてテラへルツ分光スペクトル 測定を行った結果を示すスペクトルである。図 13は照射後のフィルムについてのス ベクトルから未照射のフィルムにつ 、てのスペクトルを差し引 、た差分を示すスぺタト ルである。
[0087] 図 13に示されたスペクトルより、照射後のフィルムは、テラへルツ電磁波の透過率 力 未照射のフィルムよりも低くなつていることが認められた。電磁波の透過率が減少 した原因のひとつは、ポリマーの分子間で架橋構造が形成されたことと考えられる。 力かるポリマーはテラへルツ電磁波シールド材ゃフォト-タス材料への応用が有望で ある。
[0088] また、本発明の改質方法には、従来の液晶ポリマーフィルムに高周波 (THz)領域 の電磁波を透過しにくい特性を持たせる可能性があることから、更に高周波 ·誘電特 性 (低誘電損失)に優れた耐熱フィルムを提供できることが考えられる。
図面の簡単な説明
[0089] [図 1]表面にフェムト秒レーザーが照射された LCP板の外観を示す写真である。
[図 2]LCPの改質処理部と改質未処理部について GPC測定の結果を示すスペクトル である。
[図 3]改質 LCPフィルム(中央部)の13 CCPZMASスペクトルである。
[図 4]改質処理して!/ヽな 、: LCPフィルムの13 CCPZMASスペクトルである。
[図 5]改質 LCPフィルム(中央部)の水素核 T Hプロットである。
1 p
[図 6]改質処理して!/ヽな 、LCPフィルムの水素核 T Hプロットである。
1 p
[図 7]改質 LCPフィルム(中央部)のコンタクトタイム依存性プロット(130ppm)である
[図 8]改質処理していない LCPフィルムのコンタクトタイム依存性プロット(130ppm) である。
[図 9]LCPフィルムの引張り試験において、照射強度に対して初期ヤング率をプロット したグラフである。
[図 10]LCPフィルムの弓 I張り試験にお 、て、照射強度に対して破断強度をプロットし たグラフである。
[図 11]照射後の LCPフィルムについてテラへルツ分光スペクトル測定を行った結果 を示すスペクトルである。
[図 12]未照射の LCPフィルムについてテラへルツ分光スペクトル測定を行った結果 を示すスペクトルである。
[図 13]照射後の LCPフィルムについてのスペクトルから未照射のフィルムについての スペクトルを差し引 、た差分を示すスペクトルである。

Claims

請求の範囲
[1] 液晶ポリマーにパルス幅が ιο_12秒以下のレーザーを照射する工程を包含する液 晶ポリマーの改質方法。
[2] サーモト口ピック液晶ポリマーにパルス幅が 10_12秒以下のレーザーを照射するェ 程を包含する液晶ポリマーの改質方法。
[3] サーモト口ピック液晶ポリマーの固体フィルムを形成する工程;および
該固体フィルムにパルス幅が 10_12秒以下のレーザーを照射する工程; を包含する液晶ポリマーの改質方法。
[4] 前記レーザーの平均出力は、シリンドリカルレンズを用いてレーザー光をライン状に 変換して幅約 lmm X長さ約 5mmのライン面積に集光するときは 100〜800mWに 調節して行われる、請求項 3記載の液晶ポリマーの改質方法。
[5] サーモト口ピック液晶ポリマーの溶融体を形成する工程;および
該溶融体にパルス幅が 10_12秒以下のレーザーを照射する工程;
を包含する液晶ポリマーの改質方法。
[6] 前記レーザーの平均出力は、シリンドリカルレンズを用いてレーザー光をライン状に 変換して幅約 lmm X長さ約 5mmのライン面積に集光するときは 30〜2000mWに 調節して行われる、請求項 5記載の液晶ポリマーの改質方法。
[7] 前記液晶ポリマーが、
4 ヒドロキシ安息香酸 73モル0 /oZ2—ヒドロキシ 6 ナフトェ酸 27モル0 /0共重 合体;
4 ヒドロキシ安息香酸 42モル0 /oZ2—ヒドロキシ 6—ナフトェ酸 16モル0 /oZヒド ロキノン 21モル0 /oZテレフタル酸 21モル0 /0共重合体;
4 ヒドロキシ安息香酸 70モル0 /oZ2—ヒドロキシ 6—ナフトェ酸 2モル0 /oZヒドロ キノン 14モル0 /oZ2, 6 ナフタレンジカルボン酸 14モル0 /0共重合体;
2 -ヒドロキシ 6 ナフトェ酸 60モル0 /oZ4 -ァミノフエノール 20モル0 /oZテレフ タル酸 20モル%共重合体;
4 ヒドロキシ安息香酸 60モル0 /oZ2—ヒドロキシ 6—ナフトェ酸 4モル0 /oZ4—ァ ミノフエノール 4モル0 /oZ4, 4,一ジヒドロキシビフエ-ル 14モル0 /0/テレフタル酸 16 モル%共重合体;および
4ーヒドロキシ安息香酸 60モル0 /oZ4, 4,ージヒドロキシビフエ-ル 20モル0 /oZテレ フタル酸 15モル0 /oZイソフタル酸 5モル%共重合体;
からなる群力 選択される少なくとも 1種のポリエステルを含む請求項 1〜6のいずれ か記載の方法。
請求項 1〜7のいずれか記載の方法により得られる改質液晶ポリマー。
PCT/JP2007/051612 2006-02-10 2007-01-31 液晶ポリマーの改質方法 WO2007091466A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007557800A JP4208941B2 (ja) 2006-02-10 2007-01-31 液晶ポリマーの改質方法
CN2007800050687A CN101384651B (zh) 2006-02-10 2007-01-31 液晶聚合物的改性方法
AU2007213255A AU2007213255B2 (en) 2006-02-10 2007-01-31 Method of modifying liquid crystal polymers
US12/223,695 US7608371B2 (en) 2006-02-10 2007-01-31 Method of modifying liquid crystal polymers
EP07707798.0A EP1983020B1 (en) 2006-02-10 2007-01-31 Method for modification of liquid crystal polymer
CA2641808A CA2641808C (en) 2006-02-10 2007-01-31 Method of modifying liquid crystal polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-033899 2006-02-10
JP2006033899 2006-02-10

Publications (1)

Publication Number Publication Date
WO2007091466A1 true WO2007091466A1 (ja) 2007-08-16

Family

ID=38345069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051612 WO2007091466A1 (ja) 2006-02-10 2007-01-31 液晶ポリマーの改質方法

Country Status (8)

Country Link
US (1) US7608371B2 (ja)
EP (1) EP1983020B1 (ja)
JP (1) JP4208941B2 (ja)
KR (1) KR100912999B1 (ja)
CN (1) CN101384651B (ja)
AU (1) AU2007213255B2 (ja)
CA (1) CA2641808C (ja)
WO (1) WO2007091466A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176287A2 (ja) * 2012-05-25 2013-11-28 大研医器株式会社 架橋型液晶高分子材料の変形方法、光駆動型成形体
JPWO2017043312A1 (ja) * 2015-09-11 2018-04-26 株式会社村田製作所 処理済液晶ポリマー樹脂シート、その製造方法、樹脂多層基板およびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587276B2 (ja) * 2004-02-27 2010-11-24 独立行政法人科学技術振興機構 液晶高分子からなる膜の製造方法
DE102011078998A1 (de) * 2011-07-12 2013-01-17 Osram Opto Semiconductors Gmbh Lichtemittierendes Bauelement und Verfahren zum Herstellen eines lichtemittierenden Bauelements
WO2014107152A2 (en) * 2013-01-03 2014-07-10 Empire Technology Development Llc Resealable containers and methods for their preparation and use
CN109312070B (zh) * 2016-07-27 2020-08-25 宝理塑料株式会社 全芳香族聚酯酰胺和其制造方法
CN110177821B (zh) * 2017-01-26 2020-03-24 宝理塑料株式会社 全芳香族聚酯和聚酯树脂组合物
US11370881B2 (en) * 2018-01-18 2022-06-28 Sumitomo Chemical Company, Limited Liquid crystal polyester fibers
CN110498913B (zh) * 2018-05-16 2022-06-03 臻鼎科技股份有限公司 改性的液晶高分子聚合物、高分子膜及相应的制备方法
CN113084363B (zh) * 2021-03-24 2023-04-11 西湖大学 一种飞秒激光加工光响应液晶弹性体梳齿的装置和方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136968A (ja) * 1995-10-27 1997-05-27 Bayer Ag ポリマー中に微細構造物を作り出す方法
JP2000080180A (ja) * 1998-08-14 2000-03-21 Clariant Gmbh 効果被膜のレ―ザ―マ―キング
JP2001192847A (ja) * 2000-01-13 2001-07-17 Omron Corp 高分子成形材のメッキ形成方法
JP2001200370A (ja) * 2000-01-19 2001-07-24 Omron Corp 高分子成形材のメッキ形成方法
JP2002249607A (ja) * 2001-02-26 2002-09-06 Nitto Denko Corp プラスチック構造体
JP2003136273A (ja) * 2001-11-01 2003-05-14 Nitto Denko Corp 一貫製造レーザー加工ライン
JP2004008881A (ja) 2002-06-05 2004-01-15 Nitto Denko Corp プラスチック構造体の製造方法および該製造方法により作製されたプラスチック構造体
JP2004324017A (ja) 2003-04-25 2004-11-18 Tokyo Institute Of Technology ポリエステル繊維の製造方法
WO2005026238A1 (ja) * 2003-09-11 2005-03-24 Nikon Corporation 高分子結晶の加工方法、高分子結晶の加工装置、及び高分子結晶の観察装置
JP2005085554A (ja) * 2003-09-05 2005-03-31 Polyplastics Co 導電性樹脂成形品及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1017743A1 (en) * 1997-09-04 2000-07-12 Eastman Chemical Company Thermoplastic polyurethane additives for enhancing solid state polymerization rates
JP2002269607A (ja) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd 広告配信システム
WO2003025644A1 (en) * 2001-09-14 2003-03-27 Photon-X, Inc. Athermal polymer optical waveguide on polymer substrate
CN1898058A (zh) * 2004-01-23 2007-01-17 住友电气工业株式会社 形成微细孔的拉伸多孔聚四氟乙烯材料及其制备方法,和磨损加工方法
EP1743209B1 (en) * 2004-04-16 2016-11-23 D.K. And E.L. Mcphail Enterprises Pty Ltd Method of forming an optically active matrix with void structures
WO2005123324A1 (fr) * 2004-06-08 2005-12-29 Tag Heuer Sa Procede de fabrication d’une piece micro- ou nanomecanique par une etape d’ablation laser a l’aide d’un femtolaser

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136968A (ja) * 1995-10-27 1997-05-27 Bayer Ag ポリマー中に微細構造物を作り出す方法
JP2000080180A (ja) * 1998-08-14 2000-03-21 Clariant Gmbh 効果被膜のレ―ザ―マ―キング
JP2001192847A (ja) * 2000-01-13 2001-07-17 Omron Corp 高分子成形材のメッキ形成方法
JP2001200370A (ja) * 2000-01-19 2001-07-24 Omron Corp 高分子成形材のメッキ形成方法
JP2002249607A (ja) * 2001-02-26 2002-09-06 Nitto Denko Corp プラスチック構造体
JP2003136273A (ja) * 2001-11-01 2003-05-14 Nitto Denko Corp 一貫製造レーザー加工ライン
JP2004008881A (ja) 2002-06-05 2004-01-15 Nitto Denko Corp プラスチック構造体の製造方法および該製造方法により作製されたプラスチック構造体
JP2004324017A (ja) 2003-04-25 2004-11-18 Tokyo Institute Of Technology ポリエステル繊維の製造方法
JP2005085554A (ja) * 2003-09-05 2005-03-31 Polyplastics Co 導電性樹脂成形品及びその製造方法
WO2005026238A1 (ja) * 2003-09-11 2005-03-24 Nikon Corporation 高分子結晶の加工方法、高分子結晶の加工装置、及び高分子結晶の観察装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1983020A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176287A2 (ja) * 2012-05-25 2013-11-28 大研医器株式会社 架橋型液晶高分子材料の変形方法、光駆動型成形体
WO2013176287A3 (ja) * 2012-05-25 2014-01-16 大研医器株式会社 架橋型液晶高分子材料の変形方法、光駆動型成形体
JPWO2017043312A1 (ja) * 2015-09-11 2018-04-26 株式会社村田製作所 処理済液晶ポリマー樹脂シート、その製造方法、樹脂多層基板およびその製造方法

Also Published As

Publication number Publication date
US7608371B2 (en) 2009-10-27
EP1983020A1 (en) 2008-10-22
CA2641808C (en) 2011-05-03
AU2007213255A1 (en) 2007-08-16
CA2641808A1 (en) 2007-08-16
CN101384651A (zh) 2009-03-11
JP4208941B2 (ja) 2009-01-14
KR100912999B1 (ko) 2009-08-20
US20090048362A1 (en) 2009-02-19
CN101384651B (zh) 2011-11-09
EP1983020A4 (en) 2012-01-04
JPWO2007091466A1 (ja) 2009-07-02
AU2007213255B2 (en) 2010-11-18
EP1983020B1 (en) 2014-05-07
KR20080098418A (ko) 2008-11-07

Similar Documents

Publication Publication Date Title
WO2007091466A1 (ja) 液晶ポリマーの改質方法
CN102574992B (zh) 液晶性高分子以及成型体
USRE42221E1 (en) Polymerizable liquid crystal composition and polymer thereof
Hasegawa et al. Poly (ester imide) s possessing low CTE and low water absorption (II). Effect of substituents
JP6474261B2 (ja) 積層体
JP4909534B2 (ja) ポリエステル及びその製造方法
JPS6038428A (ja) ポリエステル及びその製造方法
JPH0686594B2 (ja) モノドメイン化されたコレステリツク液晶性ポリエステルフイルムまたはシ−トの製造方法
CN108299632A (zh) 一种液晶聚酯及其应用
Kang et al. Synthesis and properties of aromatic main-chain polyesters having disperse red 1 nonlinear optical chromophores in the side chain
Yin et al. Research on synthesis and thermal properties of poly (ethylene terephthalate) sulfonate group containing ionomer
WO2020179767A1 (ja) 液晶ポリエステル加工品の製造方法
Zhou et al. Study on copolymer from cyclic butylene terephthalate and polycaprolactone by in-situ polymerization
JP2009221406A (ja) 液晶ポリエステルの製造方法
JP2005178056A (ja) 液晶性ポリエステル樹脂の成形加工法
JP2016060163A (ja) 偽造防止カード
JPH04166309A (ja) 液晶ポリマーフィルム乃至シートの製造法
Yang et al. A novel phosphorus‐containing thermotropic liquid crystalline poly (ester‐imide) with high flame retardancy
JP2005105229A (ja) 光学活性な液晶性高分子化合物の製造方法
JPH04168129A (ja) 液晶ポリマーフィルムの製造方法
Avramova et al. Liquid crystalline polymer laminates
Kim et al. The effect of branching on the physical properties of 73/27 4‐hydroxybenzoic acid/2‐hydroxy‐6‐naphthoic acid
Yang et al. Thermo-recording in (side chain type smectic A liquid crystal polymer/nematic liquid crystal/chiral dopant/dichroic dye) composite with a low power laser
Xu et al. Effect of melting conditions on crystallization behavior of poly (trimethylene terephthalate)
NI et al. Synthesis and Characterization of a Series of New Liquid Crystalline Copolyesters Containing Biphenyl-Ester Sulfone

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007557800

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007213255

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2641808

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007707798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780005068.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12223695

Country of ref document: US