WO2005123324A1 - Procede de fabrication d’une piece micro- ou nanomecanique par une etape d’ablation laser a l’aide d’un femtolaser - Google Patents

Procede de fabrication d’une piece micro- ou nanomecanique par une etape d’ablation laser a l’aide d’un femtolaser Download PDF

Info

Publication number
WO2005123324A1
WO2005123324A1 PCT/EP2005/052652 EP2005052652W WO2005123324A1 WO 2005123324 A1 WO2005123324 A1 WO 2005123324A1 EP 2005052652 W EP2005052652 W EP 2005052652W WO 2005123324 A1 WO2005123324 A1 WO 2005123324A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
less
laser
ablation
millimeters
Prior art date
Application number
PCT/EP2005/052652
Other languages
English (en)
Inventor
Guy Semon
Original Assignee
Tag Heuer Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH00970/04A external-priority patent/CH705707B1/fr
Application filed by Tag Heuer Sa filed Critical Tag Heuer Sa
Priority to JP2007526428A priority Critical patent/JP2008501534A/ja
Priority to EP05749595A priority patent/EP1753581A1/fr
Priority to RU2006143445/02A priority patent/RU2371290C2/ru
Publication of WO2005123324A1 publication Critical patent/WO2005123324A1/fr
Priority to US11/636,024 priority patent/US20080095968A1/en

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0069Watchmakers' or watch-repairers' machines or tools for working materials for working with non-mechanical means, e.g. chemical, electrochemical, metallising, vapourising; with electron beams, laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0079Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • Y10T428/211Gear

Definitions

  • the present invention relates to a method for manufacturing micromechanical and nanomechanical parts.
  • the present invention also relates to parts manufactured according to this method, and intended for applications in watchmaking, or outside watchmaking, for example in the field of measuring instruments, optics, optoelectronics, or in other areas requiring significant machining precision, excluding the ablation of biological materials.
  • the present invention also relates to methods of manufacturing transmission members, such as belts, pulleys, gears, etc., for horological applications in particular.
  • micro- and nano-mechanical components which allow machining on a dimensional scale (resolution) varying from millimeter (10 ⁇ 3 meter) to nanometer (10 '9 metre).
  • this process should be suitable for all materials without distinction, or in any case for large classes of materials.
  • the machining should be based on a geometric description of the micro- or nano-mechanical components to be machined, for example transmission elements.
  • the method of the invention is based on the machining of small members by ablation of material by means of ultra-short pulse lasers.
  • the invention is based on ablation by means of laser pulses of a duration of less than five hundred femto seconds less than 5 ⁇ 10 "13 seconds and of a power greater than 10 12 watts on the beam interaction surface
  • Such pulses are generated by particular lasers, called femto-lasers below.
  • Femto-lasers are known per se and their technology is well mastered today, so that these devices are compact, versatile and reliable.
  • the diversity of these lasers continues to increase: the beams obtained today cover the entire electromagnetic spectrum, from X-rays to T-rays (terahertz radiation, located beyond infrared), and the maximum powers reach several petawatts (several billion megawatts).
  • These devices are particularly applicable in physics, chemistry, biology, medicine, optics.
  • the use of the ultra-short pulse laser for the machining of mechanical micro-organs has the following advantages: machining precision, ablation of material under almost athermal conditions, there is only effect at the focal point "beam waist", the beam can, in particular in the case of transparent materials, pass through thicknesses to go to work at a point in the mass without altering the surface or the material on the path traveled, the beam is manipulated from a distance and under all the angles, r there is no restriction on the level of the machined materials, - we can obtain a resolution finer than the width of the laser beam by adjusting the laser so that only the intensity of the central part, where the greatest power is concentrated, ie greater than the ablation threshold of the material (control of the energy density in the focal plane), - absence of machining forces at the level of the ablation plane.
  • the process of the present invention is particularly advantageous thanks to the use of particularly short pulse duration and particularly high powers. These extreme conditions allow precise machining of a wide variety of materials, with the same equipment.
  • the power or duration of the pulses can however be adapted to the material, or to the speed and precision required for machining a portion of a workpiece.
  • the invention is thus based in particular on the observation that the use of extremely high powers, clearly greater than the powers used in conventional laser machining processes, allows almost instantaneous, explosive sublimation of the area irradiated by the laser beam. Despite the small size of this area, machining is therefore relatively rapid. Furthermore, by interrupting the light pulse after a very short time, the ablation is limited to the directly irradiated area, without touching the neighboring portions. The high powers used thus allow an extremely clean cut, with steep edges, to be obtained.
  • the invention is also based on the observation that the femto-laser is suitable for the machining of new types of parts and new materials, in particular small and high-precision parts, in particular watchmaking organs for which the femto-laser did't been suggested before.
  • the invention also relates to such organs manufactured with the femto-laser and thus having dimensions, precisions and surface conditions previously considered almost unattainable.
  • the method of the invention thus makes it possible to machine parts whose dimension is less than or equal to two millimeters, or preferably less than one millimeter, this dimension being counted "overall" and defined as the length of the segment which connects the two most distant parts of an organ part in the same direction.
  • the method also makes it possible to machine parts comprising teeth whose depth is less than two millimeters, or even less than 0.5 millimeters.
  • the part is preferably supported by a micro-manipulator ensuring the positioning and orientation of the surface to be treated relative to the orientation of the laser beam.
  • the workpiece can be supported by a multiaxial system controlled by a micrometric or even nanometric robot machining program with compensation or backlash.
  • the movement of the workpiece, small and very light, can generally be carried out much more quickly and with a greater accuracy and reproducibility than moving the laser or associated optics. However, it is also possible to move the laser simultaneously, or even only, or to deflect the beam.
  • the ablation zone can thus be modified by translations of the workpiece at least in one plane (X and Y axes), by rotations in this plane along the C axis, and preferably also by translations along a Z axis perpendicular to the plane and / or by rotations along two perpendicular axes A and B.
  • displacements of the laser, or of the associated optics can also be imagined.
  • the focal distance can also be controlled in a direction parallel to the Z axis.
  • the movements are controlled by machining software which receives data corresponding to a description of the shape to be machined. The description is given in mathematical form and the machining software determines the paths that the laser beam must travel, continuously or in steps, to generate these shapes.
  • the invention is based on a geometric description using families of new curves, and taking into account the possibilities of femto-lasers to produce an ablation only at the focal point, at a precise distance from the laser.
  • the ablation conditions can be optimized as a function of the material and of the machining depth, which can be modified for example by defining the angles of incidence of the laser beam and the positioning of the member to be machined relative to the beam. laser.
  • the method also includes the steps of describing the shapes of the workpiece from the defined geometry using a 2D, 2D and a half or preferably 3D CAD representation, transfer of data from CAD on machining software, preferably three-dimensional, which preferably allows interpolations of left surfaces, definition of the steps as a function of the material and the machining depth so that the ablation conditions are optimized , - introduction of data into the computer for controlling and / or steering movements, positioning, in one direction, of the focal area by lighting using an optical head, whether or not equipped with a diffraction device , - positioning of the workpiece on the plane, clamping of the workpiece using clamping means, adjustment of the laser with ultra-short pulses, start of the machining program and machining of the c omposing by femto-laser with ultra-short pulses.
  • the method according to the invention is carried out under a controlled atmosphere in order to avoid the appearance of non-linear phenomena generated at the light / material interface
  • the invention also relates to the parts produced by the method.
  • the invention also results from the observation that machining by femto-laser ablation is suitable for the manufacture of very diverse parts, in particular parts and members having very small dimensions and having to be manufactured with a very fine resolution, which could not be manufactured in the prior art, or only with significant difficulties.
  • the invention thus relates in particular to transmission members, in particular small members for watchmaking applications for example, manufactured according to the method.
  • the invention also results from the observation that femto-laser machining is perfectly suited to the machining of pulleys and transmission belts in synthetic or composite material, with very small dimensions adapted to watchmaking, or of molds intended for injection or molding of such belts and pulleys.
  • At least one of the dimensions of the workpiece according to the invention is less than two millimeters and advantageously less than 0.5 millimeters.
  • the method is also suitable for machining parts that have at least one irregular or left surface characterized, among other things, by at least one radius located in the plane of curvature whose value is greater than 10 "9 m and less than 10 "3 m, preferably less than 10 " 5 m.
  • FIG. 1 represents, by way of example, a device for manufacturing parts according to the method of the invention, suitable for machining synchronous / asynchronous transmissions
  • FIG. 2 represents a synchronous / asynchronous transmission constituted here by an assembly said pulleys-belts with parallel strands
  • FIG. 3 represents a profile of curvilinear toothing
  • FIG. 4 represents two examples of asynchronous transmission with secondary pulleys disposed inside respectively outside the transmission
  • FIG. 5 represents a sectional view of a laminated belt.
  • FIG. 1 illustrates a device for manufacturing a part 10, here a synchronous or asynchronous transmission for transmitting movements or power, and comprising: a work surface 11 having in this example 6 axes (A, B, C , Z,
  • Y, Z programmable and clamping means 12 (for example systems such as flanges, adhesive, magnets, vacuum, etc.).
  • the axes are controlled by a micrometric robot machining program executed by the computer 17, with play compensation or compensation means, a computer 13 having in particular a three-dimensional modeling software such as for example 3D CAD, a laser with ultra-short pulses 14 of the femto type comprising an optical head 15 allowing the emission of a beam 16 concentrated on a focal area (D), a computer for control / pilot of displacements 17.
  • the computer 13 can be constituted for example by a personal computer or a work station, and makes it possible to execute software making it possible to generate and store a three-dimensional model of the part to be machined, then to generate a machining program with from this three-dimensional model.
  • the machining program includes a series of instructions for moving the axes of the device, so as to move the focal area of the femtolaser along a three-dimensional trajectory allowing the machining of the part.
  • the generation of the trajectory is based on interpolations, and the size of the indexing steps is a function in particular of the speed, the precision and the surface condition required.
  • the machining program can be determined once and applied to the machining of multiple identical parts.
  • the control / pilot computer 17 executes the machining program and can be constituted for example by a numerical control or an industrial PC making it possible to control motors or actuators of axes to control the translations and rotations of the axes of movement of the laser 14, associated optics and / or the workpiece, so as to modify the relative position of the irradiated area D of the workpiece 10.
  • the computer 17 thus sends orders to the attention of a power servo composed of variators and electric actuators which generate the movements of the axes with the required precision and speed.
  • a method of manufacturing a part 10, for example of a synchronous / asynchronous transmission by micro-belt comprises in particular for example the following steps: description of the shapes to be machined, for example from the geometry defined on a 3D CAD plane, using computer 13, transfer of data to three-dimensional machining software taking into account in particular the interpolations of the left surfaces, and executed by data processing 13 or by data processing 17, definition of the steps (distance of displacement of the ablation zone between each pulse) according to the material and the depth of machining so that the conditions d ablation be optimized.
  • the transfer of data between the data processing units 13 and 17 can be carried out by a network, for example of the LAN or Internet type, or via a magnetic, optical or electronic data medium.
  • the machining program involves generation a succession of laser pulses along a continuous or discontinuous trajectory traversed by the irradiation zone, so as to cause the ablation of the irradiated zones.
  • the trajectory of the ablation zone, and therefore the shapes to be machined, is described from the geometry defined on a 3D CAD plane.
  • a time step is defined according to the material and the machining depth so that the ablation conditions are optimized.
  • the fluences used in micromachining conventionally vary from 0.2 to 50 J / cm 2 depending on the quality and speed of machining desired, preferably less than 10 ⁇ m per pulse, and typically at least from 0.5 to 0.25 ⁇ m / pulse depending on machined materials.
  • the ablation precision is significantly improved compared to conventional lasers of the pico second or excimer type.
  • the ultra-short pulse laser does not diffuse heat outside the irradiated volume, regardless of the material machined.
  • the athermal nature of the process is due to the brevity of the pulses combined with a very high intensity of the order of 10 1 ⁇ att / cm 2 at the focal plane of the beam.
  • the current trend directs tools towards pulses of 100 fs (1.0 x 10 "13 seconds) for an energy of the order of MJ / pulse.
  • the electrons undergo a heating by phenomenon of the type "reverse Bremsstrahlung".
  • the ejected electrons transmit their energy to the other electrons of the atomic network by shocks and cause an ionizing avalanche which causes an expulsion of matter.
  • the transfer of energy from the electrons to the atom network of the machined material takes place in a period of time approximately 1000 times slower than the duration of a pulse. The ablation of material thus takes place even before there is thermal diffusion outside the irradiated zone.
  • the energy gradient of the laser beam is preferably determined so that only the intensity of a central zone whose cross section is less than 50% of the total cross section of the beam is greater than the threshold ablation of the material.
  • the machining resolution is therefore less than the maximum beam diameter.
  • two perfectly synchronized and non-parallel femto-laser beams are used.
  • the intensity of each laser is below the ablation threshold of the material, which is machined only at the point of intersection of the two lasers. It is thus possible to machine hollow parts.
  • the intensity of the pulses, or their duration, can preferably be adapted by the computer control means 17, depending on the material to be machined and the requirements of precision and speed. It is also possible to modify these parameters during a machining cycle for the same part.
  • the relative movement between the laser beam and the workpiece is based on the spatial manipulation of the workpiece support.
  • the beam may, independently of the movements of the part to be ablated, at the exit of the optical head, be deflected by means of different optical systems mirrors, scanner, telescope ...
  • a displacement of the laser is also possible, but its inertia risks making its movements slower to stabilize than those of the part.
  • the beam impact point 16 of the laser can be moved along 3 axes simultaneously, or even 4 axes with a rotating plane 11 and a head pivoting optics.
  • the speed of movement of the part results from a compromise depending on the desired production rate, precision or resolution required, and the desired ace status. Many parts will therefore be machined by a variable speed displacement sequence.
  • Geometric representation of the workpieces; displacements of the irradiation zone The most common displacements which can be carried out by the irradiation zone of the part are: a) rapid positioning, which requires the moving parts to reach the programmed point by performing a linear trajectory, at the maximum speed allowed by the machine, b) linear interpolation, which makes it possible to reach the programmed point by traversing a linear trajectory at the speed of advance specified by the programmer, c) circular interpolation, which has for function of describing complete circles or arcs of a circle from certain characteristic geometric elements which define them, such as the coordinates of the center and those of the extreme points for example.
  • helical interpolation which combines a circular movement in a plane with a translational movement perpendicular to this plane
  • f) polynomial interpolation which allows the definition of trajectories from polynomials and which is used for smoothing spline curves.
  • the laser beam is moved along three axes simultaneously, or even more with a rotating plate and an optical head that can be pivoted. It is also possible to pivot the optical head on two axes (twist head) on a swivel plate. Finally, it is also possible to move the focal length parallel to the Z axis.
  • the machining method of the invention is particularly advantageous in that the permitted geometries are not limited to straight line segments (simple interpolation) or to circles. Furthermore, it is common, in particular in the conventional machining techniques used in watchmaking, to meet spoils or connections determined in a more or less vague or even implicit manner (geometry resulting from the intersection of two surfaces imposed by the shape of the tools). Obviously, these conventional methods are not suitable for the machining of complex shapes, notably left, and more generally for all operations where precise control of surface intersections (connecting leave) is required.
  • - Bézier curves these are parametric curves calling in particular on the following notions: Bernstein polynomials, De Casteljau evaluation algorithm, subdivision, rise in degree, derivation , geometric properties (affine invariance, convex envelope, decrease in variation), - B-spline functions: defined as the basis of P (k, t, r), multiplicities of nodes, class C raccord k fitting, local and minimal supports , B-spline curves in the form of parametric B-splines calling on the notions of control polygon, De Boor's evaluation algorithm, and in particular having geometric properties such as for example the affine invariance, local control, l convex envelope, multiple nodes at the edge, insertion of nodes, * geometric spline curves which respond to the concept of geometric continuity, geometric invariants, as well as the known forms Frenet frame, nu-splines, tau-splines.
  • the machining process by ablation of material using an ultra-short pulse laser differs from other machining processes in that it uses without distinction, depending on the precision or complexity of machining required, data algorithms based, without this list being exhaustive, on the following mathematical principles: - curvature, torsion, Frenet benchmark, Jordan's theorem, isoperimetric inequality, envelopes or focal curves, surfaces and hypersurfaces like the two fundamental forms of a surface and in particular curvatures, Gauss-Bonnet formula, intrinsic geometry, parallel transport, geodesics, Morse theory allowing to link the type of homotopy of a variety to the critical points of a generic function with certain good properties, including in the demonstration of the Gauss-Bonnet formula, also mast the Hessian, the critical points and the Morse lemma, functions defined on a surface such as height and distance functions, vector fields and Morse diagram, in particular the techniques used in reconstruction theories, elements of combinatorial and algebraic topology and in particular: triangulations, simplicial complexe
  • smoothing by spline smoothing splines, calculation algorithms, cross validation methods during the choice of the smoothing parameter.
  • the ablation process described in the present invention makes extensive use of algorithms using the technique of NURBS (Non Uniform Rational Basic Splines).
  • NURBS NURBS a set of techniques used for interpolation and approximation of curves and surfaces. These techniques are very present in formal computing systems and digital and taken up by the main geometric modeling software such as CAD or CAD / CAM tools.
  • nodes which correspond to the uniform case. They have a given degree which is for the classic forms that we machine 2 or 3 and rarely more. Their value is between O and 1 but not zero only over an interval.
  • the order of continuity at a node is equal to the degree minus the multiplicity of the node, for example
  • the machining by femto-laser ablation is suitable for the manufacture of parts and organs comprising reduced dimensions and having to be manufactured with a very fine resolution, in particular but not exclusively in the horological field.
  • This process is particularly suitable when at least one of the dimensions of the part, in at least one direction, is less than or equal to 2 millimeters.
  • the dimensions are counted "overall” and defined as the measure of the segment which connects the two most distant points of the same part in the same direction. More generally, this process is suitable for the manufacture of all micro- and nano-mechanical elements, the definition of which docking radii (intersection of two surfaces) impose precise dimensional conditions in millimeters.
  • the method of the invention is thus for example suitable for the manufacture of transmission members, in particular small members for horological applications for example.
  • the manufactured parts can comprise at least one curvilinear line, often irregular, formed in a perpendicular plane, at least of a radius greater than 10 "9 m and less than 2 mm.
  • An example can be given by the observation of the edges which mark the intersection of two surfaces produced by any kind of machining. At the macroscopic level (scale of a few millimeters, 10 "3 m) these edges can be assumed to be rectilinear or circular and formed by salient or obtuse angles. However, at the microscopic level these same lines are characterized, in the plane perpendicular to the edge line, by a geometry, more or less regular, comprising at least one radius, often called connecting fillet, of a few tenths of a millimeter at most .
  • the method of the invention is particularly suitable for the machining, in whole or in part, of the following watch parts: the body of a watch, and in particular the plate comprising recesses and holes serving as support frame, bridges of right or left shapes serving to hold in place or guide in rotation or in displacement of the various components of a micro mechanism , the material connections between solids, and in particular embedding, slide, simple or sliding pivot, translation and rotation, helical, plane support, simple ball joint or finger, linear annular, linear rectilinear, punctual ..., the energy accumulating organs , in particular springs, and barrel components, micro- or nano-transmission devices by right or left gears, pulleys, friction wheels, rigid or flexible constant velocity connections, hydrostatic and hydrodynamic elements, pivot or slide links, mechanical storage devices, in particular cams, components linked to the exhaust function and in particular those s for the distribution of energy, in particular detent systems, cylinder, English anchor, pin, meeting wheel, etc., in particular the following elements: escape wheel, escape tooth, t
  • the process of the invention is also suitable for the production of synchronous or asynchronous transmissions, in particular micro- and nano-transmissions, for example pulleys, smooth or toothed belts, chains, spur gears or left, constant velocity transmission elements, etc.
  • Such transmissions are used for example in watchmaking or in other miniaturized devices.
  • the movement / power transmissions by belts manufactured with the method of the invention are asynchronous and consist of at least one wheel, a flat or trapezoidal or ribbed belt, and preferably have d '' at least one tension and / or guide roller which is located inside or outside the micro-belt.
  • Asynchronism stems from the possibility of the belts sliding on the pulleys under the action of too much torque.
  • asynchronous micro-belts can be mounted on pivot or slide links which allows to increase the winding angle on the pulleys, or to ensure clutch / declutching functions.
  • Synchronous micro-transmissions by belts consist of at least two toothed wheels and a toothed belt of the same module, which has the effect of allowing the transmission of mechanical power between a motor element and a receiving element without sliding, thus correcting the problem posed by the functional or accidental slip of asynchronous transmissions, in particular in the event of overload.
  • the mechanical micro- or nano-chain as being a particular form of the toothed belt since it itself has notches coming to mesh on teeth.
  • Synchronous movement / power transmissions by toothed belts include in particular: a load-bearing geometry with controlled deformation (elastic range of the material), toothing with a curvilinear or polygonal profile, ortho-radial, straight, inclined or curvilinear toothing placed on the plane carrier.
  • the components of a movement / power transmission produced according to the present invention are made of material having sufficient mechanical characteristics to ensure the transmission function, for example plastic, polymer, metal, composite, sandwich structure, etc.
  • the transmission members of the process can comprise, for example pulleys and belts that are smooth or with teeth spaced apart at a pitch of less than two millimeters, for example micro-belts or wheels whose teeth are of the order of 0.5 ⁇ m, as well as belts whose depth or width of the teeth is less than two millimeters.
  • the thickness or width of the belt itself is preferably also less than two millimeters.
  • the limits of machining precision are linked to the beam offset.
  • Such members, in particular such belts and pulleys are for example intended to be used in a watch movement, other watch movement components, or other parts of micromechanics.
  • FIG. 2 illustrates a synchronous movement / power transmission 10 by belt manufactured entirely, or in part, with the method of the invention.
  • the assembly includes in particular a main pulley 23, a belt 20, a secondary pulley 22 and a tensioning roller 21.
  • the pulley 23 is flat and provided on the periphery with equidistant radial teeth comparable to a flat gear wheel.
  • the pulley 23 is provided with a flange (not shown) in order to guide the belt 20. It is possible to manufacture all of the components of this transmission, or only a part, with the femto-laser ablation process of the 'invention.
  • the belts 20 preferably have curvilinear tooth profiles 30 illustrated in FIG. 3.
  • This curvilinear profile allows efficient power transmission even when the radius of curvature of the belt varies significantly, for example when the belt works with pulleys of very different diameters.
  • a curved tooth profile can also be adopted for the pulleys.
  • the flanges are arranged on a single pulley 23, preferably on the one with the smallest diameter.
  • FIG. 4 illustrates two examples of asynchronous transmission 10 with secondary pulleys 22 inside / outside and where the asynchronous pulley 23 is flat and provided with flanges (not shown) on either side of said pulley 23 in order to guide the belt 20 on said transmission 10.
  • FIG. 5 illustrates an example of laminated belts 50 with several layers 51.
  • the invention also relates to the manufacture of millimetric or nanometric gears, a gear being considered here as the element used in the composition of a synchronous transmission ensuring the connection between two shafts and transmitting mechanical power from a driving shaft (motor ) to a driven shaft (receiver) while maintaining a constant ratio of angular velocities.
  • the elementary shape is called “external parallel” and is characterized, in addition to the absence of relative sliding of the two meshed wheels, by a ratio of angular speeds equal to the inverse ratio of the numbers of teeth or diameters and by a relative rotation of the wheels in the opposite direction.
  • This described shape, parallel, exterior, or interior, with straight teeth is also characterized by a pitch, a module and a transmission ratio.
  • the geometry of the teeth is described symmetrically in the meshing plane according to a curvilinear profile.
  • a more elaborate shape meets the criteria of helical toothing defined by a "regulated surface” generated by an infinity of tangents to the basic helix. It can also be defined as the surface generated by an involute moving along the helix.
  • the particular shape called “rack and pinion” is characterized in that the rack is a particular wheel whose primitive line is a straight line, it can from a geometric point of view be seen as a wheel of infinite diameter.
  • the method of the invention also allows the production of concurrent gears.
  • the teeth are straight or spirals.
  • This approach makes it possible to study the meshing in the concurrent gear, with a sufficient approximation by simply considering a parallel gear.
  • all the questions relating to the continuity of meshing, to the interferences, to the relative sliding are treated by considering the parallel gear according to its angular speeds, the numbers of teeth, the modulus and the angle of pressure.
  • the present invention also allows the manufacture of left gears, for example a wheel collaborating with a worm.
  • the worm gear meshes with its wheel combined with a given center distance.
  • the wheel is usually cut with a tool corresponding exactly to the worm with which it must mesh (envelope method).
  • envelope method envelope method
  • the use of an ultra-short pulse laser relieves this constraint of small dimensions which also remained impracticable by conventional methods.
  • This kind of gear particular attention will be paid to relative sliding as well as to the notion of reversibility.
  • the elaborate shape dealing with left helical gears in particular because of the punctual contact between teeth makes operation under low loads particularly effective for very small movements.
  • hypoid gear The complex shape called the hypoid gear will also be taken into account in particular in that the ablation process allows a size with very small dimensions, which is excluded by any other known method.
  • the present invention offers a relevant response to the definition, manufacture and control of interference for micro and nano transmission, this independently of the forms of toothing or the materials used.
  • pulleys, toothed wheels and tension rollers are produced by traditional methods such as turning and / or milling, electroerosion, ultrasonic machining, etc.
  • the traditional belts are produced in particular by molding, the molds being produced by electroerosion, ultrasound or even by the LIGA process (Lithography, Galvanmaschine, Abformung).
  • micro molds whose dimensions go beyond a millimeter. They impose the use of injectable plastics, and are ill-suited to the manufacture of parts using materials such as metals, composites or even heterogeneous multilayers for example. Temperature or dynamic viscosity constraints limit the use of such micromoulds, even for the production of parts made of synthetic materials.
  • the present invention therefore also relates to micromoulds used for the manufacture of transmissions or transmission elements injected or with structures of the sandwich or composite type.
  • the multi-layer laminated belt of FIG. 5 can thus advantageously, depending on the dimensions, be manufactured by molding or injection in a micro-mold machined with the method of the invention.
  • the molds machined by the process described in the invention use a certain number of functional sub-assemblies
  • the molding elements imprint (punch and die) - the functional elements: carcass, feed, release and demoulding mechanisms for injected parts, mold temperature regulation devices, auxiliary elements: fixing and handling device, centering systems, robots for placing prisoners and extracting molded parts , security and release control devices.
  • the laser machining process with ultra-short pulses is suitable for producing an cavity in the impression in which the negative three-dimensional representation of the object (all dimensional corrections included) is limited by the two parts that are the punch and the die.
  • the method of the invention can be used for machining a large number of different materials. It is particularly suitable for the machining of isotropic, polymorphic (for example lamella %) or hard composites, in particular plastics, metals, minerals or composites.
  • plastic we mean any material containing an essential ingredient "high polymer”, definition given in standards ISO 472 and ISO 472 (January 2002).
  • high polymer or more generally “polymer” means a product consisting of molecules characterized by a large number of repetitions of one or more species of atoms or groups of atoms (constitutional units), linked in sufficient quantity to lead to a set of properties which practically do not vary with the addition or elimination of a single or a small number of constitutional grounds (ISO 472). It is also a product made up of high molecular weight polymer molecules (ISO 472).
  • plastic and / or polymer materials can in particular be machined with the process of the invention:
  • Polyolefins for example polyethylene PE, polypropylene PP, polyisobutylene P-IB, polymethylpentene P-MP polyvinyl chlorides and their derivatives (PVC) according to ISO 1043-1 / 458-2 / 4575/1264 1060-2 / 2898-1, 6401, and in particular superchlorinated polyvinyl chloride PVCC, polyvinylidene chloride PVDC, copolymers, vinyl chloride and propylene VC / P, mixtures of vinyl chloride and chlorinated polyethylene PVC / E, mixtures of vinyl chloride and PVOABS styrene acrylo-butadiene, vinyl chloride and PVC / A acrylate graft copolymers, PVOAC vinyl chloride / vinyl acetate copolymers
  • polyoxy methylenes according to ISO 1043-1, fluorinated polymers according to ISO 1043-1, polytetrafluoroethylene PTFE, polychlorotrifluoroetylene PCTFE, polyvinylidene fluoride PVDF, polychlorotrifluoroetylene PCTFE, poly (ethylene-propylene) perfluorinated FEP, ethylene copolymer PTFE ETFE, cellulosics according to ISO 1043-1, cellulose nitrate or nitrocellulose CN, ethylcellulose EC and methyl cellulose HC, cellulose acetate CA and cellulose triacetate CTA
  • Polymers with an aromatic skeleton according to ISO 1043-1 in particular polycarbonate PC according to ISO 1043-1 / 1628-4 / 7391-1 / 7391-2, phenylene polysulphide PPS, polyphenylene ether PPE, poly-2-6 phenylene dimethyloxide, polyphenylene ether, polyaryletherketones PEEK, polyaryletherketoneoneetherketone
  • PAEK polyetheretherketone PEEK, polyetherketone, aromatic polysulfone PSU, polyethersulfone PESU, polyphenylsulfone PPSU, aromatic polyamide, polyarylamides
  • PAA polyphthalamides PPA, semi-aromatic polyamides
  • PA 6-3T polyamide PA-imides , polyterephthalate bisphenol A (polyacrylate), polyetherimide PET, cellulose propionate CP and cellulose acetopropionate CAP, cellulose acetobutyrate CAB, liquid crystal polymers (Vectra ⁇ , Sumika ⁇ and Zenite ⁇ ) LCP, thermoplastic elastomers according to ISO 1043-1, block copolymers of Hytrel ⁇ or Pebax ⁇ type, ionomers of Surlyn ⁇ type, ultrablend S ⁇ (BASF) PBT + ASA, cycoloy ⁇ (GB Plastics, Lastilac (Lati) PC + ABS, xé
  • thermoplastic or polyurethane-polyurea (thermosetting) or cellular polyurethanes, micro-cellular elastomers from the following compounds: PUR polyurethane, isocyanate + donor d , isocyanate, polyisocyanates and especially toluene diis TDI ocyanate, polyols (polyesters and polyethers), MDA and MOCA amines, SI silicones according to ISO 1043-1, silicon Si polysiloxane, PF phenoplasts and in particular PF2E1, PF2E1, PF2C1.
  • these materials can receive reinforcements, in particular using the following materials: aromatic polyamide (Kevlar ⁇ by Dupont de Nemours), glass in all its forms including silica-sodium forms, high modulus carbon, high resistance carbon, boron, steels, mica, wollastonite, calcium carbonate, talc, polytetrafluoroethylene (PTFE), for example Tef Ion ⁇ , etc.
  • aromatic polyamide Kevlar ⁇ by Dupont de Nemours
  • glass in all its forms including silica-sodium forms, high modulus carbon, high resistance carbon, boron, steels, mica, wollastonite, calcium carbonate, talc, polytetrafluoroethylene (PTFE), for example Tef Ion ⁇ , etc.
  • PTFE polytetrafluoroethylene
  • machined plastic products may or may not be covered with mineral, synthetic or metallic films.
  • the process of the invention also applies to the machining of most pure metals and their alloys. Mention may in particular be made of solid metal alloys, steels and cast irons of copper, aluminum, nickel or chromium, molybdenum, tungsten or manganese, gold, platinum or silver, titanium or cobalt, boron or niobium, tantalum, as well as pure metals.
  • composites can include additives, in particular catalysts or accelerators, and in the solid form can be in the form of a monolayer, laminate, sandwich, etc.
  • Ceramics consist of natural raw materials polycrista Mines or polyphasées or synthetic sintered alumina, silica, silico-aluminous or silico-magnesian compounds (cordierite, mullite, steatite) and more generally oxynitride, sialon, carbide ... preferred materials are short monocrystalline fibers dispersed inside an organic, metallic or ceramic matrix. As well as metallic carbide whiskeys, as well as organometallic precursors like SiC or Si3N4 ... These materials can be implemented by dry pressing, thermoplastic injection, strip casting, etc.
  • the main ceramics are given, alumina AI2O3, alumina / Silica AI2O3 80 / Si02 20, alumina / Silica AI2O3, 96 / SiO2 4 - Saff il®, alumina / Silica / Boron oxide AI2O3 70 / Si02 28 / B2O, 2, alumina / silica / Boron oxide AI2O3 62 / SiO2 24 / B20, 14, potassium aluminosilicate Muscovite Mica, Boron carbide B4C, silicon carbide SiC, silicon carbide - bonded by reaction SiC, silicon carbide - hot pressed SiC, carbide
  • the use of a laser with ultra-short pulses allows: in plastic materials a cutting without thermal damage of the cutting area in composite materials, direct cutting without delamination of the multilayer material, the machining of all metals without formation of sagging or burrs or even flaring at the incident surface.
  • Machined part for example transmission such as belt.
  • Work plan Clamping means (fixing means) 13 Computing to execute three-dimensional modeling software 14
  • Femto laser 15
  • Optical head 16
  • Laser beam 17
  • Computing to execute the machining program X.
  • Y Z Translation axes of the workpiece A, B, C Rotation axes of the workpiece 20
  • Main pulley 30 Curved toothing 50 Laminated belt 51 Reinforcement

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Micromachines (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Procédé de fabrication d’une pièce micro- ou nano-mécanique, par exemple une poulie ou une courroie horlogère, par une étape d’ablation laser à l’aide d’un femto-laser, c’est-à-dire d’un laser à impulsion d’une durée inférieure à 5x10-13 secondes et d’une puissance supérieure à 1012 watts sur la surface d’interaction faisceau-matière. La pièce à usiner est préalablement modélisée en trois dimensions. Le modèle tridimensionnel permet de générer le programme d’usinage.

Description

PROCEDE DE FABRICATION D'UNE PIECE MICRO- OU NANOMECANIQUE PAR UNE ETAPE D'ABLATION LASER A L'AIDE D'UN FEMTOLASER
Domaine technique
La présente invention concerne un procédé de fabrication de pièces micromécaniques et nanomécaniques.
La présente invention concerne aussi des pièces fabriquées selon ce procédé, et destinées à des applications dans l'horlogerie, ou hors horlogerie par exemple dans le domaine des instruments de mesure, de l'optique, de l'optoélectronique, ou dans d'autres domaines requérant une précision d'usinage importante, à l'exclusion de l'ablation de matériaux biologiques. La présente invention concerne aussi des procédés de fabrication d'organes de transmission, tels que courroies, poulies, engrenages, etc, pour des applications horlogères notamment.
Etat de la technique
La demande internationale WO04006026 décrit un mouvement de montre employant des poulies et des courroies en guise de transmission. Des mouvements de montre munis d'engrenages, ou d'autres types de transmission synchrones ou asynchrones, est largement connue. Il existe cependant un besoin constant pour miniaturiser les composants de tels mouvements.
La fabrication de ces différentes transmissions est soumise à des contraintes sévères en raison des dimensions et des matériaux que l'on souhaite utiliser. Les exigences en terme de géométrie et de précision sont sévères. Ainsi, la fabrication d'éléments de transmission mécaniques flexibles, par exemple des courroies, ou d'organes mécaniques, flexibles ou rigides, souvent de petite taille et réalisés à partir de matériaux non métalliques, polymériques, organiques ou composites, pose des difficultés importantes. Les dimensions d'organe sont souvent inférieures à 2 mm et les pas de denture inférieurs à 2 mm, voire même de l'ordre du centième de millimètre.
Les problèmes suivants se posent à l'homme du métier : difficulté d'usiner et de contrôler l'usinage, - comportement des matériaux (propriétés physico-chimiques) difficile à maîtriser, modélisation, puis reproduction de surfaces complexes, notamment gauches, inadaptée. difficulté d'utiliser des matériaux stratifiés ou composites, - définition des formes fonctionnelles, par exemple les dentures, difficile à introduire, absence de renforts de traction ou d'enveloppe à faible coefficient de frottement dans le cas des courroies.
Il existe donc un besoin dans l'art antérieur pour de nouveaux procédés de fabrication de micro- et nano-composants mécaniques qui permette un usinage sur une échelle dimensionnelle (résolution) variant du millimétrique (10~3 mètre) au nanométrique (10'9 mètre). Avantageusement, ce procédé devrait être adapté à tous les matériaux sans distinctions, ou en tous les cas à de grandes classes de matériaux. L'usinage devrait se baser sur une description géométrique des micro- ou nano-composants mécaniques à usiner, par exemple des éléments de transmission.
Il existe aussi un besoin pour de nouvelles pièces ou organes, par exemple pour de nouvelles poulies et courroies, avec des dimensions réduites et des tolérances de fabrication inégalées, qui ne peuvent pas être fabriquées avec les procédés de fabrication classiques et qui n'ont ainsi pas été imaginées auparavant. Des procédés d'usinage de pièces par laser de puissance sont connus dans l'art antérieur. Ainsi, l'utilisation de diodes lasers YAG ou C02 continues ou à impulsions « longues » (plus de 500 femto-secondes) est relativement classique dans l'usinage des matériaux tels que les métaux ou l'excimère pour les polymères. Ces procédés sont limités lorsque l'on travaille à des petites dimensions ou sur des matériaux ne supportant pas les chocs ou les contraintes thermiques. Il a en effet été constaté que la transmission de la chaleur dans le matériau au cours des impulsions, ou même en continu, limite la précision de la zone d'ablation. Par ailleurs, la zone d'ablation des lasers ordinaires correspond à la forme en cylindre du faisceau, ce qui limite les formes pouvant être usinées. La profondeur d'usinage dépend de la puissance du faisceau et des caractéristiques du matériau ; elle est difficile à maîtriser.
Bref résumé de l'invention
Le procédé de l'invention repose sur l'usinage d'organes de faible dimension par ablation de matière au moyen de lasers à impulsions ultrabrèves. En particulier, l'invention repose sur l'ablation au moyen d'impulsions laser d'une durée inférieure à cinq cent femto secondes inférieure à 5χ10"13 secondes et d'une puissance supérieure à 1012 watts sur la surface d'interaction faisceau-matière. De telles impulsions sont générées par des lasers particuliers appelés par la suite femto-lasers.
Des femto-lasers sont connus en soi et leur technologie est aujourd'hui bien maîtrisée, en sorte que ces appareils sont compacts, polyvalents et fiables. La diversité de ces lasers ne cessent d'augmenter : les faisceaux obtenus aujourd'hui couvrent tout le spectre électromagnétique, des rayons X aux rayons T (rayonnement térahertz, situé au-delà de l'infrarouge), et les puissances maximales atteignent plusieurs pétawatts (plusieurs milliards de mégawatts). Ces dispositifs s'appliquent notamment en physique, chimie, biologie, médecine, optique.
En raison de la durée extrêmement courte de leurs impulsions, ils rendent possible l'étude des phénomènes ultrarapides intervenant à l'échelle microscopique ou atomique. De plus, de très fortes puissances peuvent être produites pendant la faible durée de l'impulsion, créant des conditions extrêmes, souvent comparables à celles que l'on rencontre dans les réacteurs à fusion. L'utilisation du laser à impulsions ultra-brèves pour l'usinage de micro-organes mécaniques présente les avantages suivants : précision d'usinage, ablation de matière sous conditions pratiquement athermiques, il n'y a d'effet qu'au point focal "beam waist", le faisceau peut, notamment dans le cas de matériaux transparents, traverser des épaisseurs pour aller travailler en un point dans la masse sans altérer la surface ou la matière sur le chemin parcouru, le faisceau est manipulé à distance et sous tous les angles, ril n'y a pas de restriction au niveau des matériaux usinés, - on peut obtenir une résolution plus fine que la largeur du faisceau laser en réglant le laser de sorte que seule l'intensité de la partie centrale, là où est concentrée la plus grande puissance, soit supérieure au seuil d'ablation du matériau (maîtrise de la densité d'énergie dans le plan focal), - absence d'efforts d'usinage au niveau du plan d'ablation.
L'utilisation de femto-laser pour l'ablation de matériaux est connue en soi, et décrite dans les articles " Kautek et al, "Femtosecond puise laser ablation of métal lie, semiconducting, ceramic, and biological materials," SPIE vol. 2207, pp. 600-511, Apr. 1994" et "Liu, X. et al. "Laser Ablation and Micromachining with Ultrashort Laser Puises", Oct. 1997, IEEE Journal of Quantum Electronics, vol. 33, No. 10, pp. 1706-1716". Le brevet américain USRE37585 décrit un procédé de destruction à l'aide d'un faisceau laser puisé d'un matériau caractérisé par un rapport seuil de rupture de fluence (F )/largeur du faisceau laser (T) présentant une inflexion abrupte, rapide, et nette ou du moins une inflexion clairement détectable et nette de la pente pour une valeur prédéterminée de la largeur du faisceau laser.
Le procédé de la présente invention est notamment avantageux grâce à l'utilisation de durée d'impulsions particulièrement courtes et de puissances particulièrement élevée. Ces conditions extrêmes permettent l'usinage précis de matériaux très variés, avec le même équipement. La puissance ou la durée des impulsions peut cependant être adaptée au matériau, ou à la vitesse et à la précision requises pour l'usinage d'une portion de pièce.
L'invention repose ainsi notamment sur la constatation que l'emploi de puissances extrêmement élevées, nettement supérieures aux puissances employées dans les procédés d'usinage laser classiques, permet une sublimation quasi instantanée, explosive, de la zone irradiée par le faisceau laser. En dépit de la faible taille de cette zone, l'usinage est donc relativement rapide. Par ailleurs, en interrompant l'impulsion lumineuse après un temps très court, on limite l'ablation à la zone directement irradiée, sans toucher aux portions voisines. Les puissances importantes employées permettent ainsi d'obtenir une découpe extrêmement propre, avec des arêtes abruptes, des pièces à usiner.
L'invention repose aussi sur la constatation que le femto-laser est adapté à l'usinage de nouveaux types de pièces et de nouveaux matériaux, en particulier des pièces de petite dimension et haute précision, notamment des organes horlogers pour lesquels le femto-laser n'avait pas été suggéré auparavant. L'invention concerne également de tels organes fabriqués avec le femto-laser et présentant ainsi des dimensions, précisions et états de surface considérés auparavant comme quasiment inatteignables. Le procédé de l'invention permet ainsi d'usiner des pièces dont la dimension est inférieure ou égale à deux millimètres, ou de préférence inférieure à un millimètre, cette dimension étant comptée "hors tout" et définie comme la longueur du segment qui relie les deux points d'une pièce organe les plus distants suivant une même direction. Le procédé permet aussi d'usiner des pièces comportant des dents dont la profondeur est inférieure à deux millimètres, ou même inférieur à 0,5 millimètres.
La pièce est de préférence supportée par un micro-manipulateur assurant le positionnement et l'orientation de la surface à traiter par rapport à l'orientation du faisceau laser. La pièce à usiner peut être supportée par un système multiaxial piloté par un programme d'usinage robot micrométrique voire nanométrique à compensation ou rattrapage de jeu. Le déplacement de la pièce, petite et très légère, peut généralement être effectué beaucoup plus rapidement et avec une précision et une reproductibilité plus importante que le déplacement du laser ou de l'optique associée. Il est cependant aussi possible de déplacer simultanément, ou même uniquement, le laser ou de dévier le faisceau.
La zone d'ablation peut ainsi être modifiée par des translations de la pièce à usiner au moins dans un plan (axes X et Y), par des rotations dans ce plan selon l'axe C, et de préférence également par des translations selon un axe Z perpendiculaire au plan et/ou par des rotations selon deux axes perpendiculaires A et B. Comme indiqué, des déplacements du laser, ou de l'optique associée, peuvent aussi être imaginés. En outre, la distance focale peut aussi être contrôlée selon une direction parallèle à l'axe Z. Les déplacements sont contrôlés par un logiciel d'usinage qui reçoit des données correspondant à une description de la forme à usiner. La description est donnée sous une forme mathématique et le logiciel d'usinage détermine les trajectoires que doit parcourir le faisceau laser, en continu ou par pas, pour générer ces formes. L'invention repose sur une description géométrique mettant en œuvre des familles de courbes nouvelles, et tenant compte des possibilités des femto-lasers de produire une ablation uniquement au point focal, à une distance précise du laser. Les conditions d'ablation peuvent être optimisées en fonction de la matière et de la profondeur d'usinage, qui peut être modifiée par exemple en définissant les angles d'incidence du faisceau laser et le positionnement de l'organe à usiner par rapport au faisceau laser. Avantageusement, le procédé comporte en outre les étapes de description des formes de la pièce à usiner à partir de la géométrie définie à l'aide d'une représentation CAO 2D, 2D et demi ou de préférence 3D, transfert des données issues de la CAO sur un logiciel d'usinage, de préférence tridimensionnel, qui permet de préférence d'effectuer des interpolations de surfaces gauches, définition des pas en fonction de la matière et de la profondeur d'usinage de telle sorte que les conditions d'ablation soient optimisées, - introduction des données dans l'informatique de contrôle et/ou de pilotage des déplacements, positionnement, dans une direction, de la zone focale par éclairage à l'aide d'une tête optique, équipée ou non d'un dispositif de diffraction, - positionnement sur le plan de la pièce à usiner, serrage de la pièce à usiner à l'aide de moyens de serrage, réglage du laser à impulsions ultra-brèves, démarrage du programme d'usinage et usinage du composant par femto-laser à impulsions ultra-brèves. Selon une variante avantageuse, le procédé selon l'invention est réalisé sous atmosphère contrôlée afin d'éviter l'apparition de phénomènes non linéaires générés au niveau de l'interface lumière/matière, par exemple le claquage de l'air ou la modification des propriétés physico-chimiques du milieu.
L'invention concerne également les pièces fabriquées par le procédé. L'invention résulte également de la constatation que l'usinage par ablation femto-laser est adaptée à la fabrication de pièces très diverses, notamment de pièces et d'organes comportant des dimensions très réduites et devant être fabriquées avec une résolution très fine, qui ne pouvaient pas être fabriquées dans l'art antérieur, ou seulement avec des difficultés importantes. L'invention concerne ainsi notamment des organes de transmission, notamment des organes de petite dimension pour des applications horlogères par exemple, fabriqués selon le procédé. L'invention résulte également de la constatation que l'usinage femto-laser est parfaitement adapté à l'usinage de poulies et courroies de transmission en matériau synthétique ou composite, avec de très faibles dimensions adaptées à l'horlogerie, ou de moules destiné à l'injection ou au moulage ' de telles courroies et poulies. Avantageusement, au moins une des dimensions de la pièce usinée selon l'invention est inférieure à deux millimètres et avantageusement inférieure à 0,5 millimètres. Le procédé est également adapté à l'usinage de pièces qui présentent au moins une surface irrégulière ou gauche caractérisée, entre autres, par au moins un rayon situé dans le plan de courbure dont la valeur est supérieure à 10"9 m et inférieure à 10"3 m, de préférence inférieure à 10"5 m.
Brève description des dessins
Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles : La figure 1 représente, à titre d'exemple, un dispositif de fabrication de pièces selon le procédé de l'invention, adapté à l'usinage de transmissions synchrones/asynchrones, la figure 2 représente une transmission synchrone/asynchrone constituée ici par un ensemble poulies-courroies dit à brins parallèles, la figure 3 représente un profil de denture curviligne, la figure 4 représente deux exemples de transmission asynchrone avec poulies secondaires disposées à l'intérieur respectivement à l'extérieur de la transmission, - la figure 5 représente une vue en coupe d'une courroie stratifiée.
Dispositif pour la mise en oeuyre de l'invention
La figure 1 illustre un dispositif de fabrication d'une pièce 10, ici une transmission synchrone ou asynchrone pour transmettre des mouvements ou de la puissance, et comprenant : un plan de travail 11 disposant dans cet exemple de 6 axes (A, B, C, Z,
Y, Z) programmables et de moyens de serrage 12 (par exemple des systèmes tels que brides, adhésif, aimants, vacuum, etc). Les axes sont pilotés par une programme d'usinage robot micrométrique exécuté par l'informatique 17, avec des moyens de rattrapage ou compensation de jeu, une informatique 13 disposant notamment d'un logiciel de modélisation tridimensionnelle comme par exemple la CAO 3D, un laser à impulsions ultra-brèves 14 du type femto comprenant une tête optique 15 permettant l'émission d'un faisceau 16 concentré sur une zone focale (D), une informatique de contrôle/pilote des déplacements 17.
Procédé d'usinage L'informatique 13 peut être constituée par exemple par un ordinateur personnel ou une station de travail, et permet d'exécuter un logiciel permettant de générer et de stocker un modèle tridimensionnel de la pièce à usiner, puis de générer un programme d'usinage à partir de ce modèle tridimensionnel.
Le programme d'usinage comporte une suite d'instructions de déplacement des axes du dispositif, de manière à déplacer la zone focale du femto-laser selon une trajectoire tridimensionnelle permettant l'usinage de la pièce. La génération de la trajectoire est basée sur des interpolations, et la taille des pas d'indexation est fonction notamment de la vitesse, de la précision et de l'état de surface requis. Le programme d'usinage peut être déterminé une seule fois et appliqué à l'usinage de multiples pièces identiques.
L'informatique de contrôle/pilote 17 exécute le programme d'usinage et peut être constituée par exemple par une commande numérique ou un PC industriel permettant de commander des moteurs ou actuateurs d'axes pour commander les translations et rotations des axes de déplacement du laser 14, de l'optique associée et/ou de la pièce à usiner, de manière à modifier la position relative de la zone irradiée D de la pièce 10 à usiner. L'informatique 17 adresse ainsi des ordres à l'attention d'un asservissement de puissance composé de variateurs et d'actionneurs électriques qui engendrent les mouvements des axes avec la précision et la vitesse requise.
La combinaison des rotations et translations suivant les six axes (A, B, C, X, Y, Z) de l'espace permet l'usinage de pratiquement toute pièce 10, même complexe.
Un procédé de fabrication d'une pièce 10, par exemple d'une transmission synchrone/asynchrone par micro-courroie, comporte notamment par exemple les étapes suivantes : description des formes à usiner, par exemple à partir de la géométrie définie sur un plan de CAO 3D, à l'aide de l'informatique 13, transfert des données sur un logiciel d'usinage tridimensionnel tenant compte notamment des interpolations des surfaces gauches, et exécuté par l'informatique 13 ou par l'informatique 17, définition des pas (distance de déplacement de la zone d'ablation entre chaque impulsion) en fonction de la matière et de la profondeur d'usinage de tel sorte que les conditions d'ablation soient optimisées.
- introduction des données dans l'informatique 17 qui contrôle et pilote les déplacements. Le transfert de données entre les informatiques 13 et 17 peut être effectué par un réseau, par exemple de type LAN ou Internet, ou via un support de données magnétiques, optiques ou électronique.
- positionnement, dans la direction Z, de la zone focale D par éclairage à l'aide de l'optique 15, équipée ou non d'un dispositif de diffraction, positionnement et rotation dans le plan E (défini par les axes X et Y) de la pièce à usiner 10,
- fixation de la pièce à usiner 10 à l'aide des moyens de serrage 12, pour mettre en position et maintenir la pièce, réglage du laser à impulsions ultra-brèves femto, avec des impulsions de durée dépendant du matériau, mais de préférence inférieures à 500 fs (5χ10'13 secondes), et d'intensité dépendant du matériau, démarrage du programme d'usinage et usinage de la pièce 10 par femto-laser. Le programme d'usinage implique la génération d'une succession d'impulsions laser le long d'une trajectoire continue ou discontinue parcourue par la zone d'irradiation, de manière à provoquer l'ablation des zones irradiées. La trajectoire de la zone d'ablation, et donc les formes à usiner, est décrite à partir de la géométrie définie sur un plan de CAO 3D. Un pas de temps est défini en fonction de la matière et de la profondeur d'usinage de telle sorte que les conditions d'ablation soient optimisées.
Des expériences comparatives indiquent que le fait de passer de 100 à 10 fs améliore sensiblement la précision d'usinage. Les fluences utilisées en micro usinage varient classiquement de 0,2 à 50 J/cm2 selon la qualité et la vitesse d'usinage recherchées, de préférence moins de 10 μm par impulsion, et typiquement au moins de 0.5 à 0.25 μm/impulsion selon les matériaux usinés. La précision d'ablation est nettement améliorée par rapport à des lasers classiques du type pico seconde ou excimère. Le laser à impulsions ultra-brèves ne diffuse pas de chaleur en dehors du volume irradié et ce, quelle que soit la matière usinée. La nature athermique du procédé est due à la brièveté des impulsions conjuguées à une très forte intensité de l'ordre de 101 Λ att/cm2 au niveau du plan focal du faisceau. La tendance actuelle oriente les outils vers des impulsions de 100 fs (1.0 x 10"13 secondes) pour une énergie de l'ordre du MJ/impulsion.
Physiquement, les électrons subissent un échauffement par phénomène du type "Bremsstrahlung" inverse. Les électrons éjectés transmettent leur énergie aux autres électrons du réseau d'atomes par chocs et provoquent une avalanche ionisante qui provoque une expulsion de matière. Le transfert d'énergie des électrons au réseau d'atome de la matière usinée s'opère dans un laps de temps environ 1000 fois moins rapide que la durée d'une impulsion. L'ablation de matière a ainsi lieu avant même qu'il n'y ait diffusion thermique en dehors de la zone irradiée.
Le gradient d'énergie du faisceau laser est de préférence déterminé de sorte que seule l'intensité d'une zone centrale dont la section est inférieure à 50% de la section totale du faisceau soit supérieure au seuil d'ablation du matériau. La résolution d'usinage est ainsi inférieure au diamètre maximal du faisceau.
Dans une variante, deux faisceaux femto-lasers parfaitement synchronisés et non parallèles sont employés. L'intensité de chaque laser est inférieure au seuil d'ablation du matériau, qui est usiné uniquement au point d'intersection des deux lasers. Il est ainsi possible d'usiner des pièces creuses.
L'intensité des impulsions, ou leur durée, peut de préférence être adaptée par les moyens de contrôle informatique 17, en fonction du matériau à usiner et des exigences de précision et de vitesse. Il est aussi possible de modifier ces paramètres au cours d'un cycle d'usinage d'une même pièce.
D'une façon générale, le déplacement relatif entre le faisceau laser et la pièce à usiner repose sur la manipulation spatiale du support de pièce. Il est à noter dans le procédé d'invention que pour des cas particulier, le faisceau pourra, indépendamment des déplacements de la pièce à ablater, à la sortie de la tête optique, être dévié au moyen de différents systèmes optiques miroirs, scanner, télescope ... Un déplacement du laser est aussi envisageable, mais son inertie risque de rendre ses déplacements plus lents à stabiliser que ceux de la pièce.
La plupart des formes usinées sur les éléments entrant dans la réalisation des transmissions 10 ou de tout autre micro- ou nano- composant peuvent être usinées dans un plan. Dans le cas de l'usinage de surfaces plus complexes comme les dentures complexes (non représentées), on peut déplacer le point d'impact de faisceau 16 du laser suivant 3 axes simultanément, voire même 4 axes avec un plan rotatif 11 et une tête optique 15 pivotante.
La vitesse de déplacement de la pièce résulte d'un compromis en fonction de la cadence de production souhaitée, de la précision ou résolution requise, et de l'état de sur ace souhaité. De nombreuses pièces seront donc usinées par une suite de déplacement à vitesse variable.
Afin d'éviter l'apparition de phénomènes non linéaires résultants de l'interface lumière/matière on pourra usiner sous vide ou sous projection de gaz neutre (hélium, argon...). L'usinage sous atmosphère contrôlée permet d'éviter les phénomènes non linéaires produits au sein de l'interface lumière-matière, comme par exemple le claquage d'air au niveau du plan focal et l'apparition corollaire d'instabilité altérant la qualité d'usinage. Dans le cas d'applications spécifiques, afin d'améliorer le rendement énergétique de l'ablation, on pourra améliorer la précision optique par l'adoption d'un système à diffraction ou d'asservissement optique monté en complément du dispositif de focalisation.
Représentation géométrique des pièces à usiner ; déplacements de la zone d'irradiation Les déplacements les plus courants qui peuvent être effectués par la zone d'irradiation de la pièce sont : a) le positionnement rapide, qui impose aux organes mobiles d'atteindre le point programmé en effectuant une trajectoire linéaire, à la vitesse maximale permise par la machine, b) l'interpolation linéaire, qui permet d'atteindre le point programmé en parcourant une trajectoire linéaire à la vitesse d'avance spécifiée par le programmeur, c) l'interpolation circulaire, qui a pour fonction de décrire des cercles complets ou des arcs de cercle à partir de certains éléments géométriques caractéristiques qui les définissent, comme les coordonnées du centre et celles des points extrêmes par exemple. d) l'interpolation hélicoïdale, qui combine un mouvement circulaire dans un plan avec un mouvement de translation perpendiculaire à ce plan, e) l'interpolation conique dans le plan, où chaque segment parabolique est géométriquement défini par un groupe de 3 points, le dernier point d'un segment devant être le premier du segment suivant, f) l'interpolation polynomiale, qui permet la définition de trajectoires à partir de polynômes et qui est utilisée pour le lissage des courbes de type spline.
Dans le cas de la fabrication de micro-transmissions, par exemple de courroies, la plupart des formes peuvent être usinées dans un plan. Pour ce faire, on fait appel aux techniques d'usinage en 2D ou 2D1/2. Les opérations d'usinage suivantes peuvent être effectuées au moyen du procédé et du dispositif de l'invention : a) le contournage (mode dans lequel l'outil reste positionné à une profondeur constante pendant qu'il décrit, dans le plan, une série de droites et de courbes), b) le perçage et ses opérations connexes c) l'usinage de volumes négatifs.
Dans le cas de l'usinage de surface plus complexes comme les dentures ou les sur aces gauches, on déplace le faisceau du laser suivant trois axes simultanément, voire même plus avec un plateau rotatif et une tête optique pouvant être pivotante. Un pivotement de la tête optique sur deux axes (tête twist), sur plateau pivotant, est aussi possible. Enfin, il est aussi possible de déplacer la distance focale parallèlement à l'axe Z. Le procédé d'usinage de l'invention est notamment avantageux par le fait que les géométries permises ne se limitent pas à des segments de droites (interpolation simple) ou à des cercles. Par ailleurs, il est commun, notamment dans les techniques d'usinage classiques utilisées en horlogerie, de rencontrer des dépouilles ou des raccordements déterminés de façon plus ou moins vague voire même de façon implicite (géométrie résultante de l'intersection de deux surfaces imposées par la forme des outils). À l'évidence, ces méthodes conventionnelles ne conviennent pas pour l'usinage de formes complexes, notamment gauches, et plus largement pour toutes les opérations ou une maîtrise des intersections de surfaces (congés de raccordement) précise est requise.
Afin de permettre un usinage par ablation de matière, dans tous les cas possibles, nous pouvons définir les formes ou les surfaces à traiter au moyen de principes mathématiques faisant appel à la géométrie et à l'algorithmique (graphes, géométrie algorithmique, algorithmes probabi listes ...)
Classiquement la représentation géométrique des surfaces complexes générées par le procédé d'ablation de matière au moyen d'un laser à impulsions ultra-brèves fait appel à la définition de courbes spéciales dites courbes à pôles. La méthode de représentation la plus courante est celle qui utilise les courbes de Bézier. On rencontre aussi une évolution connue sous le nom de courbes B-spline.
Pour les formes plus complexes et notamment pour celles qui entrent dans la définition des profils curvilignes pour lesquels les coniques sont nécessaires (arcs de cercles, ellipses, paraboles, etc.) on utilise les courbes rationnelles où la représentation des coniques est engendrée par un quotient de polynômes et non pas par une équation paramétrique polynomiale intégrale. Les courbes rationnelles les plus communes, à savoir les courbes de Bézier rationnelles définies par des polynômes où une surface est décomposée en éléments simples appelés mailles eux-mêmes définis par des points appelés pôles, ou les courbes "splines" et NURBS (Non-Uniform Rational B-Spline) qui sont définies par des ensembles de points formant des carreaux de surface dans un réseau, peuvent être employées pour la définition des surfaces à usiner.
Ces familles de courbes peuvent être explicitées de façon plus précise : - courbes de Bézier : il s'agit de courbes paramétriques faisant appel notamment aux notions suivantes : polynômes de Bernstein, algorithme d'évaluation de De Casteljau, subdivision, élévation du degré, dérivation, propriétés géométriques (invariance affine, enveloppe convexe, diminution de la variation), - fonctions B-spline : définies comme base de P(k,t,r), multiplicités des noeuds, raccord de classe CΛk, supports locaux et minimaux, courbes B-spline sous la forme B-splines paramétriques faisant appel aux notions de polygone de contrôle, d'algorithme d'évaluation de De Boor, et possédant notamment les propriétés géométriques comme par exemple l'invariance affine, le contrôle local, l'enveloppe convexe, les noeuds multiples au bord, l'insertion de noeuds, * courbes spline géométriques qui répondent à la notion de continuité géométrique, d'invariantes géométriques, ainsi que les formes connues Frenet frame, nu-splines, tau-splines. Le procédé d'usinage par ablation de matière au moyen d'un laser à impulsion ultra-brèves se distingue des autres procédés d'usinage en ce qu'il utilise indistinctement, en fonction de la précision ou de la complexité d'usinage requise, des algorithmes de données reposant, sans que cette liste soit exhaustive, sur les principes mathématiques suivants : - courbure, torsion, repère de Frenet, théorème de Jordan, inégalité isopérimétrique, enveloppes ou courbes focales, surfaces et hypersurfaces comme les deux formes fondamentales d'une surface et notamment les courbures, formule de Gauss-Bonnet, géométrie intrinsèque, transport parallèle, géodésiques, théorie de Morse permettant de relier le type d'homotopie dune variété aux points critiques d'une fonction générique possédant certaines bonnes propriétés, y compris dans la démonstration de la formule de Gauss-Bonnet, mats aussi l'Hessienne, les points critiques et le lemme de Morse, fonctions définies sur une surface telles que fonctions hauteur et distance, champs de vecteurs et diagramme de Morse, notamment les techniques utilisées dans les théories de reconstruction, éléments de topologie combinatoire et algébrique et notamment : triangulations, complexes simpliciaux, caractéristique d'Euler- Poincaré, variétés, théorème de classification des surfaces, éléments de géométrie différentielle : géométrie des surfaces dans R3 : application de Gauss, courbures et directions principales, classification des points (elliptique, hyperbolique, parabolique, plan), surfaces focales, géodésiques,
- quadriques euclidiennes et quadriques osculatrices à surface lisse, squelettes sous l'aspect de courbes planes, évolute, squelettisation, ainsi que leurs critères géométriques (distance au squelette, différentiabilité des fonctions distances, ridges et ravins) et leurs propriétés topologiques (homotopies et rétractes),
- références au diagramme de Voronoï, triangulations de Delaunay en 2D, et approximation du squelette, reconstruction et maillage de surfaces tenant compte notamment de la triangulation de Delaunay restreinte, du théorème du nerf des homotopies et homéomorphismes mais également des critères d'échantillonnage des courbes et des surf aces, - algorithmes de raffinement de surfaces, géométrie algorithmique et notamment les intersections de segments, le calcul d'enveloppes convexes en 2 et nD, propriété de dualité, programmation linéaire, structures de données géométriques, complexes ou non faisant appel aux algorithmes déterministes et probabi listes, - usage d'algorithmes d'interpolation et de lissage ainsi que de validation croisée portant sur le choix des paramètres de lissage et notamment sans que cette liste ne soit exhaustive
• lissage par moindres carrés (prise en compte des poids et des contraintes), interpolation par splines polynomiales espaces de spline, minimisation d'une énergie, algorithme de calcul de la spline d'interpolation, bases de spline (S-spline),
lissage par spline : splines de lissage, algorithmes de calcul, méthodes de validation croisée cour le choix du paramètre de lissage.
Le procédé d'ablation décrit dans la présente invention fait largement appel aux algorithmes utilisant la technique des NURBS (Non Uniform Rational Basic Splines).
Nous définissons ces NURBS comme un ensemble de techniques servant à l'interpolation et à l'approximation des courbes et des surfaces. Ces techniques sont très présentes dans les systèmes de calcul formel et numérique et reprises par les principaux logiciels de modélisation géométrique comme par exemples les outils de CAO ou de CFAO.
Ces fonctions sont définies à partir de valeurs réelles appelées noeuds qui correspondent au cas uniforme. Elles possèdent un degré donné qui est pour les formes classiques que nous usinons 2 ou 3 et rarement plus. Leur valeur est comprise entre O et 1 mais non nulles seulement sur un intervalle.
La fonction décrite est d'autant plus lisse que son degré est élevé : - degré 1 = fonction continue, degré 2 = fonction dérivable (pas de points anguleux), degré 3 = fonction dérivable deux fois (pas de rupture de courbure),
Quand on modifie un noeud la fonction se déforme continûment.
Quand deux noeuds coïncident (le noeud devient double) on a une perte de continuité avec, soit une discontinuité, soit un point anguleux, soit une rupture de courbure.
L'ordre de continuité en un noeud est égal au degré moins la multiplicité du noeud, par exemple
B-spline de degré 2, noeud simple -> dérivabilité,
B-spline de degré 2, noeud double -> point anguleux,
B-spline de degré 2 noeud triple - discontinuité Dans le cas de courbes définies par des points de contrôle (par exemple profil de denture) on se donne des points du plan (dénommés points de contrôle) et un ensemble de valeurs (dénommé vecteur des noeuds). Nous pouvons citer des propriétés fondamentales 1) La courbe est entièrement contenue dans l'enveloppe convexe (car les coefficients de la combinaison des sont compris entre 0 et 1 avec une somme égale à 1).
2) Cette définition ne dépend pas de la dimension, on peut donc l'utiliser aussi bien dans le plan que dans l'espace à 3 dimensions, et même au-delà.
3) La courbe ne dépend que de la position relative des noeuds ; si on fait une translation ou une homothétie la courbe est inchangée ; les noeuds (0,0,1,2,4,4,4) donneront la même courbe que (-1,-1,1,3,7,7,7). 4) Lorsqu'une fonction de base vaut 1, les autres sont nulles et la courbe passe par le point de contrôle qui Lui est associé en particulier, quand la premier (respectivement le dernier) noeud est de multiplicité, la première (respectivement la dernière) fonction de base y vaut 1 et la courbe passe par le premier (respectivement le dernier) point on a une courbe dite à extrémités flottantes dont les courbes de Bézier sont un cas particulier.
Il est intéressant enfin de cerner le rôle des coordonnées homogènes formant des courbes rationnelles.
On notera enfin que la méthode mathématique décrite précédemment est la seule qui peut garantir les facteurs d'homothétie utiles au bon usage de la théorie des mécanismes appliquée aux micro- et nano-mécanismes (respect des conditions de glissement, de frottement, d'engrènement...). Pièces et composants pouvant être fabriqués avec le procédé de l'invention
L'usinage par ablation femto-laser est adapté à la fabrication de pièces et d'organes comportant des dimensions réduites et devant être fabriquées avec une résolution très fine, notamment mais pas exclusivement dans le domaine horloger. Ce procédé est particulièrement adapté lorsqu'au moins une des dimensions de la pièce, dans au moins une direction, est inférieure ou égale à 2 millimètres. Les dimensions sont comptées "hors tout" et définies comme la mesure du segment qui relie les deux points d'une même pièce les plus distants suivant une même direction. Plus généralement, ce procédé est adapté à la fabrication de tous les éléments micro- et nano-mécaniques dont la définition des rayons d'accostage (intersection de deux surfaces) impose des conditions dimensionnelles précises millimétriques.
Le procédé de l'invention est ainsi par exemple adapté à la fabrication d'organes de transmission, notamment des organes de petite dimension pour des applications horlogères par exemple.
Les pièces fabriquées peuvent comporter au moins une ligne curviligne, souvent irrégulière, formée dans un plan perpendiculaire, au moins d'un rayon supérieur à 10"9 m et inférieur à 2 mm. Un exemple peut être donné par l'observation des arêtes qui marquent l'intersection de deux surfaces produites par un usinage quelconque. Au niveau macroscopique (échelle de quelques millimètres, 10"3 m) ces arêtes peuvent être supposées rectilignes ou circulaires et formées par des angles saillants ou obtus. Cependant, au niveau microscopique ces mêmes lignes sont caractérisées, dans le plan perpendiculaire à la ligne d'arête, par une géométrie, plus ou moins régulière, comportant au moins un rayon, souvent nommé congé de raccordement, de quelques dixièmes de millimètres au plus.
Le procédé de l'invention est notamment adapté à l'usinage, en tout ou en partie, des organes horlogers suivants : le corps d'une montre, et notamment la platine comportant des noyures et des trous servant de bâti support, les ponts de formes droites ou gauches servant au maintien en place ou au guidage en rotation ou en déplacement des différents composants d'un micro mécanisme, les liaisons matérielles entre solides, et notamment encastrement, glissière, pivot simple ou glissant, translation et rotation, hélicoïdale, appui plan, rotule simple ou à doigt, linéaire annulaire, linéique rectiligne, ponctuelle..., les organes accumulateurs d'énergie, en particulier les ressorts, et les composants de barillets, les dispositifs de micro- ou nano-transmission par des engrenages droits ou gauches, des poulies, des roues de friction, des liaisons homocinétiques rigides ou souples, des éléments hydrostatiques et hydrodynamiques, les liaisons pivots ou glissières, les organes de mémorisation mécanique, notamment les cames, les composants liés à la fonction échappement et notamment ceux servant à la distribution d'énergie, notamment les systèmes à détente, à cylindre, à ancre anglais, à goupille, à roue de rencontre, etc, notamment les éléments suivants : roue d'échappement, dent d'échappement, serge, bras, moyeu, ancre, baguette, palette ou levée d'entrée ou de sortie, fourchette, corne d'entrée ou de sortie, dard, goupille de limitation, d'entrée ou de sortie, grand et petit plateau, balancier, les organes oscillants, dits de régulation, qu'ils soient de la famille des pendules ou des balanciers-spiraux, et, d'une façon plus générale, tous les systèmes vibrants suivant des modes amortis ou non, linéaires ou non, comportant ou non des dispositifs d'amortissement mécaniques ou viscomécaniques, y compris les éléments adjacents suivants : coq, balancier, virole, piton, porte piton, raquette, spiral plat, spiral relevant d'hélicoïdes complexe à déroulement gauche ou droit, les éléments liés aux systèmes de régulation tournants et en particulier sans que cela soit restrictif les tourbillons ou les carrousels, les masses oscillantes qu'elles soient de révolution, linéaires ou à pivotement, - les organes de sonnerie, les éléments d'habillage, tels que notamment glace, lunette, carrure, couronne, correcteurs, cadran, aiguilles, cercle d'emboîtage, fond, barrettes, bracelets et leurs composants, poussoirs, cellule d'affichage, couronnes, symboles d'affichage tels qu'indicateurs de quantième simples ou perpétuels, indicateur de mise à la date, indicateurs de phase de lune, appliques de cadran, les boîtes, qu'elles soient réalisées en une ou plusieurs pièces, comportant ou non des éléments tels que : remontoir, couronne, poussoirs ...
Fabrications de transmission avec des courroies
Comme indiqué, le procédé de l'invention est également adapté à la fabrication de transmissions synchrones ou asynchrones, en particulier de micro- et nano- transmissions, par exemple de poulies, de courroies lisses ou dentées, de chaînes, d'engrenages droits ou gauches, d'éléments de transmission homocinétiques, etc. De telles transmissions sont utilisées par exemple en horlogerie ou dans d'autres dispositifs miniaturisés. Nous allons donc décrire plus en détail quelques exemples de transmission usinables avec ce procédé. Dans une forme d'exécution, les transmissions de mouvements/puissance par courroies fabriquées avec le procédé de l'invention sont asynchrones et se composent d'au moins une roue, d'une courroie plate ou trapézoïdale ou striée, et disposent de préférence d'au moins un galet de tension et/ou de guidage qui se situe à l'intérieur ou à l'extérieur de la micro-courroie. L'asynchronisme provient de la possibilité de glissement des courroies sur les poulies sous l'action d'un couple trop important.
Par ailleurs, les transmissions par micro-courroies asynchrones peuvent être montées sur des liaisons pivots ou glissières ce qui permet d'augmenter l'angle d'enroulement sur les poulies, ou d'assurer des fonctions d'embrayage/débrayage.
Les micro-transmissions synchrones par courroies se composent d'au moins deux roues dentées et d'une courroie dentée de même module, ce qui a pour effet de permettre la transmission de la puissance mécanique entre un élément moteur et un élément récepteur sans glissement, corrigeant ainsi le problème posé par le glissement fonctionnel ou accidentel des transmissions asynchrones, notamment en cas de surcharge. Nous considérons ici la micro- ou nano-chaîne mécanique comme étant une forme particulière de la courroie crantée puisque elle-même comporte des encoches venant engrener sur des dents.
Les transmissions de mouvements/puissance synchrones par courroies crantées comportent notamment : une géométrie porteuse à déformation contrôlée (domaine d'élasticité du matériau), une denture à profil curviligne ou polygonal, une denture ortho radiale, droite, inclinée ou curviligne posée sur le plan porteur. Les composants d'une transmission de mouvements/puissance réalisés selon la présente invention sont en matériau possédant les caractéristiques mécaniques suffisantes pour assurer la fonction transmission, par exemple en plastique, polymère, métal, composite, structure sandwich, etc.
Les organes de transmission du procédé peuvent comprendre par exemple des poulies et des courroies lisses ou avec des dents espacées selon un pas inférieur à deux millimètres, par exemple des micro-courroies ou des roues dont la hauteur de denture est de l'ordre de 0.5μm, ainsi que des courroies dont la profondeur ou la largeur des dents sont inférieures à deux millimètres. L'épaisseur ou la largeur de la courroie elle-même est de préférence également inférieure à deux millimètres. Les limites de la précision d'usinage sont liées à l'offset du faisceau. De telles organes, notamment de telles courroies et de telles poulies, sont par exemple destinées à être utilisées dans un mouvement de montre, d'autres composants de mouvement de montre, ou d'autres pièces de micromécanique.
A titre d'exemple, la figure 2 illustre une transmission de mouvements/puissance synchrone 10 par courroie fabriquée entièrement, ou en partie, avec le procédé de l'invention. L'ensemble comporte notamment une poulie principale 23, une courroie 20, une poulie secondaire 22 et un galet tendeur 21. La poulie 23 est plate et munie sur se périphérie de dents radiales équidistantes assimilables à une roue d'engrenage plat. La poulie 23 est munie d'une flasque (non représentée) afin de guider la courroie 20. Il est possible de fabriquer l'ensemble des composants de cette transmission, ou seulement une partie, avec le procédé d'ablation femto-laser de l'invention.
Les courroies 20 présentent de préférence des profils de dentures curvilignes 30 illustrés sur la figure 3. Ce profil curviligne permet une transmission de puissance efficace même lorsque le rayon de courbure de la courroie varie de manière importante, par exemple lorsque la courroie collabore avec des poulies de diamètres très différents. Un profil de dent curviligne peut également être adopté pour les poulies.
Lors de la réalisation d'une transmission synchrone, les flasques (non représentées) sont disposées sur une seule poulie 23, de préférence sur celle ayant le plus petit diamètre.
La figure 4 illustre deux exemples de transmission asynchrone 10 avec poulies secondaires 22 intérieures/extérieures et où la poulie 23 asynchrone est plate et munie de flasques (non représentées) de part et d'autre de ladite poulie 23 afin de guider la courroie 20 sur ladite transmission 10.
La présente invention permet l'utilisation de matériaux complexes sans limitation de dimensionnement ainsi que la réalisation des structures de type sandwich ou composites, notamment pour les courroies. La figure 5 illustre un exemple de courroies stratifiées 50 à plusieurs couches 51.
Il est à noter que dans le cas de réalisations de poulies 23 ou d'organes micrométriques ou nanométriques de petites dimensions avec/sans profils curvilignes 30, aucune règle n'est imposée ; on parlera de profils personnalisés. Par ailleurs, pour chaque type de profil de denture on trouve des dentures à flancs droits ou en développantes (non représentés).
Fabrication d'engrenages
L'invention concerne aussi la fabrication d'engrenages millimétriques ou nanométriques, un engrenage étant considéré ici comme l'élément entrant dans la composition d'une transmission synchrone assurant la liaison entre deux arbres et transmettant une puissance mécanique d'un arbre menant (moteur) à un arbre mené (récepteur) en conservant un rapport constant des vitesses angulaires.
Différentes formes d'engrenage peuvent être considérées : La forme élémentaire est dite "parallèle extérieure" et se caractérise, outre l'absence de glissement relatif des deux roues engrenées, par un rapport des vitesses angulaires égal au rapport inverse des nombres de dents ou des diamètres et par une rotation relative des roues dans le sens contraire. Une variante existe sous une forme dite " parallèle intérieure" où les deux roues tournent dans le même sens. Cette forme décrite, parallèle, extérieure, ou intérieure, à denture droite, est caractérisée également par un pas, un module et un rapport de transmission. La géométrie de la denture est décrite de façon symétrique dans le plan d'engrènement suivant un profil curviligne.
Une forme plus élaborée répond aux critères de denture hélicoïdale définie par une "surface réglée"engendrée par une infinité de tangentes à l'hélice de base. Elle peut aussi se définir comme la surface engendrée par une développante se déplaçant le long de l'hélice. La forme particulière dénommée "pignon-crémaillère" se caractérise en ce sens que la crémaillère est une roue particulière dont la ligne primitive est une droite, elle peut d'un point de vue géométrique être vue comme étant une roue de diamètre infini. -
La transposition de la denture hélicoïdale à la cinématique pignon crémaillère est possible. Il convient de veiller à ce que lorsque les deux cylindres primitifs de l'engrenage tournent sans glissement, les deux hélices primitives conjuguées restent constamment tangentes ce qui implique deux conditions : les deux hélices doivent être de sens opposés, à savoir qu'une roue à gauche ne peut former un engrenage parallèle qu'avec un pignon à droite ; il faut respecter les conditions géométriques liées à l'engrenage (conditions d'engrènement).
Le procédé de l'invention permet également la fabrication d'engrenages concourants. En premier lieu il faut considérer la forme droite dans laquelle les surfaces primitives sont deux cônes ayant même sommet qui roulent sans glisser l'un sur l'autre. Les dentures sont droites ou spirales. Dans le cas particulier des engrenages concourants, il est nécessaire de veiller aux problèmes de la continuité d'engrènement et des interférences par la méthode dite de l'engrenage complémentaire. Cette approche permet d'étudier l'engrènement dans l'engrenage concourant, avec une approximation suffisante en considérant simplement un engrenage parallèle. Ainsi toutes les questions relatives à la continuité d'engrènement, aux interférences, au glissement relatif, sont traitées en considérant l'engrenage parallèle suivant ses vitesses angulaires, les nombres de dents, le module et l'angle de pression. La présente invention permet également la fabrication des engrenages gauches, par exemple une roue collaborant avec une vis sans fin. La vis sans fin engrène avec sa roue conjuguée à un entraxe donné. Dans l'art antérieur, la roue est habituellement taillée avec un outil correspondant exactement à la vis sans fin avec laquelle elle doit engrener (méthode des enveloppes). L'usage d'un laser à impulsions ultra-brèves délie de cette contrainte aux petites dimensions qui demeuraient par ailleurs irréalisables par les procédés classiques. Dans ce genre d'engrenage une attention particulière sera portée au glissement relatif ainsi que sur la notion de réversibilité. ' La forme élaborée traitant des engrenages gauches hélicoïdaux notamment à cause du contact ponctuel entre denture rend le fonctionnement sous faibles charges particulièrement opérant pour les très petits mouvements.
La forme complexe dite de l'engrenage hypoïde sera également prise en compte notamment dans ce que le procédé d'ablation autorise une taille aux très petites dimensions, qui est exclu par tout autre méthode connue.
Indépendamment de la forme et de la taille des engrenages, il est essentiel d'observer lors de la conception les conditions d'interférence et notamment celle liées aux formes asymétriques et aux conditions d'usinage. Les méthodes descriptives mentionnées pour la génération des courbes et ces surfaces gauches assure une maîtrise des interférences géométriques. Par ailleurs la technique d'ablation laser au moyen d'impulsions ultra-brèves permet de contrôler les interférences d'usinages. Les deux aspects étant conjugués, la présente invention offre une réponse pertinente à la définition, la fabrication et à la maîtrise des interférences pour les micro et nano transmission ceci indépendamment des formes de denture ou des matériaux utilisés.
Fabrication de micro-moules Dans l'art antérieur, les poulies, roues dentées et galets de tension sont réalisés par des procédés traditionnels tels que le tournage et/ou le fraisage, l'électroérosion, l'usinage par ultrasons, etc . Les courroies traditionnelles sont réalisées notamment par moulage, les moules étant réalisés par électroérosion, ultrasons ou encore par le procédé LIGA (Lithographie, Galvanisierung, Abformung).
Ces procédés sont adaptés à la réalisation de micro moules dont les dimensions vont au-delà du millimètre. Elles imposent l'utilisation de matières plastiques injectables, et sont mal appropriées à la fabrication de pièces employant des matières telles que les métaux, les composites ou encore les multicouches hétérogènes par exemple. Des contraintes de température ou de viscosité dynamique limitent l'emploi de tels micromoules, même pour la fabrication de pièces en matériaux synthétiques.
Même lorsqu'elles peuvent être mises en œuvre, les techniques de l'art antérieur nécessitent la fabrication de moules avec une précision suffisante. La présente invention a donc également pour objet les micromoules utilisés pour la fabrication de transmissions ou d'éléments de transmission injectés ou avec des structures de type sandwich ou composites. Par exemple, la courroie stratifiée à plusieurs couches de la figure 5 peut ainsi avantageusement, selon les dimensions, être fabriquée par moulage ou injection dans un micro-moule usiné avec le procédé de l'invention. D'une façon générale, les moules usinés par le procédé décrit dans l'invention, quel que soit leur type, font appel à un certain nombre de sous-ensembles fonctionnels les éléments moulants : empreinte (poinçon et matrice) - les éléments fonctionnels : carcasse, alimentation, mécanismes de libération et de démoulage des pièces injectées, dispositifs de régulation en température du moule, les éléments auxiliaires : fixation et dispositif de manipulation, systèmes de centrage, robots de mise en place des prisonniers et d'extraction des pièces moulées, dispositifs de sécurité et de contrôle du démoulage.
Le procédé d'usinage par laser à impulsions ultra-brèves est adapté à la réalisation d'une cavité de l'empreinte dans laquelle la représentation négative tridimensionnelle de l'objet (toutes corrections de cotes comprises) est limitée par les deux parties que sont le poinçon et la matrice.
Ce procédé permet réalisation de toute micro- ou nano-pièce moulée dès lors que l'art du moulage est conservé et que les viscosités des matériaux utilisés le permettent (très petites dimensions). Les états de surfaces obtenus sont excellents, ce qui est important notamment pour les pièces frottantes.
Matériaux usinables
Selon la pièce à usiner, le procédé de l'invention peut être employé pour l'usinage d'un grand nombre de matériaux différents. Il est particulièrement adapté à l'usinage de matériaux isotropes, polymorphique (par exemple lamelle...) ou composites durs, notamment de matières plastiques, métalliques, minérales ou composites. Par matière plastique nous entendons toute matière contenant comme ingrédient essentiel un "haut polymère", définition donnée dans les normes ISO 472 et ISO 472 (janvier 2002). Par "haut polymère" ou plus généralement "polymère" on entend un produit constitué de molécules caractérisées par un grand nombre de répétitions d'une ou de plusieurs espèces d'atomes ou de groupas d'atomes (motifs constitutionnels), reliés en quantité suffisante pour conduire a un ensemble de propriétés qui ne varient pratiquement pas avec l'addition ou l'élimination d'un seul ou d'un petit nombre de motifs constitutionnels (ISO 472). C'est aussi un produit constitué de molécules de polymère de masse moléculaire élevée (ISO 472).
Les matériaux plastiques et/ou polymères suivants peuvent notamment être usinés avec le procédé de l'invention :
- Les polyoléfines, par exemple polyéthylène PE, polypropylène PP, polyisobutylène P-IB, polyméthylpentène P-MP les polychlorures de vinyle et leurs dérivés (PVC) selon les normes ISO 1043-1 / 458-2 / 4575 / 1264 1060- 2 / 2898-1, 6401, et notamment les polychlorures de vinyle surchloré PVCC, les polychlorures de vinylidène PVDC, les copolymères, chlorure de vinyle et propylène VC/P, les mélanges chlorure de vinyle et polyéthylène chloré PVC/E, les mélanges chlorure de vinyle et acrylo-butadiène styrène PVOABS, les copolymères greffé chlorure de vinyle et acrylate PVC /A, les copolymères chlorure de vinyle/acétate de vinyle PVOAC
Les polyacétates de vinyle et leurs dérivés PVAC et notamment le polyacétate de vinyle PVAC, le polyalcool vinylique PVAL, le polybutyral de vinyle PVB, le polyformal de vinyle PVFM
Les styréniques suivant les normes ISO 1043-1 / 2580-1 / 2897-1 / 4894-1 / 6402-1 , notamment le polystyrène choc SB, le polystyrène acrylonitrile SAN, l'acrylobutadiène styrène ABS, l'acrylonitrile styrène acrylate ASA, le polystyrène-anhydrigue maléique modifié élastomère mSMA, les mélanges à base de PS et notamment PC ABS, ABS/PA, PS/Polyphénylène éther PPE, PS/PP et PS/PE, les polyacryliques (PMMA) suivant L'ISO 7823-1 / 7823-2 / 8257-1, le polyacrylonitrile PAN, le copolymère A/MMA acrylonitrile/méthacrylate de méthyle, le copolymère acrylonitrile/butadiène, le copolymère styrène/acrylonitrile SAN, le copolymère acrylonitrile/butadiène/styrène ABS, le copolymère méthacrylate de méthyle / acrylonitrile.butadiène / styrène MBS, etc
Les mélanges ou alliages PMMA/AES
Les polyesters saturés - Polyalkylène Téréphtalates PET et PBT suivant l'ISO 1043-1 / 1628-5 / 7792-1, Les polyamides (PA) suivant l'ISO 1043-1 / 1874-1 / 599 / 3451-4 /
7628-1 / 7628-2 / 7375-1 / 7375-2, notamment le PA 6.6, PA 6.10, PA 6.12, PA 4.6, PA 6, PA 11, PA 12, etc les polyoxy méthylènes (POM) suivant l'ISO 1043-1, les polymères fluorés suivant l'ISO 1043-1, le polytétrafluoroéthylène PTFE, le polychlorotrifluoroétylène PCTFE, le polyfluorure de vinylidènes PVDF, le polychlorotrifluoroétylène PCTFE, le poly-(éthylène-propylène) perfluoré FEP, le copolymère éthylène PTFE ETFE, les cellulosiques suivant l'ISO 1043-1, le nitrate de cellulose ou nitrocellulose CN, l'ethylcellulose EC et méthyle cellulose HC, l'acétate de cellulose CA et triacétate de cellulose CTA
Les polymères à squelette aromatique suivant l'ISO 1043-1, notamment le polycarbonate PC suivant l'ISO 1043-1 / 1628-4 / 7391-1 / 7391-2, le polysulfure de phénylène PPS, le poly-phénylènes éther PPE, le poly-2-6 diméthyloxyde de phénylène, le polyphénylène éther, le polyaryléthercétones PEEK, le polyaryléthercétoneéthercétone
PAEK, le polyétheréthercétone PEEK, le polyéthercetone, le polysulfone aromatique PSU, le polyéthersulfone PESU, le polyphénylsulfone PPSU, le polyamide aromatique, les polyarylamides PAA, les polyphtalamides PPA, les polyamides semi-aromatiques amorphes PA 6-3T, les polyamide-imides PAI, le polytéréphtalate de bisphénol A (polyacrylate), le polyéthérimide PET, le propionate de cellulose CP et l'acétopropionate de cellulose CAP, l'acétobutyrate de cellulose CAB, les polymères à cristaux liquides (Vectra©, Sumika© et Zenite©) LCP, les élastomères thermoplastiques suivant l'ISO 1043-1, les copolymères séquencées du type Hytrel© ou Pebax©, les ionomères du type Surlyn©, l'ultrablend S© (BASF) PBT + ASA, le cycoloy© (GB Plastics, Lastilac (Lati) PC + ABS, le xénoy© (GE plastics) PC + PET, l'orgalloy© RS6000 (ATO) PA6/PP, le stapron© N (DSM) ABS/PA 6, le lastiflex© AR-VO (Lati), les PVC + terpolymères, etc - Les polyuréthanes suivant ISO 1043-1 notamment pour obtenir des élastomères coulés, ou thermoplastiques ou polyuréthane- polyurée (thermodurcissable) ou polyuréthanes cellulaires, des élastomères micro-cellulaires à partir des composés suivants : polyuréthane PUR, isocyanate + donneur d'hydrogène, isocyanate, polyisocyanates et notamment le toluène diisocyanate TDI, polyols (polyesters et polyéthers), aminés MDA et MOCA, silicones SI suivant l'ISO 1043-1, polysiloxane silicone Si, phénoplastes PF et notamment PF2E1, PF2E1, PF2C1. PF2C3, PF2A1-2A2, PF1A-1A2, PF2D1, PF2D4, aminoplastes (MF, UP) suivant ISO 4614 et 1043-1, mélamine formaldéhyde MF, urée formaldéhyde UF, les polyesters insaturés thermodurcissables
D'une façon générale on notera que, quand cela est possible et souhaité, ces matériaux peuvent recevoir des renforts notamment à l'aide des matériaux suivants : polyamide aromatique (Kevlar© de Dupont de Nemours), verre sous toutes ses formes y compris les formes silico-sodiques, carbone haut module, carbone haute résistance, bore, aciers, mica, wollastonite, carbonate de calcium, talc, polytétrafluoroéthylène (PTFE), par exemple Téf Ion©, etc.
Par ailleurs les produits plastiques usinés peuvent ou non être recouverts de films minéraux, synthétiques, ou métalliques. Le procédé de l'invention s'applique aussi à l'usinage de la plupart des métaux purs et de leurs alliages. On peut citer notamment les alliages métalliques solides, les aciers et les fontes de cuivre, d'aluminium, de nickel ou de chrome, de molybdène, de tungstène ou de manganèse, d'or, de platine ou d'argent, de titane ou de cobalt, de bore ou de niobium, de tantale, ainsi que les métaux purs.
De nombreux minéraux, y compris les quartz, peuvent aussi être usinés à l'aide de ce procédé. Enfin, il est également adapté à l'usinage de matériaux composites, c'est-à-dire de matériaux à matrice / liant organique ou métallique et comprenant notamment, sans que cela soit exhaustif, des phénoliques, des polyesters, des époxydes, des polyimides, des renforcés de fibres / renforts additifs (principalement celluloses, verre E, C, S, R..., bore, ..), des trichites (whiskers) AIO3, Si02, ZrO2, MgO, TiO2, BeO, SiC, de l'aramide bas module, de l'aramide haut module, du carbone haute ténacité, du carbone haut module, du bore , de l'acier, de l'aluminium, etc, ainsi que des matériaux chargés de matières minérales, en particulier de craie, silice, kaolin, oxyde de titane, bille de verre, etc
Ces composites peuvent comporter des additifs, notamment des catalyseurs ou accélérateurs, et sous la forme solide peuvent être sous forme de monocouche, de stratifié, de sandwich, etc
Nous citons plus particulièrement les composites suivants sans que cela ne soit exhaustif : Aluminium / Cuivre - composite à matrice métallique Al 77,9 / SiC 17,8 / Cu 3, 3 / Mg1,2 / Mn 0,4 ; Aluminium / Lithium - composite ~ matrice métallique Al 81 / SiC 15 / Li 2 / Cu 1 ,2 / Mg 0,8 ; Carbone / ester de vinyle - fibre de carbone -matrice d'ester de vinyle ; Carbone / polyaramide - fibre de carbone - fibre de polyaramide ; Composite de carbone / carbone - fibre de carbone - matrice de carbone ; Composite de carbone / époxy - fibre de carbone - matrice d'époxy ; Composite de Carbone / polyétheréthercétone - fibre de carbone - matrice de PEEK ; Composite de polyaramide / ester de vinyle - fibre de polyaramide - matrice d'ester de vinyle ; Composite de polyéthylène / polyéthylène - fibre de polyéthylène matrice de polyéthylène ; E-glass / époxy - verre de borosilicate / époxy; polyaramide / sulfure de polyphénylène - fibre de polyaramide - matrice de PPS.
Enfin de nombreuses céramiques peuvent être usinées avec le procédé de l'invention. Les céramiques sont constituées de matières premières naturelles polycrista Mines ou polyphasées ou encore synthétiques de type alumine frittée, silice, composés silico-alumineux ou silico- magnésiens (cordiérite, mullite, stéatite) et plus largement les oxynitrure, sialon, carbure... Les matériaux préférés sont les fibres courtes monocristallines dispersées à l'intérieur d'une matrice organique, métallique ou céramique. Ainsi que les whiskers de carbure métallique, ainsi que les précurseurs organométalliques comme SiC ou Si3N4 ... Ces matériaux peuvent être mis en œuvre par pressage à sec, injection thermoplastique, coulage en bande, etc
On donne comme principales céramiques, sans que cela soit exhaustif, l'alumine AI2O3, l'alumine/Silice AI2O3 80 / Si02 20, l'alumine/Silice AI2O3, 96 / SiO2 4 - Saff il®, l'alumine/Silice/Oxyde de Bore AI2O3 70 / Si02 28 / B2O, 2, l'alumine/silice/Oxyde de Bore AI2O3 62/ SiO2 24/B20, 14, l'àluminosilicate de Potassium Muscovite Mica, le carbure de Bore B4C, le carbure de silicium SiC, le carbure de silicium - lié par réaction SiC, le carbure de silicium - pressé à chaud SiC, le carbure de
Tungstène/Cobalt WC 94/Co 6, la céramique de verre usinable Si02 46 / AI203 16 / MgO 17 / K2O 10 / B2O3 7, la céramique perméable SiO2 50 / ZrSiC, 40 / AI203 10, le diborure de Titane TiB2, le dioxyde de Titane TiO2 99,6%, l'oxyde de Magnésium MgO, le nitrure d'Aluminium AIN, le nitrure d'Aluminium - usinable Shapal-M®, le nitrure de Bore BN, le nitrure de silicium Si3N4, le nitrure de silicium - lié par réaction Si3N4, le nitrure de silicium - pressé à chaud Si3N4, le nitrure de silicium / Nitrure d'Aluminium / Alumine , le sialon, l'oxure de Zinc /Alumine ZnO 98 / AI2O3 2, l'oxyde d'Yttrium Y203, l'oxyde de Béryllium BeO 99,5 le quartz - Fondu Si02, le rubis AI2O3 / Cr2O3 / 5i203, le saphir AI2O3 99,9, le silicate d'Alumine SiO2, 53 / AI2O3 47, la silice SiO2 96, le erre - alumine-silicate Si02 57 / AI203 36 / CaO / MgO / BaO, la zircone non stabilisée Zr02 99, la zircone - stabilisée à l'Yttria ZrO2 / Y2O3, la zircone stabilisée à la Magnésie ZrO2 / MgO, etc Grâce à l'échauffement très localisé de la matière, l'utilisation d'un laser à impulsions ultra-brèves permet : dans les matériaux plastiques une découpe sans endommagement thermique de la zone de taille dans les matériaux composites, la taille directe sans délamination du matériau multicouches, l'usinage de tous les métaux sans formation de coulure ou bavures ni même d'évasement au niveau de la surface incidente.
Liste des éléments sur les figures
10 Pièce usinée, par exemple transmission telle que courroie. 11 Plan de travail 12 Moyens de serrage (moyens de fixation) 13 Informatique pour exécuter un logiciel de modélisation tridimensionnel 14 Laser femto 15 Tête optique 16 Faisceau laser 17 Informatique pour exécuter le programme d'usinage X. Y, Z Axes de translation de la pièce à usiner A, B, C Axes de rotation de la pièce à usiner 20 Courroie 21 Galet tendeur 22 Poulie secondaire 23 Poulie principale 30 Denture curviligne 50 Courroie stratifiée 51 Renfort

Claims

Revendications
1. Procédé de fabrication d'une pièce micro- ou nano- mécanique, caractérisé par une étape d'ablation laser à l'aide d'un laser à impulsion d'une durée inférieure à 5x10"13 secondes et d'une puissance supérieure à 1012 watts sur la surface d'interaction faisceau-matière.
2. Le procédé de la revendication 1, mis en œuvre pour la fabrication de pièces destinées à l'horlogerie.
3. Le procédé de l'une des revendications 1 ou 2, mis en œuvre pour la fabrication de poulies et/ou de courroies.
4. Le procédé de l'une des revendications 1 à 3, dans lequel au moins une dimension de la pièce est inférieure ou égale à deux millimètres, ou de préférence inférieure à 0,5 millimètre, cette dimension étant comptée "hors tout" et définie comme la longueur du segment qui relie les deux points d'une pièce les plus distants suivant une même direction.
5. Le procédé de l'une des revendications 1 à 4, dans lequel ladite pièce comporte des dents dont la profondeur est inférieure à deux millimètres.
6. Le procédé de l'une des revendications 1 à 5, dans lequel ladite pièce est supportée par un micro-manipulateur assurant le positionnement et l'orientation de la surface à traiter par rapport à l'orientation du faisceau laser.
7. Le procédé de l'une des revendications 1 à 6, comportant les étapes suivantes : description des formes à usiner, transfert des données correspondant à ladite description sur un logiciel d'usinage, ledit logiciel d'usinage tenant de préférence compte notamment des interpolations des surfaces gauches, définition des angles d'incidence du faisceau et du positionnement de la pièce à usiner par rapport au faisceau laser, en fonction de la matière et de la profondeur d'usinage de telle sorte que les conditions d'ablation soient optimisées, introduction des données dans l'informatique de contrôle/pilote des déplacements (17), réglage du laser à impulsions ultra-brèves d'une durée inférieure à 5x10"13 secondes et d'une puissance supérieure à 1012 watts sur la surface d'interaction faisceau-matière, démarrage du programme d'usinage et usinage de la pièce (10) par laser à impulsions.
8. Le procédé de l'une des revendications 1 à 7, dans lequel le gradient d'énergie du faisceau laser est déterminé de sorte que seule l'intensité d'une zone centrale dont la section est inférieure à 50% de la section totale du faisceau soit supérieure au seuil d'ablation du matériau.
9. Le procédé de l'une des revendications 1 à 8, dans lequel l'ablation est effectuée uniquement dans le plan focal du faisceau laser (16), le procédé comprenant une étape de déplacement dudit plan focal par rapport à ladite pièce dans une direction perpendiculaire audit faisceau laser.
10. Le procédé de l'une des revendications 1 à 9, dans lequel ladite pièce à usiner (10) est supportée par un système multiaxial piloté par un programme d'usinage, par exemple un programme d'usinage robot micrométrique à rattrapage ou compensation de jeu.
11. Le procédé de l'une des revendications 1 à 10, dans lequel la puissance et la durée des impulsions sont choisis en fonction du matériau de la pièce de manière à permettre l'ablation quelques μm de matière, de préférence moins de 10 μm, par impulsion.
12. Le procédé de l'une des revendications 1 à 11, dans lequel l'ablation est effectuée sous vide, sous projection de gaz neutre ou sous atmosphère contrôlée afin d'éviter l'apparition de phénomènes non linéaires qui résultent de l'interface lumière-matière tel que le claquage de l'air ou d'altération du matériau.
13. Le procédé de l'une des revendications 1 à 12, mettant en œuvre un dispositif de diffraction du faisceau laser.
14. Le procédé de l'une des revendications 1 à 13, impliquant une étape de positionnement de ladite pièce (10) dans un plan (E).
15. Le procédé de l'une des revendications 1 à 14, ladite pièce organe comportant au moins l'un des composants suivants : matière plastique, métal, composite, céramique, matière minérale, matière à matrice complexe organique, matériau isotrope dur.
16. Le procédé de l'une des revendications 7 à 15, dans lequel ladite description des formes à usiner est effectuée à partir de la géométrie définie sur un plan de CAO 3D, des pas d'usinage étant définis en fonction de la matière et de la profondeur d'usinage de telle sorte que les conditions d'ablation soient optimisées, la zone focale étant positionnée par éclairage à l'aide d'une tête optique (15) équipée ou non d'un dispositif de diffraction.
17. Organe fabriqué selon le procédé de l'une des revendications 1 à 16.
18. L'organe de la revendication 17, caractérisé en ce que l'une au moins de ses dimensions est inférieure ou égale à deux millimètres, ou de préférence inférieure à 0,5 millimètre, cette dimension étant comptée "hors tout" et définie comme la longueur du segment qui relie les deux points d'une pièce les plus distants suivant une même direction.
19. L'organe de la revendication 18, caractérisé en ce qu'il comporte des dents espacées selon un pas inférieur à deux millimètres et/ou dont la profondeur est inférieure à deux millimètres.
20. L'organe de l'une des revendications 17 à 19, caractérisé en ce qu'il présente au moins une ligne curviligne, par exemple une ligne curviligne irrégulière, formée dans un plan perpendiculaire au plan de l'organe, au moins d'un rayon supérieur à 10'9 m et inférieur à 5 millimètres.
21. L'organe de l'une des revendications 17 à 20, étant destinée à une application horlogère.
22. L'organe de la revendication 21, constitué par une transmission synchrone ou asynchrone. 23. L'organe de la revendication 22, constitué par une courroie
(20) et/ou par une poulie (22,
23).
24. L'organe de la revendication 23, dans lequel ladite courroie présente une épaisseur ou une largeur inférieure à deux millimètres.
25. L'organe de la revendication 21, constitué par l'un des éléments suivants : un élément d'un système d'échappement d'une montre ; un élément d'un système de régulation d'une montre ; ou un élément de la chaîne de transmission cinématique de l'énergie et des mouvements entre la source d'énergie et les aiguilles d'une montre.
26. L'organe de la revendication 25, dont la plus grande dimension est inférieure au millimètre.
27. L'organe de l'une des revendications 18 ou 19, étant destiné à une application hors de l'horlogerie.
28. L'organe de l'une des revendications 17 à 27, constitué par l'un des éléments suivants : au moins un engrenage ; au moins un galet tendeur et ou un galet denté ; un moule, par exemple un moule de forme circulaire ; une flasque, par exemple une flasque dentée.
29. L'organe de l'une des revendications 17 à 28, constitué par un matériau isotrope dur.
30. Dispositif pour la fabrication d'éléments de transmission, notamment de courroies, par la mise en œuvre du procédé de l'une des revendications 1 à 16, comprenant : un laser à impulsion (14) d'une durée inférieure à 5x10"13 secondes et d'une puissance supérieure à 1012 watts sur la surface d'interaction faisceau-matière, - des moyens de serrage (12) pour serrer une pièce à usiner, une informatique (17) pour exécuter un programme d'usinage comportant des étape de déplacement de la zone focale dudit laser à impulsion par rapport à ladite pièce selon plusieurs axes.
31. Le dispositif de la revendication 30, comportant en outre une informatique (13) pour générer ledit programme d'usinage à partir d'une représentation tridimensionnelle de la pièce à usiner.
PCT/EP2005/052652 2004-06-08 2005-06-08 Procede de fabrication d’une piece micro- ou nanomecanique par une etape d’ablation laser a l’aide d’un femtolaser WO2005123324A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007526428A JP2008501534A (ja) 2004-06-08 2005-06-08 フェムトレーザーを用いたレーザー切断過程によるマイクロ機械部品またはナノ機械部品の製造方法
EP05749595A EP1753581A1 (fr) 2004-06-08 2005-06-08 Procede de fabrication d'une piece micro- ou nanomecanique par une etape d'ablation laser a l'aide d'un femtolaser
RU2006143445/02A RU2371290C2 (ru) 2004-06-08 2005-06-08 Способ изготовления микро- и наномеханических компонентов, содержащий этап абляции с помощью фемтолазера
US11/636,024 US20080095968A1 (en) 2004-06-08 2006-12-08 Method for producing a micro or nano mechanical part comprising a femtolaser-assisted ablation step

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH00970/04A CH705707B1 (fr) 2004-06-08 2004-06-08 Procédé de fabrication de composants de transmission synchrone et asynchrone et composants de transmission synchrone et asynchrone obtenus selon ce procédé.
CH00970/04 2004-06-08
FR0407485A FR2871080B1 (fr) 2004-06-08 2004-07-06 Procede de fabrication d'organes micromecaniques et nanomecaniques a l'aide d'un laser a impulsions courtes
FR0407485 2004-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/636,024 Continuation US20080095968A1 (en) 2004-06-08 2006-12-08 Method for producing a micro or nano mechanical part comprising a femtolaser-assisted ablation step

Publications (1)

Publication Number Publication Date
WO2005123324A1 true WO2005123324A1 (fr) 2005-12-29

Family

ID=34969339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052652 WO2005123324A1 (fr) 2004-06-08 2005-06-08 Procede de fabrication d’une piece micro- ou nanomecanique par une etape d’ablation laser a l’aide d’un femtolaser

Country Status (5)

Country Link
US (1) US20080095968A1 (fr)
EP (1) EP1753581A1 (fr)
JP (1) JP2008501534A (fr)
RU (1) RU2371290C2 (fr)
WO (1) WO2005123324A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059274A1 (de) * 2006-12-13 2008-06-26 Stein, Ralf Verfahren zur Herstellung eines Bauteils für das Werk einer mechanischen Uhr
CN100446909C (zh) * 2006-12-08 2008-12-31 华中科技大学 不锈钢悬臂梁的飞秒激光加工方法
US8497451B2 (en) 2007-12-24 2013-07-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Brittle nonmetallic workpiece and method and device for making same
EP2902177A3 (fr) * 2014-01-30 2015-09-09 Mestel SA Procédé d'application d'un matériau de remplissage sur un substrat présentant une surface libre à l'etat fini et composant horloger
CH710790A1 (fr) * 2015-02-27 2016-08-31 Cartier Int Ag Ressort moteur en matériau composite à matrice métallique, barillet et montre.
CH710914A1 (fr) * 2015-03-26 2016-09-30 Convergence Composite Sa Procédé de fabrication d'un composant micromécanique anisotropique.
EP3444490A1 (fr) * 2017-08-18 2019-02-20 Miba Gleitlager Austria GmbH Procédé de fabrication d'un élément de palier lisse à plusieurs couches
EP3620865A1 (fr) * 2018-09-05 2020-03-11 The Swatch Group Research and Development Ltd Piece d'horlogerie mecanique ou electromecanique a entrainement mysterieux
EP4079478A1 (fr) * 2021-04-20 2022-10-26 Comadur S.A. Procédé d'injection d'un article décoré

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208941B2 (ja) * 2006-02-10 2009-01-14 株式会社レフ・テクノロジー 液晶ポリマーの改質方法
GB0809003D0 (en) * 2008-05-17 2008-06-25 Rumsby Philip T Method and apparatus for laser process improvement
EP2145856B1 (fr) * 2008-07-10 2014-03-12 The Swatch Group Research and Development Ltd. Procédé de fabrication d'une pièce micromécanique
US9463531B2 (en) 2009-10-23 2016-10-11 Kennametal Inc. Three-dimensional surface shaping of rotary cutting tool edges with lasers
CA2792072C (fr) * 2010-03-09 2013-11-26 Tekno Replik Inc. Procede et systeme pour effectuer des restaurations dentaires
DE102011003064A1 (de) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Verfahren zur Bearbeitung einer Fläche mittels eines Roboter-Fahrzeugs
EP2586879A1 (fr) * 2011-10-27 2013-05-01 Nivarox-FAR S.A. Procédé de traitement thermique de pièces micromécaniques horlogères
US20150314380A1 (en) * 2012-12-20 2015-11-05 Toyota Jidosha Kabushiki Kaisha Cutting method and cutting apparatus
RU2563063C2 (ru) * 2013-11-08 2015-09-20 Валерий Викторович Барыгин Способ изготовления многослойной монококовой конструкции в виде единой непрерывной оболочки
WO2015069145A1 (fr) * 2013-11-08 2015-05-14 Валерий Викторович БАРЫГИН Procédé et dispositif de fabrication d'une structure monocoque en forme d'enveloppe unique continue
CN103885087B (zh) * 2014-03-17 2016-08-17 中国民航科学技术研究院 一种通过式金属探测门测试装置的运动平台
DE102014207507B4 (de) 2014-04-17 2021-12-16 Kennametal Inc. Zerspanungswerkzeug sowie Verfahren zum Herstellen eines Zerspanungswerkzeugs
EP3009896B1 (fr) * 2014-10-17 2020-03-11 Nivarox-FAR S.A. Pièce monobloc en métal électroformé
US9643282B2 (en) 2014-10-17 2017-05-09 Kennametal Inc. Micro end mill and method of manufacturing same
EP3407143A1 (fr) * 2017-05-24 2018-11-28 Rolex Sa Dispositif de liaison mécanique
US10744539B2 (en) 2017-10-27 2020-08-18 The Boeing Company Optimized-coverage selective laser ablation systems and methods
KR102554342B1 (ko) 2017-12-15 2023-07-13 삼성디스플레이 주식회사 회절 광학 소자를 포함한 에프세타 렌즈 및 이를 구비한 광학 시스템
EP3770698A1 (fr) 2019-07-26 2021-01-27 Comadur S.A. Pierre minérale de type monocristalline munie d'un cone de recentrage d'un pivot, et son procédé de fabrication
EP3770699A1 (fr) * 2019-07-26 2021-01-27 Comadur S.A. Pierre, notamment pour un mouvement d'horlogerie, et son procede de fabrication
EP3865955A1 (fr) * 2020-02-17 2021-08-18 The Swatch Group Research and Development Ltd Procédé de fabrication d'une pièce mécanique d'horlogerie monobloc
RU207462U1 (ru) * 2021-04-29 2021-10-28 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для лазерной модификации образца
KR102497645B1 (ko) * 2021-06-23 2023-02-08 인하대학교 산학협력단 금형 표면 레이저 가공하는 방법
WO2023156201A1 (fr) * 2022-02-15 2023-08-24 Pierhor-Gasser Sa Pierre d'horlogerie et procede de fabrication d'une telle pierre

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736110A1 (de) * 1997-08-21 1999-03-11 Hannover Laser Zentrum Verfahren und Vorrichtung zur grat- und schmelzfreien Mikrobearbeitung von Werkstücken
USRE37585E1 (en) 1994-04-08 2002-03-19 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US6621040B1 (en) 1996-01-11 2003-09-16 The Regents Of The University Of California Ultrashort pulse laser machining of metals and alloys
EP1352619A1 (fr) * 2002-04-14 2003-10-15 Paul Dr. Weigl Procédé pour la fabrication automatique de prothèses dentaires
WO2004006026A2 (fr) 2002-07-09 2004-01-15 Tag-Heuer Sa Mouvement horloger pour montre bracelet
WO2004039530A2 (fr) * 2002-10-25 2004-05-13 Universität Kassel Usinage de materiaux adaptatif commande par retroaction a l'aide d'impulsions laser ultracourtes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37585E1 (en) 1994-04-08 2002-03-19 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US6621040B1 (en) 1996-01-11 2003-09-16 The Regents Of The University Of California Ultrashort pulse laser machining of metals and alloys
DE19736110A1 (de) * 1997-08-21 1999-03-11 Hannover Laser Zentrum Verfahren und Vorrichtung zur grat- und schmelzfreien Mikrobearbeitung von Werkstücken
EP1352619A1 (fr) * 2002-04-14 2003-10-15 Paul Dr. Weigl Procédé pour la fabrication automatique de prothèses dentaires
WO2004006026A2 (fr) 2002-07-09 2004-01-15 Tag-Heuer Sa Mouvement horloger pour montre bracelet
WO2004039530A2 (fr) * 2002-10-25 2004-05-13 Universität Kassel Usinage de materiaux adaptatif commande par retroaction a l'aide d'impulsions laser ultracourtes

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AOKI N ET AL: "Micromachining of SiC by femtosecond laser ablation", LASERS AND ELECTRO-OPTICS, 2001. CLEO/PACIFIC RIM 2001. THE 4TH PACIFIC RIM CONFERENCE ON 15-19 JULY 2001, PISCATAWAY, NJ, USA,IEEE, vol. 2, 15 July 2001 (2001-07-15), pages 286 - 287, XP010567299 *
CHANG T-C ET AL: "Excimer Pulsed Laser Ablation of Polymers in Air and Liquids for Micromachining Applications", JOURNAL OF MANUFACTURING SYSTEMS, SOCIETY OF MANUFACTURING ENGINEERING, DEARBORN, MI, US, vol. 18, no. 2, 1999, pages 1 - 17, XP004174227, ISSN: 0278-6125 *
DE AOKI: "CLEO/PACIFIC RIM 2001. The 4th PACIFIC RIM CONFERENCE", vol. 2, 15 July 2001, IEEE, article "Micromachining of SiC by femtolaser ablation", pages: 286 - 287
IHLEMANN J ET AL: "NANOSECOND AND FEMTOSECOND EXCIMER-LASER ABLATION OF OXIDE CERAMICS", APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, SPRINGER INTERNATIONAL, DE, vol. A60, no. 4, April 1995 (1995-04-01), pages 411 - 417, XP009040949, ISSN: 0947-8396 *
J. IHLEMANN: "Nanosecond and femtosecond excimer-laser ablation of oxide ceramics", MATERIALS SCIENCE AND PROCESSING, vol. A60, no. 4, April 1995 (1995-04-01), pages 411 - 417
KUPER S ET AL: "ABLATION OF UV-TRANSPARENT MATERIALS WITH FEMTOSECOND UV EXCIMER LASER PULSES", MICROELECTRONIC ENGINEERING, ELSEVIER PUBLISHERS BV., AMSTERDAM, NL, vol. 9, no. 1 - 4, 1 May 1989 (1989-05-01), pages 475 - 480, XP000034406, ISSN: 0167-9317 *
LIU X ET AL: "LASER ABLATION AND MICROMACHINING WITH ULTRASHORT LASER PULSES", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE INC. NEW YORK, US, vol. 33, no. 10, October 1997 (1997-10-01), pages 1706 - 1716, XP000722265, ISSN: 0018-9197 *
LIU, X. ET AL.: "Laser Ablation and Micromachining with Ultrashort Laser Pulses", IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 33, no. 10, October 1997 (1997-10-01), pages 1706 - 1716

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100446909C (zh) * 2006-12-08 2008-12-31 华中科技大学 不锈钢悬臂梁的飞秒激光加工方法
DE102006059274A1 (de) * 2006-12-13 2008-06-26 Stein, Ralf Verfahren zur Herstellung eines Bauteils für das Werk einer mechanischen Uhr
US8497451B2 (en) 2007-12-24 2013-07-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Brittle nonmetallic workpiece and method and device for making same
EP2902177A3 (fr) * 2014-01-30 2015-09-09 Mestel SA Procédé d'application d'un matériau de remplissage sur un substrat présentant une surface libre à l'etat fini et composant horloger
CH710790A1 (fr) * 2015-02-27 2016-08-31 Cartier Int Ag Ressort moteur en matériau composite à matrice métallique, barillet et montre.
WO2016135679A1 (fr) 2015-02-27 2016-09-01 Cartier International Ag Ressort moteur dans un materiau composite a matrice metallique
CH710914A1 (fr) * 2015-03-26 2016-09-30 Convergence Composite Sa Procédé de fabrication d'un composant micromécanique anisotropique.
EP3444490A1 (fr) * 2017-08-18 2019-02-20 Miba Gleitlager Austria GmbH Procédé de fabrication d'un élément de palier lisse à plusieurs couches
EP3620865A1 (fr) * 2018-09-05 2020-03-11 The Swatch Group Research and Development Ltd Piece d'horlogerie mecanique ou electromecanique a entrainement mysterieux
US11454935B2 (en) 2018-09-05 2022-09-27 The Swatch Group Research And Development Ltd Mystery-drive mechanical or electromechanical timepiece
EP4079478A1 (fr) * 2021-04-20 2022-10-26 Comadur S.A. Procédé d'injection d'un article décoré

Also Published As

Publication number Publication date
RU2006143445A (ru) 2008-06-20
JP2008501534A (ja) 2008-01-24
US20080095968A1 (en) 2008-04-24
RU2371290C2 (ru) 2009-10-27
EP1753581A1 (fr) 2007-02-21

Similar Documents

Publication Publication Date Title
WO2005123324A1 (fr) Procede de fabrication d’une piece micro- ou nanomecanique par une etape d’ablation laser a l’aide d’un femtolaser
FR2871080A1 (fr) Procede de fabrication d'organes micromecaniques et nanomecaniques a l'aide d'un laser a impulsions courtes
Halloran Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization
Álvarez et al. Five-axis milling of large spiral bevel gears: toolpath definition, finishing, and shape errors
Maruo et al. Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization
US9322964B2 (en) Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications
EP3224657B1 (fr) Matériaux, composants, et procédés d'utilisation avec un rayonnement ultraviolet extrême en lithographie et dans d'autres applications
Bechmann Changing the future of additive manufacturing
EP3519448B1 (fr) Procédé pour la réalisation d'un objet tridimensionel par un processus de photo-polymérisation multi-photonique et dispositif associé
EP2869982A1 (fr) Procede et appareil de pilotage de faisceau laser pour la fabrication d'objets tridimensionnels par couches superposees
Chen et al. Enhancement of surface reflectivity of fused deposition modeling parts by post-processing
EP2546049B1 (fr) Procédé de réalisation d'un panneau avec une double courbure
US10838124B2 (en) Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications
Masato et al. Texturing technologies for plastics injection molding: a review
Chryssolouris et al. Nanomanufacturing processes: a critical review
Ali et al. A two-step femtosecond laser-based deposition of robust corrosion-resistant molybdenum oxide coating
Wang et al. Development of laser processing carbon-fiber-reinforced plastic
Heinrich et al. Additive manufacturing of reflective and transmissive optics: potential and new solutions for optical systems
KR101645401B1 (ko) 투명 유리가 접합되는 수지 성형품, 시계, 액정 표시 장치, 항공기 동체 및 이의 제조 방법
EP3331657A1 (fr) Procede de fabrication d'une piece en materiau composite
Bishop-Moser et al. Metamaterials manufacturing: Pathway to industrial competitiveness
WO1993025377A1 (fr) Procede pour realiser un modele de piece industrielle par transformation partielle d'un liquide sous l'action de la lumiere et dispositif de mise en ×uvre de ce procede
Liu et al. Elimination of surface/subsurface defects on additively manufactured AlSi10Mg mirrors through nano-second laser irradiation
Pfleging et al. Laser micromachining of polymeric mold inserts for rapid prototyping of PMMA devices via photomolding
Liu et al. Performance comparison of subtractive and additive machine tools for meso-micro machining

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005749595

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006143445

Country of ref document: RU

Ref document number: 2007526428

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11636024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200580026761.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005749595

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11636024

Country of ref document: US