WO2007088874A1 - 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法 - Google Patents

幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法 Download PDF

Info

Publication number
WO2007088874A1
WO2007088874A1 PCT/JP2007/051563 JP2007051563W WO2007088874A1 WO 2007088874 A1 WO2007088874 A1 WO 2007088874A1 JP 2007051563 W JP2007051563 W JP 2007051563W WO 2007088874 A1 WO2007088874 A1 WO 2007088874A1
Authority
WO
WIPO (PCT)
Prior art keywords
cardiomyocytes
cells
condition
cell
serum
Prior art date
Application number
PCT/JP2007/051563
Other languages
English (en)
French (fr)
Inventor
Fumiyuki Hattori
Keiichi Fukuda
Original Assignee
Asubio Pharma Co., Ltd.
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asubio Pharma Co., Ltd., Keio University filed Critical Asubio Pharma Co., Ltd.
Priority to US12/162,684 priority Critical patent/US9115342B2/en
Priority to BRPI0706801A priority patent/BRPI0706801B8/pt
Priority to CA2640644A priority patent/CA2640644C/en
Priority to KR20127027002A priority patent/KR101455144B1/ko
Priority to EP07713734.7A priority patent/EP1983042B1/en
Priority to AU2007210580A priority patent/AU2007210580B2/en
Priority to KR1020087020152A priority patent/KR101348325B1/ko
Priority to JP2007556880A priority patent/JP5312804B2/ja
Publication of WO2007088874A1 publication Critical patent/WO2007088874A1/ja
Priority to IL193095A priority patent/IL193095A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/12Light metals, i.e. alkali, alkaline earth, Be, Al, Mg
    • C12N2500/14Calcium; Ca chelators; Calcitonin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/32Amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/44Thiols, e.g. mercaptoethanol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/99Serum-free medium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/235Leukemia inhibitory factor [LIF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Definitions

  • the present invention relates to a method for purifying and utilizing cardiomyocytes from cells derived from stem cells and fetuses.
  • cardiomyocytes outside the body and purifying the cardiomyocytes for supplementation with cardiomyocytes is considered to be the most promising method for relieving patients who must rely on heart transplantation.
  • methods for differentiating stem cells embryonic stem cells and various adult stem cells
  • methods for obtaining fetal power have been studied.
  • a factor that suppresses differentiation feeder 1 cell, leukemia inhibitory factor: LIF, etc.
  • a factor that inhibits differentiation feeder 1 cell, basic fiber
  • TGF tumor necrosis factor
  • the pattern of divich in vitro partially follows the physiological development, and particularly regarding early events, the relationship between the physiological development occurring in fertilized egg cells and the mode of differentiation in vitro. There is much in common between them.
  • undifferentiated mesoderm cells are first formed, and a part of them undergoes planned cardiomyocytes (pre-cardiac mesoderm) and then into cardiomyocytes. And differentiate.
  • pre-cardiac mesoderm pre-cardiac mesoderm
  • cardiomyocytes pre-cardiac mesoderm
  • the adult stem cells are mesenchymal stem cells that are present in the bone marrow and umbilical cord and tissue stem cells (neural tube cells, fatty liver cells, skeletal muscle stem cells, etc.) that are present in each tissue, and many other types of cardiomyocytes. It is said that it will be divided into cells.
  • a cell population containing cardiomyocytes, other differentiated cells, and undifferentiated cells is formed after a certain period of transition. To do.
  • all stem cells produce cells other than cardiomyocytes as by-products or leave undifferentiated cells! ⁇ They have the same characteristics in that they are harmful to clinical applications. Since undifferentiated cells have proliferative activity and can be divided into many types of cells, a cell population containing cardiomyocytes that have undergone differentiation induction should be transplanted directly into the living body and used for treatment. It is difficult.
  • Non-patent Document 1 a method of specifically expressing a fluorescent marker such as GFP in cardiomyocytes and purifying the cell expressing the fluorescent marker using a cell sorter (Non-patent Document 1), or antibiotic resistance Purification of cardiomyocytes has been performed by a method in which the protein is specifically expressed in cardiomyocytes and selectively purified using antibiotics (Non-patent Document 2).
  • these methods cannot be used for actual transplantation because they must be genetically modified and there are safety problems.
  • These methods are also methods that involve genetic modification.
  • modifying the genome has ethical problems in itself, and unpredictable serious risks such as changes in the rate of cell canceration. With non-patent literature 3).
  • Non-patent Document 4 It is known that the heart can use lactic acid produced by other organs such as skeletal muscle as an energy source. There are no precedents tried.
  • Non-patent Document 5 Transport of NADH into mitochondria is essential for mitochondrial energy production. To date, there has been no precedent for attempts to purify cardiomyocytes using this mechanism.
  • Non-Patent Document 2 Klug MG, et al., J. Clin. Invest. 1996; 98: 216-224
  • Non-Patent Document 3 Schroder AR, et al., Cell. 2002; 110: 521-529
  • Non-Patent Document 4 Khairallah M, et al., Am J Physiol Heart Circ Physiol 2004; 286, H14 61-1470
  • Non-Patent Document 5 Chatham JC, et al., J Biol Chem 1995; 270: 7999-8008
  • the present invention uses special properties and newly discovered properties that could not be assumed to be used for the purpose of purifying cardiomyocytes in the past, and has been used for special proteins and biological processes without genetic modification. It is an object of the present invention to develop a method for purifying cardiomyocytes with high yield and high yield from a cell mixture containing cardiomyocytes derived from fetuses and stem cells without adding an active substance.
  • the inventors of the present invention have comprehensively studied the composition of the culture solution in order to construct a system that efficiently produces cardiomyocytes derived from embryonic stem cells.
  • the composition of the culture medium we examined the concentration of various composition elements of the culture medium and the time when it should be applied.
  • cardiomyocytes When cardiomyocytes are cultured in a low calcium environment, the autonomous pulsation of cardiomyocytes is attenuated and energy consumption is suppressed;
  • the inventors of the present invention have found that the cardiomyocytes derived from embryonic stem cells can be efficiently and highly selected and purified by combining and optimizing the methods for these phenomena, thereby completing the present invention. It came to do. Furthermore, the present inventors have found that the method found for embryonic stem cells can be applied to selection / purification of fetal cardiomyocytes and selection / purification of adult stem cell-derived cardiomyocytes, thereby completing the present invention.
  • the present invention provides a method for selecting cardiomyocytes from a cell mixture comprising embryonic stem cell-derived, adult stem cell-derived or fetal-derived cardiomyocytes and non-cardiomyocytes. And (ii) low calcium condition, low nutrient condition, lactic acid addition condition, aspartic acid / glutamic acid addition condition, and pyruvic acid addition condition, A method for selecting cardiomyocytes is provided, wherein the selected species is cultured in a culture medium having a plurality of conditions.
  • the cell mixture is induced to differentiate into embryonic stem cells to form embryoid bodies containing planned cardiomyocytes (undifferentiated mesoderm), and the embryoid bodies are subjected to low serum conditions and It can be prepared by culturing in a culture solution under Z or slightly acidic pH conditions.
  • the present invention provides a method for selecting cardiomyocytes derived from embryonic stem cells, wherein the embryoid stem cells are induced to differentiate to form embryoid bodies containing undifferentiated mesoderm.
  • Prepare a cell mixture containing the expected cardiomyocytes by culturing embryoid bodies in a medium with low serum and Z or weakly acidic PH conditions, and continue culturing the cell mixture in the same medium.
  • FIG. 1 is a diagram showing the presence of cardiomyocytes in embryoid bodies cultured in adhesion.
  • FIG. 2 is a diagram showing the presence of cardiomyocytes in adherent embryoid bodies cultured without serum.
  • FIG. 3 is a diagram showing selection of planned cardiomyocytes by serum-free.
  • FIG. 4 is a diagram showing the influence of a low calcium environment.
  • FIG. 5 is a diagram showing selection of planned cardiomyocytes under serum-free and weakly acidic pH conditions in embryonic stem cells.
  • FIG. 6-1 is a diagram showing an analysis of planned cardiomyocytes in serum-free, weakly acidic pH conditions in embryonic stem cells.
  • Fig. 6-2 shows the analysis of planned cardiomyocytes under serum-free and weakly acidic pH conditions in embryonic stem cells.
  • FIG. 7 shows the cardiomyocyte mass selected for serum-free, weakly acidic pH conditions for embryonic stem cells.
  • FIG. 8 is a diagram showing selection of cardiomyocytes under culture conditions in which sugar-free and serum-free and lactic acid is added.
  • FIG. 9 shows cardiomyocyte-specific staining of cells selected and collected under culture conditions that are sugar-free and serum-free and supplemented with lactic acid.
  • FIG. 10 is a diagram showing a myocardial cell mass and a dead cell mass immediately after being selected under culture conditions to which serum-free, weakly acidic “low calcium” and sugar-free and lactic acid has been added.
  • FIG. 11 is a diagram showing a method for removing a high-density aggregate, which is a dead cell mass, using density gradient centrifugation.
  • FIG. 12-1 is a diagram showing a myocardial cell mass selected under the culture conditions of serum-free, weakly acidic, low calcium, and sugar-free, and added with lactic acid.
  • FIG. 12-2 is a diagram showing a myocardial cell mass selected under culture conditions that are serum-free, weakly acidic, low calcium, and sugar-free and supplemented with lactic acid.
  • FIG. 13 is a diagram showing cardiomyocytes purified under culture conditions that are serum-free “weakly acidic”, low-calcium, and sugar-free, and added with aspartate and dartamic acid.
  • FIG. 14 shows the purification of bone marrow stem cell-derived cardiomyocytes.
  • FIG. 15 shows the purification of fetal cardiomyocytes.
  • FIG. 16 is a diagram showing cell regions that are serum-free “weakly acidic”, low-calcium ”and sugar-free and that autonomously pulsate when cultured under culture conditions supplemented with pyruvic acid.
  • FIG. 17 shows sugar-free and serum-free culture for 15 days under culture conditions supplemented with lactic acid. It is a figure which shows the selected marmoset cardiomyocyte mass after a nourishment.
  • FIG. 18 is a view showing cardiomyocyte-specific staining of marmoset cells selected and collected under the culture conditions that are sugar-free and serum-free and supplemented with lactic acid.
  • FIG. 19 is a view showing that the marmoset cell force recipients were selected and recovered under the culture conditions in which sugar-free “serum-free and lactic acid was added” were engrafted in the heart of the recipient.
  • FIG. 20 shows a cell mass (control) derived from human embryonic stem cells cultured under saccharide (control) conditions and cardiomyocyte selective culture for 15 days under sugar-free (cardiomy selection) conditions.
  • FIG. 3 is a diagram showing a state of a cell cluster derived from human embryonic stem cells (myocardial selection conditions).
  • FIG. 21 shows a case in which the embryonic stem cells were subjected to 15 days of myocardial cell selective culturing under sugar-free (myocardial selection) conditions, and then autonomous pulsation was resumed after changing the culture medium conditions.
  • FIG. 3 is a view showing a stained image of each cell cluster derived from human embryonic stem cells formed by the cultured cardiomyocytes with an anti-actinin antibody and an anti-Nkx2.5 antibody.
  • stem cells adult stem cells such as embryonic stem cells and bone marrow stem cells
  • LIF leukemia inhibitory factor
  • induction of cells into cells can be performed.
  • marmoset embryonic stem cells or human embryonic stem cells can be used to induce differentiation of embryonic stem cells into cardiomyocytes as well.
  • the method of the present invention can be applied to stem cells derived from any mammal.
  • the method of the present invention can be used for stem cells derived from mice, tusks, goats, dogs, cats, marmosets, lizards, and humans.
  • the stem cells used in the present invention include ES cells derived from mammals such as mice, monkeys and humans that are already widely used as cultured cells.
  • mouse-derived ES cells include EB3 cells, E14 cells, D3 cells, CCE cells, R1 cells, 129SV cells, J1 cells, and the like.
  • the mouse-derived ES cell according to the present invention is For example, American Type Culture Collection (ATCC), Chemicon, Cell & Molecular Technologies, etc. are available.
  • Monkey-derived ES cells include rhesus monkey (Macaca mulatta) (Thomson et al., Proc. Natl. Acad. Sci. USA 1995; 92: 7844) and cynomolgus monk ey: Macaca fascicularis. ) (Suemori et al., Dev. Dyn. 2001; 222: 273—279), common marmoset: Callithrix jacchus (Sasaki et al., Stem Cells. 2005; 2 3: 1304-1313) Has been reported and can be used.
  • marmoset ES cells can also be obtained from the Foundation for Experimental Animal Research.
  • ES cells can be produced from early embryos obtained by nuclear transfer of the nuclei of force cells that are established by culturing early embryos (Munsie et al., Curr. Biol. 10:98 9, 2000; Wakayama et al "Science 292: 740, 2001; Hwang et al” Science 303: 1669, 2004) o The development of parthenogenetic embryos to the same stage as the blastocyst stage From there, attempts to produce ES cells (US Patent Publication No. 02 / 168-63; Vrana K et al., Proc. Natl. Acad. Sci.
  • ES cells and somatic cells A method has also been reported in which ES cells having genetic information of somatic cell nuclei are made by fusing them (International Publication No. 00/49137; Ta da et al., Curr. Biol. 11: 1553, 2001) .
  • ES cells that can be used in the present invention include ES cells produced by such a method or those obtained by modifying genes on chromosomes of ES cells by genetic engineering techniques.
  • the stem cells that can be used in the method according to the present invention are not limited to ES cells, but are derived from mammalian adult organs and tissue cells, bone marrow cells, blood cells, embryonic embryo cells, and the like. All stem cells having traits similar to ES cells are included.
  • ES cell-like traits refer to ES cell-specific surface (antigen) markers, ES cell-specific gene expression, teratoma formation ability, and chimeric mouse formation ability. It can be defined with cell biological properties specific to the cell. Specific examples include EG cells produced from primordial germ cells, GS cells produced from testicular germ cells, and induced pluripotent stem cells produced from somatic cells such as fibroblasts by special genetic manipulation. (Induced pluripotent stem cells: iPS cells). This way! In the embryoid body 3-6 days after the start of induction of LIF by removing LIF and suspension culture, it will be separated into future cardiomyocytes such as undifferentiated mesoderm or planned cardiomyocytes. It is thought to contain cells that hesitate.
  • cardiomyocytes appear 7 days after the initiation of differentiation induction (10 days for human embryonic stem cells).
  • the embryoid body thus formed with embryonic stem cell force includes cells that do not differentiate into cardiomyocytes such as undifferentiated cells, endothelial epithelial cells, and nerve cells in addition to the above-mentioned cells. It is.
  • all of these cells other than cardiomyocytes and cells that will be divided into cardiomyocytes in the future are called “non-cardiomyocytes”.
  • the present inventors select only myocardial cells or cells that will be divided into myocardial cells in the future from non-myocardial cells mixed in the embryoid body formed as described above. Therefore, we examined the effects of low serum conditions, low sugar conditions, low nutrient conditions, low calcium conditions, and weakly acidic pH conditions on cardiomyocyte selection during the time course of myocardial differentiation.
  • the present inventors obtained a mixture of cells containing undifferentiated mesoderm, planned cardiomyocytes and cardiomyocytes with low serum conditions, low sugar conditions, low nutrient conditions, low calcium conditions, weakly acidic pH conditions.
  • undifferentiated mesoderm, planned cardiomyocytes and myocardium Composition of the cell mixture by exposing the cell mixture containing cells to low sugar conditions and culture conditions of low serum conditions, low nutrient conditions, low calcium conditions, and weakly acidic pH conditions. From these cells, the cell population that survived under these conditions could be selected as the planned cardiomyocyte or cell population of cardiomyocytes.
  • the selection method is referred to as a physiological tolerance selection method because the selection is performed under conditions where the cardiomyocytes are physiologically resistant.
  • the physiological tolerance selection method in the present invention comprises culturing a cell mixture containing cardiomyocytes in a culture solution under low sugar conditions, low serum conditions, low nutrient conditions, low calcium conditions, or weakly acidic pH conditions.
  • the "low sugar condition” refers to a group of substances including saccharides (that is, polysaccharides, monosaccharides (such as dalcose, galactose, fructose, mannose, etc.) in a culture solution.
  • saccharides that is, polysaccharides, monosaccharides (such as dalcose, galactose, fructose, mannose, etc.) in a culture solution.
  • the conditions for culturing in a culture solution in which the concentration of ⁇ degraded '', converted, and finally catalyzed in a glycolysis system is reduced) are preferred, preferably in a culture medium containing no saccharide.
  • the conditions for culturing in a culture solution in which the saccharide concentration has been reduced to less than 1% compared to the saccharide conditions in the culture solution used at the time of inducing the fraction are preferred, preferably in a culture medium containing no saccharide.
  • a-MEM MEM [Hank's BSS]
  • D-glucose is 1 g / L (5.56 mM) in the case of culture media such as DMEM.
  • RPMI 1640 contains 2.0 g / L (11.12 mM) of D-glucose and Ham's F-12 contains 1.82 g / L (10.12 mM) of D-glucose as saccharides. Therefore, a culture solution with a saccharide concentration reduced to 1% refers to a culture solution containing 55.60 to 111.20 ⁇ 1 of saccharides.
  • the saccharide when the saccharide is reduced to less than 1% as compared with the saccharide conditions in such a general culture solution, non-cardiomyocytes cause cell death, but are not yet differentiated. We found that germ layers, planned cardiomyocytes and cardiomyocytes can survive in culture.
  • RPMI culture solution sucrose-free
  • DMEM culture solution sucgar-free
  • a serum component is a group of physiologically active substances that are not only serum itself or a group of physiologically active substances contained in animal or human serum itself, and are artificial. Means a group of substances produced.
  • “low serum conditions” is a term including “serum-free conditions”, and serum or serum components added to the culture medium in the stage until obtaining undifferentiated mesoderm or artificial physiology. When the concentration of the active substance group is calculated as 100%, it means 0% to 10%.
  • the culture medium contains serum at a concentration of 10%
  • the serum in the culture medium to select the planned cardiomyocytes or cardiomyocytes This means setting the concentration to 1% or less.
  • the present invention compared with serum components in a general culture solution
  • undernutrition conditions refers to all media contained in a general culture solution (RPMI culture solution, DMEM culture solution, MEM culture solution, F12 culture solution and ⁇ -MEM culture solution). It means that the nutrient content is reduced to 10% or less, preferably 10%, compared with the nutrient components in general culture broth. In the present invention, when the nutrient content is reduced to 10% as compared with the nutrient component in a general culture solution, non-cardiomyocytes cause cell death, but undifferentiated mesoderm, planned cardiomyocytes and We found that cardiomyocytes can survive in culture.
  • Such “under-nutrient condition” culture media can be obtained from common culture media (RP Ml culture solution, DMEM culture solution, MEM culture solution, F12 culture solution and ⁇ -MEM culture solution) and physiological saline solution (eg Hank's It can be prepared by diluting up to 10 times using BSS-free sugar or PBS.
  • common culture media RP Ml culture solution, DMEM culture solution, MEM culture solution, F12 culture solution and ⁇ -MEM culture solution
  • physiological saline solution eg Hank's It can be prepared by diluting up to 10 times using BSS-free sugar or PBS.
  • “low calcium condition” means that the calcium concentration in a culture solution is 0.3 to 1.3 mM.
  • the culture media (DMEM culture medium, MEM culture medium, and ⁇ -MEM culture medium) generally used for differentiating cardiomyocytes have a calcium concentration of 1.8 mM in the culture medium. It is known to maintain the calcium concentration at this concentration throughout the culture period.
  • non-cardiomyocytes cause cell death when the calcium concentration is 0.3-1.3 mM, which is significantly lower than the force concentration in a general culture solution.
  • the “low calcium strip” of the present invention As the culture medium of “the case”, RPMI culture medium or F12 culture medium (both GIBCO) can be used.
  • the “weakly acidic pH condition” means that the pH of the culture solution is pH 6-7.
  • the preparation of the culture solution of the “weakly acidic pH condition” of the present invention can be obtained by preparing a culture solution using Hank's Balanced Salts Solution (Hank's BSS).
  • the cardiomyocytes can be purified more effectively by using any combination of the above-mentioned cell mixture with a method (physiological tolerance selection method) using two or more appropriate culture medium conditions. .
  • the present inventors have found that when saccharides are deleted from the culture medium, non-cardiomyocytes cause cell death in embryoid bodies derived from embryonic stem cells. In order to further improve the selectivity of undifferentiated mesoderm, planned cardiomyocytes and cardiomyocytes, other substrates capable of supplying energy selectively to cardiomyocytes were examined.
  • the selection method is referred to as a metabolic selection method because it uses the metabolic ability of cardiomyocytes.
  • the metabolic selection method in the present invention comprises culturing a cell mixture containing cardiomyocytes in a culture solution under conditions of lactic acid addition, aspartate-glutamate addition, or pyruvate addition.
  • cardiomyocytes can be highly purified. The Further, further refinement is possible by repeating the above method.
  • a cell mixture containing unbroken mesoderm, planned cardiomyocytes and cardiomyocytes used as a source of cardiomyocytes can be prepared from stem cells or fetuses.
  • stem cell refers to a plurality of specific types of cells in addition to cells having the ability to be classified into any cell type (for example, embryonic stem cells). Forces including pluripotent cells having properties that can be separated (for example, adult stem cells derived from bone marrow) are not limited to these.
  • cardiomyocytes are separated through undifferentiated mesoderm-like and planned cardiomyocytes.
  • the undifferentiated mesoderm refers to a stage where expression of Brachyury protein specific to undifferentiated mesoderm is recognized.
  • planned cardiomyocytes are cells that show expression of proteins specific to undifferentiated mesoderm, such as Brachyury, and cells that do not show expression of cardiomyocyte-specific proteins such as Nkx2.5 It means a cell that does not require a new substance to be added to the culture medium and has the ability to differentiate into cardiomyocytes exclusively.
  • Cardiomyocytes are autonomous cells in the case of living cells. This means cells that are moving, and after fixation, cells that express markers such as Nkx2.5, GATA4, and actinin.
  • mouse embryonic stem cells when mouse embryonic stem cells are used as the origin of cardiomyocytes, 4 days after induction of mouse embryonic stem cells by removing LIF from the culture medium, 4 days By culturing embryonic stem cell-derived embryoid bodies from day 7 to day under the physiological tolerance selection method and the Z or metabolic selection method described above, from among the cells constituting the embryoid body A cell population that survives under these conditions can also be selected as a planned cardiomyocyte or cardiomyocyte cell population.
  • the culture solution (calcium concentration in this case was about 1.3 mM) can be used for about 3 days. Conditions of the culture, correspond to low serum conditions, low calcium condition, and weakly acidic P H culture conditions.
  • the planned cardiomyocytes prepared by this method can be differentiated into cardiomyocytes by further culturing in the same culture medium. Differentiation induction After 5 days, especially when cardiomyocytes that are beating autonomously are induced, when using the above procedure, only MEM [Hank's BSS] is used, and low serum conditions and weakly acidic pH culture conditions are used. It is possible to select cardiomyocytes efficiently by culturing in the above. Cardiac myocytes produced by this method can be differentiated into atrial and ventricular muscles by further culturing in the above-mentioned mixed culture medium of MEM and a-MEM.
  • embryonic stem cell-derived embryoid bodies are washed with sugar-free Hank's BSS (GIBCO) or the like to sufficiently remove sugars, and then are subjected to low serum conditions and low nutrient conditions.
  • GEBCO sugar-free Hank's BSS
  • mouse bone marrow-derived cardiomyocytes were induced using the cells and methods described in International Publication WO01 / 048151 (PCT / JP00 / 09323). That is, it is a medium prepared by adding IMDM (lscove's Modified Dulbecco, s Medium) (GIBCO) with 20% fetal calf serum.
  • IMDM lscove's Modified Dulbecco, s Medium
  • CMG cells The method for establishing CMG cells is described in J. Clin.
  • Cardiomyocytes can be obtained by culturing a cell mixture containing autonomously beating cardiomyocytes under the physiological tolerance selection method and Z or metabolic selection method described above.
  • mice fetuses were aseptically extracted and washed 4 times with Hank's BSS [sugar-free]. During washing, pipette several times with a 10 ml pipette to make the fetus into discrete cell masses. By culturing such a cell mass under the physiological tolerance selection method and Z or metabolic selection method described above, cardiomyocytes can be obtained.
  • the above-described physiological tolerance selection method and Z or metabolism for the cell mixture containing unbroken mesoderm, planned cardiac muscle cells and cardiac muscle cells used as the origin of cardiac muscle cells By culturing under a selective method, a cardiomyocyte mass in which cardiomyocytes are combined can be obtained. However, the cardiomyocyte mass obtained in this way is covered with a non-cardiomyocyte layer that has caused cell death around it, and when the obtained cardiomyocyte mass is used for transplantation, Further investigation was made on the need to remove this non-cardiomyocyte layer.
  • the present inventors separated cell clusters into individual cells using an enzyme that randomly digests proteins such as trypsin, which is a general cell diffusion method, and ion chelating agents such as EDTA. Then, the phenomenon which the survival rate of a cardiac muscle cell falls remarkably was discovered. Therefore, a new method for efficiently removing dead cells attached to the surroundings while maintaining the myocardial cell mass has become necessary.
  • trypsin which is a general cell diffusion method
  • ion chelating agents such as EDTA
  • cells and cells are called collagen matrix fibronectin called extracellular matrix.
  • collagen matrix fibronectin called extracellular matrix.
  • the present inventors performed digestion using a collagenase or elastase with high specificity for the substrate protein, and maintained the cardiomyocyte cell mass without causing the cells to disperse separately.
  • type III collagenase (Wartington) is used for 20 minutes in a 37 ° C warm bath to separate cardiomyocytes from dead cells, and collagenase Dead cells can be efficiently removed by repeating centrifugation and supernatant exchange 4 times to obtain a final product.
  • a cell mass (embryoid body) containing cardiomyocytes is cultured in a culture medium from which serum has been removed, so that serum deprivation can be applied to the cell mass (cardiac body) containing cardiomyocytes. More specifically, the purpose of this study was to examine the effect of serum deprivation on the selection of cardiomyocytes from cell masses (embryoid bodies).
  • Mouse embryonic stem cells (cell line names EB3, Nat Genet 2000; 24: 372-376) Craig by Dr. Hitoshi Niwa of the Human Science Institute, he was just.
  • the mouse embryonic stem cells were transformed into a method similar to the existing method (Differentiation 2001, 68, p31-43), ie, culture medium [a-MEM (Minimum Essential Medium) (SIGMA) ⁇ 10% FBS (EQUITEC BIO) ⁇ Using 100 u nits / ml penicillin and 50 g / ml streptomycin (GIBCO)], 75 ES cells per EB were cultured as a cell mass by the dropping drop method for a total of 7 days. After similar differentiation into cell mass (embryoid body) containing cardiac muscle cells, the embryoid body was adhered to the culture dish using the above culture solution, and the conditions were 37 ° C and 5% CO. Incubated for 3-5 days. Over the existing method (Differentiation 2001, 68,
  • FIG. 1 shows the cell mass obtained under these conditions.
  • Fig. 1A shows a microscopic image of the embryoid body
  • Fig. 1B shows the result of specific immunofluorescence staining of cardiomyocytes in the embryoid body using an anti-actinin antibody (SIGMA).
  • SIGMA anti-actinin antibody
  • the cardiomyocyte existing region in the embryoid body is shown as a contour line
  • FIG. 1C the cardiac muscle cell in the embryoid body and the cardiomyocyte existing region revealed by the above immunostaining are shown in the phase contrast microscopic image of FIG. 1A.
  • the contour was traced at As a result of these studies, cardiomyocytes are buried inside other cells and easily separated from the embryoid bodies, as shown in the schematic diagram in Fig. 1D. It could not be purified.
  • mouse embryonic stem cells were differentiated into cell clusters (embryoid bodies) containing cardiomyocytes under the same conditions, then adhered to a culture dish and cultured for 5 days. The serum was removed from the culture environment of the embryoid body, and the culture was continued for 3 days.
  • FIG. 2A shows a microscopic image of an adherent embryoid body that has been selectively cultured under the above conditions
  • Fig. 2B outlines the myocardial region in which the heartbeats autonomously pulsated as revealed by videography of the myocardial cells in the embryoid body.
  • FIG. 2C a cardiomyocyte population is present on the surface of the embryoid body, and the cardiomyocytes are connected to each other so as to show the existence pattern of the cardiomyocytes in the embryoid body subjected to the selective culture. It was found to form a lump.
  • Example 2 Formation of a planned myocardial cell using a low-serum-free roasting condition in a mouse embryo cell thin cell Selective agitation mass A clot cell containing a high percentage of myocardial cells Formation of
  • a cell mass (embryoid body) containing a presumptive cardiomyocyte is cultured in a culture medium from which serum has been removed, whereby serum against the cell mass (embryoid body) containing the presumptive cardiomyocyte is obtained.
  • the purpose of this study was to investigate the action of wilt, more specifically, the action of serum wilt in the selection of planned cardiomyocytes from the cell mass (embryoid body).
  • Mouse embryonic stem cells were cultured by the usual method of Example 1, using a culture solution [ex-MEM (SIGMA), 10% FBS (EQUITEC BIO), penicillin 'streptomycin (GIBCO)] per 7 EBs. 5 ES cells as a cell mass by hanging drop method for 5 days at 37 ° C and 5% CO
  • Serum was removed on the fifth day of culture (the solution containing the embryoid body was transferred to a centrifuge tube, and after spontaneous sedimentation, the supernatant was removed and serum-free medium [(X-MEM (SIGMA), insulin ' Once washed with transferrin 'selenium (GIBCO) penicillin' streptomycin (GIBCO) 'and replaced with the same medium)
  • serum-free medium (X-MEM (SIGMA), insulin ' Once washed with transferrin 'selenium (GIBCO) penicillin' streptomycin (GIBCO) 'and replaced with the same medium)
  • the cell mass (embryoid body) containing cardiomyocytes is cultured in a culture solution with a reduced calcium concentration, so that the force concentration of the cell mass (embryoid body) containing cardiomyocytes is increased.
  • the purpose of this study was to examine the action of lowering, more specifically, the action of lowering the calcium concentration when selecting cardiomyocytes from the cell mass (embryoid body).
  • Mouse embryonic stem cells were cultured per EB using the culture medium [a-MEM (SIGMA), 10% F BS (EQUITEC BIO), penicillin 'streptomycin (GIBCO)] according to the usual method of Example 1.
  • 75 ES cells were cultured as a cell mass by the ringing drop method for a total of 7 days. Differentiated into containing cell mass (embryoid body).
  • the calcium concentration in the culture medium for differentiating cardiomyocytes was 1.8 mM.
  • the content of cardiomyocytes was about 10%, and other cells were undifferentiated cells, nerve cells, epithelial cells, and the like.
  • 75 ES cells per EB were obtained using a culture solution [at-MEM (SIGMA), 10% FBS (EQUITEC BIO), penicillin. Streptomycin (GIBCO)].
  • the embryoid bodies on the 5th day after the start of the separation were adhered to the plate as a cell mass by the noning drop method, and further cultured for 1 day (24 hours) in the same culture solution.
  • the control group was cultured until 10th day in RPMI medium (calcium concentration 1.8 mM) containing 10% FBS.
  • the culture medium was replaced with an RPMI culture medium (calcium concentration 0.4 mM; GIBCO) containing 10% FBS (FIG. 4B).
  • RPMI culture medium calcium concentration 0.4 mM; GIBCO
  • FBS FBS
  • the cell mass (embryoid-like body) containing the planned cardiomyocytes is removed from the serum and cultured in a medium that is weakly acidic to obtain a cell mass (embryo-like cells) containing the planned cardiomyocytes.
  • mice culture medium [at-MEM (SIGMA), 10% FBS (EQUITEC BIO), pericillin. Streptomycin (GIBCO)], 75 ES cells per EB are hanging and dropped.
  • the cell mass was differentiated into a cell mass (embryoid body) containing planned cardiomyocytes using the 5th day after the start of sorting as a cell mass by the method. In this example, autonomously beating cardiomyocytes have not yet been observed.
  • the culture medium was treated with MEM (Minimum Essential Medium).
  • GEBCO 'transferrin' selenium
  • FIG. 5A shows adherent embryoid bodies cultured under normal conditions
  • Figure 5B shows embryoid bodies cultured in serum-free for 1 day (24 hours)
  • Figure 5C shows 2 days (48 Time) Embryoid bodies cultured without serum. Under this condition, cells near the surface of the embryoid body selectively exhibited cell death, but cells in the center of the embryoid body did not die (Fig. 5).
  • FIG. 5D the region of the planned cardiomyocytes is surrounded based on FIG. 5C, and the region where dead cells are present is indicated by an arrow.
  • this cell mass was further cultured for 1 to 4 days, it differentiated into a cell mass containing a high proportion of cardiomyocytes that performed autonomous pulsation. Therefore, it was confirmed that the cells selected on day 5 + day 1 (24 hours) are planned cardiomyocytes.
  • Example 5 Selection of myocardial fine cells based on serum-free and weak acid DH deposition conditions in mouse embryos
  • the cell mass (embryoid body) containing cardiomyocytes is removed from the serum and cultured in a weakly acidic medium to obtain a cell mass (embryoid body) containing cardiomyocytes.
  • a weakly acidic medium On the combined effects of serum dehydration and weakly acidic pH, and more specifically on the combined effects of serum depletion and weakly acidic pH in the selection of cardiomyocytes from cell masses (embryoid bodies) The purpose was to examine.
  • mice culture medium [at-MEM (SIGMA), 10% FBS (EQUITEC BIO), penicillin 'streptomycin (GIBCO)], 75 ES cells per EB were knocked out.
  • the cells were differentiated into cell clusters (embryoid bodies) containing planned cardiomyocytes using the fifth day after the start of sorting as a cell cluster by the rop method.
  • the culture medium was treated with serum-free MEM culture medium.
  • GEBCO was replaced with an insulin supplemented with 'transferrin' selenium (GIBCO), and further cultured for 2 days.
  • FIG. 7A shows a microscopic image of the cardiomyocyte cluster prepared above
  • FIG. 7B shows a schematic view of FIG. 7A viewed from the lateral direction.
  • a cell mass (embryoid body) containing cardiomyocytes is cultured by culturing the cell mass (embryoid body) containing cardiomyocytes in a culture medium from which serum has been removed and sugars have been removed.
  • the combined effects of serum and sugar bacilli on the body, more specifically cell mass (embryoid body) was to examine the combined effects of serum and sugar deprivation in selecting cardiomyocytes.
  • mice culture medium [at-MEM (SIGMA), 10% FBS (EQUITEC BIO), persilin-streptomycin (GIBCO)]
  • 75 ES cells per EB are hanging and dropped.
  • the cells were cultured as a cell mass for a total of 7 days and separated into cell masses containing cardiomyocytes (embryoid bodies).
  • the culture medium In order to remove saccharides in the culture medium from embryoid bodies cultured until the 10th day of differentiation, in order to remove saccharides in the culture medium, the culture medium should be 4 to 4 with the D-MEM (Dulbecco's Modified Eagle Medium) Washed 5 times and finally 7 days in D-MEM culture medium (GIBCO) supplemented with 1 mM lactic acid (from multiple experiments, the survival rate of autonomously beating cardiomyocytes and other cells It is necessary to visually check the survival rate and adjust within a range of 5 to 10 days.) Culture was performed. The lactic acid concentration in the body rises to about 4 mM under physiological conditions, so this lactic acid concentration is physiological.
  • D-MEM Dulbecco's Modified Eagle Medium
  • FIG. 8A shows the selected reticulated cardiomyocytes
  • FIG. 8B shows a schematic view of FIG. 8A viewed from the side.
  • the cell mass produced in Example 6 and shown in Fig. 8 was treated at 37 ° C with collagenase 0.01-0.1% which selectively digests collagen, which is one of the extracellular matrix. Digested. After treatment with collagenase alone, washing was performed with any isotonic solution having physiological osmotic pressure. At this stage, since the myocardial cells maintain a cell mass (40 m or more in diameter), washing is performed by exchanging the liquid through a commercially available membrane having a 40 m diameter hole, and the dispersed myocardium. Cells other than the cells were selectively removed. This washing is done 4-5 times It was.
  • the collected cell mass was cultured and immunostained with an anti-sarcoma-actin antibody (SIGMA), which is an indicator of cardiomyocytes (red [stain cytoplasmic striated fibers], blue [nuclear Stained with DAPI (Molecular probe)]).
  • SIGMA anti-sarcoma-actin antibody
  • the cardiomyocyte mass purified by this method contains 80% of cardiomyocytes (FIG. 9).
  • a cell mass (embryoid body) containing cardiomyocytes is cultured in a culture solution from which serum is removed, which is weakly acidic, calcium is removed, and saccharides are removed.
  • serum which is weakly acidic, calcium is removed, and saccharides are removed.
  • the purpose of this study was to examine the combined effects of serum blight, weak acid pH, low calcium, and sugar bacilli during selection.
  • the culture medium was treated with serum-free MEM culture medium ( GIBCO) was replaced with insulin supplemented with 'transferrin' selenium (GIBCO) and cultured for another 2 days. Further, the obtained cardiomyocyte mass obtained was cultured for 2 days and differentiated into cardiomyocytes. At this stage, a cell mass containing a very high concentration of cardiomyocytes was formed.
  • Collagenase selectively digests collagen, which is one of the extracellular matrices. Digestion was performed at 37 ° C for 20 minutes using 01-0.05%. After treatment with collagenase, a buffer with physiological osmotic pressure (116 mM NaCl, 20 mM Hepes ⁇ 12.5 mM NaH PO, 5.6 mM group)
  • FIG. 10A shows an enlarged photograph of the area enclosed by the square in Figure 10A.
  • the positions of dead cells in FIGS. 10A and 10C are shown in FIGS. 10B and 10D, respectively.
  • FIG. 12A represents the adherent cardiomyocyte mass. There are many floating dead cells around the adherent cell mass. There are no adherent non-cardiomyocytes.
  • FIG. 12B is an immunostained version of FIG.
  • FIG. 12C is an immunostaining of Figure 12A with GATA4 (red; nucleus) and DAPI (blue; nucleus). Co-stained nuclei are purple. As a result, the cardiomyocyte mass purified by this method was found to contain 99.0% cardiomyocytes (FIG. 12C).
  • the cell mass (embryoid body) containing cardiomyocytes was treated with aspartate / glutamate in the culture medium from which serum was removed, which was weakly acidic, calcium was removed, and saccharides were removed.
  • the compensatory effect of aspartate / glutamate on the cell mass (embryoid body) containing cardiomyocytes more specifically, selecting cardiomyocytes from the cell mass (embryoid body)
  • the purpose of this study was to examine the compensatory effects of aspartic acid and glutamic acid during the process.
  • Washing was carried out with Cl, 0.8 mM MgSO, pH 7.35). Washing is carried out with a 40 ⁇ m diameter hole.
  • the liquid was exchanged through the membrane, and a total of 4 to 5 times was performed. As a result, a cell mass consisting only of cardiomyocytes was recovered.
  • the obtained cell mass was cultured, and immunostaining was performed using an anti-sarcoma-actinin antibody and an anti-GATA4 antibody that serve as an index of cardiomyocytes (FIG. 13).
  • FIG. 13A shows a microscopic image of a myocardial cell colony that undergoes autonomic pulsation
  • Fig. 13B shows a sarcoma-actinin staining (red; cytoplasm) and GATA-4 staining (green) of the autologous cardiomyocyte mouth.
  • Nuclear nuclear
  • DAPI color blue; nuclear
  • cardiomyocyte mass purified by this method contains 99.8% of cardiomyocytes.
  • This purification rate is based on existing cardiomyocyte purification methods (e.g. FASEB J. 2000; 14: 2540-2548; J Clin Invest. 1996; 98: 216-224; FASEB J. 2003; 17: 740-742; J Mol Cell CARDIOL. 2003; 35: 1461-1472), which proves to be higher than any of the purification results shown in this paper, so that this method can be highly purified and has a high yield. (Table 1).
  • Table 1 Purity comparison with Oi MHC-promoter / neo method
  • Preparalion positive cetts ncgaltvc is II, BrdJom ocytes
  • cardiomyocytes were prepared from mouse bone marrow-derived adult stem cells called mesenchymal stem cells for the purpose of selection and purification.
  • Myocardial cells that were also distributed with mouse bone marrow-derived adult stem cells were induced using the cells and methods described in International Publication WO01 / 048151. That is, a medium prepared by adding 20% fetal calf serum to IMDM (lscove's Modified Dulbecco's Medium) (GIBCO), CMG cells (the method for establishing CMG cells is described in J Clin Invest, March 1999, Vol. 103 , p697-705), add 5-azacitidine (SIGMA) at a final concentration of 3 ⁇ mol / 1 for 24 hours, and culture for 2 to 3 weeks in the above culture medium without 5-azacitidine. Cells were induced.
  • IMDM lscove's Modified Dulbecco's Medium
  • SIGMA 5-azacitidine
  • FIG. 14A shows the state of cultured cells before selection. The area containing pulsatile cells is illustrated by broken lines.
  • Figures 14B-C show selected cells.
  • FIG. 14B shows a phase-contrast microscope image
  • FIG. 14C shows a sarcoma-actinin fluorescent immunostained image having the same field of view as FIG. 14B.
  • the purpose was to purify cardiomyocytes from mouse fetuses.
  • FIG. 15A shows phase contrast micrographs of beating cell groups for two different colonies.
  • FIG. 15B shows a combination of sarcomericin and DAPI staining for four different colonies. As a result, it was found that about 99% of the cells prepared by this method were cardiomyocytes ( Figure 15).
  • Example 12 Purification of cardiomyocytes under culturing conditions that are serum-free, weakly acidic, low calcium, sugar-free and supplemented with pyruvic acid
  • a cell mass (embryoid body) containing cardiomyocytes was cultured by adding pyruvic acid to a culture solution from which serum was removed, which was weakly acidic, calcium was removed, and saccharides were removed.
  • the compensatory effect of pyruvate on the cell mass (embryoid body) containing cardiomyocytes more specifically, the compensatory property of pyruvate when selecting cardiomyocytes from the cell mass (embryoid body)
  • the purpose of this study was to examine the effects of
  • Mouse embryonic stem cells were added to the culture medium [a -MEM (SIGMA) 10% FBS (EQUITEC BIO) Phosphorus streptomycin (GIBCO)] was used to measure 75 ES cells per EB as a cell mass by the nodding drop method, and use the 5th day after starting the cell mass to contain the cell mass containing the expected cardiomyocytes (embryo Differentiated into a striatum).
  • a -MEM SIGMA
  • FBS EQUITEC BIO Phosphorus streptomycin
  • the culture medium was treated with serum-free MEM culture medium ( GIBCO) was exchanged with insulin supplemented with 'transferrin' selenium (GIBCO), and further cultured for 2 days. Further, the obtained cardiomyocyte mass obtained was cultured for 2 days and differentiated into cardiomyocytes. At this stage, cell clusters containing very high concentrations of cardiomyocytes were formed. Next, in order to remove the saccharide concentration in the culture solution as much as possible, it was washed 4 to 5 times with D-MEM culture solution (sugar-free) (GIBCO).
  • D-MEM culture solution sugar-free
  • collagenase Type 3 (Worthington Biochemical Corp) 0.05% that selectively digests collagen, which is one of the extracellular matrix, was shaken at 37 ° C for 20 minutes. After collagenase treatment, wash with a buffer with physiological osmotic pressure (116 mM NaCl, 20 mM Hepes, 12.5 mM NaH PO, 5.6 mM glucose, 5.4 mM KC1, 0.8 mM MgSO, pH 7.35).
  • physiological osmotic pressure 116 mM NaCl, 20 mM Hepes, 12.5 mM NaH PO, 5.6 mM glucose, 5.4 mM KC1, 0.8 mM MgSO, pH 7.35.
  • the cardiomyocyte mass purified by this method was found to contain about 90% or more of the autologous pulsatile cells of the cardiomyocytes (Fig. 16).
  • the cell mass (embryoid body) containing primate marmoset embryonic stem cell-derived cardiomyocytes was cultured in a culture medium from which serum was removed and saccharides were removed, thereby producing cardiomyocytes.
  • Combined action of serum and sugar depletion on cell mass (embryoid body) containing lysate, more specifically, cardiomyocytes are selected from cell mass (embryoid body) derived from primate marmoset embryonic stem cells
  • the purpose of this study was to examine the combined effects of serum and sugar blight.
  • Marmoset embryonic stem cells were obtained from the Institute for Experimental Animal Research. The marmoset embryonic stem cells were cultured in an undifferentiated state using mouse embryonic fibroblasts (MEFs) that had been inactivated by mitomycin C treatment.
  • MEFs mouse embryonic fibroblasts
  • ES cell clusters per EB were cultured as embryoid bodies for 15 to 30 days in total by the butterfly dish method, and differentiated into embryoid bodies containing cardiomyocytes.
  • the culture broth used here was the culture broth described above in this example except for bFGF [KO-DMEM (GIBCO), 20% KO-SERUM (GIBCO) ⁇ 1.6 mM L-glutamine, 0.1 mM Non-essential amino acids (MEM), 0.2 mM j8-mercaptoethanol (2-ME; Sigma), 100 IU / ml penicillin, 100 g / ml streptomycin sulfate, and 8 ng / ml recombinant human leukemia inhibitory factor (LIF; Chemicon) ]Met.
  • the embryoid body was transferred to a centrifuge tube, washed 5 times with D-MEM culture medium (sugar-free) (GIBCO), and finally 1 mM lactic acid was added. Culturing was carried out in a prepared D-MEM culture medium (sugar-free) (GIBCO) for 15 days. Since the lactic acid concentration in the body rises to about 4 mM under physiological conditions, this lactic acid concentration is physiological and must be adjusted within this range.
  • FIG. 17 shows the state of the cell mass after 15 days of culture.
  • a bubble-like cell structure composed of cardiomyocytes was formed as living cells as shown in FIG. That is, FIGS. 17A-C show cardiomyocytes in the form of bubbles that selectively survive in a culture solution of sugar-free + lactate ImM.
  • FIG. 17A the very light-transmitting part or the embryoid body itself has already caused selective cell death.
  • FIGS. 17B and 17B ′ foam cells on the surface of the embryoid body survive.
  • Figure 17B is further enlarged and shown in Figure 17C.
  • the purpose of this example was to examine the transplantation and engraftment of the heart, which is a method of using cardiomyocytes derived from primate marmoset embryonic stem cells.
  • the turbid solution was treated with stirring at 37 ° C for 20 minutes. Thereby, a small cell mass composed of about 1 to 30 cardiomyocytes was prepared and used for transplantation. 100 L of the above-mentioned buffer having a physiological salt concentration containing the cardiomyocytes was aspirated.
  • NOD-SCID (Claire), an immunodeficient mouse, was inhaled anesthetized with 7-week-old male using Foren (Abbott). Thereafter, thoracotomy was performed under artificial respiration by endotracheal intubation. Exposed heart tip force The needle was inserted into the heart wall toward the base of the heart, and about 30 L was injected at one location. The chest was closed, the anesthesia was removed, and the breeding was continued.
  • the cell mass (embryoid-like body) containing human embryonic stem cell-derived cardiomyocytes is cultured in a culture medium from which serum has been removed and sugar has been removed.
  • the combined effects of serum dying and sugar dying on (embryoid bodies), more specifically, serum declining and selection of cardiomyocytes from the cell mass (embryoid bodies) derived from human embryonic stem cells The purpose of this study was to examine the combined action of sugarcane bacilli.
  • Human embryonic stem cells were obtained from the National University Corporation, Center for Stem Cell Medicine, Institute for Regenerative Medicine, Kyoto University (ES Cell Center by National BioResource Project). The human embryonic stem cells were cultured in an undifferentiated state using mouse embryonic fibroblasts (MEFs) that had been proliferated and inactivated by mitomycin C treatment.
  • MEFs mouse embryonic fibroblasts
  • a non-passing cell mass having a pore size of 40 ⁇ m was obtained. This cell mass is a pure ES cell mass.
  • 50-1000 ES cell clusters per EB were cultured as embryoid bodies by the bacterial dish method for a total of 15-30 days (using the above culture medium, but without bFGF), and transformed into embryoid bodies containing cardiomyocytes. I'm sorry.
  • the embryoid body was transferred to a centrifuge tube, washed 5 times with D-MEM culture medium (sugar-free) (GIBCO, product number 11966), and finally lactic acid 1 mM Culturing was carried out in a D-MEM culture medium (sugar-free) (GIBCO, product No. 11966) supplemented with 15 days. Since the lactic acid concentration in the body rises to about 4 mM under physiological conditions, this lactic acid concentration is physiological and must be adjusted within this range.
  • FIG. 20 Diagram showing the phase difference image of the cell mass cultured in the presence of sugar (control condition) and the cell mass subjected to selective cardiomyocyte culture for 15 days under the sugar-free condition (myocardial selection condition). 20 Shown on the left. In order to show the viability of these cells, staining was performed by TMRM (Molecular Probes) that detects the membrane potential, which is an indicator of survival, and emits fluorescence, and the results are shown on the right side of FIG. As a result, as shown in the upper part of FIG. 20, all embryoid bodies have fluorescence in the sugar (control) condition group (that is, all embryoid bodies are composed of living cells), whereas the lower part of FIG.
  • TMRM Molecular Probes
  • the same amount of the above culture solution (containing no bFGF) was cultured for 3 to 7 days.
  • the surviving myocardial cells resumed and stabilized, they were treated with 0.1% vertical collagenase (Wortington) for 10 minutes at 37 ° C with forced agitation to remove dead and live cells. To separate. Dead cells were removed by the method described in Example 8. It was then adhered to a dish coated with fibronectin (Sigma).
  • the cells were purified by culturing human embryonic stem cells under sugar-free and serum-free culture conditions with lactic acid added, and cardiomyocytes could be selectively obtained. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Cardiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、従来は心筋細胞を精製する目的に用いることが想定できなかった諸性質や新たに見出した諸性質を用いて、遺伝子改変を経ず、特別なタンパク質及び生理活性物質の添加を行わず、胎児及び幹細胞由来に由来する心筋細胞を含む細胞混合物から、心筋細胞を高度にかつ高収率で精製する方法を開発することを課題とする。  本発明の発明者らは、低血清条件、低糖条件、低栄養条件、低カルシウム条件、弱酸性pH条件、乳酸添加条件、アスパラギン酸・グルタミン酸添加条件、および/またはピルビン酸添加条件の培養液中で胚性幹細胞由来の心筋細胞を培養することにより、効率的且つ高度に心筋細胞を選択・精製できることを見いだした。更に、胚性幹細胞で見出した方法が、胎児由来の心筋細胞の選択・精製や、成体幹細胞由来の心筋細胞の選択・精製に応用可能であることを見出した。                                                                               

Description

幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法 技術分野
[0001] 本発明は、幹細胞及び胎仔に由来する細胞群からの心筋細胞精製方法と利用方 法に関する。
背景技術
[0002] 成体における心筋細胞は増殖活性を喪失しており、重症な心筋梗塞、心筋症等の 疾患では心臓移植に頼らざるを得ない。しかし、現状では心臓のドナー不足の問題 を克服するには至らず、心臓移植以外の治療方法を見出すことが急務である。
[0003] これに対して、心筋細胞を体外で作製'精製し、心筋細胞の補充に充てることは、 心臓移植に頼らなくてはならない患者を救済する最も有望な方法と考えられている。 そして、心筋細胞を得るためには、幹細胞 (胚性幹細胞や種々の成体幹細胞)を分 化させる方法、胎児力 取得する方法などが検討さ; W究されて 、る。
[0004] マウス胚性幹細胞では、分ィ匕を抑制する因子 (フィーダ一細胞、白血病抑制因子: LIF等)を、ヒト胚性幹細胞では分ィ匕を抑制する因子 (フィーダ一細胞、塩基性線維芽 細胞成長因子: bFGF、トランスフォーミング成長因子: TGF等)を培養液中力 取り除 き、細胞塊 (胚様体)を形成させることによって積極的に分ィ匕を惹起することが出来る
[0005] in vitroにおける分ィヒの様式は、生理的な発生を一部踏襲しており、特に発生初期 のイベントに関しては、受精卵細胞で生じる生理的発生と in vitroでの分化の様式と の間には共通点が多い。 in vitroにおける心筋細胞への分ィ匕の系譜は、生理的発生 と同じく先ず未分化な中胚葉細胞が形成され、その一部が予定心筋細胞 (前心臓中 胚葉)を経た後、心筋細胞へと分化する。しカゝしながら、胚性幹細胞は、臓器を構成 する全ての細胞に分ィ匕可能であるため、一種類の細胞にのみ分ィ匕させることは技術 的に困難である。
[0006] また、非生理的条件 (in vitro)では、全ての細胞に対して分ィ匕を惹起することは難し ぐ一部未分化細胞が残存することがある。さらに、心筋細胞に分ィヒ可能であると言 われる成体幹細胞は、骨髄や臍帯に存在する間葉系幹細胞や、各組織に存在する 組織幹細胞 (神経管細胞、脂肪肝細胞、骨格筋幹細胞等)であり、心筋細胞だけで なぐその他の多種類の細胞に分ィ匕すると言われる。いずれの成体幹細胞でも、心 筋細胞への分化機構の詳細は十分に解明されていないが、それぞれ一定期間の遷 移状態を経て心筋細胞や他の分化細胞、未分化細胞を含む細胞集団を形成する。
[0007] 要約すれば、全ての幹細胞は、心筋細胞以外の細胞を副産物として産生してしまう ことや未分化な細胞を残存させると!ヽぅ臨床応用に対して有害な性質を有すると ヽぅ 点で共通している。未分ィ匕な細胞は増殖活性を有し、かつ多種類の細胞に分ィ匕でき る故、分化誘導を行った心筋細胞を含有する細胞集団をそのまま生体に移植し、治 療に用いることは困難である。
[0008] よって、幹細胞を用いた治療を安全に実行し、理想的な治療効果を得るためには、 心筋細胞のみを細胞集団から精製する方法を見出すことが必要である。
[0009] 現在までのところ、 GFPなどの蛍光マーカーを心筋細胞に特異的に発現させて、蛍 光マーカーを発現した細胞をセルソーターを用いて精製する方法 (非特許文献 1)、 または抗生物質耐性タンパク質を心筋細胞に特異的に発現させて、抗生物質を用い て選択的に精製する方法 (非特許文献 2)により、心筋細胞の精製が行われていた。 しかしながら、これらの方法では、遺伝子改変を行わなければならず、それによる安 全性の問題が存在するため、実際の移植のためには利用することができない。また、 これらの方法は 、ずれも遺伝子改変を伴う方法であるが、ゲノムを改変することは、 それ自体に倫理的な問題を持つ上、細胞ガン化率の変化等、予測不可能な重大リ スクを伴う (非特許文献 3)。
[0010] 心臓は骨格筋等の他臓器が生成した乳酸をエネルギー源として利用することが出 来ることが知られているが (非特許文献 4)、この性質を利用して心筋細胞の精製を試 みた前例は無い。
[0011] また、心臓、肝臓、腎臓では、ミトコンドリア内への NADH輸送にァスパラギン酸とグ ルタミン酸を利用し、他の臓器と異なる機構を有する(非特許文献 5)。 NADHのミトコ ンドリア内への輸送は、ミトコンドリアのエネルギー産生に対して必須である。これまで に、この機構の違 、を用いて心筋細胞の精製を試みた前例は無 、。 非特許文献 l : Muller M, et al., FASEB J. 2000; 14: 2540-2548
非特許文献 2 : Klug MG, et al., J. Clin. Invest. 1996; 98: 216-224
非特許文献 3 : Schroder AR, et al., Cell. 2002; 110: 521-529
非特許文献 4 : Khairallah M, et al., Am J Physiol Heart Circ Physiol 2004; 286, H14 61-1470
非特許文献 5 : Chatham JC, et al., J Biol Chem 1995; 270: 7999-8008
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、従来は心筋細胞を精製する目的に用いることが想定できな力つた諸性 質や新たに見出した諸性質を用いて、遺伝子改変を経ず、特別なタンパク質及び生 理活性物質の添加を行わず胎児及び幹細胞由来に由来する心筋細胞を含む細胞 混合物から、心筋細胞を高度にかつ高収率で精製する方法を開発することを課題と する。
課題を解決するための手段
[0013] 本発明の発明者らは、胚性幹細胞由来の心筋細胞を効率的に生産する系を構築 するために、培養液の組成を網羅的に検討した。その中で培養液の組成を変化させ ることで、様々な培養液組成成分の濃度検討や、適応すべき時期の検討を行った結 果、以下の現象:
(1)低 ·無血清条件において非心筋細胞に志向性を有する細胞分化増殖抑制並 びに細胞死誘導が起こる現象;
(2)弱酸性培養液における非心筋細胞に志向性を有する細胞死誘導が起こる現象
(3)低カルシウム培養液における非心筋細胞に志向性を有する細胞分ィヒ増殖抑制 並びに細胞死誘導が起こる現象;
(4)低栄養培養液で培養した場合に非心筋細胞が選択的に死亡する現象;
(5)低カルシウム環境で心筋細胞を培養した場合に心筋細胞の自律拍動が減弱し 、エネルギー消費が抑制される現象;
(6)低'無血清化が心筋細胞の自己集合塊形成を促進する現象;及び (7)心筋胞細胞塊をバラバラに分散した場合心筋細胞の生存率が著しく低下する 現象;
を見出した。
[0014] 本発明の発明者らは、これらの現象に対する方法を組み合わせて最適化すること によって、胚性幹細胞由来の心筋細胞を、効率的且つ高度に選択 ·精製できることを 見いだし、本発明を完成するに至った。更に、胚性幹細胞で見出した方法が、胎児 由来の心筋細胞の選択 ·精製や、成体幹細胞由来の心筋細胞の選択 ·精製に応用 可能であることを見出し、本発明を完成するに至った。
[0015] より具体的には、本発明はその一態様において、胚性幹細胞由来、成体幹細胞由 来又は胎児由来の心筋細胞と非心筋細胞とを含む細胞混合物から、心筋細胞を選 択する方法であって、前記細胞混合物を、(i)低糖条件;および (ii)低カルシウム条 件、低栄養条件、乳酸添加条件、ァスパラギン酸 ·グルタミン酸添加条件、およびピ ルビン酸添加条件、力もなる群力も選択されるほたは複数の条件;を有する培養液 中で培養することを特徴とする、心筋細胞を選択する方法を提供する。この態様にお いて、前記細胞混合物を、胚性幹細胞に対して分化誘導して、予定心筋細胞 (未分 化中胚葉)を含む胚様体を形成し、この胚様体を低血清条件および Zまたは弱酸性 pH条件の培養液中で培養することにより調製することができる。
[0016] 本発明は別の一態様において、胚性幹細胞由来の心筋細胞を選択する方法であ つて、胚性幹細胞に分化誘導して未分化中胚葉を含む胚様体を形成した後、この胚 様体を低血清条件および Zまたは弱酸性 PH条件の培養液中で培養することにより 予定心筋細胞を含む細胞混合物を調製し、そして同一の培養液中で当該細胞混合 物の培養を継続することにより心筋細胞を得ることを特徴とする、前記心筋細胞を選 択する方法を提供する。
図面の簡単な説明
[0017] [図 1]図 1は、接着培養した胚様体中の心筋細胞存在様式を示す図である。
[図 2]図 2は、無血清で培養した接着胚様体における心筋細胞存在様式を示す図で ある。
[図 3]図 3は、無血清化による予定心筋細胞の選択を示す図である。 [図 4]図 4は、低カルシウム環境の影響を示す図である。
[図 5]図 5は、胚性幹細胞における、無血清 ·弱酸性 pH条件による予定心筋細胞の選 択を示す図である。
[図 6-1]図 6-1は、胚性幹細胞における、無血清'弱酸性 pH条件による予定心筋細胞 の解析を示す図である。
[図 6-2]図 6-2は、胚性幹細胞における、無血清'弱酸性 pH条件による予定心筋細胞 の解析を示す図である。
圆 7]図 7は、胚性幹細胞に対して無血清,弱酸性 pH条件により選択された心筋細胞 塊を示す図である。
[図 8]図 8は、無糖'無血清であり乳酸を添加した培養条件における心筋細胞の選択 を示す図である。
[図 9]図 9は、無糖,無血清であり乳酸を添加した培養条件で選択,回収された細胞に 対する心筋細胞特異的染色を示す図である。
[図 10]図 10は、無血清 ·弱酸性'低カルシウム '無糖であり、乳酸を添加した培養条件 において選択された直後の心筋細胞塊と死細胞塊を示す図である。
[図 11]図 11は、死細胞塊である高密度凝集体の密度勾配遠心を用 V、て除去方法を 示す図である。
[図 12-1]図 12-1は、無血清 ·弱酸性 ·低カルシウム ·無糖であり、乳酸を添加した培養 条件において選択された心筋細胞塊を示す図である。
[図 12-2]図 12-2は、無血清 ·弱酸性 ·低カルシウム ·無糖であり、乳酸を添カ卩した培養 条件において選択された心筋細胞塊を示す図である。
[図 13]図 13は、無血清'弱酸性'低カルシウム '無糖であり、ァスパラギン酸 'ダルタミ ン酸を添加した培養条件で精製した心筋細胞を示す図である。
[図 14]図 14は、骨髄幹細胞由来心筋細胞の精製を示す図である。
圆 15]図 15は、胎児由来心筋細胞の精製を示す図である。
[図 16]図 16は、無血清 '弱酸性'低カルシウム '無糖であり、ピルビン酸を添カ卩した培 養条件で培養した際の、自律拍動する細胞領域を示す図である。
[図 17]図 17は、無糖'無血清であり、乳酸を添加した培養条件において 15日間の培 養後の、選択されたマーモセット心筋細胞塊を示す図である。
[図 18]図 18は、無糖'無血清であり乳酸を添加した培養条件で選択'回収されたマー モセット細胞に対する心筋細胞特異的染色を示す図である。
[図 19]図 19は、無糖'無血清であり乳酸を添加した培養条件で選択'回収されたマー モセット細胞力 レシピエントの心臓内部で生着したことを示す図である。
[図 20]図 20は、有糖 (対照)条件で培養を行ったヒト胚性幹細胞由来の細胞塊 (対照 )と無糖 (心筋選択)条件下で 15日間の心筋細胞選択培養を行ったヒト胚性幹細胞由 来の細胞塊 (心筋選択条件)の状態を示す図である。
[図 21]図 21は、無糖 (心筋選択)条件下でヒト胚性幹細胞に対して 15日間の心筋細 胞選択培養を行った後、培養液条件を変更してから自律拍動を再開した心筋細胞 が形成するヒト胚性幹細胞由来の各細胞塊の、抗ァクチニン抗体および抗 Nkx2.5抗 体による染色像を示す図である。
発明の実施の形態
[0018] 心筋細胞への分化能を有する幹細胞 (胚性幹細胞、骨髄幹細胞等の成体幹細胞) に対して、適切な心筋細胞分化誘導処理を行うと、心筋細胞への分化が生じる。す なわち、例えばマウス胚性幹細胞を、白血病抑制因子 (LIF)を培養液中から取り除 いて浮遊培養させて、細胞塊 (胚様体)を形成させるハンギングドロップ法により、胚 性幹細胞から心筋細胞への分ィ匕誘導を行うことができる。あるいは、マーモセット胚 性幹細胞やヒト胚性幹細胞を使用して、同様に胚性幹細胞カゝら心筋細胞への分ィ匕 誘導を行うこともできる。
[0019] 本発明の方法は、いずれの哺乳動物由来の幹細胞に対しても適用することができ る。例えば、本発明の方法は、マウス、ゥシ、ャギ、ィヌ、ネコ、マーモセット、ァカゲザ ル、ヒト由来の幹細胞に対して使用することができる力 これらの動物種由来の幹細 胞だけには限定されない。例えば、本発明に用いられる幹細胞としては、既に培養 細胞として広く使用されているマウス、サル、ヒト等の哺乳動物由来 ES細胞を挙げるこ とがでさる。
[0020] マウス由来 ES細胞の具体例としては、 EB3細胞、 E14細胞、 D3細胞、 CCE細胞、 R1 細胞、 129SV細胞、 J1細胞等が挙げられる。本願発明に係るマウス由来 ES細胞は、 例えば American Type Culture Collection (ATCC)や Chemicon社、 Cell & Molecular Technologies社等力 入手することができる。
[0021] サル由来 ES細胞としては、ァカゲザル(rhesus monkey: Macaca mulatta) (Thomson et al., Proc. Natl. Acad. Sci. USA 1995 ; 92:7844)や力-クイザル(cynomolgus monk ey: Macaca fascicularis) (Suemori et al., Dev. Dyn. 2001; 222: 273— 279)、コモンマ ~~モセット (common marmoset: Callithrix jacchus) (Sasaki et al., Stem Cells. 2005; 2 3: 1304-1313)からの榭立が報告されており、使用可能である。例えば、マーモセット ES細胞は、財団法人 ·実験動物中央研究所力もも入手することができる。
[0022] ヒト由来 ES細胞は、現在、全世界で数 10種以上が榭立されており、例えば、米国- 国立衛生研究所のリスト(http:〃 stemcells.nih.gov /registry/ index.asp)には多数の 株が登録されて使用可能であるとともに、 Cellartis社や ES Cell International社、 Wise onsin Alumni Research Foundation等から購入することも可能である。また、 日本の場 合、国立大学法人 '京都大学再生医科学研究所附属幹細胞医学研究センターから も入手することができる(Suemori et al., Biochem. Biophys. Res. Commun., 2006; 34 5: 926-932)。
[0023] 更に、ゥシ(Mitalipova et al., Cloning 2001; 3: 59-67,)、トリ (Petitte et al., Mech. D ev. 2004; 121: 1159-1168)、ゼブラフィッシュ(Fishman, M. C, Science 2001; 294: 1 290-1291)につ!/、ても ES細胞の榭立が報告されて!、る。
[0024] 一般に ES細胞は初期胚を培養することにより榭立される力 体細胞の核を核移植し た初期胚からも ES細胞を作製することが可能である(Munsie et al., Curr. Biol. 10:98 9, 2000 ;Wakayama et al" Science 292:740, 2001; Hwang et al" Science 303: 1669 , 2004) oまた、単為発生胚を胚盤胞期と同等の段階まで発生させ、そこから ES細胞 を作製する試み(米国特許公開第 02/168ァ63号; Vrana K et al., Proc. Natl. Acad. S ci. USA 100: 11911-6)や、 ES細胞と体細胞を融合させることにより、体細胞核の遺伝 情報を有した ES細胞を作る方法も報告されている(国際公開番号第 00/49137号; Ta da et al., Curr. Biol. 11:1553, 2001)。本発明で使用することができる ES細胞には、こ の様な方法により作製された ES細胞又は ES細胞の染色体上の遺伝子を遺伝子工学 的手法により改変したものも含まれる。 [0025] また、本発明に係る方法に使用できる幹細胞は、 ES細胞のみに限らず、哺乳動物 の成体臓器や組織の細胞、骨髄細胞、血液細胞、更には胚ゃ胎児の細胞等に由来 する、 ES細胞に類似した形質を有する全ての幹細胞が含まれる。この場合、 ES細胞 と類似の形質とは、 ES細胞に特異的な表面 (抗原)マーカーの存在や ES細胞特異的 な遺伝子の発現、又はテラトーマ (teratoma)形成能やキメラマウス形成能といった、 E S細胞に特異的な細胞生物学的性質をもって定義することができる。その具体例とし ては、始原生殖細胞より作製される EG細胞、精巣の生殖細胞より作製される GS細胞 、及び線維芽細胞等の体細胞から特殊な遺伝子操作により作製される誘導多能性 幹細胞(induced pluripotent stem cells: iPS細胞)等が挙げられる。 この方法にお!ヽ て、 LIFを除去して浮遊培養することによる分ィ匕誘導開始後 3〜6日の胚様体には、未 分ィ匕中胚葉ないし予定心筋細胞などの将来的に心筋細胞に分ィ匕する細胞が含まれ ると考えられている。そして、胚性幹細胞を誘導する場合、分化誘導開始後 7日目(ヒ トの胚性幹細胞では、 10日目)に心筋細胞が出現することが知られている。しかしな がら、このようにして胚性幹細胞力 形成された胚様体には、上記の細胞の他に未分 化細胞、内皮上皮様細胞、神経細胞等の心筋細胞には分化しない細胞が含まれて いる。本発明においては、心筋細胞および将来的に心筋細胞に分ィ匕する細胞 (未分 化中胚葉、予定心筋細胞)以外の、これらすベての細胞のことを、「非心筋細胞」と呼
[0026] 本発明者らは、上述のようにして形成された胚様体中に混合されて ヽる非心筋細 胞から、心筋細胞あるいは将来的に心筋細胞に分ィ匕する細胞のみを選択するため、 心筋分ィ匕がおこる時間経過において、低血清条件、低糖条件、低栄養条件、低カル シゥム条件、および弱酸性 pH条件が心筋細胞の選択に及ぼす作用を検討した。
[0027] その結果、本発明者らは、未分化中胚葉、予定心筋細胞及び心筋細胞を含む細 胞混合物を、低血清条件、低糖条件、低栄養条件、低カルシウム条件、弱酸性 pH条 件、のそれぞれの単独条件、又は幾つかの組み合わせ、若しくは全ての組み合わせ の条件下で培養した場合、非心筋細胞と比較して、心筋細胞あるいは将来的に心筋 細胞に分ィ匕する細胞のみが、細胞傷害を受けにくいことを見いだした。
[0028] この知見に基づいて、本発明において、未分化中胚葉、予定心筋細胞及び心筋 細胞を含む細胞混合物を、低糖条件と、低血清条件、低栄養条件、低カルシウム条 件、および弱酸性 pH条件の各培養条件の 、ずれかまたは組み合わせとに暴露する ことにより、細胞混合物を構成する細胞の中から、これらの条件下においても生存す る細胞集団を予定心筋細胞又は心筋細胞の細胞集団として選択することが出来た。
[0029] 当該選択方法は、心筋細胞が生理的に耐性を有する条件において選択するもの であるから、生理的耐性選択法と称する。本発明における生理的耐性選択法は、低 糖条件、低血清条件、低栄養条件、低カルシウム条件、または弱酸性 pH条件の培養 液中で、心筋細胞を含む細胞混合物を培養することからなる。
[0030] 本発明において「低糖条件」とは、培養液中の糖類 (すなわち、多糖、単糖 (ダルコ ース、ガラクトース、フルクトース、マンノースなど)を含む物質群で、生体内'細胞内 で化学分解'変換され、最終的に解糖系で異化されるもの)の濃度が低下された培 養液中で培養する条件のことを ヽ、好ましくは上記糖類を含まな ヽ培養液中で培 養するか、もしくは分ィ匕誘導時に用いた培養液中の糖類の条件と比較して糖類濃度 を 1%未満まで低下させた培養液中で培養する条件のことをいう。本条件における糖 類のうち少なくともグルコースができる限り除かれることが望ましい。例えば、一般的に 細胞培養において使用される市販の培養液中には、 a - MEM、 MEM [Hank's BSS]、 DMEM等の培養液の場合には D-グルコースが 1 g/L (5.56 mM)、 RPMI 1640の場合 には D-グルコースが 2.0 g/L (11.12 mM) , Ham's F- 12の場合には D-グルコースが 1. 82 g/L (10.12 mM)、それぞれ糖類として含有される。したがって、糖類濃度を 1%ま で低下させた培養液という場合、糖類を55.60〜111.20 \1含有する条件の培養液 のことをいう。
[0031] 本発明においては、そのような一般的な培養液中の糖類の条件と比較して、糖類 を 1%未満まで低下させた場合、非心筋細胞は細胞死を起こすものの、未分化中胚 葉、予定心筋細胞および心筋細胞は培養液中で生存することができることを見いだ した。本発明においては、低糖条件を達成するため、例えば RPMI培養液 (無糖)、 D MEM培養液 (無糖)(それぞれ、 GIBCO)を使用することができる。
[0032] 本発明において、血清成分とは、血清そのもの、もしくは動物やヒトの血清に含有さ れる生理活性物質群そのものだけでなぐそれらの生理活性物質群であって人工的 に作製された物質群を含むものを意味する。本明細書中において「低血清条件」は、 「無血清条件」を含む用語であり、未分ィ匕中胚葉を得るまでの段階において培養液 に添加した血清または血清成分、もしくは人工的な生理活性物質群の濃度を 100% として算出した場合に、 0%〜10%にすることをいう。したがって、例えば、未分化中 胚葉を得るまでの段階にぉ 、て培養液に 10%の濃度の血清が含有されて 、た場合 、予定心筋細胞または心筋細胞を選択するために培養液中の血清濃度を 1%以下 に設定することをいう。本発明においては、一般的な培養液中の血清成分と比較して
、培養液中の血清成分を 10%以下に低下させた場合、非心筋細胞は細胞死を起こ すものの、未分化中胚葉、予定心筋細胞および心筋細胞は培養液中で生存すること ができることを見いだした。
[0033] 本発明にお 、て「低栄養条件」とは、一般の培養液 (RPMI培養液、 DMEM培養液、 MEM培養液、 F12培養液や α -MEM培養液)に含有されるすべての栄養成分が、一 般的な培養液中の栄養成分と比較して、 10%以下まで低下していることをいい、好ま しくは 10%まで低下させることをいう。本発明においては、一般的な培養液中の栄養 成分と比較して、栄養成分を 10%まで低下させた場合、非心筋細胞は細胞死を起こ すものの、未分化中胚葉、予定心筋細胞および心筋細胞は培養液中で生存すること ができることを見いだした。このような「低栄養条件」の培養液は、一般の培養液 (RP Ml培養液、 DMEM培養液、 MEM培養液、 F12培養液や α -MEM培養液)を、生理的 塩類溶液 (例えば Hank's BSS無糖や PBSなど)を用いて、 10倍まで希釈することにより 調製することができる。
[0034] 本発明において「低カルシウム条件」とは、培養液中のカルシウム濃度が 0.3〜1.3 mMであることを指す。一般に心筋細胞を分化させる際に使用される培養液 (DMEM 培養液、 MEM培養液や α -MEM培養液)は、培養液中のカルシウム濃度が 1.8 mM であり、心筋細胞を分化させる際には培養期間全般にわたって、カルシウム濃度をこ の濃度で維持することが知られている。本発明においては、一般的な培養液中の力 ルシゥム濃度と比較して有意に低い、 0.3-1.3 mMのカルシウム濃度とした場合に、 非心筋細胞は細胞死を起こすものの、未分化中胚葉、予定心筋細胞および心筋細 胞は培養液中で生存することができることを見いだした。本発明の「低カルシウム条 件」の培養液としては、 RPMI培養液や F12培養液 (いずれも GIBCO)、などを使用す ることがでさる。
[0035] 本発明にお 、て「弱酸性 pH条件」とは、培養液の pHが pH 6〜7であることを指す。
一般に心筋細胞を分化させる培養液 (RPMI培養液、 DMEM培養液、 MEM培養液、 F 12培養液や a -MEM培養液)の pHは、生理的条件である pH 7.5程度に維持すること が知られている。この基本 BSSは、 5%COインキュベーター内で pHが 6.5程度となる。
2
本発明においては、一般的な培養液の pHと比較して、 pHを酸性側の 6.5まで低下さ せた場合、非心筋細胞は細胞死を起こすものの、未分化中胚葉、予定心筋細胞およ び心筋細胞は培養液中で生存することができることを見 、だした。本発明の「弱酸性 pH条件」の培養液の作成は、 Hank's Balanced Salts Solution (Hank's BSS )を用いて 培養液を作製することにより得られる。
[0036] 上述した細胞混合物に対して、適切な 2以上のこれらの培養液条件を使用する方 法 (生理的耐性選択法)の任意の組み合わせを用いることによって、更に有効に心筋 細胞を精製できる。
[0037] 本発明者らは、培養液中から糖類を欠失させると、胚性幹細胞由来の胚様体中で 非心筋細胞が細胞死を起こすことを見出したが、胚様体中での未分化中胚葉、予定 心筋細胞および心筋細胞の選択性を更に向上させる目的で、心筋細胞選択的にェ ネルギーを供給しうる他の基質の検討を行った。
[0038] その結果、糖類の代わりに、乳酸(Lactate、 0.1-5 mM)又は、ァスパラギン酸(20 〜100 mg/L)とグルタミン酸(20〜100 mg/L)の組み合わせ、又は、ピルビン酸(0.5 〜5 mM)、もしくは、それらの組み合わせを培養液中に添加することが有効であること を見出した。これによつて、心筋細胞選択的に栄養を供給できると考えられる。
[0039] 当該選択方法は、心筋細胞の代謝能力を利用して選択するものであるから、代謝 的選択法と称する。本発明における代謝的選択法は、乳酸添加条件、ァスパラギン 酸-グルタミン酸添加条件、またはピルビン酸添加条件の培養液中で、心筋細胞を含 む細胞混合物を培養することからなる。
[0040] 本発明で見出した二つの心筋細胞選択方法 (すなわち、生理的耐性選択法と代謝 的選択法)を組み合わせて用いることにより、心筋細胞を高度に精製することが出来 る。また、上記の方法を繰り返し行うことによって、更に高度の精製が可能である。
[0041] 本発明において、心筋細胞の起源として用いる未分ィ匕中胚葉、予定心筋細胞及び 心筋細胞を含む細胞混合物は、幹細胞又は胎児から調製することができる。ここで、 単に幹細胞という場合、どのような細胞型にも分ィ匕することができる性質を有する全 能性を有する細胞 (例えば、胚性幹細胞など)の他、複数の特定の型の細胞に分ィ匕 することができる性質を有する多能性を有する細胞 (例えば、骨髄由来の成体幹細 胞など)が含まれる力 これらには限定されない。
[0042] 胚性幹細胞から心筋細胞を調製する場合、心筋細胞への分化が進行するにつれ て、未分化中胚様、予定心筋細胞を経て心筋細胞に分ィ匕すると考えられている。ここ で、未分化中胚葉とは、未分ィ匕中胚葉に特異的な Brachyuryタンパク質の発現が認 められる段階を言う。一方、予定心筋細胞とは、 Brachyury等の未分化中胚葉に特異 的なタンパク質の発現が認められ、かつ同一細胞において Nkx2.5ゃァクチニン等の 心筋細胞特異的タンパク質の発現を認めな 、細胞であって、培養液に対して新たに 物質が加えられることを必要とせず、専ら心筋細胞へ分化する能力を有する細胞を 意味し、そして、心筋細胞とは、生きた細胞の場合には自律拍動を行っている細胞の ことを、固定後は、 Nkx2.5、 GATA4、ァクチニンなどのマーカーを発現する細胞を意 味する。
[0043] 例えば、本発明にお 、て、マウス胚性幹細胞を心筋細胞の起源として使用する場 合、マウス胚性幹細胞を LIFを培養液中から取り除くことにより分ィ匕誘導した後、 4日 〜7日のマウスの胚性幹細胞由来胚様体を、上述した生理的耐性選択法および Zま たは代謝的選択法のもとで培養することにより、胚様体を構成する細胞の中から、こ れらの条件下においても生存する細胞集団を予定心筋細胞又は心筋細胞の細胞集 団として選択することが出来る。
[0044] 一例として、分化誘導 5日目から、低糖条件と、低血清条件、低栄養条件、低カル シゥム条件、および弱酸性 pH条件の各培養条件の 、ずれかまたは組み合わせとに よって 24時間選択された細胞は、拍動性を有さない細胞であつたが、選択された拍 動性を有さない細胞集団を未分ィ匕中胚葉マーカーである Brachyuryに対する免疫染 色法を用いて染色したところ、殆ど全ての細胞が Brachyury陽性であった。これは、本 願発明に係る方法が未分化中胚葉を選択する方法であることを示す。
[0045] また、上記の Brachyury陽性細胞を現在知られている最も発生早期に発現する心 筋細胞特異的ホメォティックタンパク質である Nkx2.5に対する免疫染色を行ったとこ ろ、染色陰性であった。それにもかかわらず、この細胞を更に培養すると、上記の細 胞の内約 8〜9割が心筋細胞に分化したことから、当該方法によって選択された未分 化中胚葉は、未知の最も原始的な予定心筋細胞であると考えられる。
[0046] また別の一例として、心筋細胞を選択するため、分化誘導後 4〜6日目の胚性幹細 胞由来の胚様体を、 ITS{インスリン(10 mg/L)、トランスフェリン(5.5 mg/L)、亜セレン 酸ナトリウム(6.7 mg/L) } (GIBCO社)を添カ卩した、無血清の、 MEM (Minimum Essenti al Medium) [Hank's BSS] (Invitrogen): a -MEM (SIGMA) =9 : 1から 1 : 9で混合した 培養液 (この場合のカルシウム濃度は約 1.3 mMであった)を用いて、 3日程度培養を 行うこともできる。この培養液の条件は、低血清条件、低カルシウム条件、および弱酸 性 PH培養条件に相当する。この方法で調製した予定心筋細胞は、更に同じ培養液 中で培養を継続することで、心筋細胞に分化することが可能である。分化誘導 5日目 以後で、特に自律拍動する心筋細胞が誘導された後で、上記の操作を行う場合は、 MEM [Hank's BSS]のみを用いて、低血清条件、および弱酸性 pH培養条件で培養す ることにより、心筋細胞を効率的に選択することが可能である。この方法で作製した心 筋細胞は、更に上述した MEMと a -MEMとの混合培養液中で培養を継続することで 、心房筋及び心室筋に分化可能である。
[0047] 更に別の一例において、胚性幹細胞由来の胚様体に対して、無糖の Hank's BSS ( GIBCO)等で洗浄し十分に糖類の除去を行った後、低血清条件、低栄養条件 (例え ば、通常市販の培養液を等張緩衝液で 10倍に希釈したもの)、弱酸性 pH条件、低力 ルシゥム条件の培養液(Hank's BSS [無糖]/ DMEM無糖] =9 : 1)に乳酸 1 mM (乳酸 添加条件)、ァスパラギン酸 20 mg/Lとグルタミン酸 20 mg/L (ァスパラギン酸'グルタ ミン酸添加条件)、もしくはピルビン酸 1 mM (ピルビン酸添加条件)をカ卩えた培養液で 、 3〜7日間培養することにより、心筋細胞を効率的に選択することが可能である。
[0048] 骨髄由来の成体幹細胞を用いて心筋細胞を作製した場合にお!、ても、細胞混合 物から心筋細胞を選択する際に、上述した本発明の方法は適応可能であった。ここ で、マウス骨髄由来の心筋細胞は、国際公開 WO01/048151 (PCT/JP00/09323)記 載の細胞及び方法を用いて誘導した。すなわち、 IMDM (lscove's Modified Dulbecco ,s Medium) (GIBCO)に牛胎仔血清 20%を添カ卩して調整したメディウムで、 CMG細胞 (CMG細胞の榭立方法は、 J. Clin. Invest., 1999, VoL 103,p697-705を参照)を培養 し、終濃度 3 mol/1の 5-ァザシチジン(SIGMA)を 24時間添カ卩し、 5-ァザシチジンを 含まない上記培養液で 2〜3週間培養することにより、自律拍動する心筋細胞を分ィ匕 誘導することができる。自律拍動する心筋細胞を含む細胞混合物を、上述した生理 的耐性選択法および Zまたは代謝的選択法のもとで培養を行うことにより、心筋細胞 を得ることができる。
[0049] また、マウス胎児力 心筋細胞を得る場合、初めて心筋細胞が出現する胎生 7日目
(ヒトでは、受精後 16日目に相当する)から、以下の処理により選択'精製することがで きた。すなわち、マウスの胎児を無菌的に抽出し、 Hank's BSS [無糖]で 4回洗浄した 。洗浄中に 10 mlのピペットを用いて数回ピペッティングを行い、胎児をバラバラの細 胞塊とする。このような細胞塊を、上述した生理的耐性選択法および Zまたは代謝的 選択法のもとで培養を行うことにより、心筋細胞を得ることができる。
[0050] このように、本発明において、心筋細胞の起源として用いる未分ィ匕中胚葉、予定心 筋細胞及び心筋細胞を含む細胞混合物に対して、上記の生理的耐性選択法および Zまたは代謝的選択法のもとで培養を行うことにより、心筋細胞どうしが結合した心筋 細胞塊が得られる。し力しながら、このようにして得られた心筋細胞塊は、周囲に細胞 死を起こした非心筋細胞の層で覆われており、得られた心筋細胞塊を移植に使用す る場合には、この非心筋細胞の層を除去しなければならない点について、更に検討 を加えた。
[0051] 本発明者らは一般的な細胞拡散方法であるトリプシン (Trypsin)等無作為にタンパ ク質を消化する酵素や EDTA等のイオンキレート剤を用いて、細胞塊を個々の細胞に 分離すると、心筋細胞の生存率が著しく低下する現象を見出した。そこで、心筋細胞 塊を維持しつつ周囲に付着した死細胞を効率的に除去する新たな方法が必要とな つた o
[0052] 一般に、細胞と細胞は、細胞外マトリックスと呼ばれるコラーゲンゃフイブロネクチン 、エラスチン等を介する結合によるほか、膜タンパク質の直接的結合により結合され ていると考えられている。そこで、本発明者らは、心筋細胞塊を基質タンパク質に対 する特異性の高 、コラゲナーゼやエラスターゼを用いて消化を行ったところ、細胞が バラバラに分散すること無ぐ心筋細胞の細胞塊を維持しながら、周囲に付着した非 心筋細胞の死細胞を効率的に除去することが出来た。このことから、心筋細胞同士 の結合は、主に N-カドヘリン (cadherin)やコネキシン (connexin)等による直接的結合 によるものであると推測された。
[0053] 本発明においては、例えば、 0.01〜0.1%の III型コラゲナーゼ(Wartington)を用い て、 37°Cの温浴中で振盪処理を 20分間行い、心筋細胞を死細胞と分離し、コラゲナ ーゼを十分に洗浄するために遠心と上清交換を 4回繰り返し最終産物とすることによ り、死細胞を効率的に除去することができる。
[0054] ただし、コラゲナーゼによって処理した後にも、心筋細胞のみ力もなる細胞塊に加 え、非心筋細胞の死細胞が残存する凝集体が回収される場合がある。この死細胞が 残存する凝集体が回収されるは代謝的選択期間が長くなればなるほど出現頻度が 増加する傾向がある。本発明者らは、このような死細胞が残存する凝集体の密度を 調査したところ、この場合の死細胞は生細胞よりも高密度 ·高比重であることを見出し 、適当な密度勾配遠心を行うことで生細胞と死細胞を分離することができることを見 出した。このような密度勾配遠心により生細胞と死細胞とを分離するために使用する ことができる試薬としては、 Percoll™ (Pharmacia社)、 Ficoll™ (Pharmacia社)、 Optipre p (GIBCO)などがあるが、これらには限定されな!、。
実施例
[0055] 実窗列 1 マウス胚件榦細朐における、低 ·無血清焙着条件を用いた心筋細朐選択 な凝暴塊,の Hfe
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、血清を除去した培養 液中で培養することにより、心筋細胞を含む細胞塊 (胚様体)に対する血清枯渴の作 用、より具体的には細胞塊 (胚様体)から心筋細胞を選択する際における血清枯渴 の作用、について検討することを目的とした。
[0056] マウス胚性幹細胞(細胞株名 EB3、 Nat Genet 2000; 24: 372-376)は、独立行政法 人 ·理ィ匕学研究所の丹羽仁史博士より恵与して 、ただ 、た。このマウス胚性幹細胞 を、既存の方法(Differentiation 2001, 68, p31-43)に類似の方法、すなわち、培養液 [ a -MEM (Minimum Essential Medium) (SIGMA)ゝ 10%FBS (EQUITEC BIO)ゝ 100 u nits/mlペニシリン、 50 g/mlストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をノヽンギングドロップ法により細胞塊として合計 7日間培養した。これを似て心 筋細胞を含む細胞塊 (胚様体)へと分化させた後、胚様体を上記培養液を用いて培 養皿に接着させて、 37°C、 5%COの条件下にて、 3〜5日間培養した。以上を既存の
2
心筋細胞分化方法とする。この条件により行った細胞塊を図 1に示す。ここで、図 1A に胚様体の顕微鏡像を示し、図 1Bには、胚様体における心筋細胞を、抗ァクチニン 抗体 (SIGMA)を用いて特異的に蛍光免疫染色した結果明らかになった、胚様体に おける心筋細胞存在領域を輪郭線として示し、そして図 1Cには、胚様体における心 筋細胞を、上記免疫染色によって判明した心筋細胞の存在領域を図 1Aの位相差顕 微鏡像において輪郭をトレースした。これらの検討の結果、図 1Dにおいて、接着した 胚様体における心筋細胞の存在様式を模式図で表すように、心筋細胞は他の細胞 の内部に埋もれて存在し、容易に胚様体から分離精製することは出来なかった。
[0057] 一方、マウス胚性幹細胞を、同様の条件にて心筋細胞を含む細胞塊 (胚様体)へと 分化させた後、培養皿に接着させて 5日間培養し、分化した心筋細胞を含む胚様体 の培養環境から、血清を除去して更に 3日間培養を行った。
[0058] この結果を図 2に示す。ここで、図 2Aは上記の条件で選択培養した接着胚様体の 顕微鏡像を示し、図 2Bには、胚様体における心筋細胞を、ビデオ撮影によって判明 した自律拍動する心筋領域を輪郭線にて図示した。これらの検討の結果、図 2Cにお いて、当該選択培養を行った胚様体における心筋細胞の存在様式を表す様に、胚 様体の表面に心筋細胞集団が存在し、かつ心筋細胞同士で塊を形成することがわ かった。
[0059] 実施例 2 マウス胚件榦細朐における、低 ·無血清焙着条件を用いた予定心筋細朐 選択的な凝暴塊,の形成 心筋細朐を高い割合で含有する凝暴塊,の形成
本実施例においては、予定心筋細胞を含む細胞塊 (胚様体)を、血清を除去した 培養液中で培養することにより、予定心筋細胞を含む細胞塊 (胚様体)に対する血清 枯渴の作用、より具体的には細胞塊 (胚様体)から予定心筋細胞を選択する際にお ける血清枯渴の作用、について検討することを目的とした。
[0060] マウス胚性幹細胞を、実施例 1の通常方法にて、培養液 [ ex -MEM (SIGMA)、 10% FBS (EQUITEC BIO)、ペニシリン 'ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 7 5個の ES細胞をハンギングドロップ法により細胞塊として 5日間 37°C、 5%COの条件
2 下にて培養した。既存の培養方法 (実施例 1にて定義済み)では、分化培養 7日目に 自律拍動する細胞が観察された。そこで、自律拍動する心筋細胞が未だ観察されて V、な 、分化培養 5日目(4日力 6日目でも同様の結果を得た)に、培養環境から血清 を除去して 1日(24時間)培養を行った。図 3Aは通常の培養条件で 6日間培養した胚 様体を示し、一方図 3Bは培養 5日目に血清を除去して 1日(24時間)培養した、図 3A と同時期の胚様体を示す。
[0061] 培養 5日目に血清を除去して (胚様体を含む溶液を遠沈管に移し、自然沈降後、上 清を除去し、無血清培地 [ (X -MEM (SIGMA)、インスリン'トランスフェリン'セレニウム (GIBCO)ペニシリン 'ストレプトマイシン(GIBCO) ]にて一度洗浄し、同じ培地に置換 ) 1日(24時間)培養した図 3Bに示される細胞塊を、更に 1〜4日間培養すると、自律拍 動を行う心筋細胞を高い割合で含有する細胞塊に分化する。このことから、マウス胚 性幹細胞を培養 5日目に血清を除去して 1日(24時間)培養することにより、自律拍動 を行わないが将来的に心筋細胞に分化することが予定づけられた予定心筋細胞を 高い割合で含有する細胞塊を形成することができることが示された。
[0062] 実窗列 3 マウス胚件榦細朐における、低カルシウム培着液を用いた心筋細朐以外 の細胞の選択的分化 · mrnmu
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、カルシウム濃度を低下 させた培養液中で培養することにより、心筋細胞を含む細胞塊 (胚様体)に対する力 ルシゥム濃度の低下の作用、より具体的には細胞塊 (胚様体)から心筋細胞を選択 する際におけるカルシウム濃度の低下の作用、について検討することを目的とした。
[0063] マウス胚性幹細胞を、実施例 1の通常方法にて、培養液 [ a -MEM (SIGMA)、 10%F BS (EQUITEC BIO)、ペニシリン 'ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75 個の ES細胞をノ、ンギングドロップ法により細胞塊として合計 7日間培養し心筋細胞を 含む細胞塊 (胚様体)へと分化させた。心筋細胞を分化させる培養液中のカルシウム 濃度は 1.8 mMであった。この培養方法では、心筋細胞の含有量は 10%程度であり、 他の細胞は未分化細胞や神経細胞、上皮細胞等であった。
[0064] これに対して、本実施例では、培養液 [ at -MEM (SIGMA)、 10%FBS (EQUITEC BI O)、ペニシリン.ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をノヽ ンギングドロップ法により細胞塊として分ィ匕開始後 5日目の胚様体をプレートに接着さ せ、更に同様の培養液中で 1日(24時間)培養した。その後、分化開始後 6日目、すな わち胚様体接着後 1日(24時間)経過後、対照群では 10%FBSを含む RPMI培養液( カルシウム濃度 1.8 mM)で 8日目まで培養したのに対して(図 4A)、実験群では、培養 液を 10%FBSを含む RPMI培養液 (カルシウム濃度 0.4 mM ; GIBCO)に置換して培養 を行った(図 4B)。この結果、未処理の胚様体に比べて、処理した胚様体では、胚様 体の辺縁に存在する扁平細胞の成長が抑制され、また神経細胞への分化も抑制さ れた(図 4B)。
[0065] ¾施例 4 マウス不件 細胞における、無 ΙΐΠ.清 '弱酸件 焙着条件による予定心筋 細胞の選択
本実施例においては、予定心筋細胞を含む細胞塊 (胚様体)を、血清を除去し、か つ弱酸性である培養液中で培養することにより、予定心筋細胞を含む細胞塊 (胚様 体)に対する血清枯渴および弱酸性 pHの複合的な作用、より具体的には細胞塊 (胚 様体)から予定心筋細胞を選択する際における血清枯渴および弱酸性 pHの複合的 な作用、について検討することを目的とした。
[0066] マウス胚性幹細胞を、培養液 [ at -MEM (SIGMA)、 10%FBS (EQUITEC BIO)、ぺ -シリン.ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をハンギン グドロップ法により細胞塊として分ィ匕開始後 5日目を使用して、予定心筋細胞を含む 細胞塊 (胚様体)へと分化させた。本実施例においては、自律拍動する心筋細胞が まだ観察されな 、分化培養 5日目(4日力も 6日目でも同様の結果を得た)に、培養液 を、 MEM (Minimum Essential Medium) (GIBCO) (GIBCO)にインスリン'トランスフェリ ン'セレニウム(GIBCO)を添カ卩したものに交換し、更に 1日(24時間)培養を行った。こ の培養液は 5%炭酸ガス環境では pH 6.5程度になる特徴を有することから、 5%炭酸 ガス環境で弱酸性化したこの培養液中で培養を行った。
[0067] 結果、自律拍動を行わない予定心筋細胞を高い割合で含有する細胞塊を形成し た。図 5Aは、通常条件で培養した接着胚様体を示し、これに対して、図 5Bは、 1日(2 4時間)無血清で培養した胚様体を、図 5Cは、 2日間 (48時間)無血清で培養した胚 様体をそれぞれ示す。この条件では、胚様体の表面近くの細胞は選択的に細胞死を 呈したが、胚様体中心部の細胞は細胞死を起こさなかった(図 5)。図 5Dにおいては 、図 5Cを基に予定心筋細胞の領域を囲み、死細胞が存在する領域を矢印で示した
[0068] 胚様体形成後 5日後から、無血清,弱酸性 pH条件により 24時間培養して選択された 細胞塊と、これを更に 3日間(72時間) «続培養した細胞塊とを採取した。これらの細 胞塊の凍結切片を作製し、抗 Brachyury抗体 (Santacruz社)を用いて未分化中胚葉 マーカーである Brachyuryに対する免疫染色を行った(図 6A〜6D)。その結果、無血 清-弱酸性 pH条件により 24時間培養した細胞(図 6Bおよび 6D)は血清含有'中性培 養液で 24時間培養した細胞(図 6Aおよび 6C)と比較して、 Brachyury陽性細胞の割 合が著しく高力つた。更に 3日間継続培養して選択された細胞塊の殆どの細胞は Bra chyury陽性であった(図示せず)。この 3日間継続培養した細胞塊において、最も発 生初期の予定心筋細胞において発現すると言われる Nkx2.5に対する抗体 (抗 Nkx2. 5抗体(Santacruz社))を用いて免疫染色を行った(図 6E〜6N)。この Nkx2.5は、心筋 細胞に分化後も発現が維持されることが既に知られて ヽるマーカーである。図 6E〜H には、血清含有 ·中性培養液で 24時間培養した EBをさらに 3日間培養した EBを示し た。これらの培養条件では、 EBの内一部の細胞が心筋細胞に分ィ匕したことが分かる 。さらに、この心筋細胞に分化した細胞の割合は、 Brachyuryに陽性であった細胞( 図 6Aおよび 6C)と同じであった。これに対して、図 6I〜Nに示される無血清 ·弱酸性 p H条件により 24時間培養した EBでは、心筋細胞に分ィ匕した細胞は、全体の細胞の約 8割〖こ上り、これは、 Brachyury陽性細胞の割合(図 6Bおよび 6D)と同じであった。
[0069] 上記 5日 + 1日(24時間)で選択された細胞は、抗 Brachyury抗体に対し陽性であつ た力 抗 Nkx2.5抗体に対して陰性であった(図 60列 P列)。逆に、 5日 + 1日(24時間) + 3日の細胞塊は、抗 Brachyury抗体に対し陰性であった力 抗 Nkx2.5抗体に対して 陽'性であった。
[0070] このように、この細胞塊を更に 1〜4日間培養すると自律拍動を行う心筋細胞を高い 割合で含有する細胞塊に分化した。よって、 5日 + 1日(24時間)で選択された細胞は 予定心筋細胞であることが確認された。
[0071] 実施例 5 マウス胚件榦細朐における、無血清 ·弱酸件 DH培着条件による心筋細朐 の選択
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、血清を除去し、かつ弱 酸性である培養液中で培養することにより、心筋細胞を含む細胞塊 (胚様体)に対す る血清枯渴および弱酸性 pHの複合的な作用、より具体的には細胞塊 (胚様体)から 心筋細胞を選択する際における血清枯渴および弱酸性 pHの複合的な作用、につい て検討することを目的とした。
[0072] マウス胚性幹細胞を、培養液 [ at -MEM (SIGMA)、 10%FBS (EQUITEC BIO)、ぺニ シリン 'ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をノヽンギングド ロップ法により細胞塊として分ィ匕開始後 5日目を使用して、予定心筋細胞を含む細胞 塊 (胚様体)へと分化させた。本実施例においては、自律拍動する心筋細胞がまだ 観察されな 、分化培養 5日目(4日から 6日目でも同様の結果を得た)に、培養液を、 無血清の MEM培養液(GIBCO)にインスリン'トランスフェリン'セレニウム(GIBCO)を 添加したものに交換し、更に 2日間培養を行った。更に得られた予定心筋細胞塊を 2 日間培養し、心筋細胞へと分化させた。図 7Aは、上記で作製した心筋細胞塊の顕微 鏡像を示し、図 7Bでは、図 7Aを横方向から見た模式図を示す。
[0073] この条件では、心筋以外の細胞は選択的に細胞死を呈したが、逆に心筋細胞は自 律拍動を強く行 、細胞死を起こさな 、ことがわかった。結果として心筋細胞を多く含 む細胞塊が形成された(図 7Aおよび図 7B)。
[0074] 実施例 6 無血清であり乳酸を添加した焙着条件における心筋細胞の選択 心 糸田 の調
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、血清を除去し、かつ糖 類を除去した培養液中で培養することにより、心筋細胞を含む細胞塊 (胚様体)に対 する血清枯渴および糖類枯渴の複合的な作用、より具体的には細胞塊 (胚様体)か ら心筋細胞を選択する際における血清枯渴および糖類枯渴の複合的な作用、につ V、て検討することを目的とした。
[0075] マウス胚性幹細胞を、培養液 [ at -MEM (SIGMA)、 10%FBS (EQUITEC BIO)、ぺ -シリン.ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をハンギン グドロップ法により細胞塊として合計 7日間培養し心筋細胞を含む細胞塊 (胚様体)へ と分ィ匕させた。分化開始 10日目まで培養した胚様体に対して、培養液中の糖類を限 りなく除去するために、 D- MEM (Dulbecco's Modified Eagle Medium) (無糖)培養液( GIBCO)で 4〜5回洗浄し、最終的に乳酸 1 mMをカ卩えた D- MEM培養液(GIBCO)中 で、 7日間(複数回の実験から、自律拍動する心筋細胞の生存率と、他の細胞の生存 率を目視で確認し、 5〜10日間の範囲で調節を行う必要がある。)培養を行った。生 体内の乳酸濃度は生理的条件下で 4 mM程度まで上昇することから、この乳酸濃度 は生理的なものである。
[0076] この結果、図 8のように生細胞として心筋細胞力 なるドーム状の細胞網が形成され た。すなわち、図 8Aは、選択された網目状になった心筋細胞を示し、図 8Bでは、図 8 Aを横カゝら見た模式図を示す。
[0077] ¾施例 7 心筋細胞塊,に付羞する死細胞の除去
実施例 6にて作製した細胞塊には、死細胞や細胞外マトリックスが付着している。こ れを除去し、筋細胞塊のみを精製する必要がある。し力しながら、事前の検討にお いて、トリプシン等のタンパク質を非選択的に消化する酵素を用いた場合、心筋細胞 の生存率は著しく低下することが明らかになった。
[0078] そこで、本実施例にお!、ては、死細胞や細胞外マトリックスを選択的に除去すること ができる条件を検討することを目的とした。
[0079] 実施例 6において作製し図 8で示した細胞塊を、細胞外マトリクスの一つであるコラ 一ゲンを選択的に消化するコラゲナーゼ 0.01〜0.1 %を用いて、 37°Cにて 20分消化し た。コラゲナーゼのみで処理した後、生理的浸透圧を有する任意の等張液によって 洗浄を行った。この段階で、心筋細胞は、細胞塊(直径 40 m以上)を維持している ため、洗浄は直径 40 mの穴を有する市販の膜を介して液交換を行うことによって行 い、分散した心筋細胞以外の細胞を選択的に除去した。この洗い作業は 4〜5回行つ た。回収された細胞塊を培養し、心筋細胞の指標となる抗サルコメァ -ァクチ-ン抗 体 (SIGMA)を用いた免疫染色を行った (赤色 [細胞質の横紋繊維を染色]、青色 [核 を DAPI (Molecular probe社)により染色])。
[0080] その結果、本方法で精製した心筋細胞塊は心筋細胞を 80%含有することが判明し た(図 9)。
[0081] 実窗列 8 無血清'弱酸件'低カルシウム '無糖であり、乳酸を添加した培着条件に おける心筋細胞の精製
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、血清を除去し、弱酸性 であり、カルシウムを除去し、かつ糖類を除去した培養液中で培養することにより、心 筋細胞を含む細胞塊 (胚様体)に対する血清枯渴、弱酸性 pH、低カルシウム、およ び糖類枯渴の複合的な作用、より具体的には細胞塊 (胚様体)から心筋細胞を選択 する際における血清枯渴、弱酸性 pH、低カルシウム、および糖類枯渴の複合的な作 用、につ 、て検討することを目的とした。
[0082] マウス胚性幹細胞を、培養液 [ at -MEM (SIGMA)、 10%FBS (EQUITEC BIO)、ぺ -シリン.ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をハンギン グドロップ法により細胞塊として分ィ匕開始後 5日目を使用して、予定心筋細胞を含む 細胞塊 (胚様体)へと分化させた。本実施例においては、自律拍動する心筋細胞が まだ観察されな 、分化培養 5日(4日力も 6日目でも同様の結果を得た)に、培養液を 、無血清の MEM培養液(GIBCO)にインスリン'トランスフェリン'セレニウム(GIBCO) を添加したものに交換し、更に 2日間培養を行った。更に得られた予定心筋細胞塊を 2日間培養し、心筋細胞へと分化させた。この段階で、心筋細胞を非常に高濃度含 有する細胞塊が形成された。
[0083] 次に培養液中の糖類濃度を限りなく除去するために、 D-MEM培養液 (無糖) (GIB CO)で 4〜5回洗浄し、最終的に乳酸 1 mMを加えた D- MEM培養液(GIBCO)中で、 7 日間(複数回の実験から、自律拍動する心筋細胞の生存率と、他の細胞の生存率を 目視で確認し、 5〜10日間の範囲で調節を行う必要がある。)培養した。その結果、図 10のように生細胞として心筋細胞のみ力 なる心筋細胞塊が形成された。
[0084] これを細胞外マトリクスの一つであるコラーゲンを選択的に消化するコラゲナーゼ 0. 01〜0.05%を用いて 37°Cにて 20分間消化した。コラゲナーゼ処理後、生理的浸透圧 を有するバッファー(116 mM NaCl、 20 mM Hepesゝ 12.5 mM NaH PO、 5.6 mMグル
2 4
コース、 5.4 mM KC1、 0.8 mM MgSO、 pH 7.35)で洗浄を行った。洗浄は直径 40 μ m
4
の穴を有する市販の膜を介して液交換し、合計 4〜5回行う。この結果、心筋細胞の みカゝらなる細胞塊と、死細胞からなる高密度凝集体が回収された(図 10A)。図 10Aの 四角で囲った部分の拡大写真を、図 10Cに示す。そして、図 10Aおよび 10Cの死細胞 の位置を、図 10Bおよび 10Dにそれぞれ示す。
[0085] この図 10に示した死細胞塊である高密度凝集体を、適切な密度勾配遠心、具体的 には Percoll™ (Pharmacia社) 58.5%を使用する密度勾配遠心を用いて、選択的に除 去できることが判明した(図 11)。続いて、この結果得られた細胞塊を培養し、心筋細 胞の指標となる抗サルコメァ -ァクチニン抗体と抗 GATA4抗体 (Santacruz社)を用い た免疫染色を行った。図 12Aは、接着した心筋細胞塊を表す。接着細胞塊の周囲に は点々とした浮遊死細胞がある力 接着した非心筋細胞は存在しない。図 12Bは、図 12Aをサルコメァ-ァクチニン(赤;細胞質)と DAPI (Molecular probe社)(青;核)で免 疫染色したものである。図 12Cは、図 12Aを GATA4 (赤;核)と DAPI (青;核)で免疫染 色したものである。共染色された核は紫色となる。その結果、本方法で精製した心筋 細胞塊は心筋細胞を 99.0%含有することが判明した(図 12C)。
[0086] ¾施例 9 無 ΙΐΠ.清 '弱酸件'低カルシウム '無糖であり、ァスパラギン酸'グルタミン酴 加した焙着 #に: ける心筋細qの
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、血清を除去し、弱酸性 であり、カルシウムを除去し、かつ糖類を除去した培養液中にァスパラギン酸 ·グルタ ミン酸を添加して培養することにより、心筋細胞を含む細胞塊 (胚様体)に対するァス パラギン酸 ·グルタミン酸の代償性の作用、より具体的には細胞塊 (胚様体)から心筋 細胞を選択する際におけるァスパラギン酸 ·グルタミン酸の代償性の作用、について 検討することを目的とした。
[0087] マウス胚性幹細胞を、培養液 [ a -MEM (SIGMA) 10%FBS (EQUITEC BIO)ぺ-シ リン.ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をノヽンギングドロ ップ法により細胞塊として分ィ匕開始後 5日目を使用して、予定心筋細胞を含む細胞 塊 (胚様体)へと分化させた。本実施例においては、自律拍動する心筋細胞がまだ 観察されない分ィ匕培養 5日(4日から 6日目でも同様の結果を得た)に、培養液から血 清を除去し、弱酸性 pH低カルシウム環境で 3日間培養を行った。この段階で、心筋 細胞を非常に高濃度含有する細胞塊が形成された。次に培養液中の糖類濃度を限 りなく除去するために、 D-MEM培養液 (無糖)(GIBCO)で 4〜5回洗浄した。洗浄は 直径 40 mの穴を有する市販の膜を介して液交換を行った。最終的に、 DMEM培養 液(無糖)に対して、グルタミン酸(SIGMA) 20 mg/L及びァスパラギン酸(SIGMA) 20 mg/Lを加え、 5日間(複数回の実験から、自律拍動する心筋細胞の生存率と、他の 細胞の生存率を目視で確認し、 3〜10日間の範囲で調節を行う必要がある。)培養し た。その結果、心筋細胞のみ力 なる心筋細胞塊が形成された。これを細胞外マトリ タスの一つであるコラーゲンを選択的に消化するコラゲナーゼ 0.03%で、 37°C温浴で 振盪 20分間消化した。コラゲナーゼ処理後、生理的浸透圧を有する任意のバッファ 一(116 mM NaCl、 20 mM Hepes、 12.5 mM NaH PO、 5.6 mMグルコース、 5.4 mM K
2 4
Cl、 0.8 mM MgSO、 pH 7.35)で洗浄を行った。洗浄は直径 40 μ mの穴を有する巿販
4
の膜を介して液交換し、合計 4〜5回行った。この結果、心筋細胞のみからなる細胞 塊が回収された。得られた細胞塊を培養し、心筋細胞の指標となる抗サルコメァ -ァ クチニン抗体と抗 GATA4抗体を用いた免疫染色を行った(図 13)。
[0088] また、細胞を統計的に処理し、既知のデータと比較した(図 13)。図 13Aは、自律拍 動を行う心筋細胞コロニーの顕微鏡像を示し、図 13Bは、自律拍動を行う心筋細胞コ 口-一のサルコメァ-ァクチニン染色(赤;細胞質)と GATA-4染色(緑;核)、 DAPI染 色 (青;核)を示す。
[0089] その結果、本方法で精製した心筋細胞塊は心筋細胞を 99.8%含有することが示さ れた。この精製率は、既存の心筋細胞精製方法 (例えば、 FASEB J. 2000; 14: 2540- 2548 ; J Clin Invest. 1996; 98: 216-224; FASEB J. 2003; 17: 740-742 ; J Mol Cell Ca rdiol. 2003; 35: 1461-1472)で示された精製結果のどれよりも高いものであることが明 らかになり、したがって本方法が高度な精製が可能であり、かつ高収率であることが 示された (表 1)。
[0090] [表 1] 表 1 : Oi MHC-promoter/neo法との純度'収量比較
Field t al. (丄 Clin. Invest. 1 996 , Vol. 98. 216-224)
Sar otncric nsyoito Saroomeric myosin Peiwnl
Preparalion positive cetts ncgaltvcは II, BrdJom ocytes
No sctedkm攀 11 2000 0.55
Physical isolation1 68 2000 3.4
G418 selection4 791 3 99.6 I
Saicomeiic Ac tin Saicomeric Ac tin.
GATA4 GATA4
Poisilzro celli Ne ative cells
Hattori 5041 10 99.8
Input Output
ES cells Cardiomyocytes
Field et al. 106 = 1G6 Hattori 7500 = 15000
¾施列 10 マウス : 細qからィ乍製した心 細qの
本実施例においては、間葉系幹細胞と言われるマウス骨髄由来成体幹細胞から、 心筋細胞を作製し、選択'精製することを目的として行った。
マウス骨髄由来成体幹細胞 (メス C3H/Heマウス)力も分ィ匕させた心筋細胞は、国際 公開 WO01/048151記載の細胞及び方法を用いて誘導した。すなわち、 IMDM (lscov e's Modified Dulbecco's Medium) (GIBCO)に牛胎仔血清 20%を添加して調整したメ ディウムで、 CMG細胞(CMG細胞の榭立方法は、 J Clin Invest, March 1999, Vol.103 ,p697-705を参照)を培養し、終濃度 3 μ mol/1の 5-ァザシチジン(SIGMA)を 24時間 添加し、 5-ァザシチジンを含まな 、上記培養液で 2〜3週間培養して心筋細胞を分ィ匕 誘導した。自律拍動心筋細胞の確認後、培養環境から血清を除去し、弱酸性 ρΗ·低 カルシウム ·無糖である力 乳酸 1 mMを添カ卩した D- MEM培養液(GIBCO)中で 5日間 培養を行った。培養後死細胞を除去し、残存する生細胞に対し、心筋細胞の指標と なる抗サルコメァ -ァクチニン抗体を用いた免疫染色を行った。 [0092] 図 14Aは選択前の培養細胞の様子を表す。拍動細胞を含む領域を破線で図示し た。図 14B〜Cは選択された細胞を示す。図 14Bは位相差顕微鏡像を、図 14Cは図 14 Bと同視野のサルコメァ-ァクチニン蛍光免疫染色像を、それぞれ示す。その結果、 本方法で作製した細胞の約 90%が心筋細胞であることが判明した(図 14)。
[0093] 実施例 11 マウス胎 由来心筋細胞の精製
本実施例においては、マウス胎児から、心筋細胞を精製することを目的として行つ た。
[0094] まず、胎生 7〜9日のマウス胚を母体子宫内から取り出し、丁寧に胚外組織と分離し た後、ピペッティングによってバラバラの細胞塊とした。このようにして得られた細胞塊 を、無血清 ·弱酸性 ρΗ ·低カルシウム '無糖である力 乳酸 0.5 mMを添加した培養液 中で、 5日間(複数回の実験から、自律拍動する心筋細胞の生存率と、他の細胞の生 存率を目視で確認し、 3〜10日間の範囲で調節を行う必要がある。)培養を行った。こ の培養液は Hank's BSS [無糖]: RPMI [無糖] =9 : 1の比で混合して作製した。このよ うにして精製心筋細胞を接着培養し、培養後、死細胞を除去し、残存する生細胞に 対し、心筋細胞の指標となるサルコメァ-ァクチニン蛍光免疫染色 (緑色;細胞質)、 および DAPI染色 (赤色;核)を行った。
[0095] 図 15Aは、 2つの異なるコロニーについて、拍動する細胞群の位相差顕微鏡像を示 す。図 15Bは、 4つの異なるコロニーについて、サルコメァ-ァクチニンと DAPI染色を重 ね合わせたものを示す。その結果、本方法で作製した細胞の約 99%が心筋細胞で あることが判明した(図 15)。
[0096] 実施例 12 無血清,弱酸性,低カルシウム '無糖であり、ピルビン酸を添加した培着 条件における心筋細胞の精製
本実施例においては、心筋細胞を含む細胞塊 (胚様体)を、血清を除去し、弱酸性 であり、カルシウムを除去し、かつ糖類を除去した培養液中にピルビン酸を添加して 培養することにより、心筋細胞を含む細胞塊 (胚様体)に対するピルビン酸の代償性 の作用、より具体的には細胞塊 (胚様体)から心筋細胞を選択する際におけるピルビ ン酸の代償性の作用、について検討することを目的とした。
[0097] マウス胚性幹細胞を、培養液 [ a -MEM (SIGMA) 10%FBS (EQUITEC BIO)ぺ-シ リン.ストレプトマイシン(GIBCO) ]を用いて、 EBあたり 75個の ES細胞をノヽンギングドロ ップ法により細胞塊として分ィ匕開始後 5日目を使用して、予定心筋細胞を含む細胞 塊 (胚様体)へと分化させた。本実施例においては、自律拍動する心筋細胞がまだ 観察されな 、分化培養 5日(4日から 6日目でも同様の結果を得た)に、培養液を、無 血清の MEM培養液(GIBCO)にインスリン'トランスフェリン'セレニウム(GIBCO)を添 カロしたものに交換し、更に 2日間培養を行った。更に得られた予定心筋細胞塊を 2日 間培養し、心筋細胞へと分化させた。この段階で、心筋細胞を非常に高濃度含有す る細胞塊が形成された。次に培養液中の糖類濃度を限りなく除去するために、 D-ME M培養液 (無糖)(GIBCO)で 4〜5回洗浄した。洗浄は直径 40 mの穴を有する巿販 の膜を介して液交換を行った。この洗浄の後、 D-MEM培養液 (無糖) (GIBCO)に対 して、最終的にピルビン酸 1 mMを加えて、 5日間培養を行った。
[0098] 次に細胞外マトリクスの一つであるコラーゲンを選択的に消化するコラゲナーゼ Typ e3 (Worthington Biochemical Corp) 0.05%を用いて、 37°Cにて 20分間振とうした。コラ ゲナーゼ処理後、生理的浸透圧を有するバッファー(116 mM NaCl、 20 mM Hepes、 12.5 mM NaH PO、 5.6 mMグルコース、 5.4 mM KC1、 0.8 mM MgSO、 pH 7.35)で洗
2 4 4
浄を行った。その結果、本方法で精製した心筋細胞塊は心筋細胞を約 9割以上の自 律拍動細胞を含有することが判明した (図 16)。
[0099] m 無糖'無 青であり ¾,酴 添加した焙着条件に: ¾ける薷番街マーモセ ッ M不件 細qfe Γ,、筋細qの;巽丰尺 Γ,、筋細qの
本実施例にぉ 、ては、霊長類マーモセット胚性幹細胞由来心筋細胞を含む細胞 塊 (胚様体)を、血清を除去し、かつ糖類を除去した培養液中で培養することにより、 心筋細胞を含む細胞塊 (胚様体)に対する血清枯渴および糖類枯渴の複合的な作 用、より具体的には霊長類マーモセット胚性幹細胞由来の細胞塊 (胚様体)から心筋 細胞を選択する際における血清枯渴および糖類枯渴の複合的な作用、について検 討することを目的とした。
[0100] マーモセット胚性幹細胞は、財団法人 '実験動物中央研究所から入手した。このマ ーモセット胚性幹細胞を、マイトマイシン C処理により増殖不活性ィ匕したマウス胚性線 維芽細胞(mouse embryonic fibroblast; MEF)を用いて未分化維持培養を行った。培 養液 [KO- DMEM (GIBCO)、 20%KO- SERUM (GIBCO)ゝ 1.6 mM L-グルタミン、 0.1 mM非必須アミノ酸(MEM)、 0.2 mM j8 -メルカプトエタノール(2- ME; Sigma)、 100 IU/ mlペニシリン、 100 g/ml硫酸ストレプトマイシン、および 8 ng/ml組換えヒト白血病阻 止因子(LIF; Chemicon)、組換えヒト塩基性線維芽細胞増殖因子(bFGF; Peprotech) ]を用いた。植え継ぎに際しては、 0.1%ΠΙ型コラゲナーゼ (Wortington)、 37°C10分に て ESコロニーを分離した。
[0101] 続!、て、 MEFと ESを分離するために、ポアサイズ 100 μ mのメッシュの通過液を取得 し、これをポアサイズ 40 μ mのメッシュの非通過細胞塊を取得した。この細胞塊がすな わち純粋な ES細胞塊である。分化にあたり、 EBあたり 50〜1000個の ES細胞塊をバタ テリアディッシュ法により胚様体として合計 15〜30日間培養し、心筋細胞を含む胚様 体へと分化させた。この際に使用した培養液は、本実施例において上述した培養液 から、 bFGFを除いたもの [KO- DMEM (GIBCO)、 20%KO- SERUM (GIBCO)ゝ 1.6 m M L-グルタミン、 0.1 mM非必須アミノ酸(MEM)、 0.2 mM j8 -メルカプトエタノール(2- ME; Sigma) , 100 IU/mlペニシリン、 100 g/ml硫酸ストレプトマイシン、および 8 ng/ml 組換えヒト白血病阻止因子(LIF; Chemicon) ]であった。
[0102] 培養液中の糖類を限りなく除去するために、胚様体を遠沈管に移し、 D-MEM培養 液 (無糖)(GIBCO)で 5回洗浄し、最終的に乳酸 1 mMをカ卩えた D-MEM培養液 (無糖 ) (GIBCO)中で、 15日間培養を行った。生体内の乳酸濃度は生理的条件下で 4 mM 程度まで上昇することから、この乳酸濃度は生理的なものでありこの濃度までの範囲 で調整する必要がある。
[0103] 15日間の培養後の細胞塊の状態を、図 17に示す。この結果、図 17のように生細胞 として心筋細胞からなる気泡状の細胞構造が形成された。すなわち、図 17A〜Cは、 無糖 +乳酸 ImMの培養液中で選択的に生存する、気泡状になった心筋細胞を示す 。図 17Aにおいて非常に光透過性の低い部分もしくは、胚様体そのものは、既に選択 的に細胞死を起こしている。また、図 17Bおよび図 17B'に示した胚様体は、胚様体表 面の泡状細胞が生存して 、る。図 17Bをさらに拡大し図 17Cに示した。
[0104] これに対し、上記の培養液 (bFGF不含有)を同量カ卩ぇ 3〜7日間培養を行った。生 存する心筋細胞が自律拍動を再開し、安定化したら、強制的な攪拌を行いながら 0.1 %III型コラゲナーゼ (Wortington)を用いて 37°Cにて 10分間処理し、死細胞と生細胞 を分離する。死細胞は、実施例 8記載の方法で除去した。フイブロネクチン (Sigma)に てコーティングしたディッシュに接着させた(図 18左)。 4%パラフオルムアルデヒドにて 固定後、実施例 8と同様に抗ァクチニン抗体 (Sigma)および、実施例 4と同様に抗 Nkx 2.5抗体 (Santacruz)にて免疫染色を行った (それぞれ、図 18右)。
[0105] この結果、マーモセット胚性幹細胞を、無糖'無血清であり乳酸を添加した培養条 件下にて培養することにより細胞を精製したところ、心筋細胞を選択的に取得するこ とができることが判明した。
[0106] 実施例 14 霊長街マーモセット胚件榦細胞由 心筋細胞の免疫不全マウス心臓に 針する移槭 牛羞の確認
本実施例にぉ 、ては、霊長類マーモセット胚性幹細胞由来心筋細胞の利用方法 である心臓に対する移植と生着に関する検討を目的とした。
[0107] 29ゲージの注射針を有する注射シリンジ (テルモ)内に実施例 13にて作製したマー モセット精製心筋細胞を、 0.2%ΠΙ型コラゲナーゼ (Wortington)、 0.125%トリプシン( GIBCO)となるように生理的浸透圧を有する緩衝液(116 mM NaCl、 20 mM Hepes、 1 2.5 mM NaH PO、 5.6 mMグルコース、 5.4 mM KC1、 0.8 mM MgSO、 pH 7.35)に懸
2 4 4
濁した溶液を用いて、 37°Cにて 20分、攪拌を行いながら処理した。これによつて 1〜3 0個程度の心筋細胞で構成される小細胞塊を作製し、移植に用いた。この心筋細胞 を含む生理的塩濃度の上記バッファー 100 Lを吸引した。
[0108] 免疫不全マウスである NOD-SCID (クレア) 7週齢ォスをフォーレン(アボット)を用い て吸入麻酔した。その後、気管内挿管による人工呼吸下で開胸した。露出した心臓 の心先部力 注射針を心基部に向けて心壁内に挿入し、一箇所に付き 30 L程度を 注入した。閉胸し、麻酔を離脱させ飼育を継続した。
[0109] 移植後 15日目に、心臓を麻酔下にて摘出し、 4%パラホルムアルデヒドによって組 織を固定した。厚さ 10 mの凍結切片を作製し、一次抗体としてャギ抗 Nkx2.5抗体( Santacruz)を、二次抗体としてロバ抗ャギ抗体- Alexa 488 (緑色に発色) (Molecular p robes)を使用した免疫染色(図 19B)、または一次抗体としてマウス抗サルコメァ -ァク チニン抗体 (Sigma)を、二次抗体としてゥサギ抗マウス抗体- Alexa 594 (赤色に発色) (Molecular probes)を使用した免疫染色(図 19D)、のいずれかを行った。
[0110] 一方で、マウス抗ヒト核抗原抗体 (霊長類全般の核抗原に反応) (Chemicon)とャギ 抗マウス抗体- Alexa 633 (Molecular probes)を試験管内で反応させ、複合体を形成 した。続いて正常マウス血清を用いて余剰のャギ抗マウス抗体- Alexa 633 (赤外)の 反応性を阻害した。この操作によって作製した抗体複合体を上記の切片に反応させ 、合計 3色の染色を行った(図 19B〜19D)。
[0111] いずれの免疫染色も、共焦点顕微鏡 (Carl Zeiss)を用いて画像ィ匕を行った。結果 を図 19に示す。
[0112] この結果、図の大きな核を有する細胞がマーモセット由来であることが判明した。す なわち、この図において、心筋マーカーである Nkx2.5を発現する霊長類細胞力 ァク チュンにより染色される心筋細胞の中に見られることが明らかになった。これは、マー モセット ES細胞由来の心筋細胞が、マウス心臓内に生着したことが確認されたことを 意味する。
[0113] ¾施例 15 無糖'無 rfn.清であり ¾,酴 添加した焙着条件に: けるヒ M不件 細q由
Γ,、筋細qの;巽丰尺 Γ,、筋細qの
本実施例においては、ヒト胚性幹細胞由来心筋細胞を含む細胞塊 (胚様体)を、血 清を除去し、かつ糖を除去した培養液中で培養することにより、心筋細胞を含む細胞 塊 (胚様体)に対する血清枯渴および糖枯渴の複合的な作用、より具体的にはヒト胚 性幹細胞由来の細胞塊 (胚様体)から心筋細胞を選択する際における血清枯渴およ び糖枯渴の複合的な作用、について検討することを目的とした。
[0114] ヒト胚性幹細胞は、国立大学法人,京都大学再生医科学研究所附属幹細胞医学 研究センター(ナショナルバイオリソースプロジェクトによる ES細胞センター)から入手 した。このヒト胚性幹細胞を、マイトマイシン C処理により増殖不活性ィ匕したマウス胚性 線維芽細胞(mouse embryonic fibroblast; MEF)を用いて未分化維持培養を行った。 培養液 [F12/DMEM(1:1) (SIGMAゝ製品番号 D6421)、 20%KO- SERUM (GIBCO)、 1 .6 mM L-グルタミン、 0.1 mM非必須アミノ酸(MEM)、 0.1 mM j8 -メルカプトエタノー ル(2- ME; Sigma)、 100 IU/mlペニシリン、 100 g/ml硫酸ストレプトマイシン、および 組換えヒト塩基性線維芽細胞増殖因子 (bFGF; Peprotech) ]を用いた。植え継ぎに際 しては、 0.1%ΠΙ型コラゲナーゼ (Wortington)、 37°C10分にて ESコロニーを分離した。
[0115] 続!、て、 MEFと ESを分離するために、ポアサイズ 40 μ mのメッシュの非通過細胞塊 を取得した。この細胞塊がすなわち純粋な ES細胞塊である。分化にあたり、 EBあたり 50〜1000個の ES細胞塊をバクテリアディッシュ法により胚様体として合計 15〜30日間 培養 (上記培養液を用いる。ただし bFGF不含有)し心筋細胞を含む胚様体へと分ィ匕 させた。培養液中の糖を限りなく除去するために、胚様体を遠沈管に移し、 D-MEM 培養液 (無糖) (GIBCO,製品番号 11966)で 5回洗浄し、最終的に乳酸 1 mMを加え た D-MEM培養液 (無糖) (GIBCO,製品番号 11966)中で、 15日間培養を行った。生 体内の乳酸濃度は生理的条件下で 4 mM程度まで上昇することから、この乳酸濃度 は生理的なものでありこの濃度までの範囲で調整する必要がある。
[0116] 糖存在条件で培養を行った細胞塊 (対照条件)と上記無糖条件下で 15日間の心筋 細胞選択培養を行った細胞塊 (心筋選択条件)の状態を、位相差像として図 20左側 に示す。これらの細胞の生死を示すために、生存の指標である膜電位を検出して蛍 光を発する TMRM (Molecular Probes社)により染色を行い、図 20右側にそれぞれ示 した。この結果、図 20上段のように、有糖 (対照)条件群では全ての胚様体が蛍光を 有する(すなわち、すべての胚葉体が生細胞から構成される)に対し、図 20下段のよ うに、無糖 (心筋選択)条件における培養によって、蛍光を示さない細胞塊 (すなわち 、死細胞から構成される細胞塊)が出現した。しかも、無糖 (心筋選択)条件において 生存する細胞塊は、全て自律拍動を行って!、た。
[0117] これに対し、上記の培養液 (bFGF不含有)を同量カ卩ぇ 3〜7日間培養を行った。生 存する心筋細胞が自律拍動を再開し、安定化したら、強制的な攪拌を行いながら 0.1 %ΠΙ型コラゲナーゼ (Wortington)を用いて 37°Cにて 10分間処理し、死細胞と生細胞 を分離する。死細胞は、実施例 8記載の方法で除去した。次いで、フイブロネクチン( Sigma)にてコーティングしたディッシュに接着させた。
[0118] 4%パラフオルムアルデヒドにて固定後、実施例 8と同様に抗ァクチニン抗体 (Sigma )および、実施例 4と同様に抗 Nkx2.5抗体 (Santacruz)にて免疫染色を行い、各細胞 塊の染色像を図 21に示した。この図において示されるように、 DAPIで染色された細胞 核(図 21a)はすべて、心筋マーカーである抗 Nkx2.5抗体により免疫染色された細胞 核(図 21c)と重なった。そして別の心筋マーカーである抗ァクチニン抗体での免疫染 色像(図 21d)と抗 Nkx2.5抗体により免疫染色像とを重ね合わせたところ、抗 Nkx2.5抗 体により免疫染色された細胞と抗ァクチニン抗体で免疫染色された細胞とは、完全 に重なることが明らかになった(図 21 。
この結果、ヒト胚性幹細胞を、無糖'無血清であり乳酸を添加した培養条件下にて 培養することにより細胞を精製したところ、心筋細胞を選択的に取得することができる ことが判明した。

Claims

請求の範囲
[1] 胚性幹細胞由来、成体幹細胞由来又は胎児由来の心筋細胞と非心筋細胞とを含む 細胞混合物から、心筋細胞を選択する方法であって、前記細胞混合物を、
(i)低糖条件;および
(ii)低カルシウム条件、低栄養条件、乳酸添加条件、ァスパラギン酸 ·グルタミン酸 添加条件、およびピルビン酸添加条件、力 なる群力 選択されるほたは複数の条 件;
を有する培養液中で培養することを特徴とする、心筋細胞を選択する方法。
[2] 更にコラゲナーゼを用いて心筋細胞に付着する死細胞を除去することからなる、請 求項 1に記載の心筋細胞を選択する方法。
[3] 心筋細胞の比重と比較して、死細胞の比重が高比重であることを利用して、死細胞 を除去する、請求項 2に記載の心筋細胞を選択する方法。
[4] 培養液の(ii)の条件が乳酸添加条件である、請求項 1〜3の 、ずれか 1項に記載の心 筋細胞を選択する方法。
[5] 培養液の(ii)の条件がァスパラギン酸 ·グルタミン酸添加条件である、請求項 1〜3の いずれか 1項に記載の心筋細胞を選択する方法。
[6] 培養液の(ii)の条件がピルビン酸添加条件である、請求項 1〜3の 、ずれか 1項に記 載の心筋細胞を選択する方法。
[7] 胚性幹細胞に対して分化誘導して、予定心筋細胞 (未分化中胚葉)を含む胚様体を 形成し、この胚様体を低血清条件および Zまたは弱酸性 PH条件の培養液中で培養 することにより前記細胞混合物を調製する、請求項 1に記載の心筋細胞を選択する 方法。
[8] 胚性幹細胞由来の心筋細胞を選択する方法であって、胚性幹細胞に分ィ匕誘導して 未分化中胚葉を含む胚様体を形成した後、この胚様体を低血清条件および Zまた は弱酸性 pH条件の培養液中で培養することにより予定心筋細胞を含む細胞混合物 を調製し、そして同一の培養液中で当該細胞混合物の培養を継続することにより心 筋細胞を得ることを特徴とする、前記心筋細胞を選択する方法。
[9] 低糖条件が、糖類を含まな ヽ条件または分化誘導時に用いた培養液中の糖類の条 件と比較して糖類を 1%未満まで低下させた条件である、請求項 1〜6のいずれか 1項 に記載の心筋細胞を選択する方法。
[10] 低カルシウム条件力 培養液中のカルシウム濃度が 0.3〜1.3 mMの条件である、請 求項 1〜6のいずれか 1項に記載の心筋細胞を選択する方法。
[11] 低栄養条件が、培養液として RPMI培養液、 DMEM培養液、 MEM培養液、 F12培養液 又は a -MEM培養液を用いる場合、当該培養液に含有されるすべての栄養成分が、 当該培養液中の栄養成分と比較して 10%以下まで低下している条件である、請求項
1〜6のいずれか 1項に記載の心筋細胞を選択する方法。
[12] 乳酸添加条件が、乳酸を 0.1〜5 mM添加する条件である、請求項 1〜6のいずれか 1 項に記載の心筋細胞を選択する方法。
[13] ァスパラギン酸'グルタミン酸添加条件力 ァスパラギン酸を 20〜100 mg/L、ダルタミ ン酸を 20〜100 mg/L添加する条件である、請求項 1〜6のいずれ力 1項に記載の心 筋細胞を選択する方法。
[14] ピルビン酸添加条件力 ピルビン酸を 0.5〜5 mM添加する条件である、請求項 1〜6 のいずれか 1項に記載の心筋細胞を選択する方法。
[15] 低血清条件が、血清を含まない条件、または未分ィ匕中胚葉を得るまでの段階におい て培養液に添加した血清または血清成分の濃度を 100%として算出した場合に血清 または血清成分の濃度が 0%〜10%の条件である、請求項 8に記載の心筋細胞を選 択する方法。
[16] 弱酸性 pH条件力 ¾H6.5の条件である、請求項 8に記載の心筋細胞を選択する方法。
PCT/JP2007/051563 2006-01-31 2007-01-31 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法 WO2007088874A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/162,684 US9115342B2 (en) 2006-01-31 2007-01-31 Method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses
BRPI0706801A BRPI0706801B8 (pt) 2006-01-31 2007-01-31 método de purificação de cardiomiócitos ou cardiomiócitos programados derivado de células-tronco ou fetos
CA2640644A CA2640644C (en) 2006-01-31 2007-01-31 A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses
KR20127027002A KR101455144B1 (ko) 2006-01-31 2007-01-31 줄기세포 및 태아에서 유래된 심근세포 및 예정 심근세포의 제조방법
EP07713734.7A EP1983042B1 (en) 2006-01-31 2007-01-31 A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses
AU2007210580A AU2007210580B2 (en) 2006-01-31 2007-01-31 A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses
KR1020087020152A KR101348325B1 (ko) 2006-01-31 2007-01-31 줄기세포 및 태아에서 유래된 심근세포 및 예정 심근세포의제조방법
JP2007556880A JP5312804B2 (ja) 2006-01-31 2007-01-31 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法
IL193095A IL193095A (en) 2006-01-31 2008-07-28 A method for isolating cardiac myocyte cells or programmed heart myocyte cells derived from stem cells or embryos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-023770 2006-01-31
JP2006023770 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007088874A1 true WO2007088874A1 (ja) 2007-08-09

Family

ID=38327445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051563 WO2007088874A1 (ja) 2006-01-31 2007-01-31 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法

Country Status (12)

Country Link
US (1) US9115342B2 (ja)
EP (2) EP2468851A1 (ja)
JP (2) JP5312804B2 (ja)
KR (2) KR101455144B1 (ja)
CN (2) CN101374942A (ja)
AU (1) AU2007210580B2 (ja)
BR (1) BRPI0706801B8 (ja)
CA (1) CA2640644C (ja)
IL (1) IL193095A (ja)
RU (1) RU2426784C2 (ja)
SG (1) SG169359A1 (ja)
WO (1) WO2007088874A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133945A1 (ja) 2011-03-30 2012-10-04 学校法人東京女子医科大学 胚性幹細胞から心筋シートを製造する方法
JP2013528401A (ja) * 2010-06-18 2013-07-11 セルラー ダイナミクス インターナショナル, インコーポレイテッド 透析された血清を有する心筋細胞培地
JP2013143968A (ja) * 2006-01-31 2013-07-25 Daiichi Sankyo Co Ltd 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法
JP2014521337A (ja) * 2011-07-29 2014-08-28 セルラー ダイナミクス インターナショナル, インコーポレイテッド 幹細胞由来の組織細胞中の代謝成熟
KR20170031152A (ko) 2014-07-16 2017-03-20 하트 시드 가부시키가이샤 신규 미분화 줄기세포 제거 및 심근 순화 정제 배지
JPWO2016072519A1 (ja) * 2014-11-07 2017-08-17 国立大学法人大阪大学 未分化細胞が除去された分化誘導細胞集団、その利用及びその製造方法
WO2018074457A1 (ja) * 2016-10-17 2018-04-26 学校法人慶應義塾 未分化幹細胞除去剤、及び未分化幹細胞除去方法
WO2018110654A1 (ja) 2016-12-15 2018-06-21 Heartseed株式会社 未分化幹細胞除去剤及び未分化幹細胞除去方法
WO2018225705A1 (ja) 2017-06-05 2018-12-13 テルモ株式会社 細胞培養物の製造方法
WO2020067438A1 (ja) 2018-09-27 2020-04-02 国立大学法人大阪大学 多能性幹細胞由来細胞のシート化方法
WO2020067435A1 (ja) * 2018-09-27 2020-04-02 国立大学法人大阪大学 多能性幹細胞由来細胞のシート化方法
WO2020067436A1 (ja) * 2018-09-27 2020-04-02 国立大学法人大阪大学 多能性幹細胞由来細胞の移植片形成方法
WO2024008773A1 (en) 2022-07-05 2024-01-11 Repairon Gmbh Differentiation of ipscs in bioreactors

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476070B2 (en) 2005-08-29 2013-07-02 Technion Research & Development Foundation Limited Media for culturing stem cells
DK3441459T3 (da) 2006-08-02 2021-06-07 Technion Res & Dev Foundation Fremgangsmåder til ekspansion af embryonale stamceller i en suspensionskultur
AU2010232148B2 (en) * 2009-03-30 2014-10-09 Daiichi Sankyo Company, Limited Method for inducing cell death in pluripotent stem cells and differentiated cells other than cardiac myocytes
JP6276918B2 (ja) 2009-11-12 2018-02-07 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 多能性幹細胞を未分化状態で培養する培地、細胞培養および方法
KR101364965B1 (ko) * 2010-10-06 2014-02-18 (주)차바이오앤디오스텍 인간 배아줄기세포 유래 심근세포의 배양 및 정제 방법
ES2523903B1 (es) * 2013-04-30 2015-09-09 Fundación Pública Andaluza Progreso Y Salud Método de obtención de datos útiles para el diagnóstico diferencial de la fibrosis hepática
CN105039399A (zh) * 2014-04-23 2015-11-11 复旦大学 多能干细胞-遗传性心肌病心肌细胞及其制备方法
US10696948B2 (en) 2014-09-16 2020-06-30 Osaka University Method for preparing pluripotent stem cell-derived cardiomyocyte population
JP6622007B2 (ja) * 2015-05-29 2019-12-18 オリンパス株式会社 細胞評価方法
WO2017207576A1 (en) 2016-06-01 2017-12-07 Miltenyi Biotec Gmbh Process for generation, identification and isolation of human pluripotent stem cell-derived cardiomyocytes and cardiomyocyte subpopulations
CN106244527B (zh) * 2016-08-29 2019-10-08 广东依浦赛生物科技有限公司 人源iPS干细胞体外定向分化为心肌细胞的试剂盒及方法
CN109153963B (zh) * 2016-11-01 2022-06-24 泰尔茂株式会社 粘附状态的细胞培养物的改变方法
CN106754663A (zh) * 2016-11-30 2017-05-31 中国人民解放军第三军医大学第三附属医院 促进成年哺乳动物心肌细胞存活的体外培养方法及监测成年哺乳动物心肌细胞增殖的方法
CN107828721A (zh) * 2017-11-10 2018-03-23 山东农业大学 一种鸡胚心肌细胞的培养及免疫组织化学鉴定方法
CN110904024A (zh) * 2019-11-13 2020-03-24 武汉济源高科技有限公司 一种悬浮细胞培养中去除死细胞的方法
CN111621470B (zh) * 2020-06-08 2023-06-27 广东源心再生医学有限公司 一种高效低毒的心肌纯化培养基及方法
CN114591895A (zh) * 2022-04-12 2022-06-07 澳门大学 一种诱导干细胞分化为心肌细胞的方法及其培养基组合

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2168763A (en) 1933-03-23 1939-08-08 Ibm Record controlled machine with improved serial number controls
WO2000049137A2 (en) 1999-02-20 2000-08-24 Intercytex Limited Pluripotential cell derived from an embryonic stem cell and a nucleus of a somatic cell
WO2001048151A1 (fr) 1999-12-28 2001-07-05 Kyowa Hakko Kogyo Co., Ltd. Cellules pouvant induire une differenciation dans des cellules du muscle cardiaque
WO2005090558A1 (en) * 2004-03-19 2005-09-29 Geron Corporation Method for making high purity cardiomyocyte preparations suitable for regenerative medicine
WO2005118784A1 (en) * 2004-06-01 2005-12-15 Es Cell International Pte Ltd Improved cardiomyocyte differentiation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2322497C2 (ru) 2000-11-30 2008-04-20 Стемрон Инк. Изолированная гомозиготная стволовая клетка (варианты), способ ее получения (варианты), способ получения требуемой клетки-родоначальника, дифференцированной клетки, группы дифференцированных клеток или типа ткани
CN1543500B (zh) * 2001-07-12 2014-04-09 杰龙公司 从人多能干细胞产生心肌细胞系细胞
US7732199B2 (en) * 2001-07-12 2010-06-08 Geron Corporation Process for making transplantable cardiomyocytes from human embryonic stem cells
US20080254003A1 (en) 2004-12-22 2008-10-16 Robert Passier Differentiation of Human Embryonic Stem Cells and Cardiomyocytes and Cardiomyocyte Progenitors Derived Therefrom
BRPI0706801B8 (pt) * 2006-01-31 2021-05-25 Asubio Pharma Co Ltd método de purificação de cardiomiócitos ou cardiomiócitos programados derivado de células-tronco ou fetos

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2168763A (en) 1933-03-23 1939-08-08 Ibm Record controlled machine with improved serial number controls
WO2000049137A2 (en) 1999-02-20 2000-08-24 Intercytex Limited Pluripotential cell derived from an embryonic stem cell and a nucleus of a somatic cell
WO2001048151A1 (fr) 1999-12-28 2001-07-05 Kyowa Hakko Kogyo Co., Ltd. Cellules pouvant induire une differenciation dans des cellules du muscle cardiaque
WO2005090558A1 (en) * 2004-03-19 2005-09-29 Geron Corporation Method for making high purity cardiomyocyte preparations suitable for regenerative medicine
WO2005118784A1 (en) * 2004-06-01 2005-12-15 Es Cell International Pte Ltd Improved cardiomyocyte differentiation

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
CHATHAM JC ET AL., J BIOL CHEM, vol. 270, 1995, pages 7999 - 8008
DIFFERENTIATION, vol. 68, 2001, pages 31 - 43
DOEVENDANS P.A. ET AL.: "Differentiation of Cardiomyocytes in Floating Embryoid Bodies is Comparable to Fetal Cardiomyocytes", J. MOL. CELL CARDIOL., vol. 32, 2000, pages 839 - 851, XP002267746 *
FASEB J., vol. 14, 2000, pages 2540 - 2548
FASEB J., vol. 17, 2003, pages 740 - 742
FISHMAN, M. C., SCIENCE, vol. 294, 2001, pages 1290 - 1291
HIDAKA K.: "Es Saibo kara no Shinkin Saibo no Bunka Yudo to Tanri", FUKUOKA ISHI, vol. 95, no. 7, 2004, pages 153 - 159, XP003016175 *
J CLIN INVEST, vol. 103, March 1999 (1999-03-01), pages 697 - 705
J CLIN INVEST., vol. 98, 1996, pages 216 - 224
J MOL CELL CARDIOL., vol. 35, 2003, pages 1461 - 1472
J. CLIN. INVEST., vol. 103, 1999, pages 697 - 705
KHAIRALLAH M ET AL., AM J PHYSIOL HEART CIRC PHYSIOL, vol. 286, 2004, pages H1461 - 1470
KLUG MG ET AL., J. CLIN. INVEST., vol. 98, 1996, pages 216 - 224
MITALIPOVA ET AL., CLONING, vol. 3, 2001, pages 59 - 67
MULLER M ET AL., FASEB J., vol. 14, 2000, pages 2540 - 2548
NAT. GENET., vol. 24, 2000, pages 372 - 376
PETITTE ET AL., MECH. DEV., vol. 121, 2004, pages 1159 - 1168
SASAKI ET AL., STEM CELLS., vol. 23, 2005, pages 1304 - 1313
SCHRODER AR ET AL., CELL, vol. 110, 2002, pages 521 - 529
See also references of EP1983042A4
SUEMORI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 345, 2006, pages 926 - 932
SUEMORI ET AL., DEV. DYN., vol. 222, 2001, pages 273 - 279
TADA ET AL., CURR. BIOL., vol. 11, 2001, pages 1553
THOMSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 92, 1995, pages 7844
VRANA K ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 11911 - 6

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143968A (ja) * 2006-01-31 2013-07-25 Daiichi Sankyo Co Ltd 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法
JP2013528401A (ja) * 2010-06-18 2013-07-11 セルラー ダイナミクス インターナショナル, インコーポレイテッド 透析された血清を有する心筋細胞培地
US9365826B2 (en) 2010-06-18 2016-06-14 Cellular Dynamics International, Inc. Cardiomyocyte medium with dialyzed serum
WO2012133945A1 (ja) 2011-03-30 2012-10-04 学校法人東京女子医科大学 胚性幹細胞から心筋シートを製造する方法
JP2014521337A (ja) * 2011-07-29 2014-08-28 セルラー ダイナミクス インターナショナル, インコーポレイテッド 幹細胞由来の組織細胞中の代謝成熟
KR20170031152A (ko) 2014-07-16 2017-03-20 하트 시드 가부시키가이샤 신규 미분화 줄기세포 제거 및 심근 순화 정제 배지
JPWO2016072519A1 (ja) * 2014-11-07 2017-08-17 国立大学法人大阪大学 未分化細胞が除去された分化誘導細胞集団、その利用及びその製造方法
KR20190052096A (ko) 2016-10-17 2019-05-15 각고호우징 게이오기주크 미분화 줄기세포 제거제, 및 미분화 줄기세포 제거 방법
WO2018074457A1 (ja) * 2016-10-17 2018-04-26 学校法人慶應義塾 未分化幹細胞除去剤、及び未分化幹細胞除去方法
JPWO2018074457A1 (ja) * 2016-10-17 2019-07-18 学校法人慶應義塾 未分化幹細胞除去剤、及び未分化幹細胞除去方法
WO2018110654A1 (ja) 2016-12-15 2018-06-21 Heartseed株式会社 未分化幹細胞除去剤及び未分化幹細胞除去方法
WO2018225705A1 (ja) 2017-06-05 2018-12-13 テルモ株式会社 細胞培養物の製造方法
US12084683B2 (en) 2017-06-05 2024-09-10 Terumo Kabushiki Kaisha Method for increasing the proportion of desired cells from induced pluripotent stem cells
WO2020067438A1 (ja) 2018-09-27 2020-04-02 国立大学法人大阪大学 多能性幹細胞由来細胞のシート化方法
WO2020067435A1 (ja) * 2018-09-27 2020-04-02 国立大学法人大阪大学 多能性幹細胞由来細胞のシート化方法
WO2020067436A1 (ja) * 2018-09-27 2020-04-02 国立大学法人大阪大学 多能性幹細胞由来細胞の移植片形成方法
JPWO2020067438A1 (ja) * 2018-09-27 2021-08-30 国立大学法人大阪大学 多能性幹細胞由来細胞のシート化方法
JPWO2020067436A1 (ja) * 2018-09-27 2021-08-30 国立大学法人大阪大学 多能性幹細胞由来細胞の移植片形成方法
JPWO2020067435A1 (ja) * 2018-09-27 2021-09-09 国立大学法人大阪大学 多能性幹細胞由来細胞のシート化方法
WO2024008773A1 (en) 2022-07-05 2024-01-11 Repairon Gmbh Differentiation of ipscs in bioreactors

Also Published As

Publication number Publication date
KR20080097197A (ko) 2008-11-04
JPWO2007088874A1 (ja) 2009-06-25
BRPI0706801B1 (pt) 2020-04-07
US9115342B2 (en) 2015-08-25
BRPI0706801A2 (pt) 2011-04-05
CN101374942A (zh) 2009-02-25
EP1983042A1 (en) 2008-10-22
IL193095A0 (en) 2009-02-11
BRPI0706801B8 (pt) 2021-05-25
KR20120123608A (ko) 2012-11-08
RU2426784C2 (ru) 2011-08-20
EP1983042A4 (en) 2009-06-17
US20090275132A1 (en) 2009-11-05
JP5756145B2 (ja) 2015-07-29
JP5312804B2 (ja) 2013-10-09
CN103409368A (zh) 2013-11-27
CN103409368B (zh) 2016-05-25
KR101348325B1 (ko) 2014-01-08
AU2007210580B2 (en) 2012-10-11
RU2008135313A (ru) 2010-03-20
KR101455144B1 (ko) 2014-10-27
JP2013143968A (ja) 2013-07-25
CA2640644A1 (en) 2007-08-09
AU2007210580A1 (en) 2007-08-09
SG169359A1 (en) 2011-03-30
EP1983042B1 (en) 2017-03-15
CA2640644C (en) 2013-11-26
IL193095A (en) 2015-06-30
EP2468851A1 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5756145B2 (ja) 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法
Ali et al. Derivation of type II alveolar epithelial cells from murine embryonic stem cells
Zandstra et al. Scalable production of embryonic stem cell-derived cardiomyocytes
JP5523830B2 (ja) 心筋細胞の細胞塊作製方法及び当該心筋細胞塊の用途
US9994822B2 (en) Cardiomyocyte differentiation
WO2022211054A1 (ja) 卵巣体細胞様細胞の製造方法、及び霊長類多能性幹細胞を卵巣体細胞様細胞に分化誘導する方法
Lü et al. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes
AU2012227337B2 (en) A method for purifying cardiomyocytes or programmed cardiomyocytes derived from stem cells or fetuses
WO2010114136A1 (ja) 多能性幹細胞及び心筋細胞以外の分化細胞に対する細胞死誘導方法
JP2022540579A (ja) cP1Pまたはその薬学的に許容可能な塩を有効成分として含む幹細胞増殖促進用組成物
van der Heyden et al. Culturing and Differentiation of Embryonic and Adult Stem Cells for Heart Research and Transplantation Therapy
Kuehn Characterization of Embryonic Stem Cell-Differentiated Cells as Mesenchymal Stem Cells
Bauwens A scalable bioprocess for generating embyronic stem cell derived cardiomyocytes
Sun et al. Human Embryonic Stem Cell‐Derived Cardiomyocytes for Cell Therapy and Drug Discovery
WO2009052209A2 (en) Isolation of stem cells and effective control of contamination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556880

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 193095

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2640644

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780003957.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007713734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007713734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087020152

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007210580

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 4551/CHENP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008135313

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2007210580

Country of ref document: AU

Date of ref document: 20070131

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12162684

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0706801

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080731

WWE Wipo information: entry into national phase

Ref document number: 1020127027002

Country of ref document: KR