WO2007087893A1 - Verfahren und vorrichtung zum stranggiessen - Google Patents

Verfahren und vorrichtung zum stranggiessen Download PDF

Info

Publication number
WO2007087893A1
WO2007087893A1 PCT/EP2006/012560 EP2006012560W WO2007087893A1 WO 2007087893 A1 WO2007087893 A1 WO 2007087893A1 EP 2006012560 W EP2006012560 W EP 2006012560W WO 2007087893 A1 WO2007087893 A1 WO 2007087893A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal strip
cooling
section
continuous casting
metal
Prior art date
Application number
PCT/EP2006/012560
Other languages
English (en)
French (fr)
Inventor
Uwe Plociennik
Jens Kempken
Peter Jonen
Ingo Schuster
Tilmann BÖCHER
Original Assignee
Sms Demag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37909512&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007087893(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CN2006800499333A priority Critical patent/CN101351285B/zh
Priority to PL06841185T priority patent/PL1937429T3/pl
Priority to BRPI0620971-8A priority patent/BRPI0620971B1/pt
Priority to US12/087,305 priority patent/US8596335B2/en
Priority to DE502006003212T priority patent/DE502006003212D1/de
Application filed by Sms Demag Ag filed Critical Sms Demag Ag
Priority to AU2006337470A priority patent/AU2006337470B2/en
Priority to EP06841185A priority patent/EP1937429B1/de
Priority to JP2008548950A priority patent/JP5039712B2/ja
Priority to CA2635128A priority patent/CA2635128C/en
Publication of WO2007087893A1 publication Critical patent/WO2007087893A1/de
Priority to EG2008071146A priority patent/EG24892A/xx
Priority to US13/353,511 priority patent/US8522858B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting

Definitions

  • the invention relates to a process for the continuous casting of slab, thin slab, ingot, pre-profile, round profile, pipe profile or billet strands and the like of liquid metal in a continuous casting, wherein the metal emerges from a mold vertically downwards, wherein the metal strip is then guided vertically downward along a vertical strand guide and thereby cooled, wherein the metal strip is then bent from the vertical direction in the horizontal direction and wherein in the end region of the bend in the horizontal direction or after the bend in the horizontal direction mechanical deformation of the metal strip takes place. Furthermore, the invention relates to a continuous casting plant, in particular for carrying out this method.
  • a generic method for continuous casting is known, for example, from EP 1 108 485 A1 or from WO 2004/048016 A2.
  • liquid metal in particular steel
  • a mold wherein it solidifies and forms a metal band which is gradually diverted or bent from the vertical direction into the horizontal direction.
  • a vertical strand guide which initially leads the still very hot metal strip vertically below.
  • the metal strip is gradually bent by appropriate rollers or rollers in the horizontal.
  • EP 1 108 485 A1 proposes a device for cooling the cast strand in a cooling zone, in which the strand is welded by means of pairs of rolls which are transverse to the strand axis along the strand withdrawal direction. are arranged one above the other, supported, wherein the application of coolant further cools the strand.
  • the proposed device comprises a coolant conveying between each two superimposed rolls coolant element extending along the longitudinal axis of the rollers and is designed so that between see the respective cooling element and the roller and the cooling element and the strand gap arise, wherein the respective cooling element is provided with at least one coolant-promoting, opening into a gap channel.
  • WO 2004/048016 A2 provides for optimal temperature control of the cast metal strip, which is determined by the outlet temperature, which is determined by controlling the surface temperature at the end of the metallurgical strand length of G fauxstrangs, a dynamic spray system in the form of water volume distribution and pressure distribution or pulse distribution over the strand width and the strand length is functionally controlled to a temperature course curve calculated for the strand length and the strand width.
  • the solution of this problem by the invention according to the method is achieved in that in the conveying direction of the metal strip behind the mold and before the mechanical deformation of the metal strip in a first section, a cooling of the metal strip with a heat transfer coefficient between 2,500 and 20,000 W / (m 2 K) , In the conveying direction after cooling in a second section by heat balance in the metal strip with or without reduced cooling of the surface of the metal strip, the surface of the metal strip is heated to a temperature Ac3 or Ar3, after which the mechanical deformation takes place in a third section.
  • the cooling of the metal strip with a heat transfer coefficient between 3,000 and 10,000 W / (m 2 K) takes place.
  • the surfaces of the metal strip are cleaned before being exposed to the cooling medium for cooling, the effect of subsequent cooling can be further improved.
  • the cleaning can be done by descaling, for example, by the opposite in strand or metal strip extraction direction, first reached by the metal strip / strand and thus foremost or topmost coolant (nozzles, nozzle bars od.
  • the cooling medium Apply under high pressure so that a descaling results.
  • the mechanical deformation in the third section may be a straightening process of the metal strip or comprise such a process. alternative or additively, it may be provided that the mechanical deformation in the third section is a rolling process of the metal strip or comprises such a process.
  • the cooling in the first section can - be designed as intensive cooling - limited to the area of the vertical strand guide.
  • the term of the vertical strand guide should also include that the metal strip is guided largely vertically.
  • the cooling in the first section can also take place intermittently, wherein the metal strip / strand is alternately intensively and weakly cooled, for example by changing thedemediumbeaufschlagungs Why [I: min.m 2 ] and / or setting different distances of the coolant to the metal strip.
  • the proposed continuous casting for continuous casting of slabs, Dünnbrammen-, Vorblock-, Vorprofil-, Rundprofil-, Rohrprofil- or billet strands and the like of liquid metal, with a mold, from which the metal exits vertically downwards, a below the mold arranged vertical Strand guide and means for bending the metal strip from the vertical direction in the horizontal direction, wherein mechanical Umformkar for the metal strip are arranged in the end region of the bend in the horizontal direction or after the bend in the horizontal direction, according to the invention is characterized in that the vertical Strand guide has a number in the conveying direction of the metal strip disposed on both sides of the metal lollen roll, wherein in the region of the rollers first cooling means are arranged, with which a cooling fluid can be applied to the surface of the metal strip, wherein the cooling means in vertical and / or horizontal Direction are arranged displaceably.
  • the coolant can advantageously be designed to be oscillatable.
  • second cooling means may be arranged in a fixed position
  • the first and / or the second coolant may have a housing, from which the cooling fluid is applied by means of at least one nozzle.
  • the cooling fluid can be applied from the housing by means of two nozzles or nozzle rows.
  • a cooling with a defined intensity which is chosen so that on the one hand a high-quality metal strip can be produced, which has the desired microstructure and microstructure composition, but on the other hand also the degree of scaling of the strip surface minimal can be held.
  • the proposal also reduces the accumulation of undesirable side effects on the strip surface.
  • the proposed procedure results in a sufficient thermal shock such that oxide layers located on the surface of the metal strip are separated off and washed away. This leads to a cleaned strand surface, which is advantageous for uniform cooling of the metal strip and also for possible heating in the tunnel kiln.
  • the proposed method reduces the risk of precipitation or of so-called "hot shortness", so that advantages are also achieved in this respect .. Due to the necessary for the thermal shock lowering of the surface temperature - this should not fall below the martensite start temperature - there is a transformation of austenite in the metal strip in In the subsequent re-heating due to the large temperature gradient between the strand surface and the core of the metal strip, a return transformation of the fine ferrite into austenite takes place with small grains. In these conversions, the aluminum nitrides (AIN) or other precipitates are overgrown, and on the grain boundaries are percent less aluminum nitrides than the large austenite grain prior to conversion. The finer structure is therefore less susceptible to cracking if excreta should be present.
  • the area for intensive cooling is provided so that the reheating can take place as early as possible.
  • the ferrite transformation and the subsequent transformation into austenite should take place before the mechanical stress of the strand surface, for example in the bending drives. This measure reduces the risk of crack formation due to the temperature drop of the strand caused by the thermal shock.
  • An embodiment of the method provides that said (intensive) cooling comprises about one-quarter to one-third of the (arc) path from the mold to the mechanical forming, followed by about three quarters or two-thirds of this path, on which no more or only reduced cooling is.
  • the intensive cooling provided according to the invention can be arranged between the strand guide rollers and, depending on the desired cooling effect, extend over a longer region of the strand guide. It may also be advantageous, as mentioned, to apply the intensive cooling intermittently in order not to undercool the surface, particularly in the case of crack-sensitive materials.
  • the hot brittleness ie the cracking of the slab surface
  • the hot brittleness can be reduced, which can be caused in particular by a high copper content in the material.
  • This is particularly relevant for scrap as a starting material, which sometimes has a correspondingly high copper content.
  • Fig. 1 shows schematically a continuous casting in the side view with the representation of some of the components of the system
  • Figure 2 is an enlarged detail of Figure 1, namely the right branch of the vertical strand guide with first and second cooling means ..;
  • FIG. 3 shows a further enlarged detail of FIG. 2 with two rollers and a coolant arranged therebetween;
  • FIG. 4 shows the coolant according to FIG. 3 in detail.
  • a continuous casting plant 2 is shown schematically.
  • Liquid metallic material emerges vertically downwards as a strand or metal strip 1 from a mold 3 in the conveying direction F and is gradually diverted from the vertical V into the horizontal H along a casting arc section.
  • a vertical strand guide 4 which has a number of rollers 10, which lead the metal strip 1 down.
  • a number of rollers 9 act as a means for bending the metal strip 1 from the vertical V into the horizontal H.
  • the metal strip 1 arrives in mechanical deformation means 5.
  • this is a straightening driver, which subjects the metal strip 1 to a straightening process by mechanical deformation. It is also possible to provide a rolling process, which usually follows.
  • the region of the metal strip from the exit from the mold 3 to the mechanical deformation is subdivided into three sections.
  • a first section 6 intensive cooling of the hot metal strip 1 takes place.
  • a second section 7 virtually no further cooling takes place Heat in the metal strip 1 heats the cooled surface of the metal strip 1 again.
  • the mechanical deformation takes place.
  • the exemplary embodiment shows that the first section 6 is again subdivided into sections 6A and 6B. This allows in a simple manner an intermittent cooling in the first section 6, namely an intensive cooling in the section 6A and a weaker or reduced or even no cooling in the at least one further follower section 6B, which in turn can subsequently be followed by an intensive cooling section.
  • the cooling of the metal strip 1 takes place with first coolants 11 and second coolants 12, as can best be seen in FIG.
  • the first coolant 11 work so intensively that a large cooling capacity is present.
  • the second coolant 12 is conventional and per se known coolant, which are used in previously known continuous casting.
  • the design of the coolant 11 is carried out so that the cooling of the metal strip 1 in the first section 6, in particular in the mold 3 immediately adjoining section 6A, which in the extension direction F uppermost or foremost coolant for descaling and thus cleaning the surfaces of the metal strip. 1 can be switched to high pressure, with a heat transfer coefficient between 2,500 and 20,000 W / (m 2 K). In this case, the predominant part of the cooling goes back to the first coolant 11.
  • the heat transfer coefficient (symbol ⁇ ), also called heat transfer coefficient or heat transfer coefficient, is a proportionality factor which determines the intensity of the heat transfer at a surface.
  • the heat transfer coefficient here describes the ability of a gas or a liquid to dissipate energy from the surface of a substance or to deliver it to the surface. It depends, among other things, on the specific heat, the density and the thermal conductivity coefficient of the heat-dissipating and heat-dissipating medium. The calculation of the coefficient for heat conduction takes place mostly about the temperature difference of the involved media.
  • the factors mentioned immediately show that the design of the intensity of the cooling has direct effects on the heat transfer coefficient.
  • the cooling performance can be influenced for example by changing the horizontal distance between the cooling means 11 and 12 and the metal strip 1; it becomes lower, the greater the distance.
  • the mentioned coolant 11 are not needed for every application. Therefore, they are - as is apparent from Fig. 2 - arranged displaceably in the vertical direction, with corresponding movement means are not shown. Shown are the coolant 11 in solid lines in its active position, wherein the ejected jet cooling water takes the outlined course.
  • the coolant 11 can be moved vertically in the position shown in dashed lines, so that a classic, lower, d. H. less intensive cooling by the coolant 12 is accomplished.
  • FIGS. 3 and 4 show a variant of the embodiment of the first coolant 11 in greater detail.
  • the cooling means 11 have a housing 13, on whose side facing the metal strip 1, two nozzles 14 and 15 or rows of nozzles extending perpendicularly to the plane of the drawing over the metal strip 1 are arranged.
  • the housing 13 has in its interior according to two chambers 16, 17 which are each fluidly connected to a water supply line.
  • the nozzles 14 and 15 are designed differently, so that different degrees of water flow can be directed to the metal strip 1 - depending on the technological need to achieve a scale-free as possible and thus cleaned surface of the Metallban-.
  • the nozzles may also be designed as nozzle bars, d. H. as a beam which extends across the width of the metal strip 1 and passes cooling water from a number of nozzle openings on the strip surface.
  • the proposed device for intensive cooling thus has a housing which can be pushed with a small distance between the continuous casting guide rollers 10 and thus forms a cooling channel.
  • the housing 13 can be protected from destruction by a fender (not shown) in the event of a breakthrough, so that it can be reused in this case.
  • a fender not shown
  • the cooling effect can be influenced. Further influence on the cooling effect can be achieved by the construction of the housing and the nozzles 14, 15.
  • a subcooling of the edge region of the metal strip can also be avoided by switching on and off of nozzle groups.
  • spray nozzles can also be used. These should be distributed close to each other across the width of the metal strip to achieve the necessary cooling and cooling necessary and the grain refining and descaling effect associated therewith. By switching these groups on and off, undercooling of the edges can also be avoided.
  • the nozzles can be deactivated, swung away, moved away or the flow of cooling medium (water) can be reduced to ensure standard cooling.
  • additional cooling consisting of several provided with spray nozzles spray bar are used with a separate water supply.
  • the additional spray bars are only switched on when needed. It is also possible here to avoid subcutaneous cooling of the edges by switching on and off nozzle groups.
  • Such nozzles come for the present invention because of their excessive cooling effect and the associated low surface temperature the surface of the metal strip is not used or they are not useful here.
  • the core idea according to the invention can thus be seen in the fact that intensive cooling takes place in the area of secondary cooling, in particular in thin-slab plants, in order to achieve a cleaning of the surface of the slab in which the intensive cooling begins shortly after the mold, viewed in the conveying direction.
  • the cooling ends so early that a rewarming above the temperature Ac3 or Ar3 can take place before mechanical stresses occur, as is the case, for example, with the bending driver.
  • the aim is to have no or only a small excretion on the grain boundaries.
  • the proposed device for intensive cooling has a significantly higher cooling effect than is otherwise the case with the secondary cooling of a continuous casting plant.
  • the usual heat transfer rates between 500 W / (m 2 K) and 2,500 W / (m 2 K).
  • desiccation systems are known in which a cooling device is used which realizes heat transfer coefficients of more than 20,000 W / (m 2 K).
  • the heat transfer rates required here are - as already indicated above - material-dependent and also dependent on the casting speed. They result from the maximum cooling rate at which no martensite or interstitial structure is yet produced.
  • the cooling rate is about 2,500 ° C / min, which corresponds to a heat transfer coefficient of about 5,500 W / (m 2 K) at a casting speed of 5.0 m / min.
  • the proposed continuous casting is very individual and flexible usable. If the proposed systems are used with the described cooling nozzles, as a result of the forming high turbulence of the water between the housing of the coolant and the metal strip with relatively small amount of water higher heat transfer coefficients than in conventional spray cooling can be achieved.
  • the intensity of the cooling can be varied by the number of nozzles arranged side by side. Furthermore, it is also possible to use additional nozzle bars to conventional spray cooling devices.
  • the length of the intensive cooling - viewed in the conveying direction F - is determined by the solidification structure to 2 mm below the surface of the metal strip. In the case of dendritic solidification, the intensive cooling length is lengthened by about a factor of 2 to 3 compared with the length in the case of globulitic solidification.
  • the heat transfer coefficient also results from the design of the coolant, in this case in particular the first coolant 11.
  • the number is selected specifically in the claimed range, since the conditions for intensive cooling of the finished metal strip 1 are optimal and at the same time a largely scaling belt surface can be achieved.

Abstract

Die Erfindung betrifft ein Verfahren zum Stranggießen von Brammen-, Dünnbrammen-, Vorblock-, Vorprofil-, Rundprofil-, Rohrprofil- oder Knüppelsträngen (1) und dergleichen aus flüssigem Metall in einer Stranggießanlage (2), bei dem Metall aus einer Kokille (3) senkrecht nach unten austritt, wobei das Metallband (1) dann entlang einer senkrechten Strangführung (4) vertikal abwärts geführt und dabei gekühlt wird, wobei das Metallband (1) dann aus der vertikalen Richtung (V) in die horizontale Richtung (H) umgebogen wird und wobei im Endbereich der Umbiegung in die horizontale Richtung (H) oder nach der Umbiegung in die horizontale Richtung (H) eine mechanische Umformung (5) des Metallbandes (1) erfolgt. Um eine möglichst zunderarme Oberfläche zu erhalten, ist erfindungsgemäß vorgesehen, dass in Förderrichtung (F) des Metallbandes (1) hinter der Kokille (3) und vor der mechanischen Umformung (5) des Metallbandes (1) in einem ersten Abschnitt (6, 6A, 6B) eine Kühlung des Metallbandes (1) mit einer Wärmeübergangszahl zwischen 2.500 und 20.000 W/(m<SUP>2</SUP> K) erfolgt, wobei in Förderrichtung (F) nach der Kühlung in einem zweiten Abschnitt (7) durch Wärmeausgleich im Metallband (1) ohne oder mit reduzierter Kühlung der Oberfläche des Metallbandes (1) eine Erwärmung der Oberfläche des Metallbandes (1) auf eine Temperatur über Ac3 bzw. Ar3 erfolgt, wonach in einem dritten Abschnitt (8) die mechanische Umformung (5) erfolgt. Des weiteren betrifft die Erfindung eine Stranggießanlage, insbesondere zur Durchführung dieses Verfahrens.

Description

Verfahren und Vorrichtung zum Stranggießen
Die Erfindung betrifft ein Verfahren zum Stranggießen von Brammen-, Dünn- brammen-, Vorblock-, Vorprofil-, Rundprofil-, Rohrprofil- oder Knüppelsträngen und dergleichen aus flüssigem Metall in einer Stranggießanlage, bei dem Metall aus einer Kokille senkrecht nach unten austritt, wobei das Metallband dann entlang einer senkrechten Strangführung vertikal abwärts geführt und dabei gekühlt wird, wobei das Metallband dann aus der vertikalen Richtung in die hori- zontale Richtung umgebogen wird und wobei im Endbereich der Umbiegung in die horizontale Richtung oder nach der Umbiegung in die horizontale Richtung eine mechanische Umformung des Metallbandes erfolgt. Des weiteren betrifft die Erfindung eine Stranggießanlage, insbesondere zur Durchführung dieses Verfahrens.
Ein gattungsgemäßes Verfahren zum Stranggießen ist beispielsweise aus der EP 1 108 485 A1 oder aus der WO 2004/048016 A2 bekannt. Hierbei wird flüssiges Metall, insbesondere Stahl, über eine Kokille senkrecht nach unten ausgebracht, wobei es sich verfestigt und ein Metallband bildet, das allmählich aus der vertikalen Richtung in die horizontale Richtung umgeleitet bzw. umgebogen wird. Unmittelbar unterhalb der Kokille befindet sich eine senkrechte Strangführung, die das noch sehr heiße Metallband zunächst vertikal unten führt. Anschließend wird das Metallband durch entsprechende Walzen bzw. Rollen allmählich in die Horizontale umgebogen. Ist dies erfolgt, schließt sich zumeist ein Richtprozess an, d. h. das Metallband läuft durch eine Richtvorrichtung, in der eine mechanische Verformung des Metallbandes stattfindet.
Der Kühlung des Metallbandes nach seinem Austritt aus der Kokille kommt eine wichtige Bedeutung zu. Die EP 1 108 485 A1 schlägt hierzu eine Vorrichtung zum Kühlen des Gussstranges in einer Kühlzone vor, in der der Strang mittels Rollenpaaren, die quer zur Strangachse entlang der Strangabzugsrichtung ü- bereinander angeordnet sind, stützend geführt wird, wobei das Aufbringen von Kühlmittel den Strang weiter abkühlt. Zur effizienten Kühlung des Metallbandes umfasst die vorgeschlagene Vorrichtung ein zwischen jeweils zwei übereinander liegenden Rollen angeordnetes kühlmittelförderndes Kühlmittelelement, das sich entlang der Längsachse der Rollen erstreckt und so gestaltet ist, dass zwi- sehen dem jeweiligen Kühlelement und der Rolle sowie dem Kühlelement und dem Strang Spalträume entstehen, wobei das jeweilige Kühlelement mit mindestens einem kühlmittelfördernden, in einen Spaltraum mündenden Kanal versehen ist.
Die WO 2004/048016 A2 sieht zur optimalen Temperaturführung des gegossenen Metallbandes vor, das über die Auslauftemperatur, die durch Kontrolle der Oberflächentemperatur am Ende der metallurgischen Stranglänge des Gießstrangs ermittelt wird, ein dynamisches Spritzsystem in Form der Wassermengenverteilung und Druckverteilung bzw. Impulsverteilung über die Strangbreite und die Stranglänge funktional zu einer für die Stranglänge und die Strangbreite errechneten Temperaturverlaufskurve gesteuert wird.
Eine Vielzahl weiterer Lösungen beschäftigen sich gleichermaßen mit der Frage, wie ein gegossener Metallstrang effizient und in verfahrenstechnisch richti- ger Weise gekühlt werden kann. Hierzu wird auf die JP 61074763 A, die JP 9057412, auf die EP 0 650 790 B1 , auf die US 6,374,901 B1 , auf die US 2002/0129921 A1 , auf die EP 0 686 702 B1 , auf die WO 01/91943 A1 , auf die JP 63112058, auf die JP 2004167521 und auf die JP 2002079356 hingewiesen.
Es hat sich herausgestellt, dass neben der verfahrenstechnisch richtigen bzw. effizienten Kühlung des gegossenen Metallbandes dessen Verzunderung eine erhebliche Rolle spielt. Infolge der sehr hohen Temperatur des Metallbandes unmittelbar nach dem Austritt des Metalls aus der Kokille unterliegt das Band einem starken Verzunderungseffekt, der insbesondere die nachfolgenden Pro- zessschritte nachteilig beeinflusst. Es ist daher anzustreben, dass der Grad der Verzunderung möglichst gering gehalten wird. Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie eine entsprechende Vorrichtung derart weiterzuentwickeln, dass es möglich wird, neben einer optimalen Kühlung des Metallbandes auch zu erreichen, dass die Verzunderung der Bandoberfläche minimal gehalten wird.
Die Lösung dieser Aufgabe durch die Erfindung ist verfahrensgemäß dadurch gelöst, dass in Förderrichtung des Metallbandes hinter der Kokille und vor der mechanischen Umformung des Metallbandes in einem ersten Abschnitt eine Kühlung des Metallbandes mit einer Wärmeübergangszahl zwischen 2.500 und 20.000 W/(m2 K) erfolgt, wobei in Förderrichtung nach der Kühlung in einem zweiten Abschnitt durch Wärmeausgleich im Metallband ohne oder mit reduzierter Kühlung der Oberfläche des Metallbandes eine Erwärmung der Oberfläche des Metallbandes auf eine Temperatur über Ac3 bzw. Ar3 erfolgt, wonach in einem dritten Abschnitt die mechanische Umformung erfolgt.
Bevorzugt ist vorgesehen, dass in dem ersten Abschnitt die Kühlung des Metallbandes mit einer Wärmeübergangszahl zwischen 3.000 und 10.000 W/(m2 K) erfolgt.
Wenn nach einem bevorzugten Vorschlag der Erfindung die Oberflächen des Metallbandes vor der Beaufschlagung mit dem Kühlmedium zur Kühlung gesäubert werden, lässt sich die Wirkung der nachfolgend einsetzenden Kühlung weiter verbessern. Das Säubern kann durch Entzundern erfolgen, beispielswei- se dadurch, daß die in Strang- bzw. Metallband-Auszugsrichtung einander gegenüberliegenden, zuerst von dem Metallband/Strang erreichten und somit vordersten bzw. obersten Kühlmittel (Düsen, Düsenbalken od. dgl.) das Kühlmedium unter Hochdruck aufbringen, so daß sich eine Entzunderung ergibt.
Die mechanische Umformung in dem dritten Abschnitt kann dabei ein Richtpro- zess des Metallbandes sein oder einen solchen Prozess umfassen. Alternativ oder additiv kann vorgesehen werden, dass die mechanische Umformung in dem dritten Abschnitt ein Walzprozess des Metallbandes ist oder einen solchen Prozess umfasst.
Die Kühlung im ersten Abschnitt kann - als Intensivkühlung ausgebildet - auf den Bereich der senkrechten Strangführung beschränkt werden. In diesem Zusammenhang ist anzumerken, dass der Begriff der senkrechten Strangführung auch umfassen soll, dass das Metallband weitgehend vertikal geführt wird.
Die Kühlung im ersten Abschnitt kann auch intermittierend erfolgen, wobei das Metallband/der Strang abwechselnd intensiv und schwach gekühlt wird, z.B. durch Veränderung der Kühlmediumbeaufschlagungsdichte [ I: min.m2 ] und/oder Einstellung unterschiedlicher Abstände der Kühlmittel zum Metallband.
Die vorgeschlagene Stranggießanlage zum Stranggießen von Brammen-, Dünnbrammen-, Vorblock-, Vorprofil-, Rundprofil-, Rohrprofil- oder Knüppelsträngen und dergleichen aus flüssigem Metall, mit einer Kokille, aus der das Metall senkrecht nach unten austritt, einer unterhalb der Kokille angeordneten senkrechten Strangführung und Mitteln zum Umbiegen des Metallbandes aus der vertikalen Richtung in die horizontale Richtung, wobei im Endbereich der Umbiegung in die horizontale Richtung oder nach der Umbiegung in die horizontale Richtung mechanische Umformmittel für das Metallband angeordnet sind, zeichnet sich erfindungsgemäß dadurch aus, dass die senkrechte Strangführung eine Anzahl in Förderrichtung des Metallbandes beiderseitig des Me- tallbandes angeordnete Rollen aufweist, wobei im Bereich der Rollen erste Kühlmittel angeordnet sind, mit denen ein Kühlfluid auf die Oberfläche des Metallbandes aufgebracht werden kann, wobei die Kühlmittel in vertikale und/oder horizontale Richtung verschieblich angeordnet sind. Alternativ oder ergänzend können die Kühlmittel vorteilhaft oszillierbar ausgebildet sein. Zusätzlich hierzu können zweite Kühlmittel im Bereich der senkrechten Strangführung ortsfest angeordnet sein.
Die ersten und/oder die zweiten Kühlmittel können ein Gehäuse aufweisen, aus dem das Kühlfluid mittels mindestens einer Düse aufgebracht wird. Das Kühlflu- id kann aus dem Gehäuse mittels zweier Düsen oder Düsenreihen aufgebracht werden.
Gemäß dem Erfindungsvorschlag erfolgt im Bereich der Sekundärkühlung des Metallbandes eine Kühlung mit definierter Intensität, die so gewählt ist, dass einerseits ein qualitativ hochwertiges Metallband produziert werden kann, das die gewünschte Gefügestruktur und Gefügezusammensetzung aufweist, dass andererseits aber auch der Grad der Verzunderung der Bandoberfläche minimal gehalten werden kann.
Durch den Vorschlag wird auch die Anreicherung von unerwünschten Begleiterscheinungen an der Bandoberfläche vermindert.
Durch die vorgeschlagene Vorgehensweise entsteht ein so hinreichender Ther- moschock, dass sich auf der Oberfläche des Metallbandes befindliche Oxid- schichten abtrennen und fortgespült werden. Das führt zu einer gesäuberten Strangoberfläche, was für eine gleichmäßige Abkühlung des Metallbandes und auch für eine mögliche Aufheizung im Tunnelofen von Vorteil ist.
Das vorgeschlagene Verfahren vermindert die Gefahr durch Ausscheidungen oder von so genannter „Hot Shortness", so dass auch diesbezüglich Vorteile erzielt werden. Durch die für den Thermoschock notwendige Absenkung der Oberflächentemperatur - diese sollte die Martensitstarttemperatur nicht unterschreiten - erfolgt eine Umwandlung des Austenits im Metallband in Ferrit, verbunden mit einer Komfeinung. Bei der sich anschließenden Wiedererwärmung infolge des großen Temperaturgradienten zwischen Strangoberfläche und Kern des Metallbandes erfolgt eine Rückumwandlung des feinen Ferrits in Austenit mit kleinen Körnern. Bei diesen Umwandlungen werden die Aluminiumnitride (AIN) oder andere Ausscheidungen überwachsen, und auf den Korngrenzen befinden sich prozentual weniger Aluminiumnitride als bei dem großen Auste- nitkorn vor der Umwandlung. Das feinere Gefüge ist daher weniger rissanfällig, wenn Ausscheidungen vorliegen sollten.
In der Strangführung unterhalb der Kokille ist der Bereich für die Intensivkühlung vorgesehen, damit die Wiedererwärmung möglichst früh erfolgen kann. Die Ferrit-Umwandlung und die anschließende Umwandlung in Austenit sollen vor der mechanischen Belastung der Strangoberfläche, beispielsweise in den Bie- getreibern, erfolgen. Durch diese Maßnahme wird die Gefahr der Rissbildung reduziert, die infolge der Temperatursenkung des Stranges durch den Thermo- schock besteht. Eine Ausführungsform des Verfahrens sieht vor, dass die genannte (Intensiv)-Kühlung etwa ein Viertel bis ein Drittel des (Bogen-)Weges von der Kokille bis zur mechanischen Umformung umfasst, woran sich ca. drei Viertel bzw. zwei Drittel dieses Weges anschließen, auf denen nicht mehr oder nur reduziert gekühlt wird.
Die erfindungsgemäße vorgesehene Intensivkühlung kann zwischen den Strangführungsrollen angeordnet sein und sich je nach gewünschter Kühlwir- kung über einen längeren Bereich der Strangführung erstrecken. Es kann - wie erwähnt - auch vorteilhaft sein, die Intensivkühlung intermittierend anzuwenden, um die Oberfläche insbesondere bei rissempfindlichen Werkstoffen nicht zu sehr zu unterkühlen.
Damit kann auch die Warmbrüchigkeit, d. h. die Rissbildung an der Brammenoberfläche, vermindert werden, die insbesondere durch einen hohen Kupfergehalt im Material entstehen kann. Dies ist insbesondere bei Schrott als Ausgangsmaterial relevant, der mitunter einen entsprechend hohen Kupfergehalt aufweist. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
Fig. 1 schematisch eine Stranggießanlage in der Seitenansicht mit der Darstellung einiger der Komponenten der Anlage;
Fig. 2 einen vergrößerten Ausschnitt aus Fig. 1 , nämlich den rechten Ast der senkrechten Strangführung mit ersten und zweiten Kühlmitteln;
Fig. 3 einen weiter vergrößerten Ausschnitt aus Fig. 2 mit zwei Rollen und einem dazwischen angeordnetem Kühlmittel; und
Fig. 4 das Kühlmittel gemäß Fig. 3 im Detail.
In Fig. 1 ist schematisch eine Stranggießanlage 2 dargestellt. Flüssiges metalli- sches Material tritt vertikal nach unten als Strang bzw. Metallband 1 aus einer Kokille 3 in Förderrichtung F aus und wird entlang eines Gießbogenabschnitts allmählich von der Vertikalen V in die Horizontale H umgeleitet. Unmittelbar unterhalb der Kokille 3 befindet sich eine senkrechte Strangführung 4, die eine Anzahl Rollen 10 aufweist, die das Metallband 1 nach unten führen. Eine An- zahl Rollen 9 fungieren als Mittel zum Umbiegen des Metallbandes 1 von der Vertikalen V in die Horizontale H. Nach erfolgter Umbiegung trifft das Metallband 1 in Mitteln 5 zur mechanischen Umformung ein. Vorliegend handelt es sich hierbei um einen Richttreiber, der das Metallband 1 durch mechanische Umformung einem Richtprozess unterzieht. Vorgesehen werden kann auch ein Walzprozess, der sich zumeist anschließt.
Der Bereich des Metallbandes vom Austritt aus der Kokille 3 bis zur mechanischen Umformung ist in drei Abschnitte unterteilt: In einem ersten Abschnitt 6 erfolgt eine Intensivkühlung des heißen Metallbandes 1 , in einem zweiten Ab- schnitt 7 wird praktisch keine Kühlung mehr vorgenommen, und die sich im Metallband 1 befindliche Wärme wärmt die gekühlte Oberfläche des Metallbandes 1 wieder auf. Vorrangig im dritten Abschnitt 8, aber auch bereits schon im zweiten Abschnitt 7, findet dann schließlich die mechanische Umformung statt. Das Ausfϋhrungsbeispiel zeigt, daß der erste Abschnitt 6 in sich nochmals in Teilabschnitte 6A und 6B unterteilt ist. Das ermöglicht in einfacher Weise eine intermittierende Kühlung in dem ersten Abschnitt 6, nämlich eine Intensivkühlung im Teilabschnitt 6A und eine schwächere bzw. reduzierte oder auch gar keine Kühlung in dem zumindest einen weiteren Folgeteilabschnitt 6B, dem sich nämlich wiederum ein Intensivkühlabschnitt usw. anschließend kann.
Die Kühlung des Metallbandes 1 erfolgt mit ersten Kühlmitteln 11 und zweiten Kühlmitteln 12, wie es am besten in Fig. 2 gesehen werden kann. Die ersten Kühlmittel 11 arbeiten so intensiv, dass eine große Kühlleistung vorliegt. Bei den zweiten Kühlmitteln 12 handelt es sich um übliche und an sich vorbekannte Kühlmittel, die bei vorbekannten Stranggießanlagen eingesetzt werden. Die Auslegung der Kühlmittel 11 erfolgt so, dass die Kühlung des Metallbandes 1 im ersten Abschnitt 6, insbesondere in dem sich der Kokille 3 unmittelbar anschließenden Teilabschnitt 6A, dessen in Auszugsrichtung F obersten bzw. vordersten Kühlmittel zur Entzunderung und damit Säuberung der Oberflächen des Metallbandes 1 auf Hochdruck umschaltbar sind, mit einer Wärmeübergangszahl zwischen 2.500 und 20.000 W/(m2 K) erfolgt. Dabei geht der über- wiegende Anteil der Kühlung auf die ersten Kühlmittel 11 zurück.
Zur genannten Wärmeübergangszahl sei bemerkt: Die Wärmeübergangszahl (Formelzeichen α), auch Wärmeübergangskoeffizient oder Wärmeübertragungskoeffizient genannt, ist ein Proportionalitätsfaktor, der die Intensität des Wärmeübergangs an einer Oberfläche bestimmt. Der Wärmeübergangskoeffizient beschreibt hierbei die Fähigkeit eines Gases oder einer Flüssigkeit, Energie von der Oberfläche eines Stoffes abzuführen bzw. an die Oberfläche abzugeben. Sie hängt unter anderem von der spezifischen Wärme, der Dichte und dem Wärmeleitkoeffizienten des wärmeabführenden sowie des wärmeliefem- den Mediums ab. Die Berechnung des Koeffizienten für Wärmeleitung erfolgt meist über den Temperaturunterschied der beteiligten Medien. Die genannten Einflussgrößen lassen sofort erkennen, dass die Auslegung der Intensität der Kühlung direkte Auswirkungen auf die Wärmeübergangszahl hat. Die Kühlleistung lässt sich beispielsweise durch Veränderung des horizontalen Abstandes zwischen den Kühlmitteln 11 bzw. 12 und dem Metallband 1 beeinflussen; sie wird umso niedriger, je größer der Abstand ist.
Nach der Kühlung in den Abschnitten 6 bzw. 6A, 6B erfolgt im zweiten Abschnitt 7 durch Wärmeausgleich im Metallband 1 ohne weitere Kühlung der Oberfläche des Metallbandes 1 eine Erwärmung der Oberfläche des Metallbandes 1 durch Wärmeausgleich auf eine Temperatur über Ac3 bzw. Ar3. Erst dann erfolgt die mechanische Umformung 5 in den Abschnitten 7 (durch das Abbiegen) und 8, vor allem durch das Richten im Abschnitt 8.
Die genannten Kühlmittel 11 werden nicht für jeden Anwendungsfall benötigt. Daher sind sie - wie es aus Fig. 2 hervorgeht - in vertikale Richtung verschieblich angeordnet, wobei entsprechende Bewegungsmittel nicht dargestellt sind. Dargestellt sind die Kühlmittel 11 mit ausgezogenen Linien in ihrer aktiven Position, wobei der ausgestoßene Strahl Kühlwasser den skizzierten Verlauf nimmt.
Wird die Intensivkühlung nicht benötigt, können die Kühlmittel 11 vertikal in die gestrichelt dargestellte Position verfahren werden, so dass eine klassische, geringere, d. h. weniger intensive Kühlung durch die Kühlmittel 12 bewerkstellig wird.
Andere Maßnahmen zur Beeinflussung (Reduzierung oder Erhöhung) der Kühlleistung bestehen darin, den Abstand zwischen den Kühlmitteln 11 , 12 und dem Metallband 1 durch horizontales Verschieben zu verändern und/oder die Kühlmittel 11 , 12 oszillierend zu verstellen. Nicht dargestellt sind entsprechende Leitungssysteme mit Ventilen, so dass der jeweils benötigte Strom Kühlwasser eingestellt bzw. geschalten werden kann.
In den Fig. 3 und 4 wird eine Variante der Ausbildung der ersten Kühlmittel 11 näher dargestellt. Die Kühlmittel 11 weisen ein Gehäuse 13 auf, an dessen dem Metallband 1 zugewandter Seite zwei Düsen 14 und 15 bzw. sich normal auf die Zeichenebene quer über das Metallband 1 erstreckende Düsenreihen angeordnet sind. Das Gehäuse 13 weist in seinem Inneren entsprechend zwei Kammern 16, 17 auf, die jeweils fluidisch mit einer Wasserversorgungsleitung in Verbindung stehen. Die Düsen 14 und 15 sind dabei unterschiedlich ausgeführt, so dass unterschiedlich starke Wasserströme auf das Metallband 1 geleitet werden können - in Abhängigkeit der technologischen Notwendigkeit zur Erzielung einer möglichst zunderfreien und damit gesäuberten Oberfläche des Metallban- des1.
Die Düsen können auch als Düsenbalken ausgebildet sein, d. h. als Balken, der sich quer über die Breite des Metallbandes 1 erstreckt und aus einer Anzahl Düsenöffnungen Kühlwasser auf die Bandoberfläche leitet.
Die vorgeschlagene Vorrichtung für die Intensivkühlung weist also ein Gehäuse auf, das mit geringem Abstand zwischen die Stranggussführungsrollen 10 geschoben werden kann und so einen Kühlkanal bildet. Das Gehäuse 13 kann durch ein Schutzblech (nicht dargestellt) vor der Zerstörung bei einem eventuellen Durchbruch geschützt werden, so dass es in diesem Fall wieder eingesetzt werden kann. Durch Änderung des Abstandes zwischen der Strangoberfläche und dem Gehäuse 13 kann die Kühlwirkung beeinflusst werden. Weitere Einflussmöglichkeiten auf die Kühlwirkung können durch die Konstruktion des Gehäuses und der Düsen 14, 15 erreicht werden.
So besteht die Möglichkeit, die Düsen in mehrere Gruppen zu unterteilen und die einzelnen Düsengruppen mit einer eigenen Wasserversorgung zu versehen. Durch Zu- bzw. Abschalten einzelner Düsengruppen und/oder durch Änderung des Durchflusses bzw. des Fluiddruckes kann dann die Kühlwirkung variiert werden. Im Falle einer Standardkühlung, d. h. falls Stähle verarbeitet werden, bei denen eine Intensivkühlung nicht sinnvoll ist, kann eine geringere Zahl an Düsen zugeschaltet werden. Eine andere Möglichkeit ist, die Intensivkühlvorrichtung aus dem Sprühbereich der Standardkühlung wegzuschwenken oder wegzufahren.
Eine Unterkühlung der Kantenbereich des Metallbandes kann ebenfalls durch ein Zu- bzw. Abschalten von Düsengruppen vermieden werden.
Zur Intensivkühlung können auch Sprühdüsen eingesetzt werden. Diese sollten nahe aneinander über die Breite des Metallbandes verteilt werden, um die notwendige Abkühlung und die notwendige Abkühlung und die damit verbundene Kornfeinung und Entzunderungswirkung zu erzielen. Durch Zu- und Abschalten dieser Gruppen kann auch hier eine Unterkühlung der Kanten vermieden wer- den. Für den Gießbetrieb, bei der eine intensive Kühlung nicht vorteilhaft ist, können die Düsen deaktiviert, weggeschwenkt, weggefahren oder der Durch- fluss des Kühlmediums (Wasser) gesenkt werden, um die Standardkühlung zu gewährleisten.
Vorgesehen kann auch werden, dass zu der vorhandenen Sekundärkühlung eine zusätzliche Kühlung, bestehend aus mehreren mit Sprühdüsen versehenen Sprühbalken mit einer separaten Wasserversorgung eingesetzt werden. Die zusätzlichen Sprühbalken werden dabei nur bei Bedarf eingeschaltet. Ebenfalls kann auch hier durch Zu- und Abschalten von Düsengruppen eine Unter- kühlung der Kanten vermieden werden.
Im Stand der Technik sind für die Entzunderung spezielle Entzunderungsdüsen bekannt, die Wärmeübergangszahlen von mehr als 20.000 W/(m2 K) erreichen.
Derartige Düsen kommen für die vorliegende Erfindung wegen ihrer zu intensi- ven Kühlwirkung und der damit verbundenen niedrigen Oberflächentemperatur der Oberfläche des Metallbandes nicht zum Einsatz bzw. sie sind hier nicht brauchbar.
Der erfindungsgemäße Kerngedanke kann also darin gesehen werden, dass eine Intensivkühlung im Bereich der Sekundärkühlung insbesondere bei Dünn- brammenanlagen erfolgt, um eine Säuberung der Oberfläche der Bramme zu erreichen, bei der die Intensivkühlung kurz nach der Kokille - in Förderrichtung betrachtet - beginnt. Allerdings ist weiter vorgesehen, dass die Kühlung so frühzeitig endet, dass eine Wiedererwärmung über die Temperatur Ac3 bzw. Ar3 erfolgen kann, bevor mechanische Beanspruchungen auftreten, wie es bei- spielsweise am Biegetreiber der Fall ist. Ziel ist es dabei, keine bzw. eine nur geringe Ausscheidung auf den Korngrenzen.
Die vorgeschlagene Vorrichtung zur Intensivkühlung weist eine deutlich höhere Kühlwirkung auf, als es sonst bei der Sekundärkühlung einer Stranggießanlage der Fall ist. Bei vorbekannten Anlagen liegen die üblichen Wärmeübergangszahlen zwischen 500 W/(m2 K) und 2.500 W/(m2 K). Andererseits sind Entzun- derungsanlagen bekannt, bei denen eine Kühleinrichtung eingesetzt wird, die Wärmeübergangszahlen von mehr als 20.000 W/(m2 K) realisieren.
Die vorliegend benötigten Wärmeübergangszahlen sind - wie bereits oben angedeutet - werkstoffabhängig und auch abhängig von der Gießgeschwindigkeit. Sie ergeben sich aus der maximalen Abkühlgeschwindigkeit, bei der noch kein Martensit- oder Zwischenstufengefüge erzeugt wird. Für niedrige Kohlenstoffstähle beträgt die Abkühlungsgeschwindigkeit ca. 2.500 °C/min, was bei einer Gießgeschwindigkeit von 5,0 m/min einer Wärmeübergangszahl von ca. 5.500 W/(m2 K) entspricht.
Durch ein schnelles Umschalten zwischen Standard- und Intensivkühlung wird die vorgeschlagene Stranggießeinrichtung sehr individuell und flexibel nutzbar. Werden die vorgeschlagenen Systeme mit den beschriebenen Kühldüsen eingesetzt, werden infolge der sich bildenden hohen Turbulenz des Wassers zwischen dem Gehäuse der Kühlmittel und dem Metallband bei relativ geringer Wassermenge höhere Wärmeübergangszahlen als bei der konventionellen Sprühkühlung erreicht.
Die Intensität der Kühlung kann durch die Anzahl der nebeneinander angeordneten Düsen variiert werden. Weiterhin ist es auch möglich, zusätzliche Düsenbalken zu konventionellen Sprühkühlungseinrichtungen einzusetzen.
Die Länge der Intensivkühlung - in Förderrichtung F betrachtet - wird durch das Erstarrungsgefüge bis 2 mm unter der Oberfläche des Metallbandes bestimmt. Bei einer dendritischen Erstarrung verlängert sich die Intensivkühllänge ca. um den Faktor 2 bis 3 gegenüber der Länge bei einer globulitischen Erstarrung.
Die Wärmeübergangszahl ergibt sich auch aus der Konstruktion der Kühlmittel, vorliegend insbesondere der ersten Kühlmittel 11. Die Zahl wird gezielt im beanspruchten Bereich gewählt, da hier die Bedingungen zur Intensivkühlung des gefertigten Metallbandes 1 optimal sind und gleichzeitig eine weitgehend zunderfreie Bandoberfläche erzielt werden kann.
Bezugszeichenliste:
1 Metallband
2 Stranggießanlage
3 Kokille
4 senkrechte Strangführung
5 mechanische Umformung
6 erster Abschnitt
6A Teilabschnitt
6B Folgeteilabschnitt
7 zweiter Abschnitt
8 dritter Abschnitt
9 Mittel zum Umbiegen des Metallbandes
10 Rollen
11 erste Kühlmittel
12 zweite Kühlmittel
13 Gehäuse
14 Düse
15 Düse
16 Kammer
17 Kammer
V vertikale Richtung
H horizontale Richtung
F Förder- bzw. Auszugsrichtung

Claims

Patentansprüche:
1. Verfahren zum Stranggießen von Brammen-, Dünnbrammen-, Vorblock-, Vorprofil-, Rundprofil-, Rohrprofil- oder Knüppelsträngen (1 ) und dergleichen aus flüssigem Metall in einer Stranggießanlage (2), bei dem Metall aus einer Kokille (3) senkrecht nach unten austritt, wobei das Metallband (1 ) dann entlang einer senkrechten Strangführung (4) vertikal abwärts geführt und dabei gekühlt wird, wobei das Metallband (1 ) dann aus der verti- kalen Richtung (V) in die horizontale Richtung (H) umgebogen wird und wobei im Endbereich der Umbiegung in die horizontale Richtung (H) oder nach der Umbiegung in die horizontale Richtung (H) eine mechanische Umformung (5) des Metallbandes (1 ) erfolgt, dadurch gekennzeichnet, dass in Förderrichtung (F) des Metallbandes (1 ) hinter der Kokille (3) und vor der mechanischen Umformung (5) des Metallbandes (1 ) in einem ersten Abschnitt (6, 6A, 6B) eine Kühlung des Metallbandes (1 ) mit einer Wärmeübergangszahl zwischen 2.500 und 20.000 W/(m2 K) erfolgt, wobei in Förderrichtung (F) nach der Kühlung in einem zweiten Abschnitt (7) durch Wärmeausgleich im Metallband (1 ) ohne oder mit reduzierter Kühlung der Oberfläche des Metallbandes (1 ) eine Erwärmung der Oberfläche des Metallbandes (1 ) auf eine Temperatur über Ac3 bzw. Ar3 erfolgt, wonach in einem dritten Abschnitt (8) die mechanische Umformung (5) erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in dem ersten Abschnitt (6) die Kühlung des Metallbandes (1) mit einer Wärmeübergangszahl zwischen 3.000 und 10.000 W/(m2 K) erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Oberflächen des Metallbandes (1 ) unmittelbar vor der Kühlbeaufschlagung gesäubert werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste Abschnitt (6) unterteilt ist, wobei das Metallband (1 ) intermittierend gekühlt wird und in einem der Kokille (3) unmittelbar nachgeschalteten Teilabschnitt (6A) intensiv und in mindestens einem Folgeteilabschnitt (6B) schwächer sowie dann nachfolgend wieder intensiver ge- kühlt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mechanische Umformung (5) in dem dritten Abschnitt (8) ein Richtprozess des Metallbandes (1 ) ist oder einen solchen Prozess um- fasst.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mechanische Umformung (5) in dem dritten Abschnitt (8) ein
Walzprozess des Metallbandes (1 ) ist oder einen solchen Prozess um- fasst.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kühlung im ersten Abschnitt (6, 6A, 6B) auf den Bereich der senkrechten Strangführung (4) beschränkt wird.
8. Stranggießanlage (2) zum Stranggießen von Brammen-, Dünnbrammen-, Vorblock-, Vorprofil-, Rundprofil-, Rohrprofil- oder Knüppelsträngen (1 ) und dergleichen aus flüssigem Metall, mit einer Kokille (3), aus der das Metall senkrecht nach unten austritt, einer unterhalb der Kokille (3) angeordneten senkrechten Strangführung (4) und Mitteln (9) zum Umbiegen des Metallbandes (1) aus der vertikalen Richtung (V) in die horizontale Richtung (H), wobei im Endbereich der Umbiegung in die horizontale Richtung (H) oder nach der Umbiegung in die horizontale Richtung (H) mecha- nische Umformmittel (5) für das Metallband (1 ) angeordnet sind, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die senkrechte Strangführung (4) eine Anzahl in Förderrichtung (F) des Metallbandes (1 ) beiderseitig des Metallbandes (1 ) angeordnete Rollen (10) aufweist, wobei im Bereich der Rollen (10) erste Kühlmittel (11 ) angeordnet sind, mit denen ein Kühlfluid auf die Oberfläche des Metallbandes (1 ) aufgebracht werden kann, wobei die Kühlmittel (11 ) in vertikale und/oder horizontale Richtung (V, H) verschieblich angeordnet sind.
9. Stranggießanlage nach Anspruch 8, dadurch gekennzeichnet, dass die Kühlmittel (11 ) oszillierbar ausgebildet sind.
10. Stranggießanlage nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zusätzliche zweite Kühlmittel (12) im Bereich der senkrechten Strangführung (4) ortsfest angeordnet sind.
11. Stranggießanlage nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die ersten und/oder die zweiten Kühlmittel (11 , 12) ein Gehäuse (13) aufweisen, aus dem das Kühlfluid mittels mindestens einer Düse (14, 15) ausgebracht wird.
12. Stranggießanlage nach Anspruch 11 , dadurch gekennzeichnet, dass Kühlfluid aus dem Gehäuse (13) mittels zweier Düsen (14, 15) oder
Dϋsenreihen ausgebracht wird.
PCT/EP2006/012560 2006-01-11 2006-12-28 Verfahren und vorrichtung zum stranggiessen WO2007087893A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2635128A CA2635128C (en) 2006-01-11 2006-12-28 Method and apparatus for continuous casting
PL06841185T PL1937429T3 (pl) 2006-01-11 2006-12-28 Sposób i urządzenie do odlewania ciągłego
BRPI0620971-8A BRPI0620971B1 (pt) 2006-01-11 2006-12-28 Processo e dispositivo para lingotamento contínuo
US12/087,305 US8596335B2 (en) 2006-01-11 2006-12-28 Method and apparatus for continuous casting
DE502006003212T DE502006003212D1 (de) 2006-01-11 2006-12-28 Verfahren und vorrichtung zum stranggiessen
CN2006800499333A CN101351285B (zh) 2006-01-11 2006-12-28 用于连铸的方法和装置
AU2006337470A AU2006337470B2 (en) 2006-01-11 2006-12-28 Method and apparatus for continuous casting
EP06841185A EP1937429B1 (de) 2006-01-11 2006-12-28 Verfahren und vorrichtung zum stranggiessen
JP2008548950A JP5039712B2 (ja) 2006-01-11 2006-12-28 連続鋳造をするための方法及び装置
EG2008071146A EG24892A (en) 2006-01-11 2008-07-07 Method and apparatus for continuous casting
US13/353,511 US8522858B2 (en) 2006-01-11 2012-01-19 Method and apparatus for continuous casting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006001464.2 2006-01-11
DE102006001464 2006-01-11
DE102006056683.1 2006-11-30
DE102006056683A DE102006056683A1 (de) 2006-01-11 2006-11-30 Verfahren und Vorrichtung zum Stranggießen

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/087,305 A-371-Of-International US8596335B2 (en) 2006-01-11 2006-12-28 Method and apparatus for continuous casting
US13/353,511 Division US8522858B2 (en) 2006-01-11 2012-01-19 Method and apparatus for continuous casting

Publications (1)

Publication Number Publication Date
WO2007087893A1 true WO2007087893A1 (de) 2007-08-09

Family

ID=37909512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/012560 WO2007087893A1 (de) 2006-01-11 2006-12-28 Verfahren und vorrichtung zum stranggiessen

Country Status (16)

Country Link
US (2) US8596335B2 (de)
EP (1) EP1937429B1 (de)
JP (1) JP5039712B2 (de)
KR (1) KR101037078B1 (de)
AT (1) ATE425827T1 (de)
AU (1) AU2006337470B2 (de)
BR (1) BRPI0620971B1 (de)
CA (1) CA2635128C (de)
DE (2) DE102006056683A1 (de)
EG (1) EG24892A (de)
ES (1) ES2321234T3 (de)
MY (1) MY143585A (de)
PL (1) PL1937429T3 (de)
RU (1) RU2377096C1 (de)
TW (1) TWI382888B (de)
WO (1) WO2007087893A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212952A1 (de) 2013-07-03 2015-01-22 Sms Siemag Ag Vorrichtung und Verfahren zum Stützen eines Stranges beim Stranggießen

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032970A1 (de) * 2008-07-10 2010-01-14 Sms Siemag Aktiengesellschaft Verfahren zum Abkühlen eines aus einer Stranggießkokille austretenden Stranges
US8479802B1 (en) * 2012-05-17 2013-07-09 Almex USA, Inc. Apparatus for casting aluminum lithium alloys
US8365808B1 (en) 2012-05-17 2013-02-05 Almex USA, Inc. Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys
KR101406652B1 (ko) 2012-09-05 2014-06-11 주식회사 포스코 냉각노즐 커버장치
IN2014DN10497A (de) 2013-02-04 2015-08-21 Almex Usa Inc
JP5854071B2 (ja) * 2013-03-29 2016-02-09 Jfeスチール株式会社 鋼の連続鋳造方法
US9936541B2 (en) 2013-11-23 2018-04-03 Almex USA, Inc. Alloy melting and holding furnace
DE102014214374A1 (de) * 2014-07-23 2016-01-28 Sms Group Gmbh Verfahren zur Herstellung eines metallischen Produkts
CA2973071C (en) * 2015-01-15 2018-11-20 Nippon Steel & Sumitomo Metal Corporation Method for continuously casting slab
KR101736574B1 (ko) * 2015-06-04 2017-05-17 주식회사 포스코 응고 장치
WO2018091572A1 (de) * 2016-11-18 2018-05-24 Sms Group Gmbh Verfahren und vorrichtung zur herstellung eines kontinuierlichen bandförmigen verbundmaterials
DE102017213842A1 (de) 2017-08-08 2019-02-14 Sms Group Gmbh Verfahren und Anlage zum Stranggießen eines metallischen Produkts
CN108672668A (zh) * 2018-03-29 2018-10-19 马鞍山钢铁股份有限公司 一种控制连铸过程中铸坯凝固组织结构的方法及其控制装置
CN209157079U (zh) * 2018-04-25 2019-07-26 西安麦特沃金液控技术有限公司 一种引锭杆、引锭杆处理装置及立式连续铸造系统
CN110369686A (zh) * 2019-07-03 2019-10-25 西安理工大学 一种铸铁水平连铸三次喷冷装置
KR20210051247A (ko) 2019-10-30 2021-05-10 이준수 연속 주조용 세그먼트 모니터링 방법
CN111495971A (zh) * 2020-05-06 2020-08-07 义乌聚龙自动化科技有限公司 一种铝合金板连铸连轧设备和方法
CN113426970B (zh) * 2021-06-11 2023-02-03 一重集团大连工程技术有限公司 Φ1000mm-Φ2000mm大型圆坯的立式半连续生产装置及其生产工序

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2208928A1 (de) * 1971-04-30 1973-07-26 Voest Ag Stranggiessanlage fuer brammen
DE2435495A1 (de) * 1973-07-27 1975-02-13 Voest Ag Kuehleinrichtung fuer kontinuierlich zu giessende straenge
DE2507971A1 (de) * 1974-02-28 1975-09-04 Concast Ag Verfahren und vorrichtung zum veraendern der sekundaerkuehlung beim stranggiessen von stahl
JPS63112058A (ja) * 1986-10-28 1988-05-17 Mitsubishi Heavy Ind Ltd 連続鋳造方法
EP0343103A1 (de) * 1988-05-19 1989-11-23 Alusuisse-Lonza Services Ag Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
EP0611610A1 (de) * 1993-02-16 1994-08-24 Voest-Alpine Industrieanlagenbau Gmbh Verfahren zum Herstellen eines Bandes, Vorstreifens oder einer Bramme
WO2003013763A1 (de) * 2001-08-07 2003-02-20 Sms Demag Aktiengesellschaft Verfahren und anlage zur produktion von flach- und langprodukten
EP1243343B1 (de) * 2001-03-22 2003-08-13 Lechler GmbH Zweistoffsprühdüse
EP1356868B1 (de) * 2002-04-18 2003-12-03 Lechler GmbH Zweistoffsprühdüse mit wechselbarem Einsatz
EP1366838A1 (de) * 2002-02-28 2003-12-03 Lechler GmbH &amp; Co.KG Kühlanordnung für das Walzgerüst einer Stranggussanlage

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358358A (en) * 1964-12-31 1967-12-19 United States Steel Corp Method of reducing width of metal slabs
CH580454A5 (de) * 1974-04-26 1976-10-15 Concast Ag
BE831560A (fr) * 1975-07-18 1976-01-19 Perfectionnements aux procedes de coulee continue des metaux
JPS6174763A (ja) 1984-09-17 1986-04-17 Sumitomo Heavy Ind Ltd 連続鋳造機における鋳片の表面温度制御方法
JPH048645A (ja) 1990-04-26 1992-01-13 Seiko Epson Corp 自動車電話装置
JPH0480645A (ja) 1990-07-23 1992-03-13 Nissan Motor Co Ltd 欠陥検査装置
ATE222152T1 (de) 1993-10-29 2002-08-15 Danieli Off Mecc Verfahren und vorrichtung zur thermischen oberflächenbehandlung eines stranges
DE4416752A1 (de) 1994-05-13 1995-11-16 Schloemann Siemag Ag Verfahren und Produktionsanlage zur Erzeugung von Warmbreitband
JPH08132207A (ja) * 1994-11-09 1996-05-28 Sumitomo Metal Ind Ltd 鋼の連続鋳造時における表面割れ抑制方法
JPH08267205A (ja) * 1995-03-31 1996-10-15 Kawasaki Steel Corp 連続鋳造機
JP2944476B2 (ja) 1995-08-29 1999-09-06 川崎製鉄株式会社 鋳片の表面割れを防止した連続鍛圧法
JPH09141408A (ja) * 1995-11-24 1997-06-03 Kawasaki Steel Corp 連続鋳造の二次冷却方法
JP3058079B2 (ja) 1996-02-23 2000-07-04 住友金属工業株式会社 鋼の連続鋳造方法
AU4596899A (en) 1998-07-10 2000-02-01 Ipsco Inc. Method and apparatus for producing martensite- or bainite-rich steel using steckel mill and controlled cooling
JP2000233266A (ja) * 1999-02-15 2000-08-29 Nkk Corp 表面性状の良好な鋼板の製造方法
DE19931331A1 (de) * 1999-07-07 2001-01-18 Siemens Ag Verfahren und Einrichtung zum Herstellen eines Stranges aus Metall
DE19960593C2 (de) 1999-12-16 2001-11-22 Sms Demag Ag Vorrichtung zum Kühlen eines metallischen Gussstrangs
JP3555538B2 (ja) * 2000-02-21 2004-08-18 Jfeスチール株式会社 連続鋳造鋳片の直送圧延方法
AT409352B (de) 2000-06-02 2002-07-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines metallstranges
JP2002079356A (ja) 2000-09-06 2002-03-19 Daido Steel Co Ltd 連続鋳造における2次冷却方法
JP3705101B2 (ja) * 2000-09-12 2005-10-12 住友金属工業株式会社 連続鋳造方法
JP3702807B2 (ja) * 2001-04-11 2005-10-05 住友金属工業株式会社 連続鋳造方法
EP1900454B1 (de) * 2001-04-25 2010-09-22 JFE Steel Corporation Herstellungsverfahren für ein stranggegossenes Stahlprodukt
JP2003275852A (ja) * 2002-03-18 2003-09-30 Jfe Steel Kk 鋼の連続鋳造方法および装置
JP4042541B2 (ja) 2002-11-19 2008-02-06 Jfeスチール株式会社 連続鋳造鋳片の二次冷却装置および二次冷却方法
DE10255550B3 (de) 2002-11-28 2004-01-22 Sms Demag Ag Verfahren und Einrichtung zum Stranggießen von Brammen-, Dünnbrammen-, Vorblock-, Vorprofil-, Knüppelsträngen und dgl. aus flüssigem Metall, insbesondere aus Stahlwerkstoff
JP4321325B2 (ja) * 2004-03-29 2009-08-26 Jfeスチール株式会社 連続鋳造鋳片の二次冷却方法
AT503526B1 (de) 2006-04-25 2008-07-15 Voest Alpine Ind Anlagen Spritzdüsen-verstelleinrichtung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2208928A1 (de) * 1971-04-30 1973-07-26 Voest Ag Stranggiessanlage fuer brammen
DE2435495A1 (de) * 1973-07-27 1975-02-13 Voest Ag Kuehleinrichtung fuer kontinuierlich zu giessende straenge
DE2507971A1 (de) * 1974-02-28 1975-09-04 Concast Ag Verfahren und vorrichtung zum veraendern der sekundaerkuehlung beim stranggiessen von stahl
JPS63112058A (ja) * 1986-10-28 1988-05-17 Mitsubishi Heavy Ind Ltd 連続鋳造方法
EP0343103A1 (de) * 1988-05-19 1989-11-23 Alusuisse-Lonza Services Ag Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
EP0611610A1 (de) * 1993-02-16 1994-08-24 Voest-Alpine Industrieanlagenbau Gmbh Verfahren zum Herstellen eines Bandes, Vorstreifens oder einer Bramme
EP1243343B1 (de) * 2001-03-22 2003-08-13 Lechler GmbH Zweistoffsprühdüse
WO2003013763A1 (de) * 2001-08-07 2003-02-20 Sms Demag Aktiengesellschaft Verfahren und anlage zur produktion von flach- und langprodukten
EP1366838A1 (de) * 2002-02-28 2003-12-03 Lechler GmbH &amp; Co.KG Kühlanordnung für das Walzgerüst einer Stranggussanlage
EP1356868B1 (de) * 2002-04-18 2003-12-03 Lechler GmbH Zweistoffsprühdüse mit wechselbarem Einsatz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212952A1 (de) 2013-07-03 2015-01-22 Sms Siemag Ag Vorrichtung und Verfahren zum Stützen eines Stranges beim Stranggießen

Also Published As

Publication number Publication date
AU2006337470B2 (en) 2010-02-04
MY143585A (en) 2011-05-31
EG24892A (en) 2010-12-13
JP5039712B2 (ja) 2012-10-03
RU2377096C1 (ru) 2009-12-27
EP1937429B1 (de) 2009-03-18
ATE425827T1 (de) 2009-04-15
BRPI0620971A2 (pt) 2011-11-29
KR20080081173A (ko) 2008-09-08
AU2006337470A1 (en) 2007-08-09
PL1937429T3 (pl) 2009-08-31
BRPI0620971B1 (pt) 2015-07-21
US20090095438A1 (en) 2009-04-16
CA2635128C (en) 2012-07-17
TW200732062A (en) 2007-09-01
KR101037078B1 (ko) 2011-05-26
TWI382888B (zh) 2013-01-21
JP2009522110A (ja) 2009-06-11
CA2635128A1 (en) 2007-08-09
US8522858B2 (en) 2013-09-03
DE102006056683A1 (de) 2007-07-12
US20120111527A1 (en) 2012-05-10
US8596335B2 (en) 2013-12-03
DE502006003212D1 (de) 2009-04-30
ES2321234T3 (es) 2009-06-03
EP1937429A1 (de) 2008-07-02

Similar Documents

Publication Publication Date Title
EP1937429B1 (de) Verfahren und vorrichtung zum stranggiessen
EP2882542B1 (de) Verfahren zur reinigung und/oder entzunderung einer bramme oder eines vorbandes mittels eines zunderwäschers und zunderwäscher
EP2349612B2 (de) Verfahren und stranggiessanlage zum herstellen von dicken brammen
DE3127348C2 (de) Verfahren zum Kühlen eines Gußstrangs in einer Bogenstranggießanlage
EP2516079B1 (de) Verfahren zum warmwalzen einer bramme und warmwalzwerk
WO2009141207A1 (de) Verfahren und stranggiessanlage zum herstellen von dicken brammen
EP3016762B1 (de) Giesswalzanlage und verfahren zum herstellen von metallischem walzgut
EP3291933B1 (de) Giess-walz-anlage und verfahren zu deren betrieb
EP3027330A1 (de) GIEßWALZANLAGE ZUM HERSTELLEN VON METALLBÄNDERN
DE102009030793A1 (de) Vorrichtung und Verfahren zum horizontalen Gießen eines Metallbandes
DE19852275C2 (de) Anlage und Verfahren zum Bandgießen
DD284175A5 (de) Verfahren zum kuehlen eines metallischen gegenstandes waehrend des stranggiessens
WO2004065030A1 (de) Verfahren und vorrichtung zur erzeugung von stranggegossenen stahlbrammen
DE60316568T2 (de) Bandtemperaturregelvorrichtung in einer kontinuierlichen bandgiessanlage
EP2379244B1 (de) Verfahren und vorrichtung zur entzunderung eines metallbandes
EP1827735B1 (de) Verfahren und vorrichtung zum bandgiessen von metallen
EP2483014A1 (de) Verfahren zum bandgiessen von stahl und anlage zum bandgiessen
AT525563B1 (de) Trockengiessen in einer giess-walz-verbundanlage
WO2003013763A1 (de) Verfahren und anlage zur produktion von flach- und langprodukten
AT518450A1 (de) Verfahren und Kühleinrichtung zum Kühlen eines metallischen Strangs
DE1458123C (de) Verfahren zum kontinuierlichen Her stellen von mehreren profilierten Stran gen und Anlage zur Durchfuhrung dieses Verfahrens
EP1337365B1 (de) Strangführung einer stranggiessanlage mit einer einrichtung zur sekundärkühlung
DE3141269A1 (de) &#34;kuehlverfahren und kuehlvorrichtung fuer langgestrecktes, heisses metallgut, insbesondere fuer stranggegossene knueppel- bzw. bloomstraenge&#34;
EP3519124A1 (de) VERFAHREN ZUM MEHRFACHGIEßEN VON METALLSTRÄNGEN
WO2000043563A2 (de) Verfahren und vorrichtung zur erzeugung von beschichteten strängen aus metall, insbesondere von bändern aus stahl

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049933.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841185

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2635128

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2006841185

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008071146

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 2006337470

Country of ref document: AU

Ref document number: 2008548950

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/008995

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020087017402

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006337470

Country of ref document: AU

Date of ref document: 20061228

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006337470

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 4162/CHENP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008132828

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12087305

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0620971

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080711