WO2007083756A1 - 電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法 - Google Patents

電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法 Download PDF

Info

Publication number
WO2007083756A1
WO2007083756A1 PCT/JP2007/050816 JP2007050816W WO2007083756A1 WO 2007083756 A1 WO2007083756 A1 WO 2007083756A1 JP 2007050816 W JP2007050816 W JP 2007050816W WO 2007083756 A1 WO2007083756 A1 WO 2007083756A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
cation
represented
sample
electron microscope
Prior art date
Application number
PCT/JP2007/050816
Other languages
English (en)
French (fr)
Inventor
Susumu Kuwabata
Tsukasa Torimoto
Original Assignee
Juridical Foundation Osaka Industrial Promotion Organization
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juridical Foundation Osaka Industrial Promotion Organization, Osaka University filed Critical Juridical Foundation Osaka Industrial Promotion Organization
Priority to EP07707104.1A priority Critical patent/EP1978355B1/en
Priority to JP2007554982A priority patent/JP4581100B2/ja
Priority to US12/223,012 priority patent/US7880144B2/en
Publication of WO2007083756A1 publication Critical patent/WO2007083756A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • H01J2237/0041Neutralising arrangements
    • H01J2237/0044Neutralising arrangements of objects being observed or treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • H01J2237/2003Environmental cells
    • H01J2237/2004Biological samples

Definitions

  • the present invention relates to a liquid medium that is used for sample observation with an electron microscope such as a scanning electron microscope or a transmission electron microscope and prevents charge-up of a sample observation surface, and a sample observation method using the same.
  • SEM Scanning Electron Microscope
  • SEM refers to secondary electrons, reflected electrons, characteristic X-rays, fluorescence, etc. generated by irradiating an observation sample while scanning with an electron beam and the electron beam collides with the observation sample.
  • secondary electrons are detected by a detector, and the observation sample is imaged three-dimensionally by processing the luminance corresponding to the amount of charges of the detected electrons and the position information on which the electrons are irradiated. It is an electron microscope that can be displayed.
  • the secondary electron emission gain which represents the ratio between the incident amount of primary electrons irradiated to the observation sample and the emission amount of secondary electrons emitted from the observation sample by irradiation of the primary electrons, is expressed as above. It depends on the acceleration voltage of the primary electrons, that is, the incident energy. As shown in FIG. 3, the secondary electron emission gain and the primary electron acceleration voltage have a maximum secondary electron emission gain in the intermediate region of the primary electron acceleration voltage, and the primary electron acceleration voltage is The function is such that the secondary electron emission gain approaches 0 as it approaches 0 and increases indefinitely.
  • the region of the acceleration voltage of the primary electrons that is greater than or equal to the secondary electron emission gain force ⁇ is an intermediate region B, and the two regions of the primary electron acceleration voltage that the secondary electron emission gain is 1 or less. Of these two regions, a region smaller than the intermediate region is a low region A, and the secondary electron emission gain is 1 or less. In the low region A and high region C of the acceleration voltage of Because the emission gain is 1 or less and the incident amount of primary electrons is larger than the emission amount of secondary electrons.
  • the sample surface On the sample surface, negatively charged electrons relatively increase, and the sample surface becomes negatively charged as primary electrons are incident.
  • the secondary electron emission gain In the intermediate region B of the acceleration voltage of the primary electrons, the secondary electron emission gain is 1 or more, and the incident amount of primary electrons is smaller than the secondary electron emission amount. Decreases relatively, and as the primary electrons enter, the sample surface becomes positively charged.
  • the sample becomes conductive force and this sample is grounded !, the charged charge can be discharged out of the sample as described above. If the object is made of or surrounded by an insulator, the charged charge on its surface cannot be discharged. Can not be observed.
  • the acceleration voltage of the primary electrons is in the intermediate region B, the amount of secondary electrons emitted is greater than the amount of primary electrons incident. End up. For this reason, attempts have been made to reduce the incident amount of primary electrons to prevent charge-up. As described above, decreasing the incident amount of primary electrons reduces the resolution and blurs the image.
  • the acceleration voltage of the primary electrons is in the low region A or the high region C, the sample surface is negatively charged. Therefore, the negative charge charged on the sample surface is incident from the electron gun. The trajectory of primary electrons is distorted, and accurate measurement cannot be performed.
  • Patent Document 1 in order to prevent charge-up, a scanning type in which the surface of the sample is irradiated with primary electrons at an acceleration voltage such that the secondary electron emission gain is 1 as described above. An electron microscope has been proposed (Patent Document 1). In such a device, since the secondary electron emission gain is 1, that is, the amount of incident primary electrons and the emitted secondary electrons are the same, the sample surface is not charged, and charge up is performed. Can be prevented.
  • Patent Document 2 an ion shower is irradiated from the back surface of the sample surface, and the electric power is applied. It has been proposed to neutralize the surface of a sample negatively charged by a child by the ion shower (Patent Document 2).
  • TEM transmission electron microscope
  • TEM irradiates and transmits an electron beam to an observation sample, detects the transmission amount of an electron beam that differs depending on the observation position of the observation sample, and irradiates the electron beam with the difference in the transmission amount.
  • This is an electron microscope that can display the sample two-dimensionally by processing the observation position.
  • the target sample Since the image is observed by irradiating the observation sample with electrons and transmitting the sample, the target sample is cut as thin as possible, or is applied thinly on a film that transmits electrons and observed. Yes.
  • the TEM sample is sliced to a thickness of about lOOnm or less so as to transmit electrons.
  • the observation sample is, for example, a biological sample
  • the biological sample generally contains a large amount of moisture, and when it is placed under vacuum, the moisture evaporates instantaneously and the shape of the sample is deformed. Therefore, it is necessary to dry the sample completely.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-163736
  • Patent Document 2 JP-A-2-15546
  • the present invention can easily solve the problem of charge-up, further facilitate the preparation of the sample, and allow the shape of the sample to be observed with SEM, TEM, or the like.
  • the first purpose is to provide a liquid medium and an observation method using the liquid medium.
  • a second object is to provide a target that can solve the above problems and a method for producing the same.
  • a third object is to provide a sample cell that can solve the above problems, and a fourth object is to provide an electron microscope that can solve the same problems.
  • the present inventors have found that when an ionic liquid is impregnated into a SEM or TEM sample or applied onto the surface of the sample, the SEM or TEM is incorporated. Electrons irradiated from the irradiated electron gun can pass through the ionic liquid filled in the sample even though the incident energy is not so high, thereby detecting secondary electrons or transmitted electrons. It was found that SEM, TEM, etc. could be used for observation, and that the charge force accumulated on the surface of the sample was released through the on-liquid and no charge-up problem occurred.
  • the ionic liquid is liquid at room temperature. , A liquid composed of ions.
  • This ionic liquid is characterized by non-volatility, non-flammability, thermal stability, chemical stability, high ionic conductivity, resistance to electrolysis and the like. For this reason, a sample impregnated or coated with an ionic liquid is placed under vacuum, and even if the ionic liquid is hardly volatilized from the sample, the biological sample does not contract, especially when a biological sample is observed. The original shape of the sample can be observed.
  • the present invention comprises an ionic liquid that is composed of a cation and a cation force and hardly or hardly volatilizes in a vacuum, as an essential component, and a sample for a scanning electron microscope (SEM) or transmission electron A liquid medium for charge-up prevention for an electron microscope, characterized by impregnating the whole sample for a microscope (TEM) or coating the electron-irradiated surface to impart conductivity to at least the electron-irradiated surface.
  • SEM scanning electron microscope
  • TEM microscope
  • a specimen according to the present invention is a specimen to be observed with an electron microscope, and includes an object to be observed, an ionic liquid that includes a cation and a cation, and is a liquid during observation with the electron microscope. It is characterized by including.
  • observing with an electron microscope it means that the liquid is not vaporized at all or under vacuum in a vacuum chamber such as SEM or TEM, and the liquid state is maintained while observing with SEM or TEM. It means that there is little or no volatilization, and that it does not boil.
  • the electron microscope is exemplified by SEM, TEM, etc., and any electron microscope that can observe an object under vacuum is included.
  • the first method for preparing a target according to the present invention is a method for preparing a target to be observed with an electron microscope, and includes a biological sample containing water containing a cation and a cation, An immersing step of immersing in an ionic liquid that is a liquid during observation by the method, and a drying step of placing the biological sample immersed in the ionic liquid under vacuum and removing the water contained in the biological sample.
  • the specimen preparation method is a specimen preparation method that is observed with an electron microscope, and contains a cation and a cation, and the ionic liquid, which is a liquid at the time of observation with the electron microscope, is volatilized in comparison with the ionic liquid.
  • a dilution process for diluting with a solvent an application process for applying an ionic liquid diluted with the solvent to the object to be observed, and an object to be observed with the ionic liquid diluted with the solvent being placed under vacuum. And a drying step for removing the solvent.
  • a sample cell according to the present invention is a cell used when observing a target with an electron microscope, and includes a cation and a cation, and is an ionic liquid that is liquid when observed with the electron microscope, An insulating cell containing ion liquid and positive and negative electrodes immersed in the ionic liquid are included.
  • an electron microscope according to the present invention is an electron microscope used when observing a specimen, which accommodates the specimen and is evacuated, and is accommodated in the vacuum chamber.
  • An insulating cell capable of containing an ionic liquid, which is a liquid when observed with a microscope, positive and negative electrodes immersed in the ionic liquid filled in the insulating cell, and an electron gun for irradiating the target with an electron beam
  • a detector for detecting secondary electrons generated by irradiating the target with electrons from the electron gun.
  • a sample observation method according to the present invention is a sample observation method by an electron microscope using the liquid medium
  • An ionic liquid which is composed of cation and ion force and does not volatilize at all or hardly volatilizes in vacuum, or impregnates the object to be observed, or applies the ion liquid to the observation surface of the object to be observed, Thereby, at least the step of imparting conductivity to the observation surface, and the observation object impregnated or coated with the ionic liquid as described above is irradiated with electrons, and secondary electrons or transmitted electrons are detected by the irradiated electrons. And a step of obtaining an image of the object to be observed.
  • the living body means an organism containing moisture, and not only animals but also plants (flowers, Leaves, stems, seeds, etc.).
  • the liquid medium for charge-up prevention for an electron microscope According to the liquid medium for charge-up prevention for an electron microscope according to the present invention, the charge accumulated on the sample surface can be easily released, and the problem of charge-up can be solved. Furthermore, according to the observation method using the liquid medium according to the present invention, even if the sample impregnated or coated with the ionic liquid is placed under vacuum, the ionic liquid does not volatilize from the sample. When observing a sample, it is possible to observe the natural shape of the biological sample that is not contracted.
  • the ionic liquid since the ionic liquid is impregnated or applied, the charge-up can be prevented and the shape of the sample can be observed as described above.
  • the nonvolatile ionic liquid is injected into the cell, and the ionic liquid discharges electrons out of the sample.
  • the sample can be observed.
  • FIG. 1 is an SEM photograph of star sand observed by the observation method according to the present invention.
  • FIG. 2 is a schematic view of an SEM device.
  • FIG. 3 is a graph showing the relationship between secondary electron acceleration voltage and secondary electron emission gain.
  • MI-BF MI-BF
  • FIG. 5 is an SEM photograph of an observation object coated by metal sputtering.
  • FIG. 7 is a schematic view showing a sample cell according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a sample cell according to another embodiment of the present invention.
  • FIG. 9 SEM photograph (300x magnification) of seaweed impregnated with hydrophilic BMI-BF.
  • FIG. 10 SEM photograph (300x magnification) of dried seaweed sputtered with Au as in the past.
  • FIG. 11 SEM photograph (300x) of a seaweed impregnated with hydrophobic BMI-TFSI.
  • FIG. 12 is an SEM photograph of a polypyrrole film when electricity is applied.
  • FIG. 13 is an SEM photograph of a polypyrrole film when no electricity is applied.
  • the present invention comprises an ionic liquid as an essential component and impregnates the entire sample for a scanning electron microscope (SEM) or a transmission electron microscope (TEM), or is applied to the electron irradiation surface, It exists in the liquid conductivity provision medium for microscopes which provides electroconductivity at least to an electron irradiation surface.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • an SEM sample is impregnated or coated with an ionic liquid and the impregnated or coated sample is observed by SEM.
  • a sample is cut into a desired shape and impregnated with an ionic liquid to prepare a sample.
  • the specimen surface is observed by setting the apparatus and scanning the specimen surface with an electron beam.
  • the ionic liquid contained in the liquid conductivity imparting medium to be impregnated or applied to the sample will be described.
  • the ionic liquid is a liquid that is in liquid form at room temperature, Z, or vacuum, and is composed of ions.
  • This ionic liquid is characterized by non-volatility, nonflammability, thermal stability, chemical stability, high ionic conductivity, resistance to electrolysis, and the like.
  • SEM and TEM observations since the sample is placed under vacuum, it is preferable that the ionic liquid impregnated in this sample does not volatilize (evaporate) or hardly volatilize (a).
  • the ionic liquid needs to have electron conductivity since the charge charged on the sample surface should be discharged outside the sample to prevent charge-up (c).
  • Examples of the ionic liquid satisfying the above (a) to (c) include the following.
  • K + A_ (l) force and K + is the general formula (2);
  • R 1 and R 2 represent an alkyl group having 1 to 10 carbon atoms or a hydrogen atom, and these may be the same or different, provided that R 1 and R 2 are simultaneously N-alkylimidazolium cation represented by hydrogen atom! /,
  • R 3 represents an alkyl group having 1 to 10 carbon atoms or a hydrogen atom.
  • R 3 may be the same or different, and is an ammonium cation represented by ,
  • R 4 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a phenol group, a hydroxyl group, a mercapto group, an amino group, a carboxyl group, or a tetrazolyl group.
  • a sulfonic acid group, and each group represented by R 4 other than a hydrogen atom may have a substituent, and a tetrazole compound compound-one represented by
  • R 5 and R 6 are each a hydrogen atom, an alkyl group having 1 to carbon atoms: L0, a cycloalkyl group having 3 to carbon atoms: a phenyl group, a phenol group, a hydroxyl group, a mercapto group, an amino group, Carboxyl group
  • Each group represented by R 5 and R 6 other than a hydrogen atom may have a substituent.
  • R 5 and R 6 may be the same or different! /. ),
  • R 7 and R 8 are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a phenol group, a hydroxyl group, a mercapto group, an amino group, and a carboxyl group.
  • Each group represented by R 7 and R 8 other than a hydrogen atom may have a substituent.
  • R 7 and R 8 may be the same or different! / ⁇ !
  • the alkyl group in the N-alkylimidazolium cation represented by the general formula (2) and the ammonium cation represented by the general formula (3) has 1 to 10 carbon atoms.
  • Group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like are preferable.
  • N-alkylimidazolium cation examples include a 1-methyl-3-methylimidazolium cation, a 1-methyl-3-ethylimidazolium cation, and a 1-methyl-3-propylimidazolium cation.
  • ammonium cation examples include an ammonium cation, a trimethyl ammonium cation, an ethyl dimethyl ammonium cation, a jetyl methyl ammonium cation, a triethyl ammonium cation, a tetramethyl ammonium cation, and a trimethyl ammonium cation. And tetraethylammonium cation, and a triethylmethylammonium cation and a tetraethylammonium cation are preferable.
  • Compound The alkyl group in the cation is one having 1 to 10 carbon atoms, such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like. Can be mentioned.
  • the cycloalkyl group has 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group.
  • substituents that each group other than a hydrogen atom may have include an alkyl group, a hydroxyl group, a mercapto group, an amino group, and a carboxyl group.
  • tetrazole compound cation examples include 1, 2, 3, 4-tetrazolone, 1H-5 carboxytetrazole anion, 1H-5 mercaptotetrazole anion, 1H-5 aminotetrazole anion, 1H—5 phenyltetrazole anion, 1 H—tetrazole anion, 1H—5-methyltetrazole anion, 5, 5 ′ be 1H—tetrazole anion, 1, 5 be 1H—tetrazole anion N— 1H—tetrazole 5—yl— 1H—tetrazol-5 amine-one, etc., 1, 2, 3, 4—tetrazol-one, 5, 5 ′ bi-1H—tetrazol-one Preferably there is.
  • triazole compound cation examples include 1, 2, 3 triazolone, 4-mercapto-1,2,3 triazoleanion, 1,2,4 triazoleanion, 3-mercapto — 1, 2, 4 triazolone, 3-mercapto-5-methyl-1, 2, 4-triazolone, 3, 5 dimethyl-1, 2, 4 triazolone, etc. , 4 Triazol-one is preferred.
  • the above-mentioned key-on component is a key-one that is generated by the separation of one proton from a tetrazole compound, a triazole compound, or a mixture thereof.
  • a bis (norgenated alkylsulfol) imidoone represented by the formula:
  • the halogen contained in R 9 or R 1G bonded to the tip of A— include fluorine, chlorine and bromine, with fluorine being particularly preferred.
  • R 9 or R 1G is a halogenoalkyl
  • a halogenoalkyl having 1 to 3 carbon atoms is preferred.
  • a trifluoromethyl group, a pentafluoroethyl group, a heptafluoro group is preferred.
  • a ropropyl group is mentioned.
  • the number of carbon atoms of the alkyl halide may be the same or different. Having a highly electron-attracting halogen or alkyl halide has the effect of dispersing the charge of the ion, increasing the stability of the ion, and facilitating dissociation from the cation.
  • Alkyl groups include up to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutinole, sec-butinole, tert-butinole, pentinole, hexinole, heptinole, octinole, nonyl, decyl, etc. And those having a straight chain or a branch.
  • aryl groups include phenyl, naphthyl, tolyl, xylyl, and the like.
  • aryl groups include halogen atoms (F, Cl, Br, I), hydroxyl groups, alkoxy groups (methoxy, ethoxy, propoxy, butoxy, etc.), It may have one or more substituents such as a carboxyl group, a acetyl group, a propanol group, a thiol group, an alkylthio group (such as methylthio, ethylthio, propylthio, butylthio), an amino group, an alkylamino group, a dialkylamino group, etc. Good.
  • substituents such as a carboxyl group, a acetyl group, a propanol group, a thiol group, an alkylthio group (such as methylthio, ethylthio, propylthio, butylthio), an amino group, an alkylamino group, a dialkylamino group, etc. Good.
  • heterocyclic group examples include pyridyl, chenyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, pyrrolidyl, piperazur, morpholinyl and the like.
  • Aralkyl groups include benzyl, phenethyl and the like.
  • these 1 , R 12 , R 13 , and R 14 may be pyrrolidinium, piberidi-um, etc., which are bonded within a molecule to form a ring, and 1 , R 1 R 13 , R 14 is form a chain in combination with scale 11, R 12, R 13, R 14 other cations adjacent, may have a structure represented by one general formula (10). [0042] [Chemical 9]
  • R 15 R 2U may have to or different may be the same. If these R la R 2U is directly bonded by a single bond or a double bond, and each independently or simultaneously is a hydrogen atom, a halogen atom, or an alkyl group having 1 to 8 carbon atoms. This alkyl group is preferably F, Cl, N (CFH), 0 (CFH), SO (CFH) or
  • n (2n + lx) x 2 n (2 ⁇ + 1- ⁇ ) x 2 n (2 ⁇ + 1- ⁇ ) x is partially due to CF H where l ⁇ n ⁇ 6 and 0 ⁇ x ⁇ 13 N or completely n (2n + lx) x
  • R 21 to R 24 may be different or the same, and may be the same or directly bonded to each other through a single bond or a double bond. Also, each of R 21 to R 24 is not substituted, and alone or simultaneously, CF 21
  • halogen F, CI or Br
  • alkyl groups of 1 to 8 carbon atoms
  • This alkyl group is preferably F, Cl, N (CFH), O (CF
  • ⁇ -one is bis-2-ethylhexyl sulfosuccinate having two 2-ethylhexyl groups as alkyl groups.
  • a force in which a sulfosuccinone having two branched alkyl groups having 8 carbon atoms is used.
  • the alkyl group is linear, the melting point becomes room temperature or higher, The viscosity of the resulting compound is very high.
  • the viscosity of the resulting compound will be very high, while if the number of carbon atoms is 7 or less, the melting point will be above room temperature. It becomes.
  • R 25 in the formula represents an alkyl group having 8 to 20 carbon atoms.
  • alkyl groups (R 25 ) include linear or branched octyl groups, nonyl groups, decyl groups, undecyl groups, dodecyl groups, tridecyl groups, tetradecyl groups, pentadecyl groups, hexadecyl groups.
  • Dodecyl group is particularly preferred from the viewpoint of low viscosity and low melting point.
  • K + is Arukirupiriji - a Umukachion
  • R 26 in the formula represents an alkyl group having 12 to 18 carbon atoms.
  • Specific examples of such an alkyl group (R 2 6 ) include linear or branched dodecyl groups, linear or branched tridecyl groups, linear or branched tetradecyl groups, Chain or branched pentadecyl group, linear or branched hexadecyl group, linear or branched heptadecyl group, linear or branched octadecyl group, low viscosity and low melting point From the point of view, the hexadecyl group is particularly preferred.
  • the force described for the ionic liquid is merely an example, and is an ionic liquid that satisfies all or part of the above (a) to (c). If it is liquid, it can be used as an ionic liquid contained in the liquid conductivity-imparting medium of the present invention.
  • the specific ionic liquid described above is used as a charge-up-preventing liquid medium for an electron microscope according to the present invention. It can also be used for sample cells, electron microscopes, and sample preparation methods.
  • the target according to the present invention includes an object to be observed and an ionic liquid.
  • the ionic liquid includes a cation and a cation, and is a liquid during observation with an electron microscope. If the target constructed in this way is used, it will not evaporate even if it is placed in a sample chamber such as SEM under vacuum, and a non-volatile ionic liquid is applied or impregnated on the object to be observed. Due to the conductivity of the ionic liquid, the charge accumulated on the surface of the insulative object to be observed can be discharged to the outside to prevent charge-up. In addition, SEM and other equipment will not be adversely affected.
  • a biological sample containing a large amount of water may be placed under vacuum and vacuum dried to be used as an object to be observed. It is also possible to apply an ionic liquid diluted with alcohol, benzene, toluene, acetone, methyl ethyl ketone, methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, dioxane, pentane, hexane, or the like. .
  • an ionic liquid diluted with alcohol benzene, toluene, acetone, methyl ethyl ketone, methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, dioxane, pentane, hexane, or the like.
  • an ionic liquid having hydrophilicity is prepared. Then, a biological sample containing moisture is immersed in the hydrophilic ionic liquid. During immersion, water contained in the biological sample is gradually replaced with the above ionic liquid (1 to 3 hours).
  • hydrophilic ionic liquids tetrafluoroborate 1-ethyl 3-methylimidazolium, trifluoromethanesulfonic acid 1-ethyl 3-methylimidazolium, tetrafluoroborate 1 Move 3-methylimidazolium, trifluoromethanesulfonic acid 1-butyl 3-methyimidazolium, odor 1-hexyl 3-methylimidazolium, 1-hexyl chloride-3 methyl imidazolium or salt 1 Decyl-3 methylimidazolium and the like are listed.
  • the biological sample immersed in the ionic liquid is placed in a vacuum chamber to remove the moisture contained in the biological sample (20 minutes to 1 hour). As a result, a target in which the moisture in the biological sample is replaced with the ion liquid is obtained.
  • the ionic liquid is diluted with alcohol or the like, and the diluted ionic liquid is applied to the object to be observed to cover the fine structure or the gaps between the aggregates of the particles (Fig. 6). ).
  • the method for preparing a target using the diluted ionic liquid will be described below.
  • a cation liquid containing a cation and a cation which is a liquid when observed with an electron microscope, and which is not or hardly volatilizes under almost vacuum, is compared with the ionic liquid by a volatile sieving solvent.
  • Dilute examples of the solvent include all inorganic and organic liquid substances that can dilute an ionic liquid. Specifically, alcohols, benzene, toluene, acetone, methyl ethyl ketone, methylene chloride, Examples include black mouth form, carbon tetrachloride, tetrahydrofuran, dioxane, pentane, and hexane.
  • An object to be observed is impregnated or coated with an ionic liquid diluted with the solvent.
  • Fig. 4 shows a mixture of ethanol with tetrafluoroboric acid 1-butyl-3-methylimidazole (BMI-BF), which is a hydrophilic ionic liquid, and this is mixed with an object to be observed (sandpaper).
  • BMI-BF tetrafluoroboric acid 1-butyl-3-methylimidazole
  • the present invention is a method for preparing a specimen to be observed with an electron microscope, which contains a cation and a cation, and volatilizes an ionic liquid that is a liquid when observed with the electron microscope as compared with the ionic liquid.
  • FIG. 6 shows 1-butyltetrafluoroborate 3-methylimidazolium (BMI-BF) that has not been diluted with ethanol.
  • a fixed sample immersed in 50% DMSO dimetyl sulfoxide is cooled with liquid nitrogen. Freeze on the plate and solidify and break with a force razor blade to expose the interior.
  • DMSO dimetyl sulfoxide
  • 100% ethanol or isoamyl acetate can also be used. According to this method, a good cross section can be formed.
  • a sample fixed with 2% dartalaldehyde is treated with 6N NaOH at 60 ° C for about 10 minutes.
  • the collagen fibers and basement membrane are removed, and the cell surface covered with connective tissue can be observed.
  • a sample fixed with 2% dartalaldehyde is treated with 2N NaOH at 20 ° C for about 10 minutes. Cellular components are removed and connective tissue fiber networks can be observed.
  • Metatalylate coagulant monomer is injected into the blood vessel, and after softening of the resin, the soft tissue is dissolved with NaOH, and the remaining blood vessel type is observed.
  • This intracellular structure observation method is a method of freezing and cleaving a sample that has been double-fixed (0.5% dartalaldehyde and 0.5% formaldehyde mixed solution 1% osmium). After double fixation, 0.1% osmium treatment (20 ° C, 72 hours) can be used to dissect the structure that is not necessary for observation of the split section force and to dissect the intracellular structure.
  • a sample is prepared by impregnating or coating the above-described ionic liquid on the observation surface obtained as described above. Specifically, it is produced by the above method A. Fix the contamination after removing contamination and mucus culture solution with a washing solution. Subsequently, the sample impregnated or coated with ion liquid as described above is adhered to the SEM sample stage with an adhesive, and the SEM sample stage to which the sample is adhered is set in the SEM apparatus. Thereafter, the electron microscope sample chamber is evacuated.
  • the main parameters are acceleration voltage, condenser lens current value, objective aperture diameter, and working distance.
  • Each parameter greatly affects the resolution setting and also affects the image quality. It is preferable to set to. In the following, these parameters will be explained and the optimum setting values will be mentioned.
  • This convergent lens current value greatly changes the beam current. Increasing this current value can improve resolution.
  • the value of the objective aperture diameter affects the resolution because it changes the diameter of the electron beam.
  • the smaller the aperture the higher the resolution and the deeper the focal depth.
  • shooting is performed to acquire image data.
  • the surface of the observation object is made of metal by sputtering after drying the observation object. Because it was necessary to coat, it was difficult to see directly the changes in biological samples caused by the electrochemical reaction and the application of electricity.
  • the sample cell according to the present invention is used, the object to be observed can be observed without discharging the charge accumulated in the biological sample and causing charge up.
  • the sample cell according to the present invention is a sample cell for SEM observation while supplying electricity to an object to be observed or repeatedly repeating the applied force [] ⁇ of electricity.
  • a sample cell according to an embodiment of the present invention includes a cation and a cation, and includes an electron microscope.
  • An ionic liquid 17 that is a liquid during observation, an insulating cell 13 that accommodates the ionic liquid, a sample stage 16 that is provided under the insulating cell 13 and has a conductive force, and one end portion of which is It includes a conducting member 18 connected to the base 16 and having the other end disposed in the cell, and positive and negative electrodes 14 and 15 immersed in the ion liquid 17 (FIG. 7).
  • the ionic liquid 17 of the sample cell according to the present embodiment is the same as the ionic liquid described above.
  • the insulating cell 13 has a bottomed cylindrical shape so that the ionic liquid 17 can be accommodated, and a sample stage 16 made of a conductor is disposed under the bottomed cylindrical body. Yes. Since the ionic liquid 17 is conducted to the sample stage 16 made of a conductor by the conducting member 18, the electrons irradiated from the electron gun 1 in the SEM to the object immersed in the ionic liquid 17 are the ionic liquid 17 and It is released from the sample stage 16 having a conductive force through the conductive member 18.
  • the sample stage 16 also having the above-described conductor force is capable of emitting electrons irradiated on the object to be observed as described above.
  • the sample stage 16 has conductivity, even if it is a metal, It may be a semiconductor or a plastic. Since the positive and negative electrodes 14 and 15 can pass electricity to the object to be observed, the contraction / expansion of the object to be observed can be observed in the cell by applying electricity to the object to be observed.
  • the contraction / expansion of the polypyrrole film can be observed by repeating the release of the electric mark on the polypyrrole film, which is a conductive polymer.
  • a sample cell includes an insulating cell 13 provided on a sample stage 16 having a conductive force, one end connected to the sample stage 16, and the other end.
  • the portion includes a conducting member 18 disposed in the cell, a cation and a ion, and is a liquid when observed by the electron microscope, and electrically connects the electrode and the other end of the conducting member.
  • ionic liquid 17 (FIG. 8).
  • the insulating cell and ionic liquid are the same as those described above.
  • the sample cells according to the above two embodiments can also be used for observation of reactions over time, for example, for observation of crystal growth, synthesis of nanomaterials, and the like.
  • the ionic liquid has non-volatility as described above. Furthermore, since it has conductivity, it is possible to observe an object to be observed while preventing charge-up. In addition, if a positive electrode and a negative electrode are connected to the object to be observed, the behavior caused by passing electricity through the object can be observed.
  • the present invention is an electron microscope used when observing a specimen, and a vacuum chamber that accommodates the specimen and is evacuated, and is accommodated in the vacuum chamber and observed by an electron microscope.
  • An insulating cell that can sometimes contain an ionic liquid that is a liquid, positive and negative electrodes immersed in the ionic liquid filled in the insulating cell, an electron gun that irradiates the target with an electron beam, and the above
  • an electron microscope including a detector that detects secondary electrons generated by irradiating the target with electrons from an electron gun.
  • the SEM apparatus includes a vacuum chamber 12, an insulating cell 13 that can contain an ionic liquid, a positive electrode 14, a negative electrode 15, an electron gun 1, a collecting lens 2, a scanning coil 3, an objective lens 4, and an objective lens aperture. 5 and an electron optical system that scans the sample placed on the substrate 6, a stage 7 on which the substrate 6 is placed, a detector 8 that detects secondary electrons from the sample, and a detection It comprises a video amplifier 9 for amplifying the output of the device 8, a display device 10 such as a brown tube (CRT), and a scanning circuit 11 for driving the electron optical system.
  • a video amplifier 9 for amplifying the output of the device 8
  • a display device 10 such as a brown tube (CRT)
  • a scanning circuit 11 for driving the electron optical system.
  • the electron beam emitted from the electron gun 1 is irradiated onto the sample placed on the stage 7 through the focusing lens 2, the scanning coil 3, and the objective lens 4.
  • the detector 8 detects secondary electrons that have also generated sample force due to the scanning of the electron beam irradiation.
  • the detection signal of the detector 8 is displayed on the display device 10 via the video amplifier 9.
  • the vacuum chamber 12 of the electron microscope according to the present invention is evacuated to a high vacuum state after the sample observation cell is inserted therein.
  • the upper part of the vacuum chamber 12 is provided with an electron gun 1 for irradiating an object to be observed with an electron, and a sample observation cell 13 is disposed near the lower part of the electron gun 1, and the electron gun force is measured in the cell.
  • the observation object is irradiated with electrons.
  • the electron gun 1 is for irradiating electrons to the observation object in the sample cell as described above, and can irradiate electrons having energy in the range of several eV to several tens eV. .
  • the secondary electron detector 8 is for detecting secondary electrons generated by irradiating the primary electrons, and by adding an electric field or the like to the generated secondary electrons. Can collect children.
  • the insulating cell 13 and the positive and negative electrodes 14 and 15 are the same as those described above.
  • an ionic liquid may be used for a sample for SPM. That is, the present invention includes an ionic liquid as an essential component, impregnates the entire sample for a scanning probe microscope (hereinafter referred to as “SPM”), or is applied to the scanning surface, and at least the above-mentioned scanning is performed.
  • SPM scanning probe microscope
  • a liquid conductivity imparting medium for a scanning probe microscope that imparts conductivity to the surface may be used.
  • the dried seaweed was returned with water. After that, the seaweed returned to water is hydrophilic BMI—BF
  • Fig. 10 is a SEM photograph (300x) of the dried seaweed that was sputtered with Au and observed with a SEM as before.
  • the thickness of the seaweed observed by the method according to the present invention was about 3.5 times that of the seaweed observed by the conventional method.
  • a wrinkled portion was observed, whereas in the seaweed observed by the method according to the present invention, the wrinkled portion was not seen, and the shape of the original seaweed was observed.
  • FIG 11 shows an SEM image of a seaweed that was impregnated with hydrophobic 1-butyl-3-methylimidazolium bis (trifluoromethanesulfol) imide (BMI-TFSI). 0 times).
  • BMI-TFSI hydrophobic 1-butyl-3-methylimidazolium bis (trifluoromethanesulfol) imide
  • Example 2 tetrafluoroboric acid 1-ethyl-3-methylimidazolium was used as an ionic liquid, which was impregnated into star sand, and the impregnation was observed with a SEM apparatus. .
  • tetrafluoroborate 1-ethyl- 3 -methylimidazole manufactured by Lancaster was used as the ionic liquid.
  • the sample (star sand) is adhered and fixed to the SEM sample stage with an adhesive, and then tetrafluoroboric acid is attached to the sample.
  • —Ethyl 3-methylimidazolium was impregnated.
  • FIG. 1 shows the star sand (left) impregnated with ionic liquid as described above, and star sand (right) impregnated with ionic liquid.
  • ionic liquid in the case of dwarf ⁇ star sand impregnated with ionic liquid (right), the image turned white due to charge-up.
  • star sand impregnated with ionic liquid in the case of star sand impregnated with ionic liquid (left), it was possible to prevent charge-up even though the star sand was composed of an insulator. The ionic liquid could be observed well for a long time without volatilization even under vacuum.
  • Example 3 tetrafluoroborate 1-butyl 3-methylimidazolium was used as an ionic liquid, which was impregnated into star sand, and the impregnated material was observed with a SEM device. did. In Example 3, this procedure was performed except that 1-butyltetrafluoroborate-3-methylimidazole was used as the ionic liquid instead of tetrafluoroborate-1-ethyl-1-methylimidazolium. As in Example 2. In Example 3 as well, good observation was possible as described above. [0075] (Example 4)
  • Example 4 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfol) imide was used as an ionic liquid and impregnated into star sand, and the impregnated material was SEM. Observed with a device. In Example 4, except that 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfol) imide was used as the ionic liquid instead of tetrafluoroborate 1-ethyl-3-methylimidazolium As in Example 1. In Example 4, as in Example 2, it was possible to observe well.
  • Example 5 1-butyl 3-methylimidazolium bis (trifluoromethanesulfol) imide was used as an ionic liquid, impregnated into star sand, and the impregnated product was Observed with a SEM apparatus. In Example 5, except that 1-butyl-3-methylimidazolium bis (trifluoromethanesulfol) imide was used as the ionic liquid instead of tetrafluoroborate 1-ethyl-1-methylimidazolium. As in Example 2. In Example 5, as in Example 2, it was possible to observe well.
  • Example 6 hexafluorophosphate 1-butyl-3-methylimidazolium was used as an ion liquid, impregnated in star sand, and the impregnation was observed with a SEM apparatus. In Example 6, tetrafluoroboric acid is used as the ionic liquid.
  • Example 6 The same procedure as in Example 2 was carried out except that 1-butyl hexafluorophosphate 3-methylimidazolium was used instead of 1-ethyl-3-methylimidazolium.
  • Example 6 As in Example 2, it was possible to observe well.
  • Example 7 trimethyl-n-propylammonium bis (trifluoromethanesulfol) imide was used as an ionic liquid and impregnated into star sand. Observed with a SEM apparatus. In this Example 7, instead of tetrafluoroboric acid 1-ethyl-3-methylimidazolium as the ionic liquid, trimethyl-n- The same procedure as in Example 2 was conducted except that propylammonum bis (trifluoromethanesulfol) imide was used. In Example 7, as in Example 2, it was possible to observe well.
  • Example 8 a polypyrrole film, which is a conductive polymer, is formed on one surface of a thin-film metal electrode, and electricity is applied to the polypyrrole film [1 ⁇ contraction of polypyrrole film when released ⁇ Swelling was observed.
  • two electrodes made of platinum Pt, working electrode (WE) and counter electrode (CE) are immersed in an electrolyte solution made of 0.1M pyrrole and 0.1M p-sodium sulfonate in an insulating cell.
  • a constant current of 3 mA was applied to the two electrodes for 2 hours to perform electrolytic polymerization, and a polypyrrole film was formed on the platinum plate. Thereafter, the polypyrrole film was washed with ultrapure water and acetonitrile, and subsequently the ionic liquid BMI-BF was prepared as an electrolyte. afterwards
  • FIG. 12 is a SEM photograph of the polypyrrole film in the cell when electricity is applied
  • FIG. 13 is a SEM photograph of the polypyrrole film when electricity is not applied.
  • electricity is applied, the amount of increase in the thickness of the polypyrrole film is larger than when no electricity is applied.
  • the increase in film thickness is 1% to 20% of the total film thickness of polypyrrole when electricity is not applied. It extends to. Industrial applicability
  • the conductivity-imparting medium containing an ionic liquid according to the present invention impregnates a sample observed by an electron microscope when the sample is observed by SEM, TEM or the like, or on the observation surface. Used to apply conductivity to the sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 本発明は、簡易にチャージアップの問題を解決することができ、さらに試料の実際の形状等をSEM、若しくはTEM等により観察することを可能とする媒体、標体、標体の作製方法及び観察方法、試料用セル、並びに電子顕微鏡を提供することを目的する。上記目的を達成するため、本発明は、イオン液体を必須成分として含んでなり、SEM、若しくはTEM用試料の全体に含浸させ、又はその観察面に塗布し、少なくとも観察面に導電性を付与する、顕微鏡用液状導電性付与媒体を用いる。本発明によれば、単にイオン液体を試料に含浸させるか、若しくは塗布させるだけで、試料表面に溜まった電荷を放出することができるため、簡易にチャージアップの問題を解決することができる。さらに、イオン液体は、イオン液体が含浸若しくは塗布させた試料を真空下に置いたとしても試料から蒸発しないため、生体試料を原形のまま観察することができる。

Description

明 細 書
電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観 察方法
技術分野
[0001] 本発明は、走査型電子顕微鏡、若しくは透過型電子顕微鏡等の電子顕微鏡による 試料観察に用いられ、試料観察面のチャージアップを防止する液状媒体、及びそれ を用いる試料観察方法に関する。
背景技術
[0002] 今日、ナノレベル、マイクロレベルの微小構造を高精度に観察することが要請され ているが、微細な構造等を観察する手段として、一般的に走査型電子顕微鏡 (Scann ing Electron Microscope;以下 SEMと称す)が用いられている。
[0003] ここで、 SEMとは、電子線を走査しながら、観察試料に照射し、電子線が観察試料 に衝突することにより発生する、二次電子、反射電子、特性 X線、蛍光等のうち、例え ば二次電子を検出器により検出し、検出された電子の電荷量に対応する輝度と、電 子が照射された位置情報とを処理することにより、観察試料を三次元的に画像表示 することができる電子顕微鏡である。
[0004] 一般に、観察試料に照射される一次電子の入射量と、一次電子の照射により観察 試料から放出される二次電子の放出量との比率を表した二次電子放出利得は、上 記一次電子の加速電圧、即ち入射エネルギーに依存する。上記二次電子放出利得 と一次電子の加速電圧とは、図 3に示すように、一次電子の加速電圧の中間領域に 、二次電子放出利得の最大値を有し、一次電子の加速電圧が 0に近づくに従って、 また無限に大きくなるに従って上記二次電子放出利得が 0に近づくような関数となつ ている。ここで、上記二次電子放出利得力 ^以上となる、一次電子の加速電圧の領域 を中間領域 Bとし、上記二次電子放出利得が 1以下となる、 2つの、一次電子加速電 圧の領域のうち、上記中間領域より小さい領域を低領域 A、そして、上記二次電子放 出利得が 1以下となる、 2つの領域のうち、上記中間領域より大きい領域を高領域じと すると、一次電子の加速電圧の低領域 A、及び高領域 Cにおいては、上記二次電子 放出利得が 1以下であり、一次電子の入射量が、二次電子の放出量より多くなるため
、試料表面において、負の電荷を有する電子が相対的に増加し、一次電子を入射す るに従って試料表面は負に帯電する。また、一次電子の加速電圧の中間領域 Bにお いては、上記二次電子放出利得は 1以上となり、一次電子の入射量が、二次電子の 放出量より少なくなるため、試料表面において電子量が相対的に減少し、一次電子 を入射するに従って試料表面は正に帯電する。
[0005] 観察しょうとして 、る試料が導電性力 なり、この試料が接地されて!、れば、上記の ように帯電した電荷を試料外に放出することができるが、上記試料が、絶縁体からな る物体又は絶縁体で囲まれた物体である場合には、その表面に帯電した電荷を放 出することができないため、 SEMにより試料を観察する場合、チャージアップにより、 試料の像を正確に観察することができない。特に、一次電子の加速電圧が中間領域 Bにある場合、一次電子入射量に対して二次電子放出量の方が多いため、 SEM観 察像において、濃淡がつきにくぐ全体的に白く表示されてしまう。そのため、一次電 子の入射量を減少させて、チャージアップを防止することが試みられている力 上記 のように一次電子の入射量を減少させると解像度が低下し、像がぼやけることとなる。 一方、一次電子の加速電圧が、低領域 A若しくは高領域 Cにある場合、試料表面は 負に帯電することとなり、このため、この試料表面に帯電した負の電荷により、電子銃 から入射される一次電子の軌道が歪められ、正確な測定を行うことができない。
[0006] そのため、観察しょうとする試料表面が絶縁体力もなる場合において、チャージアツ プを防止するため、試料表面にカーボン (C)、アルミニウム (A1)、又は白金 (Pt)等を 蒸着することにより、試料表面において帯電した電荷を放出することが試みられてい る。
[0007] また、特許文献 1にお!/、ては、チャージアップを防止するため、上述の二次電子放 出利得が 1となるような加速電圧で一次電子を試料表面に照射する走査型電子顕微 鏡が提案されている (特許文献 1)。このような装置は、上記二次電子放出利得が 1で あるため、即ち、入射される一次電子と放出される二次電子の量が同じであるため、 試料表面が帯電せず、チャージアップを防止することができる。
[0008] さらに、特許文献 2においては、試料表面の裏面からイオンシャワーを照射して、電 子により負に帯電した試料表面を上記イオンシャワーにより中和させることが提案さ れている(特許文献 2)。
[0009] 他方、微小構造を観察する場合、 SEMによる以外にも、透過型電子顕微鏡 (Trans mission Electron Microscope;以下 TEMと称す)によっても観察されている。
[0010] ここで、 TEMとは、電子線を観察試料に照射し、透過させ、観察試料の観察位置 により異なる電子線の透過量を検出し、この透過量の違 、と電子線を照射した観察 位置とを処理することにより、試料を二次元的に画像表示することができる電子顕微 鏡である。
[0011] 観察試料に電子を照射し、試料を透過させて像を観察することになるため、対象と なる試料をできるだけ薄く切断したり、電子を透過するフィルム上に薄く塗りつけて観 察されている。また、 TEM用試料は、電子を透過するようにおよそ lOOnm以下の厚 さにスライスされる。さらに、観察試料が、例えば生体試料である場合、生体試料は 一般に多量の水分を含んでおり、これを真空下に置いたときに水分が一瞬で蒸発す るとともに、試料の形状が変形してしまうため、試料を完全に乾燥させることが必要と されている。
特許文献 1 :特開平 3— 163736号公報
特許文献 2 :特開平 2— 15546号公報
発明の開示
発明が解決しょうとする課題
[0012] し力しながら、 SEMによる観察においては、絶縁体力もなる試料表面に、カーボン
(C)、アルミニウム (A1)、又は白金 (Pt)等を蒸着することにより、チャージアップを防 止する方法では、試料を観察する前に、別途蒸着工程を行わなければならないため 、工程が複雑となり、蒸着のための装置等を用意する必要がある。
[0013] また、特許文献 1のような、二次電子放出利得が 1となる加速電圧で一次電子を試 料表面に照射する SEMでは、電子線が照射されている部分力 ある材質の部分に ある場合においては、上記二次電子放出利得が 1に保たれているとしても、この部分 が別の材質の部分に移行した場合には、上記二次電子放出利得は変化してしまうた め、完全にはチャージアップを防止することができない。電子線照射部分が、材質が 異なる部分に移行した瞬間に、上記二次電子放出利得が 1となるように補正すること も考えられるが、そのためには、上記の補正を可能とする補正手段を設けなければな らず、測定が複雑となるという問題があった。
[0014] さらに、試料表面の裏面からイオンシャワーを照射して、電子照射により負に帯電し た試料表面をイオンシャワーにより中和する SEM (特許文献 2)では、イオンシャワー を試料表面に照射するため、試料自体力 オンシャワーにより加工され、損傷を受け るという問題があった。
[0015] また、 SEM観察及び TEM観察の両方において、生体試料に含まれる水分を完全 に蒸発させ、生体試料を乾燥させなければならないため、生体の本来有するありのま まの形状等を観察することができないという問題があった。そのため、凍結乾燥や臨 界点乾燥により、試料が有する形状をできるだけ維持したまま試料を乾燥させること が試みられて 、るが、形状を完全に維持したまま試料を作製することは困難であり、 時間と手間が掛カるという問題があった。
[0016] 従って、本発明は、簡易にチャージアップの問題を解決することができ、さらに試料 作製が容易であって、試料のありのままの形状等を SEM、又は TEM等により観察す ることを可能とする液状媒体、及びそれを用いた観察方法を提供することを第 1の目 的とする。また、上記の問題を解決することができる標体およびその作製方法を提供 することを第 2の目的とする。さらに、上記の問題を解決することができる試料用セル を提供することを第 3の目的とし、同様の問題を解決しうる電子顕微鏡を提供すること を第 4の目的とする。
課題を解決するための手段
[0017] 本発明者らは、上記課題に鑑み鋭意研究を行った結果、イオン液体を SEM、又は TEM用試料に含浸させ、又は上記試料の表面上に塗布させた場合、 SEM、 TEM に内蔵された電子銃から照射された電子が、その入射エネルギーがそれ程高くない にも拘わらず、試料に充填されたイオン液体を透過し、それにより二次電子又は透過 電子を検出することができ、それにより SEM、 TEM等〖こより観察することができること 、及び試料表面に溜まった電荷力 オン液体を介して放出され、チャージアップの問 題が発生しないことを見出した。ここで、イオン液体とは、常温において液状であって 、イオンで構成される液体である。このイオン液体は、不揮発性、不燃性、熱安定性、 化学的安定性、高イオン伝導性、耐電気分解性などにより特徴付けられる。そのため 、イオン液体を含浸若しくは塗布させた試料を真空下に置 、たとしても試料からィォ ン液体が殆ど揮発しないため、特に生体試料を観察する場合、この生体試料が収縮 等せず、生体試料のありのままの形状を観察することができる。
[0018] したがって、本発明は、カチオンおよびァ-オン力 構成され、真空中で揮発し難 いか、若しくは殆ど揮発しないイオン液体を必須成分とし、走査型電子顕微鏡 (SEM )用試料または透過型電子顕微鏡 (TEM)用試料の全体に含浸させ、又はその電子 照射面に塗布し、少なくとも電子照射面に導電性を付与することを特徴とする、電子 顕微鏡用チャージアップ防止液状媒体にある。
[0019] また、イオン液体を被観察物に含浸又は塗布すれば、 SEM若しくは TEM等の電 子顕微鏡で観察可能な標体とすることができる。したがって、本発明に係る標体は、 電子顕微鏡で観察する標体であって、被観察物と、カチオンとァ-オンとを含み、上 記電子顕微鏡による観察時に液体であるイオン液体と、を含むことを特徴とする。ここ で、電子顕微鏡による観察時に液体であるとは、 SEMや TEM等の真空チャンバ内 の真空下においても全く若しくは殆ど揮発せず、 SEMや TEM等で観察している間 液体の状態を保っていることをいい、全く若しくは殆ど揮発しないこと、さらには沸騰 しないことを意味する。また、電子顕微鏡とは、 SEM若しくは TEM等が例示されるが 、真空下にて被観察物を観察するものであればこれに含まれるものとする。
[0020] また、上記標体は、下記の方法により作製することができる。したがって、本発明に 係る第 1の標体の作製方法は、電子顕微鏡で観察する標体の作製方法であって、水 分を含む生体試料を、カチオンとァ-オンとを含み、上記電子顕微鏡による観察時 に液体であるイオン液体に浸漬する浸漬工程と、上記イオン液体に浸漬された生体 試料を真空下に置き、上記生体試料に含まれた水分を除去する乾燥工程と、を含む ことを特徴とする。
[0021] また、イオン液体をこのイオン液体に比較して揮発しやすい溶媒によって希釈すれ ば、微細な構造を有する被観察物であっても当該微細な構造の中にもイオン液体を 被覆することができ良好な観察をすることができる。したがって、本発明に係る第 2の 標体の作製方法は、電子顕微鏡で観察する標体の作製方法であって、カチオンとァ ユオンとを含み、上記電子顕微鏡による観察時に液体であるイオン液体を該イオン 液体に比較して揮発しやす!/ヽ溶媒によって希釈する希釈工程と、上記溶媒によって 希釈されたイオン液体を被観察物に塗布する塗布工程と、上記溶媒によって希釈さ れたイオン液体が塗布された被観察物を真空下に置き、上記溶媒を除去する乾燥 工程と、を含むことを特徴とする。
[0022] さらに、被観察物をイオン液体に浸漬させ、当該被観察物に正負の電極から電気 を印加することにより、被観察物の挙動を観察することができ、以下の試料用セルを 用いることにより、上述の挙動を観察することができる。したがって、本発明に係る試 料用セルは、電子顕微鏡で標体を観察するときに用いるセルであって、カチオンとァ ユオンとを含み、上記電子顕微鏡による観察時に液体であるイオン液体と、上記ィォ ン液体を収容する絶縁性セルと、上記イオン液体に浸漬された正負の電極と、を含 むことを特徴とする。
[0023] また、本発明に係る電子顕微鏡は、標体を観察するときに用いる電子顕微鏡であつ て、標体を収容し、真空引きされる真空チャンバと、上記真空チャンバ内に収容され 、電子顕微鏡による観察時に液体であるイオン液体を収容可能な絶縁性セルと、上 記絶縁性セルに充填されるイオン液体に浸漬された正負の電極と、上記標体に電子 線を照射する電子銃と、上記電子銃から上記標体に電子を照射したことにより発生 する二次電子を検出する検出器と、を含むことを特徴とする。
[0024] また、本発明に係る試料観察方法は、上記液状媒体を用いる電子顕微鏡による試 料観察方法であって、
カチオンおよびァ-オン力 構成され、真空中で全く揮発しないか、若しくは殆ど揮 発しないイオン液体を、被観察物に含浸させ、又は上記被観察物の観察面に上記ィ オン液体を塗布し、それにより少なくとも観察面に導電性を付与する工程と、 上記のようにイオン液体が含浸若しくは塗布された被観察物に、電子を照射し、照 射された電子による二次電子若しくは透過電子を検出して、上記被観察物の像を得 る工程と、を備えることを特徴とする。
本発明において、生体とは、水分を含む生物を意味し、動物のみならず植物 (花、 葉、茎、種子等)も含まれるものとする。
発明の効果
[0025] 本発明に係る電子顕微鏡用チャージアップ防止液状媒体によれば、簡単に試料表 面に溜まった電荷を放出させ、チャージアップの問題を解決することができる。さらに 、本発明に係る液状媒体を用いた観察方法によれば、イオン液体が含浸若しくは塗 布させた試料を真空下に置 ヽたとしても試料からイオン液体が揮発しな!ヽため、特に 生体試料を観察する場合、この生体試料が収縮等していない、ありのままの形状を 観察することができる。
また、本発明に係る標体及びその作製方法によれば、イオン液体が含浸若しくは 塗布されるため、上記同様、チャージアップを防止することができ、試料のありのまま の形状を観察することができる。
さらに、本発明に係る試料用セル及び電子顕微鏡によれば、非揮発性のイオン液 体が当該セル内に注入され、当該イオン液体が電子を試料外へ放出するため、上記 同様チャージアップの問題なく試料を観察することができる。
図面の簡単な説明
[0026] [図 1]本発明に係る観察方法により観察された星の砂の SEM写真である。
[図 2]SEM装置の概略図である。
[図 3]—次電子加速電圧と二次電子放出利得との関係を示した図である。
[図 4]イオン液体であるテトラフルォロホウ酸 1—ブチル 3—メチルイミダゾリゥム(B
MI-BF )にエタノールを混合して、これを被観察物(サンドペーパー)に塗布して観
4
察した際の SEM写真である。
[図 5]金属スパッタにより被覆した被観察物の SEM写真である。
[図 6]エタノールで希釈されてないテトラフルォロホウ酸 1—ブチル 3—メチルイミ ダゾリゥム (BMI— BF )を被観察物(サンドペーパー)に塗布して観察した被観察物
4
の SEM写真である。
[図 7]本発明のある実施の形態に係る試料用セルを示した概略図である。
[図 8]本発明の別の実施の形態に係る試料用セルを示した概略図である。
[図 9]親水性の BMI— BFが含浸されたわかめの SEM写真(300倍)である。 [図 10]従来のように Auスパッタされた乾燥わかめの SEM写真(300倍)である。
[図 11]疎水性の BMI— TFSIが含浸されたわかめの SEM写真(300倍)である。
[図 12]電気を印加した場合のポリピロール膜の SEM写真である。
[図 13]電気を印加しない場合のポリピロール膜の SEM写真である。
符号の説明
[0027] 1 電子銃
2 集束レンズ
3 走査コイル
4 対物レンズ
5 対物レンズ絞り
6 基板
7 ステージ
8 検出器
9 映像増幅器
10 表示装置
11 電子光学系駆動用走査回路
12 真空チャンバ
13 絶縁性セル
14 正の電極
15 負の電極
発明を実施するための最良の形態
[0028] 本発明は、イオン液体を必須成分として含んでなり、走査型電子顕微鏡 (SEM)、 若しくは透過型電子顕微鏡 (TEM)用試料の全体に含浸させ、又はその電子照射 面に塗布し、少なくとも電子照射面に導電性を付与する、顕微鏡用液状導電性付与 媒体にある。
[0029] 以下に、 SEM用試料にイオン液体を含浸若しくは塗布し、含浸若しくは塗布された 試料を SEMにより観察する場合に関して説明する。概略的には、試料を所望の形状 に切断等し、これにイオン液体を含浸させて試料を作製し、作製された試料を SEM 装置にセットし、試料表面に電子線を走査させることにより試料表面を観察する。
[0030] (イオン液体)
以下に、試料に含浸又は塗布する液状導電性付与媒体に含まれるイオン液体に 関して説明する。イオン液体とは、上述のように、常温及び Z又は真空中において液 状であって、イオンで構成される液体である。このイオン液体は、不揮発性、不燃性、 熱安定性、化学的安定性、高イオン伝導性、耐電気分解性などにより特徴付けられ る。 SEM及び TEM観察においては、試料は真空下に置かれるため、この試料に含 浸されるイオン液体は、全く揮発 (蒸発)しないか、殆ど揮発しないものであることが好 ましい (a)。また、試料に入射された一次電子及び一次電子の入射により放出される 二次電子若しくは透過電子が、イオン液体を透過しなければ、 SEM像、 TEM像が 得られないので、このイオン液体は、電子透過性を有することが必要である(b)。従つ て、被観察物である試料を電子顕微鏡で観察する際、イオン液体は、その試料表面 に薄く塗布される力、少なくとも表面層において偏りなぐ試料に含浸されていること が好ましい。
また、チャージアップを防止すベぐ試料表面に帯電した電荷を試料外へ放出しな ければならないため、このイオン液体は電子伝導性を有することが必要である(c)。
[0031] 上記 (a)〜(c)を満たすイオン液体として以下のものが挙げられる。
例えば、 K+A_ (l)力もなり、 K+は、一般式(2);
[化 1]
J 入
( 2 )
(式中、 R1および R2は、炭素数 1〜10のアルキル基又は水素原子を示し、これらは 同一であっても良ぐ又は異なっていても良い。ただし、 R1および R2は同時に水素原 子ではな!/、。 )で表される N—アルキルイミダゾリウムカチオン、
又は、一般式(3) ;
[化 2]
Figure imgf000012_0001
( 3 )
(式中、 R3は、炭素数 1〜10のアルキル基又は水素原子を示す。 R3は、同一であつ ても良ぐ又は異なっていても良い。)で表されるアンモ-ゥムカチオンであり、
ΑΊま、一般式 (4) ;
[化 3]
Figure imgf000012_0002
(式中、 R4は、水素原子、炭素数 1〜10のアルキル基、炭素数 3〜10のシクロアルキ ル基、フエ-ル基、ヒドロキシル基、メルカプト基、アミノ基、カルボキシル基、テトラゾリ ル基又はスルホン酸基を示す。水素原子以外の R4で示される各基は、それぞれ置 換基を有して 、てもよ 、。 )で表されるテトラゾールイ匕合物ァ-オン、
又は、一般式(5) ;
[化 4]
Figure imgf000012_0003
( 5 )
(式中、 R5および R6は、水素原子、炭素数 1〜: L0のアルキル基、炭素数 3〜: L0のシ クロアルキル基、フエ-ル基、ヒドロキシル基、メルカプト基、アミノ基、カルボキシル基
、テトラゾリル基又はスルホン酸基を示す。水素原子以外の R5および R6で示される各 基は、それぞれ置換基を有していてもよい。 R5および R6は、同一であっても良いし又 は異なって!/、てもよ 、。 )で表されるトリァゾールイ匕合物ァ-オン、 又は、一般式 (6) ;
[化 5]
Figure imgf000013_0001
(式中、 R7および R8は、水素原子、炭素数 1〜10のアルキル基、炭素数 3〜10のシ クロアルキル基、フエ-ル基、ヒドロキシル基、メルカプト基、アミノ基、カルボキシル基
、テトラゾリル基又はスルホン酸基を示す。水素原子以外の R7および R8で示される各 基は、それぞれ置換基を有していてもよい。 R7および R8は同一であっても良いし又 は異なって!/ヽても良!ヽ。 )で表されるトリァゾールイ匕合物ァ-オンであることを特徴と するイオン液体が挙げられる。
[0032] 上記一般式(2)で表される N—アルキルイミダゾリウムカチオンおよび上記一般式( 3)で表されるアンモ-ゥムカチオンにおけるアルキル基は、炭素数 1〜10のものであ り、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル 基、ォクチル基、ノニル基、デシル基等であることが好ましい。
[0033] N—アルキルイミダゾリウムカチオンの具体例としては、 1ーメチルー 3—メチルイミ ダゾリウムカチオン、 1ーメチルー 3—ェチルイミダゾリウムカチオン、 1ーメチルー 3— プロピルイミダゾリウムカチオン等が挙げられる。
[0034] アンモ-ゥムカチオンの具体例としては、アンモ-ゥムカチオン、トリメチルアンモ- ゥムカチオン、ェチルジメチルアンモ-ゥムカチオン、ジェチルメチルアンモ-ゥムカ チオン、トリェチルアンモ-ゥムカチオン、テトラメチルアンモ-ゥムカチオン、トリェチ ルメチルアンモ-ゥムカチオン、テトラエチルアンモ-ゥムカチオン等が挙げられ、トリ ェチルメチルアンモ-ゥムカチオン、テトラエチルアンモ-ゥムカチオンであることが 好ましい。
[0035] 上記一般式 (4)で表されるテトラゾールイ匕合物ァニオン、上記一般式(5)で表され るトリァゾールイ匕合物ァ-オン、および上記一般式 (6)で表されるトリァゾールイ匕合物 ァ-オンにおけるアルキル基は、炭素数 1〜10のものであり、メチル基、ェチル基、 プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル 基、デシル基等が挙げられる。シクロアルキル基は、炭素数 3〜 10のものであり、シク 口プロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチ ル基、シクロォクチル基、シクロノニル基、シクロデシル基等が挙げられる。また、水素 原子以外の各基が有していてもよい置換基としては、アルキル基、ヒドロキシル基、メ ルカプト基、アミノ基、カルボキシル基等が挙げられる。
[0036] テトラゾール化合物ァ-オンの具体例としては、 1, 2, 3, 4ーテトラゾールァ-オン 、 1H— 5 カルボキシテトラゾールァニオン、 1H— 5 メルカプトテトラゾールァニォ ン、 1H— 5 アミノテトラゾールァニオン、 1H— 5 フエ二ルテトラゾールァニオン、 1 H—テトラゾールァニオン、 1H— 5—メチルテトラゾールァニオン、 5, 5' ビー 1H— テトラゾーノレァニオン、 1, 5 ビー 1H—テトラゾーノレァニオン、 N— 1H—テトラゾー ルー 5—ィル— 1H—テトラゾールー 5 アミンァ-オン等が挙げられ、 1, 2, 3, 4— テトラゾールァ-オン、 5, 5' ビ - 1H—テトラゾールァ-オンであることが好ましい。
[0037] トリァゾール化合物ァ-オンの具体例としては、 1, 2, 3 トリァゾールァ-オン、 4 —メルカプト— 1, 2, 3 トリァゾールァニオン、 1, 2, 4 トリァゾールァニオン、 3— メルカプト— 1, 2, 4 トリァゾールァ-オン、 3—メルカプト— 5—メチル—1, 2, 4- トリァゾールァ-オン、 3, 5 ジメチルー 1, 2, 4 トリァゾールァ-オン等が挙げら れ、特に 1, 2, 4 トリァゾールァ-オンであることが好ましい。
上記のァ-オン成分は、テトラゾールイ匕合物、トリァゾールイ匕合物又はその混合物 力も 1個のプロトンがはずれて生ずるァ-オンである。
[0038] また、ァ-オン ΑΊま、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-オン、テ トラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリン酸ァ 二オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、アルキ ルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロアルキ ルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである。
[0039] また、イオン液体の別の具体例としては、例えば、以下に示す A—及び K+からなる K+A—が挙げられる。ここで、 ΑΊま、一般式(7); [化 6]
Figure imgf000015_0001
( 7 )
により示されるビス(ノヽロゲン化アルキルスルホ -ル)イミドア-オン若しくはビス(ノヽ口 ゲン化スルホ -ル)イミドア-オンである。上記 A—の先端に結合した R9若しくは R1Gに 含まれるハロゲンとしては、フッ素、塩素、臭素が挙げられ、特にフッ素であることが 好ましい。また、 R9若しくは R1Gがハロゲンィ匕アルキルである場合、ハロゲンィ匕アルキ ルの炭素数としては 1〜3のものが好ましぐ具体的にはトリフルォロメチル基、ペンタ フルォロェチル基、ヘプタフルォロプロピル基が挙げられる。ハロゲン化アルキルの 炭素数は同一であっても良いし、異なっていても良い。非常に電子吸引性の強いハ ロゲンやハロゲン化アルキルを有することによりァ-オンの電荷が分散され、ァ-オン の安定性が増加しカチオンとの解離を容易にする効果がある。
上記 A—の好ま 、具体例としては、
[化 7]
Figure imgf000015_0002
( 8 )
が挙げられる。
また、 K+は、
[化 8]
Figure imgf000016_0001
により示される第 4級アンモ-ゥムイオンおよび第 4級ホスホ-ゥムイオンである(ただ し、 1、 R12、 R13、 R14は、それぞれ独立で、アルキル基、ァリール基、複素環基、ァ ラルキル基をそれぞれ表す。これらの 1、 R12、 R13、 R14は、その構造中に置換基、 ヘテロ原子を持っていてもよぐまた 1、 R12、 R13、 R14は、それぞれが結合して環を 形成していてもよぐさらには隣接するカチオンの尺11、 R12、 R13、 R14は、それぞれが 結合して、ポリマー状になってもよい。 ) o
アルキル基としては、メチル、ェチル、 n—プロピル、イソプロピル、 n—ブチル、イソ ブチノレ、 sec—ブチノレ、 tert—ブチノレ、ペンチノレ、へキシノレ、へプチノレ、ォクチノレ、ノ ニル、デシル等の炭素数 30までの直鎖又は分枝を有するものが挙げられる。ァリー ル基としては、フエニル、ナフチル、トルィル、キシリル等が挙げられ、該ァリール基は 、ハロゲン原子(F、 Cl、 Br、 I)、水酸基、アルコキシ基 (メトキシ、エトキシ、プロポキシ 、ブトキシ等)、カルボキシル基、ァセチル基、プロパノィル基、チオール基、アルキル チォ基 (メチルチオ、ェチルチオ、プロピルチオ、ブチルチオ等)、アミノ基、アルキル アミノ基、ジアルキルアミノ基等の置換基を 1ないし複数個有していてもよい。複素環 基としては、ピリジル、チェニル、イミダゾリル、ピラゾリル、ォキサゾリル、イソォキサゾ リル、ピロリジ -ル、ピぺラジュル、モルホリニル等が挙げられる。ァラルキル基として は、ベンジル、フエネチル等が挙げられる。また、これらの 1、 R12、 R13、 R14は、一分 子内で結合して環を成したピロリジ-ゥム、ピベリジ-ゥムなども良ぐさらには 1、 R1 R13、 R14が隣接する他のカチオンの尺11、 R12、 R13、 R14と結合して鎖を成した、一 般式(10)により示される構造でも良い。 [0042] [化 9]
Figure imgf000017_0001
( 1 0 )
[0043] 上記イオン液体にぉ 、て、好ま 、カチオン成分の具体例を次に示す。
トリメチルへキシルアンモ-ゥム、トリメチルフエ-ルアンモ-ゥム、トリメチルシクロへ キシルアンモ-ゥム、ジメチルェチルへキシルアンモ-ゥム、テトラエチルアンモ-ゥ ム、トリメチルベンジルアンモ-ゥム、トリメチルビ-ルアンモ-ゥム、トリメチル (メトキシ カルボ-ルェチル)アンモ-ゥム、トリメチルェチルアンモ-ゥム、トリメチル(ヒドロキシ ェチル)アンモ-ゥム、トリェチルメチルアンモ-ゥム、ジェチルメチルへキシルアンモ 二ゥム、トリメチル(ペンタメチルフエ-ル)アンモ-ゥム、トリェチルベンジルアンモ- ゥム、 N—メチルー N—ブチルピベリジ-ゥム、 N, N ジメチルピベリジ-ゥム、 N— メチルー N—プロピルピベリジ-ゥム、 N—メチルー N ブチルピロリジ-ゥム、 N—メ チルー N—プロピルピロリジ-ゥム、 N, N ジメチルピロリジ-ゥム、トリェチルブチル アンモ-ゥム、トリェチルアミルアンモ-ゥム、トリブチルメチルアンモ-ゥム、トリブチ ルフエ-ルアンモ-ゥム、トリブチルベンジルアンモ-ゥム、トリメチルァリルアンモ-ゥ ム、トリメチノレへキシノレホスホ-ゥム、トリメチルフエ-ノレホスホ-ゥム、トリメチルシクロ へキシノレホスホ-ゥム、ジメチノレエチノレへキシノレホスホ-ゥム、テトラェチノレホスホ- ゥム、トリメチルベンジルホスホ-ゥム、トリメチルビ-ルホスホ-ゥム、トリメチル(メトキ シカルボ-ルェチル)ホスホ-ゥム、トリメチルェチルホスホ-ゥム、トリメチル(ヒドロキ シェチノレ)ホスホ-ゥム、トリェチルメチルホスホ-ゥム、ジェチルメチルへキシルホス ホ-ゥム、トリメチル(ペンタメチルフエ-ル)ホスホ-ゥム、トリェチルベンジルホスホ- ゥム、トリェチルブチルホスホ-ゥム、トリェチルァミルホスホ-ゥム、トリブチルメチル ホスホ-ゥム、トリブチルフエ-ノレホスホ-ゥム、トリブチノレべンジノレホスホ-ゥム、トリメ チノレアリノレホスホニゥム、
[0044] [化 10]
Figure imgf000018_0001
等が挙げられる。
さらにイオン液体の別の具体例としては、 Κ+Α—で示され、 Κ+が一般式(12)に示 されたカチオンであり、
[化 11]
Figure imgf000018_0002
(12)
(式中、 R15から R2Uは同一であっても良いし又は異なっていても良い。これらの Rlaか ら R2Uは、単結合又は二重結合により直接結合しており、それぞれは独立に又は同時 に、水素原子、ハロゲン原子、炭素数 1〜8のアルキル基である。このアルキル基は、 好ましくは F、 Cl、 N(C F H) 、0(CF H )、 SO (C F H )又
n (2n+l-x) x 2 n (2η+1-χ) x 2 n (2η+1-χ) x は CF H (式中 l<n<6かつ 0<x≤13である)により部分的に又は完全に n (2n+l-x) x
置換されていてもよい。)、また、 A—が、 [B (OR21) (OR22) (OR23) (OR24) Γ (式
n m o p 中、 Bはホウ素であり、 0≤n、 m、 o、 p≤4であり、かつ m+n+o+p=4であるものか らなる群力も選ばれるァ-オンであり、式中、 R21から R24は異なっていても良いし又は 同一であっても良ぐ単結合又は二重結合により互いに直接結合している。また、 R21 から R24のそれぞれは、置換されていないか、また、単独で又は同時に、 C F
n (2n+l-x)
H (式中 1<η<6かつ 0<x≤13である)もしくはハロゲン (F、 C1又は Br)により置換 された、フエ-ル、ナフチル、アントラセ-ルおよびフエナントレ-ルからなる群から選 択された芳香族環、又は、置換されていないか若しくは C F H (式中 1<η<
n (2n+l-x) x
6かつ 0<x≤13である)もしくはハロゲン (F、 CI又は Br)により置換されたピリジル、 ビラジルおよびピリミジル力 なる群力 選択された芳香族複素環、又は炭素数 1〜8 のアルキル基(このアルキル基は、好ましくは F、 Cl、 N (C F H ) 、 O (C F
n (2n+l-x) x 2 n (2n+
H)、SO (CF H)又は CF H (式中 l<n<6かつ 0<x≤13)に l-x) x 2 n (2n+l-x) x n (2η+1-χ) x
より部分的に又は完全に置換されていてもよい。)である。)により示されるァ-オンで あることを特徴とするイオン液体が挙げられる。
また、イオン液体の別の具体例としては、一般式(13):
[化 12]
Figure imgf000019_0001
(13)
あるいは、一般式(14):
[化 13]
Figure imgf000020_0001
により示されるイオン液体が挙げられる。
[0048] 上記一般式(13)及び(14)中のァ-オンは、スルホコハク酸ビス 2 ェチルへキ シルァ-オンであり、アルキル基として 2本の 2—ェチルへキシル基を有するものであ る。このように、イオン液体において炭素数 8の分岐鎖状アルキル基を 2本有するスル ホコハク酸ァ-オンが用いられる力 アルキル基が直鎖状のものの場合には、融点が 室温以上となるか、生成する化合物の粘度が非常に高くなる。また、アルキル基が分 岐鎖状のものであっても炭素数が 9以上のものの場合は生成する化合物の粘度が非 常に高くなり、他方、炭素数が 7以下のものの場合は融点が室温以上となる。
[0049] また、上記一般式(13)中のカチオン K+はベンジルジメチルアルキルアンモ-ゥム カチオンであり、同式中の R25は炭素数 8〜20のアルキル基を表している。このような アルキル基 (R25)としては、具体的には、直鎖又は分岐鎖状のォクチル基、ノニル基 、デシル基、ゥンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル 基、へキサデシル基、ヘプタデシル基、ォクタデシル基、ノナデシル基、エイコシル基 が挙げられ、低粘度及び低融点と 、う観点からは特にドデシル基が好ま 、。
[0050] また、上記一般式(14)中のカチオン K+はアルキルピリジ-ゥムカチオンであり、同 式中の R26は炭素数が 12〜18のアルキル基を表している。このようなアルキル基 (R2 6)としては、具体的には、直鎖又は分岐鎖状のドデシル基、直鎖又は分岐鎖状のトリ デシル基、直鎖又は分岐鎖状のテトラデシル基、直鎖又は分岐鎖状のペンタデシル 基、直鎖又は分岐鎖状のへキサデシル基、直鎖又は分岐鎖状のへプタデシル基、 直鎖又は分岐鎖状のォクタデシル基が挙げられ、低粘度及び低融点と 、う観点から は特にへキサデシル基が好まし 、。 [0051] 以上のように、イオン液体に関して説明した力 上述のイオン液体は、単に例示した ものであって、上記 (a)〜(c)の全て若しくは一部を満たすイオン液体であって観察 時にお 1、て液状のものであれば、本発明の液状導電性付与媒体に含有されるイオン 液体として用いることができる。
[0052] また、上述の具体的なイオン液体は、本発明に係る電子顕微鏡用チャージアップ 防止液状媒体として用いられるが、上記媒体としてだけでなぐ本発明に係る標体、 標体の作製方法、試料用セル、電子顕微鏡、試料作製方法にも用いることができる。
[0053] (標体及びその作製方法)
続、て、 SEM若しくは TEM等の電子顕微鏡で観察される標体にっ 、て説明する 。本発明に係る標体は、被観察物と、イオン液体と、を含み、このイオン液体は、カチ オン及びァ-オンを含んでいて、電子顕微鏡による観察時において液体である。こ のように構成された標体を用いれば、真空下にある SEM等の試料室に置 ヽても蒸発 せず、不揮発性を有するイオン液体が被観察物に塗布又は含浸されているため、ィ オン液体の導電性により、絶縁性の被観察物の表面に溜まる電荷をその外に放出し てチャージアップを防止できる。また、 SEM等の装置に悪影響を及ぼすことはない。 本発明に係る標体を作製するに際し、水分を多く含む生体試料を真空下に置き真 空乾燥させて、これを被観察物としてもよい。また、アルコール、ベンゼン、トルエン、 アセトン、メチルェチルケトン、塩化メチレン、クロ口ホルム、四塩化炭素、テトラヒドロ フラン、ジォキサン、ペンタン、及びへキサン等により希釈されたイオン液体を塗布す ることもできる。以下に生体試料を標体とする場合、及びアルコール等により希釈され たイオン液体を塗布して被観察物を標体とする場合について説明する。
[0054] A.生体試料
1.浸漬工程
まず、親水性を有するイオン液体を準備する。そして、その親水性のあるイオン液 体に、水分を含む生体試料を浸漬する。浸漬中、生体試料に含まれる水分が上記ィ オン液体で徐々に置換される(1〜3時間)。ここで、親水性のあるイオン液体の具体 例として、テトラフルォロホウ酸 1—ェチル 3—メチルイミダゾリゥム、トリフルォロメ タンスルホン酸 1ーェチルー 3—メチルイミダゾリゥム、テトラフルォロホウ酸 1ーブ チルー 3—メチルイミダゾリゥム、トリフルォロメタンスルホン酸 1ーブチルー 3—メチ ルイミダゾリゥム、臭ィ匕 1—へキシル 3—メチルイミダゾリゥム、塩化 1—へキシル - 3 メチルイミダゾリゥム若しくは塩ィ匕 1 デシルー 3 メチルイミダゾリゥム等が挙 げられる。
2.水分除去工程
次に、イオン液体に浸漬された生体試料を真空チャンバ内に置き、生体試料に含 まれていた水分を除去する(20分〜 1時間)。これにより、生体試料中の水分がィォ ン液体により置換された標体が得られる。
B.被希釈イオン液体を用いた標体
表面に凹凸がある被観察物や粒子の集合体力 なる被観察物を観測するときには 、イオン液体を微細構造の中に含浸させて、その微細な表面をイオン液体で覆う必 要がある。このような場合、イオン液体をアルコール等で希釈し、希釈されたイオン液 体を被観察物に塗布することにより微細構造の中や粒子の集合体の隙間等を覆うこ とができる(図 6)。以下に被希釈イオン液体を用いた標体の作製方法に関して説明 する。
1.希釈工程
まず、カチオンとァ-オンとを含み、電子顕微鏡による観察時に液体であり、略真空 下にお 、ても全く若しくは殆ど揮発しな ヽィオン液体を該イオン液体に比較して揮発 しゃすい溶媒によって希釈する。上記溶媒としては、イオン液体を希釈しうるものであ れば、全ての無機、有機の液体物質が含まれ、具体的には、アルコール、ベンゼン、 トルエン、アセトン、メチルェチルケトン、塩化メチレン、クロ口ホルム、四塩化炭素、テ トラヒドロフラン、ジォキサン、ペンタン、及びへキサン等が挙げられる。
2.塗布工程
上記溶媒によって希釈されたイオン液体を被観察物に含浸若しくは塗布する。
3.溶媒除去工程
溶媒によって希釈されたイオン液体が含浸若しくは塗布された被観察物を真空チ ヤンバ内に置き、溶媒を除去し (数分〜数十分)、標体とする。このようにして、被観察 物の表面が、薄!、均一のイオン液体膜で覆われた標体を作製する。 [0056] 図 4は、親水性のイオン液体であるテトラフルォロホウ酸 1ーブチルー 3—メチルイ ミダゾリゥム(BMI— BF )にエタノールを混合して、これを被観察物(サンドペーパー
4
)に塗布して観察された SEM写真である。イオン液体をアルコール等の溶媒により希 釈させこれを被観察物に塗布した場合、被観察物のより微細な部分にイオン液体を 含浸させることができ、金属スパッタにより被観察物を作製して当該被観察物を観察 した場合(図 5)と同様超微細な細部に亘つて観察することができる。したがって、本 発明は、電子顕微鏡で観察する標体の作製方法であって、カチオンとァ-オンとを 含み、上記電子顕微鏡による観察時に液体であるイオン液体を該イオン液体に比較 して揮発しやす ヽ溶媒によって希釈する希釈工程と、上記溶媒によって希釈された イオン液体を被観察物に塗布する塗布工程と、上記溶媒によって希釈されたイオン 液体が塗布された被観察物を真空下に置き、上記溶媒を除去する乾燥工程と、を含 む標体の作製方法にある。図 6は、エタノールで希釈されてないテトラフルォロホウ酸 1ーブチルー 3—メチルイミダゾリゥム(BMI— BF )を被観察物(サンドペーパー)
4
に塗布して被観察物を観察した SEM写真である。エタノールを混合したイオン液体 を塗布した場合(図 4)、エタノールを混合しない場合(図 6)に比して、サイドぺーパ 一の細部まで観察することができる。したがって、イオン液体を上述の溶媒で希釈し て用いると、細かな凹凸のある表面、粉体の集合体から成る表面を観察することがで きる。
[0057] (試料観察方法)
1.試料の作製
SEMによる観察では試料最表面から出てくる二次電子を検出して画像を作成する ので、観察したい対象表面を電子ビームに対して露出しておくことが必要である。観 察対象が最初力も露出している試料では表面のコンタミネーシヨンの除去程度で良 いが、内部に存在する構造を観察したい場合には、洗浄、切断、割断、化学的溶解 などを行って対象表面を露出することが必要である。例えば生体試料の観察面を露 出するためには以下の試料作製方法を用いることができる。
l) DMSO凍結割断法;
50%DMSO(dimetyl sulfoxide)に浸漬した固定試料を、液体窒素で冷却した金属 板の上で凍結'固化し、力ミソリ刃で割って内部を露出させる。 DMSOの他、 100% エタノールや酢酸イソアミルを用いることもできる。この方法によれば、良好な断面を 形成することができる。
2)膠原線維除去法;
2%ダルタルアルデヒドで固定した試料を 60°Cの 6N NaOHで 10分程度処理する 。膠原線維や基底膜が除去され、結合組織に覆われていた細胞表面を観察すること ができる。
3)膠原線維観察法;
2 %ダルタルアルデヒドで固定した試料を 20°Cの 2N NaOHで 10分程度処理する 。細胞成分が除去され、結合組織線維網を観察することができる。
4)血管铸型観察法;
メタタリレート榭脂モノマーを血管に注入し、榭脂の重合後に軟部組織を NaOHで 溶かし、残った血管铸型を観察する。
5)細胞内構造観察法;
この細胞内構造観察法は、二重固定 (0.5%ダルタルアルデヒドと 0.5%ホルムアル デヒドの混合液 · 1%オスミウム)した試料を凍結割断する方法である。二重固定後、 0 .1%オスミウム処理(20°C、 72時間)で割断面力も観察に不要な部分を除去して、細 胞内構造を剖出できる。
[0058] 上述のようにして得られた観察表面に、上述のイオン液体を含浸又は塗布すること により試料を作製する。具体的には、上記 Aの方法で作製する。コンタミネーシヨンや 粘液培養液などを洗浄液で除去した後、固定操作を行う。続いて、上述のようにィォ ン液体が含浸若しくは塗布された試料を SEM用試料台に接着剤で接着し、試料が 接着された SEM用試料台を上記 SEM装置にセッティングする。その後、電子顕微 鏡試料室内を真空引きする。
[0059] 2.パラメータ設定
続いて、 SEM装置のパラメータを設定する。このパラメータの主なものに、加速電 圧、コンデンサーレンズ電流値、対物絞り径、作動距離がある。それぞれのパラメ一 タは、分解能の設定に大きく関与している他、像質にも影響を与えるため、所望の値 に設定することが好ましい。以下、これらのパラメータに関して説明し最適な設定値に 関して言及する。
1)加速電圧;
この加速電圧の値が高いほど分解能が高くなる。また、加速電圧の値が高いほど 入射電子の試料内部への透過性が高くなる。 20〜25kVを選択すると分解能の高い 像が得られる。
2)収束レンズ電流値;
この収束レンズ電流値は、ビーム電流を大きく変える。この電流値を増やすと分解 能を高めることができる。
3)対物絞り径;
この対物絞り径の値は、電子ビームの径を変えることになるので分解能を左右する 。小さい絞りほど分解能が高くなると同時に、焦点深度は深くなる。
4)作動距離;
この作動距離の値が小さいほど分解能は向上し、焦点深度は浅くなる。また、この 値が大きいほど分解能は低下し、焦点深度は深くなる。
[0060] 3.撮影
上述のパラメータを設定した後、撮影を行い、画像データを取得する。コントラストを 付けるため、試料の角度を変えて複数回撮影することが好ましい。
[0061] (試料用セル)
現在、例えば電気化学反応を直接観察することが要請されているが、これまで行わ れてきた電子顕微鏡による観察方法では、被観察物を乾燥させた後スパッタ等により 被観察物の表面を金属により被覆する必要があるため、上述のような電気化学反応 や電気の印加による生体試料の変化等を直接見ることができな力つた。しかし、本発 明に係る試料用セルを用いれば、イオン液体が生体試料に溜まった電荷を放出しチ ヤージアップを引き起こすことなく被観察物を観察することができる。
[0062] すなわち、本発明に係る試料用セルは、被観察物に電気を流しながら、又は電気 の印力 []·解除を繰り返しながら、 SEM観察するための試料用セルであって、本発明 のある実施の形態に係る試料用セルは、カチオンとァ-オンとを含み、電子顕微鏡 による観察時に液体であるイオン液体 17と、上記イオン液体を収容する絶縁性セル 13と、上記絶縁性セル 13の下に設けられた、導体力もなる試料台 16と、一端部が上 記試料台 16に接続され、他端部が上記セル内に配置された導通部材 18と、上記ィ オン液体 17に浸漬された正負の電極 14、 15と、を含む(図 7)。
[0063] 本実施の形態に係る試料用セルのイオン液体 17は、上述のイオン液体と同様のも のである。また、絶縁性セル 13は、上記イオン液体 17を収容することができるように、 有底円筒状の形状をしており、導体からなる試料台 16が有底円筒状体の下に配置 されている。イオン液体 17が上記導通部材 18により、導体からなる試料台 16に導通 するため、 SEM内の電子銃 1から、イオン液体 17に浸漬された被観察物に照射され た電子は、イオン液体 17及び導通部材 18を介して、導体力もなる試料台 16から放 出される。上記導体力もなる試料台 16は、上述のように被観察物に照射された電子 を放出することができるものであり、上記試料台 16としては導電性を有する限り、金属 であっても、半導体であってもプラスティックであってもよい。上記正負の電極 14、 15 は、被観察物に電気を流すことができるため、被観察物に電気を印加することにより 、当該セルにおいて被観察物の収縮 ·拡大等を観察することができる。例えば、導電 性高分子であるポリピロール膜に電気の印カロ'解除を繰り返すことにより、当該ポリピ ロール膜の収縮 ·拡大を観察することができる。
[0064] また、別の実施の形態に係る試料用セルは、導体力もなる試料台 16の上に設けら れた絶縁性セル 13と、一端部が上記試料台 16に接続され、他端部が上記セル内に 配置された導通部材 18と、カチオンとァ-オンとを含み、上記電子顕微鏡による観察 時に液体であって上記電極と上記導通部材の他端部とを電気的に接続するイオン 液体 17と、を含む(図 8)。当該絶縁性セル、イオン液体は、上記のものと同様のもの である。上記電極力もの電気の印カロ'解除により上記の実施形態と同様、被観察物 の縮小'拡大等を観察することができる。上記 2つの実施の形態に係る試料用セルは 、反応の経時観察、例えば結晶成長、ナノ材料の合成等の観察にも用いることがで きる。
[0065] (イオン液体を収容可能な絶縁性セルを備える電子顕微鏡)
イオン液体を被観察物に含浸させれば、上述のようにイオン液体は非揮発性を有し 、さらに導電性を有するため、チャージアップを防止しつつ被観察物を観察すること ができる。また、被観察物に正極及び負極を接続させれば、観察物に電気を流すこ とによる挙動を観察することができる。
[0066] したがって、本発明は、標体を観察するときに用いる電子顕微鏡であって、標体を 収容し、真空引きされる真空チャンバと、上記真空チャンバ内に収容され、電子顕微 鏡による観察時に液体であるイオン液体を収容可能な絶縁性セルと、上記絶縁性セ ルに充填されるイオン液体に浸漬された正負の電極と、上記標体に電子線を照射す る電子銃と、上記電子銃から上記標体に電子を照射したことにより発生する二次電 子を検出する検出器と、を含む電子顕微鏡にある。
[0067] 本発明に係る SEM装置の一例を図 2に示す。この SEM装置は、真空チャンバ 12 、イオン液体を収容可能な絶縁性セル 13、正の電極 14、負の電極 15、電子銃 1、集 束レンズ 2、走査コイル 3、対物レンズ 4及び対物レンズ絞り 5を有し、さらに基板 6〖こ 載置された試料上を走査する電子光学系と、基板 6を載置するステージ 7と、試料か らの二次電子を検出する検出器 8と、検出器 8の出力を増幅する映像増幅器 9と、ブ ラウン管 (CRT)などの表示装置 10と、電子光学系を駆動させるための走査回路 11 とカゝら構成されている。
[0068] 電子銃 1から放出された電子線は、集束レンズ 2と走査コイル 3と対物レンズ 4を通 つてステージ 7上に載置されている試料に照射される。検出器 8は、上記電子線照射 の走査によって試料力も発生した二次電子を検出する。この検出器 8の検出信号は 、映像増幅器 9を経て、表示装置 10に表示される。
[0069] 本発明に係る電子顕微鏡の真空チャンバ 12は、この中に試料観察用セルが挿入 された後、高真空状態まで真空引きされる。真空チャンバ 12の上部には、被観察物 に電子を照射するための電子銃 1を備え、当該電子銃 1の下付近に試料観察用セル 13が配置され、上記電子銃力 当該セル内の被観察物に電子が照射される。また、 上記電子銃 1は、上述のように試料用セル内の被観察物に電子を照射するためのも のであり、数 eV〜数十 eVの範囲のエネルギーを有する電子を照射することができる 。さらに、二次電子の検出器 8は、一次電子を照射することにより発生する二次電子 を検出するためのものであり、発生した二次電子に電場等を加えることにより二次電 子を収集することができる。また、絶縁性セル 13、及び正負の電極 14、 15は、上記 のものと同様のものである。
[0070] 以上のように、イオン液体を SEM用試料に用いることに関して説明した力 本発明 は、イオン液体を SPM用試料に用いてもよい。即ち、本発明は、イオン液体を必須 成分として含んでなり、走査型プローブ顕微鏡(Scanning Probe Microscope;以下 SP Mと称する)用試料の全体に含浸させ、又はその走査面に塗布し、少なくとも上記走 查面に導電性を付与する、走査型プローブ顕微鏡用、液状導電性付与媒体としても 良い。これにより、長時間観察したとしても SPM用試料に含浸させたイオン液体が蒸 発せず、試料の形状を長時間保持することができる。
実施例 1
[0071] 本発明に係る実施例を以下に示す。以下の実施例は例示するものであって、本発 明は以下の実施例に限定されるものではない。
[0072] 実施例 1では、親水性のテトラフルォロホウ酸 1-ブチル -3-メチルイミダゾリゥム(B
MI-BF;)を用いた。
4
まず、乾燥わかめを水で戻した。その後、水で戻したわかめを親水性の BMI— BF
4 に 2時間浸漬させ、わかめ中に含まれる水分を BMI— BFで徐々に置換した。その
4
後、 30分間略真空下(2mmHg以下)に置き、真空乾燥させた。図 9は、 BMI— BF
4 を含浸させたわかめを SEMにより観察した SEM写真( 300倍)である。本発明に係 る観察方法では、水で戻した状態のわかめ、すなわち、生のわかめを観察することが できた。
図 10は、従来のように、乾燥わかめを Auスパッタした後、当該わかめを SEMにより 観察した SEM写真(300倍)である。
本発明に係る方法により観察したわかめでは、その厚さが、従来方法で観察したわ かめの約 3. 5倍の厚さであった。し力も、従来方法により観察したわかめでは、ひだ 状の部分が観察されたのに対し、本発明に係る方法により観察したわかめでは、ひ だ状の部分は見られず、本来のわかめの有する形状が観察された。
図 11は、疎水性の 1-ブチル -3-メチルイミダゾリゥム ビス(トリフルォロメタンスルホ -ル)イミド(BMI—TFSI)を含浸させたわかめを SEMにより観察した SEM写真(30 0倍)である。この場合、親水性のイオン液体を含浸させたわかめと比較して、わかめ の肉厚が薄くなり、ひだ状の部分が多く見られた。これは、わかめに含まれる水分と 疎水性のイオン液体とが上手く置換されな力つたためと考えられる。したがって、水分 を多く含む生体材料を観察する場合は、親水性のイオン液体を用いることが好ま ヽ
[0073] (実施例 2)
実施例 2では、テトラフルォロホウ酸 1ーェチルー 3—メチルイミダゾリゥムをイオン 液体として用いて、これを星の砂に含浸させて、このように含浸させたものを SEM装 置により観察した。イオン液体は、ランカスター(Lancaster)社製のテトラフルォロホウ 酸 1—ェチル—3—メチルイミダゾリゥムを用いた。まず、星の砂に付着したコンタミ ネーシヨンなどを洗浄液で除去した後、試料 (星の砂)を SEM用試料台に接着剤で 接着'固定し、続いて、試料にテトラフルォロホウ酸 1—ェチル 3—メチルイミダゾ リウムを含浸させた。この SEM用試料台を SEM装置にセッティングし、電子顕微鏡 試料室内を真空引きした。 SEMの加速電圧を 20kV、作動距離 (WD)を 21. lmmに 設定し、上記条件の下、星の砂を観察したところ、星の砂の像を得ることができた。 図 1は、上述のようにイオン液体を含浸させた星の砂 (左)と、イオン液体を含浸させ て ヽな 、星の砂 (右)とを並べて撮影したものである。イオン液体を含浸させて ヽな ヽ 星の砂 (右)の場合、チャージアップのため像が真白になった。しかし、イオン液体を 含浸させた星の砂 (左)の場合、星の砂は絶縁体により構成されているにも拘わらず 、チャージアップを防止することができた。また、上記イオン液体は、真空下において も揮発することなぐ長時間良好に観察することができた。
[0074] (実施例 3)
実施例 3では、テトラフルォロホウ酸 1—ブチル 3—メチルイミダゾリゥムをイオン 液体として用いて、これを星の砂に含浸させて、このように含浸させたものを SEM装 置により観察した。本実施例 3においては、イオン液体として、テトラフルォロホウ酸 1ーェチルー 3—メチルイミダゾリゥムの代わりに、テトラフルォロホウ酸 1 ブチル —3—メチルイミダゾリゥムを使用したこと以外実施例 2と同様に行った。この実施例 3 においても、上記同様良好に観察することができた。 [0075] (実施例 4)
実施例 4では、 1ーェチルー 3—メチルイミダゾリゥム ビス(トリフルォロメタンスルホ -ル)イミドをイオン液体として用いて、これを星の砂に含浸させて、このように含浸さ せたものを SEM装置により観察した。本実施例 4においては、イオン液体として、テト ラフルォロホウ酸 1ーェチルー 3—メチルイミダゾリゥムの代わりに、 1ーェチルー 3 —メチルイミダゾリゥム ビス(トリフルォロメタンスルホ -ル)イミドを使用したこと以外 実施例 1と同様に行った。この実施例 4においても、実施例 2と同様、良好に観察す ることがでさた。
[0076] (実施例 5)
実施例 5では、 1—ブチル 3—メチルイミダゾリゥム ビス(トリフルォロメタンスルホ -ル)イミドをイオン液体として用いて、これを星の砂に含浸させて、このように含浸さ せたものを SEM装置により観察した。本実施例 5においては、イオン液体として、テト ラフルォロホウ酸 1ーェチルー 3—メチルイミダゾリゥムの代わりに、 1ーブチルー 3 —メチルイミダゾリゥム ビス(トリフルォロメタンスルホ -ル)イミドを使用したこと以外 実施例 2と同様に行った。この実施例 5においても、実施例 2と同様、良好に観察す ることがでさた。
[0077] (実施例 6)
実施例 6では、へキサフルォロリン酸 1ーブチルー 3—メチルイミダゾリゥムをィォ ン液体として用いて、これを星の砂に含浸させて、このように含浸させたものを SEM 装置により観察した。本実施例 6においては、イオン液体として、テトラフルォロホウ酸
1ーェチルー 3—メチルイミダゾリゥムの代わりに、へキサフルォロリン酸 1ーブチ ルー 3—メチルイミダゾリゥムを使用したこと以外実施例 2と同様に行った。この実施 例 6においても、実施例 2と同様、良好に観察することができた。
[0078] (実施例 7)
実施例 7では、トリメチル—n—プロピルアンモ-ゥム ビス(トリフルォロメタンスルホ -ル)イミドをイオン液体として用いて、これを星の砂に含浸させて、このように含浸さ せたものを SEM装置により観察した。本実施例 7においては、イオン液体として、テト ラフルォロホウ酸 1ーェチルー 3—メチルイミダゾリゥムの代わりに、トリメチルー n— プロピルアンモ-ゥム ビス(トリフルォロメタンスルホ -ル)イミドを使用したこと以外実 施例 2と同様に行った。この実施例 7においても、実施例 2と同様、良好に観察するこ とができた。
[0079] (実施例 8)
実施例 8では、導電性高分子であるポリピロ一ル膜を薄膜金属の電極の一方の面 に形成し、当該ポリピロール膜に電気を印力 [1 ·解除した場合の、ポリピロール膜の収 縮 ·膨張を観察した。
まず、白金 Ptからなる 2つの電極、作用極 (WE)と対極 (CE)を絶縁性セルにおい て 0. 1Mピロール及び 0. 1M p—トルエンスルホン酸ナトリウムからなる電解液に浸 漬し、当該 2つの電極に、定電流 3mAを 2時間印加して、電解重合を行い、ポリピロ 一ル膜を上記白金板上に形成した。その後、当該ポリピロ一ル膜を超純水、及びァ セトニトリルにて洗浄し、続いてイオン液体 BMI— BFを電解液としてカ卩えた。その後
4
、水分除去のため、セル全体を 2時間真空下に置き真空乾燥させた。このセルを SE M装置内に配置し、当該 SEM装置によりポリピロ一ル膜を観察した。図 12は、電気 を印加した場合の、上記セル内におけるポリピロール膜の SEM写真であり、図 13は 、電気を印加しない場合の、ポリピロール膜の SEM写真である。電気を印加した場 合においては、印加しない場合に比して、ポリピロール膜の膜厚が大きぐ膜厚の増 加量は、電気を印加しない場合のポリピロールの全膜厚の 1 %〜20%に及ぶ。 産業上の利用可能性
[0080] 本発明に係る、イオン液体を含む導電性付与媒体は、試料を SEM、若しくは TEM 等により観察する場合に、これらの電子顕微鏡により観察される試料に含浸させ、又 はその観察表面上に塗布し、試料に導電性を与えるために用いられる。

Claims

請求の範囲
[1] カチオンおよびァ-オン力 構成され、真空中で全く揮発しないか、若しくは殆ど揮 発しな!/ヽイオン液体を必須成分とし、走査型電子顕微鏡 (SEM)用試料または透過 型電子顕微鏡 (TEM)用試料の全体に含浸させ、又はその電子照射面に塗布し、 少なくとも電子照射面に導電性を付与することを特徴とする、電子顕微鏡用チャージ アップ防止液状媒体。
[2] 上記イオン液体が、一般式: K+A— (式中、 K+は、 N—アルキルイミダゾリウムカチ オン、第 4級アンモ-ゥムカチオンであり、 ΑΊま、テトラゾール化合物ァ-オンまたは トリァゾール化合物ァ-オン、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-ォ ン、テトラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリ ン酸ァ-オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、 アルキルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロ アルキルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである)で示される イオン液体である請求項 1記載の電子顕微鏡用チャージアップ防止液状媒体。
[3] 上記イオン液体が、一般式: K+A— (式中、 K+は、第 4級アンモ-ゥムカチオン、又 は第 4級ホスホ-ゥムカチオンであり、 ΑΊま、ビス(ノヽロゲン化アルキルスルホ -ル)ィ ミドア-オン、又はビス(ノヽロゲン化スルホ -ル)イミドア-オンである)で示されるィォ ン液体である請求項 1記載の電子顕微鏡用チャージアップ防止液状媒体。
[4] 上記イオン液体が、一般式: K+A— (式中、 K+は、
[化 1]
Figure imgf000033_0001
力もなる群力も選択されたカチオンであり、 ΑΊま、 [B (OR7) (OR8) (OR9) (OR10 n m o
) Γにより示されるァ-オン (Bはホウ素、 R7〜R1C)は、水素原子、又は炭素数 1〜: L0
P
のアルキル基)である)で示されるイオン液体である請求項 1記載の電子顕微鏡用チ ヤージアップ防止液状媒体。
[5] 上記イオン液体が、一般式: K+A— (式中、 K+は、ベンジルジメチルアルキルアン モ-ゥムカチオン、アルキルピリジ-ゥムカチオンであり、 ΑΊま、スルホコハク酸ビス - 2—ェチルへキシルァ-オンである)で示されるイオン液体である請求項 1記載の 電子顕微鏡用チャージアップ防止液状媒体。
[6] 電子顕微鏡で観察する標体であって、
被観察物と、
カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であるイオン液 体と、を含む標体。
[7] 上記イオン液体は、上記被観察物の電子が照射される電子照射面に塗布される請 求項 6記載の標体。
[8] 上記イオン液体は、上記被観察物に含浸される請求項 6記載の標体。
[9] 上記被観察物は生体試料であり、該生体試料に含まれている水分の少なくとも一 部が上記イオン液体によって置換された請求項 6記載の標体。
[10] 上記被観察物は表面に微細構造を備えてなり、上記イオン液体が上記微細構造に 塗布された請求項 6記載の標体。
[11] 上記被観察物は粒子の集合体を含んでなり、上記イオン液体が各粒子の電子照 射面に塗布された請求項 6記載の標体。
[12] 上記被観察物が、水に対する親和性が高い親水性のイオン液体を含有する請求 項 6記載の標体。
[13] 上記被観察物が、水に対する親和性が低い疎水性のイオン液体を含有する請求 項 6記載の標体。
[14] 上記イオン液体が、一般式: K+A— (式中、 K+は、 N—アルキルイミダゾリウムカチ オン、第 4級アンモ-ゥムカチオンであり、 ΑΊま、テトラゾール化合物ァ-オンまたは トリァゾール化合物ァ-オン、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-ォ ン、テトラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリ ン酸ァ-オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、 アルキルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロ アルキルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである)で示される イオン液体である請求項 6記載の標体。
[15] 上記イオン液体が、一般式: K+A— (式中、 K+は、第 4級アンモ-ゥムカチオン、又 は第 4級ホスホ-ゥムカチオンであり、 ΑΊま、ビス(ノヽロゲン化アルキルスルホ -ル)ィ ミドア-オン、又はビス(ノヽロゲン化スルホ -ル)イミドア-オンである)で示されるィォ ン液体である請求項 6記載の標体。
[16] 上記イオン液体が、一般式: K+A— (式中、 K+は、
[化 2]
Figure imgf000035_0001
力もなる群力も選択されたカチオンであり、 ΑΊま、 [B (OR7) (OR8) (OR9) (OR10 n m o
) Γにより示されるァ-オン (Bはホウ素、 R7〜R1C)は、水素原子、又は炭素数 1〜: L0
P
のアルキル基)である)で示されるイオン液体である請求項 6記載の標体。
[17] 上記イオン液体が、一般式: K+A— (式中、 K+は、ベンジルジメチルアルキルアン モ-ゥムカチオン、アルキルピリジ-ゥムカチオンであり、 ΑΊま、スルホコハク酸ビス - 2—ェチルへキシルァ-オンである)で示されるイオン液体である請求項 6記載の 標体。
[18] 電子顕微鏡で観察する標体の作製方法であって、
水分を含む生体試料を、カチオンとァニオンとを含み、上記電子顕微鏡による観察 時に液体であるイオン液体に浸漬する浸漬工程と、
上記イオン液体に浸漬された生体試料を真空下に置き、上記生体試料に含まれた 水分を除去する乾燥工程と、
を含む標体の作製方法。
[19] 電子顕微鏡で観察する標体の作製方法であって、
カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であるイオン液 体を該イオン液体に比較して揮発しやすい溶媒によって希釈する希釈工程と、 上記溶媒によって希釈されたイオン液体を被観察物に塗布する塗布工程と、 上記溶媒によって希釈されたイオン液体が塗布された被観察物を真空下に置き、 上記溶媒を除去する乾燥工程と、
を含む標体の作製方法。
[20] 上記イオン液体が、一般式: K+A— (式中、 K+は、 N—アルキルイミダゾリウムカチ オン、第 4級アンモ-ゥムカチオンであり、 ΑΊま、テトラゾール化合物ァ-オンまたは トリァゾール化合物ァ-オン、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-ォ ン、テトラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリ ン酸ァ-オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、 アルキルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロ アルキルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである)で示される イオン液体である請求項 18又は 19記載の標体の作製方法。
[21] 上記イオン液体が、一般式: K+A— (式中、 K+は、第 4級アンモ-ゥムカチオン、又 は第 4級ホスホ-ゥムカチオンであり、 ΑΊま、ビス(ノヽロゲン化アルキルスルホ -ル)ィ ミドア-オン、又はビス(ノヽロゲン化スルホ -ル)イミドア-オンである)で示されるィォ ン液体である請求項 18又は 19記載の標体の作製方法。
[22] 上記イオン液体が、一般式: K+A— (式中、 K+は、
[化 3]
Figure imgf000037_0001
力もなる群力も選択されたカチオンであり、 ΑΊま、 [B (OR7) (OR8) (OR9) (OR10 n m o
) Γにより示されるァ-オン (Bはホウ素、 R7〜R1C)は、水素原子、又は炭素数 1〜: L0
P
のアルキル基)である)で示されるイオン液体である請求項 18又は 19記載の標体の 作製方法。
[23] 上記イオン液体が、一般式: K+A— (式中、 K+は、ベンジルジメチルアルキルアン モ-ゥムカチオン、アルキルピリジ-ゥムカチオンであり、 ΑΊま、スルホコハク酸ビス - 2—ェチルへキシルァ-オンである)で示されるイオン液体である請求項 18又は 1 9記載の標体の作製方法。
[24] 電子顕微鏡で標体を観察するときに用いるセルであって、
カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であるイオン液 体と、
上記イオン液体を収容する絶縁性セルと、
上記イオン液体に浸漬された正負の電極と、 一端部が上記セル内に配置された導通部材と、
を含む試料用セル。
[25] 電子顕微鏡で標体を観察するときに用いるセルであって、
導体力 なる試料台の上に設けられた絶縁性セルと、
上記絶縁性セル内に設けられた電極と、
一端部が上記試料台に接続され、他端部が上記セル内に配置された導通部材と、 カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であって上記電 極と上記導通部材の他端部とを電気的に接続するイオン液体と、
を含む試料用セル。
[26] 上記イオン液体が、一般式: K+A— (式中、 K+は、 N—アルキルイミダゾリウムカチ オン、第 4級アンモ-ゥムカチオンであり、 ΑΊま、テトラゾール化合物ァ-オンまたは トリァゾール化合物ァ-オン、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-ォ ン、テトラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリ ン酸ァ-オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、 アルキルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロ アルキルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである)で示される イオン液体である請求項 24又は 25記載の試料用セル。
[27] 上記イオン液体が、一般式: K+A— (式中、 K+は、第 4級アンモ-ゥムカチオン、又 は第 4級ホスホ-ゥムカチオンであり、 ΑΊま、ビス(ノヽロゲン化アルキルスルホ -ル)ィ ミドア-オン、又はビス(ノヽロゲン化スルホ -ル)イミドア-オンである)で示されるィォ ン液体である請求項 24又は 25記載の試料用セル。
[28] 上記イオン液体が、一般式: K+A— (式中、 K+は、
[化 4]
Figure imgf000039_0001
力もなる群力も選択されたカチオンであり、 ΑΊま、 [B (OR7) (OR8) (OR9) (OR10 n m o
) Γにより示されるァ-オン (Bはホウ素、 R7〜R1C)は、水素原子、又は炭素数 1〜: L0
P
のアルキル基)である)で示されるイオン液体である請求項 24又は 25記載の試料用 セル。
[29] 上記イオン液体が、一般式: K+A— (式中、 K+は、ベンジルジメチルアルキルアン モ-ゥムカチオン、アルキルピリジ-ゥムカチオンであり、 ΑΊま、スルホコハク酸ビス - 2—ェチルへキシルァ-オンである)で示されるイオン液体である請求項 24又は 2 5記載の試料用セル。
[30] 標体を観察するときに用いる電子顕微鏡であって、
標体を収容し、真空引きされる真空チャンバと、
上記真空チャンバ内に収容され、電子顕微鏡による観察時に液体であるイオン液 体を収容可能な絶縁性セルと、
上記絶縁性セルに充填されるイオン液体に浸漬された正負の電極と、 上記標体に電子線を照射する電子銃と、
上記電子銃力 上記標体に電子を照射したことにより発生する二次電子を検出す る検出器と、
を含む電子顕微鏡。
[31] 上記イオン液体が、一般式: K+A— (式中、 K+は、 N—アルキルイミダゾリウムカチ オン、第 4級アンモ-ゥムカチオンであり、 ΑΊま、テトラゾール化合物ァ-オンまたは トリァゾール化合物ァ-オン、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-ォ ン、テトラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリ ン酸ァ-オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、 アルキルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロ アルキルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである)で示される イオン液体である請求項 30記載の電子顕微鏡。
[32] 上記イオン液体が、一般式: K+A— (式中、 K+は、第 4級アンモ-ゥムカチオン、又 は第 4級ホスホ-ゥムカチオンであり、 ΑΊま、ビス(ノヽロゲン化アルキルスルホ -ル)ィ ミドア-オン、又はビス(ノヽロゲン化スルホ -ル)イミドア-オンである)で示されるィォ ン液体である請求項 30記載の電子顕微鏡。
[33] 上記イオン液体が、一般式: K+A— (式中、 K+は、
[化 5]
Figure imgf000041_0001
力もなる群力も選択されたカチオンであり、 ΑΊま、 [B (OR7) (OR8) (OR9) (OR10 n m o
) Γにより示されるァ-オン (Bはホウ素、 R7〜R1C)は、水素原子、又は炭素数 1〜: L0
P
のアルキル基)である)で示されるイオン液体である請求項 30記載の電子顕微鏡。
[34] 上記イオン液体が、一般式: K+A— (式中、 K+は、ベンジルジメチルアルキルアン モ-ゥムカチオン、アルキルピリジ-ゥムカチオンであり、 ΑΊま、スルホコハク酸ビス - 2—ェチルへキシルァ-オンである)で示されるイオン液体である請求項 30記載の 電子顕微鏡。
[35] 電子顕微鏡による試料観察方法であって、
カチオンおよびァ-オン力 構成され、真空中で全く揮発しないか、若しくは殆ど揮 発しないイオン液体を、被観察物に含浸させ、又は上記被観察物の観察面に上記ィ オン液体を塗布し、それにより少なくとも観察面に導電性を付与する工程と、 上記のようにイオン液体が含浸若しくは塗布された被観察物に、電子を照射し、照 射された電子による二次電子若しくは透過電子を検出して、上記被観察物の像を得 る工程と、を備えることを特徴とする試料観察方法。
[36] 電子顕微鏡による試料観察方法であって、
カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であるイオン液 体に、被観察物を浸漬させる工程と、
上記被観察物に正負の電極を接触させる工程と、
上記被観察物に電気を印カ卩しながら、上記被観察物に電子を照射し、照射された 電子による二次電子若しくは透過電子を検出して、上記被観察物の像を得る工程と 、を備える試料観察方法。
[37] 電子顕微鏡による試料観察方法であって、
カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であるイオン液 体に、被観察物を浸漬させる工程と、
上記イオン液体に浸漬された生体試料を真空下に置き、上記生体試料に含まれる 水分を除去する水分除去工程と、
上記のイオン液体が含浸若しくは塗布された被観察物に、電子を照射し、照射され た電子による二次電子若しくは透過電子を検出して、上記被観察物の像を得る工程 と、を備える試料観察方法。
[38] 電子顕微鏡による試料観察方法であって、
カチオンとァ-オンとを含み、上記電子顕微鏡による観察時に液体であるイオン液 体を該イオン液体に比較して揮発しやすい溶媒によって希釈する希釈工程と、 上記溶媒によって希釈されたイオン液体を被観察物に塗布する塗布工程と、 上記溶媒によって希釈されたイオン液体が塗布された被観察物を真空下に置き、 上記溶媒を除去する水分除去工程と、
上記のイオン液体が塗布された被観察物に、電子を照射し、照射された電子による 二次電子若しくは透過電子を検出して、上記被観察物の像を得る工程と、を備える 試料観察方法。
[39] 上記溶媒が、アルコール、アセトン、メチルェチルケトン、塩化メチレン、クロ口ホル ム、四塩化炭素、テトラヒドロフラン、ジォキサン、ペンタン、及びへキサン力もなる群 力も選択される少なくとも 1つの溶媒である請求項 38記載の試料観察方法。
[40] 上記イオン液体が、一般式: K+A— (式中、 K+は、 N—アルキルイミダゾリウムカチ オン、第 4級アンモ-ゥムカチオンであり、 ΑΊま、テトラゾール化合物ァ-オンまたは トリァゾール化合物ァ-オン、テトラフルォロホウ酸ァ-オン、テトラクロ口ホウ酸ァ-ォ ン、テトラアルキルホウ酸ァ-オン、テトラァリールホウ酸ァ-オン、へキサフルォロリ ン酸ァ-オン、へキサフルォロアンチモン酸ァ-オン、フルォロスルホン酸ァ-オン、 アルキルスルホン酸ァ-オン、フルォロアルキルスルホン酸ァ-オン、ビス(フルォロ アルキルスルホ -ル)イミドア-オン、アレーンスルホン酸ァ-オンである)で示される イオン液体である請求項 35〜39のいずれかに記載の試料観察方法。
[41] 上記イオン液体が、一般式: K+A— (式中、 K+は、第 4級アンモ-ゥムカチオン、又 は第 4級ホスホ-ゥムカチオンであり、 ΑΊま、ビス(ノヽロゲン化アルキルスルホ -ル)ィ ミドア-オン、又はビス(ノヽロゲン化スルホ -ル)イミドア-オンである)で示されるィォ ン液体である請求項 35〜39のいずれかに記載の試料観察方法。
[42] 上記イオン液体が、一般式: K+A— (式中、 K+は、
[化 6]
Figure imgf000044_0001
力もなる群力も選択されたカチオンであり、 ΑΊま、 [B (OR7) (OR8) (OR9) (OR10 n m o
) Γにより示されるァ-オン (Bはホウ素、 R7〜R1C)は、水素原子、又は炭素数 1〜: L0
P
のアルキル基)である)で示されるイオン液体である請求項 35〜39の!、ずれかに記 載の試料観察方法。
上記イオン液体が、一般式: K+A— (式中、 K+は、ベンジルジメチルアルキルアン モ-ゥムカチオン、アルキルピリジ-ゥムカチオンであり、 ΑΊま、スルホコハク酸ビス - 2—ェチルへキシルァ-オンである)で示されるイオン液体である請求項 35〜39 の!、ずれかに記載の試料観察方法。
PCT/JP2007/050816 2006-01-20 2007-01-19 電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法 WO2007083756A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07707104.1A EP1978355B1 (en) 2006-01-20 2007-01-19 Method of observing sample using a liquid medium for preventing charge-up in an electron microscope
JP2007554982A JP4581100B2 (ja) 2006-01-20 2007-01-19 電子顕微鏡用の標体の作製方法およびそれを用いた試料観察方法、ならびに試料観察装置
US12/223,012 US7880144B2 (en) 2006-01-20 2007-01-19 Liquid medium for preventing charge-up in electron microscope and method of observing sample using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006012597 2006-01-20
JP2006-012597 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083756A1 true WO2007083756A1 (ja) 2007-07-26

Family

ID=38287706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050816 WO2007083756A1 (ja) 2006-01-20 2007-01-19 電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法

Country Status (4)

Country Link
US (1) US7880144B2 (ja)
EP (2) EP3078962B1 (ja)
JP (1) JP4581100B2 (ja)
WO (1) WO2007083756A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128045A (ja) * 2007-11-20 2009-06-11 National Institute Of Advanced Industrial & Technology 二次イオン質量分析装置
JP2009266741A (ja) * 2008-04-28 2009-11-12 Hitachi High-Technologies Corp 透過型電子顕微鏡、及び試料観察方法
JP2010024528A (ja) * 2008-07-24 2010-02-04 Omega:Kk 電極構造
WO2010064386A1 (ja) * 2008-12-04 2010-06-10 国立大学法人大阪大学 パターン形成方法
JP2010133710A (ja) * 2008-12-02 2010-06-17 Hitachi High-Technologies Corp 微小試料採取装置
JP2010139799A (ja) * 2008-12-12 2010-06-24 National Institute Of Information & Communication Technology 試料観測方法、光学顕微鏡及び蛍光相関分析装置
WO2011074088A1 (ja) * 2009-12-16 2011-06-23 トヨタ自動車株式会社 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
WO2011074178A1 (ja) * 2009-12-14 2011-06-23 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び試料観察方法
JP2011137807A (ja) * 2009-12-01 2011-07-14 Hokkaido Univ 電子顕微鏡による試料観察用の液状媒体とそれを用いた電子顕微鏡による試料観察方法
WO2012046396A1 (ja) * 2010-10-08 2012-04-12 株式会社 日立ハイテクノロジーズ 液体の表面を浮遊する試料の走査電子顕微鏡観察方法
WO2013035681A1 (ja) * 2011-09-06 2013-03-14 学校法人久留米大学 電子顕微鏡用包埋樹脂組成物及び当該組成物を用いた電子顕微鏡による試料の観察方法
WO2013035866A1 (ja) 2011-09-09 2013-03-14 独立行政法人科学技術振興機構 生物試料をそのままの姿で観察するための電子顕微鏡による観察方法とそれに用いられる真空下での蒸発抑制用組成物、走査型電子顕微鏡および透過型電子顕微鏡
WO2013065475A1 (ja) * 2011-11-02 2013-05-10 株式会社日立ハイテクノロジーズ 電子顕微法の観察標体、電子顕微法、電子顕微鏡および観察標体作製装置
WO2013103107A1 (ja) * 2012-01-06 2013-07-11 株式会社 日立ハイテクノロジーズ 真空容器を備えた荷電粒子線照射装置
JP5246348B2 (ja) * 2009-12-16 2013-07-24 トヨタ自動車株式会社 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
WO2013118640A1 (ja) * 2012-02-06 2013-08-15 株式会社 日立ハイテクノロジーズ 荷電粒子線装置および配線方法
WO2013133012A1 (ja) * 2012-03-09 2013-09-12 株式会社 日立ハイテクノロジーズ 試料観察方法および試料前処理方法
JP2013257148A (ja) * 2012-06-11 2013-12-26 Hitachi High-Technologies Corp コーティング装置、及びコーティング装置の前処理装置
JP2014092496A (ja) * 2012-11-06 2014-05-19 Hitachi High-Technologies Corp イオン液体を用いた試料観察方法
JP2014190892A (ja) * 2013-03-28 2014-10-06 Hitachi High-Technologies Corp 試料観察方法、試料前処理方法、および荷電粒子線装置
WO2015115502A1 (ja) 2014-01-29 2015-08-06 独立行政法人科学技術振興機構 含水状態の生物試料の電子顕微鏡観察用保護剤、電子顕微鏡観察用キット、電子顕微鏡による観察、診断、評価、定量の方法並びに試料台
WO2017203676A1 (ja) * 2016-05-27 2017-11-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2020006677A (ja) * 2018-06-28 2020-01-16 国立大学法人九州大学 木材形状及び/又は木材調湿性調整剤

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058627B2 (en) * 2008-08-13 2011-11-15 Wisys Technology Foundation Addressable transmission electron microscope grid
CN102687055B (zh) * 2010-04-28 2016-04-06 奥林巴斯株式会社 显微镜用浸液
JP5259688B2 (ja) * 2010-12-09 2013-08-07 本田技研工業株式会社 走査型電子顕微鏡
RU2557179C1 (ru) * 2014-02-28 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Способ подготовки диэлектрических образцов для исследований на растровом электронном микроскопе
US10309881B2 (en) * 2015-06-30 2019-06-04 The Regents Of The University Of California Methods and apparatus for preparing aqueous specimens for electron microscopy using volatile surfactants
CN106753687B (zh) * 2017-01-13 2019-08-02 宝鸡文理学院 一种抗腐蚀性多功能离子液体润滑剂及其合成方法
CN106833806B (zh) * 2017-01-16 2019-09-20 中国科学院兰州化学物理研究所 一种离子液体组合物
CN111521622B (zh) * 2020-04-10 2022-04-19 燕山大学 一种采用金属薄膜透射电镜样品研究其氧化过程的方法
WO2023059493A1 (en) * 2021-10-05 2023-04-13 The Regents Of The University Of California Apparatus for preparing electron microscopy samples and methods of use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147857A (en) * 1981-03-06 1982-09-11 Koichi Kanetani Sample observation through scanning electron microscope
JPH0215546A (ja) 1988-06-30 1990-01-19 Mitsubishi Electric Corp 電子ビームパターン欠陥検査装置
JPH0343945A (ja) * 1989-07-11 1991-02-25 Seiko Instr Inc 電気化学セル
JPH03163736A (ja) 1989-08-18 1991-07-15 Jeol Ltd 電子顕微鏡または類似装置
JPH06122869A (ja) * 1991-06-28 1994-05-06 Texas Instr Inc <Ti> 微細蝕刻における測定のための帯電防止溶液
JP2001517205A (ja) * 1995-06-30 2001-10-02 コバレント アソシェーツ インコーポレイテッド 疎水性イオン液体の関連応用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040484A (ja) * 1998-07-22 2000-02-08 Nikon Corp 走査型電子顕微鏡
EP1171791B1 (en) * 1999-04-19 2005-11-02 Imperial College Innovations Limited Optical microscopy and its use in the study of cells
DE19957245A1 (de) * 1999-11-27 2001-05-31 Clariant Gmbh Verwendung von salzartigen Struktursilikaten als Ladungssteuermittel
FR2802203B1 (fr) * 1999-12-08 2003-04-04 Inst Francais Du Petrole Procede ameliore d'hydroformylation au moyen d'un catalyseur a base de cobalt et/ou de rhodium mis en oeuvre en milieu biphasique
DE10026565A1 (de) * 2000-05-30 2001-12-06 Merck Patent Gmbh Ionische Flüssigkeiten
US20050244821A1 (en) * 2000-08-17 2005-11-03 Ory Zik Method of identification and quantification of biological molecules and apparatus therefore
KR20040020966A (ko) * 2001-07-31 2004-03-09 가부시끼가이샤 도꾸야마 신규한 오늄염, 신규한 오늄염을 포함하는 비수계 전지용전해액, 및 오늄염을 포함하는 전해액을 사용한 음전극의최적화 방법
GB2383962B (en) * 2001-08-31 2005-06-01 Inst Francais Du Petrole Catalytic composition and use therefor
US7750166B2 (en) * 2002-08-16 2010-07-06 University Of South Alabama Ionic liquids containing a sulfonate anion
TW200526587A (en) * 2003-09-05 2005-08-16 Univ Alabama Ionic liquids containing secondary hydroxyl-groups and a method for their preparation
US7674706B2 (en) * 2004-04-13 2010-03-09 Fei Company System for modifying small structures using localized charge transfer mechanism to remove or deposit material
WO2006078275A2 (en) * 2004-04-22 2006-07-27 Liotta Charles L Ionic liquid energetic materials
US7442927B2 (en) * 2006-01-19 2008-10-28 Georgia Tech Research Corp Scanning ion probe systems and methods of use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147857A (en) * 1981-03-06 1982-09-11 Koichi Kanetani Sample observation through scanning electron microscope
JPH0215546A (ja) 1988-06-30 1990-01-19 Mitsubishi Electric Corp 電子ビームパターン欠陥検査装置
JPH0343945A (ja) * 1989-07-11 1991-02-25 Seiko Instr Inc 電気化学セル
JPH03163736A (ja) 1989-08-18 1991-07-15 Jeol Ltd 電子顕微鏡または類似装置
JPH06122869A (ja) * 1991-06-28 1994-05-06 Texas Instr Inc <Ti> 微細蝕刻における測定のための帯電防止溶液
JP2001517205A (ja) * 1995-06-30 2001-10-02 コバレント アソシェーツ インコーポレイテッド 疎水性イオン液体の関連応用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PERNAK J. ET AL.: "Ionic Liquids with Symmetrical Dialkoxymethyl-Substituted Imidazolium Cations", CHEMISTRY - A EUROPEAN JOURNAL, vol. 10, no. 14, 19 July 2004 (2004-07-19), pages 3479 - 3485, XP003015453 *
PERNAK J. ET AL.: "New Ionic Liquids and Their Antielectrostatic Properties", IND. ENG. CHEM. RES., 30 May 2001 (2001-05-30), pages 2379 - 2383, XP003015452 *
PERNAK J. ET AL.: "Synthesis and Properties of Chiral Ammonium-Based Ionic Liquids", CHEMISTRY - A EUROPEAN JOURNAL, vol. 11, no. 15, 18 July 2005 (2005-07-18), pages 4441 - 4449, XP003015454 *
PERNAK J., STEFANIAK F., WGLEWSKI J.: "Phosphonium Acesulfamate Based Ionic Liquids", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 2005, no. 4, 11 February 2005 (2005-02-11), pages 650 - 652, XP003015455 *
SATO T. AND YOSHIDA H.: "Ion Ekitai no Denkaishitsu eno Oyo (Some Properties of Ionic Liquids for Electrolyte)", SENI TO KOGYO, vol. 61, no. 3, March 2005 (2005-03-01), pages 75 - 79, XP003015456 *
See also references of EP1978355A4 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128045A (ja) * 2007-11-20 2009-06-11 National Institute Of Advanced Industrial & Technology 二次イオン質量分析装置
EP2273528A1 (en) * 2008-04-28 2011-01-12 Hitachi High-Technologies Corporation Transmission electron microscope, and method of observing specimen
EP2273528A4 (en) * 2008-04-28 2014-04-23 Hitachi High Tech Corp ELECTRONIC TRANSMISSION MICROSCOPE AND SAMPLE OBSERVATION METHOD
US8785883B2 (en) 2008-04-28 2014-07-22 Hitachi High-Technologies Corporation Transmission electron microscope, and method of observing specimen
EP2801998A3 (en) * 2008-04-28 2014-12-10 Hitachi High-Technologies Corporation Transmission electron microscope, and method of observing specimen
JP2009266741A (ja) * 2008-04-28 2009-11-12 Hitachi High-Technologies Corp 透過型電子顕微鏡、及び試料観察方法
US9129772B2 (en) 2008-04-28 2015-09-08 Hitachi High-Technologies Corporation Transmission electron microscope, and method of observing specimen
KR101070826B1 (ko) * 2008-07-24 2011-10-06 가부시키가이샤 오메가 전극 구조
JP2010024528A (ja) * 2008-07-24 2010-02-04 Omega:Kk 電極構造
JP2010133710A (ja) * 2008-12-02 2010-06-17 Hitachi High-Technologies Corp 微小試料採取装置
WO2010064386A1 (ja) * 2008-12-04 2010-06-10 国立大学法人大阪大学 パターン形成方法
JP2010139799A (ja) * 2008-12-12 2010-06-24 National Institute Of Information & Communication Technology 試料観測方法、光学顕微鏡及び蛍光相関分析装置
JP2011137807A (ja) * 2009-12-01 2011-07-14 Hokkaido Univ 電子顕微鏡による試料観察用の液状媒体とそれを用いた電子顕微鏡による試料観察方法
JP2011124162A (ja) * 2009-12-14 2011-06-23 Hitachi High-Technologies Corp 荷電粒子線装置及び試料観察方法
US8546770B2 (en) 2009-12-14 2013-10-01 Hitachi High-Technologies Corporation Charged particle beam device and sample observation method
WO2011074178A1 (ja) * 2009-12-14 2011-06-23 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び試料観察方法
WO2011074088A1 (ja) * 2009-12-16 2011-06-23 トヨタ自動車株式会社 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
US9276289B2 (en) 2009-12-16 2016-03-01 Toyota Jidosha Kabushiki Kaisha Ambient temperature molten salt, electrode, battery, agent for preventing charge-up, and method for observing sample
WO2011074325A1 (ja) * 2009-12-16 2011-06-23 トヨタ自動車株式会社 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
JP5246348B2 (ja) * 2009-12-16 2013-07-24 トヨタ自動車株式会社 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
DE112011103384B4 (de) 2010-10-08 2022-12-29 Hitachi High-Tech Corporation Verfahren zur Präparation und zum Betrachten einer auf einer Flüssigkeitsoberfläche schwimmenden Probe im Rasterelektronenmikroskop
CN103168221A (zh) * 2010-10-08 2013-06-19 株式会社日立高新技术 漂浮于液体表面的试样的扫描电子显微镜观察方法
JP2012083146A (ja) * 2010-10-08 2012-04-26 Hitachi High-Technologies Corp 液体の表面を浮遊する試料の走査電子顕微鏡観察方法
DE112011103384T5 (de) 2010-10-08 2013-08-14 Hitachi High-Technologies Corporation Verfahren zum Betrachten einer auf einer Flüssigkeitsoberfläche schwimmenden Probe im Rasterelektronenmikroskop
WO2012046396A1 (ja) * 2010-10-08 2012-04-12 株式会社 日立ハイテクノロジーズ 液体の表面を浮遊する試料の走査電子顕微鏡観察方法
US8698079B2 (en) 2010-10-08 2014-04-15 Hitachi High-Technologies Corporation Method for scanning electron microscope observation of sample floating on liquid surface
JPWO2013035681A1 (ja) * 2011-09-06 2015-03-23 学校法人 久留米大学 電子顕微鏡用包埋樹脂組成物及び当該組成物を用いた電子顕微鏡による試料の観察方法
US9870894B2 (en) 2011-09-06 2018-01-16 Kurume University Embedding resin composition for electron microscopey and method for observing sample with electron microscope using the same
WO2013035681A1 (ja) * 2011-09-06 2013-03-14 学校法人久留米大学 電子顕微鏡用包埋樹脂組成物及び当該組成物を用いた電子顕微鏡による試料の観察方法
WO2013035866A1 (ja) 2011-09-09 2013-03-14 独立行政法人科学技術振興機構 生物試料をそのままの姿で観察するための電子顕微鏡による観察方法とそれに用いられる真空下での蒸発抑制用組成物、走査型電子顕微鏡および透過型電子顕微鏡
KR20140074287A (ko) 2011-09-09 2014-06-17 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 생물 시료를 그대로의 모습으로 관찰하기 위한 전자 현미경에 의한 관찰 방법과 그것에 사용되는 진공 하에서의 증발 억제용 조성물, 주사형 전자 현미경, 및 투과형 전자 현미경
JP2013096890A (ja) * 2011-11-02 2013-05-20 Hitachi High-Technologies Corp 電子顕微法の観察標体、電子顕微法、電子顕微鏡および観察標体作製装置
US9202668B2 (en) 2011-11-02 2015-12-01 Hitachi High-Technologies Corporation Observation specimen for use in electron microscopy, electron microscopy, electron microscope, and device for producing observation specimen
WO2013065475A1 (ja) * 2011-11-02 2013-05-10 株式会社日立ハイテクノロジーズ 電子顕微法の観察標体、電子顕微法、電子顕微鏡および観察標体作製装置
WO2013103107A1 (ja) * 2012-01-06 2013-07-11 株式会社 日立ハイテクノロジーズ 真空容器を備えた荷電粒子線照射装置
JP2013140741A (ja) * 2012-01-06 2013-07-18 Hitachi High-Technologies Corp 真空容器を備えた荷電粒子線照射装置
US9343265B2 (en) 2012-01-06 2016-05-17 Hitachi High-Technologies Corporation Charged particle beam irradiation apparatus
US10808312B2 (en) 2012-02-06 2020-10-20 Hitachi High-Tech Corporation Charged particle device and wiring method
WO2013118640A1 (ja) * 2012-02-06 2013-08-15 株式会社 日立ハイテクノロジーズ 荷電粒子線装置および配線方法
JP2013161647A (ja) * 2012-02-06 2013-08-19 Hitachi High-Technologies Corp 荷電粒子線装置および配線方法
US9963776B2 (en) 2012-02-06 2018-05-08 Hitachi High-Technologies Corporation Charged particle device and wiring method
DE112013000459B4 (de) 2012-02-06 2018-08-02 Hitachi High-Technologies Corporation Verdrahtungsverfahren
WO2013133012A1 (ja) * 2012-03-09 2013-09-12 株式会社 日立ハイテクノロジーズ 試料観察方法および試料前処理方法
JP2013257148A (ja) * 2012-06-11 2013-12-26 Hitachi High-Technologies Corp コーティング装置、及びコーティング装置の前処理装置
JP2014092496A (ja) * 2012-11-06 2014-05-19 Hitachi High-Technologies Corp イオン液体を用いた試料観察方法
JP2014190892A (ja) * 2013-03-28 2014-10-06 Hitachi High-Technologies Corp 試料観察方法、試料前処理方法、および荷電粒子線装置
WO2015115502A1 (ja) 2014-01-29 2015-08-06 独立行政法人科学技術振興機構 含水状態の生物試料の電子顕微鏡観察用保護剤、電子顕微鏡観察用キット、電子顕微鏡による観察、診断、評価、定量の方法並びに試料台
JPWO2017203676A1 (ja) * 2016-05-27 2019-04-04 株式会社日立ハイテクノロジーズ 荷電粒子線装置
WO2017203676A1 (ja) * 2016-05-27 2017-11-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2020006677A (ja) * 2018-06-28 2020-01-16 国立大学法人九州大学 木材形状及び/又は木材調湿性調整剤

Also Published As

Publication number Publication date
JPWO2007083756A1 (ja) 2009-06-11
US20090173882A1 (en) 2009-07-09
EP3078962A1 (en) 2016-10-12
EP1978355B1 (en) 2016-07-27
US7880144B2 (en) 2011-02-01
JP4581100B2 (ja) 2010-11-17
EP3078962B1 (en) 2018-06-27
EP1978355A4 (en) 2015-04-29
EP1978355A1 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2007083756A1 (ja) 電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法
Otto et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer
Krauskopf et al. Physicochemical concepts of the lithium metal anode in solid-state batteries
Connell et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal
Schlenker et al. Understanding the lifetime of battery cells based on solid-state Li6PS5Cl electrolyte paired with lithium metal electrode
Girard et al. Spectroscopic characterization of the SEI layer formed on lithium metal electrodes in phosphonium bis (fluorosulfonyl) imide ionic liquid electrolytes
Busche et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
Otto et al. Storage of lithium metal: the role of the native passivation layer for the anode interface resistance in solid state batteries
Fan et al. Repelling polysulfide ions by boron nitride nanosheet coated separators in lithium–sulfur batteries
Conder et al. Electrochemical impedance spectroscopy of a Li–S battery: Part 2. Influence of separator chemistry on the lithium electrode/electrolyte interface
Gnedenkov et al. Hydrolysis lignin-based organic electrode material for primary lithium batteries
WO2010091405A2 (en) Metrology methods and apparatus for nanomaterial characterization of energy storage electrode structures
Schafzahl et al. Long-chain Li and Na alkyl carbonates as solid electrolyte interphase components: structure, ion transport, and mechanical properties
Rao et al. Roll-to-roll functionalization of polyolefin separators for high-performance lithium-ion batteries
WO2018231731A2 (en) Self-forming solid state batteries and self-healing solid electrolytes
KR20180003682A (ko) 이온전도성 막의 제조 방법
Bucher et al. A novel ionic liquid for Li ion batteries–uniting the advantages of guanidinium and piperidinium cations
Sassin et al. Routes to 3D conformal solid-state dielectric polymers: electrodeposition versus initiated chemical vapor deposition
Chen et al. Directly using Li2CO3 as a lithiophobic interlayer to inhibit Li dendrites for high-performance solid-state batteries
Kim et al. Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution
Häcker et al. Magnesium anode protection by an organic artificial solid electrolyte interphase for magnesium-sulfur batteries
US20230101833A1 (en) Chemical treatment for preparing metal electrodes
Frenck et al. Failure mechanisms at the interfaces between lithium metal electrodes and a single-ion conducting polymer gel electrolyte
KR20170019146A (ko) 이차 전지 전극 내부 구성 물질 및 기공의 분포를 분석하는 방법 및 이를 위한 조성물
Sahal et al. Robust and manufacturable lithium lanthanum titanate-based solid-state electrolyte thin films deposited in open air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007554982

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2007707104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007707104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12223012

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)