WO2011074088A1 - 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法 - Google Patents

常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法 Download PDF

Info

Publication number
WO2011074088A1
WO2011074088A1 PCT/JP2009/070985 JP2009070985W WO2011074088A1 WO 2011074088 A1 WO2011074088 A1 WO 2011074088A1 JP 2009070985 W JP2009070985 W JP 2009070985W WO 2011074088 A1 WO2011074088 A1 WO 2011074088A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
temperature molten
molten salt
room temperature
charge
Prior art date
Application number
PCT/JP2009/070985
Other languages
English (en)
French (fr)
Inventor
博文 中本
史教 水野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/070985 priority Critical patent/WO2011074088A1/ja
Priority to AU2010331563A priority patent/AU2010331563B2/en
Priority to CN201080056899.9A priority patent/CN102656150B/zh
Priority to PCT/JP2010/068721 priority patent/WO2011074325A1/ja
Priority to EP10837355.6A priority patent/EP2518055B1/en
Priority to US13/515,689 priority patent/US9276289B2/en
Priority to JP2011546022A priority patent/JP5246348B2/ja
Priority to KR1020127014828A priority patent/KR101395156B1/ko
Publication of WO2011074088A1 publication Critical patent/WO2011074088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D233/08Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms
    • C07D233/10Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring nitrogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a room temperature molten salt having excellent electronic conductivity in addition to ionic conductivity.
  • Normal temperature molten salt is a general term for salts that exist in a liquid state near normal temperature (room temperature), and the cation part type is imidazolium, pyridium, alicyclic amine, aliphatic amine, aliphatic phosphonium Etc. are known.
  • room temperature molten salts are known to be used as electrolytes for electrochemical devices because of their excellent non-volatility and voltage resistance.
  • Patent Document 1 discloses a secondary battery including positive and negative electrodes having a conductive polymer as at least one electrode and an electrolytic solution made of a room temperature molten salt.
  • Patent Document 2 discloses an all-solid lithium secondary battery in which an ionic liquid (room temperature molten salt) whose cation portion is 1-ethyl-3-methylimidazolium is present in the pinhole of the solid electrolyte layer. ing. This technique aims to prevent an internal short circuit of a battery by allowing an ionic liquid to be present in a pinhole of a solid electrolyte material.
  • ionic liquid room temperature molten salt
  • Patent Document 3 discloses a charge-up preventing agent for an electron microscope using an ionic liquid (room temperature molten salt).
  • Charge-up generally refers to a phenomenon in which an object to be measured (for example, an insulator) is charged during measurement using an electron beam or the like and an appropriate result cannot be obtained.
  • SEM scanning electron microscope
  • the room temperature molten salt Since the room temperature molten salt has predetermined ionic conductivity, it is useful as an electrolyte of, for example, an electrochemical device as described above.
  • the conventional room temperature molten salt has ion conductivity, but hardly has electron conductivity. In other words, the conventional room temperature molten salt has almost no electron conductivity and only ionic conductivity, and thus can be used as an electrolyte for electrochemical devices.
  • the room temperature molten salt if the room temperature molten salt has electron conductivity in addition to ion conductivity, for example, it will be very useful as a material to be added to the electrode.
  • a room temperature molten salt having both ionic conductivity and electronic conductivity has not been known.
  • the room temperature molten salt when used as a charge-up prevention agent for an electron microscope, the room temperature molten salt has a high ion concentration and has ionic conductivity, so it is possible to prevent charge up to some extent. It is.
  • the conventional room temperature molten salt has a problem that the effect of preventing charge-up is low because it has almost no electronic conductivity. For this reason, for example, in continuous measurement for a long time, there is a problem that charges accumulate in the measurement target and charge up occurs.
  • the present invention has been made in view of the above circumstances, and a main object thereof is to provide a room temperature molten salt having excellent electron conductivity in addition to ion conductivity.
  • a first imidazolium salt having a cation moiety represented by the following general formula (1) and an anion moiety being FeCl 4 and the following general formula (2) are used.
  • a second imidazolium salt having an anion portion that is Cl, and the amount of the second imidazolium salt is 100 mol parts or less when the first imidazolium salt is 100 mol parts A room temperature molten salt characterized by comprising:
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms.
  • R 3 and R 4 are each an alkyl group having 1 to 10 carbon atoms.
  • the present invention by using the first imidazolium salt and the second imidazolium salt, a room temperature molten salt having excellent electron conductivity in addition to ion conductivity can be obtained. Further, the first imidazolium salt and the second imidazolium salt usually do not have electronic conductivity alone. However, by combining these, the electron conductivity can be dramatically improved unexpectedly. That is, by combining the first imidazolium salt and the second imidazolium salt, an extraneous effect that cannot be achieved by a single salt can be obtained.
  • the above-mentioned R 1 is an ethyl group, it is preferable that the R 2 is a methyl group. This is because a room temperature molten salt with better electronic conductivity can be obtained.
  • the R 3 is an ethyl group, it is preferable that the R 4 is a methyl group. This is because a room temperature molten salt with better electronic conductivity can be obtained.
  • the room temperature molten salt preferably contains the second imidazolium salt in a proportion of 1 mol part or more. This is because if the proportion of the second imidazolium salt is too small, the electron conductivity becomes equivalent to that of the first imidazolium salt alone, and the electron conductivity may not be improved dramatically.
  • the present invention also provides an electrode characterized by containing the above-mentioned room temperature molten salt.
  • the present invention by using the above-mentioned room temperature molten salt, it is possible to obtain an electrode excellent in not only ion conductivity but also electron conductivity.
  • the electrode preferably further contains an active material capable of supplying or receiving metal ions. This is because it is possible to prevent the electron conduction path from being cut by the expansion or contraction of the active material.
  • a battery having a first electrode, a second electrode, and an electrolyte layer formed between the first electrode and the second electrode, wherein the first electrode and the first electrode At least one of the two electrodes is the electrode described above, and the electrolyte layer does not pass through the room temperature molten salt contained in the electrode.
  • a battery having a low internal resistance can be obtained by using the electrode containing the above-mentioned room temperature molten salt.
  • the electrolyte layer is preferably a solid electrolyte layer having a dense property that does not pass through the room temperature molten salt. This is because a highly safe battery can be obtained.
  • a charge-up preventing agent characterized by containing the above-mentioned room temperature molten salt.
  • the present invention since it contains the above-mentioned room temperature molten salt, it can be a charge-up preventing agent having excellent electron conductivity. Therefore, the effect of preventing the charge-up is high. For example, even in the long-time continuous measurement, it is possible to prevent the charge from being accumulated in the measurement target, and to prevent the charge-up from occurring.
  • the charge-up preventing agent is preferably used for measurement by an electron microscope.
  • a sample observation method for observing a sample having a measurement object and a charge-up prevention agent for preventing charge-up of the measurement object with an electron microscope wherein the charge-up prevention agent is the above-mentioned.
  • the measurement object is preferably a member used for a battery.
  • FIG. 1 is a measurement result of electron conductivity of samples obtained in Examples 1 to 3 and Comparative Examples 1 and 2.
  • FIG. 1 is a measurement result of electron conductivity of samples obtained in Examples 1 to 3 and Comparative Examples 1 and 2.
  • the room temperature molten salt of the present invention includes a first imidazolium salt having a cation moiety represented by the above general formula (1) and an anion moiety being FeCl 4 , and a cation represented by the above general formula (2). And a second imidazolium salt having an anion portion that is Cl, and the second imidazolium salt is contained in a proportion of 100 mol parts or less when the first imidazolium salt is 100 mol parts. It is characterized by this.
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms.
  • R 3 and R 4 are each an alkyl group having 1 to 10 carbon atoms.
  • the present invention by using the first imidazolium salt and the second imidazolium salt, a room temperature molten salt having excellent electron conductivity in addition to ion conductivity can be obtained. Further, the first imidazolium salt and the second imidazolium salt usually do not have electronic conductivity alone. However, by combining these, the electron conductivity can be dramatically improved unexpectedly. That is, by combining the first imidazolium salt and the second imidazolium salt, an extraneous effect that cannot be achieved by a single salt can be obtained. Moreover, since the room temperature molten salt of this invention is excellent in electronic conductivity, it can also be used instead of the electroconductive material (for example, carbon material) contained in the conventional electrode, for example.
  • the electroconductive material for example, carbon material
  • room temperature molten salt is synonymous with ionic liquid and has a melting point of 100 ° C. or lower.
  • the melting point of the room temperature molten salt of the present invention is preferably 80 ° C. or less, more preferably 40 ° C. or less, and further preferably 25 ° C. (room temperature) or less.
  • the room temperature molten salt of the present invention contains the first imidazolium salt described above.
  • the first imidazolium salt itself may be a normal temperature molten salt or a solid salt at normal temperature. That is, even if the first imidazolium salt is a solid salt at room temperature, it is sufficient that a room temperature molten salt is obtained by coexisting with the second imidazolium salt or the like.
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms, and preferably an alkyl group having 1 to 4 carbon atoms. Specific examples of the alkyl group include an ethyl group, a methyl group, a propyl group, and a butyl group. R 1 and R 2 may be the same as or different from each other.
  • R 1 is an ethyl group and R 2 is a methyl group.
  • R 1 is an ethyl group and R 2 is a methyl group.
  • EMIm 1-ethyl-3-methylimidazolium
  • the first imidazolium salt has FeCl 4 as an anion part.
  • Examples of the valence of Fe element in FeCl 4 include bivalent and trivalent, and trivalent is preferable.
  • the first imidazolium salt can be represented by EMImFeCl 4 .
  • the first imidazolium salt can be represented by [EMIm] 2 FeCl 4 .
  • the method for producing the first imidazolium salt is not particularly limited as long as it is a method capable of obtaining the desired first imidazolium salt.
  • the cation moiety represented by the general formula (1) a method of mixing a raw material imidazolium salt having an anion portion which is Cl and FeCl 3 .
  • EMImFeCl 4 EMImCl and FeCl 3 (Fe is trivalent) may be mixed at an equimolar ratio.
  • EMImCl, FeCl 2 Fe is divalent
  • EMImCl, FeCl 2 Fe is divalent
  • the second imidazolium salt itself may be a normal temperature molten salt or a solid salt at normal temperature. That is, even if the second imidazolium salt is a solid salt at room temperature, it is sufficient that a room temperature molten salt is obtained by coexisting with the first imidazolium salt or the like.
  • R 3 and R 4 in the present invention are the same as R 1 and R 2 described above, so description thereof is omitted here. In the present invention, it is preferable that R 3 is the same as R 1 and R 4 is the same as R 2 .
  • R 3 is an ethyl group and R 4 is a methyl group.
  • R 3 is an ethyl group and R 4 is a methyl group.
  • EMIm 1-ethyl-3-methylimidazolium
  • the second imidazolium salt has Cl as an anion part.
  • the method for producing the second imidazolium salt is not particularly limited as long as it is a method capable of obtaining a desired second imidazolium salt.
  • a commercially available imidazolium salt can be used.
  • the room temperature molten salt of the present invention is characterized in that the second imidazolium salt is contained in a proportion of 100 mol parts or less when the first imidazolium salt is 100 mol parts.
  • the ratio of the said 2nd imidazolium salt is less than 100 mol part, It is more preferable that it is 80 mol part or less, It is further more preferable that it is 50 mol part or less. This is because if the proportion of the second imidazolium salt is too large, a decrease in electron conductivity occurs immediately, and there is a possibility that a room temperature molten salt with low electron conductivity may be formed from the beginning.
  • the ratio of the second imidazolium salt is preferably 1 mol part or more, more preferably 5 mol part or more, and further preferably 10 mol part or more. This is because if the proportion of the second imidazolium salt is too small, the electron conductivity becomes equivalent to that of the first imidazolium salt alone, and the electron conductivity may not be improved dramatically.
  • the electron conductivity (room temperature) of the room temperature molten salt of the present invention varies depending on the types and ratios of the first imidazolium salt and the second imidazolium salt, but is preferably higher.
  • the ionic conductivity (room temperature) of the room temperature molten salt of the present invention varies depending on the types and ratios of the first imidazolium salt and the second imidazolium salt, but is preferably higher.
  • the use of the room temperature molten salt of the present invention is not particularly limited, and examples thereof include an electrode additive added to an electrode of an electrochemical device.
  • the electrochemical device include a metal ion battery, a metal-air battery, a fuel battery, a solar battery, and the like, a charge-up preventing agent, and the like.
  • the room temperature molten salt of the present invention can be used for all secondary batteries (Li ion secondary battery, NiH secondary battery).
  • the electrode of the present invention is characterized by containing the above-mentioned room temperature molten salt.
  • the present invention by using the above-mentioned room temperature molten salt, it is possible to obtain an electrode excellent in not only ion conductivity but also electron conductivity.
  • FIG. 1 is a schematic sectional view showing an example of the electrode of the present invention.
  • the electrode 10 shown in FIG. 1 contains an active material 1 capable of supplying or receiving metal ions and a room temperature molten salt 2.
  • an active material 1 capable of supplying or receiving metal ions
  • a room temperature molten salt 2 capable of supplying or receiving metal ions
  • a room temperature molten salt 2 capable of supplying or receiving metal ions
  • a room temperature molten salt 2 2.
  • the normal temperature molten salt used for this invention since it is the same as that of the content described in said "A. normal temperature molten salt", description here is abbreviate
  • omitted the content of the room temperature molten salt contained in the electrode varies greatly depending on the type of the electrode, and is not particularly limited.
  • the electrode of the present invention is not particularly limited as long as it has the above-mentioned room temperature molten salt, but further, an active material capable of supplying or receiving metal ions, a catalyst for promoting a reaction at the electrode, an electron It may contain at least one selected from the group consisting of a conductive material having conductivity, an electrolyte material having ion conductivity (for example, a solid electrolyte material), and a binder.
  • the room temperature molten salt used in the present invention has ionic conductivity and electronic conductivity. Therefore, a room temperature molten salt may be used instead of at least one of the electrolyte material and the conductive material.
  • the electrode of the present invention is usually an electrode for an electrochemical device, preferably an electrode for a battery, and more preferably an electrode for a metal ion battery, a metal air battery, or a fuel cell.
  • the metal ion battery or the metal air battery may be a primary battery or a secondary battery.
  • the electrode of the present invention preferably further contains an active material capable of supplying or receiving metal ions.
  • an active material capable of supplying or receiving metal ions.
  • the conventional electrode includes an active material 1 and a solid conductive material (for example, a carbon material) 3 having electronic conductivity. Since the active material 1 itself usually does not have electron conductivity, the conductive material 3 is used to secure an electron conduction path in the electrode. The active material 1 and the solid conductive material 3 are in point contact with each other to form an electron conduction path.
  • the electron conduction path may be cut by being influenced by the expanded active materials 1.
  • the electron conduction path may be cut by being affected by the contraction of the active material 1.
  • the electron conduction path formed between the active material 1 and the solid conductive material 3 is easily cut.
  • the electrode of the present invention has an active material 1 and a room temperature molten salt 2 excellent in electronic conductivity. Therefore, even if the active material 1 expands by receiving metal ions, the room temperature molten salt 2 that is a liquid flexibly follows, so that the electron conduction path is not cut. Similarly, even when the active material 1 is contracted by supplying metal ions, the room temperature molten salt 2 that is a liquid flexibly follows, so that the electron conduction path is not cut. As described above, the room temperature molten salt 2 flexibly follows, so that the electron conduction path can be maintained even when the active material 1 undergoes a volume change.
  • the room temperature molten salt 2 has ionic conductivity, the ionic conductivity can be maintained even when a volume change occurs in the active material 1.
  • the normal temperature molten salt 2 can be arrange
  • the electrode of the present invention is an electrode for a secondary battery, since the expansion and contraction of the active material are repeated, the effects of the present invention can be sufficiently exerted.
  • the shape of the active material is not particularly limited, and examples thereof include powder, thin film, and porous shapes.
  • the above-described room temperature molten salt is preferably present in the gaps between the particles of the active material. Further, when the active material is porous, it is preferable that the above-mentioned room temperature molten salt is present in the porous void.
  • the ratio of the active material contained in the electrode is not particularly limited, but is preferably larger, for example, preferably 50% by weight or more, and within the range of 80% by weight to 99% by weight. More preferred.
  • the electrode containing the active material examples include a positive electrode and a negative electrode for metal ion batteries, a negative electrode for metal-air batteries, and the like.
  • the positive electrode (air electrode) for metal air batteries uses air (oxygen) as a positive electrode active material, it usually does not contain an active material.
  • the electrode of the present invention is a positive electrode for a metal ion battery, such a positive electrode contains at least a positive electrode active material and a room temperature molten salt, and further includes a conductive material, an electrolyte material (for example, Solid electrolyte material) and those containing at least one binder.
  • the electrode of the present invention is a negative electrode for a metal ion battery or a metal-air battery
  • a negative electrode contains at least a negative electrode active material and a room temperature molten salt, and if necessary, a conductive material.
  • Electrolyte materials for example, solid electrolyte materials, and materials containing at least one binder.
  • the type of metal ion in the metal ion battery and the metal air battery is not particularly limited.
  • alkali metal ions such as Li ion, Na ion and K ion
  • alkaline earth such as Mg ion and Ca ion Metal ions
  • amphoteric metal ions such as Al ions and Zn ions
  • transition metal ions such as Fe ions.
  • the metal ions are preferably alkali metal ions or alkaline earth metal ions, more preferably alkali metal ions, and particularly preferably Li ions. This is because a battery having a high energy density can be obtained.
  • the active material (positive electrode active material) used is LiCoO 2 , LiMnO 2 , Li 2 NiMn 3 O 8 , LiVO 2 , LiCrO 2 , LiFePO 4 , LiCoPO 4 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 and the like.
  • the active material (negative electrode active material) used include a metal active material and a carbon active material. Examples of the metal active material include In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • examples of the active material used include lithium alone, lithium alloys, oxides containing lithium, and nitrides containing lithium.
  • examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • examples of the oxide containing lithium include lithium titanium oxide.
  • examples of the nitride containing lithium include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
  • the electrode of the present invention may not contain the above-mentioned active material.
  • the air electrode for metal air batteries can be mentioned, for example.
  • An air electrode for a metal-air battery uses air (oxygen) as an active material.
  • air electrodes include those having a conductive material having electron conductivity, a catalyst, and an electrolyte material having metal ion conductivity.
  • a room temperature molten salt may be used instead of at least one of the conductive material and the electrolyte material, and the above room temperature molten salt may be used in addition to the conductive material or the electrolyte material.
  • the room temperature molten salt in the present invention is in a liquid state at room temperature, it may be difficult to incorporate oxygen into the air electrode depending on the amount of the room temperature molten salt. In such a case, for example, oxygen is preferably supplied by bubbling.
  • a conventional electrode for a fuel cell usually has a conductive material having electron conductivity, an electrolyte material having proton conductivity, and a catalyst.
  • a room temperature molten salt may be used instead of at least one of the conductive material and the electrolyte material, and the above room temperature molten salt may be used in addition to the conductive material or the electrolyte material.
  • the room temperature molten salt in the present invention is liquid at room temperature, it may be difficult to take in hydrogen depending on the amount of the room temperature molten salt. In such a case, it is preferable to supply hydrogen by bubbling, for example.
  • Examples of the conductive material used for the electrode of the present invention include a carbon material. Further, the carbon material may have a porous structure or may not have a porous structure. However, in the present invention, the carbon material preferably has a porous structure. This is because the specific surface area is large and many reaction fields can be provided. Specific examples of the carbon material having a porous structure include mesoporous carbon. On the other hand, specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon nanotube, and carbon fiber. Further, the content of the conductive material contained in the electrode varies greatly depending on the type of electrode and is not particularly limited.
  • Examples of the electrolyte material used for the electrode of the present invention include a solid electrolyte material and a polymer electrolyte material.
  • Examples of the solid electrolyte material include a sulfide solid electrolyte material and an oxide sulfide solid electrolyte material.
  • Examples of the sulfide solid electrolyte material having Li ion conductivity include, for example, a Li 2 S—P 2 S 5 glassy sulfide solid electrolyte material.
  • a perfluorosulfonic acid polymer can be exemplified as a polymer electrolyte material used for a fuel cell.
  • the content of the electrolyte material contained in the electrode varies greatly depending on the type of electrode, and is not particularly limited.
  • the catalyst used for the electrode of the present invention is not particularly limited.
  • the catalyst used for the air electrode of the metal-air battery include inorganic ceramic materials such as MnO 2 , CeO 2 , TiO 2 , Co 3 O 4 , and Fe 3 O 4 ; organic complexes such as cobalt phthalocyanine and iron porphyrin; Mention may be made of composite materials.
  • Pt etc. can be mentioned, for example.
  • the content of the catalyst contained in the electrode varies greatly depending on the type of electrode, and is not particularly limited.
  • binder used for the electrode of the present invention examples include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). Further, rubber such as SBR may be used as the binder. Further, the content of the binder contained in the electrode varies greatly depending on the type of electrode and is not particularly limited. Further, the thickness of the electrode of the present invention is also greatly different depending on the type of electrode and is not particularly limited.
  • the battery of the present invention is a battery having a first electrode, a second electrode, and an electrolyte layer formed between the first electrode and the second electrode, wherein the first electrode and the second electrode At least one of the electrodes is the electrode described above, and the electrolyte layer does not pass through the room temperature molten salt contained in the electrode.
  • a battery having a low internal resistance can be obtained by using the electrode containing the above-mentioned room temperature molten salt.
  • FIG. 3 is a schematic cross-sectional view showing an example of the power generation element of the battery of the present invention.
  • a power generation element 20 shown in FIG. 3 includes a first electrode 11 containing an active material 1a and a room temperature molten salt 2, a second electrode 12 containing an active material 1b and a room temperature molten salt 2, a first electrode 11 and a first electrode 11 It has an electrolyte layer 13 that is formed between the two electrodes 12 and does not pass through the room temperature molten salt 2.
  • the battery of the present invention will be described for each configuration.
  • At least one of the first electrode and the second electrode is the electrode described in “B. Electrode” above. Since such an electrode is as described above, description thereof is omitted here.
  • the electrolyte layer in the present invention is formed between the first electrode and the second electrode, and does not pass the room temperature molten salt contained in the electrode in order to prevent an internal short circuit.
  • the electrolyte layer in the present invention is not particularly limited as long as it has predetermined ionic conductivity and does not pass through the room temperature molten salt contained in the electrode.
  • An electrolyte layer is preferred. This is because a highly safe battery can be obtained.
  • the solid electrolyte layer is a layer containing at least a solid electrolyte material. Furthermore, a binder may be contained in order to improve the denseness. By adding a binder and preparing a sheet-like solid electrolyte layer, a solid electrolyte layer that does not allow room temperature molten salt to pass through can be obtained. In addition, it can be set as the solid electrolyte layer excellent in the compactness by simply press-molding the solid electrolyte material.
  • the kind of the solid electrolyte material used for the solid electrolyte layer is not particularly limited as long as it has a predetermined ion conductivity.
  • Examples of the solid electrolyte material include a sulfide solid electrolyte material and an oxide sulfide solid electrolyte material.
  • Examples of the sulfide solid electrolyte material having Li ion conductivity include, for example, a Li 2 S—P 2 S 5 glassy sulfide solid electrolyte material.
  • the polymer electrolyte layer is a layer containing at least a polymer electrolyte material. Furthermore, a binder may be contained in order to improve the denseness.
  • the kind of polymer electrolyte material used for the polymer electrolyte layer is not particularly limited as long as it has a predetermined ion conductivity.
  • a polymer electrolyte material used for a polymer electrolyte layer of a fuel cell can include a perfluorosulfonic acid polymer.
  • the electrolyte solution is not particularly limited as long as it is not particularly limited as long as it is incompatible with the room temperature molten salt, and a general electrolyte solution can be used.
  • electrolyte solution contains a metal salt and a solvent normally.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC An organic lithium salt such as (CF 3 SO 2 ) 3 can be used.
  • the solvent water or a non-aqueous solvent is selected according to the type of salt.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate (BC), and any mixture thereof. Can be mentioned. Moreover, you may use the said electrolyte solution in the state made to impregnate a separator.
  • the battery of the present invention includes a current collector that collects current from the first electrode, a current collector that collects current from the second electrode, and a battery.
  • the material for the current collector is not particularly limited, and examples thereof include copper, stainless steel, nickel, and carbon.
  • the shape of the battery case is not particularly limited, and examples thereof include a coin type, a laminate type, a cylindrical type, and a square type.
  • the type of the battery of the present invention is not particularly limited, and is the same as that described in “A. Room temperature molten salt”.
  • the charge-up preventing agent of the present invention is characterized by containing the above-mentioned room temperature molten salt.
  • the present invention since it contains the above-mentioned room temperature molten salt, it can be a charge-up preventing agent having excellent electron conductivity. Therefore, the effect of preventing the charge-up is high. For example, even in the long-time continuous measurement, it is possible to prevent the charge from being accumulated in the measurement target, and to prevent the charge-up from occurring. Further, since the charge-up preventing agent of the present invention is usually in a liquid state, it can take any shape, and has an advantage that grounding for preventing the occurrence of charge-up is easy. Furthermore, since the room temperature molten salt used in the present invention has high non-volatility, it becomes a charge-up preventing agent useful when measuring a measurement object that is difficult to be exposed to the atmosphere.
  • the room temperature molten salt used in the present invention has high non-volatility, and therefore the measurement is performed in the same state as when the moisture is retained by replacing the moisture of the measurement target retaining moisture with the ambient temperature molten salt. It can be carried out.
  • the charge-up preventing agent of the present invention contains at least the “A. normal temperature molten salt”. Furthermore, the charge-up preventing agent of the present invention may contain a diluting solvent for diluting the room temperature molten salt, if necessary. This is because the use of the diluting solvent makes it possible to uniformly impregnate the measurement object having a fine structure with the charge-up preventing agent, for example.
  • the dilution solvent is not particularly limited as long as it can dilute the room temperature molten salt, and may be an organic solvent or an inorganic solvent.
  • dilution solvent examples include alcohol, benzene, toluene, acetone, methyl ethyl ketone, methylene chloride, chloroform, carbon tetrachloride, tetrahydrofuran, dioxane, pentane and hexane.
  • the charge-up preventing agent of the present invention preferably has a property that does not substantially evaporate in a vacuum. It is because it can be set as a charge-up prevention agent useful in the measurement method which needs to form a vacuum.
  • the property that does not substantially volatilize means having a non-volatile property that does not hinder measurement in a vacuum.
  • the use of the charge-up preventing agent of the present invention is not particularly limited as long as it can prevent charging of the measurement object.
  • the charge-up preventing agent is used for measurement by an electron microscope, X-ray photoelectron spectroscopy. The thing etc. which are used for the measurement by (XPS) can be mentioned.
  • the charge-up prevention agent of this invention is what is used for the measurement by an electron microscope.
  • the type of electron microscope is not particularly limited as long as charge-up occurs, and examples thereof include a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
  • the sample observation method of the present invention is a sample observation method for observing a sample having a measurement object and a charge-up prevention agent for preventing charge-up of the measurement object with an electron microscope, wherein the charge-up prevention agent is , which is described above.
  • the present invention it is possible to efficiently prevent the occurrence of charge-up by using the above-described charge-up preventing agent.
  • charge-up preventing agent in continuous measurement for a long time, it is possible to prevent electric charges from accumulating on the measurement target and to prevent occurrence of charge-up.
  • carbon, aluminum, platinum, and the like have been deposited to prevent charge-up in order to impart electronic conductivity to the measurement object, but according to the present invention, such a deposition process is not performed. , It has the advantage that charge-up can be easily prevented.
  • the sample used in the present invention usually has a measurement target and a charge-up preventing agent.
  • the measurement object is usually a member having low electron conductivity, specifically an insulating member. Moreover, it is preferable that the measurement object used in the present invention is difficult to be exposed to the atmosphere. Since the non-volatility of the charge-up preventing agent is high, measurement can be performed in an air atmosphere even when such a measurement object is used.
  • a measurement object that is difficult to be exposed to the atmosphere refers to a measurement object that reacts with and changes in atmospheric components (for example, water). Moreover, it is preferable that the measuring object used for this invention is the member used for a battery.
  • the measurement object is preferably a member having at least a solid electrolyte layer, and the solid electrolyte layer preferably contains a sulfide solid electrolyte material. This is because the sulfide solid electrolyte material may react with moisture in the atmosphere to generate hydrogen sulfide.
  • the charge-up preventing agent used in the present invention is the same as the contents described in the above-mentioned “D. Charge-up preventing agent”, so description thereof is omitted here. Further, the charge-up preventing agent prevents charge-up of the measurement target, and may be in contact with at least a part of the measurement target, and more preferably in contact with a large area of the measurement target. This is because charge-up can be efficiently prevented.
  • any manufacturing method can be used as long as the above-described sample can be obtained.
  • a desired sample can be obtained by adding a charge-up preventing agent to the measurement object.
  • the measurement object may be applied or impregnated with a charge-up prevention agent, and the measurement object may be immersed in the charge-up prevention agent.
  • the charge-up preventing agent contains the above-described dilution solvent, it is preferable to add the charge-up preventing agent to the measurement target and then remove the dilution solvent.
  • moisture content it is preferable to replace the water
  • the type of electron microscope used in the present invention is not particularly limited as long as charge-up occurs.
  • a scanning electron microscope (SEM), a transmission electron microscope (TEM), etc. can be mentioned.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
  • EMImCl which is solid at room temperature
  • FeCl 3 1: 1 (molar ratio)
  • EMImFeCl 4 melting point: 18 ° C.
  • EMImCl which is solid at room temperature
  • EMImFeCl 4 2: 10 (molar ratio)

Abstract

 本発明は、イオン伝導性に加えて、優れた電子伝導性を有する常温溶融塩を提供することを主目的とする。 本発明においては、一般式(1)で表されるカチオン部、およびFeClであるアニオン部を有する第一イミダゾリウム塩と、一般式(2)で表されるカチオン部、およびClであるアニオン部を有する第二イミダゾリウム塩と、を含有し、上記第一イミダゾリウム塩を100mol部とした場合に、上記第二イミダゾリウム塩を100mol部以下の割合で含有することを特徴とする常温溶融塩を提供することにより、上記課題を解決する。

Description

常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
 本発明は、イオン伝導性に加えて、優れた電子伝導性を有する常温溶融塩に関する。
 常温溶融塩は、常温(室温)付近において液体状態で存在する塩の総称であり、カチオン部の種類として、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系等が知られている。また、常温溶融塩は、不揮発性および耐電圧性に優れていることから、電気化学デバイスの電解質として用いることが知られている。例えば、特許文献1には、導電性ポリマーを少なくとも一方の電極とする正負極と、常温溶融塩よりなる電解液とを備えた二次電池が開示されている。
 また、特許文献2には、固体電解質層のピンホールに、カチオン部が1-エチル-3-メチルイミダゾリウムであるイオン性液体(常温溶融塩)が存在する全固体リチウム二次電池が開示されている。この技術は、固体電解質材料のピンホールにイオン性液体を存在させることで、電池の内部短絡を防止することを目的としたものである。
 一方、常温溶融塩を、電子顕微鏡による測定の際に、測定対象に電荷が溜まることを防止するチャージアップ防止剤として用いることが知られている。例えば、特許文献3においては、イオン液体(常温溶融塩)を用いた電子顕微鏡用チャージアップ防止剤が開示されている。なお、チャージアップとは、一般的には、電子線等を用いた測定の測定中に測定対象(例えば絶縁物)が帯電し、適切な結果が得られない現象をいう。例えば、走査型電子顕微鏡(SEM)を用いる測定において、一次電子入射量に対して二次電子放出量が多い場合、測定中に測定対象が正に帯電し、得られるSEM画像が全体的に白く表示されることがある。
特開昭62-165879号公報 特開2009-218005号公報 WO2007/083756
 常温溶融塩は所定のイオン伝導性を有することから、上述したように、例えば電気化学デバイスの電解質として有用である。ところが、従来の常温溶融塩は、イオン伝導性を有するものの、電子伝導性をほとんど有していなかった。逆に言うと、従来の常温溶融塩は電子伝導性をほとんど有さず、イオン伝導性のみを有するものであったため、電気化学デバイスの電解質として利用可能であった。一方、常温溶融塩がイオン伝導性に加えて電子伝導性を有していれば、例えば、電極に添加する材料として非常に有用なものとなる。しかしながら、イオン伝導性および電子伝導性を兼ね備えた常温溶融塩は、従来知られていなかった。
 また、従来の常温溶融塩を電子顕微鏡用のチャージアップ防止剤として用いた場合、常温溶融塩は、イオン濃度が高く、かつ、イオン伝導性を有することから、チャージアップをある程度防止することは可能である。しかしながら、従来の常温溶融塩は、電子伝導性をほとんど有しないため、チャージアップ防止効果が低いという問題がある。そのため、例えば長時間の連続測定では、測定対象に電荷が溜まり、チャージアップが生じてしまうという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、イオン伝導性に加えて、優れた電子伝導性を有する常温溶融塩を提供することを主目的とする。
 上記目的を達成するために、本発明においては、下記一般式(1)で表されるカチオン部、およびFeClであるアニオン部を有する第一イミダゾリウム塩と、下記一般式(2)で表されるカチオン部、およびClであるアニオン部を有する第二イミダゾリウム塩と、を含有し、上記第一イミダゾリウム塩を100mol部とした場合に、上記第二イミダゾリウム塩を100mol部以下の割合で含有することを特徴とする常温溶融塩を提供する。
Figure JPOXMLDOC01-appb-C000002
 なお、一般式(1)において、RおよびRは、それぞれ、炭素数1~10のアルキル基である。一般式(2)において、RおよびRは、それぞれ、炭素数1~10のアルキル基である。
 本発明によれば、第一イミダゾリウム塩および第二イミダゾリウム塩を用いることにより、イオン伝導性に加えて、優れた電子伝導性を有する常温溶融塩とすることができる。また、第一イミダゾリウム塩および第二イミダゾリウム塩は、通常、単独では電子伝導性を有しない。しかしながら、これらを組み合わせることで、意外にも電子伝導性を飛躍的に向上させることができる。すなわち、第一イミダゾリウム塩および第二イミダゾリウム塩を組み合わせることで、単独の塩では奏し得ない異質な効果を得ることができる。
 上記発明においては、上記Rがエチル基であり、上記Rがメチル基であることが好ましい。電子伝導性がさらに良好な常温溶融塩を得ることができるからである。
 上記発明においては、上記Rがエチル基であり、上記Rがメチル基であることが好ましい。電子伝導性がさらに良好な常温溶融塩を得ることができるからである。
 上記発明においては、常温溶融塩が、上記第二イミダゾリウム塩を1mol部以上の割合で含有することが好ましい。第二イミダゾリウム塩の割合が小さすぎると、第一イミダゾリウム塩単独の場合と同等の電子伝導性となり、電子伝導性が飛躍的に向上しない可能性があるからである。
 また、本発明においては、上述した常温溶融塩を含有することを特徴とする電極を提供する。
 本発明によれば、上述した常温溶融塩を用いることにより、イオン伝導性のみならず、電子伝導性に優れた電極とすることができる。
 上記発明においては、電極が、金属イオンの供給または受け取りが可能な活物質をさらに含有することが好ましい。活物質の膨張または収縮により電子伝導パスが切断されることを防止できるからである。
 また、本発明においては、第一電極と、第二電極と、上記第一電極および上記第二電極の間に形成された電解質層と、を有する電池であって、上記第一電極および上記第二電極の少なくとも一方が、上述した電極であり、上記電解質層は、上記電極に含まれる上記常温溶融塩を通過しないものであることを特徴とする電池を提供する。
 本発明によれば、上述した常温溶融塩を含有する電極を用いることにより、内部抵抗の小さい電池とすることができる。
 上記発明においては、上記電解質層が、上記常温溶融塩を通過しない緻密性を有する固体電解質層であることが好ましい。安全性の高い電池とすることができるからである。
 また、本発明においては、上述した常温溶融塩を含有することを特徴とするチャージアップ防止剤を提供する。
 本発明によれば、上述した常温溶融塩を含有することから、優れた電子伝導性を有するチャージアップ防止剤とすることができる。そのため、チャージアップ防止効果が高く、例えば長時間の連続測定でも、測定対象に電荷が溜まることを防止でき、チャージアップの発生を防止できる。
 上記発明においては、チャージアップ防止剤が電子顕微鏡による測定に用いられるものであることが好ましい。
 また、本発明においては、測定対象と、上記測定対象のチャージアップを防止するチャージアップ防止剤とを有する試料を電子顕微鏡により観察する試料の観察方法であって、上記チャージアップ防止剤が、上述したチャージアップ防止剤であることを特徴とする試料の観察方法を提供する。
 本発明によれば、上述したチャージアップ防止剤を用いることで、効率良くチャージアップの発生を防止することができる。
 上記発明においては、上記測定対象が、電池に用いられる部材であることが好ましい。
 本発明においては、イオン伝導性に加えて、優れた電子伝導性を有する常温溶融塩を得ることができるという効果を奏する。
本発明の電極の一例を示す概略断面図である。 活物質の膨張または収縮が電子伝導パスに与える影響を説明する説明図である。 本発明の電池の発電要素の一例を示す概略断面図である。 実施例1~3および比較例1~2で得られたサンプルの電子伝導性の測定結果である。
 以下、本発明の常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法について詳細に説明する。
A.常温溶融塩
 まず、本発明の常温溶融塩について説明する。本発明の常温溶融塩は、上述した一般式(1)で表されるカチオン部、およびFeClであるアニオン部を有する第一イミダゾリウム塩と、上述した一般式(2)で表されるカチオン部、およびClであるアニオン部を有する第二イミダゾリウム塩と、を含有し、上記第一イミダゾリウム塩を100mol部とした場合に、上記第二イミダゾリウム塩を100mol部以下の割合で含有することを特徴とするものである。なお、一般式(1)において、RおよびRは、それぞれ、炭素数1~10のアルキル基である。一般式(2)において、RおよびRは、それぞれ、炭素数1~10のアルキル基である。
 本発明によれば、第一イミダゾリウム塩および第二イミダゾリウム塩を用いることにより、イオン伝導性に加えて、優れた電子伝導性を有する常温溶融塩とすることができる。また、第一イミダゾリウム塩および第二イミダゾリウム塩は、通常、単独では電子伝導性を有しない。しかしながら、これらを組み合わせることで、意外にも電子伝導性を飛躍的に向上させることができる。すなわち、第一イミダゾリウム塩および第二イミダゾリウム塩を組み合わせることで、単独の塩では奏し得ない異質な効果を得ることができる。また、本発明の常温溶融塩は、電子伝導性に優れているため、例えば、従来の電極に含まれている導電性材料(例えばカーボン材料)の代わりとして用いることもできる。
 本発明において、「常温溶融塩」は、イオン液体と同義であり、融点が100℃以下であるものをいう。中でも、本発明の常温溶融塩の融点は、80℃以下であることが好ましく、40℃以下であることがより好ましく、25℃(常温)以下であることがさらに好ましい。
 また、本発明の常温溶融塩は、上述した第一イミダゾリウム塩を含有する。第一イミダゾリウム塩は、それ自身が常温溶融塩であっても良く、常温で固体の塩であっても良い。すなわち、第一イミダゾリウム塩が常温で固体の塩であっても、第二イミダゾリウム塩等と共存することで、常温溶融塩が得られれば良い。また、本発明において、RおよびRは、それぞれ、炭素数1~10のアルキル基であり、中でも炭素数1~4のアルキル基であることが好ましい。上記アルキル基としては、具体的には、エチル基、メチル基、プロピル基、ブチル基等を挙げることができる。なお、RおよびRは互いに同じであっても良く、異なっていても良い。
 中でも、本発明においては、Rがエチル基であり、Rがメチル基であることが好ましい。電子伝導性がさらに良好な常温溶融塩を得ることができるからである。ここで、Rがエチル基であり、Rがメチル基であるカチオン部は、1-エチル-3-メチルイミダゾリウム(EMIm)である。
 また、第一イミダゾリウム塩は、アニオン部としてFeClを有する。FeClにおけるFe元素の価数は、例えば、二価および三価を挙げることができ、中でも三価が好ましい。ここで、上記Fe元素の価数が三価であり、上記カチオン部がEMImである場合、第一イミダゾリウム塩は、EMImFeClで表すことができる。一方、上記Fe元素の価数が二価であり、上記カチオン部がEMImである場合、第一イミダゾリウム塩は、[EMIm]FeClで表すことができる。
 第一イミダゾリウム塩の製造方法としては、所望の第一イミダゾリウム塩を得ることができる方法であれば特に限定されるものではないが、例えば、一般式(1)で表されるカチオン部、およびClであるアニオン部を有する原料イミダゾリウム塩と、FeClとを混合する方法を挙げることができる。例えば、上記のEMImFeClを得る場合は、EMImClと、FeCl(Feは三価)とを等モルの割合で混合すれば良い。一方、上記の[EMIm]FeClを得る場合は、EMImClと、FeCl(Feは二価)と、2:1のモル比で混合すれば良い。
 次に、本発明における第二イミダゾリウム塩について説明する。第二イミダゾリウム塩は、それ自身が常温溶融塩であっても良く、常温で固体の塩であっても良い。すなわち、第二イミダゾリウム塩が常温で固体の塩であっても、第一イミダゾリウム塩等と共存することで、常温溶融塩が得られれば良い。また、本発明におけるRおよびRは、上述したRおよびRと同様であるので、ここでの記載は省略する。また、本発明においては、RがRと同じであり、かつ、RがRと同じであることが好ましい。
 中でも、本発明においては、Rがエチル基であり、Rがメチル基であることが好ましい。電子伝導性がさらに良好な常温溶融塩を得ることができるからである。ここで、Rがエチル基であり、Rがメチル基であるカチオン部は、1-エチル-3-メチルイミダゾリウム(EMIm)である。
 なお、第二イミダゾリウム塩は、アニオン部としてClを有する。第二イミダゾリウム塩の製造方法としては、所望の第二イミダゾリウム塩を得ることができる方法であれば特に限定されるものではない。例えば、市販のイミダゾリウム塩を用いることができる。
 また、本発明の常温溶融塩は、においては、第一イミダゾリウム塩を100mol部とした場合に、第二イミダゾリウム塩を100mol部以下の割合で含有することを一つの特徴とする。中でも、上記第二イミダゾリウム塩の割合は、100mol部未満であることが好ましく、80mol部以下であることがより好ましく、50mol部以下であることがさらに好ましい。第二イミダゾリウム塩の割合が大きすぎると、電子伝導性の低下が即座に起こり、当初から電子伝導性の低い常温溶融塩となる可能性があるからである。一方、上記第二イミダゾリウム塩の割合は、1mol部以上であることが好ましく、5mol部以上であることがより好ましく、10mol部以上であることがさらに好ましい。第二イミダゾリウム塩の割合が小さすぎると、第一イミダゾリウム塩単独の場合と同等の電子伝導性となり、電子伝導性が飛躍的に向上しない可能性があるからである。
 また、本発明の常温溶融塩の電子伝導度(室温)は、第一イミダゾリウム塩および第二イミダゾリウム塩の種類や割合によって異なるものであるが、より高いことが好ましい。同様に、本発明の常温溶融塩のイオン伝導度(室温)も、第一イミダゾリウム塩および第二イミダゾリウム塩の種類や割合によって異なるものであるが、より高いことが好ましい。
 また、本発明の常温溶融塩の用途としては、特に限定されるものではないが、例えば、電気化学デバイスの電極に添加する電極用添加剤を挙げることができる。上記電気化学デバイスとしては、金属イオン電池、金属空気電池、燃料電池、太陽電池等の電池、チャージアップ防止剤等を挙げることができる。また、本発明の常温溶融塩は、二次電池全般(Liイオン二次電池、NiH二次電池)に使用可能である。
B.電極
 次に、本発明の電極について説明する。本発明の電極は、上述した常温溶融塩を含有することを特徴とするものである。
 本発明によれば、上述した常温溶融塩を用いることにより、イオン伝導性のみならず、電子伝導性に優れた電極とすることができる。
 図1は、本発明の電極の一例を示す概略断面図である。図1に示される電極10は、金属イオンの供給または受け取りが可能な活物質1と、常温溶融塩2とを含有するものである。なお、本発明に用いられる常温溶融塩については、上記「A.常温溶融塩」に記載した内容と同様であるので、ここでの記載は省略する。また、電極に含まれる常温溶融塩の含有量は、電極の種類によって大きく異なるものであり、特に限定されるものではない。
 本発明の電極は、上述した常温溶融塩を有するものであれば特に限定されるものではないが、さらに、金属イオンの供給または受け取りが可能な活物質、電極での反応を促進する触媒、電子伝導性を有する導電性材料、イオン伝導性を有する電解質材料(例えば固体電解質材料)、および結着材からなる群から選択される少なくとも一つを含有していても良い。なお、本発明に用いられる常温溶融塩は、上述したように、イオン伝導性および電子伝導性を有するため、電解質材料および導電性材料の少なくとも一方の代わりに常温溶融塩を用いても良く、電解質材料および導電性材料に加えて常温溶融塩を用いても良い。さらに、本発明の電極は、通常、電気化学デバイス用の電極であり、中でも電池用の電極であることが好ましく、金属イオン電池、金属空気電池または燃料電池用の電極であることがより好ましい。また、上記金属イオン電池または上記金属空気電池は、一次電池であっても良く、二次電池であっても良い。
 特に、本発明の電極は、金属イオンの供給または受け取りが可能な活物質をさらに含有することが好ましい。活物質の膨張または収縮により電子伝導パスが切断されることを防止できるからである。この効果について図2を用いて説明する。図2(a)に示すように、従来の電極は、活物質1と、電子伝導性を有する固体の導電性材料(例えばカーボン材料)3とを有する。活物質1自体は、通常、電子伝導性を有しないため、電極内の電子伝導パスを確保するために、導電性材料3が用いられている。また、活物質1および固体の導電性材料3は、互いに点接触することにより、電子伝導パスを形成している。ここで、活物質1が金属イオンを受け取ることで膨張すると、膨張した活物質1同士の影響を受けることで、電子伝導パスが切断されてしまう場合がある。逆に、活物質1が金属イオンを供給することで収縮すると、活物質1の収縮の影響を受けることで、電子伝導パスが切断されてしまう場合がある。このように、活物質1が膨張する場合であっても、収縮する場合であっても、活物質1および固体の導電性材料3の間に形成された電子伝導パスは切断されやすくなる。
 これに対して、図2(b)に示すように、本発明の電極は、活物質1と、電子伝導性に優れた常温溶融塩2とを有する。そのため、活物質1が金属イオンを受け取ることで膨張する場合であっても、液体である常温溶融塩2が柔軟に追従することで、電子伝導パスが切断されることはない。同様に、活物質1が金属イオンを供給することで収縮する場合であっても、液体である常温溶融塩2が柔軟に追従することで、電子伝導パスが切断されることはない。このように、常温溶融塩2が柔軟に追従することで、活物質1に体積変化が生じた場合であっても、電子伝導パスを維持することができる。さらに、常温溶融塩2は、イオン伝導性を有するものであることから、活物質1に体積変化が生じた場合であっても、イオン伝導性も維持することができる。このように、電子伝導パスおよびイオン伝導パスの両方が維持されることになるから、電池抵抗の増大を抑制することができる。また、本発明においては、図2(b)に示すように、活物質1の全面を覆うように、常温溶融塩2を配置することができる。そのため、活物質1の表面を全て有効に活用できるため、界面抵抗を低減することができ、例えば高速充放電に適した電極とすることができる。特に、本発明の電極が二次電池用の電極である場合は、活物質の膨張および収縮が繰り返されることから、本発明の効果を充分に発揮できる。
 また、上記活物質の形状は、特に限定されるものではないが、例えば、粉末状、薄膜状、多孔質状等を挙げることができる。活物質が粉末状である場合は、活物質の粒子間の空隙に、上述した常温溶融塩が存在することが好ましい。また、活物質が多孔質状である場合は、その多孔質の空隙に、上述した常温溶融塩が存在することが好ましい。電極に含まれる活物質の割合は、特に限定されるものではないが、より多いことが好ましく、例えば50重量%以上であることが好ましく、80重量%~99重量%の範囲内であることがより好ましい。
 活物質を含有する電極としては、例えば、金属イオン電池用の正極および負極、並びに、金属空気電池用の負極等を挙げることができる。なお、金属空気電池用の正極(空気極)は、空気(酸素)を正極活物質として用いるものであるため、通常、活物質を含有しない。また、本発明の電極が金属イオン電池用の正極である場合、このような正極としては、少なくとも正極活物質および常温溶融塩を含有し、さらに必要に応じて、導電性材料、電解質材料(例えば固体電解質材料)、および結着材の少なくとも一つを含有するものを挙げることができる。また、本発明の電極が金属イオン電池用または金属空気電池用の負極である場合、このような負極としては、少なくとも負極活物質および常温溶融塩を含有し、さらに必要に応じて、導電性材料、電解質材料(例えば固体電解質材料)、および結着材の少なくとも一つを含有するものを挙げることができる。
 また、金属イオン電池および金属空気電池における金属イオンの種類は、特に限定されるものではないが、例えば、Liイオン、NaイオンおよびKイオン等のアルカリ金属イオン;MgイオンおよびCaイオン等のアルカリ土類金属イオン;Alイオン、Znイオン等の両性金属イオン;Feイオン等の遷移金属イオンを挙げることができる。中でも、本発明においては、上記金属イオンが、アルカリ金属イオンまたはアルカリ土類金属イオンであることが好ましく、アルカリ金属イオンであることがより好ましく、Liイオンであることが特に好ましい。エネルギー密度の高い電池を得ることができるからである。
 例えば、本発明の電極がリチウム二次電池用の正極である場合、用いられる活物質(正極活物質)としては、LiCoO、LiMnO、LiNiMn、LiVO、LiCrO、LiFePO、LiCoPO、LiNiO、LiNi1/3Co1/3Mn1/3等を挙げることができる。また、例えば、本発明の電極がリチウム二次電池用の負極である場合、用いられる活物質(負極活物質)としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばIn、Al、SiおよびSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。また、例えば、本発明の電極がリチウム空気電池用の負極である場合、用いられる活物質としては、リチウム単体、リチウム合金、リチウムを含む酸化物、リチウムを含む窒化物等を挙げることができる。リチウム合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。リチウムを含む酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。リチウムを含む窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。
 一方、本発明の電極は、上述した活物質を含有しないものであっても良い。活物質を含有しない電極としては、例えば、金属空気電池用の空気極を挙げることができる。金属空気電池用の空気極は、空気(酸素)を活物質として用いるものである。従来の空気極としては、例えば、電子伝導性を有する導電性材料と、触媒と、金属イオン伝導性を有する電解質材料とを有するものを挙げることができる。本発明においては、導電性材料および電解質材料の少なくとも一方の代わりに常温溶融塩を用いても良く、導電性材料または電解質材料に加えて上述した常温溶融塩を用いても良い。なお、本発明における常温溶融塩は常温で液体状であるため、常温溶融塩の量によっては、空気極への酸素の取り込みが困難になる場合がある。そのような場合は、例えば酸素をバブリングにより供給することが好ましい。
 また、上述した活物質を含有しない電極の他の例としては、燃料電池用の電極(アノード極およびカソード極)を挙げることができる。従来の燃料電池用の電極は、通常、電子伝導性を有する導電性材料と、プロトン伝導性を有する電解質材料と、触媒とを有する。本発明においては、導電性材料および電解質材料の少なくとも一方の代わりに常温溶融塩を用いても良く、導電性材料または電解質材料に加えて上述した常温溶融塩を用いても良い。なお、本発明における常温溶融塩は常温で液体状であるため、常温溶融塩の量によっては、水素の取り込みが困難になる場合がある。そのような場合は、例えば水素をバブリングにより供給することが好ましい。
 本発明の電極に用いられる導電性材料としては、例えば、カーボン材料等を挙げることができる。さらに、このカーボン材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良いが、本発明においては、多孔質構造を有するものであることが好ましい。比表面積が大きく、多くの反応場を提供することができるからである。多孔質構造を有するカーボン材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しないカーボン材料としては、具体的にはグラファイト、アセチレンブラック、カーボンナノチューブおよびカーボンファイバー等を挙げることができる。また、電極に含まれる導電性材料の含有量は、電極の種類によって大きく異なるものであり、特に限定されるものではない。
 本発明の電極に用いられる電解質材料としては、例えば固体電解質材料およびポリマー電解質材料を挙げることができる。固体電解質材料としては、例えば、硫化物固体電解質材料および酸化物硫化物固体電解質材料を挙げることができる。Liイオン伝導性を有する硫化物固体電解質材料としては、例えば、LiS-P系のガラス状の硫化物固体電解質材料を挙げることができる。また、例えば、燃料電池に用いられるポリマー電解質材料としては、パーフルオロスルホン酸系ポリマー等を挙げることができる。また、電極に含まれる電解質材料の含有量は、電極の種類によって大きく異なるものであり、特に限定されるものではない。
 本発明の電極に用いられる触媒としては、特に限定されるものではない。金属空気電池の空気極に用いられる触媒としては、MnO、CeO、TiO、Co、Fe等の無機セラミックス材料;コバルトフタロシアニン、鉄ポルフィリン等の有機錯体;およびこれらの複合材料を挙げることができる。また、例えば、燃料電池の電極に用いられる触媒としては、例えばPt等を挙げることができる。また、電極に含まれる触媒の含有量は、電極の種類によって大きく異なるものであり、特に限定されるものではない。
 本発明の電極に用いられる結着材としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系結着材等を挙げることができる。また、SBR等のゴムを結着材として用いても良い。また、電極に含まれる結着材の含有量は、電極の種類によって大きく異なるものであり、特に限定されるものではない。また、本発明の電極の厚さについても、電極の種類によって大きく異なるものであり、特に限定されるものではない。
C.電池
 次に、本発明の電池について説明する。本発明の電池は、第一電極と、第二電極と、上記第一電極および上記第二電極の間に形成された電解質層と、を有する電池であって、上記第一電極および上記第二電極の少なくとも一方が、上述した電極であり、上記電解質層は、上記電極に含まれる上記常温溶融塩を通過しないものであることを特徴とするものである。
 本発明によれば、上述した常温溶融塩を含有する電極を用いることにより、内部抵抗の小さい電池とすることができる。
 図3は、本発明の電池の発電要素の一例を示す概略断面図である。図3に示される発電要素20は、活物質1aおよび常温溶融塩2を含有する第一電極11と、活物質1bおよび常温溶融塩2を含有する第二電極12と、第一電極11および第二電極12の間に形成され、常温溶融塩2を通過しない電解質層13とを有するものである。
 以下、本発明の電池について構成ごとに説明する。
1.第一電極および第二電極
 本発明においては、第一電極および第二電極の少なくとも一方が、上記「B.電極」に記載した電極である。このような電極については、上述した通りであるので、ここでの記載は省略する。
2.電解質層
 次に、本発明における電解質層について説明する。本発明における電解質層は、上記第一電極および上記第二電極の間に形成され、内部短絡を防止するため、電極に含まれる常温溶融塩を通過しないものである。本発明における電解質層は、所定のイオン伝導性を有し、電極に含まれる常温溶融塩を通過しないものであれば特に限定されるものではないが、例えば、常温溶融塩を通過しない緻密性を有する固体電解質層、常温溶融塩を通過しない緻密性を有するポリマー電解質層、および、常温溶融塩と相溶しない電解液等を挙げることができ、中でも、常温溶融塩を通過しない緻密性を有する固体電解質層が好ましい。安全性の高い電池とすることができるからである。
 上記固体電解質層は、少なくとも固体電解質材料を含有する層である。さらに、緻密性を向上させるために結着材を含有していても良い。結着材を添加して、シート状の固体電解質層を作製することにより、常温溶融塩が通過しない固体電解質層を得ることができる。なお、単に固体電解質材料を加圧成形することによっても、緻密性に優れた固体電解質層とすることができる。固体電解質層に用いられる固体電解質材料の種類は、所定のイオン伝導性を有するものであれば特に限定されるものではない。固体電解質材料としては、例えば、硫化物固体電解質材料および酸化物硫化物固体電解質材料を挙げることができる。Liイオン伝導性を有する硫化物固体電解質材料としては、例えば、LiS-P系のガラス状の硫化物固体電解質材料を挙げることができる。
 上記ポリマー電解質層は、少なくともポリマー電解質材料を含有する層である。さらに、緻密性を向上させるために結着材を含有していても良い。ポリマー電解質層に用いられるポリマー電解質材料の種類は、所定のイオン伝導性を有するものであれば特に限定されるものではない。例えば、燃料電池のポリマー電解質層に用いられるポリマー電解質材料としては、パーフルオロスルホン酸系ポリマー等を挙げることができる。
 上記電解液は、常温溶融塩と相溶しないものであれば特に限定されるものであれば特に限定されるものではなく、一般的な電解液を用いることができる。また、電解液は、通常、金属塩および溶媒を含有するものである。リチウム塩としては、例えばLiPF、LiBF、LiClO、LiAsF等の無機リチウム塩、およびLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。一方、溶媒は、塩の種類に応じて水または非水溶媒を選択する。非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート(BC)、およびこれらの任意の混合物を挙げることができる。また、上記電解液は、セパレータに含浸させた状態で用いても良い。
3.その他の構成
 本発明の電池は、上述した第一電極、第二電極および電解質層の他に、第一電極の集電を行う集電体、第二電極の集電を行う集電体、電池ケースおよびセパレータ等を有していても良い。集電体の材料としては、特に限定されるものではないが、例えば、銅、ステンレス、ニッケル、カーボン等を挙げることができる。また、電池ケースの形状としては、特に限定されるものではないが、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、本発明の電池の種類は、特に限定されるものではなく、上記「A.常温溶融塩」に記載した内容と同様である。
D.チャージアップ防止剤
 次に、本発明のチャージアップ防止剤について説明する。本発明のチャージアップ防止剤は、上述した常温溶融塩を含有することを特徴とするものである。
 本発明によれば、上述した常温溶融塩を含有することから、優れた電子伝導性を有するチャージアップ防止剤とすることができる。そのため、チャージアップ防止効果が高く、例えば長時間の連続測定でも、測定対象に電荷が溜まることを防止でき、チャージアップの発生を防止できる。また、本発明のチャージアップ防止剤は、通常、液状であることから、任意の形状をとることができ、チャージアップの発生を防止する接地が容易であるという利点を有する。さらに、本発明に用いられる常温溶融塩は、不揮発性が高いため、大気暴露が困難な測定対象を測定する際に有用なチャージアップ防止剤となる。同様に、本発明に用いられる常温溶融塩は、不揮発性が高いため、水分を保持した測定対象の水分を常温溶融塩で置換することで、水分を保持していた時と同じ状態で測定を行うことができる。
 本発明のチャージアップ防止剤は、少なくとも上記「A.常温溶融塩」を含有するものである。さらに、本発明のチャージアップ防止剤は、必要に応じて、常温溶融塩を希釈する希釈溶媒を含有するものであっても良い。希釈溶媒を用いることで、例えば、微細構造を有する測定対象に対して、チャージアップ防止剤を均一に含浸させることができるからである。上記希釈溶媒としては、上記常温溶融塩を希釈可能なものであれば特に限定されるものではなく、有機溶媒であっても良く、無機溶媒であっても良い。上記希釈溶媒としては、例えばアルコール、ベンゼン、トルエン、アセトン、メチルエチルケトン、塩化メチレン、クロロホルム、四塩化炭素、テトラヒドロフラン、ジオキサン、ペンタンおよびヘキサン等を挙げることができる。
 また、本発明のチャージアップ防止剤は、真空中において、実質的に揮発しない性質を有することが好ましい。真空を形成する必要がある測定方法において有用なチャージアップ防止剤とすることができるからである。なお、「実質的に揮発しない性質」とは、真空中において、測定に支障がないような不揮発性を有するこという。
 本発明のチャージアップ防止剤の用途としては、測定対象の帯電を防止できる用途であれば特に限定されるものではないが、具体的には、電子顕微鏡による測定に用いられるもの、X線光電子分光(XPS)による測定に用いられるもの等を挙げることができる。中でも、本発明のチャージアップ防止剤は、電子顕微鏡による測定に用いられるものであることが好ましい。電子顕微鏡の種類は、チャージアップが発生するものであれば特に限定されるものではないが、例えば、走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)等を挙げることができる。
E.試料の観察方法
 次に、本発明の試料の観察方法について説明する。本発明の試料の観察方法は、測定対象と、上記測定対象のチャージアップを防止するチャージアップ防止剤とを有する試料を電子顕微鏡により観察する試料の観察方法であって、上記チャージアップ防止剤が、上述したものであることを特徴とするものである。
 本発明によれば、上述したチャージアップ防止剤を用いることで、効率良くチャージアップの発生を防止することができる。特に長時間の連続測定において、測定対象に電荷が溜まることを防止でき、チャージアップの発生を防止できる。また、従来、測定対象に電子伝導性を付与するために、カーボン、アルミニウム、白金等を蒸着し、チャージアップを防止していたが、本発明によれば、このような蒸着処理を行うことなく、容易にチャージアップを防止できるという利点を有する。
 本発明に用いられる試料は、通常、測定対象と、チャージアップ防止剤とを有する。測定対象は、通常、電子伝導性が低い部材であり、具体的には絶縁性部材である。また、本発明に用いられる測定対象は、大気暴露が困難なものであることが好ましい。チャージアップ防止剤の不揮発性が高いため、このような測定対象を用いた場合であっても、大気雰囲気で測定を行うことができる。大気暴露が困難な測定対象とは、大気成分(例えば水)と反応し、変質する測定対象をいう。また、本発明に用いられる測定対象は、電池に用いられる部材であることが好ましい。電池に用いられる部材の一例としては、正極活物質、負極活物質および固体電解質材料の少なくとも一つを含有するものを挙げることができる。電池に用いられる部材の他の例としては、正極活物質層、固体電解質層および負極活物質層の少なくとも一つを含有する部材を挙げることができる。中でも、本発明においては、測定対象が固体電解質層を少なくとも有する部材であることが好ましく、その固体電解質層が、硫化物固体電解質材料を含有するものであることが好ましい。硫化物固体電解質材料は、大気中の水分と反応し、硫化水素が発生する場合があるからである。
 また、本発明に用いられるチャージアップ防止剤については、上記「D.チャージアップ防止剤」に記載した内容と同様であるので、ここでの記載は省略する。また、チャージアップ防止剤は、測定対象のチャージアップを防止するものであり、測定対象の少なくとも一部に接していれば良く、測定対象の多くの面積に接触していることがより好ましい。チャージアップを効率良く防止することができるからである。
 次に、本発明における試料の作製方法について説明する。本発明においては、上述した試料を得ることができれば、任意の作製方法を用いることができる。基本的には、測定対象に、チャージアップ防止剤を添加すれば、所望の試料を得ることができる。また、測定対象に、チャージアップ防止剤を塗布しまたは含浸させても良く、測定対象を、チャージアップ防止剤に浸漬させても良い。また、チャージアップ防止剤が上述した希釈溶媒を含有する場合、測定対象に、チャージアップ防止剤を添加し、その後、希釈溶媒を除去することが好ましい。また、水分を保持した測定対象を用いる場合は、測定対象に、チャージアップ防止剤を添加することで測定対象に含まれる水分を常温溶融塩で置換し、その後、水分を除去することが好ましい。
 また、本発明に用いられる電子顕微鏡の種類は、チャージアップが発生するものであれば特に限定されるものではないが、例えば、走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)等を挙げることができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
 常温で固体であるEMImClと、FeClとをEMImCl:FeCl=1:1(モル比)となるように秤量し、Ar雰囲気下で両者を混合し、均一に融解させることにより、常温溶融塩であるEMImFeCl(融点18℃)を得た。次に、常温で固体であるEMImClと、得れらたEMImFeClとをEMImCl:EMImFeCl=2:10(モル比)となるように秤量し、Ar雰囲気下で両者を混合し、均一に融解させることにより、常温溶融塩(2EMImCl・10EMImFeCl)を得た。
[実施例2]
 EMImClと、EMImFeClとの割合を、EMImCl:EMImFeCl=5:10(モル比)と変更したこと以外は、実施例1と同様にして常温溶融塩(5EMImCl・10EMImFeCl)を得た。
[実施例3]
 EMImClと、EMImFeClとの割合を、EMImCl:EMImFeCl=10:10(モル比)と変更したこと以外は、実施例1と同様にして常温溶融塩(10EMImCl・10EMImFeCl)を得た。
[比較例1]
 実施例1で作製したEMImFeClを比較用サンプルとした。
[比較例2]
 0.01MのNaCl水溶液を比較用サンプルとした。
[評価]
 実施例1~3および比較例1~2で得られたサンプルの電子伝導性を評価した。具体的には、サンプルに、φ1.5mmのNi電極を二本浸し、0.1Vで定電位測定を行った。その結果を図4に示す。図4に示されるように、実施例1~3では、比較例1、2(特に比較例1)に比べて、電子伝導性が飛躍的に向上することが確認された。なお、実施例3では、途中で電子伝導性の低下が見られたが、実施例1、2では、少なくとも1時間までは、ほぼ一定の電子伝導性を示した。以上のことから、本発明の常温溶融塩が優れた電子伝導性を有することが確認された。
 1 … 活物質
 2 … 常温溶融塩
 3 … 導電性材料
 10 … 電極
 11 … 第一電極
 12 … 第二電極
 13 … 電解質層
 20 … 電池

Claims (12)

  1.  下記一般式(1)で表されるカチオン部、およびFeClであるアニオン部を有する第一イミダゾリウム塩と、
     下記一般式(2)で表されるカチオン部、およびClであるアニオン部を有する第二イミダゾリウム塩と、を含有し、
     前記第一イミダゾリウム塩を100mol部とした場合に、前記第二イミダゾリウム塩を100mol部以下の割合で含有することを特徴とする常温溶融塩。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、RおよびRは、それぞれ、炭素数1~10のアルキル基である。一般式(2)において、RおよびRは、それぞれ、炭素数1~10のアルキル基である。)
  2.  前記Rがエチル基であり、前記Rがメチル基であることを特徴とする請求の範囲第1項に記載の常温溶融塩。
  3.  前記Rがエチル基であり、前記Rがメチル基であることを特徴とする請求の範囲第1項または第2項に記載の常温溶融塩。
  4.  前記第二イミダゾリウム塩を1mol部以上の割合で含有することを特徴とする請求の範囲第1項から第3項までのいずれかに記載の常温溶融塩。
  5.  請求の範囲第1項から第4項までのいずれかに記載の常温溶融塩を含有することを特徴とする電極。
  6.  金属イオンの供給または受け取りが可能な活物質をさらに含有することを特徴とする請求の範囲第5項に記載の電極。
  7.  第一電極と、第二電極と、前記第一電極および前記第二電極の間に形成された電解質層と、を有する電池であって、
     前記第一電極および前記第二電極の少なくとも一方が、請求の範囲第5項または6項に記載の電極であり、
     前記電解質層は、前記電極に含まれる前記常温溶融塩を通過しないものであることを特徴とする電池。
  8.  前記電解質層が、前記常温溶融塩を通過しない緻密性を有する固体電解質層であることを特徴とする請求の範囲第7項に記載の電池。
  9.  請求の範囲第1項から第4項までのいずれかに記載の常温溶融塩を含有することを特徴とするチャージアップ防止剤。
  10.  電子顕微鏡による測定に用いられるものであることを特徴とする請求の範囲第9項に記載のチャージアップ防止剤。
  11.  測定対象と、前記測定対象のチャージアップを防止するチャージアップ防止剤とを有する試料を電子顕微鏡により観察する試料の観察方法であって、
     前記チャージアップ防止剤が、請求の範囲第10項に記載のチャージアップ防止剤であることを特徴とする試料の観察方法。
  12.  前記測定対象が、電池に用いられる部材であることを特徴とする請求の範囲第11項に記載の試料の観察方法。
PCT/JP2009/070985 2009-12-16 2009-12-16 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法 WO2011074088A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2009/070985 WO2011074088A1 (ja) 2009-12-16 2009-12-16 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
AU2010331563A AU2010331563B2 (en) 2009-12-16 2010-10-22 Ambient-Temperature Molten Salt, Electrode, Battery, Agent for Preventing Charge-up, and Method for Observing Sample
CN201080056899.9A CN102656150B (zh) 2009-12-16 2010-10-22 常温熔融盐、电极、电池、电荷耗散剂以及试料的观察方法
PCT/JP2010/068721 WO2011074325A1 (ja) 2009-12-16 2010-10-22 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
EP10837355.6A EP2518055B1 (en) 2009-12-16 2010-10-22 Ambient-temperature molten salt, electrode, battery, agent for preventing charge-up, and method for observing sample
US13/515,689 US9276289B2 (en) 2009-12-16 2010-10-22 Ambient temperature molten salt, electrode, battery, agent for preventing charge-up, and method for observing sample
JP2011546022A JP5246348B2 (ja) 2009-12-16 2010-10-22 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
KR1020127014828A KR101395156B1 (ko) 2009-12-16 2010-10-22 상온 용융염, 전극, 전지, 차지 업 방지제 및 시료의 관찰 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/070985 WO2011074088A1 (ja) 2009-12-16 2009-12-16 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法

Publications (1)

Publication Number Publication Date
WO2011074088A1 true WO2011074088A1 (ja) 2011-06-23

Family

ID=44166883

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/070985 WO2011074088A1 (ja) 2009-12-16 2009-12-16 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
PCT/JP2010/068721 WO2011074325A1 (ja) 2009-12-16 2010-10-22 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068721 WO2011074325A1 (ja) 2009-12-16 2010-10-22 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法

Country Status (6)

Country Link
US (1) US9276289B2 (ja)
EP (1) EP2518055B1 (ja)
KR (1) KR101395156B1 (ja)
CN (1) CN102656150B (ja)
AU (1) AU2010331563B2 (ja)
WO (2) WO2011074088A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069517A (ja) * 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd 負極ペースト、負極電極及びその製造方法、並びに非水電解質二次電池
JP2013191547A (ja) * 2012-02-14 2013-09-26 Nippon Shokubai Co Ltd 正極合材組成物
WO2021182339A1 (ja) * 2020-03-09 2021-09-16 日本ケミコン株式会社 固体電解質、蓄電デバイス及び固体電解質の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617462B2 (ja) * 2010-09-14 2014-11-05 トヨタ自動車株式会社 リチウムイオン二次電池
JP5652877B2 (ja) * 2011-09-27 2015-01-14 日本電信電話株式会社 リチウム空気電池
JP5994982B2 (ja) * 2012-07-20 2016-09-21 国立研究開発法人産業技術総合研究所 電解質としてイオン性液体、空気極としてカーボンを分散したイオン性ゲルを用いたリチウム−空気二次電池
WO2014048505A1 (en) * 2012-09-28 2014-04-03 Entonik Holding Ag Lithium- ion battery
JP2016181325A (ja) * 2013-08-15 2016-10-13 国立大学法人 東京大学 リチウム−空気電池用電解液
CN107866284B (zh) * 2016-09-26 2020-07-07 中国石油化工股份有限公司 甲苯选择性羰基化催化剂
CN107866283B (zh) * 2016-09-26 2020-07-07 中国石油化工股份有限公司 用于对甲基苯甲醛合成的催化剂
WO2019140089A1 (en) * 2018-01-10 2019-07-18 University Of Kansas Conductive fixation for electron microscopy
JP7439793B2 (ja) 2021-05-28 2024-02-28 トヨタ自動車株式会社 全固体電池、全固体電池の製造方法、および、全固体電池の回復方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165879A (ja) * 1986-01-14 1987-07-22 Sanyo Electric Co Ltd 二次電池
WO2003106419A1 (ja) * 2002-06-01 2003-12-24 ダイキン工業株式会社 常温溶融塩、その製造方法及びその用途
WO2007083756A1 (ja) * 2006-01-20 2007-07-26 Juridical Foundation Osaka Industrial Promotion Organization 電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法
JP2009218005A (ja) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243995A (ja) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP2002110230A (ja) * 2000-10-04 2002-04-12 Yuasa Corp 非水電解質リチウム二次電池
JP4162116B2 (ja) * 2000-12-08 2008-10-08 富士フイルム株式会社 光電変換素子および光電気化学電池
JP2002243995A (ja) 2001-02-13 2002-08-28 Shin Etsu Chem Co Ltd 光ファイバ心線
EP1414088B1 (en) * 2001-07-31 2013-05-22 Tokuyama Corporation Novel onium salt, electrolyte for nonaqueous cell containing the novel onium salt for nonaqueous cell, and method for optimizing a negative electrode using an electrolyte containing the onium salt
US7888412B2 (en) * 2004-03-26 2011-02-15 Board Of Trustees Of The University Of Alabama Polymer dissolution and blend formation in ionic liquids
KR101302728B1 (ko) 2005-09-30 2013-09-03 니폰 케미콘 가부시키가이샤 전해 콘덴서
US20070129568A1 (en) * 2005-12-06 2007-06-07 Ngimat, Co. Ionic liquids
WO2008035707A1 (fr) * 2006-09-19 2008-03-27 Sony Corporation Electrode, procede de fabrication associe et batterie
KR101098213B1 (ko) 2007-03-06 2011-12-27 주식회사 엘지화학 고온 저장 특성이 우수한 리튬 이차전지용 비수계 전해액

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165879A (ja) * 1986-01-14 1987-07-22 Sanyo Electric Co Ltd 二次電池
WO2003106419A1 (ja) * 2002-06-01 2003-12-24 ダイキン工業株式会社 常温溶融塩、その製造方法及びその用途
WO2007083756A1 (ja) * 2006-01-20 2007-07-26 Juridical Foundation Osaka Industrial Promotion Organization 電子顕微鏡用チャージアップ防止液状媒体、及びそれを用いた試料観察方法
JP2009218005A (ja) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOSHIDA, Y. ET AL.: "Conducting and Magnetic Properties of 1-Ethyl-3-methylimidazolium (EMI) Salts Containing Paramagnetic Irons: Liquids [EMI] [MIIICl4] (M=Fe and Fe0.5Ga0.5) and Solid [EMI] [FeIICl4]", BULL. CHEM. SOC. JPN., vol. 78, no. 11, 2005, pages 1921 - 1928 *
ZHANG, Q. ET AL.: "Studies on an ionic liquid based on FeCl3 and its properties", FLUID PHASE EQUILIBRIA, vol. 226, 2004, pages 207 - 211, XP004917592, DOI: doi:10.1016/j.fluid.2004.09.020 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069517A (ja) * 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd 負極ペースト、負極電極及びその製造方法、並びに非水電解質二次電池
JP2013191547A (ja) * 2012-02-14 2013-09-26 Nippon Shokubai Co Ltd 正極合材組成物
WO2021182339A1 (ja) * 2020-03-09 2021-09-16 日本ケミコン株式会社 固体電解質、蓄電デバイス及び固体電解質の製造方法

Also Published As

Publication number Publication date
EP2518055B1 (en) 2014-05-07
AU2010331563B2 (en) 2013-09-19
EP2518055A1 (en) 2012-10-31
CN102656150A (zh) 2012-09-05
US20130084491A1 (en) 2013-04-04
KR101395156B1 (ko) 2014-05-15
WO2011074325A1 (ja) 2011-06-23
EP2518055A4 (en) 2013-06-19
AU2010331563A1 (en) 2012-07-05
CN102656150B (zh) 2015-04-29
KR20120083520A (ko) 2012-07-25
US9276289B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
WO2011074088A1 (ja) 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
US20210210795A1 (en) Materials to improve the performance of lithium and sodium batteries
Kwabi et al. Materials challenges in rechargeable lithium-air batteries
KR101360969B1 (ko) 고체 전해질 재료, 고체 전해질 재료를 포함하는 전극체, 고체 전해질 재료를 포함하는 전-고체 전지, 및 고체 전해질 재료의 제조방법
KR101216324B1 (ko) 수계 전해액 전지의 부극 구조, 및 당해 부극 구조를 구비한 수계 전해액 전지
JP5195975B2 (ja) 全固体電池およびその製造方法
KR102287252B1 (ko) 전지용 세퍼레이터, 및, 리튬 전지, 및, 이들의 제조방법
JPWO2013046443A1 (ja) 全固体電池およびその製造方法
JP2011142066A (ja) リチウム二次電池
EP3264503B1 (en) Electrode for electrochemical element, manufacturing method therefor, and electrochemical element comprising same
KR20150027686A (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
JP5141805B1 (ja) 固体二次電池、および電池システム
JP7335022B2 (ja) リチウム2次電池
JP5556618B2 (ja) リチウム空気電池
JP5246348B2 (ja) 常温溶融塩、電極、電池、チャージアップ防止剤および試料の観察方法
AU2010349189B2 (en) Active material for battery, and battery
US20240097206A1 (en) Integrated sheet structure, secondary battery, aqueous secondary battery, battery pack, vehicle, and stationary power supply
EP4343895A1 (en) Lithium secondary battery, method for using same, and method for manufacturing lithium secondary battery
CN117652040A (zh) 正极材料和电池
JP2013084496A (ja) 全固体電池用正極、及び当該正極を備える全固体電池
KR20180138395A (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP